
Storage Management Technical Specification,
Part 2 Common Profiles

Version 1.3.0, Rev 6

This document has been released and approved by the SNIA. The SNIA believes that the ideas, methodologies
and technologies described in this document accurately represent the SNIA goals and are appropriate for
widespread distribution. Suggestion for revision should be directed to the Technical Council Managing Director at
tcmd@snia.org.

SNIA Technical Position

21 April, 2009

NO_ANSI_ID
Revision History

Revison 1
Date

 4 January, 2007

SCRs Incorporated and other changes
Job Control Subprofile.

 - Added explicit description of required properties for CIM_InstMethodCall (CORE-SMIS-SCR00021)

 - Added Indication for job start (CORE-SMIS-SCR00022)

Proxy System Management subprofile

 - Added this new profile. (CORE-SMIS-SCR00024)

IP Interface profile

 - Added this new profile (CORE-SMIS-SCR00025)

Ethernet Port Profile

 - Added this new profile (CORE-SMIS-SCR00025)

Comments
Editorial notes displayed.

Revison 2
Date

 14 April 2007

SCRs Incorporated and other changes
Common Recipes Clause

 - Removed empty Common Recipes Clause (SMIS-120-Errata-SCR0003)

Registry of Profiles and Subprofiles

 - Removed clause containing registry of profiles and subprofiles (SMIS-120-Errata-SCR0004)

Device Credentials

 - Replaced Device Credentials figure with version from 1.0 (SMIS-120-Errata-SCR0005)

SAS Target Port profile

 - Removed extra space in name of SAS Target Port profile (SMIS-120-Errata-SCR00016)

 - Fixed typo in class name in SAS Target Ports profile (SMIS-120-Errata-SCR00018)

Server & PRP Profiles

 - Added properties to Product and moved to PRP (SMIS-120-Errata-SCR00022)

 - Moved SoftwareIdentity, ElementSoftwareIdentity, Product, and roductSoftwareComponent from Server
to Profile Registration Profile (SMIS-120-Errata-SCR00047)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position iii

NO_ANSI_ID
Object Manager Adapter

 - Clarified that CIM-XML adapter and the object manager are mandatory (SMIS-12-Errata-SCR00023)

Initiator and Target Ports profiles

 - Updated all initiator and target port profiles to be consistent with the generic initiator and target port
profiles (SMIS-12-Errata-SCR00024)

Multiple Computer System

 - Added IsSpare usage information (SMIS-120-Errata-SCR00028)

Software Package

 - Added clause explaining that Software Package is merged into Software subprofile

Base Server profile

 - Added a Base Server Profile (SMIS-130-Draft-SCR00006) (4-0-1)

Cascading profile (CORE-SMIS-SCR-00027) (7-0-0)

 - Changed versions to 1.3.0

 - Added back the figure (was lost from 1.1.0 version) to the Resource Allocation/Deallocation section

 - Added USAGE tags to a bunch of classes

 - Added the ComputerSystem class for the Leaf System

 - Added definitions (conditional) of StorageVolume and LogicalDisk

 - Added a bunch of CONDITIONS and applied them

Media Access Device Profile

 - Added a Media Access Device Profile (SMIS-130-Draft-SCR00007) (4-0-0)

Proxy Server Management Profile

 - Added this profile (SMIS-130-Draft-SCR00008) (5-0-1)

Software Installation profile

 - Deleted SMI-S Software Installation profile (SMIS-130-Draft-SCR00004) (6-0-0)

Software Inventory profile

 - Added a specialized DMTF Software Inventory profile (SMIS-130-Draft-SCR00005) (6-0-0)

Storage Device Enclosure Subprofile

 - Deleted the Storage Device Enclosure profile (CORE-SMIS-SCR-00026) (3-0-0)

Storage Enclosure Subprofile

 - Added the new Storage Enclosure profile (CORE-SMIS-SCR-00026) (3-0-0)

Comments
Only minor editorial work for this revision.
iv

NO_ANSI_ID
Revison 3
Date

 19 June 2007

SCRs Incorporated and other changes
Access Points Profile

 - Access Points class table fixes (SMIS-12-Errata-SCR00048) (8-0-1)

Cascading Profile

 - Incorporate enhancments from 1.2.0 (SMIS-12-Errata-SCR00053) (7-0-1)

Base Server Profile

 - Promote Base Server profile to Experimental (SMIS-130-Draft-SCR00006) (2-0-1)

Software Inventory Profile

 - Promote Software Inventory profile to Experimental (SMIS-130-Draft-SCR00005) (2-0-1)

Server Profile

 - Incorporate fixes from 1.2.0 (SMIS-120-Errata-SCR00047) (9-0-1)

 - Incorporate fixes from 1.2.0 (SMIS-120-Errata-SCR00060) (14-0-0)

 - Clarify use of component profiles in Server Profile

Profile Registration Profile

 - Incorporate fixes from 1.2.0 (SMIS-120-Errata-SCR00047) (9-0-1)

Indication Profile

 - Incorporate fixes from 1.2.0 errata (SMIS-120-Errata-SCR00051) (8-1-1)

 - Add sections to clarify alert vs lifecycle indications (TSG-SMIS-SCR00220) (11-0-0)

Object Manager Adapter

 - Incorporate fixes from 1.2.0 (SMIS-120-Errata-SCR00047) (9-0-1)

Proxy Server System Management Profile

 - Update & promote to Experimental the Proxy System Management subprofile based on numerous ballot
comments (SMIS-130-Draft-SCR00012) (4-0-0)

Comments
Editorial notes displayed.

Responses to INCITS editor queries re SMI-S 1.1.0 incorporated as applicable.

Typographical Conventions revised in all books: Revised explanation of Experimental text (per SMIS-120-
Errata-SCR00061 - Typographical Conventions), added explanations of Draft and Editorial text.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position v

NO_ANSI_ID
Revision 4
Date

 20 July 2007

SCRs Incorporated and other changes
Job Control Profile

 - Fixed enumeration of OperationalStatus in the OperationalStatus to Job State Mapping (CORE-SMIS-
SCR-00030) (4-0-0)

Storage HBA Profile

 - Promote Storage HBA profile to Experimental (SMIS-130-Draft-SCR00013) (3-0-0)

Comments
Editorial notes displayed, but the DRAFT material is not.

Revision 5
Date

 14 November 2007

SCRs Incorporated and other changes
Clause 9: iSCSI Target Ports Subprofile (SMIS-120-Errata-SCR00074)
 - Made Capabilities dependent on the existence of the Service - fix for bug 3156

Comments
Editorial notes and DRAFT material are not displayed.

Revision 6
Date

 14 January 2009

SCRs Incorporated and other changes
References to Storage Management Technical Specification, Part 7 Information Lifecycle Management,
deleted.
Removed test CARDINALITY (SMIS-130-Errata-SCR00001)
CQL mandatory for new indication filters (SMIS-130-Errata-SCR00006)
Indication Profile Content Review Changes, including changes to Indication Profile and Namespaces
Diagram and Indication Profile Instance Diagram (SMIS-130-Errata-SCR00006)
Invalid version numbers in supported profiles tables replaced with valid numbers (SMIS-130-Errata-
SCR00017)
Removed “Determine the Other Profile Supported by a Profile” recipe from Profile Registration Profile
(SMIS-130-Errata-SCR00020)
Added missing value for CIM protocol version in XML for Server profile (SMIS-130-Errata-SCR00021)
In FC Target Ports, added missing VALUE attribute to SCSIProtocolEndpoint and ATAProtocolEndpoint,
also replaced single HostedAccessPoint into separate definitions for SCSI/ATA and added
VALIDATION_PROPERTY. Added VALIDATION_PROPERTY to each reference of
DeviceSAPImplementation (SMIS-130-Errata-SCR00022)
Updated FC (and Generic) Initiator Ports (SMIS-130-Errata-SCR00023)
vi

NO_ANSI_ID
Updated the SMI-S version numbers for these profiles: Location, SB Initiator Ports, SB Target Ports,
Security Resource Ownership, Software, Software Inventory and Software Repository (SMIS-130-Errata-
SCR00024)
Promoted Profile Registration Profile from Experimental to Stable (SMIS-130-Errata-SCR00033)
Updated FC Initiator Ports and Generic Initiator Port profiles (SMIS-130-Errata-SCR00041)

Comments
Editorial notes and DRAFT material are not displayed.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage Management
Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/
 SMI-S 1.3.0 Rev 6 SNIA Technical Position vii

NO_ANSI_ID
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration,
and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced must acknowledge the SNIA copyright on that material, and must credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

Copyright © 2003-2009 Storage Networking Industry Association.
viii

NO_ANSI_ID
INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and promoting
interoperable multi-vendor SANs through the SNIA organization.

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2009 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of
their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed Management Task
Force (DMTF). The CIM classes that are documented have been developed and reviewed by both the Storage
Networking Industry Association (SNIA) and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.

CHANGES TO THE SPECIFICATION
Each publication of this specification is uniquely identified by a three-level identifier, comprised of a version
number, a release number and an update number. The current identifier for this specification is version 1.2.0.
Future publications of this specification are subject to specific constraints on the scope of change that is
permissible from one publication to the next and the degree of interoperability and backward compatibility that
should be assumed between products designed to different publications of this standard. The SNIA has defined
three levels of change to a specification:

• Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

• Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of the
specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

• Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.x.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

This specification has been structured to convey both the formal requirements and assumptions of the SMI-S API
and its emerging implementation and deployment lifecycle. Over time, the intent is that all content in the
specification will represent a mature and stable design, be verified by extensive implementation experience, assure
consistent support for backward compatibility, and rely solely on content material that has reached a similar level of
maturity. Unless explicitly labeled with one of the subordinate maturity levels defined for this specification, content
is assumed to satisfy these requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three subordinate levels
of implementation maturity that identify important aspects of the content’s increasing maturity and stability. Each
subordinate maturity level is defined by its level of implementation experience, its stability and its reliance on other
 SMI-S 1.3.0 Rev 6 SNIA Technical Position vii

NO_ANSI_ID
emerging standards. Each subordinate maturity level is identified by a unique typographical tagging convention
that clearly distinguishes content at one maturity model from content at another level.

Experimental Maturity Level
No material is included in this specification unless its initial architecture has been completed and reviewed. Some
content included in this specification has complete and reviewed design, but lacks implementation experience and
the maturity gained through implementation experience. This content is included in order to gain wider review and
to gain implementation experience. This material is referred to as “Experimental”. It is presented here as an aid to
implementers who are interested in likely future developments within the SMI specification. The contents of an
Experimental profile may change as implementation experience is gained. There is a high likelihood that the
changed content will be included in an upcoming revision of the specification. Experimental material can advance
to a higher maturity level as soon as implementations are available. Figure 1 is a sample of the typographical
convention for Experimental content.

Implemented Maturity Level
Profiles for which initial implementations have been completed are classified as “Implemented”. This indicates that
at least two different vendors have implemented the profile, including at least one provider implementation. At this
maturity level, the underlying architecture and modeling are stable, and changes in future revisions will be limited to
the correction of deficiencies identified through additional implementation experience. Should the material become
obsolete in the future, it must be deprecated in a minor revision of the specification prior to its removal from
subsequent releases. Figure 2 is a sample of the typographical convention for Implemented content.

Stable Maturity Level
Once content at the Implemented maturity level has garnered additional implementation experience, it can be
tagged at the Stable maturity level. Material at this maturity level has been implemented by three different vendors,
including both a provider and a client. Should material that has reached this maturity level become obsolete, it may
only be deprecated as part of a minor revision to the specification. Material at this maturity level that has been
deprecated may only be removed from the specification as part of a major revision. A profile that has reached this
maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next.
As a result, Profiles at or above the Stable maturity level shall not rely on any content that is Experimental. Figure 3
is a sample of the typographical convention for Implemented content.

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

IMPLEMENTED

Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag
viii

NO_ANSI_ID
Finalized Maturity Level
Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying the
requirements for the Stable maturity level, content at the Finalized maturity level must solely depend upon or refine
material that has also reached the Finalized level. If specification content depends upon material that is not under
the control of the SNIA, and therefore not subject to its maturity level definitions, then the external content is
evaluated by the SNIA to assure that it has achieved a comparable level of completion, stability, and
implementation experience. Should material that has reached this maturity level become obsolete, it may only be
deprecated as part of a major revision to the specification. A profile that has reached this maturity level is
guaranteed to preserve backward compatibility from one minor specification revision to the next. Over time, it is
hoped that all specification content will attain this maturity level. Accordingly, there is no special typographical
convention, as there is with the other, subordinate maturity levels. Unless content in the specification is marked
with one of the typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material
Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections identified as
“Deprecated” contain material that is obsolete and not recommended for use in new development efforts. Existing
and new implementations may still use this material, but shall move to the newer approach as soon as possible.
The maturity level of the material being deprecated determines how long it will continue to appear in the
specification. Implemented content shall be retained at least until the next revision of the specialization, while
Stable and Finalized material shall be retained until the next major revision of the specification. Providers shall
implement the deprecated elements as long as it appears in the specification in order to achieve backward
compatibility. Clients may rely on deprecated elements, but are encouraged to use non-deprecated alternatives
when possible.

Deprecated sections are documented with a reference to the last published version to include the deprecated
section as normative material and to the section in the current specification with the replacement. Figure 4 contains
a sample of the typographical convention for deprecated content.

STABLE

Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

DEPRECATED

Content that has been deprecated appears here.

DEPRECATED

Figure 4 - Deprecated Tag
 SMI-S 1.3.0 Rev 6 SNIA Technical Position ix

NO_ANSI_ID
USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

3) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration.

4) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.
x

NO_ANSI_ID
Contents
Revision History... iii
List of Tables.. xxi
List of Figures ... xxxv
Foreword... xxxix
1. Scope ...1
2. Normative References..3

2.1 Approved References .. 3
2.2 DMTF References (Final)... 3
2.3 IETF References (Standards or Draft Standards).. 3
2.4 References under development ... 4
2.5 Other References... 4

3. Terms and definitions ..5
3.1 General .. 5
3.2 Terms... 5

4. Profile Introduction...7
4.1 Profile Overview... 7
4.2 Format for Profile Specifications .. 8

5. Recipe Overview ...11
5.1 Recipe Concepts.. 11
5.2 Recipe Pseudo Code Conventions .. 11

6. Generic Target Ports Profile ..19
6.1 Synopsis... 19
6.2 Description ... 19
6.3 Implementation... 19
6.4 Methods of the Profile .. 22
6.5 Use Cases.. 22
6.6 CIM Elements... 22

7. Parallel SCSI (SPI) Target Ports Profile ..27
7.1 Synopsis... 27
7.2 Description ... 27
7.3 Implementation... 28
7.4 Health and Fault Management... 29
7.5 Methods ... 29
7.6 CIM Elements... 29

8. FC Target Ports Profile...35
8.1 Synopsis... 35
8.2 Description ... 35
8.3 Implementation... 35
8.4 Durable Names and Correlatable IDs of the Subprofile ... 36
8.5 Health and Fault Management... 36
8.6 Supported Profiles and Packages.. 36
8.7 Extrinsic Methods of this Subprofile ... 37
8.8 Client Considerations and Recipes .. 37
8.9 CIM Elements... 37

9. iSCSI Target Ports Subprofile ...43
9.1 Synopsis... 43
9.2 Description ... 43
9.3 Implementation... 43
9.4 Health and Fault Management... 47
9.5 Supported Subprofiles and Packages.. 47
9.6 Methods of this Subprofile.. 47
9.7 Client Considerations and Recipes .. 52
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xiii

NO_ANSI_ID
9.8 CIM Elements... 61
10. Serial Attached SCSI (SAS) Target Port Subprofile ..85

10.1 Synopsis... 85
10.2 Description ... 85
10.3 Methods ... 86
10.4 Client Considerations and Recipes .. 86
10.5 CIM Elements... 86

11. Serial ATA (SATA) Target Ports Profile ..91
11.1 Synopsis... 91
11.2 Description ... 91
11.3 Methods of this Subprofile.. 92
11.4 Client Considerations and Recipes .. 92
11.5 CIM Elements... 92

12. SB Target Port Profile ..97
12.1 Synopsis... 97
12.2 Description ... 97
12.3 Implementation... 97
12.4 Health and Fault Management Consideration.. 98
12.5 Cascading Considerations ... 99
12.6 Supported Profiles, Subprofiles, and Packages... 99
12.7 Methods of the Profile .. 99
12.8 Client Considerations and Recipes .. 100
12.9 CIM Elements... 100

13. Direct Attach (DA) Ports Profile ..107
13.1 Description ... 107
13.2 Health and Fault Management... 108
13.3 Supported Profiles and Packages.. 108
13.4 Extrinsic Methods... 108
13.5 Client Considerations and Recipes .. 108
13.6 CIM Elements... 108

14. Generic Initiator Ports Profile..113
14.1 Synopsis... 113
14.2 Description ... 113
14.3 Implementation... 113
14.4 Methods ... 117
14.5 Detailed Use Cases and Recipes .. 118
14.6 CIM Elements... 118

15. Parallel SCSI (SPI) Initiator Ports Profile..123
15.1 Synopsis... 123
15.2 Description ... 123
15.3 Implementation... 123
15.4 Methods ... 124
15.5 Detailed Use Cases and Recipes .. 124
15.6 CIM Elements... 125

16. iSCSI Initiator Port Profile..131
16.1 Synopsis... 131
16.2 Description ... 131
16.3 Implementation... 131
16.4 Methods ... 133
16.5 Detailed Use Cases and Recipes .. 133
16.6 CIM Elements... 133

17. Fibre Channel Initiator Port Profile ...141
17.1 Synopsis... 141
17.2 Description ... 141
xiv

NO_ANSI_ID
17.3 Implementation... 141
17.4 Methods ... 143
17.5 Detailed Use Cases and Recipes .. 143
17.6 CIM Elements... 143

18. SAS Initiator Ports Profile..153
18.1 Synopsis... 153
18.2 Description ... 153
18.3 Methods of the profile... 154
18.4 Client Considerations and Recipes .. 154
18.5 CIM Elements... 154

19. ATA Initiator Ports Profile..161
19.1 Synopsis... 161
19.2 Description ... 161
19.3 Implementation... 161
19.4 Methods of the profile... 162
19.5 Client Considerations and Recipes .. 163
19.6 CIM Elements... 163

20. FC-SB-x Initiator Ports Profile ...169
20.1 Synopsis... 169
20.2 Description ... 169
20.3 Implementation... 169
20.4 Methods ... 170
20.5 Client Considerations and Recipes .. 170
20.6 CIM Elements... 171

21. SAS/SATA Initiator Port Profile ...179
21.1 Synopsis... 179
21.2 Description ... 179
21.3 Implementation... 180
21.4 Health and Fault Management Considerations.. 180
21.5 Methods ... 180
21.6 Detailed Use Cases and Recipes .. 181
21.7 CIM Elements... 181

22. Backend Ports Subprofile..189
23. Access Points Subprofile ..191

23.1 Description ... 191
23.2 Health and Fault Management Considerations.. 192
23.3 Cascading Considerations ... 193
23.4 Supported Subprofiles and Packages.. 193
23.5 Methods of this Profile.. 193
23.6 Client Considerations and Recipes .. 193
23.7 Registered Name and Version ... 193
23.8 CIM Elements... 193

24. Cascading Subprofile...197
24.1 Description ... 197
24.2 Health and Fault Management Considerations.. 204
24.3 Cascading Considerations ... 205
24.4 Supported Subprofiles and Packages.. 205
24.5 Methods of this Subprofile.. 205
24.6 Client Considerations and Recipes .. 207
24.7 Registered Name and Version ... 208
24.8 CIM Elements... 208

25. Health Package ...227
25.1 Description ... 227
25.2 Health and Fault Management Considerations.. 231
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xv

NO_ANSI_ID
25.3 Cascading Considerations ... 231
25.4 Supported Subprofiles and Packages.. 231
25.5 Client Considerations and Recipes .. 231
25.6 Registered Name and Version ... 231
25.7 CIM Elements... 231

26. Job Control Subprofile...235
26.1 Description ... 235
26.2 Health and Fault Management... 238
26.3 Cascading Considerations ... 239
26.4 Support Subprofiles and Packages.. 239
26.5 Methods of the Profile .. 239
26.6 Client Considerations and Recipes .. 240
26.7 Registered Name and Version ... 241
26.8 CIM Elements... 241

27. Location Subprofile ..247
27.1 Description ... 247
27.2 Health and Fault Management Considerations.. 247
27.3 Cascading Considerations ... 247
27.4 Supported Subprofiles and Packages.. 247
27.5 Methods of the Profile .. 247
27.6 Client Considerations and Recipes .. 247
27.7 Registered Name and Version ... 248
27.8 CIM Elements... 248

28. Extra Capacity Set Subprofile ...251
29. Cluster Subprofile...253
30. Multiple Computer System Subprofile..255

30.1 Description ... 255
30.2 Health and Fault Management Considerations.. 259
30.3 Cascading Considerations ... 259
30.4 Supported Subprofiles and Packages.. 260
30.5 Methods of the Profile .. 260
30.6 Client Considerations and Recipes .. 260
30.7 Registered Name and Version ... 262
30.8 CIM Elements... 263

31. Policy Package..267
31.1 Description ... 267
31.2 Health and Fault Management Considerations.. 285
31.3 Cascading Considerations ... 285
31.4 Supported Subprofiles and Packages.. 286
31.5 Methods of the Profile .. 286
31.6 Client Considerations and Recipes .. 289
31.7 Registered Name and Version ... 290
31.8 CIM Elements... 290

32. Physical Package Package ..327
32.1 Description ... 327
32.2 Health and Fault Management Considerations.. 328
32.3 Cascading Considerations ... 328
32.4 Supported Subprofiles and Packages.. 328
32.5 Methods of this Profile.. 328
32.6 Client Considerations and Recipes .. 328
32.7 Registered Name and Version ... 329
32.8 CIM Elements... 329

33. Power Supply Profile..335
33.1 Synopsis... 335
xvi

NO_ANSI_ID
33.2 Description ... 335
33.3 Implementation... 335
33.4 Methods ... 335
33.5 Use Cases.. 335
33.6 CIM Elements... 336

34. Fan Profile ...343
34.1 Synopsis... 343
34.2 Description ... 343
34.3 Implementation... 343
34.4 Methods ... 343
34.5 Use Cases.. 343
34.6 CIM Elements... 344

35. Sensors Profile ...351
35.1 Synopsis... 351
35.2 Description ... 351
35.3 Implementation... 351
35.4 Methods ... 351
35.5 Use Cases.. 351
35.6 CIM Elements... 352

36. Base Server Profile...357
36.1 Synopsis... 357
36.2 Description ... 357
36.3 Implementation... 357
36.4 Methods ... 358
36.5 Use Cases.. 358
36.6 CIM Elements... 358

37. Media Access Device Profile ...361
37.1 Synopsis... 361
37.2 Description ... 361
37.3 Implementation... 362
37.4 Methods ... 363
37.5 Use Cases.. 363
37.6 CIM Elements... 363

38. Storage Enclosure Profile..369
38.1 Description ... 369
38.2 Implementation... 372
38.3 Methods ... 374
38.4 Use Cases.. 375
38.5 Registered Name and Version ... 375
38.6 CIM Elements... 375

39. Software Subprofile..389
39.1 Description ... 389
39.2 Health and Fault Management Considerations.. 389
39.3 Cascading Considerations ... 389
39.4 Supported Subprofiles, and Packages... 390
39.5 Methods of the Profile .. 390
39.6 Client Considerations and Recipes .. 390
39.7 Registered Name and Version ... 390
39.8 CIM Elements... 390

40. Software Inventory Profile ...393
40.1 Synopsis... 393
40.2 Description ... 393
40.3 Implementation... 394
40.4 Methods ... 394
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xvii

NO_ANSI_ID
40.5 Use Cases.. 394
40.6 CIM Elements... 394

41. Software Repository Subprofile ..401
41.1 Description ... 401
41.2 Health and Fault Management Considerations.. 402
41.3 Cascading Considerations ... 402
41.4 Methods of the Profile .. 402
41.5 Supported Subprofiles, and Packages... 402
41.6 Client Considerations and Recipes .. 402
41.7 Registered Name and Version ... 402
41.8 CIM Elements... 402

42. Server Profile ..407
42.1 Description ... 407
42.2 Use of model fields to Populate the SLP template... 408
42.3 Health and Fault Management... 416
42.4 Cascading Considerations ... 416
42.5 Supported Subprofiles and Packages.. 417
42.6 Methods of the Profile .. 417
42.7 Client Considerations and Recipes .. 417
42.8 Registered Name and Version ... 419
42.9 CIM Elements... 419

43. Profile Registration Profile ..425
43.1 Synopsis... 425
43.2 Description ... 425
43.3 Implementation... 425
43.4 Methods ... 429
43.5 Use Cases.. 429
43.6 Registered Name and Version ... 436
43.7 CIM Elements... 436

44. Indication Profile...445
44.1 Description ... 445
44.2 Health and Fault Management Considerations.. 458
44.3 Cascading Considerations ... 459
44.4 Supported Profiles, Subprofiles and Packages.. 459
44.5 Methods of the Profile .. 459
44.6 Client Considerations and Recipes .. 462
44.7 Registered Name and Version ... 465
44.8 CIM Elements... 466

45. Object Manager Adapter Subprofile ...475
45.1 Description ... 475
45.2 Health and Fault Management... 475
45.3 Cascading Considerations ... 475
45.4 Supported Subprofiles and Packages.. 476
45.5 Methods of the Profile .. 476
45.6 Client Considerations and Recipes .. 476
45.7 Registered Name and Version ... 476
45.8 CIM Elements... 476

46. Proxy Server System Management Subprofile ..479
46.1 Description ... 479
46.2 Health and Fault Management Consideration.. 481
46.3 Cascading Considerations ... 481
46.4 Supported Profiles, Subprofiles, and Packages... 481
46.5 Methods of the Profile .. 481
46.6 Client Considerations and Recipes .. 485
xviii

NO_ANSI_ID
46.7 CIM Element .. 486
46.8 Registered Name and Version ... 486
46.9 CIM Elements... 486

47. Device Credentials Subprofile...489
47.1 Description ... 489
47.2 Health and Fault Management Considerations.. 489
47.3 Cascading Considerations ... 489
47.4 Supported Subprofiles and Packages.. 489
47.5 Extrinsic Methods of this Profile ... 489
47.6 Client Considerations and Recipes .. 490
47.7 Registered Name and Version ... 490
47.8 CIM Elements... 490

48. Security Profile ...493
48.1 Description ... 493
48.2 Health and Fault Management Considerations.. 496
48.3 Cascading Considerations ... 497
48.4 Supported Subprofiles and Packages.. 497
48.5 Methods of the Profile .. 497
48.6 Client Considerations and Recipes .. 497
48.7 Registered Name and Version ... 499
48.8 CIM Elements... 499

49. Authorization Subprofile..505
49.1 Description ... 505
49.2 Health and Fault Management Considerations.. 509
49.3 Cascading Considerations ... 509
49.4 Supported Subprofiles and Packages.. 510
49.5 Methods of the Profile .. 510
49.6 Client Considerations and Recipes .. 510
49.7 Registered Name and Version ... 514
49.8 CIM Elements... 514

50. Credential Management Subprofile ..525
50.1 Description ... 525
50.2 Health and Fault Management Considerations.. 528
50.3 Cascading Considerations ... 528
50.4 Supported Subprofiles and Packages.. 528
50.5 Methods of the Profile .. 528
50.6 Client Considerations and Recipes .. 528
50.7 Registered Name and Version ... 528
50.8 CIM Elements... 528

51. Security Resource Ownership Subprofile..535
51.1 Description ... 535
51.2 Health and Fault Management Considerations.. 538
51.3 Cascading Considerations ... 538
51.4 Supported Subprofiles and Packages.. 538
51.5 Methods of the Profile .. 538
51.6 Client Considerations and Recipes .. 538
51.7 Registered Name and Version ... 541
51.8 CIM Elements... 541

52. Security Role Based Access Control Subprofile...555
52.1 Description ... 555
52.2 Health and Fault Management Consideration.. 560
52.3 Cascading Considerations ... 560
52.4 Supported Subprofiles and Packages.. 560
52.5 Methods of the Profile .. 560
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xix

NO_ANSI_ID
52.6 Client Considerations and Recipes .. 561
52.7 Registered Name and Version ... 563
52.8 CIM Elements... 563

53. IdentityManagement Subprofile ..571
53.1 Description ... 571
53.2 Health and Fault Management Considerations.. 577
53.3 Cascading Considerations ... 577
53.4 Supported Profiles and Packages.. 577
53.5 Methods of the Profile .. 578
53.6 Client Considerations and Recipes .. 578
53.7 Registered Name and Version ... 581
53.8 CIM Elements... 582

54. 3rd Party Authentication Subprofile ...597
54.1 Description ... 597
54.2 Client Considerations and Recipes .. 598
54.3 Registered Name and Version ... 599
54.4 CIM Elements... 599

55. Cross Profile Considerations ..611
55.1 Overview .. 611
55.2 HBA model ... 611
55.3 Switch Model.. 612
55.4 Array Model.. 617
55.5 Storage Virtualization Model .. 617
55.6 Fabric Topology (HBA, Switch, Array) ... 619
xx

NO_ANSI_ID
List of Tables

Table 1. Profile Components ..9
Table 2. Modeling of Common Storage Devices in CIM...21
Table 3. CIM Elements for Generic Target Ports ...22
Table 4. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..23
Table 5. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..23
Table 6. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA) ...24
Table 7. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)..24
Table 8. SMI Referenced Properties/Methods for CIM_LogicalPort...25
Table 9. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint ...25
Table 10. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...26
Table 11. SMI Referenced Properties/Methods for CIM_SystemDevice..26
Table 12. SPIPort OperationalStatus ...29
Table 13. CIM Elements for SPI Target Ports ..29
Table 14. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..30
Table 15. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..30
Table 16. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA) ...30
Table 17. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)..31
Table 18. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...31
Table 19. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...32
Table 20. SMI Referenced Properties/Methods for CIM_SPIPort ..32
Table 21. SMI Referenced Properties/Methods for CIM_SystemDevice..33
Table 22. FCPort OperationalStatus ..36
Table 23. CIM Elements for FC Target Ports ...37
Table 24. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..38
Table 25. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..39
Table 26. SMI Referenced Properties/Methods for CIM_FCPort ...39
Table 27. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA) ...40
Table 28. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)..40
Table 29. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort ..40
Table 30. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...41
Table 31. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...41
Table 32. SMI Referenced Properties/Methods for CIM_SystemDevice..42
Table 33. iSCSI Terminology and SMI-S Class Names ...45
Table 34. EthernetPort OperationalStatus..47
Table 35. CIM Elements for iSCSI Target Ports...61
Table 36. SMI Referenced Properties/Methods for CIM_BindsTo (TCPProtocolEndpoint to IPProtocolEndpoint)..................65
Table 37. SMI Referenced Properties/Methods for CIM_BindsTo (iSCSIProtocolEndpoint to TCPProtocolEndpoint)............65
Table 38. SMI Referenced Properties/Methods for CIM_ConcreteDependency..65
Table 39. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (EthernetPort to IPProtocolEndpoint) ..66
Table 40. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (EthernetPort to iSCSIProtocolEndpoint).

66
Table 41. SMI Referenced Properties/Methods for CIM_ElementCapabilities (iSCSIConfigurationCapabilities to System) ...66
Table 42. SMI Referenced Properties/Methods for CIM_ElementCapabilities (iSCSIConfigurationCapabilities to iSCSIConfig-

urationService) ...67
Table 43. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSIConnectionSettings to TCPProtocolEnd-

point)...67
Table 44. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSIConnectionSettings to iSCSIProtocolEnd-

point)...68
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxi

NO_ANSI_ID
Table 45. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSettings to SCSIProtocolControl-
ler) ..68

Table 46. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSettings to System)68
Table 47. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSettings to iSCSIProtocolEnd-

point)...69
Table 48. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSILoginStatistics to SCSIProtocolControl-

ler) ..69
Table 49. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSISessionFailures to SCSIProtocolCon-

troller) ...70
Table 50. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSISessionStatistics to iSCSISession)..70
Table 51. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe (iSCSIConnection to TCPProtocolEndpoint)

70
Table 52. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe (iSCSISession to iSCSIProtocolEndpoint)71
Table 53. SMI Referenced Properties/Methods for CIM_EthernetPort ..71
Table 54. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to IPProtocolEndpoint)72
Table 55. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to TCPProtocolEndpoint)72
Table 56. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)72
Table 57. SMI Referenced Properties/Methods for CIM_HostedCollection ...73
Table 58. SMI Referenced Properties/Methods for CIM_HostedService ...73
Table 59. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint..73
Table 60. SMI Referenced Properties/Methods for CIM_MemberOfCollection..74
Table 61. SMI Referenced Properties/Methods for CIM_NetworkPipeComposition ..74
Table 62. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..75
Table 63. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...75
Table 64. SMI Referenced Properties/Methods for CIM_SystemDevice (System to EthernetPort) ...76
Table 65. SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController)76
Table 66. SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..76
Table 67. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint ..77
Table 68. SMI Referenced Properties/Methods for CIM_iSCSICapabilities...77
Table 69. SMI Referenced Properties/Methods for CIM_iSCSIConfigurationCapabilities ...78
Table 70. SMI Referenced Properties/Methods for CIM_iSCSIConfigurationService ..78
Table 71. SMI Referenced Properties/Methods for CIM_iSCSIConnection ...79
Table 72. SMI Referenced Properties/Methods for CIM_iSCSIConnectionSettings ..79
Table 73. SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics ..80
Table 74. SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint ..81
Table 75. SMI Referenced Properties/Methods for CIM_iSCSISession...82
Table 76. SMI Referenced Properties/Methods for CIM_iSCSISessionFailures..83
Table 77. SMI Referenced Properties/Methods for CIM_iSCSISessionSettings..83
Table 78. SMI Referenced Properties/Methods for CIM_iSCSISessionStatistics ..84
Table 79. SASPort OperationalStatus ..86
Table 80. CIM Elements for SAS Target Ports...86
Table 81. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..87
Table 82. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..88
Table 83. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA) ...88
Table 84. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)..88
Table 85. SMI Referenced Properties/Methods for CIM_SASPort...89
Table 86. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...89
Table 87. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...90
Table 88. SMI Referenced Properties/Methods for CIM_SystemDevice..90
Table 89. ATAPort OperationalStatus ..92
xxii

NO_ANSI_ID
Table 90. CIM Elements for SATA Target Ports...92
Table 91. SMI Referenced Properties/Methods for CIM_ATAPort ...93
Table 92. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..94
Table 93. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..94
Table 94. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..95
Table 95. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA) ...95
Table 96. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)..95
Table 97. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...96
Table 98. SMI Referenced Properties/Methods for CIM_SystemDevice..96
Table 99. FCPort OperationalStatus ..98
Table 100. Related Profiles for SB Target Ports ..99
Table 101. CIM Elements for SB Target Ports ...100
Table 102. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..101
Table 103. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..101
Table 104. SMI Referenced Properties/Methods for CIM_FCPort ...102
Table 105. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA) ...103
Table 106. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)..104
Table 107. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...104
Table 108. SMI Referenced Properties/Methods for CIM_SystemDevice..104
Table 109. SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint...105
Table 110. DAPort OperationalStatus ..108
Table 111. CIM Elements for DA Target Ports ...108
Table 112. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..109
Table 113. SMI Referenced Properties/Methods for CIM_DAPort ...109
Table 114. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..110
Table 115. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA) ...110
Table 116. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)..110
Table 117. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint ...111
Table 118. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint...111
Table 119. SMI Referenced Properties/Methods for CIM_SystemDevice..112
Table 120. CIM Elements for Generic Initiator Ports ..118
Table 121. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...119
Table 122. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..119
Table 123. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..120
Table 124. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..120
Table 125. SMI Referenced Properties/Methods for CIM_HostedCollection ...120
Table 126. SMI Referenced Properties/Methods for CIM_LogicalPort...121
Table 127. SMI Referenced Properties/Methods for CIM_MemberOfCollection..121
Table 128. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...122
Table 129. SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices) ...122
Table 130. SPIPort OperationalStatus ...124
Table 131. CIM Elements for SPI Initiator Ports...125
Table 132. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...126
Table 133. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..126
Table 134. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..126
Table 135. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..127
Table 136. SMI Referenced Properties/Methods for CIM_HostedCollection ...127
Table 137. SMI Referenced Properties/Methods for CIM_MemberOfCollection..127
Table 138. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...128
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxiii

NO_ANSI_ID
Table 139. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)128
Table 140. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint).....129
Table 141. SMI Referenced Properties/Methods for CIM_SPIPort ..129
Table 142. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...130
Table 143. SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices) ...130
Table 144. Related Profiles for iSCSI Initiator Ports...131
Table 145. EthernetPort OperationalStatus..132
Table 146. CIM Elements for iSCSI Initiator Ports ...133
Table 147. SMI Referenced Properties/Methods for CIM_BindsTo ...134
Table 148. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (IPProtocolEndpoint to EthernetPort) 135
Table 149. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (iSSIProtocolEndpoint to EthenetPort)

135
Table 150. SMI Referenced Properties/Methods for CIM_EthernetPort ..135
Table 151. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to IPProtocolEndpoint)136
Table 152. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to TCPProtocolEndpoint)136
Table 153. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)137
Table 154. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint..137
Table 155. SMI Referenced Properties/Methods for CIM_LogicalDevice ..138
Table 156. SMI Referenced Properties/Methods for CIM_SystemDevice (System to EthernetPort)138
Table 157. SMI Referenced Properties/Methods for CIM_SystemDevice (System to LogicalDevice).....................................138
Table 158. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint ..139
Table 159. SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint ..139
Table 160. FCPort OperationalStatus ..142
Table 161. CIM Elements for FC Initiator Ports..143
Table 162. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...145
Table 163. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..145
Table 164. SMI Referenced Properties/Methods for CIM_FCPort ...145
Table 165. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..147
Table 166. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..147
Table 167. SMI Referenced Properties/Methods for CIM_HostedCollection ...147
Table 168. SMI Referenced Properties/Methods for CIM_MemberOfCollection..148
Table 169. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort ..148
Table 170. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...148
Table 171. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...149
Table 172. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)..149
Table 173. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target) ...150
Table 174. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...150
Table 175. SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices) ...151
Table 176. SASPort OperationalStatus ..154
Table 177. CIM Elements for SAS Initiator Ports ...154
Table 178. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...155
Table 179. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..155
Table 180. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..156
Table 181. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..156
Table 182. SMI Referenced Properties/Methods for CIM_HostedCollection ...157
Table 183. SMI Referenced Properties/Methods for CIM_MemberOfCollection..157
Table 184. SMI Referenced Properties/Methods for CIM_SASPort ...157
Table 185. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...158
Table 186. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)158
xxiv

NO_ANSI_ID
Table 187. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint).....159
Table 188. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...160
Table 189. SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices) ...160
Table 190. ATAPort OperationalStatus ..162
Table 191. CIM Elements for ATA Initiator Ports..163
Table 192. SMI Referenced Properties/Methods for CIM_ATAPort ...164
Table 193. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator ProtocolEndpoint).........................164
Table 194. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Target or non-local ProtocolEndpoint)165
Table 195. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...166
Table 196. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..166
Table 197. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..166
Table 198. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..167
Table 199. SMI Referenced Properties/Methods for CIM_HostedCollection ...167
Table 200. SMI Referenced Properties/Methods for CIM_MemberOfCollection..167
Table 201. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...168
Table 202. SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices) ...168
Table 203. FCPort OperationalStatus ..170
Table 204. CIM Elements for SB Initiator Ports..171
Table 205. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...172
Table 206. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..172
Table 207. SMI Referenced Properties/Methods for CIM_FCPort ...173
Table 208. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..174
Table 209. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..174
Table 210. SMI Referenced Properties/Methods for CIM_HostedCollection ...174
Table 211. SMI Referenced Properties/Methods for CIM_MemberOfCollection..175
Table 212. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...175
Table 213. SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices) ...176
Table 214. SMI Referenced Properties/Methods for SNIA_SBInitiatorTargetLogicalUnitPath...176
Table 215. SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint (Initiator ProtocolEndpoint)177
Table 216. SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint (Target or non-local ProtocolEndpoint).......177
Table 217. SASSATAPort OperationalStatus...180
Table 218. CIM Elements for SAS/SATA Initiator Ports ...181
Table 219. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator ProtocolEndpoint).........................182
Table 220. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Target or non-local ProtocolEndpoint)183
Table 221. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...183
Table 222. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..184
Table 223. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..184
Table 224. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..184
Table 225. SMI Referenced Properties/Methods for CIM_HostedCollection ...185
Table 226. SMI Referenced Properties/Methods for CIM_LogicalPort...185
Table 227. SMI Referenced Properties/Methods for CIM_MemberOfCollection..186
Table 228. SMI Referenced Properties/Methods for CIM_SASSATAPort (Initiator ProtocolEndpoint)....................................186
Table 229. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...186
Table 230. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)187
Table 231. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint).....187
Table 232. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...188
Table 233. SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices) ...188
Table 234. RemoteAccessPoint InfoFormat and AccessInfo Properties..192
Table 235. CIM Elements for Access Points ..193
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxv

NO_ANSI_ID
Table 236. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...194
Table 237. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ..194
Table 238. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..195
Table 239. Supported Profiles for Cascading...205
Table 240. Extrinsic Methods Supported by Cascading Subprofile..205
Table 241. Cascading Capabilities Patterns...207
Table 242. CIM Elements for Cascading..208
Table 243. SMI Referenced Properties/Methods for CIM_ComputerSystem (Leaf System) ...211
Table 244. SMI Referenced Properties/Methods for CIM_Dependency (Object Managers)..212
Table 245. SMI Referenced Properties/Methods for CIM_Dependency (Profile to Object Manager)212
Table 246. SMI Referenced Properties/Methods for CIM_Dependency (Systems) ...212
Table 247. SMI Referenced Properties/Methods for CIM_ElementCapabilities...213
Table 248. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Leaf) ...213
Table 249. SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)214
Table 250. SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) ...214
Table 251. SMI Referenced Properties/Methods for CIM_HostedService (Allocation Service) ...215
Table 252. SMI Referenced Properties/Methods for CIM_HostedService (Object Manager) ..215
Table 253. SMI Referenced Properties/Methods for CIM_LogicalDisk ..215
Table 254. SMI Referenced Properties/Methods for CIM_LogicalIdentity (General) ...217
Table 255. SMI Referenced Properties/Methods for CIM_LogicalIdentity (LogicalDisk)..217
Table 256. SMI Referenced Properties/Methods for CIM_LogicalIdentity (StorageVolume) ...218
Table 257. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)218
Table 258. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)....................................218
Table 259. SMI Referenced Properties/Methods for CIM_Namespace (Leaf) ...219
Table 260. SMI Referenced Properties/Methods for CIM_NamespaceInManager (Leaf)..219
Table 261. SMI Referenced Properties/Methods for CIM_ObjectManager (Leaf)..220
Table 262. SMI Referenced Properties/Methods for CIM_RegisteredProfile (Leaf)...220
Table 263. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Leaf)..221
Table 264. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..222
Table 265. SMI Referenced Properties/Methods for CIM_StorageVolume..222
Table 266. SMI Referenced Properties/Methods for CIM_SystemDevice (Leaf Devices) ...224
Table 267. SMI Referenced Properties/Methods for SNIA_AllocatedResources...224
Table 268. SMI Referenced Properties/Methods for SNIA_AllocationService ...225
Table 269. SMI Referenced Properties/Methods for SNIA_CascadingCapabilities ...225
Table 270. SMI Referenced Properties/Methods for SNIA_RemoteResources ...226
Table 271. OperationalStatus Details...229
Table 272. CIM Elements for Health ..231
Table 273. SMI Referenced Properties/Methods for CIM_ComputerSystem...232
Table 274. SMI Referenced Properties/Methods for CIM_LogicalDevice ..233
Table 275. SMI Referenced Properties/Methods for CIM_RelatedElementCausingError..233
Table 276. OperationalStatus to Job State Mapping..237
Table 277. Standard Message for Job Control Subprofile..238
Table 278. CIM Elements for Job Control ..241
Table 279. SMI Referenced Properties/Methods for CIM_AffectedJobElement ..243
Table 280. SMI Referenced Properties/Methods for CIM_AssociatedJobMethodResult ...244
Table 281. SMI Referenced Properties/Methods for CIM_ConcreteJob ..244
Table 282. SMI Referenced Properties/Methods for CIM_MethodResult ..246
Table 283. SMI Referenced Properties/Methods for CIM_OwningJobElement ...246
Table 284. CIM Elements for Location ...248
xxvi

NO_ANSI_ID
Table 285. SMI Referenced Properties/Methods for CIM_Location ...248
Table 286. SMI Referenced Properties/Methods for CIM_PhysicalElementLocation ..249
Table 287. Redundancy Type ..256
Table 288. Supported Profiles for Multiple Computer System..260
Table 289. CIM Elements for Multiple Computer System...263
Table 290. SMI Referenced Properties/Methods for CIM_ComponentCS ...264
Table 291. SMI Referenced Properties/Methods for CIM_ComputerSystem (Non-Top-Level System)...................................264
Table 292. SMI Referenced Properties/Methods for CIM_ConcreteIdentity ..265
Table 293. SMI Referenced Properties/Methods for CIM_IsSpare ..265
Table 294. SMI Referenced Properties/Methods for CIM_MemberOfCollection..265
Table 295. SMI Referenced Properties/Methods for CIM_RedundancySet ...266
Table 296. Supported Profiles for Policy ..286
Table 297. Static Policy Instance Manipulation Methods ...286
Table 298. Dynamic Policy Instance Manipulation Methods ..286
Table 299. Methods that cause Instance Creation, Deletion or Modification of Dynamic Policy Rules....................................287
Table 300. SMI-S Supported PolicyCapabilities Patterns ..290
Table 301. CIM Elements for Policy ...290
Table 302. SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Client defined) ..293
Table 303. SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Pre-defined) ...295
Table 304. SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Client defined)...................................297
Table 305. SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Pre-defined)298
Table 306. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Policy Capabilities)299
Table 307. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Query Capabilities)299
Table 308. SMI Referenced Properties/Methods for CIM_MethodAction (Client defined) ...299
Table 309. SMI Referenced Properties/Methods for CIM_MethodAction (Pre-defined)...301
Table 310. SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyAction (Client defined)302
Table 311. SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyAction (Pre-defined)302
Table 312. SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyRule (Client defined)......................................303
Table 313. SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyRule (Pre-defined) ...304
Table 314. SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Client defined).........................304
Table 315. SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Pre-defined)305
Table 316. SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyRule (Client defined)306
Table 317. SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyRule (Pre-defined)....................................306
Table 318. SMI Referenced Properties/Methods for CIM_PolicyContainerInPolicyContainer ...307
Table 319. SMI Referenced Properties/Methods for CIM_PolicyRule (Dynamic or Client defined) ...307
Table 320. SMI Referenced Properties/Methods for CIM_PolicyRule (Pre-defined)..310
Table 321. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Dynamic or Client defined)313
Table 322. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Pre-defined)...313
Table 323. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement (Dynamic or Client defined)..............314
Table 324. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement (Pre-defined)314
Table 325. SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod (Dynamic or Client defined)315
Table 326. SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod (Pre-defined)..316
Table 327. SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Dynamic or Client defined)...............316
Table 328. SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-defined)318
Table 329. SMI Referenced Properties/Methods for CIM_QueryCapabilities ..320
Table 330. SMI Referenced Properties/Methods for CIM_QueryCondition (Dynamic or Client defined)321
Table 331. SMI Referenced Properties/Methods for CIM_QueryCondition (Pre-defined)..322
Table 332. SMI Referenced Properties/Methods for CIM_ReusablePolicy (Container to MethodAction)................................324
Table 333. SMI Referenced Properties/Methods for CIM_ReusablePolicy (Container to QueryCondition).............................324
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxvii

NO_ANSI_ID
Table 334. SMI Referenced Properties/Methods for CIM_ReusablePolicy (Container to System)..325
Table 335. SMI Referenced Properties/Methods for CIM_ReusablePolicyContainer ..325
Table 336. SMI Referenced Properties/Methods for SNIA_PolicyCapabilities...326
Table 337. CIM Elements for Physical Package ..329
Table 338. SMI Referenced Properties/Methods for CIM_Container ...330
Table 339. SMI Referenced Properties/Methods for CIM_PhysicalElementLocation ..331
Table 340. SMI Referenced Properties/Methods for CIM_PhysicalPackage ...332
Table 341. SMI Referenced Properties/Methods for CIM_Product ..332
Table 342. SMI Referenced Properties/Methods for CIM_ProductParentChild ...333
Table 343. SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent ..333
Table 344. SMI Referenced Properties/Methods for CIM_SystemPackaging..333
Table 345. Related Profiles for Power Supply..335
Table 346. CIM Elements for Power Supply...336
Table 347. SMI Referenced Properties/Methods for CIM_ElementCapabilities...337
Table 348. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..337
Table 349. SMI Referenced Properties/Methods for CIM_IsSpare ..338
Table 350. SMI Referenced Properties/Methods for CIM_MemberOfCollection..338
Table 351. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...338
Table 352. SMI Referenced Properties/Methods for CIM_PowerSupply ...339
Table 353. SMI Referenced Properties/Methods for CIM_RedundancySet ...339
Table 354. SMI Referenced Properties/Methods for CIM_SuppliesPower...340
Table 355. SMI Referenced Properties/Methods for CIM_SystemDevice..340
Table 356. Related Profiles for Fan..343
Table 357. CIM Elements for Fan...344
Table 358. SMI Referenced Properties/Methods for CIM_AssociatedCooling...345
Table 359. SMI Referenced Properties/Methods for CIM_ElementCapabilities...345
Table 360. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..346
Table 361. SMI Referenced Properties/Methods for CIM_Fan ..346
Table 362. SMI Referenced Properties/Methods for CIM_IsSpare ..347
Table 363. SMI Referenced Properties/Methods for CIM_MemberOfCollection..347
Table 364. SMI Referenced Properties/Methods for CIM_NumericSensor..348
Table 365. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...348
Table 366. SMI Referenced Properties/Methods for CIM_RedundancySet ...348
Table 367. SMI Referenced Properties/Methods for CIM_Sensor ...349
Table 368. SMI Referenced Properties/Methods for CIM_SystemDevice..349
Table 369. Related Profiles for Sensors...351
Table 370. CIM Elements for Sensors..352
Table 371. SMI Referenced Properties/Methods for CIM_AssociatedSensor..353
Table 372. SMI Referenced Properties/Methods for CIM_ElementCapabilities...353
Table 373. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..354
Table 374. SMI Referenced Properties/Methods for CIM_NumericSensor..354
Table 375. SMI Referenced Properties/Methods for CIM_Sensor ...355
Table 376. SMI Referenced Properties/Methods for CIM_SystemDevice..356
Table 377. Related Profiles for Base Server ..357
Table 378. CIM Elements for Base Server ...358
Table 379. SMI Referenced Properties/Methods for CIM_ComputerSystem...359
Table 380. SMI Referenced Properties/Methods for CIM_ComputerSystemPackage...359
Table 381. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..360
Table 382. Related Profiles for Media Access Device..361
xxviii

NO_ANSI_ID
Table 383. OperationalStatus For MediaAccessDevice ...362
Table 384. CIM Elements for Media Access Device ..363
Table 385. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..364
Table 386. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...365
Table 387. SMI Referenced Properties/Methods for CIM_MediaAccessDevice ..365
Table 388. SMI Referenced Properties/Methods for CIM_PhysicalPackage ...366
Table 389. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint ...366
Table 390. SMI Referenced Properties/Methods for CIM_Realizes...367
Table 391. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..367
Table 392. SMI Referenced Properties/Methods for CIM_SystemDevice..367
Table 393. Supported Profiles for Storage Enclosure ..369
Table 394. CIM Elements for Storage Enclosure ...375
Table 395. SMI Referenced Properties/Methods for CIM_Card...377
Table 396. SMI Referenced Properties/Methods for CIM_Chassis..377
Table 397. SMI Referenced Properties/Methods for CIM_Chip ...378
Table 398. SMI Referenced Properties/Methods for CIM_ComputerSystemPackage...379
Table 399. SMI Referenced Properties/Methods for CIM_ConfigurationCapacity ...379
Table 400. SMI Referenced Properties/Methods for CIM_ConfigurationReportingService..380
Table 401. SMI Referenced Properties/Methods for CIM_ConnectedTo ...380
Table 402. SMI Referenced Properties/Methods for CIM_Container ...381
Table 403. SMI Referenced Properties/Methods for CIM_ElementCapabilities...381
Table 404. SMI Referenced Properties/Methods for CIM_ElementCapacity ...381
Table 405. SMI Referenced Properties/Methods for CIM_HostedService ...382
Table 406. SMI Referenced Properties/Methods for CIM_PackageInConnector ...382
Table 407. SMI Referenced Properties/Methods for CIM_PhysicalAssetCapabilities..382
Table 408. SMI Referenced Properties/Methods for CIM_PhysicalComponent...383
Table 409. SMI Referenced Properties/Methods for CIM_PhysicalConnector...383
Table 410. SMI Referenced Properties/Methods for CIM_PhysicalFrame...384
Table 411. SMI Referenced Properties/Methods for CIM_PhysicalMemory ..385
Table 412. SMI Referenced Properties/Methods for CIM_PhysicalPackage ...386
Table 413. SMI Referenced Properties/Methods for CIM_Rack ..386
Table 414. SMI Referenced Properties/Methods for CIM_Realizes...387
Table 415. SMI Referenced Properties/Methods for CIM_Slot ..387
Table 416. SMI Referenced Properties/Methods for CIM_SystemPackaging..388
Table 417. CIM Elements for Software...390
Table 418. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity ...390
Table 419. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...391
Table 420. Related Profiles for Software Inventory ..393
Table 421. CIM Elements for Software Inventory...394
Table 422. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity..396
Table 423. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...396
Table 424. SMI Referenced Properties/Methods for CIM_HostedCollection ...396
Table 425. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity ...397
Table 426. SMI Referenced Properties/Methods for CIM_MemberOfCollection..397
Table 427. SMI Referenced Properties/Methods for CIM_OrderedComponent...398
Table 428. SMI Referenced Properties/Methods for CIM_OrderedDependency ...398
Table 429. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..398
Table 430. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...399
Table 431. SMI Referenced Properties/Methods for CIM_SoftwareIdentityResource ...399
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxix

NO_ANSI_ID
Table 432. SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..400
Table 433. CIM Elements for Software Repository ..402
Table 434. SMI Referenced Properties/Methods for CIM_HostedCollection ...403
Table 435. SMI Referenced Properties/Methods for CIM_MemberOfCollection..404
Table 436. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ..404
Table 437. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..405
Table 438. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...405
Table 439. SMI Referenced Properties/Methods for CIM_SoftwareIdentityCollection ...405
Table 440. SMI Referenced Properties/Methods for CIM_System...406
Table 441. SSL and TLS Cipher Suites..411
Table 442. Supported Profiles for Server ...417
Table 443. CIM Elements for Server ..419
Table 444. SMI Referenced Properties/Methods for CIM_CIMXMLCommunicationMechanism ...420
Table 445. SMI Referenced Properties/Methods for CIM_CommMechanismForManager ..421
Table 446. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...422
Table 447. SMI Referenced Properties/Methods for CIM_HostedService ...422
Table 448. SMI Referenced Properties/Methods for CIM_Namespace ...422
Table 449. SMI Referenced Properties/Methods for CIM_NamespaceInManager ..423
Table 450. SMI Referenced Properties/Methods for CIM_ObjectManager ..424
Table 451. SMI Referenced Properties/Methods for CIM_System...424
Table 452. CIM Elements for Profile Registration ..436
Table 453. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Associates Domain object (e.g. System)

to RegisteredProfile)...437
Table 454. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Associates RegisteredProfiles for SMI-S

and domain profiles) ...438
Table 455. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity (Profile and SW identity)........................438
Table 456. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity (Subprofile and SW identity)..................438
Table 457. SMI Referenced Properties/Methods for CIM_Product ..439
Table 458. SMI Referenced Properties/Methods for CIM_ProductSoftwareComponent ...439
Table 459. SMI Referenced Properties/Methods for CIM_ReferencedProfile..440
Table 460. SMI Referenced Properties/Methods for CIM_RegisteredProfile (Domain Registered Profile)..............................440
Table 461. SMI Referenced Properties/Methods for CIM_RegisteredProfile (The SMI-S Registered Profile).........................441
Table 462. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile...441
Table 463. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...442
Table 464. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...443
Table 465. Indication Profile Methods that cause Instance Creation, Deletion or Modification..460
Table 466. CIM Elements for Indication ...466
Table 467. SMI Referenced Properties/Methods for CIM_AlertIndication..467
Table 468. SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)...468
Table 469. SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)..469
Table 470. SMI Referenced Properties/Methods for CIM_IndicationSubscription ...470
Table 471. SMI Referenced Properties/Methods for CIM_InstCreation ...471
Table 472. SMI Referenced Properties/Methods for CIM_InstDeletion..472
Table 473. SMI Referenced Properties/Methods for CIM_InstModification..473
Table 474. SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication Handler)474
Table 475. CIM Elements for Object Manager Adapter..476
Table 476. SMI Referenced Properties/Methods for CIM_CommMechanismForObjectManagerAdapter476
Table 477. SMI Referenced Properties/Methods for CIM_ObjectManagerAdapter ...477
Table 478. Capabilities ...480
Table 479. AddSystem ...482
xxx

NO_ANSI_ID
Table 480. Return Codes ...482
Table 481. DiscoverSystem..483
Table 482. Return Codes ...484
Table 483. RemoveSystem ..485
Table 484. CIM Elements for Proxy Server System Management ...486
Table 485. SMI Referenced Properties/Methods for CIM_HostedService ...486
Table 486. SMI Referenced Properties/Methods for SNIA_SystemRegistrationCapabilities ...487
Table 487. SMI Referenced Properties/Methods for SNIA_SystemRegistrationService..487
Table 488. CIM Elements for Device Credentials...490
Table 489. SMI Referenced Properties/Methods for CIM_HostedService ...490
Table 490. SMI Referenced Properties/Methods for CIM_SharedSecret...491
Table 491. SMI Referenced Properties/Methods for CIM_SharedSecretIsShared ..491
Table 492. SMI Referenced Properties/Methods for CIM_SharedSecretService...492
Table 493. Security Subprofiles..494
Table 494. Supported Profiles for Security...497
Table 495. CIM Elements for Security..499
Table 496. SMI Referenced Properties/Methods for CIM_Account..500
Table 497. SMI Referenced Properties/Methods for CIM_AccountOnSystem...500
Table 498. SMI Referenced Properties/Methods for CIM_AssignedIdentity ..501
Table 499. SMI Referenced Properties/Methods for CIM_AuthenticationRule ..501
Table 500. SMI Referenced Properties/Methods for CIM_ConcreteIdentity ..501
Table 501. SMI Referenced Properties/Methods for CIM_Identity ...502
Table 502. SMI Referenced Properties/Methods for CIM_IdentityContext...502
Table 503. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem...503
Table 504. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement ..503
Table 505. SMI Referenced Properties/Methods for CIM_System...503
Table 506. CIM Elements for Security Authorization..514
Table 507. SMI Referenced Properties/Methods for CIM_AuthorizationRule ..515
Table 508. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity...516
Table 509. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege ..516
Table 510. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget..517
Table 511. SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..517
Table 512. SMI Referenced Properties/Methods for CIM_AuthorizedSubject ...517
Table 513. SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...518
Table 514. SMI Referenced Properties/Methods for CIM_ConcreteDependency..518
Table 515. SMI Referenced Properties/Methods for CIM_ConcreteDependency..518
Table 516. SMI Referenced Properties/Methods for CIM_HostedService ...519
Table 517. SMI Referenced Properties/Methods for CIM_Identity ...519
Table 518. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem...520
Table 519. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement ..520
Table 520. SMI Referenced Properties/Methods for CIM_Privilege...520
Table 521. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService..521
Table 522. SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule ..521
Table 523. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to AuthorizedProvolege).............522
Table 524. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Iden tity)522
Table 525. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to ManagedElement)522
Table 526. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Privilege)523
Table 527. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement...523
Table 528. SMI Referenced Properties/Methods for CIM_System...524
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxxi

NO_ANSI_ID
Table 529. CIM Elements for Security Credential Management ..528
Table 530. SMI Referenced Properties/Methods for CIM_CredentialContext..529
Table 531. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...529
Table 532. SMI Referenced Properties/Methods for CIM_HostedService ...530
Table 533. SMI Referenced Properties/Methods for CIM_IKESecretIsNamed ..530
Table 534. SMI Referenced Properties/Methods for CIM_LocallyManagedPublicKey ..530
Table 535. SMI Referenced Properties/Methods for CIM_NamedSharedIKESecret ...531
Table 536. SMI Referenced Properties/Methods for CIM_PublicKeyManagementService..531
Table 537. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ..532
Table 538. SMI Referenced Properties/Methods for CIM_SharedSecret...532
Table 539. SMI Referenced Properties/Methods for CIM_SharedSecretIsShared ..533
Table 540. SMI Referenced Properties/Methods for CIM_SharedSecretService...533
Table 541. SMI Referenced Properties/Methods for CIM_System...534
Table 542. SMI Referenced Properties/Methods for CIM_UnsignedPublicKey ...534
Table 543. CIM Elements for Security Resource Ownership ...541
Table 544. SMI Referenced Properties/Methods for CIM_AuthorizationRule ..543
Table 545. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity...543
Table 546. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege ..544
Table 547. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToRole...544
Table 548. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget..545
Table 549. SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..545
Table 550. SMI Referenced Properties/Methods for CIM_AuthorizedSubject ...545
Table 551. SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...546
Table 552. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Service to AuthorizedPrivilege)546
Table 553. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Service to Privilege)..................................546
Table 554. SMI Referenced Properties/Methods for CIM_HostedService ...547
Table 555. SMI Referenced Properties/Methods for CIM_Identity ...547
Table 556. SMI Referenced Properties/Methods for CIM_MemberOfCollection (AuthorizedPrivilege to Role)548
Table 557. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identity to Role) ..548
Table 558. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Privilege to Role) ..548
Table 559. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Role to Role)...549
Table 560. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...549
Table 561. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (System to AuthorizationRule)......................550
Table 562. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (System to PrivilegePropogationRule)..........550
Table 563. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement ..550
Table 564. SMI Referenced Properties/Methods for CIM_Privilege...551
Table 565. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService..551
Table 566. SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule ..552
Table 567. SMI Referenced Properties/Methods for CIM_Role ...552
Table 568. SMI Referenced Properties/Methods for CIM_RoleLimitedToTarget ...552
Table 569. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to AuthorizedPrivilege)553
Table 570. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Identity)553
Table 571. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to ManagedElement)554
Table 572. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Privilege)554
Table 573. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement...554
Table 574. CIM Elements for Security RBAC...563
Table 575. SMI Referenced Properties/Methods for CIM_AuthorizationRule ..564
Table 576. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToRole...565
Table 577. SMI Referenced Properties/Methods for CIM_ConcreteDependency..565
xxxii

NO_ANSI_ID
Table 578. SMI Referenced Properties/Methods for CIM_HostedService ...565
Table 579. SMI Referenced Properties/Methods for CIM_Identity ...566
Table 580. SMI Referenced Properties/Methods for CIM_MemberOfCollection..566
Table 581. SMI Referenced Properties/Methods for CIM_MoreRoleInfo ...567
Table 582. SMI Referenced Properties/Methods for CIM_OtherRoleInformation ..567
Table 583. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...567
Table 584. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem...568
Table 585. SMI Referenced Properties/Methods for CIM_Privilege...568
Table 586. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService..568
Table 587. SMI Referenced Properties/Methods for CIM_Role ...569
Table 588. SMI Referenced Properties/Methods for CIM_RoleLimitedToTarget ...569
Table 589. SMI Referenced Properties/Methods for CIM_System...570
Table 590. CIM Elements for Security Identity Management ...582
Table 591. SMI Referenced Properties/Methods for CIM_Account..583
Table 592. SMI Referenced Properties/Methods for CIM_AccountManagementService...584
Table 593. SMI Referenced Properties/Methods for CIM_AccountMapsToAccount..584
Table 594. SMI Referenced Properties/Methods for CIM_AccountOnSystem...585
Table 595. SMI Referenced Properties/Methods for CIM_AssignedIdentity ..585
Table 596. SMI Referenced Properties/Methods for CIM_AuthenticationService..585
Table 597. SMI Referenced Properties/Methods for CIM_ConcreteDependency..586
Table 598. SMI Referenced Properties/Methods for CIM_ConcreteIdentity ..586
Table 599. SMI Referenced Properties/Methods for CIM_GatewayPathID ...586
Table 600. SMI Referenced Properties/Methods for CIM_Group...587
Table 601. SMI Referenced Properties/Methods for CIM_HostedService ...587
Table 602. SMI Referenced Properties/Methods for CIM_IPNetworkIdentity ..588
Table 603. SMI Referenced Properties/Methods for CIM_Identity ...588
Table 604. SMI Referenced Properties/Methods for CIM_IdentityContext...588
Table 605. SMI Referenced Properties/Methods for CIM_ManagesAccount...589
Table 606. SMI Referenced Properties/Methods for CIM_MemberOfCollection..589
Table 607. SMI Referenced Properties/Methods for CIM_MoreGroupInfo ..590
Table 608. SMI Referenced Properties/Methods for CIM_MoreOrgUnitInfo ..590
Table 609. SMI Referenced Properties/Methods for CIM_MoreOrganizationInfo ..590
Table 610. SMI Referenced Properties/Methods for CIM_MorePersonInfo ...591
Table 611. SMI Referenced Properties/Methods for CIM_OrgStructure ..591
Table 612. SMI Referenced Properties/Methods for CIM_OrgUnit ..591
Table 613. SMI Referenced Properties/Methods for CIM_Organization ..592
Table 614. SMI Referenced Properties/Methods for CIM_OtherGroupInformation..592
Table 615. SMI Referenced Properties/Methods for CIM_OtherOrgUnitInformation ...593
Table 616. SMI Referenced Properties/Methods for CIM_OtherOrganizationInformation ...593
Table 617. SMI Referenced Properties/Methods for CIM_OtherPersonInformation ..593
Table 618. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...594
Table 619. SMI Referenced Properties/Methods for CIM_Person ...594
Table 620. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement...595
Table 621. SMI Referenced Properties/Methods for CIM_StorageHardwareID...595
Table 622. SMI Referenced Properties/Methods for CIM_System...596
Table 623. SMI Referenced Properties/Methods for CIM_UserContact...596
Table 624. CIM Elements for Security Authorization..599
Table 625. SMI Referenced Properties/Methods for CIM_AuthorizationRule ..600
Table 626. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity...601
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxxiii

NO_ANSI_ID
Table 627. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege ..601
Table 628. SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget..601
Table 629. SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..602
Table 630. SMI Referenced Properties/Methods for CIM_AuthorizedSubject ...602
Table 631. SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...602
Table 632. SMI Referenced Properties/Methods for CIM_ConcreteDependency..603
Table 633. SMI Referenced Properties/Methods for CIM_ConcreteDependency..603
Table 634. SMI Referenced Properties/Methods for CIM_HostedService ...604
Table 635. SMI Referenced Properties/Methods for CIM_Identity ...604
Table 636. SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem...605
Table 637. SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement ..605
Table 638. SMI Referenced Properties/Methods for CIM_Privilege...605
Table 639. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService..606
Table 640. SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule ..606
Table 641. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to AuthorizedProvolege).............607
Table 642. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Iden tity)607
Table 643. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to ManagedElement)607
Table 644. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Privilege)608
Table 645. SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement...608
Table 646. SMI Referenced Properties/Methods for CIM_System...608
xxxiv

NO_ANSI_ID
List of Figures

Figure 1. Experimental Maturity Level Tag ...x
Figure 2. Implemented Maturity Level Tag..x
Figure 3. Stable Maturity Level Tag ...xi
Figure 4. Deprecated Tag ..xi
Figure 5. Generic Target Port Classes... 19
Figure 6. LogicalPort Class Hierarchy.. 20
Figure 7. Generic Target with LUN Masking .. 21
Figure 8. SPI Target Port Instance Diagram.. 28
Figure 9. FC Target Port Instance Diagram... 36
Figure 10. iSCSI Target Ports Subprofile Instance Diagram.. 44
Figure 11. Serial Attached SCSI (SAS) Target Port Instance Diagram ... 85
Figure 12. SATA Target Port Instance Diagram .. 91
Figure 13. SB Target Port Instance Diagram... 98
Figure 14. DA Port Instance Diagram .. 107
Figure 15. Generic Initiator Port Model .. 113
Figure 16. Optional Connectivity Collection Model .. 114
Figure 17. Optional Full-Path Model .. 115
Figure 18. HBA and Disk Model... 116
Figure 19. HBA and Tape or Optical Devices .. 117
Figure 20. SPI Initiator Port Instance Diagram... 123
Figure 21. iSCSI Initiator Port Instance Diagram ... 132
Figure 22. Fibre Channel Initiator Instance Diagram ... 142
Figure 23. SAS Initiator Port Model.. 153
Figure 24. ATA Initiator Port Class Diagram.. 162
Figure 25. Fibre Channel Initiator Instance Diagram ... 169
Figure 26. SAS/SATA Initiator Port Instance Diagram... 180
Figure 27. System-wide Remote Access Point .. 191
Figure 28. Access Point Instance Diagram.. 192
Figure 29. Instance Diagram for Logical Topology .. 198
Figure 30. Resource Allocation/Deallocation Instance Diagram.. 200
Figure 31. Cascading Server Topology.. 201
Figure 32. Instance Diagram for Cascading with Resource Ownership... 202
Figure 33. Instance Diagram for Cascading with Credential Management Subprofile... 203
Figure 34. Modeling of Cascading Capabilities.. 204
Figure 35. Job Control Subprofile Model.. 235
Figure 36. Storage Configuration ... 241
Figure 37. Location Instance.. 247
Figure 38. Two Redundant Systems Instance Diagram... 255
Figure 39. Multiple Redundancy Tier Instance Diagram.. 257
Figure 40. System Level Numbers... 258
Figure 41. Basic Policy Package Instance Diagram .. 268
Figure 42. Policy Package QueryCondition Support Instance Diagram... 270
Figure 43. Policy Package MethodAction Support Instance Diagram.. 272
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxxv

NO_ANSI_ID
Figure 44. Policy Package for Static Rules Instance Diagram... 274
Figure 45. Policy Package Support for Static Conditions and Actions Instance Diagram.................................... 276
Figure 46. Policy Package support for Dynamic Conditions and Actions Instance Diagram 277
Figure 47. Policy Package support for Trigger Conditions Instance Diagram.. 278
Figure 48. Policy Package support for Time Periods Instance Diagram.. 279
Figure 49. Policy Package support for Compound Conditions Instance Diagram ... 281
Figure 50. Policy Package support for Compound Actions Instance Diagram... 282
Figure 51. Policy Package support for Policy Capabilities Instance Diagram.. 284
Figure 52. Physical Package Package Mandatory Classes... 327
Figure 53. Physical Package Package with Optional Classes ... 328
Figure 54. Media Access Device Class Diagram... 362
Figure 55. Enclosure with Two Arrays ... 371
Figure 56. Model for Disk in Enclosure .. 374
Figure 57. Software Instance Diagram... 389
Figure 58. Software Repository Instance Diagram .. 401
Figure 59. Server Model... 407
Figure 60. Profile Registration Model... 426
Figure 61. Associations between RegisteredProfile instances .. 427
Figure 62. Model for SMI-S Registered Profile .. 428
Figure 63. Model for Provider Versions.. 428
Figure 64. Indication Profile and Namespaces .. 445
Figure 65. Indication Profile Instance Diagram .. 447
Figure 66. Anatomy of IndicationIdentifier.. 451
Figure 67. ObjectManagerAdapter Subprofile Model... 475
Figure 68. Proxy Server System Management Model ... 480
Figure 69. DeviceCredentials Subprofile Model... 489
Figure 70. Identity .. 496
Figure 71. Authorization ... 506
Figure 72. Policy Rules .. 508
Figure 73. Credential Management.. 527
Figure 74. Security Resource Ownership .. 535
Figure 75. Service Associations... 537
Figure 76. AuthorizedPrivilege ... 538
Figure 77. Role-Based Access Control .. 556
Figure 78. Policy Rules .. 558
Figure 79. Service Associations... 559
Figure 80. AuthorizedPrivilege ... 560
Figure 81. Identities.. 571
Figure 82. IPNetworkIdentity.. 572
Figure 83. Account Management ... 573
Figure 84. OrganizationalEntities ... 574
Figure 85. Organizations and OrgUnits.. 575
Figure 86. People... 576
Figure 87. Groups and Roles ... 577
Figure 88. 3rd Party Authentication for the CIM Service.. 598
Figure 89. System Diagram ... 611
xxxvi

NO_ANSI_ID
Figure 90. Host Bus Adapter Model ... 611
Figure 91. Switch Model... 612
Figure 92. Array Instance... 617
Figure 93. Virtualization Instance... 618
Figure 94. Fabric Topology .. 619
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxxvii

NO_ANSI_ID
xxxviii

NO_ANSI_ID
Foreword

Storage Management Technical Specification is published in several ports. Storage Management Technical
Specification, Part 2 Common Profiles, 1.3.0 Rev 6 defines profiles that are used by profiles in the other parts of
this standard. In general, the common profiles do not fully define storage elements, but define non-storage
management aspects that are common to storage domains. For example, the Access Points profile defines a
technique the arrays, switches, or libraries may use to inform clients of non-CIM network interfaces that are
available.

Some of the common profiles are based on DMTF profiles. For these profiles, the DMTF profile may “specialized”
to assure SNIA requirements are met.

Parts of this Standard
This standard is subdivided in the following parts:

• Storage Management Technical Specification, Overview, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 2 Common Profiles, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 3 Block Devices, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 4 File Systems, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 5 Fabric, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 6 Host Elements, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 7 Media Libraries, 1.3.0 Rev 6

SNIA Web Site
Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address
Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage
Networking Industry Association, 500 Sansome Street, Suite #504, San Francisco, CA 94111, U.S.A.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxxix

NO_ANSI_ID
Acknowledgments
The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to recognize the
significant contributions made by the following members:

Organization Represented Name of Representative
Brocade .. John Crandall
Dell..Vance Corn
EMC..Mike Thompson
Hewlett Packard..Alex Lenart
..Steve Peters
Hitachi Data Systems..Steve Quinn
Individual member...Tom West
IBM ...Krishna Harathi
..Mike Walker
..Martine Wedlake
Olocity ...Scott Baker
Pillar ..Gary Steffens
Symantec..Steve Hand
..Paul von Behren
xl

NO_ANSI_ID Scope
Clause 1: Scope

Storage Management Technical Specification, Part 2 Common Profiles, 1.3.0 Rev 6 defines profiles that are
supported by profiles defined in the other parts of this standard. The first few clauses provide background material
that helps explain the purpose and profiles and recipes (a subset of a profile). Common port profiles are grouped
together since they serve as transport-specific variations of a common model. The port profiles are followed by
other common profiles The last clause presents recipes that span multiple profiles.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 1

Scope NO_ANSI_ID
2

NO_ANSI_ID Normative References
Clause 2: Normative References

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

2.1 Approved References
ISO/IEC 14776-413, SCSI Architecture Model - 3 (SAM-3) [ANSI INCITS 402-200x]

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

ANSI/INCITS 374:2003, Information technology - Fibre Channel Single - Byte Command Set-3 (FC-SB-3)

2.2 DMTF References (Final)
DMTF Final documents are accepted as standards.

DMTF DSP0004, CIM Infrastructure Specification 2.3
http://www.dmtf.org/standards/published_documents/DSP0004V2.3_final.pdf

DMTF DSP0200, CIM Operations over HTTP 1.1
http://www.dmtf.org/standards/documents/WBEM/DSP200.html

DMTF DSP1001, Management Profile Specification Usage Guide
http://www.dmtf.org/standards/published_documents/DSP1001.pdf

2.3 IETF References (Standards or Draft Standards)
RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies
http://www.ietf.org/rfc/rfc2045.txt

RFC 2246 The TLS Protocol Version 1.0
http://www.ietf.org/rfc/rfc2246.txt

IETF RFC 2396 Uniform Resource Identifiers (URI)
http://www.ietf.org/rfc/rfc2396.txt

IETF RFC 2445 Internet Calendaring and Scheduling Core Object Specification (iCalendar)
http://www.ietf.org/rfc/rfc2445.txt

IETF RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt

IETF RFC 2617 HTTP Authentication: Basic ad Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt

IETF RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
http://www.ietf.org/rfc/rfc3280.txt

IETF RFC 3986 Definitions of Managed Objects for the DS3/E3 Interface Type
http://www.ietf.org/rfc/rfc3986.txt

IETF RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1
http://www.ietf.org/rfc/rfc4346.txt

IETF RFC 4514 Lightweight Directory Access Protocol (LDAP): String Representation of Distinguished Names
http://www.ietf.org/rfc/rfc4514.txt
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 3

Normative References NO_ANSI_ID
2.4 References under development
DMTF DSP0202 CIM Query Language Specification 1.0
http://www.dmtf.org/standards/published_documents/DSP0202.pdf

DMTF DSP0207 WBEM URI Mapping 1.0
http://www.dmtf.org/standards/published_documents/DSP0207.pdf

DMTF DSP1009:2006, Sensors Profile 1.0.0
http://www.dmtf.org/standards/published_documents/DSP1009.pdf

DMTF DSP1013:2006, Fan Profile 1.0.0
http://www.dmtf.org/standards/published_documents/DSP1013.pdf

DMTF DSP1015:2006, Power Supply Profile 1.0.0
http://www.dmtf.org/standards/published_documents/DSP1015.pdf

DMTF DSP1011:2006, Physical Asset Profile 1.0.0
http://www.dmtf.org/standards/published_documents/DSP1011.pdf

Storage Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6

2.5 Other References
IETF RFC 1945 Hypertext Transfer Protocol -- HTTP/1.0
http://www.ietf.org/rfc/rfc1945.txt

SSL 3.0 Draft Specification
http://wp.netscape.com/eng/ssl3/
4

NO_ANSI_ID Terms and definitions
Clause 3: Terms and definitions

3.1 General
For the purposes of this document, the terms and definitions given in Storage Management Technical
Specification, Part 1 Common Architecture, 1.3.0 Rev 6 and the following apply.

3.2 Terms

3.2.1 FC-SB-X

Fibre Channel Single-Byte command set used in FICON™1 devices

3.2.2 SAS
Serial Attached SCSI

3.2.3 SATA
Serial ATA

1.FICON™ is an example of a suitable product available commercially. This information is given for the convenience of
users of this standard and does not constitute an endorsement of this product by SNIA or any standards organization.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 5

Terms and definitions NO_ANSI_ID
6

NO_ANSI_ID Profile Introduction
Clause 4: Profile Introduction

4.1 Profile Overview
A profile is a specification that defines the CIM model and associated behavior for an autonomous and self-
contained management domain. The CIM model includes the CIM Classes, Associations, Indications, Methods and
Properties. The management domain is a set of related management tasks. A profile is uniquely identified by the
name, organization and version.

In SMI-S, a profile describes the management interfaces for a class of storage subsystem, typically realized as a
hardware of software product. For example, SMI-S includes profiles for arrays, FC-Switches, and logical volume
manager software. The boundaries chosen for SMI-S profiles are often those of storage products, but some
vendors may package things differently. For example, one vendor may choose to package an Array and an FC
Switch into a single product; this can be handled in SMI-S by implementing the Array and FC Switch profiles for this
product.

A profile may add restrictions to usage and behavior, but cannot change CIM defined characteristics. For example,
if a property is required in the CIM model, then it is required in a profile. On the other hand, a profile may specify
that a property is required even if it is not required by the general CIM model.

In SMI-S, profiles serve several purposes:

• Specification organization - the SMI-S object model (see Storage Management Technical Specification, Part 1
Common Architecture, 1.3.0 Rev 6 Clause 6: Object Model General Information) is presented as a set of
profiles, each describing a type of storage element or behavior,

• Certification - SMI-S profiles form the basis for CTP certification,

• Discovery- profiles are registered with the CIM Server and advertised to clients as part of the CIM model and
using SLP (see Storage Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6
Clause 10: Service Discovery. An SMI-S client uses SLP to determine which CIM Servers host profiles it
wishes to manage, then uses the CIM model to discover the actual configurations and capabilities.

A subprofile is a profile that specifies a subset of a management domain. A subprofiles’s CIM elements are scoped
within a containing profile. Multiple profiles may use the same subprofile. A subprofile is uniquely identified by the
name, organization and version.

A profile specification may include a list of the subprofiles it uses. The included subprofiles may be optional or
mandatory by the scoping profile. The behavior of a profile is specified in this profile and its included subprofiles.

For example, target devices such as RAID arrays and tape libraries may support Fibre Channel or parallel SCSI
connectivity. SMI-S includes an FC Target Port Subprofile and a Parallel SCSI Target Port Subprofile that may
optionally be supported by profiles representing target devices. The elements defined in the port subprofiles are
scoped to the ComputerSystem in the profile. For example, each LogicalPort subclass has a SystemDevice
association to the profile’s ComputerSystem.

In addition to sharing the purposes of profiles (above), subprofiles have these purposes:

• Optional behavior - a profile may allow, but not require, an implementation to support a subprofile. Although a
subprofile does not describe a full product, a subprofile should describe an aspect of a product that is
recognizable to an knowledgeable end-user such as a storage administrator,

• Reuse of functionality - some storage management behavior is common across different types of storage
elements. For example, block virtualization is managed similarly in RAID arrays and logical volume managers.
These common sets of functionality are specified as profiles that are shared by several other profiles.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 7

Profile Introduction NO_ANSI_ID
• Decomposition - certain functionality may not be reused multiple places, but is complicated enough to
document as a separate profile. For example, Disk Partition management is only used in the Host Discovered
Resources profiles, but is complicated enough that it has been documented as a separate profile.

4.1.1 Terminology

A profile collects included subprofiles and provides the filler needed to define the management interfaces of a
particular type of subsystem. Profiles are separated into two groups. Storage profiles define the management
interfaces for storage subsystems such as arrays or FC switches. Generic profiles define management interfaces
for generic systems that are related to storage management. Storage and generic profiles are specified the same
way in SMI-S, but generic profiles are not certified as free-standing entities, only as a dependency of a storage
profile.

A Package is a profile that whose implementation is mandatory to comply with the requirements of all of its
containing top-level profiles. Since a package is always mandatory, it is not registered with the CIM Server.
Packages provide decomposition in the specification.

Profiles may be related by specialization - where several profiles (or subprofiles) share many common elements,
but are specialized for specific implementations. The SMI-S Security profiles are an example; the specializations
(Authorization Profile, Security Resource Ownership Profile,...) share some classes and behavior. Profile
specialization is only an artifact of the specification. It saves the reader from reading common aspects in multiple
places and help the specification stay consistent across the specialized profiles. There is no information in the CIM
model about the relationship between generic and specialized profiles.

4.2 Format for Profile Specifications
For each profile there is a set of information that is provided to specify the characteristics and requirements of the
profile. Subprofiles are also defined using this format, but they are clearly identified as subprofiles.

Each profile or subprofile is defined in subsections that are described in Table 1.

Note: CIM schema diagrams are logically part of a profile description. However, they can be rather involved
and cannot be easily depicted in a single diagram. As a result the reader is advised to refer to DMTF
characterizations of CIM schema diagrams.
8

NO_ANSI_ID Profile Introduction
Table 1: Profile Components (Sheet 1 of 2)

Profile Element Goal

Description This section provides a description of the profile and model including an
overview of the objectives and functionality.

Functionality is described in a bullet-form in this section that includes
functionality provided by the subprofiles referenced by the profile. If a function is
provided by a subprofile, this is indicated, including whether the subprofile is
optional or required. Functionality listed in the profile is organized by Levels, and
within each Level by FCAPS category, as defined in the SMI-S functionality
matrix section <link>.

Instance Diagrams: One or more instance diagrams to highlight common
implementations that employ this section of the Object Model. Instance diagrams
also contain classes and associations but represent a particular configuration;
multiple instances of an object may be depicted in an instance diagram.

Finally, this section may include supporting text for recipes, properties, and
methods as needed.

Health & Fault
Management

If a profile provides optional Health & Fault Management capabilities, then this
section describes the specifics of these capabilities, including:

• A table of the classes that report health information
• Tables of possible states of the OperationalStatus and HealthState attributes

and descriptions for those elements that report state.
• Cause and Effect associations.
• Standard Errors produced (including Alert Indications, Errors, CIM Errors,

and Health Related Live Cycle Events).

Cascading
Considerations

A Profile may be a cascading profile. A cascading profile is any Profile that
supports the Cascading Subprofile as either a mandatory or recommended
subprofile. If the profile is a cascading profile, this section documents cascading
considerations in each of the following areas:

• Cascaded Resources – Defines the type of resources in the Cascading
Profile that are associated to what type of resources in the Leaf Profile and
the association.

• Ownership Privileges – Identifies the Resource Control Privileges (on leaf
resources) that are established by the Cascading Profile.

• Limitations on Cascading Subprofile – Identifies any limitations on the
Cascading Subprofile that are imposed by the Cascading in effect

Supported Subprofiles
and Packages

A list of the names and versions of subprofiles and packages supported by a
profile.

Methods of the Profile This section documents the methods used in this profile. All methods used in
recipes shall be documented; optional methods (those not used in recipes) may
also be included.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 9

Profile Introduction NO_ANSI_ID
Recipes and Client
Considerations

This section documents a set of "recipes" that describe the CIM operations and
other steps required to accomplish particular tasks. These recipes do not define
the upper bound of what a CIM Server may support, however, they define a
lower bound. That is, a CIM Provider implementation shall support these recipes
as prescribed to be SMI-S compliant.

Note: A recipe that is defined as part of a subprofile is only required if the
subprofile is implemented.

All optional behavior in a profile shall be described in a recipe and shall have a
capabilities property a client can test to determine whether the optional behavior
is supported. The actual capabilities properties are documented in “Classes
Used in the Profile” in this table.

CIM Server
Requirements

A list of requirements on the CIM Server necessary to support the profile and its
subprofiles.

CIM Elements A table listing the classes, associations, subprofile, packages, and indication
filters that this profile (or subprofile) supports, and a brief description of each.
Everything listed in this section is mandatory for the profile or subprofile. This
section shall not list optional elements.

Prior to SMI-S 1.1.0, CIM did not have standard language for indication filters;
SMI-S 1.0.x used the proposed WQL query language. This version of SMI-S
uses the CQL standard query language. WQL is also supported for backwards
compatibility. The Description column for an indication filter specifies whether the
filter string is compliant to CQL or WQL. If neither is stated, then the string
complies to both CQL and WQL.

Classes Used in the
Profile

This section provides one table per class and lists each required and
recommended property. For each required or recommended property a brief
description on what information is to be encoded is identified.

The class tables include a “Flags” column. This can contain “C” (the property is a
correlatable name or a format for a name), “D” (the property is a durable name),
“M” (the property is modifiable), or “N” (null is a valid value).

Dependencies on
Other Standards

A table listing other standards on which this profile and its subprofiles are
dependent.

Table 1: Profile Components (Sheet 2 of 2)

Profile Element Goal
10

NO_ANSI_ID Recipe Overview
Clause 5: Recipe Overview

5.1 Recipe Concepts
Recipe: A set of instructions for making something from mixing various ingredients in a particular sequence. The
set of ingredients used by a particular recipe is scoped by the particular profile, subprofile or some other well-
defined context in which that recipe is defined.

A recipe shall specify an interoperable means for accomplishing a particular task across all conformant
implementations. However, a recipe does not necessarily specify the only set of instructions for accomplishing that
task. Nor are all tasks that may be accomplished necessarily specified by the set of recipes defined for a particular
profile or subprofile.

In order to compress the document, some recipes are implied or assumed. This would include, for instance, that
the set of available, interoperable properties are those explicitly defined by a particular profile or subprofile. In
general, any CIM intrinsic read methods on profile or subprofile models are implied. However, CIM intrinsic write
methods (Create/Delete/Modify) should not be assumed unless explicitly listed in the profile or subprofile definition
with a well defined semantic.

For a profile or subprofile, the set of all defined and implied recipes defines the range of behavior across for which
interoperability is mandatory for all conformant implementations. Unless specifically defined in a recipe, other
sequences of actions (even simple Create/Delete instance requests) are not guaranteed to have the same results
across multiple implementations.

Each recipe defines an interoperable series of interactions (between a SMI-S Client and a SMI-S Server) required
to manage storage devices or applications. Another goal is to list the operations required for the CIM Client realize
functionality. It is not a goal to comprehensively express the programming logic required to implement the recipe in
any particular language. In fact, recipes are limited to the expression of CIM or SLP operations, and may simply
reference or describe any of the implementation that may be required beyond that.

5.2 Recipe Pseudo Code Conventions

5.2.1 Overview

A recipe's instructions are written using the pseudo code language defined in this section.

All recipes are prefixed with a summary narrative of the functionality being implemented. This summary may be
included explicitly as part of the recipe or reference to the appropriate narrative that can be found elsewhere in the
specification.

Note: The use of optional features (profiles or subprofiles) in recipes shall be clearly identified.

CIM Operations and their parameters are taken directly from the CIM Operations Over HTTP specification. It is
assumed that these methods are being called on the CIM Client API. Arrays grow in size automatically.

5.2.2 General Syntax

<condition> logical statement that evaluates to true (Boolean)

!<condition> tests for false (Boolean)

<action> unspecified list of programming logic that is not important to the understanding of
the reader for a particular recipe.

<EXIT: success message>Exits the recipe with a success status code. The condition that resulted in
the call to exit the recipe was allowable. The implementation subjected to the recipe
behaves in accordance to this specification.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 11

Recipe Overview NO_ANSI_ID
<ERROR! error condition> Exits the recipe with a failure status code. The condition that resulted in
the call to the exit the recipe was not allowable. The implementation subjected to the
recipe does not behave in accordance with this specification.

@{recipe} logic flow is contained within the specification of the recipe elsewhere in the
specification

<variable> some variable

5.2.3 CIM related variable and methods

5.2.3.1 CIM Instances and Object Names
$name represents a single instance (CIMInstance) with a given variable name

$name.property represents a property in a single instance (CIMInstance)

$name.getObjectPath()
method returns a object name, REF, to the CIM Instance

$name.getNameSpace()
method returns the namespace name for the CIM Instance or Object Name

{value1, value2 ...}
an anonymous array, comprised of selected values of a given type; an anonymous
array is an array that is not referable by a variable

EXAMPLE:
 {"Joe", "Fred", "Bob", "Celma"}

$name[] represents an array of instances (CIMInstances) with a given variable name; array
are initialized by constructing an anonymous array.

EXAMPLE:
Names = {"Joe", "Fred", "Bob", "Celma"}

$name-> represents an object path name (CIMObjectPath)

$name->[] represents an array of object names of a given name

$name->property
represents a property of object $name

$name[].size() returns the number of CIM instances in the array

$name->[].length returns the number of CIM object names in the array

#name[].length returns the number of variable elements in the array

%name[].length returns the number of method arguments elements in the array

5.2.3.2 Extrinsic method arguments
%name represents a CIM Argument that can contain any CIM or other variable.

%name[] represents an array of CIM Arguments
12

NO_ANSI_ID Recipe Overview
5.2.3.3 Other Variables
#name neither CIM Instance nor Object Name variable. The type may be a string, number

or some other special type. Types are defined in the CIM Specification 2.2.

#name[] a non-CIM variable array

"literal” some string literal

5.2.4 Data Structure

Variables can be collected by an array. The array can be indexed by other variable (see 5.2.3.3).

Arguments are always indexed by strings. In other words, the arguments are retrieved from the array by name.

5.2.5 Operations

= assigns right value to left value

== test for equivalency

!= test for not equivalency

< true if the left argument is numerically less than the right argument.

> true if the left argument is numerically greater than the right argument.

<= true if the left argument is numerically less than or equal to the right argument.

>= true if the left argument is numerically greater than or equal to the right argument.

&& condition A AND condition B

|| condition A OR condition B

+, -, *, / addition, subtraction, multiplication and division, respectively

++, -- increment and decrement a variable, respectively; placement of the operator
relative to the variable determines whether the operation is completed before or
after evaluation

EXAMPLE:
#i = 1

#names[] = {"A", "B, "C"}

"B" == #names[++#i] is true

2 == #i is true

EXAMPLE:
#i = 2

#names[] = {"A", "B, "C"}

"B" == #names[#i++] is true

3 == #i is true

// comments

nameof returns an Object Name given a CIM Instance. This unitary operator does nothing in
other usages.

ISA tests for the name of the CIM Instance or object name
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 13

Recipe Overview NO_ANSI_ID
EXAMPLE: if ($SomeName-> ISA CIM_StorageVolume) {
<The Object Name is a reference to a CIM_StorageVolume >
}

5.2.6 Control Operations

The pseudocode used in this specification relies on control operators common to most high-level languages. For
example:

• for

EXAMPLE:
for #x in <variable array> {
<actions>
}

• if

EXAMPLE:
if (<condition>) {
<actions>
} ;
if (<condition>) {
<actions>
} else {
<alternate actions>
}

• do/while

EXAMPLE:
do {
<actions>
} while (<condition>)

• continue
Within a for loop: initialize loop variable to next available value and restart loop body. Terminate loop if no more
loop variable values available. Within a do/while loop: transfer control immediately to while test.

EXAMPLE:
for #i in <array> {

if (<some condition>)

continue; // process next loop variable

 <alternative>

}

• break: interrupts the sequence of statement execution within a loop block and exits the loop block altogether.
The looping condition is not re-evaluated Statement execution starts at the next statement outside of the loop
block.

• exit
Terminate recipe instantly, including termination of any callers.

EXAMPLE:
if (<unexpected condition>)
 exit
14

NO_ANSI_ID Recipe Overview
5.2.7 Functions

5.2.7.1 Function Declaration
A function definition is of the form sub functionName(), followed by the body of the function enclosed in braces. If
parameters are to be passed to a function, then are expressed as a comma-separated list of arguments within the
parentheses following the function name. Each argument is comprised of a data type and an accompanying
argument name.

Functions are declared at the beginning of a recipe.

 sub functionName(integer nArg1, Class &cArg2) {

 <actions>

 }

5.2.7.2 Function Invocation
A function invocation is of the form &functionName(). If parameters are to be passed to a function, then are
expressed as a comma-separated list within the parentheses following the function name.

 &functionName(5, pClass)

5.2.8 Exception Handling

All operations may produce exceptions or errors. The following construct is used to test for particular errors. Once
a particular error is caught, then special exception handling logic is processed. Only CIM Errors can be caught.

try {

<actions>

}

catch (CIM Exception $Exception) {

 <recovery actions>

 }

 The error received may also be thrown

 throw $Exception

The error response returned from the SMI-S implementation is treated as a exception, a "CIM Exception". The
catch condition is expressed in terms of the CIM status code returned (e.g., CIM_ERR_NOT_FOUND) as defined
in the CIM Operations specification.

The $Exception variable contains a Error instance. The $Exception CIM Instance may be examined like any other
CIM Instance. In this language, the $Exception is never null even if the SMI-S implementation does provide one. In
this case, the $Exception CIM Instance is empty with the exception of the CIMStatusCode and
CIMStatusCodeDescription properties. This properties are populated with the Status and Description returned in
the error response from the SMI-S implementation.

5.2.9 Built-in Functions

a) boolean = compare(<variable>, <variable>)

1) Used to determine if two variables of the same type are equivalent

2) The variables shall not be CIM instances or object names nor other complex data types or
structures

3) The variables shall be of the same type

b) $instance = newInstance("CIM Classname")
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 15

Recipe Overview NO_ANSI_ID
1) Creates a CIM instance, which does not exist in the CIMOM (yet), that can be later filled in
with properties and passed to CreateInstance. The namespace is assumed to be the same
that the CIM client connected to.

c) $instance - newInstance("CIM Namespace", "CIM Classname”)

1) Variable of the above method that has the namespace name as an argument

d) boolean = contains(<test value>, <variable array>)

1) Used to test if the variable array contains a value equivalent to the test variable

2) The array shall be of variables of the same types as the test variable.

3) If the equivalency is found with at least one value then the function returns true, else false is
returned.

4) If the array is not a simple, or non-CIM, data type, then the test value shall be a CIM property,
$SomeInstance.SomeProperty or $SomeObjectname->SomeProperty

e) %Argument = newArgument("Argument Name", <variable>)

1) Creates a CIM Argument of a given name containing a value, CIM or non-CIM

f) $objectPath-> = newObjectPath("Class name", "NameSpace name")

1) Returns a new ObjectPath, built from the supplied arguments;

2) Required to perform the EnumerateInstances and EnumerateInstanceNames
operations

g) #stringArray[] = #stringVariable.split(#stringParam or “string literal”)

1) Returns an array of strings, built by splitting the string variable around matches of the sup-
plied string parameter

2) Divides the string into substrings, using the string parameter as a delimiter, returning the sub-
strings in an array in the order in which they occurred in the string variable. If there are no
occurrences of the string parameter, then the array returned contains only one string element
equal to the original string variable.

h) #intVariable = Integer(#stringVariable)

1) Returns the integer that the supplied string represents. If the supplied string does not repre-
sent an integer, then an error is thrown.

2) The function will parse and return signed or unsigned integers up to 64-bits in size, and will
accept the hyphen ‘-‘ character in the 8-bit ASCII-range of UTF-8 as the first character in the
string to indicate a negative number.

i) #datetimeVariable = Datetime(#stringVariable)

1) Returns a variable of Datetime type, as defined by section 2.2.1 the CIM Infrastructure Speci-
fication v1.3, that the supplied string represents. If the supplied string does not represent a
DateTime object, then an error is thrown.

2) This function will accept strings of the format described in the CIM Infrastructure Specifica-
tion, including both timestamps and intervals, zero-padded to 25-characters, and will recog-
nize Datetime strings containing asterisk (“*”) characters for fields that are not significant.
16

NO_ANSI_ID Recipe Overview
5.2.10 Extrinsic method calls

<variable> = InvokeMethod ($someobjectname->, "Method Name",

 %InArguments[], %OutArguments[])
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 17

Recipe Overview NO_ANSI_ID
18

NO_ANSI_ID Generic Target Ports Profile
EXPERIMENTAL

Clause 6: Generic Target Ports Profile

6.1 Synopsis
Profile name: Generic Target Ports

Version: 1.0.0

Organization: SNIA

CIM schema version: 2.9.0 (later schema versions may be required for specializations)

Central Class: CIM_LogicalPort

Scoping Class: a CIM_System in a separate autonomous profile

The Generic Target Port Profile models the generic behavior of target ports in storage systems such as disk arrays
and tape libraries.

This abstract profile specification shall not be directly implemented; implementations shall be based on a profile
specification that specializes the requirements of this profile.

6.2 Description
The Generic Target Port Profile models the generic behavior of target ports in storage systems such as disk arrays
and tape libraries. Separate profiles specialize the Generic Target Port Profile for Fibre Channel, iSCSI, and other
transports. The primary classes of the Generic Target Port Profile are LogicalPort and ProtocolEndpoint, as shown
in Figure 5. Instances of subclasses of a LogicalPort (e.g., FCPort, EthernetPort) represent the logical aspects of
ports, independent from command protocols (such as SCSI). Instances of subclasses of ProtocolEndpoint (e.g.,
SCSIProtocolEndpoint or AT A ProtocolEndpoint) represent command protocols in use on the port.

6.3 Implementation
Subclasses of ProtocolEndpoint represent command protocols supported by the port. SCSIProtocolEndpoint
represents SCSI as a protocol, independent of specific transports or device types – i.e. the behavior described in
the SCSI Primary Commands (SPC) and SCSI Architecture Model (SAM) specifications from T10.

Figure 5 - Generic Target Port Classes

(from the autonomous
profile)

ComputerSystem

ProtocolEndpointLogicalPort

DeviceSAP
Implementation

HostedAccessPoint

SystemDevice

** *

1

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 19

Generic Target Ports Profile NO_ANSI_ID
SCSIProtocolEndpoint.Role indicates whether this protocol endpoint instance represents a SCSI Target or target.
For target port profiles, Role shall be Target” or “Both Initiator and Target”. iSCSIProtocolEndpoint specializes
SCSIProtocolEndpoint with additional iSCSI-specific properties.

ATAProtocolEndpoint represents the ATA command protocol. SBPProtocolEndpoint represents Single Byte
protocol used with mainframes. ProtocolEndpoint is associated to a System instance with Hosted Access Point.

LogicalPort subclasses specify the type of transport. If the port is subclassed directly from LogicalPort it indicates it
is connected to a bus. If the port is further subclassed from NetworkPort it indicates the port is capable of being
used in a network. Specializations of this profile shall specify the appropriate subclass of LogicalPort. Figure 6
shows the subclasses of LogicalPort.

A property on LogicalPort called UsageRestriction is indicates whether the port is restricted to use as a “front end”
(target) or a “back end” (Target) interface or both. Note that port may not have a restriction and the actual point-in-
time role is modeled in SCISProtocolEndpoint.Role. SystemDevice associates LogicalPort to a System.

ProtocolEndpoint and LogicalPort are associated with DeviceSAPImplementation. For most transports, the
command protocol is implemented in the port hardware and there is 1-1 cardinality between the LogicalPort and
ProtocolEndpoint instances. iSCSI is an exception, many-to-many relationships are possible between EthernetPort
and iSCSIProtocolEndpoint instances

ProtocolController (in the Mapping and Masking profile) represents the SCSI (or SB) ‘view’ of ports and logical
devices seen by target systems (e.g., arrays). In a system supporting Mapping and Masking, zero or more views
exist; defined by the customer to expose subsets of logical units to certain Targets. SAPAvailableForElement
connects ProtocolEndpoint from a target ports profile to SCSIProtocolController instances from the Mapping/
Masking profile. iSCSI and SB have protocol-specific, secondary uses of ProtocolController.

Figure 6 - LogicalPort Class Hierarchy

LogicalPort

ATAPort SPIPort SASSATAPort FCPort EthernetPort

NetworkPort

SASPort
20

NO_ANSI_ID Generic Target Ports Profile
Figure 7 depicts a generic storage device with elements from a target ports profile, the Mapping/Masking profile,
and a target device profile The LogicalDevice object represents logical units that are visible to external systems. It

is subclassed to StorageVolume, TapeDrive, etc. to identify the device type.

6.3.1 Modeling SCSI/SB Logical Units

The SCSI standard inquiry response includes a Device Type property with integers representing types of devices.
Most of these devices types have a CIM analog. Devices that are used primarily for management are modeled as
SCSIArbitraryLogicalUnit. SCSIArbitraryLogicalUnit.DeviceType maps to SCSI device types. Table 2 describes
how common storage devices are modeled in CIM.

Figure 7 - Generic Target with LUN Masking

Table 2 - Modeling of Common Storage Devices in CIM

SCSI Device Type Inquiry Device Type LogicalDevice subclass

DirectAccessDevice 0 DiskDrive or StorageVolume

SequentialAccessDevice 1 TapeDrive

WriteOnceDevice 4 WormDrive

CD-ROM 5 CDROMDrive

MediaChanger 8 MediaTranferDevice

ArrayController 0xc SCSIArbitraryLogicalUnit
DeviceType=”SCSI SCC
Device”

SES 0xd SCSIArbitraryLogicalUnit

DeviceType=”SCSI SES”

Other SCSIArbitraryLogicalUnit

DeviceType=”Other”

Target Ports profile Mapping/Masking Target Device profile

ComputerSystem

ProtocolController

SAPAvailable
ForElement

SystemDevice SystemDevice

ProtocolEndpoint LogicalDevice
(Volume, Tape Drive)

LogicalPort

ProtocolController
ForUnit

DeviceSAP
Implementation

HostedAccessPoint

SystemDevice
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 21

Generic Target Ports Profile NO_ANSI_ID
All devices (logical units) visible to external systems shall be modeled.

6.4 Methods of the Profile

6.4.1 Extrinsic Methods

None

6.4.2 Intrinsic Methods

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

6.5 Use Cases

6.6 CIM Elements
Table 3 describes the CIM elements for Generic Target Ports.

Unknown SCSIArbitraryLogicalUnit

DeviceType=”Uknown”

DirectAccessDevice 0 DiskDrive or StorageVolume

Table 3 - CIM Elements for Generic Target Ports

Element Name Requirement Description

6.6.1 CIM_ATAProtocolEndpoint Optional Specialization of ProtocolEndpoint for ATA.

6.6.2 CIM_DeviceSAPImplementation Mandatory Associates front-end LogicalPort and target
ProtocolEndpoint.

6.6.3 CIM_HostedAccessPoint (ATA) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

6.6.4 CIM_HostedAccessPoint (SCSI) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

Table 2 - Modeling of Common Storage Devices in CIM

SCSI Device Type Inquiry Device Type LogicalDevice subclass
22

NO_ANSI_ID Generic Target Ports Profile
6.6.1 CIM_ATAProtocolEndpoint

Specialization of ProtocolEndpoint for ATA.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 4 describes class CIM_ATAProtocolEndpoint.

6.6.2 CIM_DeviceSAPImplementation

Associates front-end LogicalPort and target ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 5 describes class CIM_DeviceSAPImplementation.

6.6.5 CIM_LogicalPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

6.6.6 CIM_ProtocolEndpoint Mandatory Represents a protocol (command set)
associated to a port.

6.6.7 CIM_SCSIProtocolEndpoint Optional Specialization of ProtocolEndpoint for SCSI.

6.6.8 CIM_SystemDevice Mandatory Associates ComputerSystem to LogicalPort.

Table 4 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target).

OtherTypeDescription Mandatory Shall be the string 'ATA'.

ConnectionType Mandatory Shall be 2|3 (PATA or SATA).

Table 5 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : limit to targets

Antecedent Mandatory Validation Property : limit to targets

Table 3 - CIM Elements for Generic Target Ports

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 23

Generic Target Ports Profile NO_ANSI_ID
6.6.3 CIM_HostedAccessPoint (ATA)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 6 describes class CIM_HostedAccessPoint (ATA).

6.6.4 CIM_HostedAccessPoint (SCSI)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 7 describes class CIM_HostedAccessPoint (SCSI).

6.6.5 CIM_LogicalPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 6 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA)

Properties Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem

Dependent Mandatory Reference to ATAProtocolEndpointValidation Property : limit to
targets

Table 7 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Reference to SCSIProtocolEndpointValidation Property : limit
to targets
24

NO_ANSI_ID Generic Target Ports Profile
Table 8 describes class CIM_LogicalPort.

6.6.6 CIM_ProtocolEndpoint

Represents a protocol (command set) associated to a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 9 describes class CIM_ProtocolEndpoint.

6.6.7 CIM_SCSIProtocolEndpoint

Specialization of ProtocolEndpoint for SCSI.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 8 - SMI Referenced Properties/Methods for CIM_LogicalPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the port
is unrestricted.

PortType Mandatory VALUE and DESC should be set appropriately for each
specialized target port profile.

Table 9 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI', 'ATA', 'SB', or 'iSCSI'. Initiator port
specialized profiles specify the appropriate subset.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 25

Generic Target Ports Profile NO_ANSI_ID
Table 10 describes class CIM_SCSIProtocolEndpoint.

6.6.8 CIM_SystemDevice

Associates ComputerSystem to LogicalPort.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 11 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 10 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).

Table 11 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
26

NO_ANSI_ID Parallel SCSI (SPI) Target Ports Profile
EXPERIMENTAL

Clause 7: Parallel SCSI (SPI) Target Ports Profile

7.1 Synopsis
Profile Name: SPI Target Ports

Version: 1.2.0

Organization: SNIA

CIM Schema Version: TBD

Related Profiles for SPI Target Ports: Not defined in this standard.

Central Class: CIM_SPIPortt

Scoping Class: a CIM_System in a separate autonomous profile

Models a parallel SCSI port,

7.2 Description
This port represents a SCSI Parallel Interface (SPI).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 27

Parallel SCSI (SPI) Target Ports Profile NO_ANSI_ID
7.3 Implementation
Because of addressing limits, the port may use multiple SCSI IDs to extend the addressing. The LUN Mapping/
Masking common subprofile is not used with this port type.

The SCSIProtocolEndpoint.ConnectionType shall be set to “Parallel SCSI”. The SCSIProtocolEndpoint class is
connected to a SPIPort. Attributes of SPIPort define the bus width and speed. The port class inherits the
UsageRestriction attribute from LogicalPort. This attribute shall be set to “Front-end only”

Figure 8 - SPI Target Port Instance Diagram

System
Device

(in the referencing profile)

NetworkEntity:
ComputerSystem

SAPAvailableForElement

SystemDevice

DeviceSAPImplementation

ConnectionType=”Parallel
SCSI”

SCSIProtocolEndpoint

SPIPort

(In target device profile)

LogicalDevice

1 *

*

(In Mapping/Masking profile)

SCSIDevice:
SCSIProtocolController

ProtocolController
ForUnit

*
1

1

HostedAccessPoint

SystemDevice
28

NO_ANSI_ID Parallel SCSI (SPI) Target Ports Profile
7.4 Health and Fault Management

7.5 Methods

7.5.1 Extrinsic Methods of this Subprofile

None

7.6 CIM Elements
Table 13 describes the CIM elements for SPI Target Ports.

7.6.1 CIM_ATAProtocolEndpoint

Specialization of ProtocolEndpoint for ATA.

Created By: Static

Table 12 - SPIPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 13 - CIM Elements for SPI Target Ports

Element Name Requirement Description

7.6.1 CIM_ATAProtocolEndpoint Optional Specialization of ProtocolEndpoint for ATA.

7.6.2 CIM_DeviceSAPImplementation Mandatory Associates front-end LogicalPort and target
ProtocolEndpoint.

7.6.3 CIM_HostedAccessPoint (ATA) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

7.6.4 CIM_HostedAccessPoint (SCSI) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

7.6.5 CIM_SCSIProtocolEndpoint Mandatory Represents a protocol (command set)
associated to a port.

7.6.6 CIM_SCSIProtocolEndpoint Optional Specialization of ProtocolEndpoint for SCSI.

7.6.7 CIM_SPIPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

7.6.8 CIM_SystemDevice Mandatory Associates ComputerSystem to LogicalPort.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 29

Parallel SCSI (SPI) Target Ports Profile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 14 describes class CIM_ATAProtocolEndpoint.

7.6.2 CIM_DeviceSAPImplementation

Associates front-end LogicalPort and target ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 15 describes class CIM_DeviceSAPImplementation.

7.6.3 CIM_HostedAccessPoint (ATA)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 16 describes class CIM_HostedAccessPoint (ATA).

Table 14 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target).

OtherTypeDescription Mandatory Shall be the string 'ATA'.

ConnectionType Mandatory Shall be 2|3 (PATA or SATA).

Table 15 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : limit to targets

Antecedent Mandatory Validation Property : limit to targets

Table 16 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA)

Properties Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem

Dependent Mandatory Reference to ATAProtocolEndpointValidation Property : limit to
targets
30

NO_ANSI_ID Parallel SCSI (SPI) Target Ports Profile
7.6.4 CIM_HostedAccessPoint (SCSI)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 17 describes class CIM_HostedAccessPoint (SCSI).

7.6.5 CIM_SCSIProtocolEndpoint

Represents a protocol (command set) associated to a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 18 describes class CIM_SCSIProtocolEndpoint.

7.6.6 CIM_SCSIProtocolEndpoint

Specialization of ProtocolEndpoint for SCSI.

Created By: Static
Modified By: Static
Deleted By: Static

Table 17 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Reference to SCSIProtocolEndpointValidation Property : limit
to targets

Table 18 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI', 'ATA', 'SB', or 'iSCSI'. Initiator port
specialized profiles specify the appropriate subset.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 31

Parallel SCSI (SPI) Target Ports Profile NO_ANSI_ID
Requirement: Optional

Table 19 describes class CIM_SCSIProtocolEndpoint.

7.6.7 CIM_SPIPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 20 describes class CIM_SPIPort.

7.6.8 CIM_SystemDevice

Associates ComputerSystem to LogicalPort.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 19 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).

Table 20 - SMI Referenced Properties/Methods for CIM_SPIPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the port
is unrestricted.

PortType Mandatory Shall be 101 (SCSI Parallel).
32

NO_ANSI_ID Parallel SCSI (SPI) Target Ports Profile
Table 21 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 21 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 33

Parallel SCSI (SPI) Target Ports Profile NO_ANSI_ID
34

NO_ANSI_ID FC Target Ports Profile
STABLE

Clause 8: FC Target Ports Profile

8.1 Synopsis
Profile name: FC Target Ports

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.9.0

Central Class: CIM_FCPortt

Scoping Class: a CIM_System in a separate autonomous profile

8.2 Description
The FC Target Port Subprofile models the Fibre Channel specific aspects of a target storage system.

8.3 Implementation
For Fibre Channel ports, the concrete subclass of LogicalPort is FCPort. FCPort is always associated 1-1 with a
SCSIProtocolEndpoint instance.

8.3.1 SMI-S 1.0 backwards compatibility

SCSIProtocolEndpoint was introduced in SMI-S 1.1.0 to enable support for non-FC transports and for non-SCSI
protocols. In SMI-S 1.0, FCPort was associated directly to SCSIProtocolController. SCSIProtocolEndpoint,
DeviceSAPImplementation, and SAPAvailableForElement are required and are used consistently across all target
port subprofiles. To maintain backwards compatibility, ProtocolControllerForPort is still required in this version of
SMI-S. But this association will be removed in a future versions and clients should start using the newer model.
Figure 9 illustrates a Target Port instance.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 35

FC Target Ports Profile NO_ANSI_ID
8.4 Durable Names and Correlatable IDs of the Subprofile
FCPort.PermanantAddress shall contain the port’s Port WWN.

8.5 Health and Fault Management
Figure 22 descibes FCPort OperationalStatus.

8.6 Supported Profiles and Packages
None

Figure 9 - FC Target Port Instance Diagram

Table 22 - FCPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

System
Device

(from autonomous profile)

ComputerSystem

(from Mapping Masking)

SCSIProtocolController

SAPAvailable
ForElement

SystemDevice

DeviceSAPImplementation

ConnectType="Fibre
Channel"

SCSIProtocolEndpoint

FCPort

1

1
ProtocolController

ForPort

Hosted
AccessPoint
36

NO_ANSI_ID FC Target Ports Profile
8.7 Extrinsic Methods of this Subprofile
None

8.8 Client Considerations and Recipes
None

8.9 CIM Elements
Table 23 describes the CIM elements for FC Target Ports.

Table 23 - CIM Elements for FC Target Ports

Element Name Requirement Description

8.9.1 CIM_ATAProtocolEndpoint Optional Specialization of ProtocolEndpoint for ATA.

8.9.2 CIM_DeviceSAPImplementation Mandatory Associates front-end LogicalPort and target
ProtocolEndpoint.

8.9.3 CIM_FCPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

8.9.4 CIM_HostedAccessPoint (ATA) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

8.9.5 CIM_HostedAccessPoint (SCSI) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

8.9.6 CIM_ProtocolControllerForPort Conditional Conditional requirement: Support for the
Masking and Mapping profile.Only required if
the instrumentation claims compatibility with
1.0

8.9.7 CIM_SCSIProtocolEndpoint Mandatory Represents a protocol (command set)
associated to a port.

8.9.8 CIM_SCSIProtocolEndpoint Optional Specialization of ProtocolEndpoint for SCSI.

8.9.9 CIM_SystemDevice Mandatory Associates ComputerSystem to LogicalPort.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Mandatory Create FCPort

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change to FCPort
OperationalStatus
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 37

FC Target Ports Profile NO_ANSI_ID
8.9.1 CIM_ATAProtocolEndpoint

Specialization of ProtocolEndpoint for ATA.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 24 describes class CIM_ATAProtocolEndpoint.

8.9.2 CIM_DeviceSAPImplementation

Associates front-end LogicalPort and target ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us <>
PreviousInstance.CIM_FCPort::OperationalSt
atus

Mandatory CQL -Change to FCPort OperationalStatus

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.Speed <>
PreviousInstance.Speed

Mandatory Change to FCPort properties

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::NetworkAddres
ses <>
PreviousInstance.CIM_FCPort::NetworkAddre
sses

Mandatory CQL -Change to FCPort properties

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Mandatory Delete FCPort

Table 24 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target).

OtherTypeDescription Mandatory Shall be the string 'ATA'.

ConnectionType Mandatory Shall be 2|3 (PATA or SATA).

Table 23 - CIM Elements for FC Target Ports

Element Name Requirement Description
38

NO_ANSI_ID FC Target Ports Profile
Requirement: Mandatory

Table 25 describes class CIM_DeviceSAPImplementation.

8.9.3 CIM_FCPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 26 describes class CIM_FCPort.

8.9.4 CIM_HostedAccessPoint (ATA)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static

Table 25 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : limit to targets

Antecedent Mandatory Validation Property : limit to targets

Table 26 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the port
is unrestricted.

PortType Mandatory VALUE and DESC should be set appropriately for each
specialized target port profile.

PermanentAddress Mandatory Port WWN. Shall be 16 unseparated uppercase hex digits.

SupportedCOS Optional

ActiveCOS Optional

SupportedFC4Types Optional

ActiveFC4Types Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 39

FC Target Ports Profile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 27 describes class CIM_HostedAccessPoint (ATA).

8.9.5 CIM_HostedAccessPoint (SCSI)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 28 describes class CIM_HostedAccessPoint (SCSI).

8.9.6 CIM_ProtocolControllerForPort

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for the Masking and Mapping profile.

Table 29 describes class CIM_ProtocolControllerForPort.

Table 27 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA)

Properties Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem

Dependent Mandatory Reference to ATAProtocolEndpointValidation Property : limit to
targets

Table 28 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Reference to SCSIProtocolEndpointValidation Property : limit
to targets

Table 29 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
40

NO_ANSI_ID FC Target Ports Profile
8.9.7 CIM_SCSIProtocolEndpoint

Represents a protocol (command set) associated to a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 30 describes class CIM_SCSIProtocolEndpoint.

8.9.8 CIM_SCSIProtocolEndpoint

Specialization of ProtocolEndpoint for SCSI.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 31 describes class CIM_SCSIProtocolEndpoint.

8.9.9 CIM_SystemDevice

Associates ComputerSystem to LogicalPort.

Created By: Static
Modified By: Static

Table 30 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI', 'ATA', 'SB', or 'iSCSI'. Initiator port
specialized profiles specify the appropriate subset.

ConnectionType Mandatory Shall be 2 (Fibre Channel)

Table 31 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 41

FC Target Ports Profile NO_ANSI_ID
Deleted By: Static
Requirement: Mandatory

Table 32 describes class CIM_SystemDevice.

STABLE

Table 32 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
42

NO_ANSI_ID iSCSI Target Ports Subprofile
STABLE

Clause 9: iSCSI Target Ports Subprofile

9.1 Synopsis
Profile name: iSCSI Target Ports

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.11.0

Central Class: CIM_EthernetPortt

Scoping Class: a CIM_System in a separate autonomous profile

Models an iSCSI target port,

9.2 Description
The iSCSI target ports subprofile describes the iSCSI specific aspects of a target device.

9.3 Implementation
iSCSI terminology is different than that used in other parts of SMI-S. Figure 10 uses the UML instance naming
notation (InstanceName:ClassName) with the iSCSI-style names before the CIM names. Figure 33 explains the
use of all these objects.

Note that ComputerSystem, SCSIProtocolController and StorageVolume are not actually part of this subprofile;
they would be the parts of the Array Profile that associate with the iSCSI-specific classes. iSCSI does have a
specific naming requirement for SCSIProtocolController that is described in Table 33.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 43

iSCSI Target Ports Subprofile NO_ANSI_ID
Figure 10 - iSCSI Target Ports Subprofile Instance Diagram

TCPProtocolEndpoint

NetworkEntity:
ComputerSystem

iSCSISession

iSCSINode:
SCSIProtocolController

SAPAvailable
ForElement

EndpointOfNetworkPipe

Name
Role
Identifier

iSCSIPort:
iSCSIProtocolEndpoint

ConnectionID

iSCSIConnection

EndpointOfNetworkPipe

NetworkPipe
Composition

SystemDevice

BindsTo

StorageVolume

ProtocolController
ForUnit

iSCSIPortalGroup:
SystemSpecificCollection

Dependency

Hosted
Collection

MemberOfCollection

Hosted
Access
Point

DeviceSAPImplementation

EthernetPort

iSCSICapabilities

iSCSIConfiguration
Service

ElementCapabilities

iSCSILoginStatisticsiSCSISession
Failures

Element
StatisticalData

Element
StatisticalData

iSCSISession
Statistics

ElementStatisticalData

iSCSISession
Settings

Element
SettingData

Element
SettingData

Element
SettingData

IPProtocolEndpoint

BindsTo

iSCSIConnection
Settings

Element
SettingData

iSCSIConfiguration
Capabilities

ElementCapabilities

Hosted
Service

DeviceSAP
Implementation
44

NO_ANSI_ID iSCSI Target Ports Subprofile
Table 33 - iSCSI Terminology and SMI-S Class Names

iSCSI
Term

CIM Class Name Notes

Network
Entity

ComputerSystem The Network Entity represents a device or gateway that is
accessible from the IP network. A Network Entity shall have
one or more Network Portals, each of which can be used to
gain access to the IP network by some iSCSI Nodes
contained in that Network Entity.

Session iSCSISession The group of TCP connections that link an Target with a
target form a session (loosely equivalent to a SCSI I-T
nexus). TCP connections can be added and removed from a
session. Across all connections within a session, an Target
sees one and the same target.

Connectio
n

NetworkPipe A connection is a TCP connection. Communication between
the Target and target occurs over one or more TCP
connections. The TCP connections carry control messages,
SCSI commands, parameters, and data within iSCSI Protocol
Data Units (iSCSI PDUs).

SCSI Port iSCSIProtocolEndpoint A SCSI Port using an iSCSI service delivery subsystem. A
collection of Network Portals that together act as a SCSI
Target or target.

Portal
Group

SystemSpecificCollecti
on

iSCSI supports multiple connections within the same session;
some implementations will have the ability to combine
connections in a session across multiple Network Portals. A
Portal Group defines a set of Network Portals within an iSCSI
Network Entity that collectively supports the capability of
coordinating a session with connections spanning these
portals. Not all Network Portals within a Portal Group need
participate in every session connected through that Portal
Group. One or more Portal Groups may provide access to an
iSCSI Node. Each Network Portal, as utilized by a given
iSCSI Node, belongs to exactly one portal group within that
node.

Network
Portal

TCPProtocolEndpoint,
IPProtocolEndpoint,
EthernetPort

The Network Portal is a component of a Network Entity that
has a TCP/IP network address and that may be used by an
iSCSI Node within that Network Entity for the connection(s)
within one of its iSCSI sessions. A Network Portal in an
Target is identified by its IP address. A Network Portal in a
target is identified by its IP address and its listening TCP port.

Node SCSIProtocolControlle
r

The iSCSI Node represents a single iSCSI Target or iSCSI
target. There are one or more iSCSI Nodes within a Network
Entity. The iSCSI Node is accessible via one or more
Network Portals. An iSCSI Node is identified by its iSCSI
Name. The separation of the iSCSI Name from the
addresses used by and for the iSCSI Node allows multiple
iSCSI nodes to use the same address, and the same iSCSI
node to use multiple addresses.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 45

iSCSI Target Ports Subprofile NO_ANSI_ID
9.3.1 Mapping and Masking Considerations

The class SCSIProtocolController is used in the Mapping and Masking subprofile to model a “view”, which is a set
of logical devices exposed to an Target. It is in a sense a virtual SCSI device, but carries no SCSI device name
when used with the other Target Ports subprofiles such as the FC Target Port subprofile. In fact the class is even
not part of these sub-profiles.

The iSCSI Target Ports subprofile however uses SCSIProtocolController to model the iSCSI Node which is the
SCSI Device as defined in the SAM specification. It has a SCSI device name which is the iSCSI Node Name. Thus
the presence of instances of SCSIProtocolController with this subprofile has multiple meanings. Whereas there
may be no instances of SCSIProtocolController with other Target Port subprofiles until created as views by the
Mapping and Masking method ExposePaths, instances of SCSIProtocolControllers as iSCSINodes can be brought
into existence by the iSCSI method CreateiSCSINode. The instances can then be used as inputs to ExposePaths
to grant access by Targets to logical devices through the Node. This initial SCSIProtocolController that was created
as a Node will be the first view. Additional “view” ProtocolControllers created by ExposePaths would carry the
same iSCSI Node name to convey that they represent the same underlying Node.

9.3.2 Settings

An iSCSI Session is established between an Target Port and a Target Port through the establishment of an initial
iSCSI Connection, which happens during the “Leading” Login. At this time the operational properties for the
Session are negotiated and also the operational properties for the initial Connection. Additional Connections for the
Session are established through subsequent logins. For many operational properties both the Target and Target
have settings that specify the starting position for the negotiation process. The settings for negotiating Session-
wide operational properties (found in iSCSISession) are in iSCSISessionSettings. Likewise the settings for
negotiating Connection level operational properties (found in iSCSI Connection) are in iSCSIConnectionSettings.
For example, iSCSISessionSettings contains the property MaxConnectionsPerSession, which is the value that the
local system (which in this sub-profile is the Target) would like to use for Session. When the leading login is
complete the actual value agreed upon with the Target is in the property MaxConnectionsPerSession in iSCSI
Session.

Different implementations may scope the settings classes differently.

iSCSISessionSettings can be associated to any one of the following classes:

• iSCSIProtocolEndpoint: The Settings apply to Sessions created on the iSCSI Port represented by the
iSCSIProtocolEndpoint.

• SCSIProtocolController: The Settings apply to Sessions created on all iSCSIProtocolEndpoint belonging to the
iSCSI Node represented by the SCSIProtocolController.

• ComputerSystem: The Settings apply to Sessions created on all iSCSIProtocolEndpoints belonging to all
SCSIProtocolControllers belonging to the ComputerSystem.

iSCSIConnectionSettings can be associated to any one of the following classes:

• TCPProtocolEndpoint: The Settings apply to each Connection created using the Network Portal represented
by the TCPProtocolEndpoint, regardless of which iSCSIProtocolEndpoint owns the Session that the
Connection belongs to.

• iSCSIProtocolEndpoint: The Settings apply to Connections using NetworkPortals to which the
iSCSIProtocolEndpoint is bound and belonging to Sessions on that same iSCSIProtocolEndpoint.
46

NO_ANSI_ID iSCSI Target Ports Subprofile
9.3.3 Durable Names and Correlatable IDs of the Subprofile

The Name property for the iSCSI node (SCSIProtocolController) shall be a compliant iSCSI name as described in
Storage Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6 7.8. NameFormat shall be
set to “iSCSI Name”.

The Name property for iSCSIProtocolEndpoint shall be a compliant iSCSI name as described in Storage
Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6 7.8. ConnectionType shall be set
to “iSCSI”.

9.4 Health and Fault Management
Table 34 defines the SMI-S-defined meanings of the OperationalStatus property for EthernetPort used in the SB
Target Port Profile.

9.5 Supported Subprofiles and Packages
None

9.6 Methods of this Subprofile
The iSCSIConfigurationService provides the following methods that allow a client to manipulate
iSCSIProtocolEndpoints in an iSCSI Target Node. The class iSCSIProtocolController models the iSCSI Target Port.
The instance of the service is scoped by an instance of ComputerSystem that represents that Network Entity. The
capabilities of this service are defined in the companion class iSCSIConfigurationCapabilities.

9.6.1 CreateiSCSINode

This method creates an iSCSI Node in the form of an instance of SCSIProtocolController. As part of the creation
process a SystemDevice association is created between the new SCSIProtocolController and the scoping Network
Entity (ComputerSystem) hosting this service.

 CreateiSCSINode

 IN, string Alias,

The iSCSI Alias for the new Node.

 OUT, SCSIProtocolController REF iSCSINode,

A reference to the new SCSIProtocolController that is created.

9.6.1.1 Return Values
Success

Table 34 - EthernetPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 47

iSCSI Target Ports Subprofile NO_ANSI_ID
Not Supported

Unspecified Error

Timeout

Failed

Node Creation Not Supported

Alias in use by Other Node

9.6.1.2 Created Instances
SCSIProtocolController

SystemDevice

9.6.1.3 Deleted Instances
None

9.6.1.4 Modified Instances
None

9.6.2 DeleteiSCSINode

The method deletes an instance of SCSIProtocolController representing an iSCSI Node and all associations in
which this SCSIProtocolController is referenced. If Sessions are active on iSCSIProtocolEndpoints belonging to
this Node an error will be returned. If no Sessions are active the scoped iSCSIProtocolEndpoints will be deleted.

 DeleteiSCSINode

 IN, SCSIProtocolController REF iSCSINode

The SCSIProtocolController to be deleted.

9.6.2.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

SCSIProtocolController Non-existent

Sessions Active on Node Ports

9.6.2.2 Created Instances
None

9.6.2.3 Deleted Instances
SCSIProtocolController
48

NO_ANSI_ID iSCSI Target Ports Subprofile
SystemDevice

iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo

9.6.2.4 Modified Instances
None

9.6.3 CreateiSCSIProtocolEndpoint

This method creates an iSCSI Port in the form of an instance of iSCSIProtocolEndpoint. As part of the creation
process the iSCSIProtocolEndpoint is 'bound to' the underlying TCPProtocolEndpoints which are specified as
inputs by creating instances of the BindsTo association between the new instance and those instances. In addition,
an instance of SAPAvailableForElement is created between the specified SCSIProtocolController and the new
instance of iSCSIProtocolEndpoint.

 CreateiSCSIProtocolEndpoint

 IN, SCSIProtocolController REF iSCSINode,

The SCSIProtocolController instance representing the iSCSI Node that will contain the iSCSI Port.

 IN, uint16 Role,

For iSCSI, each iSCSIProtocolEndpoint acts as either a target or an Target endpoint.This property indicates which
role this iSCSIProtocolEndpoint implements.

 IN, string Identifier,

The Identifier shall contain the Target Portal Group Tag (TGPT). Each iSCSIProtocolEndpoint (iSCSI port)
associated to a common SCSIProtocolController (iSCSI node) has a unique Identifier. This field is a string that
contains 12 hexadecimal digits. If the property IdentifierSelectionSupported in class iSCSIConfigurationCapabilities
is false, this parameter shall be set to NULL.

 IN, ProtocolEndpoint REF NetworkPortals[],

An Array of References to TCPProtocolEndpoints representing Target Network Portals. The TCPProtocolEndpoints
specified each shall be associated to an instance of IPProtocolEndpoint via a BindsTo association in order to
provide the Target Network Portal functionality. The selected Portal endpoints shall be from the same
SystemSpecificCollection, which represents a Portal Group.

 OUT, iSCSIProtocolEndpoint REF iSCSIPort,

A reference to the new iSCSIProtocolEndpoint that is created.

9.6.3.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 49

iSCSI Target Ports Subprofile NO_ANSI_ID
SCSIProtocolController Non-existent

Role Not Supported By Specified SCSIProtocolController

Identifier In Use, Not Unique

Identifier Selection Not Supported

ProtocolEndpoint Non-Existent

TCPProtocolEndpoint Not Bound To Underlying IPProtocolEndpoint

TCPProtocolEndpoint In Use By Other iSCSIProtocolEndpoint In Same Target SCSIProtocolController.

ProtocolEndpoints Not From Same Endpoint Collection

9.6.3.2 Created Instances
iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo

9.6.3.3 Deleted Instances
None

9.6.3.4 Modified Instances
None

9.6.4 DeleteiSCSIProtocolEndpoint

The method deletes an instance of iSCSIProtocolEndpoint and all associations in which this
iSCSIProtocolEndpoint is referenced.

 DeleteiSCSIProtocolEndpoint

 IN, iSCSIProtocolEndpoint REF iSCSIPort

The iSCSIProtocolEndpoint to be deleted.

9.6.4.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

Endpoint Non-existent

9.6.4.2 Created Instances
None
50

NO_ANSI_ID iSCSI Target Ports Subprofile
9.6.4.3 Deleted Instances
iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo

9.6.4.4 Modified Instances
None

9.6.5 BindiSCSIProtocolEndpoint

This method provides for modification of an existing iSCSI Port by associating a TCPProtocolEndpoint
representing a Target Network Portal to the iSCSIProtocolEndpoint. The association is persisted as an instance of
BindsTo. The selected Portal endpoint shall be from the same SystemSpecificCollection, which represents a Portal
Group, as those endpoints currently bound to the iSCSIProtocolEndpoint.

This action is intended to be reversed by the use of the intrinsic method 'DeleteInstance'.

BindiSCSIProtocolEndPoint

 IN, iSCSIProtocolEndpoint REF iSCSIPort,

A reference to the iSCSIProtocolEndpoint

 IN, ProtocolEndpoint REF NetworkPortal

An instance of TCPProtocolEndpoint representing the Network Portal to be added

9.6.5.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

ProtocolEndpoint Non-Existent

TCPProtocolEndpoint Not Bound To Underlying IPProtocolEndpoint

ProtocolEndpoint In Use By Other iSCSIProtocolEndpoint In Same Target SCSIProtocolController

ProtocolEndpoint Not From Same Endpoint Collection

9.6.5.2 Created Instances
BindsTo

9.6.5.3 Deleted Instances
None
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 51

iSCSI Target Ports Subprofile NO_ANSI_ID
9.6.5.4 Modified Instances
None

9.7 Client Considerations and Recipes

9.7.1 Discover the iSCSI Target Port capabilities.

// DESCRIPTION

// Discover the iSCSI Target Port capabilities.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the target system of interest has been

// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the instance of CIM_iSCSICapabilities associated to the

// target ComputerSystem.

$iSCSICapabilities[] = Associators($NetworkEntity->,

“CIM_ElementCapabilities”,

“CIM_iSCSICapabilities”,

“ManagedElement”,

“Capabilities”,

{“MinimumSpecificationVersionSupported”,

“MaximumSpecificationVersionSupported”,

“AuthenticationMethodsSupported”})

if ($iSCSICapabilities[] == null || $iSCSICapabilities[].length != 1) {

 <ERROR! The iSCSI capabilities could not be found>

}

$Capabilities = $iSCSICapabilities[0]

9.7.2 Identify the iSCSI Nodes in a target system.

// DESCRIPTION

//

// Identify the iSCSI Nodes in a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the Network Entity of interest has been

// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the instances of CIM_SCSIProtocolController with a NameFormat

// property value of “iSCSI Name”.

$ProtocolControllers[] = Associators($NetworkEntity->,

“CIM_SystemDevice”,

“CIM_SCSIProtocolController”,

“GroupComponent”,
52

NO_ANSI_ID iSCSI Target Ports Subprofile
“PartComponent”,

false,

false,

{“Name”, “NameFormat”})

// Step 2. Locate the SCSIProtocolControllers that represent the iSCSI Nodes.

$iSCSINodes[]

#index = 0

for (#i in $ProtocolControllers[]) {

 if ($ProtocolControllers[#i].NameFormat == “iSCSI Name”) {

// Filter out SCSIProtocolControllers previously encountered.

if (!contains($ProtocolControllers[#i].Name, #NodeNames[])) {

 #NodeNames[#index] = $ProtocolControllers[#i].Name

 $iSCSINodes[#index++] = $ProtocolControllers[#i]

}

 }

}

<EXIT: $Nodes[] contains the results>

9.7.3 Identify the iSCSI Ports on an given iSCSI node.

// DESCRIPTION

// Identify the iSCSI Ports on an given iSCSI node.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The SCSIProtocolController representing an iSCSI Node of interest has

// been previously identified and defined in the $iSCSINode-> variable.

// This function returns the instance(s) of iSCSI ports on the specified

// iSCSI node, or null if none are found.

sub $iSCSIPorts[] getiSCSIPortsOnNode($Node->) {

 // Step 1. Locate the iSCSI Ports, which are represented by instances of

 // iSCSIProtocolEndpoint, on the iSCSI Node of interest.

 $iSCSIPorts[] = Associators($iSCSINode->,

 “CIM_SAPAvailableForElement”,

 “CIM_iSCSIProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”,

 false,

 false,

 {“Name”, “Identifier”, “Role”})

 if ($iSCSIPorts[].length == 0) {

return (null)

 }

 return ($iSCSIPorts[])

}

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 53

iSCSI Target Ports Subprofile NO_ANSI_ID
// MAIN

$iSCSIPorts[] = &getiSCSIPortsOnNode($iSCSINode->)

9.7.4 Identify the iSCSI sessions existing on an iSCSI node.

// DESCRIPTION

// Identify the iSCSI sessions existing on an iSCSI node.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The SCSIProtocolController representing the iSCSI Node of interest has

// been previously identified and defined in the $iSCSINode-> variable

// Step 1. Retrieve the CIM_iSCSIProtocolEndpoints for an

// CIM_SCSIProtocolController representing a node.

$iSCSIPorts[] = @getiSCSIPortsOnNode($iSCSINode->)

if ($iSCSIPorts[] == null) {

 <ERROR! No iSCSI ports located on the specified iSCSI node>

}

// Step 2. Retrieve the iSCSI session associated with each iSCSI port.

$iSCSISessions[]

#index = 0

#PropList[] = {“Directionality”, “SessionType”, “TSIH”, “EndPointName”,

“CurrentConnections”, “InitialR2T”, “ImmediateData”,

“MaxOutstandingR2T”, “MaxUnsolicitedFirstDataBurstLength”,

“MaxDataBurstLength”, “AuthenticationMethodUsed”,

“DataSequenceInOrder”, “DataPDUInOrder”, “ErrorRecoveryLevel”}

for (#i in $iSCSIPorts[]) {

 $Sessions[] = Associators($iSCSIPorts[#i].getObjectPath(),

 “CIM_EndpointOfNetworkPipe”,

 “CIM_iSCSISession”,

 “Antecedent”,

 “Dependent”,

#PropList[])

 if ($Sessions[] != null && $Sessions[].length == 1) {

$iSCSISessions[#index++] = $Sessions[0]

 }

}

<EXIT: $iSCSISessions[] contains the iSCSI Sessions>

9.7.5 Create an iSCSI Target Node on an iSCSI Network Entity

// DESCRIPTION

// Create an iSCSI Target Node on an iSCSI Network Entity

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the Network Entity of interest has been
54

NO_ANSI_ID iSCSI Target Ports Subprofile
// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the CIM_iSCSIConfigurationService hosted by the System.

$iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

“CIM_HostedService”,

“CIM_iSCSIConfigurationService”,

“Antecedent”,

“Dependent”)

if ($iSCSIConfigurationService->[] == null ||

$iSCSIConfigurationService->[].length == 0) {

 <ERROR! Required iSCSI Configuration Service not available>

}

// Step 2. Examine the capabilities to determine if Node creation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSINodeCreationSupported “})

if ($ConfigurationCapabilities[] == null ||

$ConfigurationCapabilities[].length == 0) {

 <ERROR! Required iSCSI Configuration Service capabilities not available>

}

// Step 3. Create the iSCSI Target Node if supported by the device.

if ($ConfigurationCapabilities[0].iSCSINodeCreationSupported == true) {

 %InArguments[“Alias”] = “Some Target Alias”

 #ReturnValue = invokeMethod($iSCSIConfigurationService->[0],

 “CreateiSCSINode”,

 %InArguments[],

 %OutArguments[])

 if (#ReturnValue == 0) {

$NewNode-> = $OutArguments[“iSCSINode”]

<EXIT: The node was created>

 } else {

<EXIT: The method returned an error; the Node was not created>

 }

} else {

 <EXIT: Node Creation is not supported>

}

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 55

iSCSI Target Ports Subprofile NO_ANSI_ID
9.7.6 Create an iSCSI Target Port on an iSCSI target node.

// DESCRIPTION

// This recipe describes how to create an iSCSI Target Port on an iSCSI target

// node.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the ComputerSystem representing the Network Entity of

// interest has been previously identified and defined in the $NetworkEntity->

// variable.

// 2. The object name for the SCSIProtocolController representing the iSCSI Node

// within which to create the iSCSI Port has been identified and defined in the //
$Node-> variable.

// 3. The object names for one or more TCPProtocolEndpoints representing Target

// Network Portals have been previously identified and defined in the

// Portals->[] array variable.

// MAIN

// Step 1. Find a CIM_iSCSIConfigurationService associated to ComputerSystem

// by HostedService.

$iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

“CIM_HostedService”,

“CIM_iSCSIConfigurationService”,

“Antecedent”,

“Dependent”)

// Step 2. Examine the associated CIM_iSCSIConfigurationCapabilities to

// determine if Target Port manipulation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSIProtocolEndpointCreationSupported”})

// Step 3. Given an instance of CIM_SCSIProtocolController representing a

// Node($Node->), and one or more TCPProtocolEndpoints representing Target

// Network Portals(Portals->[]), invoke the method CreateiSCSIProtocolEndpoint

// to create the iSCSIProtocolEndpoint.

if ($ConfigurationCapabilities[0].iSCSIProtocolEndpointCreationSupported == true)
{

 %InArguments[“iSCSINode”] = $Node->

 %InArguments[“Role”] = 3// “Target”

 %InArguments[“NetworkPortals”] = Portals->[]

 #ReturnValue = InvokeMethod($iSCSIConfigurationService->[0],
56

NO_ANSI_ID iSCSI Target Ports Subprofile
 “CreateiSCSIProtocolEndpoint”,

 %InArguments[],

 %OutArguments[])

 if (#ReturnValue == 0) {

$NewiSCSIProtocolEndpoint-> = $OutArguments[“iSCSIPort”]

<EXIT: The ProtocolEndpoint was created>

 } else {

<EXIT: The method returned an error; the ProtocolEndpoint was not created>

 }

} else {

 <EXIT: iSCSIProtocolEndpoint creation is not supported>

}

9.7.7 Add a Network Portal to a Target Port.

// DESCRIPTION

// This recipe describes how to add a Network Portal to a Target Port.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the ComputerSystem representing the Network Entity of

// interest has been previously identified and defined in the $NetworkEntity->

// variable.

// 2. The object name for the instance of iSCSIProtocolEndpoint representing a

// Port has been previously identified and defined in the $iSCSIPort-> variable.

// 3. The object name for the instance of TCPProtocolEndpoint representing a

// Target Network Portal has been previously identified and defined in the

// $Portal-> variable.

// MAIN

// Step 1. Find a CIM_iSCSIConfigurationService associated to ComputerSystem by //
HostedService.

$iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

“CIM_HostedService”,

“CIM_iSCSIConfigurationService”,

“Antecedent”,

“Dependent”)

// Step 2. Examine the associated CIM_iSCSIConfigurationCapabilities to

// determine if Target Port manipulation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSIProtocolEndpointCreationSupported”})
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 57

iSCSI Target Ports Subprofile NO_ANSI_ID
// Step 3. Given an instance of CIM_iSCSIProtocolEndpoint representing a

// Port (iSCSIPort->), and an instance of TCPProtocolEndpoint representing a

// Target Network Portal($Portal->), invoke BindiSCSIProtocolEndpoint().

if ($ConfigurationCapabilities[0].iSCSIProtocolEndpointCreationSupported == true)
{

 %InArguments[“iSCSIPort”] = $iSCSIPort->

 %InArguments[“NetworkPortal”] = $Portal->

 #ReturnValue = invokeMethod($iSCSIConfigurationService->[0],

 “BindiSCSIProtocolEndpoint”,

 %InArguments[],

 %OutArguments[])

 if (#ReturnValue == 0) {

<EXIT: The ProtocolEndpoint was modified>

 } else {

<EXIT: The method returned an error; the ProtocolEndpoint was not modified>

 }

} else {

 <EXIT: iSCSIProtocolEndpoint modification is not supported>

}

9.7.8 Determine the health of Nodes in a target system.

//

// DESCRIPTION

// Recipe ISCSI_TRGT08:

// Determine the health of Nodes in a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the SCSIProtocolController representing

// the iSCSI Node of interest has been previously identified and

// defined in the $iSCSINode-> variable

//

// Step 1.

// Given an instance of CIM_SCSIProtocolController($iSCSINode->) ,

// get the instances of CIM_iSCSISessionFailures and

// CIM_iSCSILoginStatistics associated by ElementStatisticalData.

//

$SessionFailures[] = Associators(

$iSCSINode->,

“CIM_ElementStatisticalData”,

“CIM_iSCSISessionFailures”,

“ManagedElement”,

“Stats”);
58

NO_ANSI_ID iSCSI Target Ports Subprofile
$LoginStatistics[] = Associators(

$iSCSINode->,

“CIM_ElementStatisticalData”,

“CIM_iSCSILoginStatistics”,

“ManagedElement”,

“Stats”);

<EXIT: The statistics are in $SessionFailures[0] and $LoginStatistics[0] >

9.7.9 Determine the health of a Session on a target system.

//

// DESCRIPTION

// Recipe ISCSI_TRGT09:

// Determine the health of a Session on a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1.The object name for the iSCSISession of interest has been

// previously identified and defined in the $iSCSISession-> variable.

// Step 1.

// Given an instance of CIM_iSCSISession,

// get the instance of CIM_iSCSISessionStatistics

// associated by ElementStatisticalData.

//

$SessionStatistics[] = Associators(

$iSCSISession->,

“CIM_ElementStatisticalData”,

“CIM_iSCSISessionStatistics”,

“ManagedElement”,

“Stats”);

<EXIT: The statistics are in $SessionStatistics[0]>

9.7.10 Configure the default settings for Sessions created in a target computer system.

//

// DESCRIPTION

// Recipe ISCSI_TRGT10:

// Configure the default settings for Sessions created in a target

// computer system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the SCSIProtocolController representing the

// iSCSI Node of interest has been previously identified and defined

// in the $iSCSINode-> variable.

//
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 59

iSCSI Target Ports Subprofile NO_ANSI_ID
// Step 1.

// Find and modify an instance of CIM_iSCSISessionSettings associated

// to a ComputerSystem, CIM_SCSIProtocolController, or

// CIM_iSCSIProtocolEndpoint.

//

$SessionSettings[] = Associators(

$iSCSIProtocolEndpoint->,

“CIM_ElementSettingData”,

“CIM_iSCSISessionSettings”,

“ManagedElement”,

“SettingData”);

#MaxConnectionsPerSession = 4;

$SessionSettings[0].MaxConnectionsPerSession = #MaxConnectionsPerSession;

$ModifyInstance(

$SessionSettings[0],

false,

{ “MaxConnectionsPerSession” });

<EXIT: Success>

9.7.11 Configure default settings for Connections on Network Portals used by an iSCSIProtocolEndpoint.

//

// DESCRIPTION

// Recipe ISCSI_TRGT11:

// Configure the default settings for iSCSI Connections created on

// Network Portals used by an iSCSIProtocolEndpoint.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the iSCSI Session of interest has been

// previously identified and defined in the $iSCSISession->

// variable

//

// Step 1.

// Find and modify an instance of CIM_iSCSIConnectionSettings

// associated to a iSCSIProtocolEndpoint($iSCSIProtocolEndpoint->).

//

$ConnectionSettings[] = Associators(

$iSCSIProtocolEndpoint->,

“CIM_ElementSettingData”,

“CIM_iSCSIConnectionSettings”,

“ManagedElement”,

“SettingData”);
60

NO_ANSI_ID iSCSI Target Ports Subprofile
#MaxRecvDataSegLength = 4096;

$ConnectionSettings[0].MaxReceiveDataSegmentLength = #MaxRecvDataSegLength;

$ModifyInstance(

$ConnectionSettings[0],

false,

{ “MaxReceiveDataSegmentLength” });‘

<EXIT: Success>

9.7.12 Get the statistics for a Session on a target system

The statistics are properties in the same class as the health information; see 9.7.9.

9.7.13 Configure Enable/disable header and data digest

See 9.7.11.

9.8 CIM Elements
Table 35 describes the CIM elements for iSCSI Target Ports.

Table 35 - CIM Elements for iSCSI Target Ports

Element Name Requirement Description

9.8.1 CIM_BindsTo (TCPProtocolEndpoint to
IPProtocolEndpoint)

Mandatory

9.8.2 CIM_BindsTo (iSCSIProtocolEndpoint to
TCPProtocolEndpoint)

Mandatory

9.8.3 CIM_ConcreteDependency Mandatory

9.8.4 CIM_DeviceSAPImplementation
(EthernetPort to IPProtocolEndpoint)

Optional

9.8.5 CIM_DeviceSAPImplementation
(EthernetPort to iSCSIProtocolEndpoint)

Optional

9.8.6 CIM_ElementCapabilities
(iSCSIConfigurationCapabilities to System)

Mandatory

9.8.7 CIM_ElementCapabilities
(iSCSIConfigurationCapabilities to
iSCSIConfigurationService)

Conditional Conditional requirement: Active configuration
is supported.

9.8.8 CIM_ElementSettingData
(iSCSIConnectionSettings to
TCPProtocolEndpoint)

Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 61

iSCSI Target Ports Subprofile NO_ANSI_ID
9.8.9 CIM_ElementSettingData
(iSCSIConnectionSettings to
iSCSIProtocolEndpoint)

Mandatory

9.8.10 CIM_ElementSettingData
(iSCSISessionSettings to
SCSIProtocolController)

Mandatory

9.8.11 CIM_ElementSettingData
(iSCSISessionSettings to System)

Mandatory

9.8.12 CIM_ElementSettingData
(iSCSISessionSettings to
iSCSIProtocolEndpoint)

Mandatory

9.8.13 CIM_ElementStatisticalData
(iSCSILoginStatistics to
SCSIProtocolController)

Mandatory

9.8.14 CIM_ElementStatisticalData
(iSCSISessionFailures to
SCSIProtocolController)

Mandatory

9.8.15 CIM_ElementStatisticalData
(iSCSISessionStatistics to iSCSISession)

Mandatory

9.8.16 CIM_EndpointOfNetworkPipe
(iSCSIConnection to TCPProtocolEndpoint)

Mandatory

9.8.17 CIM_EndpointOfNetworkPipe
(iSCSISession to iSCSIProtocolEndpoint)

Mandatory

9.8.18 CIM_EthernetPort Optional

9.8.19 CIM_HostedAccessPoint (System to
IPProtocolEndpoint)

Mandatory

9.8.20 CIM_HostedAccessPoint (System to
TCPProtocolEndpoint)

Mandatory

9.8.21 CIM_HostedAccessPoint (System to
iSCSIProtocolEndpoint)

Mandatory

9.8.22 CIM_HostedCollection Mandatory

9.8.23 CIM_HostedService Optional

9.8.24 CIM_IPProtocolEndpoint Mandatory

9.8.25 CIM_MemberOfCollection Optional

9.8.26 CIM_NetworkPipeComposition Optional

9.8.27 CIM_SAPAvailableForElement Mandatory

9.8.28 CIM_SCSIProtocolController Mandatory

Table 35 - CIM Elements for iSCSI Target Ports

Element Name Requirement Description
62

NO_ANSI_ID iSCSI Target Ports Subprofile
9.8.29 CIM_SystemDevice (System to
EthernetPort)

Mandatory This association links all EthernetPorts to the
scoping system.

9.8.30 CIM_SystemDevice (System to
SCSIProtocolController)

Mandatory This association links
SCSIProtocolControllers to the scoping
system.

9.8.31 CIM_SystemSpecificCollection Optional

9.8.32 CIM_TCPProtocolEndpoint Mandatory

9.8.33 CIM_iSCSICapabilities Mandatory

9.8.34 CIM_iSCSIConfigurationCapabilities Conditional Conditional requirement: Active configuration
is supported.

9.8.35 CIM_iSCSIConfigurationService Optional

9.8.36 CIM_iSCSIConnection Optional

9.8.37 CIM_iSCSIConnectionSettings Optional

9.8.38 CIM_iSCSILoginStatistics Optional

9.8.39 CIM_iSCSIProtocolEndpoint Mandatory

9.8.40 CIM_iSCSISession Mandatory

9.8.41 CIM_iSCSISessionFailures Optional

9.8.42 CIM_iSCSISessionSettings Mandatory

9.8.43 CIM_iSCSISessionStatistics Optional

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_EthernetPort

Optional Create EthernetPort

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_EthernetPort AND
SourceInstance.CIM_EthernetPort::Operation
alStatus <>
PreviousInstance.CIM_EthernetPort::Operatio
nalStatus

Optional CQL -Modify EthernetPort

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_EthernetPort

Optional Delete EthernetPort

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_iSCSIProtocolEndpoint

Mandatory Create iSCSIProtocolEndpoint

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_iSCSIProtocolEndpoint

Mandatory Delete SCSIProtocolEndpoint

Table 35 - CIM Elements for iSCSI Target Ports

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 63

iSCSI Target Ports Subprofile NO_ANSI_ID
9.8.1 CIM_BindsTo (TCPProtocolEndpoint to IPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_SCSIProtocolController

Mandatory Create SCSIProtocolController

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_SCSIProtocolController

Mandatory Delete iSCSIProtocolController

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_iSCSISession

Optional Create iSCSISession

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_iSCSISession AND
SourceInstance.CIM_iSCSISession::CurrentC
onnections <>
PreviousInstance.CIM_iSCSISession::Current
Connections

Optional CQL -Modify iSCSISession

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_iSCSISession AND
SourceInstance.CurrentConnections <>
PreviousInstance.CurrentConnections

Optional Deprecated WQL -Modify iSCSISession

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_iSCSISession

Optional Delete iSCSISession

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_iSCSIConnection

Optional Create iSCSIConnection

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_iSCSIConnection

Optional Delete iSCSIConnection

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_iSCSISessionSettings

Mandatory Modify iSCSISessionSettings

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_iSCSIConnectionSettings

Optional Modify iSCSIConnectionSettings

Table 35 - CIM Elements for iSCSI Target Ports

Element Name Requirement Description
64

NO_ANSI_ID iSCSI Target Ports Subprofile
Table 36 describes class CIM_BindsTo (TCPProtocolEndpoint to IPProtocolEndpoint).

9.8.2 CIM_BindsTo (iSCSIProtocolEndpoint to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 37 describes class CIM_BindsTo (iSCSIProtocolEndpoint to TCPProtocolEndpoint).

9.8.3 CIM_ConcreteDependency

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 38 describes class CIM_ConcreteDependency.

9.8.4 CIM_DeviceSAPImplementation (EthernetPort to IPProtocolEndpoint)

Created By: Static

Table 36 - SMI Referenced Properties/Methods for CIM_BindsTo (TCPProtocolEndpoint to IPPro-
tocolEndpoint)

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 37 - SMI Referenced Properties/Methods for CIM_BindsTo (iSCSIProtocolEndpoint to TCP-
ProtocolEndpoint)

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 38 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 65

iSCSI Target Ports Subprofile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 39 describes class CIM_DeviceSAPImplementation (EthernetPort to IPProtocolEndpoint).

9.8.5 CIM_DeviceSAPImplementation (EthernetPort to iSCSIProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 40 describes class CIM_DeviceSAPImplementation (EthernetPort to iSCSIProtocolEndpoint).

9.8.6 CIM_ElementCapabilities (iSCSIConfigurationCapabilities to System)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 41 describes class CIM_ElementCapabilities (iSCSIConfigurationCapabilities to System).

Table 39 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (EthernetPort
to IPProtocolEndpoint)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 40 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (EthernetPort
to iSCSIProtocolEndpoint)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 41 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (iSCSIConfiguration-
Capabilities to System)

Properties Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory
66

NO_ANSI_ID iSCSI Target Ports Subprofile
9.8.7 CIM_ElementCapabilities (iSCSIConfigurationCapabilities to iSCSIConfigurationService)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Active configuration is supported.

Table 42 describes class CIM_ElementCapabilities (iSCSIConfigurationCapabilities to iSCSIConfigurationService).

9.8.8 CIM_ElementSettingData (iSCSIConnectionSettings to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 43 describes class CIM_ElementSettingData (iSCSIConnectionSettings to TCPProtocolEndpoint).

9.8.9 CIM_ElementSettingData (iSCSIConnectionSettings to iSCSIProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 42 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (iSCSIConfiguration-
Capabilities to iSCSIConfigurationService)

Properties Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 43 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSIConnection-
Settings to TCPProtocolEndpoint)

Properties Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 67

iSCSI Target Ports Subprofile NO_ANSI_ID
Table 44 describes class CIM_ElementSettingData (iSCSIConnectionSettings to iSCSIProtocolEndpoint).

9.8.10 CIM_ElementSettingData (iSCSISessionSettings to SCSIProtocolController)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 45 describes class CIM_ElementSettingData (iSCSISessionSettings to SCSIProtocolController).

9.8.11 CIM_ElementSettingData (iSCSISessionSettings to System)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 46 describes class CIM_ElementSettingData (iSCSISessionSettings to System).

9.8.12 CIM_ElementSettingData (iSCSISessionSettings to iSCSIProtocolEndpoint)

Table 44 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSIConnection-
Settings to iSCSIProtocolEndpoint)

Properties Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory

Table 45 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSet-
tings to SCSIProtocolController)

Properties Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory

Table 46 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSet-
tings to System)

Properties Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory
68

NO_ANSI_ID iSCSI Target Ports Subprofile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 47 describes class CIM_ElementSettingData (iSCSISessionSettings to iSCSIProtocolEndpoint).

9.8.13 CIM_ElementStatisticalData (iSCSILoginStatistics to SCSIProtocolController)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 48 describes class CIM_ElementStatisticalData (iSCSILoginStatistics to SCSIProtocolController).

9.8.14 CIM_ElementStatisticalData (iSCSISessionFailures to SCSIProtocolController)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 47 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSet-
tings to iSCSIProtocolEndpoint)

Properties Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory

Table 48 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSILoginStatis-
tics to SCSIProtocolController)

Properties Requirement Description & Notes

Stats Mandatory

ManagedElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 69

iSCSI Target Ports Subprofile NO_ANSI_ID
Table 49 describes class CIM_ElementStatisticalData (iSCSISessionFailures to SCSIProtocolController).

9.8.15 CIM_ElementStatisticalData (iSCSISessionStatistics to iSCSISession)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 50 describes class CIM_ElementStatisticalData (iSCSISessionStatistics to iSCSISession).

9.8.16 CIM_EndpointOfNetworkPipe (iSCSIConnection to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 51 describes class CIM_EndpointOfNetworkPipe (iSCSIConnection to TCPProtocolEndpoint).

9.8.17 CIM_EndpointOfNetworkPipe (iSCSISession to iSCSIProtocolEndpoint)

Table 49 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSISessionFail-
ures to SCSIProtocolController)

Properties Requirement Description & Notes

Stats Mandatory

ManagedElement Mandatory

Table 50 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSISessionSta-
tistics to iSCSISession)

Properties Requirement Description & Notes

Stats Mandatory

ManagedElement Mandatory

Table 51 - SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe (iSCSIConnec-
tion to TCPProtocolEndpoint)

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
70

NO_ANSI_ID iSCSI Target Ports Subprofile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 52 describes class CIM_EndpointOfNetworkPipe (iSCSISession to iSCSIProtocolEndpoint).

9.8.18 CIM_EthernetPort

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 53 describes class CIM_EthernetPort.

9.8.19 CIM_HostedAccessPoint (System to IPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 52 - SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe (iSCSISession to
iSCSIProtocolEndpoint)

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 53 - SMI Referenced Properties/Methods for CIM_EthernetPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

PermanentAddress Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 71

iSCSI Target Ports Subprofile NO_ANSI_ID
Table 54 describes class CIM_HostedAccessPoint (System to IPProtocolEndpoint).

9.8.20 CIM_HostedAccessPoint (System to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 55 describes class CIM_HostedAccessPoint (System to TCPProtocolEndpoint).

9.8.21 CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 56 describes class CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint).

9.8.22 CIM_HostedCollection

Table 54 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to IPProto-
colEndpoint)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 55 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to TCPPro-
tocolEndpoint)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 56 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to iSCSIPro-
tocolEndpoint)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
72

NO_ANSI_ID iSCSI Target Ports Subprofile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 57 describes class CIM_HostedCollection.

9.8.23 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 58 describes class CIM_HostedService.

9.8.24 CIM_IPProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 59 describes class CIM_IPProtocolEndpoint.

Table 57 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 58 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 59 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 73

iSCSI Target Ports Subprofile NO_ANSI_ID
9.8.25 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 60 describes class CIM_MemberOfCollection.

9.8.26 CIM_NetworkPipeComposition

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 61 describes class CIM_NetworkPipeComposition.

9.8.27 CIM_SAPAvailableForElement

Created By: Static
Modified By: Static

Name Mandatory

IPv4Address Optional

IPv6Address Optional

ProtocolIFType Mandatory

Table 60 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 61 - SMI Referenced Properties/Methods for CIM_NetworkPipeComposition

Properties Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 59 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Requirement Description & Notes
74

NO_ANSI_ID iSCSI Target Ports Subprofile
Deleted By: Static
Requirement: Mandatory

Table 62 describes class CIM_SAPAvailableForElement.

9.8.28 CIM_SCSIProtocolController

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 63 describes class CIM_SCSIProtocolController.

9.8.29 CIM_SystemDevice (System to EthernetPort)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 62 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Requirement Description & Notes

ManagedElement Mandatory

AvailableSAP Mandatory

Table 63 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ElementName Mandatory iSCSI Alias

Name Mandatory

NameFormat Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 75

iSCSI Target Ports Subprofile NO_ANSI_ID
Table 64 describes class CIM_SystemDevice (System to EthernetPort).

9.8.30 CIM_SystemDevice (System to SCSIProtocolController)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 65 describes class CIM_SystemDevice (System to SCSIProtocolController).

9.8.31 CIM_SystemSpecificCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 66 describes class CIM_SystemSpecificCollection.

9.8.32 CIM_TCPProtocolEndpoint

Created By: Static
Modified By: Static

Table 64 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to EthernetPort)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 65 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocol-
Controller)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 66 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory
76

NO_ANSI_ID iSCSI Target Ports Subprofile
Deleted By: Static
Requirement: Mandatory

Table 67 describes class CIM_TCPProtocolEndpoint.

9.8.33 CIM_iSCSICapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 68 describes class CIM_iSCSICapabilities.

9.8.34 CIM_iSCSIConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Active configuration is supported.

Table 67 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

PortNumber Mandatory

ProtocolIFType Mandatory

Table 68 - SMI Referenced Properties/Methods for CIM_iSCSICapabilities

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

MinimumSpecificationVersion
Supported

Mandatory

MaximumSpecificationVersio
nSupported

Mandatory

AuthenticationMethodsSuppo
rted

Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 77

iSCSI Target Ports Subprofile NO_ANSI_ID
Table 69 describes class CIM_iSCSIConfigurationCapabilities.

9.8.35 CIM_iSCSIConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 70 describes class CIM_iSCSIConfigurationService.

9.8.36 CIM_iSCSIConnection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 69 - SMI Referenced Properties/Methods for CIM_iSCSIConfigurationCapabilities

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

iSCSINodeCreationSupporte
d

Mandatory

iSCSIProtocolEndpointCreati
onSupported

Mandatory

IdentifierSelectionSupported Mandatory

Table 70 - SMI Referenced Properties/Methods for CIM_iSCSIConfigurationService

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
78

NO_ANSI_ID iSCSI Target Ports Subprofile
Table 71 describes class CIM_iSCSIConnection.

9.8.37 CIM_iSCSIConnectionSettings

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 72 describes class CIM_iSCSIConnectionSettings.

Table 71 - SMI Referenced Properties/Methods for CIM_iSCSIConnection

Properties Requirement Description & Notes

InstanceID Mandatory

ConnectionID Mandatory

MaxReceiveDataSegmentLe
ngth

Mandatory

MaxTransmitDataSegmentLe
ngth

Mandatory

HeaderDigestMethod Mandatory

OtherHeaderDigestMethod Optional

DataDigestMethod Mandatory

OtherDataDigestMethod Optional

ReceivingMarkers Mandatory

SendingMarkers Mandatory

ActiveiSCSIVersion Mandatory

AuthenticationMethodUsed Mandatory

MutualAuthentication Mandatory

Table 72 - SMI Referenced Properties/Methods for CIM_iSCSIConnectionSettings

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

MaxReceiveDataSegmentLe
ngth

Mandatory

PrimaryHeaderDigestMethod Mandatory

OtherPrimaryHeaderDigestM
ethod

Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 79

iSCSI Target Ports Subprofile NO_ANSI_ID
9.8.38 CIM_iSCSILoginStatistics

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 73 describes class CIM_iSCSILoginStatistics.

PrimaryDataDigestMethod Mandatory

OtherPrimaryDataDigestMeth
od

Optional

SecondaryHeaderDigestMeth
od

Mandatory

OtherSecondaryHeaderDiges
tMethod

Optional

SecondaryDataDigestMethod Mandatory

OtherSecondaryDataDigestM
ethod

Optional

RequestingMarkersOnReceiv
e

Mandatory

PrimaryAuthenticationMethod Mandatory

SecondaryAuthenticationMet
hod

Mandatory

Table 73 - SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

LoginFailures Optional

LastLoginFailureTime Optional

LastLoginFailureType Optional

OtherLastLoginFailureType Optional

LastLoginFailureRemoteNod
eName

Optional

LastLoginFailureRemoteAddr
essType

Optional

Table 72 - SMI Referenced Properties/Methods for CIM_iSCSIConnectionSettings

Properties Requirement Description & Notes
80

NO_ANSI_ID iSCSI Target Ports Subprofile
9.8.39 CIM_iSCSIProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 74 describes class CIM_iSCSIProtocolEndpoint.

9.8.40 CIM_iSCSISession

LastLoginFailureRemoteAddr
ess

Optional

SuccessfulLogins Optional

NegotiationLoginFailures Optional

AuthenticationLoginFailures Optional

AuthorizationLoginFailures Optional

LoginRedirects Optional

OtherLoginFailures Optional

NormalLogouts Optional

OtherLogouts Optional

Table 74 - SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ConnectionType Mandatory iSCSI

Identifier Mandatory ISID or TPGT

ProtocolIFType Mandatory Other

OtherTypeDescription Mandatory

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

Table 73 - SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 81

iSCSI Target Ports Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 75 describes class CIM_iSCSISession.

9.8.41 CIM_iSCSISessionFailures

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 75 - SMI Referenced Properties/Methods for CIM_iSCSISession

Properties Requirement Description & Notes

InstanceID Mandatory

Directionality Mandatory

SessionType Mandatory

TSIH Mandatory

EndPointName Mandatory

CurrentConnections Mandatory

InitialR2T Mandatory

ImmediateData Mandatory

MaxOutstandingR2T Mandatory

MaxUnsolicitedFirstDataBurst
Length

Mandatory

MaxDataBurstLength Mandatory

DataSequenceInOrder Mandatory

DataPDUInOrder Mandatory

ErrorRecoveryLevel Mandatory

MaxConnectionsPerSession Mandatory

DefaultTimeToWait Mandatory

DefaultTimeToRetain Mandatory
82

NO_ANSI_ID iSCSI Target Ports Subprofile
Table 76 describes class CIM_iSCSISessionFailures.

9.8.42 CIM_iSCSISessionSettings

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 77 describes class CIM_iSCSISessionSettings.

Table 76 - SMI Referenced Properties/Methods for CIM_iSCSISessionFailures

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SessionFailures Optional

LastSessionFailureType Optional

OtherLastSessionFailureType Optional

LastSessionFailureRemoteN
odeName

Optional

SessionDigestFailures Optional

SessionConnectionTimeoutF
ailures

Optional

SessionFormatErrors Optional

Table 77 - SMI Referenced Properties/Methods for CIM_iSCSISessionSettings

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

MaxConnectionsPerSession Mandatory

InitialR2TPreference Mandatory

ImmediateDataPreference Mandatory

MaxOutstandingR2T Mandatory

MaxUnsolicitedFirstDataBurst
Length

Mandatory

MaxDataBurstLength Mandatory

DataSequenceInOrderPrefer
ence

Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 83

iSCSI Target Ports Subprofile NO_ANSI_ID
9.8.43 CIM_iSCSISessionStatistics

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 78 describes class CIM_iSCSISessionStatistics.

STABLE

DataPDUInOrderPreference Mandatory

DefaultTimeToWaitPreferenc
e

Mandatory

DefaultTimeToRetainPreferen
ce

Mandatory

ErrorRecoveryLevelPreferenc
e

Mandatory

Table 78 - SMI Referenced Properties/Methods for CIM_iSCSISessionStatistics

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

CommandPDUsTransferred Optional

ResponsePDUsTransferred Optional

BytesTransmitted Optional

BytesReceived Optional

DigestErrors Optional

ConnectionTimeoutErrors Optional

Table 77 - SMI Referenced Properties/Methods for CIM_iSCSISessionSettings

Properties Requirement Description & Notes
84

NO_ANSI_ID Serial Attached SCSI (SAS) Target Port Subprofile
EXPERIMENTAL

Clause 10: Serial Attached SCSI (SAS) Target Port Subprofile

10.1 Synopsis
Profile name: SAS Target Ports

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.11.0

Central Class: CIM_SASPort

Scoping Class: a CIM_System in a separate autonomous profile

10.2 Description
Figure 11 illustrates the Serial Attached SCSI (SAS) Target Port. Serial Attached SCSI is a lower cost network
interface for SCSI communication.

SCSIProtocolEndpoint.ConnectionType shall be set to “SAS”. SASPort represents the port and is connected to
SCSIProtocolEndpoint by DevImplemetation. The SASPort contains information about the speed for the bus.

Figure 11 - Serial Attached SCSI (SAS) Target Port Instance Diagram

SAS Target Ports profile

System
Device

Storage System:
ComputerSystem

SAPAvailableForEndpoint

SystemDevice

SystemDevice

DeviceSAPImplementation

ConnectType=SAS
Name

SCSIProtocolEndpoint

SASPort

(in target device profile)

LogicalDevice

1 *

*

Name

SCSIDevice:
SCSIProtocolController

ProtocolController
ForUnit

* 1

1

HostedAccessPoint
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 85

Serial Attached SCSI (SAS) Target Port Subprofile NO_ANSI_ID
10.2.1 Health and Fault Management

Table 79 describes SASPort OperationalStatus.

10.3 Methods

10.3.1 Extrinsic Methods of this Subprofile

10.3.2 Intrinsic Methods of this Subprofile
The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

10.4 Client Considerations and Recipes
None

10.5 CIM Elements
Table 80 describes the CIM elements for SAS Target Ports.

Table 79 - SASPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 80 - CIM Elements for SAS Target Ports

Element Name Requirement Description

10.5.1 CIM_ATAProtocolEndpoint Optional Specialization of ProtocolEndpoint for ATA.

10.5.2 CIM_DeviceSAPImplementation Mandatory Associates front-end LogicalPort and target
ProtocolEndpoint.
86

NO_ANSI_ID Serial Attached SCSI (SAS) Target Port Subprofile
10.5.1 CIM_ATAProtocolEndpoint

Specialization of ProtocolEndpoint for ATA.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 81 describes class CIM_ATAProtocolEndpoint.

10.5.2 CIM_DeviceSAPImplementation

Associates front-end LogicalPort and target ProtocolEndpoint.

Created By: Static

10.5.3 CIM_HostedAccessPoint (ATA) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

10.5.4 CIM_HostedAccessPoint (SCSI) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

10.5.5 CIM_SASPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

10.5.6 CIM_SCSIProtocolEndpoint Mandatory Represents a protocol (command set)
associated to a port.

10.5.7 CIM_SCSIProtocolEndpoint Optional Specialization of ProtocolEndpoint for SCSI.

10.5.8 CIM_SystemDevice Mandatory Associates ComputerSystem to LogicalPort.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SASPort

Mandatory Create SASPort

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_SASPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Modify SASPort

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SASPort

Mandatory Delete SASPort

Table 81 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target).

OtherTypeDescription Mandatory Shall be the string 'ATA'.

ConnectionType Mandatory Shall be 2|3 (PATA or SATA).

Table 80 - CIM Elements for SAS Target Ports

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 87

Serial Attached SCSI (SAS) Target Port Subprofile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 82 describes class CIM_DeviceSAPImplementation.

10.5.3 CIM_HostedAccessPoint (ATA)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 83 describes class CIM_HostedAccessPoint (ATA).

10.5.4 CIM_HostedAccessPoint (SCSI)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 84 describes class CIM_HostedAccessPoint (SCSI).

Table 82 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : limit to targets

Antecedent Mandatory Validation Property : limit to targets

Table 83 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA)

Properties Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem

Dependent Mandatory Reference to ATAProtocolEndpointValidation Property : limit to
targets

Table 84 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Reference to SCSIProtocolEndpointValidation Property : limit
to targets
88

NO_ANSI_ID Serial Attached SCSI (SAS) Target Port Subprofile
10.5.5 CIM_SASPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 85 describes class CIM_SASPort.

10.5.6 CIM_SCSIProtocolEndpoint

Represents a protocol (command set) associated to a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 86 describes class CIM_SCSIProtocolEndpoint.

Table 85 - SMI Referenced Properties/Methods for CIM_SASPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the port
is unrestricted.

PortType Mandatory Shall be 94 (SAS).

PermanentAddress Mandatory SAS Address. Shall be 16 un-separated upper case hex digits.

Table 86 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 89

Serial Attached SCSI (SAS) Target Port Subprofile NO_ANSI_ID
10.5.7 CIM_SCSIProtocolEndpoint

Specialization of ProtocolEndpoint for SCSI.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 87 describes class CIM_SCSIProtocolEndpoint.

10.5.8 CIM_SystemDevice

Associates ComputerSystem to LogicalPort.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 88 describes class CIM_SystemDevice.

EXPERIMENTAL

OtherTypeDescription Mandatory Shall be the string 'SCSI', 'ATA', 'SB', or 'iSCSI'. Initiator port
specialized profiles specify the appropriate subset.

ConnectionType Mandatory Shall be 8 (SAS).

Table 87 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).

Table 88 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 86 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes
90

NO_ANSI_ID Serial ATA (SATA) Target Ports Profile
EXPERIMENTAL

Clause 11: Serial ATA (SATA) Target Ports Profile

11.1 Synopsis
Profile name: SATA Target Ports

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.11.0

Central Class: CIM_SASPortt

Scoping Class: a CIM_System in a separate autonomous profile

Model Serial ATA (SATA) target ports.

11.2 Description
Figure 12 illustrates the Serial ATA Target Port Profile. Serial ATA has a simple bus structure. The SATAPort class
will include attributes that specifies bus speed and other hardware options.

This model will not be used with LMM common subprofile. All nodes on the bus will have access to each other.

Figure 12 - SATA Target Port Instance Diagram

SATA Connect

System
Device

NetworkEntity:
ComputerSystem

SAPAvailableForElement

SystemDevice
SystemDevice

DeviceSAPImplementation

ConnectType=”Other”
Name

ProtocolEndpoint

PortType=”SATA”

ATAPort LogicalDevice

1 *

*

Name

ProtocolController

ProtocolController
ForUnit

* 1

1

HostedAccessPoint
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 91

Serial ATA (SATA) Target Ports Profile NO_ANSI_ID
ProtocolEndpoint.ConnectionType shall be set to “other”. The ProtocolEndPoint class is associated to the ATAPort
class with DevImplementation. The ATAPort class contains all the bus operational settings.

11.2.1 Health and Fault Management

Table 89 describes ATAPort OperationalStatus.

11.3 Methods of this Subprofile
None

11.4 Client Considerations and Recipes
None

11.5 CIM Elements
Table 90 describes the CIM elements for SATA Target Ports.

Table 89 - ATAPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 90 - CIM Elements for SATA Target Ports

Element Name Requirement Description

11.5.1 CIM_ATAPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

11.5.2 CIM_ATAProtocolEndpoint Mandatory Represents a protocol (command set)
associated to a port.

11.5.3 CIM_ATAProtocolEndpoint Optional Specialization of ProtocolEndpoint for ATA.

11.5.4 CIM_DeviceSAPImplementation Mandatory Associates front-end LogicalPort and target
ProtocolEndpoint.

11.5.5 CIM_HostedAccessPoint (ATA) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

11.5.6 CIM_HostedAccessPoint (SCSI) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

11.5.7 CIM_SCSIProtocolEndpoint Optional Specialization of ProtocolEndpoint for SCSI.
92

NO_ANSI_ID Serial ATA (SATA) Target Ports Profile
11.5.1 CIM_ATAPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 91 describes class CIM_ATAPort.

11.5.2 CIM_ATAProtocolEndpoint

Represents a protocol (command set) associated to a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

11.5.8 CIM_SystemDevice Mandatory Associates ComputerSystem to LogicalPort.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ATAPort

Mandatory Create ATAPort

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_ATAPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Modify ATAPort

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ATAPort

Mandatory Delete ATAPort

Table 91 - SMI Referenced Properties/Methods for CIM_ATAPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the port
is unrestricted.

PortType Mandatory Shall be 92|93 (SATA or SATA2) .

Table 90 - CIM Elements for SATA Target Ports

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 93

Serial ATA (SATA) Target Ports Profile NO_ANSI_ID
Table 92 describes class CIM_ATAProtocolEndpoint.

11.5.3 CIM_ATAProtocolEndpoint

Specialization of ProtocolEndpoint for ATA.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 93 describes class CIM_ATAProtocolEndpoint.

11.5.4 CIM_DeviceSAPImplementation

Associates front-end LogicalPort and target ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 92 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI', 'ATA', 'SB', or 'iSCSI'. Initiator port
specialized profiles specify the appropriate subset.

ConnectionType Mandatory Shall be 3 (SATA).

Table 93 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target).

OtherTypeDescription Mandatory Shall be the string 'ATA'.

ConnectionType Mandatory Shall be 2|3 (PATA or SATA).
94

NO_ANSI_ID Serial ATA (SATA) Target Ports Profile
Table 94 describes class CIM_DeviceSAPImplementation.

11.5.5 CIM_HostedAccessPoint (ATA)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 95 describes class CIM_HostedAccessPoint (ATA).

11.5.6 CIM_HostedAccessPoint (SCSI)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 96 describes class CIM_HostedAccessPoint (SCSI).

11.5.7 CIM_SCSIProtocolEndpoint

Specialization of ProtocolEndpoint for SCSI.

Created By: Static

Table 94 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : limit to targets

Antecedent Mandatory Validation Property : limit to targets

Table 95 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA)

Properties Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem

Dependent Mandatory Reference to ATAProtocolEndpointValidation Property : limit to
targets

Table 96 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Reference to SCSIProtocolEndpointValidation Property : limit
to targets
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 95

Serial ATA (SATA) Target Ports Profile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 97 describes class CIM_SCSIProtocolEndpoint.

11.5.8 CIM_SystemDevice

Associates ComputerSystem to LogicalPort.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 98 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 97 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).

Table 98 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
96

NO_ANSI_ID SB Target Port Profile
EXPERIMENTAL

Clause 12: SB Target Port Profile

12.1 Synopsis
Profile Name: SB Target Port

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13.0

Central Class: CIM_FCPort

Scoping Class: CIM_System

12.2 Description
The SB Target Port profile models the SB (Single Byte) Fibre Channel specific aspects of a target storage system.
The Single Byte protocols are FC4 protocols that support mainframe IO (as opposed to SCSI, which supports IO
from non-mainframe systems such as Unix or Windows systems).

The SB Target Port profile provides a way for storage profiles to model target ports that are dedicated to serving SB
hosts attachment. With this support a client will be able to distinguish FC ports that are provided for SCSI access
from FC Ports that are provided for mainframe attachment. This is an important distinction for management, since
fabric connectivity collections for SB would typically be separate for fabric connectivity collections for SCSI.
Similarly, management functions for masking and mapping are somewhat different for SB than SCSI. So, it is
important for management applications to be aware of the distinctions.

The SB Target Port profile specializes the Generic Target Port Profile.

For SB enabled Fibre Channel ports, the concrete subclass of LogicalPort is FCPort. FCPort is always associated
1-1 with a SNIA_SBProtocolEndpoint instance.

12.3 Implementation
Figure 13 illustrates the SB Target Port Profile.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 97

SB Target Port Profile NO_ANSI_ID
SB Ports are Fibre Channel Ports with the SupportedFC4Types[] and ActiveFC4Types[] arrays holding the value
“28” (for “FC-SB-2 Control Unit”). The SupportedFC4Types[] property shall contain the value “28”. The
ActiveFC4Types[] property shall contain the value “28” for FCPorts that are actively supporting SB protocols.

The FCPort shall also support an SBProtocolEndpoint with a role property of either “3” (“Target”) or “4” (“Both
initiator and target”).

For the SB Target Port Profile, the FCPort is the central class of the Profile.

12.4 Health and Fault Management Consideration
Table 99 defines the SMI-S defined meanings of the OperationalStatus property for FCPorts used in the SB Target
Port Profile.

Figure 13 - SB Target Port Instance Diagram

Table 99 - FCPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

SB Target Port
Profile

System
Device

ComputerSystem

(See Masking & Mapping)

ProtocolController

SAPAvailable
ForElement

SystemDevice

DeviceSAPImplementation

ProtocolIFType="Fibre
Channel"
Role=”3” or “4”

SNIA_SBProtocolEndpoint

ActiveFC4Types[]=”28”
SupportedFC4Types[]=”28”

FCPort

1

1 ProtocolController
ForPort

(For Backward Compatibility)

Hosted
AccessPoint
98

NO_ANSI_ID SB Target Port Profile
12.5 Cascading Considerations
None

12.6 Supported Profiles, Subprofiles, and Packages
Profile Name: SB Target Ports

Version: 1.3.0

Organization: SNIA

CIM Schema Version: 2.13

Table 100 describes the related profiles for SB Target Ports.

12.7 Methods of the Profile

12.7.1 Extrinsic Methods of the Profile

None

12.7.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

InService Port is in self test

Unknown

Table 100 - Related Profiles for SB Target Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.3.0 Mandatory

Table 99 - FCPort OperationalStatus

OperationalStatus Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 99

SB Target Port Profile NO_ANSI_ID
• EnumerateInstanceNames

12.8 Client Considerations and Recipes
None

12.9 CIM Elements
Table 101 describes the CIM elements for SB Target Ports.

Table 101 - CIM Elements for SB Target Ports

Element Name Requirement Description

12.9.1 CIM_ATAProtocolEndpoint Optional Specialization of ProtocolEndpoint for ATA.

12.9.2 CIM_DeviceSAPImplementation Mandatory Associates front-end LogicalPort and target
ProtocolEndpoint.

12.9.3 CIM_FCPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

12.9.4 CIM_HostedAccessPoint (ATA) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

12.9.5 CIM_HostedAccessPoint (SCSI) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

12.9.6 CIM_SCSIProtocolEndpoint Optional Specialization of ProtocolEndpoint for SCSI.

12.9.7 CIM_SystemDevice Mandatory Associates ComputerSystem to LogicalPort.

12.9.8 SNIA_SBProtocolEndpoint Mandatory Represents a protocol (command set)
associated to a port.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Mandatory Create FCPort

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change to FCPort
OperationalStatus

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us <>
PreviousInstance.CIM_FCPort::OperationalSt
atus

Mandatory CQL -Change to FCPort OperationalStatus

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Mandatory Delete FCPort
100

NO_ANSI_ID SB Target Port Profile
12.9.1 CIM_ATAProtocolEndpoint

Specialization of ProtocolEndpoint for ATA.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 102 describes class CIM_ATAProtocolEndpoint.

12.9.2 CIM_DeviceSAPImplementation

Associates front-end LogicalPort and target ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 103 describes class CIM_DeviceSAPImplementation.

12.9.3 CIM_FCPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 102 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target).

OtherTypeDescription Mandatory Shall be the string 'ATA'.

ConnectionType Mandatory Shall be 2|3 (PATA or SATA).

Table 103 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : limit to targets

Antecedent Mandatory Validation Property : limit to targets
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 101

SB Target Port Profile NO_ANSI_ID
Table 104 describes class CIM_FCPort.

Table 104 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the port
is unrestricted.

PortType Mandatory VALUE and DESC should be set appropriately for each
specialized target port profile.

PermanentAddress Mandatory Port WWN. Shall be 16 unseparated uppercase hex digits.

SupportedCOS Optional

ActiveCOS Optional

SupportedFC4Types Mandatory For SB Target Ports this array shall contain 28 (FC-SB-2
Control Unit).

ActiveFC4Types Mandatory For SB Target Ports this array should contain 28 (FC-SB-2
Control Unit).

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile

ElementName Optional Not Specified in this version of the Profile

InstallDate Optional Not Specified in this version of the Profile.

Name Optional Not Specified in this version of the Profile.

StatusDescriptions Optional Not Specified in this version of the Profile.

HealthState Optional Not Specified in this version of the Profile.

EnabledState Optional Not Specified in this version of the Profile.

OtherEnabledState Optional Not Specified in this version of the Profile.

RequestedState Optional Not Specified in this version of the Profile.

EnabledDefault Optional Not Specified in this version of the Profile.

TimeOfLastStateChange Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo Optional Not Specified in this version of the Profile.

IdentifyingDescriptions Optional Not Specified in this version of the Profile.

AdditionalAvailability Optional Not Specified in this version of the Profile.
102

NO_ANSI_ID SB Target Port Profile
12.9.4 CIM_HostedAccessPoint (ATA)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 105 describes class CIM_HostedAccessPoint (ATA).

12.9.5 CIM_HostedAccessPoint (SCSI)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

LocationIndicator Optional Not Specified in this version of the Profile.

Speed Optional Not Specified in this version of the Profile

MaxSpeed Optional Not Specified in this version of the Profile

RequestedSpeed Optional Not Specified in this version of the Profile

OtherPortType Optional Not Specified in this version of the Profile.

PortNumber Optional Not Specified in this version of the Profile

OtherLinkTechnology Optional Not Specified in this version of the Profile.

NetworkAddresses Optional Not Specified in this version of the Profile.

FullDuplex Optional Not Specified in this version of the Profile.

AutoSense Optional Not Specified in this version of the Profile.

SupportedMaximumTransmis
sionUnit

Optional Not Specified in this version of the Profile.

ActiveMaximumTransmission
Unit

Optional Not Specified in this version of the Profile.

Table 105 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA)

Properties Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem

Dependent Mandatory Reference to ATAProtocolEndpointValidation Property : limit to
targets

Table 104 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 103

SB Target Port Profile NO_ANSI_ID
Table 106 describes class CIM_HostedAccessPoint (SCSI).

12.9.6 CIM_SCSIProtocolEndpoint

Specialization of ProtocolEndpoint for SCSI.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 107 describes class CIM_SCSIProtocolEndpoint.

12.9.7 CIM_SystemDevice

Associates ComputerSystem to LogicalPort.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 108 describes class CIM_SystemDevice.

12.9.8 SNIA_SBProtocolEndpoint

Represents a protocol (command set) associated to a port.

Table 106 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Reference to SCSIProtocolEndpointValidation Property : limit
to targets

Table 107 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).

Table 108 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
104

NO_ANSI_ID SB Target Port Profile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 109 describes class SNIA_SBProtocolEndpoint.

EXPERIMENTAL

Table 109 - SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SB'.

ConnectionType Mandatory Shall be 2 (Fibre Channel)

Caption Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate Optional Not Specified in this version of the Profile.

StatusDescriptions Optional Not Specified in this version of the Profile.

HealthState Optional Not Specified in this version of the Profile.

EnabledDefault Optional Not Specified in this version of the Profile.

BroadcastResetSupported Optional Not Specified in this version of the Profile.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 105

SB Target Port Profile NO_ANSI_ID
106

NO_ANSI_ID Direct Attach (DA) Ports Profile
EXPERIMENTAL

Clause 13: Direct Attach (DA) Ports Profile

13.1 Description
The DAPort (Direct Attach) port models storage systems that attach directly to buses in a host system (e.g., ISA,
EISA, PCI, PCI-E, and chip interfaces on a motherboard). The DAPort can be viewed as both the initiator and
Target ports.

This port can not be used with the LUN Mapping/Masking profile. All volumes served by this port are fully
accessible by the host system.

Figure 14 illustrates the Direct Attach (DA) Ports Profile. Volumes served by this port shall be discovered and
presented by the Host Discovered Resources Profile.

The DAPort class is connected to the ProtocolEndpoint and optionally to a PhysicalPackage. The DAPort also
contains a port type attribute to identify the interconnect technology.

Figure 14 - DA Port Instance Diagram

DA Target Port Subprofile

System
Device

ComputerSystem

SAPAvailableForELement

SystemDevice

DeviceSAPImplementation

ConnectType=”Other”
Name

ProtocolEndpoint

PortType =

DAPort LogicalDevice

1 *

*

Name

ProtocolController

ProtocolController
ForUnit

* 1

1

HostedAccessPoint
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 107

Direct Attach (DA) Ports Profile NO_ANSI_ID
13.2 Health and Fault Management
Table 110 describes DAPort OperationalStatus.

13.3 Supported Profiles and Packages
None

13.4 Extrinsic Methods
None

13.5 Client Considerations and Recipes

13.6 CIM Elements
Table 111 describes the CIM elements for DA Target Ports.

Table 110 - DAPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 111 - CIM Elements for DA Target Ports

Element Name Requirement Description

13.6.1 CIM_ATAProtocolEndpoint Optional Specialization of ProtocolEndpoint for ATA.

13.6.2 CIM_DAPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

13.6.3 CIM_DeviceSAPImplementation Mandatory Associates front-end LogicalPort and target
ProtocolEndpoint.

13.6.4 CIM_HostedAccessPoint (ATA) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

13.6.5 CIM_HostedAccessPoint (SCSI) Mandatory Associates ComputerSystem to
ProtocolEndpoint.

13.6.6 CIM_ProtocolEndpoint Mandatory Represents a protocol (command set)
associated to a port.

13.6.7 CIM_SCSIProtocolEndpoint Optional Specialization of ProtocolEndpoint for SCSI.

13.6.8 CIM_SystemDevice Mandatory Associates ComputerSystem to LogicalPort.
108

NO_ANSI_ID Direct Attach (DA) Ports Profile
13.6.1 CIM_ATAProtocolEndpoint

Specialization of ProtocolEndpoint for ATA.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 112 describes class CIM_ATAProtocolEndpoint.

13.6.2 CIM_DAPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 113 describes class CIM_DAPort.

13.6.3 CIM_DeviceSAPImplementation

Associates front-end LogicalPort and target ProtocolEndpoint.

Created By: Static
Modified By: Static

Table 112 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target).

OtherTypeDescription Mandatory Shall be the string 'ATA'.

ConnectionType Mandatory Shall be 2|3 (PATA or SATA).

Table 113 - SMI Referenced Properties/Methods for CIM_DAPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the port
is unrestricted.

PortType Mandatory Set to the type of port this DAPort emulates.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 109

Direct Attach (DA) Ports Profile NO_ANSI_ID
Deleted By: Static
Requirement: Mandatory

Table 114 describes class CIM_DeviceSAPImplementation.

13.6.4 CIM_HostedAccessPoint (ATA)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 115 describes class CIM_HostedAccessPoint (ATA).

13.6.5 CIM_HostedAccessPoint (SCSI)

Associates ComputerSystem to ProtocolEndpoint. Limit to targets (Role = 3).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 116 describes class CIM_HostedAccessPoint (SCSI).

Table 114 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : limit to targets

Antecedent Mandatory Validation Property : limit to targets

Table 115 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ATA)

Properties Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem

Dependent Mandatory Reference to ATAProtocolEndpointValidation Property : limit to
targets

Table 116 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (SCSI)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Reference to SCSIProtocolEndpointValidation Property : limit
to targets
110

NO_ANSI_ID Direct Attach (DA) Ports Profile
13.6.6 CIM_ProtocolEndpoint

Represents a protocol (command set) associated to a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 117 describes class CIM_ProtocolEndpoint.

13.6.7 CIM_SCSIProtocolEndpoint

Specialization of ProtocolEndpoint for SCSI.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 118 describes class CIM_SCSIProtocolEndpoint.

13.6.8 CIM_SystemDevice

Associates ComputerSystem to LogicalPort.

Created By: Static
Modified By: Static
Deleted By: Static

Table 117 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI', 'ATA', 'SB', or 'iSCSI'. Initiator port
specialized profiles specify the appropriate subset.

Table 118 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Requirement Description & Notes

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 111

Direct Attach (DA) Ports Profile NO_ANSI_ID
Requirement: Mandatory

Table 119 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 119 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
112

NO_ANSI_ID Generic Initiator Ports Profile
EXPERIMENTAL

Clause 14: Generic Initiator Ports Profile

14.1 Synopsis
Profile name: Generic Initiator Ports

Version: 1.0.0

Organization: SNIA

CIM schema version: 2.9.0 (later schema versions may be required for specializations)

Central Class: CIM_LogicalPort

Scoping Class: a CIM_System in a separate autonomous profile

The Generic Initiator Port Profile models the generic management interfaces of initiator ports in host adaptors or
storage systems.

This abstract profile specification shall not be directly implemented; implementations shall be based on a profile
specification that specializes the requirements of this profile.

14.2 Description
The Generic Initiator Port Profile models the generic behavior of initiator ports in host adaptors. It uses the same
primary classes as the Generic Target Port Profile (see Clause 6: Generic Target Ports Profile)

14.3 Implementation
The initiator port is modeled as a ProtocolEndpoint connected to a LogicalPort. The

The LogicalDevice instances may represent local storage (embedded in the system containing the initiator ports) or
remote storage. When it represents remote storage the Name and NameFormat properties are used as
correlatable ids to reference the remote device. When the LogicalDevice represents local disk storage, it may be
represented as an instance of StorageVolume (subclass of LogicalDevice) or part of an instance of the Disk Drive
Lite profile. A property on LogicalPort called UsageRestriction is available to indicate whether the controller is
capable of providing a “front end” (target), a “back end” (initiator), or both interfaces.

Figure 15 depicts the generic model.

Figure 15 - Generic Initiator Port Model

C o m p u te rS y s te m (fro m
a u to n o m o u s p ro file)

L o c a l In it ia to r :
P ro to c o lE n d p o in t

H o s te d A c ce ss P o in t

*

1

S y s te m D e v ice

L o g ic a lP o rt

D e v ic e S A P Im p le m e n ta tio n
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 113

Generic Initiator Ports Profile NO_ANSI_ID
14.3.1 Remote Device Models

The implementation may optionally include discovered remote elements. There are two optional approaches to
modeling remote elements, depending on the capabilities of the underlying host drivers

The first approach is to model a collection of ports representing the local and remote ports that are know to be
connected. This approach is appropriate for ATA device and when the underlying drivers or software is limited to
information about remote ports and does not include details of the logical devices connected to remote ports.
Figure 16 depicts the optional connectivity collection model.

The nature of membership in the collection varies with transports and configuration options. For example, in a
parallel SCSI environment, the ConnectivityCollection includes all initiators/targets attached to the bus. In an FC
fabric environment, the ConnectivityCollection contains ports that share a zone. In many cases, the
ConnectivityCollection could include remote initiators as well as remote devices.

The second approach to modeling remote devices is to include the full initiator/target/logical-unit path model that
describes multipath connectivity. This approach has the advantage of including the logical units and including the
full path connectivity. The disadvantage is that some OSes handle multipath support in different components from

Figure 16 - Optional Connectivity Collection Model

ComputerSystem (from
autonomous profile)

Local Initiator :
ProtocolEndpoint

Hosted
AccessPoint

ConnectivityCollection

*
Remote Port :

ProtocolEndpoint

HostedAccessPoint

*

MemberOfCollection MemberOfCollection

Hosted
Collection *1

1 1

SystemDevice

LogicalPort

DeviceSAP
Implementation
114

NO_ANSI_ID Generic Initiator Ports Profile
HBA support, making it more efficient to provide the multipath model as part of the Host Discovered Resources
profile. Figure 17 depicts the optional full-path model.

The instrumentation may support the full-path and connectivity collection options by making appropriate
ProtocolEndpoints members of ConnectivytyCollections.

14.3.1.1 Optional Model for Attached Disks
Disks are modeled using the full-path model and the Disk Drive Lite profile. The appropriate subclass of
InitiatorTargetLogicalUnitPath shall be dependent on whether the disks are SCSI or ATA. This association
references LogicalDisk and initiator and target ProtocolEndpoints. The association also provides the disk’s logical
unit number. The target ProtocolEndpoint referenced from InitiatorTargetLogicalUnitPath shall be the
ProtocolEndpoint from the Disk Drive Lite profile associated indirectly to LogicalDisk via DiskDrive. This is the
same ProtocolEndpoint described as the optional remote ProtocolEndpoint in initiator ports profiles.

Figure 17 - Optional Full-Path Model

ComputerSystem (from
autonomous profile)

Local Initiator :
ProtocolEndpoint

Hosted
AccessPoint

*
Remote Port :

ProtocolEndpoint

HostedAccessPoint

*

1 1

LogicalDevice

InitiatorTarget
LogicalUnitPath

SystemDevice

LogicalPort

DeviceSAP
Implementation
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 115

Generic Initiator Ports Profile NO_ANSI_ID
The ProtocolEndpoints may be associated to a ConnectivityCollection representing a collection of logically
connected devices, as illustrated in Figure 18.

Figure 18 - HBA and Disk Model

SystemDevice

Computer System

(referencing profile)

ProtocolEndpoint

Role: Initiator
(See Generic Initiator Ports
Profile)

ProtocolEndpoint

Role: Target
 (See Disk Drive Lite and
Initiator Ports profiles)

SAPAvailableForElement

LogicalPort

(See Generic Initiator
Ports Profile)

ControlledBy

DeviceSAPImplementation

PortController

SystemDevice

*

*

*
InitiatorTargetLogicalUnitPath

StorageExtent

(See Disk Drive Lite
profile)

SystemDevice

SystemDevice

DiskDrive

(See Disk Drive Lite
profile)

MediaPresent
116

NO_ANSI_ID Generic Initiator Ports Profile
14.3.1.2 Optional Model for attached Tape/CD/DVD Drives
The model, illustrated in Figure 19, and requirements are similar to those for disks (see 14.3.1.1), but use the
Media Access Device profile rather than Disk Drive Lite and the appropriate subclass of MediaAccessDevice rather
than DiskDrive.

14.3.2 Health and Fault Management Considerations

Not defined in this standard.

14.3.3 Cascading Considerations

Not defined in this standard.

14.4 Methods

14.4.1 Extrinsic Methods of this Profile

None

Figure 19 - HBA and Tape or Optical Devices

SystemDevice

Computer System

(referencing profile)

MediaAccessDevice

(See Media Access
Device profile)

ProtocolEndpoint

Role: Initiator
(See Generic Initiator Ports
Profile)

ProtocolEndpoint

Role: Target
 (See Media Access Device
and Initiator Ports profiles)

SAPAvailableForElement

LogicalPort

(See Generic Initiator
Ports Profile)

ControlledBy

DeviceSAPImplementation

PortController

SystemDevice

*

*

*

InitiatorTargetLogicalUnitPath

SystemDevice
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 117

Generic Initiator Ports Profile NO_ANSI_ID
14.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:
• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

14.5 Detailed Use Cases and Recipes
The optional remote element models are not modifiable by clients. Implementation support for these options may
be determined by looking for instances of MemberOfCollection or InitiatorTargetLogicalUnitPath associations
referencing initiator ProtocolEndpoints,

14.6 CIM Elements
Table 120 describes the CIM elements for Generic Initiator Ports.

Table 120 - CIM Elements for Generic Initiator Ports

Element Name Requirement Description

14.6.1 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

14.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint

14.6.3 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

14.6.4 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

14.6.5 CIM_HostedCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates the
ConnectivityCollection to the hosting System.

14.6.6 CIM_LogicalPort Mandatory

14.6.7 CIM_MemberOfCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates
ProtocolEndpoints to the
ConnectivityCollection
118

NO_ANSI_ID Generic Initiator Ports Profile
14.6.1 CIM_ConnectivityCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 121 describes class CIM_ConnectivityCollection.

14.6.2 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 122 describes class CIM_DeviceSAPImplementation.

14.6.3 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

14.6.8 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

14.6.9 CIM_SystemDevice (Non-port devices) Optional Associates system to ports and optional
logical unit LogicalDevices

Table 121 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Requirement Description & Notes

InstanceID Mandatory

Table 122 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : restrict to initiators

Antecedent Mandatory Validation Property : restrict to back-end ports (initiators)

Table 120 - CIM Elements for Generic Initiator Ports

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 119

Generic Initiator Ports Profile NO_ANSI_ID
Table 123 describes class CIM_HostedAccessPoint (Initiator).

14.6.4 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 124 describes class CIM_HostedAccessPoint (Target).

14.6.5 CIM_HostedCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 125 describes class CIM_HostedCollection.

14.6.6 CIM_LogicalPort

Represents the logical aspects of the physical port and may have multiple associated protocols

Created By: Static
Modified By: Static
Deleted By: Static

Table 123 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Initiators

Table 124 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Targets

Table 125 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
120

NO_ANSI_ID Generic Initiator Ports Profile
Requirement: Mandatory

Table 126 describes class CIM_LogicalPort.

14.6.7 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 127 describes class CIM_MemberOfCollection.

14.6.8 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 126 - SMI Referenced Properties/Methods for CIM_LogicalPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or 4 if
the port is unrestricted.

PortType Mandatory Initiator port specialized profiles specify the appropriate subset
of values.

Table 127 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Member Mandatory The reference to the ProtocolEndpoint

Collection Mandatory The reference to the ConnectivityCollection
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 121

Generic Initiator Ports Profile NO_ANSI_ID
Table 128 describes class CIM_SystemDevice (Initiator Ports).

14.6.9 CIM_SystemDevice (Non-port devices)

Associates system to ports and optional logical unit LogicalDevices

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 129 describes class CIM_SystemDevice (Non-port devices).

EXPERIMENTAL

Table 128 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem

PartComponent Mandatory Reference to LogicalPort.Validation Property : Restrict to back-
end or unrestricted ports.

Table 129 - SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory Reference to non-port devices.
122

NO_ANSI_ID Parallel SCSI (SPI) Initiator Ports Profile
EXPERIMENTAL

Clause 15: Parallel SCSI (SPI) Initiator Ports Profile

15.1 Synopsis
Profile Name: SPI Initiator Ports

Version: 1.2.0

Organization: SNIA

CIM Schema Version: 2.11.0

Related Profiles for SPI Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Port Profile

Central Class: CIM_SPIPort

Scoping Class: a CIM_System in a separate autonomous profile

The SPI Initiator Ports profiles models the behavior of a parallel SCSI (SPI) initiator port.

15.2 Description
The SPI Initiator Port profile defines the model to parallel SCSI ports.

15.3 Implementation
A typical instance diagram is provided in Figure 20.

Figure 20 - SPI Initiator Port Instance Diagram

C o m p u te r S y s te m

S P IP o r t I n i t ia to r :
S C S IP r o r o c o lE n d p o in t

S y s te m D e v ic e H o s te d A c c e s s P o in t

D e v ic e S A P
Im p le m e n ta t io n
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 123

Parallel SCSI (SPI) Initiator Ports Profile NO_ANSI_ID
15.3.1 Health and Fault Management Considerations

Table 130 summarizes the Health and Fault Management issues that are unique to this profile.

15.3.2 Cascading Considerations

Not defined in this standard.

15.4 Methods

15.4.1 Extrinsic Methods of this Profile

None

15.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:
• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

15.5 Detailed Use Cases and Recipes
None

Table 130 - SPIPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
124

NO_ANSI_ID Parallel SCSI (SPI) Initiator Ports Profile
15.6 CIM Elements
Table 131 describes the CIM elements for SPI Initiator Ports.

15.6.1 CIM_ConnectivityCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 131 - CIM Elements for SPI Initiator Ports

Element Name Requirement Description

15.6.1 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

15.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint

15.6.3 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

15.6.4 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

15.6.5 CIM_HostedCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates the
ConnectivityCollection to the hosting System.

15.6.6 CIM_MemberOfCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates
ProtocolEndpoints to the
ConnectivityCollection

15.6.7
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Represents a path between a SCSI initiator,
target, and logical unit.

15.6.8 CIM_SCSIProtocolEndpoint (Initiator
ProtocolEndpoint)

Mandatory

15.6.9 CIM_SCSIProtocolEndpoint (Target or
non-local ProtocolEndpoint)

Optional Models remote ports - target devices and
possibly other initiators.

15.6.10 CIM_SPIPort Mandatory

15.6.11 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

15.6.12 CIM_SystemDevice (Non-port
devices)

Optional Associates system to ports and optional
logical unit LogicalDevices
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 125

Parallel SCSI (SPI) Initiator Ports Profile NO_ANSI_ID
Table 132 describes class CIM_ConnectivityCollection.

15.6.2 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 133 describes class CIM_DeviceSAPImplementation.

15.6.3 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 134 describes class CIM_HostedAccessPoint (Initiator).

15.6.4 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 132 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Requirement Description & Notes

InstanceID Mandatory

Table 133 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : restrict to initiators

Antecedent Mandatory Validation Property : restrict to back-end ports (initiators)

Table 134 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Initiators
126

NO_ANSI_ID Parallel SCSI (SPI) Initiator Ports Profile
Table 135 describes class CIM_HostedAccessPoint (Target).

15.6.5 CIM_HostedCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 136 describes class CIM_HostedCollection.

15.6.6 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 137 describes class CIM_MemberOfCollection.

15.6.7 CIM_SCSIInitiatorTargetLogicalUnitPath

Created By: Static
Modified By: Static

Table 135 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Targets

Table 136 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 137 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Member Mandatory The reference to the ProtocolEndpoint

Collection Mandatory The reference to the ConnectivityCollection
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 127

Parallel SCSI (SPI) Initiator Ports Profile NO_ANSI_ID
Deleted By: Static
Requirement: Optional

Table 138 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

15.6.8 CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 139 describes class CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint).

15.6.9 CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 138 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Requirement Description & Notes

LogicalUnit Mandatory

Target Mandatory

Initiator Mandatory

Table 139 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator Proto-
colEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ConnectionType Mandatory Shall be 3 (Parallel SCSI)

Role Mandatory Shall be 2 (Initiator) or 4 (Both Initiator and Target)
128

NO_ANSI_ID Parallel SCSI (SPI) Initiator Ports Profile
Table 140 describes class CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint).

15.6.10 CIM_SPIPort

Represents the logical aspects of the physical port and may have multiple associated protocols

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 141 describes class CIM_SPIPort.

15.6.11 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Table 140 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target or non-
local ProtocolEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be 'SCSI'.

ConnectionType Mandatory Shall be 3 (Parallel SCSI).

Role Mandatory Should be set appropriately by the instrumentation. If not
know, use 0 (Unknown).

Table 141 - SMI Referenced Properties/Methods for CIM_SPIPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or 4 if
the port is unrestricted.

PortType Mandatory Initiator port specialized profiles specify the appropriate subset
of values.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 129

Parallel SCSI (SPI) Initiator Ports Profile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 142 describes class CIM_SystemDevice (Initiator Ports).

15.6.12 CIM_SystemDevice (Non-port devices)

Associates system to ports and optional logical unit LogicalDevices

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 143 describes class CIM_SystemDevice (Non-port devices).

EXPERIMENTAL

Table 142 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem

PartComponent Mandatory Reference to LogicalPort.Validation Property : Restrict to back-
end or unrestricted ports.

Table 143 - SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory Reference to non-port devices.
130

NO_ANSI_ID iSCSI Initiator Port Profile
EXPERIMENTAL

Clause 16: iSCSI Initiator Port Profile

16.1 Synopsis
Profile Name: iSCSI Initiator Ports

Version: 1.2.0

Organization: SNIA

CIM Schema Version: TBD

Table 144 describes the related profiles for iSCSI Initiator Ports.

Specializes: Generic Initiator Port Profile

Central Class: CIM_EthernetPort

Scoping Class: a CIM_System in a separate autonomous profile

Models an adapter (NIC, HBA, TOE) for iSCSI.

16.2 Description
Models an adapter (NIC, HBA, TOE) for iSCSI.

16.3 Implementation
Other port profiles have a single physical port (LogicalPort subclass) associated with each SCSI initiator
(SCSIProtocolEndpoint). iSCSI allows multiple connections (each with a single Ethernet port) in a session that acts
as a SCSI initiator. This profile includes the subset of classes that model the SCSI initiator and its relationship to
logical classes that model physical elements (Ethernet ports).

Figure 21 depicts a configuration with an initiator with two Ethernet ports that are part of a single session that acts
as a SCSI initiator. The Ethernet ports (referred to in iSCSI literature as Network Portals) are modeled as instances
of EthernetPort, IPProtocolEndpoint, and TCPProtocolEndpoint with 1-1 cardinality. These ports are in the initiator
side, the target ports are not required in this profile. Note that all ProtocolEndpoint instances need a
HostAccessPoint association to the ComputerSystem, some are omitted to keep the diagram less cluttered.

Table 144 - Related Profiles for iSCSI Initiator Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.3.0 Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 131

iSCSI Initiator Port Profile NO_ANSI_ID
16.3.1 Health and Fault Management Considerations

Table 145 describes EthernetPort OperationalStatus.

16.3.2 Cascading Considerations

Not defined in this standard.

Figure 21 - iSCSI Initiator Port Instance Diagram

Table 145 - EthernetPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

iSCSI Network Portal (Ethernet Port) 1

ComputerSystem

(from autonomous profile)

Initiator:
iSCSIProtocolEndpointSystem

Device

HostedAccessPoint

EthernetPort IPProtocolEndpoint TCPProtocolEndpoint

DeviceSAP
Implementation BindsTo

BindsTo

iSCSI Network Portal (Ethernet Port) 2

EthernetPort IPProtocolEndpoint TCPProtocolEndpoint

DeviceSAP
Implementation BindsTo

System
Device

BindsTo1

*1111

1

*

1 1 1 1 *

Note: HostAccessPoint
associations to every
ProtocolEndpoint are

required, but omitted from
diagram to reduce clutter.

1

DeviceSAP
Implementation

DeviceSAP
Implementation
132

NO_ANSI_ID iSCSI Initiator Port Profile
16.4 Methods

16.4.1 Extrinsic Methods of this Profile

None

16.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:
• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

16.5 Detailed Use Cases and Recipes
None

16.6 CIM Elements
Table 144 describes the CIM elements for iSCSI Initiator Ports.

Table 146 - CIM Elements for iSCSI Initiator Ports

Element Name Requirement Description

16.6.1 CIM_BindsTo Mandatory

16.6.2 CIM_DeviceSAPImplementation
(IPProtocolEndpoint to EthernetPort)

Mandatory

16.6.3 CIM_DeviceSAPImplementation
(iSSIProtocolEndpoint to EthenetPort)

Mandatory

16.6.4 CIM_EthernetPort Mandatory

16.6.5 CIM_HostedAccessPoint (System to
IPProtocolEndpoint)

Mandatory

16.6.6 CIM_HostedAccessPoint (System to
TCPProtocolEndpoint)

Mandatory

16.6.7 CIM_HostedAccessPoint (System to
iSCSIProtocolEndpoint)

Mandatory

16.6.8 CIM_IPProtocolEndpoint Mandatory

16.6.9 CIM_LogicalDevice Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 133

iSCSI Initiator Port Profile NO_ANSI_ID
16.6.1 CIM_BindsTo

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 147 describes class CIM_BindsTo.

16.6.2 CIM_DeviceSAPImplementation (IPProtocolEndpoint to EthernetPort)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

16.6.10 CIM_SystemDevice (System to
EthernetPort)

Mandatory

16.6.11 CIM_SystemDevice (System to
LogicalDevice)

Mandatory

16.6.12 CIM_TCPProtocolEndpoint Mandatory

16.6.13 CIM_iSCSIProtocolEndpoint Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_EthernetPort

Mandatory Port Creation

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_EthernetPort AND
SourceInstance.CIM_EthernetPort::Operation
alStatus <>
PreviousInstance.CIM_EthernetPort::Operatio
nalStatus

Mandatory CQL -Port Status Change

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_EthernetPort

Mandatory Port Removal

Table 147 - SMI Referenced Properties/Methods for CIM_BindsTo

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 146 - CIM Elements for iSCSI Initiator Ports

Element Name Requirement Description
134

NO_ANSI_ID iSCSI Initiator Port Profile
Table 148 describes class CIM_DeviceSAPImplementation (IPProtocolEndpoint to EthernetPort).

16.6.3 CIM_DeviceSAPImplementation (iSSIProtocolEndpoint to EthenetPort)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 149 describes class CIM_DeviceSAPImplementation (iSSIProtocolEndpoint to EthenetPort).

16.6.4 CIM_EthernetPort

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 150 describes class CIM_EthernetPort.

Table 148 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (IPProtoco-
lEndpoint to EthernetPort)

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 149 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (iSSIProtoco-
lEndpoint to EthenetPort)

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 150 - SMI Referenced Properties/Methods for CIM_EthernetPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

PortType Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 135

iSCSI Initiator Port Profile NO_ANSI_ID
16.6.5 CIM_HostedAccessPoint (System to IPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 151 describes class CIM_HostedAccessPoint (System to IPProtocolEndpoint).

16.6.6 CIM_HostedAccessPoint (System to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 152 describes class CIM_HostedAccessPoint (System to TCPProtocolEndpoint).

16.6.7 CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static

OperationalStatus Mandatory

PermanentAddress Mandatory

Table 151 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to IPProto-
colEndpoint)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 152 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to TCPPro-
tocolEndpoint)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 150 - SMI Referenced Properties/Methods for CIM_EthernetPort

Properties Requirement Description & Notes
136

NO_ANSI_ID iSCSI Initiator Port Profile
Requirement: Mandatory

Table 153 describes class CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint).

16.6.8 CIM_IPProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 154 describes class CIM_IPProtocolEndpoint.

16.6.9 CIM_LogicalDevice

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 153 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to iSC-
SIProtocolEndpoint)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 154 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

IPv4Address Optional Maps to IMA_NETWORK_PORTAL_PROPERTIES,
ipAddress

IPv6Address Optional Maps to IMA_NETWORK_PORTAL_PROPERTIES,
ipAddress

ProtocolIFType Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 137

iSCSI Initiator Port Profile NO_ANSI_ID
Table 155 describes class CIM_LogicalDevice.

16.6.10 CIM_SystemDevice (System to EthernetPort)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 156 describes class CIM_SystemDevice (System to EthernetPort).

16.6.11 CIM_SystemDevice (System to LogicalDevice)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 157 describes class CIM_SystemDevice (System to LogicalDevice).

Table 155 - SMI Referenced Properties/Methods for CIM_LogicalDevice

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Name Mandatory

OperationalStatus Mandatory

Table 156 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to EthernetPort)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 157 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to LogicalDe-
vice)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
138

NO_ANSI_ID iSCSI Initiator Port Profile
16.6.12 CIM_TCPProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 158 describes class CIM_TCPProtocolEndpoint.

16.6.13 CIM_iSCSIProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 159 describes class CIM_iSCSIProtocolEndpoint.

Table 158 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

PortNumber Mandatory

ProtocolIFType Mandatory

Table 159 - SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Other

OtherTypeDescription Mandatory

ConnectionType Mandatory iSCSI

Role Mandatory Shall be 2 (Initiator)

Identifier Mandatory ISID
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 139

iSCSI Initiator Port Profile NO_ANSI_ID
140

NO_ANSI_ID Fibre Channel Initiator Port Profile
STABLE

Clause 17: Fibre Channel Initiator Port Profile

17.1 Synopsis
Profile Name: FC Initiator Ports

Version: 1.3.0

Organization: SNIA

CIM Schema Version: 2.9.0

Related Profiles for FC Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Ports Profile

Central Class: CIM_FCPort

Scoping Class: a CIM_System in a referencing autonomous profile

The FC Initiator Ports profiles models the behavior of a Fibre Channel port supporting FCP (SCSI command
protocol).

17.2 Description
The FC Initiator Ports profiles models the behavior of a Fibre Channel port supporting FCP (SCSI command
protocol).

17.3 Implementation
Figure 22 is an example of a single port and drive connected to a single system using Fibre Channel. This instance
diagram shows a disk (LogicalDevice in the diagram would be subclassed as something like StorageExtent) in an
array, connected by a Fibre Channel port. The full model for the disk is shown in Clause 11: Disk Drive Lite
Subprofile. SCSIProtocolController is not generally used in initiator contexts. It is included here to be compatible
with SMI-S 1.0 clients.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 141

Fibre Channel Initiator Port Profile NO_ANSI_ID
17.3.1 Port Statistics

The FCPortStatistics subclass of NetworkPortStatistics is optional. If supported, FCPortStatistics shall be
associated to FcPort using ElementStatisticalData.

17.3.2 Logical Port Group (FC Node)

LogicalPortGroup may optionally be used to model the collection of ports that shared a Node WWN (in this case,
both ports on a card, but other implementations are in use). If LogicalPortGroup is instantiated, it shall be
associated to the ComputerSystem in the referencing profile using HostedCollection and also associated to
FCPorts using MemberOfCollection.

17.3.3 Health and Fault Management Considerations

Table 160 summarized the Health and Fault Management considerations specific to this profile.

17.3.4 Cascading Considerations

Not defined in this standard.

Figure 22 - Fibre Channel Initiator Instance Diagram

Table 160 - FCPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

(optional target subprofile elements)

SystemDevice
ComputerSystem

SCSIProtocolController
(for SMI-S 1.0
Compatibility)

DeviceSAP
Implementation

ConnectionType =
“Fibre Channel”

Initiator:
SCSIProtocolEndpoint

FCPort

LogicalDevice

ProtocolController
AccessesUnit

Target:
SCSIProtocolEndpoint

SCSIInitiatorTarget
LogicalUnitPath

SystemDevice

HostedAccessPoint

HostedAccessPoint

ProtocolController
ForPort
142

NO_ANSI_ID Fibre Channel Initiator Port Profile
17.4 Methods

17.4.1 Extrinsic Methods of this Profile

None

17.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

17.5 Detailed Use Cases and Recipes
None

17.6 CIM Elements
Table 161 describes the CIM elements for FC Initiator Ports.

Table 161 - CIM Elements for FC Initiator Ports

Element Name Requirement Description

17.6.1 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

17.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint

17.6.3 CIM_FCPort Mandatory

17.6.4 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

17.6.5 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

17.6.6 CIM_HostedCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates the
ConnectivityCollection to the hosting System.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 143

Fibre Channel Initiator Port Profile NO_ANSI_ID
17.6.1 CIM_ConnectivityCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

17.6.7 CIM_MemberOfCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates
ProtocolEndpoints to the
ConnectivityCollection

17.6.8 CIM_ProtocolControllerForPort Optional

17.6.9
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Represents a path between a SCSI initiator,
target, and logical unit.

17.6.10 CIM_SCSIProtocolController Optional Represents a SCSI logical unit inventory.

17.6.11 CIM_SCSIProtocolEndpoint (Initiator) Mandatory

17.6.12 CIM_SCSIProtocolEndpoint (Target) Optional Models remote ports - target devices and
possibly other initiators.

17.6.13 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

17.6.14 CIM_SystemDevice (Non-port
devices)

Optional Associates system to ports and optional
logical unit LogicalDevices

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Optional Create FCPort

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Deprecated WQL -Modify FCPort

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us <>
PreviousInstance.CIM_FCPort::OperationalSt
atus

Optional CQL -Modify FCPort

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Optional Delete FCPort

Table 161 - CIM Elements for FC Initiator Ports

Element Name Requirement Description
144

NO_ANSI_ID Fibre Channel Initiator Port Profile
Table 162 describes class CIM_ConnectivityCollection.

17.6.2 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 163 describes class CIM_DeviceSAPImplementation.

17.6.3 CIM_FCPort

Represents the logical aspects of the physical port and may have multiple associated protocols

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 164 describes class CIM_FCPort.

Table 162 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Requirement Description & Notes

InstanceID Mandatory

Table 163 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : restrict to initiators

Antecedent Mandatory Validation Property : restrict to back-end ports (initiators)

Table 164 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or 4 if
the port is unrestricted.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 145

Fibre Channel Initiator Port Profile NO_ANSI_ID
17.6.4 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

PortType Mandatory Shall be 0|1|10|11|12|13|14|15|16|17|18 (Unknown or Other or
N or NL or F/NL or Nx or E or F or FL or B or G).

ElementName Mandatory Port Symbolic Name

Speed Mandatory Shall be 0 or 1062500000 or 2125000000 or 4250000000 or
10518750000 or 12750000000.

MaxSpeed Mandatory Port Supported Speed (for example, from HBA API).

PortNumber Optional

PermanentAddress Optional Port WWN. PermanentAddress is optional when used as a
back-end port in a device. This may be overridden in profiles
that use this profile. Shall be 16 un-separated upper case hex
digits.

NetworkAddresses Optional For Fibre Channel end device ports, the Fibre Channel ID.
Shall be 16 un-separated upper case hex digits.

SupportedCOS Optional Shall be 0 (unknown), 1 (Class 1), 2 (Class 2), 3, (Class 3), 4
(Class 4), 6 (Class 6), or 7 (Class 7).

ActiveCOS Optional Shall be 0 (unknown), 1 (Class 1), 2 (Class 2), 3, (Class 3), 4
(Class 4), 6 (Class 6), or 7 (Class 7).

SupportedFC4Types Optional

ActiveFC4Types Optional

LinkTechnology Mandatory

SupportedMaximumTransmis
sionUnit

Mandatory

ActiveMaximumTransmission
Unit

Optional

Table 164 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Requirement Description & Notes
146

NO_ANSI_ID Fibre Channel Initiator Port Profile
Table 165 describes class CIM_HostedAccessPoint (Initiator).

17.6.5 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 166 describes class CIM_HostedAccessPoint (Target).

17.6.6 CIM_HostedCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 167 describes class CIM_HostedCollection.

17.6.7 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static

Table 165 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Initiators

Table 166 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Targets

Table 167 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 147

Fibre Channel Initiator Port Profile NO_ANSI_ID
Requirement: Support for ConnectivityCollections.

Table 168 describes class CIM_MemberOfCollection.

17.6.8 CIM_ProtocolControllerForPort

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 169 describes class CIM_ProtocolControllerForPort.

17.6.9 CIM_SCSIInitiatorTargetLogicalUnitPath

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 170 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

17.6.10 CIM_SCSIProtocolController

Table 168 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Member Mandatory The reference to the ProtocolEndpoint

Collection Mandatory The reference to the ConnectivityCollection

Table 169 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : restrict to initiator ports

Table 170 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Requirement Description & Notes

LogicalUnit Mandatory

Initiator Mandatory

Target Mandatory
148

NO_ANSI_ID Fibre Channel Initiator Port Profile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 171 describes class CIM_SCSIProtocolController.

17.6.11 CIM_SCSIProtocolEndpoint (Initiator)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 172 describes class CIM_SCSIProtocolEndpoint (Initiator).

Table 171 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier

ElementName Optional

OperationalStatus Optional

MaxUnitsControlled Optional

Table 172 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 2 (Fibre Channel)

Role Mandatory Shall be 2 (Initiator) or 4 (Both Initiator and Target)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 149

Fibre Channel Initiator Port Profile NO_ANSI_ID
17.6.12 CIM_SCSIProtocolEndpoint (Target)

Models remote ports - target devices and possibly other initiators.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 173 describes class CIM_SCSIProtocolEndpoint (Target).

17.6.13 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 174 describes class CIM_SystemDevice (Initiator Ports).

17.6.14 CIM_SystemDevice (Non-port devices)

Associates system to ports and optional logical unit LogicalDevices

Table 173 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Should be set appropriately by the instrumentation. If not
know, use 0 (Unknown).

ProtocolIFType Mandatory The values in MOFs map to IETF values and exclude storage.
Shall be 1 (Other) and set OtherTypeDescription to 'SCSI'.

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 8 (FC)

Table 174 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem

PartComponent Mandatory Reference to LogicalPort.Validation Property : Restrict to back-
end or unrestricted ports.
150

NO_ANSI_ID Fibre Channel Initiator Port Profile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 175 describes class CIM_SystemDevice (Non-port devices).

STABLE

Table 175 - SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory Reference to non-port devices.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 151

Fibre Channel Initiator Port Profile NO_ANSI_ID
152

NO_ANSI_ID SAS Initiator Ports Profile
EXPERIMENTAL

Clause 18: SAS Initiator Ports Profile

18.1 Synopsis
Profile Name: SAS Initiator Ports

Version: 1.2.0

Organization: SNIA

CIM Schema Version: 2.11.0

Related Profiles for SAS Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Port Profile

Central Class: CIM_SASPort

Scoping Class: a CIM_System in a separate autonomous profile

The SAS Initiator Port Profile models the management of a Serial Attached SCSI port that initiates commands to
devices.

18.2 Description
The SAS Initiator Port profile defines the model to parallel SCSI ports. A typical instance diagram is provided in
Figure 23.

Figure 23 - SAS Initiator Port Model

ComputerSystem

(from autonomous profile)

SASPort

UsageRestriction = "Backend Only"

SCSIProtocolEndpoint

HostedAccessPoint

DeviceSAPImplementation

SystemDevice
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 153

SAS Initiator Ports Profile NO_ANSI_ID
18.2.1 Health and Fault Management Considerations

Table 176 summarizes the Health and Fault Management issues that are unique to this profile.

18.3 Methods of the profile
Not defined in this standard.

18.4 Client Considerations and Recipes
Not defined in this standard.

18.5 CIM Elements
Table 177 describes the CIM elements for SAS Initiator Ports.

Table 176 - SASPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 177 - CIM Elements for SAS Initiator Ports

Element Name Requirement Description

18.5.1 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

18.5.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint

18.5.3 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

18.5.4 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

18.5.5 CIM_HostedCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates the
ConnectivityCollection to the hosting System.

18.5.6 CIM_MemberOfCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates
ProtocolEndpoints to the
ConnectivityCollection

18.5.7 CIM_SASPort Mandatory
154

NO_ANSI_ID SAS Initiator Ports Profile
18.5.1 CIM_ConnectivityCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 178 describes class CIM_ConnectivityCollection.

18.5.2 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 179 describes class CIM_DeviceSAPImplementation.

18.5.8
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Represents a path between a SCSI initiator,
target, and logical unit.

18.5.9 CIM_SCSIProtocolEndpoint (Initiator
ProtocolEndpoint)

Mandatory ProtocolEndpoints associated to initiator
ports.

18.5.10 CIM_SCSIProtocolEndpoint (Target
or non-local ProtocolEndpoint)

Optional Models remote ports - target devices and
possibly other initiators.

18.5.11 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

18.5.12 CIM_SystemDevice (Non-port
devices)

Optional Associates system to ports and optional
logical unit LogicalDevices

Table 178 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Requirement Description & Notes

InstanceID Mandatory

Table 179 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : restrict to initiators

Antecedent Mandatory Validation Property : restrict to back-end ports (initiators)

Table 177 - CIM Elements for SAS Initiator Ports

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 155

SAS Initiator Ports Profile NO_ANSI_ID
18.5.3 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 180 describes class CIM_HostedAccessPoint (Initiator).

18.5.4 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 181 describes class CIM_HostedAccessPoint (Target).

18.5.5 CIM_HostedCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 180 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Initiators

Table 181 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Targets
156

NO_ANSI_ID SAS Initiator Ports Profile
Table 182 describes class CIM_HostedCollection.

18.5.6 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 183 describes class CIM_MemberOfCollection.

18.5.7 CIM_SASPort

Represents the logical aspects of the physical port and may have multiple associated protocols

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 184 describes class CIM_SASPort.

Table 182 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 183 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Member Mandatory The reference to the ProtocolEndpoint

Collection Mandatory The reference to the ConnectivityCollection

Table 184 - SMI Referenced Properties/Methods for CIM_SASPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or 4 if
the port is unrestricted.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 157

SAS Initiator Ports Profile NO_ANSI_ID
18.5.8 CIM_SCSIInitiatorTargetLogicalUnitPath

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 185 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

18.5.9 CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)

ProtocolEndpoints associated to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 186 describes class CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint).

PortType Mandatory Initiator port specialized profiles specify the appropriate subset
of values.

PermanentAddress Mandatory SAS Address. Shall be 16 un-separated upper case hex digits.

Table 185 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Requirement Description & Notes

LogicalUnit Mandatory

Target Mandatory

Initiator Mandatory

Table 186 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator Proto-
colEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ConnectionType Mandatory Shall be 8 (SAS)

ProtocolIFType Mandatory Shall be 1 (Other).

Table 184 - SMI Referenced Properties/Methods for CIM_SASPort

Properties Requirement Description & Notes
158

NO_ANSI_ID SAS Initiator Ports Profile
18.5.10 CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint)

Models remote ports - target devices and possibly other initiators.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 187 describes class CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint).

18.5.11 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

Role Mandatory Shall be 2 (Initiator) or 4 (Both Initiator and Target)

Table 187 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target or non-
local ProtocolEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Should be set appropriately by the instrumentation. If not
know, use 0 (Unknown).

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 8 (SAS)

Table 186 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator Proto-
colEndpoint)

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 159

SAS Initiator Ports Profile NO_ANSI_ID
Table 188 describes class CIM_SystemDevice (Initiator Ports).

18.5.12 CIM_SystemDevice (Non-port devices)

Associates system to ports and optional logical unit LogicalDevices

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 189 describes class CIM_SystemDevice (Non-port devices).

EXPERIMENTAL

Table 188 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem

PartComponent Mandatory Reference to LogicalPort.Validation Property : Restrict to back-
end or unrestricted ports.

Table 189 - SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory Reference to non-port devices.
160

NO_ANSI_ID ATA Initiator Ports Profile
EXPERIMENTAL

Clause 19: ATA Initiator Ports Profile

19.1 Synopsis
Profile Name: ATA Initiator Ports

Version: 1.2.0

Organization: SNIA

CIM Schema Version: 2.13.1

Related Profiles for ATA Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Port Profile

Central Class: CIM_ATAPort

Scoping Class: a CIM_System in a separate autonomous profile

The ATA Initiator Ports profile models the management of a PATA or SATA port that initiates commands to devices.

19.2 Description
The ATA Initiator Port profile describes the model for Parallel or Serial ATA Ports with optional attached drives.

19.3 Implementation
The port is modeled as ATAPort (with PortType set to ATA for PATA ports or SATA) and ATAProtocolEndpoint
associated by DeviceSAPImplementation. Attached drives are optionally modeled as subclasses of LogicalDevice
(e.g., StorageVolume, TapeDrive) which are associated via SAPAvailableToElement to ATAProtocolEndpoint.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 161

ATA Initiator Ports Profile NO_ANSI_ID
Figure 24 shows a class diagram for this profile.

19.3.1 Health and Fault Management Consideration

Table 190 summarizes the Health and Fault Management considerations that are specific to this profile.

19.3.2 Cascading Considerations

Not defined in this standard.

19.4 Methods of the profile

19.4.1 Extrinsic Methods of the Profile

None.

19.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:
• GetInstance

• Associators

Figure 24 - ATA Initiator Port Class Diagram

Table 190 - ATAPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

ComputerSystem

ATAPort

PortType=ATA
UsageRestriction = "Backend Only"

ATAProtocolEndpoint

SystemDevice HostedAccessPoint

DeviceSAPImplementation
162

NO_ANSI_ID ATA Initiator Ports Profile
• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

19.5 Client Considerations and Recipes
None

19.6 CIM Elements
Table 191 describes the CIM elements for ATA Initiator Ports.

Table 191 - CIM Elements for ATA Initiator Ports

Element Name Requirement Description

19.6.1 CIM_ATAPort Mandatory

19.6.2 CIM_ATAProtocolEndpoint (Initiator
ProtocolEndpoint)

Mandatory ProtocolEndpoints associated to initiator
ports.

19.6.3 CIM_ATAProtocolEndpoint (Target or
non-local ProtocolEndpoint)

Optional Models remote ports - target devices and
possibly other initiators.

19.6.4 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

19.6.5 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint

19.6.6 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

19.6.7 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

19.6.8 CIM_HostedCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates the
ConnectivityCollection to the hosting System.

19.6.9 CIM_MemberOfCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates
ProtocolEndpoints to the
ConnectivityCollection

19.6.10 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

19.6.11 CIM_SystemDevice (Non-port
devices)

Optional Associates system to ports and optional
logical unit LogicalDevices
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 163

ATA Initiator Ports Profile NO_ANSI_ID
19.6.1 CIM_ATAPort

Represents the logical aspects of the physical port and may have multiple associated protocols

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 192 describes class CIM_ATAPort.

19.6.2 CIM_ATAProtocolEndpoint (Initiator ProtocolEndpoint)

ProtocolEndpoints associated to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 193 describes class CIM_ATAProtocolEndpoint (Initiator ProtocolEndpoint).

Table 192 - SMI Referenced Properties/Methods for CIM_ATAPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or 4 if
the port is unrestricted.

PortType Mandatory Initiator port specialized profiles specify the appropriate subset
of values.

Table 193 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator Protoco-
lEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Shall be 2 (Initiator)

ProtocolIFType Mandatory Shall be 1 (Other)
164

NO_ANSI_ID ATA Initiator Ports Profile
19.6.3 CIM_ATAProtocolEndpoint (Target or non-local ProtocolEndpoint)

Models remote ports - target devices and possibly other initiators.

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 194 describes class CIM_ATAProtocolEndpoint (Target or non-local ProtocolEndpoint).

19.6.4 CIM_ConnectivityCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

OtherTypeDescription Mandatory Shall be 'ATA'

ConnectionType Mandatory Shall be 2 (ATA for PATA ports) or 3 (SATA).

Table 194 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Target or non-
local ProtocolEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Should be set appropriately by the instrumentation. If not
know, use 0 (Unknown).

ProtocolIFType Mandatory Shall be 1 (Other)

OtherTypeDescription Mandatory Shall be 'ATA'

ConnectionType Mandatory Shall be 2 (ATA for PATA ports) or 3 (SATA).

Table 193 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator Protoco-
lEndpoint)

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 165

ATA Initiator Ports Profile NO_ANSI_ID
Table 195 describes class CIM_ConnectivityCollection.

19.6.5 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 196 describes class CIM_DeviceSAPImplementation.

19.6.6 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 197 describes class CIM_HostedAccessPoint (Initiator).

19.6.7 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 195 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Requirement Description & Notes

InstanceID Mandatory

Table 196 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : restrict to initiators

Antecedent Mandatory Validation Property : restrict to back-end ports (initiators)

Table 197 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Initiators
166

NO_ANSI_ID ATA Initiator Ports Profile
Table 198 describes class CIM_HostedAccessPoint (Target).

19.6.8 CIM_HostedCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 199 describes class CIM_HostedCollection.

19.6.9 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 200 describes class CIM_MemberOfCollection.

19.6.10 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Created By: Static
Modified By: Static

Table 198 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Targets

Table 199 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 200 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Member Mandatory The reference to the ProtocolEndpoint

Collection Mandatory The reference to the ConnectivityCollection
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 167

ATA Initiator Ports Profile NO_ANSI_ID
Deleted By: Static
Requirement: Mandatory

Table 201 describes class CIM_SystemDevice (Initiator Ports).

19.6.11 CIM_SystemDevice (Non-port devices)

Associates system to ports and optional logical unit LogicalDevices

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 202 describes class CIM_SystemDevice (Non-port devices).

EXPERIMENTAL

Table 201 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem

PartComponent Mandatory Reference to LogicalPort.Validation Property : Restrict to back-
end or unrestricted ports.

Table 202 - SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory Reference to non-port devices.
168

NO_ANSI_ID FC-SB-x Initiator Ports Profile
EXPERIMENTAL

Clause 20: FC-SB-x Initiator Ports Profile

20.1 Synopsis
Profile Name: SB Initiator Ports

Version: 1.3.0

Organization: SNIA

CIM Schema Version: 2.13.0

Related Profiles for SB Initiator Ports: Not defined in this standard.

The FC-SB-x Initiator Ports profile models initiator ports that support the FC-SB-x protocol.

20.2 Description
The FC-SB-x Initiator Ports profile models initiator ports that support the FC-SB-x protocol.

20.3 Implementation
Figure 25 is an example of a single initiator port. The instance diagram shows a disk (LogicalDevice in the diagram
would be subclassed as something like StorageExtent) in an array, connected by a Fibre Channel port. The full
model for the disk is shown in the Disk Drive Lite profile SBProtocolController.is not generally used in initiator
contexts. It is included here to be compatible with SMI-S 1.0 clients.

Figure 25 - Fibre Channel Initiator Instance Diagram

SystemDevice (from the autonomous
profile)

ComputerSystem

DeviceSAP
Implementation

ConnectionType = “Fibre Channel”

Initiator:
SBProtocolEndpointFCPort

HostedAccessPoint
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 169

FC-SB-x Initiator Ports Profile NO_ANSI_ID
20.3.1 Health and Fault Management Considerations

Table 203 summarizes the Health and Fault Management considerations specific to this profile.

20.3.2 Cascading Considerations

Not defined in this standard.

20.4 Methods

20.4.1 Extrinsic Methods of the Profile

None.

20.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:
• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

20.5 Client Considerations and Recipes
None

Table 203 - FCPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
170

NO_ANSI_ID FC-SB-x Initiator Ports Profile
20.6 CIM Elements
Table 204 describes the CIM elements for SB Initiator Ports.

Table 204 - CIM Elements for SB Initiator Ports

Element Name Requirement Description

20.6.1 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

20.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint

20.6.3 CIM_FCPort Mandatory

20.6.4 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

20.6.5 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

20.6.6 CIM_HostedCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates the
ConnectivityCollection to the hosting System.

20.6.7 CIM_MemberOfCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates
ProtocolEndpoints to the
ConnectivityCollection

20.6.8 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

20.6.9 CIM_SystemDevice (Non-port devices) Optional Associates system to ports and optional
logical unit LogicalDevices

20.6.10
SNIA_SBInitiatorTargetLogicalUnitPath

Optional

20.6.11 SNIA_SBProtocolEndpoint (Initiator
ProtocolEndpoint)

Mandatory

20.6.12 SNIA_SBProtocolEndpoint (Target or
non-local ProtocolEndpoint)

Optional Target or non-local ProtocolEndpoint

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Optional Create FCPort

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Deprecated WQL -Modify FCPort
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 171

FC-SB-x Initiator Ports Profile NO_ANSI_ID
20.6.1 CIM_ConnectivityCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 205 describes class CIM_ConnectivityCollection.

20.6.2 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 206 describes class CIM_DeviceSAPImplementation.

20.6.3 CIM_FCPort

Represents the logical aspects of the physical port and may have multiple associated protocols

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us <>
PreviousInstance.CIM_FCPort::OperationalSt
atus

Optional CQL -Modify FCPort

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Optional Delete FCPort

Table 205 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Requirement Description & Notes

InstanceID Mandatory

Table 206 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : restrict to initiators

Antecedent Mandatory Validation Property : restrict to back-end ports (initiators)

Table 204 - CIM Elements for SB Initiator Ports

Element Name Requirement Description
172

NO_ANSI_ID FC-SB-x Initiator Ports Profile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 207 describes class CIM_FCPort.

20.6.4 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Table 207 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or 4 if
the port is unrestricted.

PortType Mandatory Initiator port specialized profiles specify the appropriate subset
of values.

ElementName Mandatory Port Symbolic Name

Speed Mandatory

MaxSpeed Mandatory Port Supported Speed from HBA API.

PortNumber Optional

PermanentAddress Optional Port WWN. PermanentAddress is optional when used as a
backend port in a device. This may be overridden in profiles
that use this profile.

NetworkAddresses Optional For Fibre Channel end device ports, the Fibre Channel ID

SupportedCOS Optional

ActiveCOS Optional

SupportedFC4Types Optional

ActiveFC4Types Optional

LinkTechnology Mandatory

SupportedMaximumTransmis
sionUnit

Mandatory

ActiveMaximumTransmission
Unit

Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 173

FC-SB-x Initiator Ports Profile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 208 describes class CIM_HostedAccessPoint (Initiator).

20.6.5 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 209 describes class CIM_HostedAccessPoint (Target).

20.6.6 CIM_HostedCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 210 describes class CIM_HostedCollection.

Table 208 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Initiators

Table 209 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Targets

Table 210 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
174

NO_ANSI_ID FC-SB-x Initiator Ports Profile
20.6.7 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 211 describes class CIM_MemberOfCollection.

20.6.8 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 212 describes class CIM_SystemDevice (Initiator Ports).

20.6.9 CIM_SystemDevice (Non-port devices)

Associates system to ports and optional logical unit LogicalDevices

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 211 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Member Mandatory The reference to the ProtocolEndpoint

Collection Mandatory The reference to the ConnectivityCollection

Table 212 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem

PartComponent Mandatory Reference to LogicalPort.Validation Property : Restrict to back-
end or unrestricted ports.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 175

FC-SB-x Initiator Ports Profile NO_ANSI_ID
Table 213 describes class CIM_SystemDevice (Non-port devices).

20.6.10 SNIA_SBInitiatorTargetLogicalUnitPath

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 214 describes class SNIA_SBInitiatorTargetLogicalUnitPath.

20.6.11 SNIA_SBProtocolEndpoint (Initiator ProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 213 - SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory Reference to non-port devices.

Table 214 - SMI Referenced Properties/Methods for SNIA_SBInitiatorTargetLogicalUnitPath

Properties Requirement Description & Notes

UsePreferredPath Optional SB only - Boolean indicating whether preferred path
processing is required

PreferredPath Optional SB only - boolean indicating whiether this is a preferred path

PathGroupState Optional SB only - One of 'Unknown, 'Path grouping not
supported','Reset', 'Grouped', 'Ungrouped'

PathGroupMode Optional SB only - One of 'Unknown', 'None', 'Single path', 'Multipath'
(SIngle path and multipath only valid if PathGroupState is
grouped.

PathGroupID Optional SB only - String containing the ID from the OS, only valid if
PathGroupState is Grouped

LogicalUnit Mandatory

Target Mandatory

Initiator Mandatory
176

NO_ANSI_ID FC-SB-x Initiator Ports Profile
Table 215 describes class SNIA_SBProtocolEndpoint (Initiator ProtocolEndpoint).

20.6.12 SNIA_SBProtocolEndpoint (Target or non-local ProtocolEndpoint)

Target or non-local ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 216 describes class SNIA_SBProtocolEndpoint (Target or non-local ProtocolEndpoint).

Table 215 - SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint (Initiator Protoco-
lEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be 'SB'

ConnectionType Mandatory Shall be 2 (Fibre Channel)

Role Mandatory Shall be 2 (Initiator) or 4 (Both Initiator and Target)

Table 216 - SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint (Target or non-
local ProtocolEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Should be set appropriately by the instrumentation. If not
know, use 0 (Unknown).

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be 'SB'

ConnectionType Mandatory Shall be 2 (Fibre Channel)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 177

FC-SB-x Initiator Ports Profile NO_ANSI_ID
EXPERIMENTAL
178

NO_ANSI_ID SAS/SATA Initiator Port Profile
EXPERIMENTAL

Clause 21: SAS/SATA Initiator Port Profile

21.1 Synopsis
Profile Name: SAS/SATA Initiator Ports

Version: 1.2.0

Organization: SNIA

CIM Schema Version: 2.13.1

Related Profiles for SAS/SATA Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Port Profile

Central Class: CIM_SASSATAPort

Scoping Class: a CIM_System in a separate autonomous profile

The SAS/SATA Initiator Port Profile models the management of a port that initiates commands to both SAS and
SATA devices.

21.2 Description
The SAS/SATA Initiator Port profile defines the model to ports that initiates commands to both SAS and SATA
devices.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 179

SAS/SATA Initiator Port Profile NO_ANSI_ID
21.3 Implementation
A typical instance diagram is provided in Figure 26.

Remote ports may optionally be included - see Clause 6: Generic Target Ports Profile.

21.4 Health and Fault Management Considerations
Table 217 summarizes the Health and Fault Management issues that are unique to this profile.

21.4.1 Health and Fault Management Considerations

Not defined in this standard.

21.4.2 Cascading Considerations

Not defined in this standard.

21.5 Methods

21.5.1 Extrinsic Methods of this Profile

None

Figure 26 - SAS/SATA Initiator Port Instance Diagram

Table 217 - SASSATAPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

ComputerSystem

(from autonomous profile)

SASPort

UsageRestriction = "Backend Only"

SCSIProtocolEndpoint

HostedAccessPoint

DeviceSAPImplementation

SystemDevice

ATAProtocolEndpoint

DeviceSAPImplementation

HostedAccessPoint
180

NO_ANSI_ID SAS/SATA Initiator Port Profile
21.5.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:
• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

21.6 Detailed Use Cases and Recipes
None

21.7 CIM Elements
Table 218 describes the CIM elements for SAS/SATA Initiator Ports.

Table 218 - CIM Elements for SAS/SATA Initiator Ports

Element Name Requirement Description

21.7.1 CIM_ATAProtocolEndpoint (Initiator
ProtocolEndpoint)

Mandatory Initiator ATA endpoints

21.7.2 CIM_ATAProtocolEndpoint (Target or
non-local ProtocolEndpoint)

Optional Remote ATA endpoints

21.7.3 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

21.7.4 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint

21.7.5 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

21.7.6 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

21.7.7 CIM_HostedCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates the
ConnectivityCollection to the hosting System.

21.7.8 CIM_LogicalPort Mandatory

21.7.9 CIM_MemberOfCollection Conditional Conditional requirement: Support for
ConnectivityCollections.Associates
ProtocolEndpoints to the
ConnectivityCollection
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 181

SAS/SATA Initiator Port Profile NO_ANSI_ID
21.7.1 CIM_ATAProtocolEndpoint (Initiator ProtocolEndpoint)

Initiator ATA endpoints

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 219 describes class CIM_ATAProtocolEndpoint (Initiator ProtocolEndpoint).

21.7.2 CIM_ATAProtocolEndpoint (Target or non-local ProtocolEndpoint)

Remote ATA endpoints

Created By: Static
Modified By: Static

21.7.10 CIM_SASSATAPort (Initiator
ProtocolEndpoint)

Mandatory

21.7.11
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Represents a path between a SCSI initiator,
target, and logical unit.

21.7.12 CIM_SCSIProtocolEndpoint (Initiator
ProtocolEndpoint)

Mandatory Initiator SCSI endpoints

21.7.13 CIM_SCSIProtocolEndpoint (Target
or non-local ProtocolEndpoint)

Optional Remote SCSI endpoints

21.7.14 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

21.7.15 CIM_SystemDevice (Non-port
devices)

Optional Associates system to ports and optional
logical unit LogicalDevices

Table 219 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator Protoco-
lEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other)

OtherTypeDescription Mandatory Shall be 'ATA'

ConnectionType Mandatory Shall be 3 (SATA).

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target)

Table 218 - CIM Elements for SAS/SATA Initiator Ports

Element Name Requirement Description
182

NO_ANSI_ID SAS/SATA Initiator Port Profile
Deleted By: Static
Requirement: Optional

Table 220 describes class CIM_ATAProtocolEndpoint (Target or non-local ProtocolEndpoint).

21.7.3 CIM_ConnectivityCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 221 describes class CIM_ConnectivityCollection.

21.7.4 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 220 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Target or non-
local ProtocolEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be 'ATA'

ConnectionType Mandatory Shall be 3 (SATA).

Role Mandatory Should be set appropriately by the instrumentation. If not
know, use 0 (Unknown).

Table 221 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Requirement Description & Notes

InstanceID Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 183

SAS/SATA Initiator Port Profile NO_ANSI_ID
Table 222 describes class CIM_DeviceSAPImplementation.

21.7.5 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 223 describes class CIM_HostedAccessPoint (Initiator).

21.7.6 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 224 describes class CIM_HostedAccessPoint (Target).

21.7.7 CIM_HostedCollection

Created By: Static
Modified By: Static
Deleted By: Static

Table 222 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Requirement Description & Notes

Dependent Mandatory Validation Property : restrict to initiators

Antecedent Mandatory Validation Property : restrict to back-end ports (initiators)

Table 223 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Initiators

Table 224 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Validation Property : Limit PEs to Targets
184

NO_ANSI_ID SAS/SATA Initiator Port Profile
Requirement: Support for ConnectivityCollections.

Table 225 describes class CIM_HostedCollection.

21.7.8 CIM_LogicalPort

Represents the logical aspects of the physical port and may have multiple associated protocols

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 226 describes class CIM_LogicalPort.

21.7.9 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 225 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 226 - SMI Referenced Properties/Methods for CIM_LogicalPort

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or 4 if
the port is unrestricted.

PortType Mandatory Initiator port specialized profiles specify the appropriate subset
of values.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 185

SAS/SATA Initiator Port Profile NO_ANSI_ID
Table 227 describes class CIM_MemberOfCollection.

21.7.10 CIM_SASSATAPort (Initiator ProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 228 describes class CIM_SASSATAPort (Initiator ProtocolEndpoint).

21.7.11 CIM_SCSIInitiatorTargetLogicalUnitPath

Represents a path between a SCSI initiator, target, and logical unit.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 229 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

21.7.12 CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)

Initiator SCSI endpoints

Created By: Static
Modified By: Static

Table 227 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Member Mandatory The reference to the ProtocolEndpoint

Collection Mandatory The reference to the ConnectivityCollection

Table 228 - SMI Referenced Properties/Methods for CIM_SASSATAPort (Initiator ProtocolEnd-
point)

Properties Requirement Description & Notes

PortType Mandatory Shall be 95 (SASSATA).

Table 229 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Requirement Description & Notes

LogicalUnit Mandatory

Target Mandatory

Initiator Mandatory
186

NO_ANSI_ID SAS/SATA Initiator Port Profile
Deleted By: Static
Requirement: Mandatory

Table 230 describes class CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint).

21.7.13 CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint)

Remote SCSI endpoints

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 231 describes class CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint).

Table 230 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator Proto-
colEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 8 (SAS)

Role Mandatory Shall be 2 (Initiator) or 4 (Both Initiator and Target)

Table 231 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target or non-
local ProtocolEndpoint)

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescription Mandatory Shall be the string 'SCSI.

ConnectionType Mandatory Shall be 8 (SAS)

Role Mandatory Shall be 2 (Initiator) or 4 (Both Initiator and Target)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 187

SAS/SATA Initiator Port Profile NO_ANSI_ID
21.7.14 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 232 describes class CIM_SystemDevice (Initiator Ports).

21.7.15 CIM_SystemDevice (Non-port devices)

Associates system to ports and optional logical unit LogicalDevices

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 233 describes class CIM_SystemDevice (Non-port devices).

EXPERIMENTAL

Table 232 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem

PartComponent Mandatory Reference to LogicalPort.Validation Property : Restrict to back-
end or unrestricted ports.

Table 233 - SMI Referenced Properties/Methods for CIM_SystemDevice (Non-port devices)

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory Reference to non-port devices.
188

NO_ANSI_ID Backend Ports Subprofile
DEPRECATED

Clause 22: Backend Ports Subprofile

The functionality of the Backend Ports Subprofile has been subsumed by Clause 17: Fibre Channel Initiator Port
Profile.

The Backend Ports Subprofile is defined in section 7.3.3.13 of SMI-S 1.0.2. Any instrumentation that complies to
the Fibre Channel Initiator Port profile defined in this specification may also claim compliance to that version of the
Backend Ports Subprofile and may register as both a 1.2.0 Fibre Channel Initiator Port Subprofile and 1.0.2
Backend Ports Subprofile.

DEPRECATED
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 189

Backend Ports Subprofile NO_ANSI_ID
190

NO_ANSI_ID Access Points Subprofile
STABLE

Clause 23: Access Points Subprofile

23.1 Description
The Access Points subprofile provides addresses of remote access points for management services.

This is modeled using a RemoteServiceAccessPoint linked to the managed system using a HostedAccessPoint
association.

A management service is typically associated with all elements in a system, but in some cases, a management
service relates to a subset of elements. The scope of a RemoteServiceAccessPoint may be constrained to a
subset of elements using SAPAvailableForElement. If the service referenced in RemoteServiceAccessPoint is not
referenced by any SAPAvailableForElement associations, then the service described by
RemoteServiceAccessPoint shall apply to all the elements of the system referenced via HostedAccessPoints. This
type of system-wide service is depicted in Figure 27.

If the service referenced in RemoteServiceAccessPoint is referenced by any SAPAvailableForElement
associations, then the service described by RemoteServiceAccessPoint shall apply to the subset of elements
referenced via SAPAvailabelForElement associations. The HostedAccessPoint association between
RemoteServiceAccessPoint is still mandatory (so the client can readily associate the service to a specific storage
system).

Figure 27 - System-wide Remote Access Point

Access Points Subprofile
ComputerSystem

Global Service::
RemoteServiceAccessPoint

HostedAccessPoint
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 191

Access Points Subprofile NO_ANSI_ID
Figure 28 depicts a configuration with two RemoveServiceAccessPoint instances. One represents a system-wide
service and the other represents a service that applies just to certain devices.

The exposed management services may represent a web UI that can be launched by a web browser, a telnet
interface, or some vendor-specific interface. RemoteServiceAccessPoint InfoFormat property describes the format
of the AccessIfo property; valid options include “URL” and FQDN”. In a URL, the text before the “://” is referred to
as the “scheme”. A URL with an http or HTTPS scheme is often a web/HTML page, but HTTP can be used for
other purposes. Table 234 specifies the requirements for InfoFormat, AccessInfo, and the scheme subset of a
URL AccessInfo.

23.2 Health and Fault Management Considerations
Not defined in this standard.

Figure 28 - Access Point Instance Diagram

Table 234 - RemoteAccessPoint InfoFormat and AccessInfo Properties

InfoFormat AccessInfo Scheme Description

“URL” “http” or “https” The references URL shall be a valid web
page. It should provide element
management for the system or elements
referenced by the associated
HostedAccessPoint association.

“Other” with
OtherInfoFormatDescription =
"Non-UI URL"

“http” or” https” Used for HTTP URLs that do not reference
a valid web UI.

“URL” anything other than “http”
and “https”

May be used. No standard behavior is
specified.

others from the MOF n/a May be used. No standard behavior is
specified.

ComputerSystem

Global Service::
RemoteServiceAccessPoint

HostedAccessPoint

Service For Devices ::
RemoteServiceAccessPointSAPAvailableForElement

LogicalDevice

HostedAccessPointSystemDevice
192

NO_ANSI_ID Access Points Subprofile
23.3 Cascading Considerations
Not defined in this standard.

23.4 Supported Subprofiles and Packages
Not defined in this standard.

23.5 Methods of this Profile
Not defined in this standard.

23.6 Client Considerations and Recipes
Not defined in this standard.

23.7 Registered Name and Version
Access Points version 1.3.0

23.8 CIM Elements
Table 235 describes the CIM elements for Access Points.

23.8.1 CIM_HostedAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 235 - CIM Elements for Access Points

Element Name Requirement Description

23.8.1 CIM_HostedAccessPoint Mandatory Associate the RemoteServiceAccessPoint to
the System on which it is hosted.

23.8.2 CIM_RemoteServiceAccessPoint Mandatory A ServiceAccessPoint for management tools

23.8.3 CIM_SAPAvailableForElement Optional This association identifies the element that is
serviced by the RemoteServiceAccessPoint
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 193

Access Points Subprofile NO_ANSI_ID
Table 236 describes class CIM_HostedAccessPoint.

23.8.2 CIM_RemoteServiceAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 237 describes class CIM_RemoteServiceAccessPoint.

23.8.3 CIM_SAPAvailableForElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 236 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System

Dependent Mandatory The access point(s) that are hosted on this System

Table 237 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

ElementName Mandatory User Friendly name

AccessInfo Mandatory Management Address.

InfoFormat Mandatory The format of the Management Address. For
interoperability, this shall be 'URL' (200).
194

NO_ANSI_ID Access Points Subprofile
Table 238 describes class CIM_SAPAvailableForElement.

STABLE

Table 238 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element

AvailableSAP Mandatory The service access point
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 195

Access Points Subprofile NO_ANSI_ID
196

NO_ANSI_ID Cascading Subprofile
EXPERIMENTAL

Clause 24: Cascading Subprofile

24.1 Description
The cascading subprofile defines the set of classes, methods and behavior used to model cross profile
dependencies and references. This includes modeling of cross CIM server references when the referenced profile
is managed by another CIM server.

Examples of SMI-S Profiles that should support the Cascading Subprofile include Storage Virtualizer, NAS Heads
and Volume Managers. However, other profiles may also support the cascading subprofile for cross profile
references. For example, if an Array Profile may support the cascading subprofile to effect cross profile references
used in “remote copy.”

For ease of documentation, a profile that supports the cascading subprofile is referred to as a Cascading Profile.
The profile referenced is referred to as a Leaf Profile. For example, storage virtualization would support the
cascading subprofile and would be a Cascading Profile. It would reference storage volumes in one or more Array
profiles. In such configurations, the Array profiles would be referred to as Leaf profiles.

The cascading subprofile defines a common approach to “stitching” resources in the cascading profile to resources
in the leaf profiles. While the general mechanism used is common, the specifics may vary depending on the
resources that are stitched together. For example, a Storage Virtualization Profile would stitch StorageExtents (in
the virtualizer) to StorageVolumes (in arrays). But a Volume Manager would stitch LogicalDisks (in the volume
manager) to StorageVolumes (in arrays or virtualizers).

The cascading subprofile defines how to model the relationships between CIM Servers when there are CIM
Servers of Leaf profiles that are referenced by a CIM Server of the cascading profile, and how a client manages the
interaction between CIM Servers in a cascading configuration (including CIM Server credentials).

In addition to the Cascading subprofile, there are two related subprofiles that may also be supported by the
cascading profile or the leaf profiles. They are the Credential Management Subprofile, which defines the classes,
methods and behavior for managing the credentials used by a CIM server of the cascading profile when accessing
(different) CIM Servers of Leaf profiles. The second is the Security Resource Ownership Subprofile (or a
specialization of this subprofile) which defines the classes, methods and behavior of recording ownership in the
leaf profiles. The usage of these subprofiles will be referenced in this subprofile, but their definition is contained in
separate subprofile specifications.

The Cascading Subprofile provides block-level configuration management in the current version of SMI-S.

The Cascading Subprofile defines cascading of resources at the block level. That is, a Cascading Profile uses
Block storage resources of the leaf profiles. These are StorageVolumes or LogicalDisks. In the current version of
SMI-S the model will only be tested in the context of cascading for block storage.

24.1.1 Instance Diagrams

There are three aspects of the cascading subprofile that are illustrated separately:

• Logical Topology (usage of leaf resources by cascading profiles)

• Resource Allocation/Deallocation

• CIM Server Topology (usage of CIM Servers by other CIM Servers)

In addition, there are the relationships between the Cascading subprofile and the Security Resource Ownership
Subprofile and the Credential Management Subprofile. This relationship will be illustrated, but the details of those
subprofiles are documented in their own sections.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 197

Cascading Subprofile NO_ANSI_ID
24.1.1.1 Logical Topology
Figure 29 illustrates the basic constructs for modeling the logical topology represented by cascading profiles. The
cascading profile is the top box. The modeling for the cascading subprofile is in the dashed box (in the Cascading
Profile). The leaf profile is the lower box. Note that for the basic modeling of the logical topology of cascading, there
are no modeling requirements on the leaf profile.

Note: The dashed classes in Figure 29 are instances that are cached in the Cascading Profile. They are
redundant with the instances maintained by the Leaf profile. The dashed arrows between the
Cacsading Profile and the Leaf Profile signifies “stitching” based on durable names or correlatable ids
for the resources represented. The dashed arrows are not instantiated associations.

If the Cascading Subprofile is supported by the Cascading Profile, then there will be support for instantiating “leaf”
“top level object” (e.g., ComputerSystems) and “leaf” LogicalDevices (e.g., StorageVolumes) in those Leaf Profiles
that are “visible” to the Cascading Profile (device). The instances of the “leaf” “top level object” can be found by
traversing the CascadingDependency association from the “top level object” of the Cascading Profile.

The leaf resources (logical devices) that are visible to the Cascading Profile have an association (e.g.,
SystemDevice association) to the “leaf” top level object (e.g., ComputerSystem) that has exposed them to the
Cascading Profile.

The top level object, Hosted or SystemDevice association and LogicalDevices mirrors information that is in the
Leaf Profile. In some Cascading Profile configurations, the Cascading Profile may want to subscribe to life cycle
indications on the devices of interest in the Leaf Profile. However, that is a consideration of the Cascading Profile.
It is not required as part of the Cascading Subprofile.

From the top level object (e.g., ComputerSystem) of the Leaf, there may be a SAPAvailableForElement association
to a RemoteServiceAccessPoint instance. The RemoteServiceAccessPoint identifies information need for access
to the management interface to the Leaf system. This management interface may or may not be a CIM interface.

Figure 29 - Instance Diagram for Logical Topology

Local Resource
LeafResource

Name= X
NameFormat= whatever

System

Name= L
NameFormat=url

System

Name= C
NameFormat=url

LeafSystem

Name= L
NameFormat= url

Dependency

Cascading Profile

Leaf Profile

LeafResource

Name= X
NameFormat= whatever

SystemDevice

LogicalDevice

Name= X
NameFormat=whatever

SystemDevice

RemoteServiceAccessPoint

SAPAvailableForElement

Local Resource

LogicalIdentity

LogicalIdentity
198

NO_ANSI_ID Cascading Subprofile
The expectation is that the model represented in Figure 29 will be automatically maintained by the Cascading
Profile (and providers). There are no methods for client manipulation of this model. In the case of the
RemoteServiceAccessPoint instance, the expectation is that discovery of leaf systems would be an automatic
process (e.g., SLP discovery of SMI-S Profiles and Servers) and that the provider would record the access
information based on its discovery processes.

In the simplest form of cascading, this is sufficient to model the logical topology of the cascading. However, many
implementations will need to go further (see 24.1.1.2).

24.1.1.2 Resource Allocation/Deallocation
In some cascading environments, it is necessary to distinguish between resources that are “visible” to the
Cascading Profile from resources that are actually “in use.” For example, a Volume Manager or storage
virtualization system may be able to “see” a number of storage volumes (logical units) through its ports. But this
does not necessarily mean that is has allocated and is using them. A separate step is required to “prepare” the
resources for use. In the case of storage virtualization systems, this step would include assigning the storage to a
storage pool in the virtualizer.

To readily discern which storage volumes (logical devices) are “visible” and which volumes are assigned, two
collections are defined. The collection of “visible” resources is the “RemoteResources” collection. The collection of
assigned resources is the “AllocatedResources” collection. This is illustrated in Figure 30.

The SNIA_AllocationService may or may not exist. The actual function of Allocation may be implemented as a side
effect of other methods. For example, allocating a Leaf StorageVolume may occur as a side effect of
CreateOrModifyStoragePool, where an extent (e.g., leaf StorageVolume) is added to a StoragePool. The
semantics of CreateOrModifyStoragePool constructs all the necessary associations for the StorageExtent (and
may also have the semantics of an implied allocation of the StorageVolume).

To determine if allocation or deallocation are explicit (via allocate/deallocate method calls) or implicit (side effect of
another method), the client should inspect the “AsynchronousMethodsSupported” and
“SynchronousMethodsSupported” properties of the SNIA_CascadingCapabilities instance for the System.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 199

Cascading Subprofile NO_ANSI_ID
Figure 30 - Resource Allocation/Deallocation Instance Diagram

LogicalDevice

Name= X
NameFormat=whatever

LeafResource

Name= X
NameFormat= whatever

System

Name= L
NameFormat=url

System

Name= C
NameFormat=url

LeafSystem

Name= L
NameFormat= url

Dependency

Cascading Profile

Leaf Profile

LeafResource

Name= X
NameFormat= whatever

SystemDevice

LogicalDevice

Name= X
NameFormat=whatever

SystemDevice

LeafResource

Name= X
NameFormat= whatever

LeafResource

Name= X
NameFormat= whatever

SystemDevice

SNIA_AllocatedResources

ElementType

LogicalDevice

Name= X
NameFormat=whatever

LogicalDevice

Name= X
NameFormat=whatever

MemberOfCollection

SNIA_RemoteResources

ElementType

SNIA_AllocationService

Allocate()
Deallocate()

HostedService

HostedCollection

HostedCollection
200

NO_ANSI_ID Cascading Subprofile
24.1.1.3 CIM Server Topology
In addition to a cascading system using leaf systems and its resources, a cascading profile may also model the
dependencies between the CIM Server of the cascading profile and the CIM Servers of the Leaf Profiles. This is
illustrated in Figure 31.

As with the logical topology, the server topology is effected by caching Leaf information in the cascading profile.
Specifically, the cached instances from the leaf profiles are:

ObjectManager – to allow the dependency between ObjectManagers to be instantiated in the cascading profile.

Namespace – to provide cached information on the namespace of the leaf CIM Server. This would be the Interop
Namespace for accessing the Server Profile of the CIM Server.

RegisteredProfile – to identify the Profile of the Leaf Profile (e.g., Array or Virtualizer).

In addition, the necessary associations (HostedProfile, NamespaceInManager and ElementConformsToProfile)
would be instantiated to connect the relevant instances.

The actual dependence between the CIM Server (ObjectManager) of the Cascading Profile and the CIM Server
(ObjectManager) of the Leaf systems is represented by instances of Dependency.

Figure 31 - Cascading Server Topology

System

Name= L
NameFormat=url

System

Name= C
NameFormat=url

LeafSystem

Name= L
NameFormat= url

Dependency

Cascading Profile

Leaf ProfileObjectManager NamespaceNamespace
InManager

RegisteredProfileRegisteredSubProfile

SubProfileRequiresProfile

ElementConformsToProfile

ReferencedProfile

 For the
 Leaf Profile

ObjectManager

Namespace
Namespace
InManager

RegisteredProfile ElementConformsToProfile

Dependency

 For the
cascading Profile

ObjectManager

Dependency

 For the
cascading Profile

RegisteredProfile

ElementConforms
ToProfile
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 201

Cascading Subprofile NO_ANSI_ID
24.1.1.4 Cascading with the Resource Ownership Subprofile

Figure 32 illustrates cascading when used in conjunction with the Security Resource Ownership profile. The
Security Resource Ownership (or a specialization of it) would be implemented in the Leaf Profile.

24.1.1.5 Cascading with the Credentials Management Subprofile
As an extension of the modeling of CIM Server topology, a cascading profile may implement the Credentials
Management Subprofile. When this is done it extends the modeling for the Server topology as illustrated in
Figure 33.

Figure 32 - Instance Diagram for Cascading with Resource Ownership

L o c a l R e s o u rc e
L e a fR e s o u rc e

N a m e = X
N a m e F o rm a t= w h a te v e r

S y s te m

N a m e = L
N a m e F o rm a t= u r l

S y s te m

N a m e = C
N a m e F o rm a t= u r lL e a fS y s te m

N a m e = L
N a m e F o rm a t= u r l

D e p e n d e n c y

C a s c a d in g P r o f i le

L e a f P r o f i le

L e a fR e s o u rc e

N a m e = X
N a m e F o rm a t= w h a te v e r

S y s te m D e v ic e

L o g ic a lD e v ic e

N a m e = X
N a m e F o rm a t= w h a te v e r

S y s te m D e v ic e

L o c a l R e s o u rc e

L o g ic a lId e n t ity

L o g ic a lId e n t i ty

A u th o r iz e d P r iv i le g eA u th o r iz e d T a rg e t

A u th o r iz e d S u b je c t
Id e n t ity

Id e n t i ty C o n te x t
202

NO_ANSI_ID Cascading Subprofile
The Credential Management information would be associated with the CIM Server ObjectManager instance for a
Leaf system. The Credential Management Subprofile would identify how the cascading system would authenticate
itself with the Leaf system.

24.1.1.6 Modeling for Defining Cascading Capabilities
As indicated in previous discussions, only parts of the Cascading subprofile are mandatory. For a list of what
elements are mandatory, see Table 241. In order to make it relatively easy for clients to determine what is
supported, implementation of the SNIA_CascadingCapabilities class is mandatory if cascading is supported. The
modeling for this class is illustrated in Figure 34.

Figure 33 - Instance Diagram for Cascading with Credential Management Subprofile

System

Nam e= L
Nam eForm at=url

System

Nam e= C
Nam eForm at=url

LeafSystem

Nam e= L
Nam eForm at= url

Dependency

Cascading Profile

Leaf ProfileObjectM anager

 For the
 Leaf Profile

ObjectM anager

Nam espace
Nam espace
InM anager

RegisteredProfile

Elem entConform s
ToProfile

Dependency

 For the
cascading Profile

ObjectM anager

Dependency

 For the
cascading Profile

RegisteredProfile

Dependency

Elem entConform s
ToProfile

Credential
M anagem ent

???
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 203

Cascading Subprofile NO_ANSI_ID
The SNIA_CascadingCapabilities instance would be found by doing association traversal from the
RegisteredSubprofile for cascading following the ElementCapabilites association.

The properties of SNIA_CascadingCapabilities are defined as follows:

• FeaturesSupported - This is an array that defines the cascading features that are supported by the
implementation of the Cascading Profile. The values are "Ownership", "Leaf Credentials", "OM Dependencies"
and "Allocation Service".

• SupportedElementTypes - This is an array that defines the type of “Remote Resource” ManagedElements that
are supported by the implementation. For this version of SMI-S, only StorageVolumes and LogcialDisks are
supported.

• AsynchronousMethodsSupported – This is an array that defines any asynchronous methods supported for
allocation or deallocation of leaf resources. The values are “Allocation” or “Deallocation”.

• SynchronousMethodsSupported – This is an array that defines any synchronous methods supported for
allocation or deallocation of leaf resources. The values are “Allocation” or “Deallocation”.

The Cascading subprofile uses durable names of leaf resources for stitching together the Leaf Profile and its
resources to the corresponding instances in the Cascading Profile.

The CIM Server of the Cascading Profile may use indications (or provider poll on access) to keep its model
accurate.

24.2 Health and Fault Management Considerations

24.2.1 Reporting Health of Leaf Systems, Resources and Object Managers

A Cascading Profile should not report health of leaf resources without verifying the health of those resources (via
direct reference to the Leaf Profile). The Cascading Profile may keep health properties in its local copy of the
instances for leaf resources for its own purposes, but it should always refer to the leaf profile on requests from
clients.

Figure 34 - Modeling of Cascading Capabilities

R e g is t e r e d S u b p r o f i l e

R e g is t e r e d N a m e =
" C a s c a d in g "

S N I A _ C a s c a d in g C a p a b i l i t i e s

F e a t u r e s S u p p o r t e d []
S u p p o r t e d E le m e n t T y p e s []

A s y n c h r o n o u s M e t h o d s S u p p o r t e d
S y n c h r o n o u s M e t h o d s S u p p o r t e d

.

E le m e n t C a p a b i l i t i e s

C a s c a d i n g P r o f i l e
R e g is t e r e d S u b p r o f i l e

R e g is t e r e d N a m e =
" S t o r a g e V i r t u a l i z e r "

S u b P r o f i l e
R e q u i r e s P r o f i l e

C o m p u t e r S y s t e m

D e d ic a t e d =
" S t o r a g e V i r t u a l i z e r "

E le m e n t C o n f o r m s T o P r o f i l e
204

NO_ANSI_ID Cascading Subprofile
A request for a health property (e.g., OperationalStatus) should result in a request to the underlying leaf resource
for the information. If the leaf resource is not available (e.g., the connection to the CIM Server is broken) the
Cascading Profile may report health from its local copy of the instance.

24.2.2 Cascading Indications of Health

Given a Cascading Profile is dependent upon leaf resources, the CIM Server of the Cascading Profile may chose
to subscribe to health (OperationalStatus) indications on the leaf resources it is actively using (allocated
resources). Generally speaking, health problems on leaf resources will translate to health problems on one or more
resources in the Cascading Profile. For example, if a StorageVolume in the Array (leaf) profile has an
OperationalStatus of “Error”, this may cause one or more StorageVolumes in a Virtualizer that is using the array to
either be in error or be degraded.

Health indications should cascade. However, how they cascade will depend on where and how the leaf resources
are used.

However a cascading profile discovers a problem with leaf resources, then it may be reflected in operational status
of the cascader’s resources.

24.3 Cascading Considerations
Not defined in this standard.

24.4 Supported Subprofiles and Packages
Table 239 describes the supported profiles for Cascading.

24.5 Methods of this Subprofile
Table 240 summarized the extrinsic methods supported by the Cascading Subprofile.

24.5.1 Allocate

Starts a job to allocate remote resources (from the RemoteResources collection) to the AllocatedResources
collection.

Allocate (

Table 239 - Supported Profiles for Cascading

Registered Profile Names Mandatory Version

Server Yes 1.3.0

Security Resource Ownership No 1.3.0

Credential Management No 1.3.0

Table 240 - Extrinsic Methods Supported by Cascading Subprofile

Method Created Instances Deleted Instances Modified Instances

Allocate MemberOfCollection N/A N/A

Deallocate N/A MemberOfCollection N/A
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 205

Cascading Subprofile NO_ANSI_ID
[IN, Description (Enumeration indicating the type of element being allocated. This type value shall
match the type of the instances.),

 ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8" },

 Values { "Unknown", "Reserved", "Any Type", "StorageVolume", "StorageExtent", "StoragePool",
"ComputerSystem", "LogicalDisk", "FileShare" }]

Only “3” (StorageVolume) is supported in this version of SMI-S.

 uint16 ElementType;

[IN (false), OUT, Description (Reference to the job (may be null if job completed).)]

 CIM_ConcreteJob REF Job,

[IN, Description (The reference to the AllocatedResource collection to which Elements are being added.)]

 SNIA_AllocatedResources REF Collection,

[IN, Description (Array of strings containing representations of references to CIM_ManagedElement instances, that
are being allocated to the AllocatedResources Collection.)]

 string InElements[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "In Use",
"DMTF Reserved", "Method Parameters Checked - Job Started", "Method Reserved", "Vendor Specific" }]

24.5.2 Deallocate

Starts a job to remove remote resources (from the AllocatedResources collection) and return them to the
RemoteResources collection.

Deallocate (

 [IN, Description (Enumeration indicating the type of element being deallocated. This type value shall match
the type of the instances.),

 ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8" },

 Values { "Unknown", "Reserved", "Any Type", "StorageVolume", "StorageExtent", "StoragePool",
"ComputerSystem", "LogicalDisk", "FileShare" }]

Only “3” (StorageVolume) is supported in this version of SMI-S.

 uint16 ElementType;

 [IN (false), OUT, Description (Reference to the job (may be null if job completed).)]

 CIM_ConcreteJob REF Job,

[IN, Description (The reference to the AllocatedResource collection from which Elements are being removed.)]

 SNIA_AllocatedResources REF Collection,

[IN, Description (Array of strings containing representations of references to CIM_ManagedElement instances,
that are being deallocated from the AllocatedResources Collection.")]

 string InElements[]);
206

NO_ANSI_ID Cascading Subprofile
Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "In
Use", "DMTF Reserved", "Method Parameters Checked - Job Started", "Method Reserved", "Vendor Specific" }

24.6 Client Considerations and Recipes

24.6.1 Recipe MPCP01: Determining Resources used by cascading Profiles

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.2 Recipe MPCP02: Monitoring the existence of Cascading Profiles

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.3 OPTIONAL: Recipe MPCP03: Allocation of Leaf Resources

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.4 OPTIONAL: Recipe MPCP04: Deallocation of Leaf Resources

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.5 Recipe MPCP05: Monitoring the existence of “Stitching” between Profiles

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.6 Supported SNIA_CascadingCapabilities Patterns

The SNIA_CascadingCapabilities patterns in Table 241 are formally recognized and supported by this version of
SMI-S.

Table 241 - Cascading Capabilities Patterns

FeaturesSupported SupportedElementTypes SynchronousMethod
s

Supported

AsynchronouosMethods
Supported

none StorageVolume none none

Ownership,

Leaf Credentials,

OM Dependencies,
Allocation Service

StorageVolume Allocation

Deallocation

Allocation

Deallocation

Allocation Service StorageVolume Allocation

Deallocation

none
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 207

Cascading Subprofile NO_ANSI_ID
24.7 Registered Name and Version
Cascading version 1.3.0

24.8 CIM Elements
Table 242 describes the CIM elements for Cascading.

Allocation Service StorageVolume none Allocation

Deallocation

Ownership,

Leaf Credentials,

OM Dependencies

StorageVolume none none

Table 242 - CIM Elements for Cascading

Element Name Requirement Description

24.8.1 CIM_ComputerSystem (Leaf System) Mandatory 'Top level' system that represents the leaf
system.

24.8.2 CIM_Dependency (Object Managers) Conditional Conditional requirement: This is required if
Leaf ObjectManagers are modeled.This
associates the Object Manager of the Leaf
System to the Object Manager of the
Cascading System.

24.8.3 CIM_Dependency (Profile to Object
Manager)

Conditional Conditional requirement: This is required if
RegisteredProfiles of Leaf systems are
modeled.This associates the
RegisteredProfile of a leaf system to the
Object Manager of the leaf system.

24.8.4 CIM_Dependency (Systems) Mandatory This associates the Leaf System to the
Cascading System.

24.8.5 CIM_ElementCapabilities Mandatory This associates the CascadingCapabilities to
the cascading system (e.g.,
ComputerSystem).

24.8.6 CIM_ElementConformsToProfile (Leaf) Conditional Conditional requirement: This is required if
RegisteredProfiles of Leaf systems are
modeled.This associates the
RegisteredProfile of the Leaf Profile to the
Leaf system (e.g., ComputerSystem).

24.8.7 CIM_HostedCollection (Allocated
Resources)

Mandatory This would associate the AllocatedResources
collection to the top level system for the
Cascading Profile (e.g., Storage Virtualizer).

Table 241 - Cascading Capabilities Patterns (Continued)
208

NO_ANSI_ID Cascading Subprofile
24.8.8 CIM_HostedCollection (Remote
Resources)

Conditional Conditional requirement: This is required if
SNIA_RemoteResources is modeled.This
would associate the RemoteResources
collection to the top level system for the
Cascading Profile (e.g., Storage Virtualizer).

24.8.9 CIM_HostedService (Allocation
Service)

Conditional Conditional requirement: This is required if
SNIA_AllocationService is modeled.This
associates the AllocationService to the
system in the cascading profile that hosts the
service.

24.8.10 CIM_HostedService (Object
Manager)

Conditional Conditional requirement: This is required if
Leaf ObjectManagers are modeled.This
associates the ObjectManager to the system
in the cascading profile that hosts the service.

24.8.11 CIM_LogicalDisk Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = \7\'(\'LogicalDisk\').'A remote
LogicalDisk that is imported to the referencing
profile.

24.8.12 CIM_LogicalIdentity (General) Mandatory Associates local resource (e.g.,
StorageExtent) to a remote (imported)
resource (e.g., StorageVolume or
LogicalDisk).

24.8.13 CIM_LogicalIdentity (LogicalDisk) Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = \7\'(\'LogicalDisk\').'Associates
local StorageExtent to a remote (imported)
LogicalDisk.

24.8.14 CIM_LogicalIdentity (StorageVolume) Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = \3\'(\'StorageVolume\').'Associates
local StorageExtent to a remote (imported)
StorageVolume.

24.8.15 CIM_MemberOfCollection (Allocated
Resources)

Mandatory This supports collecting leaf resources. This is
required to support the AllocatedResources
collection.

24.8.16 CIM_MemberOfCollection (Remote
Resources)

Conditional Conditional requirement: This is required if
SNIA_RemoteResources is modeled.This
supports collecting leaf resources. This is
optional when used to support the
RemoteResources collection (the
RemoteResources collection is optional).

24.8.17 CIM_Namespace (Leaf) Conditional Conditional requirement: This is required if
Leaf ObjectManagers are modeled.There
would be one for every namespace supported.

Table 242 - CIM Elements for Cascading

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 209

Cascading Subprofile NO_ANSI_ID
24.8.18 CIM_NamespaceInManager (Leaf) Conditional Conditional requirement: This is required if
Leaf ObjectManagers are modeled.This
associates the namespace to the
ObjectManager

24.8.19 CIM_ObjectManager (Leaf) Optional This is the Object Manager service of the CIM
Server.

24.8.20 CIM_RegisteredProfile (Leaf) Optional A registered profile that is supported by the
CIM Server

24.8.21 CIM_RemoteServiceAccessPoint
(Leaf)

Optional CIM_RemoteServiceAccessPoint represents
the management interface to a leaf system.

24.8.22 CIM_SAPAvailableForElement Conditional Conditional requirement: This is required if
CIM_RemoteServiceAccessPoint is
modeled.Represents the association between
a RemoteServiceAccessPoint and the leaf
System to which it provides access.

24.8.23 CIM_StorageVolume Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = \3\'(\'StorageVolume\').'A remote
StorageVolume that is imported to the
referencing profile.

24.8.24 CIM_SystemDevice (Leaf Devices) Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes =
\3\'|\'4\'|\'7\'(StorageVolume|StorageExtent|Log
icalDisk).'This association links
LogicalDevice remote resources to the
scoping system. This is used to associate the
remote resources with the System that
manages them.

24.8.25 SNIA_AllocatedResources Mandatory This is a SystemSpecificCollection for
collecting leaf resources that have been
deployed for use in the Cascading profile
(e.g., StorageVolumes assigned to a
virtualizer's StoragePool).

24.8.26 SNIA_AllocationService Optional This service provides methods for allocating
and deallocating leaf resources.

24.8.27 SNIA_CascadingCapabilities Mandatory This defines the cascading capabilities
supported by the implementation of the profile.

24.8.28 SNIA_RemoteResources Optional This is a SystemSpecificCollection for
collecting leaf resources that may be allocated
by the system of the Cascading profile (e.g.,
StorageVolumes assigned to a virtualizer's
StoragePool).

Table 242 - CIM Elements for Cascading

Element Name Requirement Description
210

NO_ANSI_ID Cascading Subprofile
24.8.1 CIM_ComputerSystem (Leaf System)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 243 describes class CIM_ComputerSystem (Leaf System).

24.8.2 CIM_Dependency (Object Managers)

CIM_Dependency is an association between an Object Manager of a Leaf System and the Object Manager of the
Cascading System (ComputerSystem). If the Leaf System and the Cascading System are supported by the same
Object Manager, then no Dependency would exist.

CIM_Dependency is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if Leaf ObjectManagers are modeled.

Table 243 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Leaf System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the leaf system. E.g., IP address

ElementName Mandatory User friendly name

OtherIdentifyingInfo C Mandatory

IdentifyingDescription
s

C Mandatory

OperationalStatus Mandatory Overall status of the Leaf system

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to
operation as a leaf system

PrimaryOwnerContac
t

M Optional Contact a details for owner

PrimaryOwnerName M Optional Owner of the Leaf system
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 211

Cascading Subprofile NO_ANSI_ID
Table 244 describes class CIM_Dependency (Object Managers).

24.8.3 CIM_Dependency (Profile to Object Manager)

CIM_Dependency is an association between RegisteredProfile and the Object Manager that provides the
management interface.

CIM_Dependency is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if RegisteredProfiles of Leaf systems are modeled.

Table 245 describes class CIM_Dependency (Profile to Object Manager).

24.8.4 CIM_Dependency (Systems)

CIM_Dependency is an association between a Leaf System and the Cascading System (ComputerSystem). The
specific nature of the dependency is determined by associations between resources of the cascading system and
resources of the leaf system.

CIM_Dependency is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 246 describes class CIM_Dependency (Systems).

Table 244 - SMI Referenced Properties/Methods for CIM_Dependency (Object Managers)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Object Manager of the Cascading System.

Dependent Mandatory The Object Manager of the Leaf System.

Table 245 - SMI Referenced Properties/Methods for CIM_Dependency (Profile to Object Manager)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Leaf Object Manager.

Dependent Mandatory The RegisteredProfile for the Leaf System.

Table 246 - SMI Referenced Properties/Methods for CIM_Dependency (Systems)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Cascading System.

Dependent Mandatory The Leaf System.
212

NO_ANSI_ID Cascading Subprofile
24.8.5 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,ComputerSystem) and their
capabilities (e.g., SNIA_CascadingCapabilities).

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 247 describes class CIM_ElementCapabilities.

24.8.6 CIM_ElementConformsToProfile (Leaf)

CIM_ElementConformsToProfile is the association between the RegisteredProfile of the leaf profile and the system
of the leaf (i.e., leaf ComputerSystem).

CIM_ElementConformsToProfile is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if RegisteredProfiles of Leaf systems are modeled.

Table 248 describes class CIM_ElementConformsToProfile (Leaf).

24.8.7 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Cascading Subprofile, it is used to associate the Allocated Resources to the top level
Computer System of the Cascading Profile.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static

Table 247 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 248 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Leaf)

Properties Flags Requirement Description & Notes

ConformantStandard Mandatory The RegisteredProfile of the leaf system

ManagedElement Mandatory Reference to the top-level system of the leaf profile.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 213

Cascading Subprofile NO_ANSI_ID
Requirement: Mandatory

Table 249 describes class CIM_HostedCollection (Allocated Resources).

24.8.8 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Cascading Subprofile, it is used to associate the Remote Resources to the top level
Computer System of the Cascading Profile.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_RemoteResources is modeled.

Table 250 describes class CIM_HostedCollection (Remote Resources).

24.8.9 CIM_HostedService (Allocation Service)

CIM_HostedService is an association between a Service (SNIA_AllocationService) and the System
(ComputerSystem) on which the functionality resides.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_AllocationService is modeled.

Table 249 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 250 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
214

NO_ANSI_ID Cascading Subprofile
Table 251 describes class CIM_HostedService (Allocation Service).

24.8.10 CIM_HostedService (Object Manager)

CIM_HostedService is an association between a Service (SNIA_AllocationService) and the System
(ComputerSystem) on which the functionality resides.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if Leaf ObjectManagers are modeled.

Table 252 describes class CIM_HostedService (Object Manager).

24.8.11 CIM_LogicalDisk

A remote LogicalDisk that is imported to the referencing profile. If the referencing profile has access to the leaf
profile, the data in this class should reflect what the referencing profile obtains from that profile. If the referencing
profile does not have access to the leaf profile, then this should be filled out as best can be done.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '7' ('LogicalDisk').

Table 253 describes class CIM_LogicalDisk.

Table 251 - SMI Referenced Properties/Methods for CIM_HostedService (Allocation Service)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory >The AllocationService hosted on the System

Table 252 - SMI Referenced Properties/Methods for CIM_HostedService (Object Manager)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 253 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 215

Cascading Subprofile NO_ANSI_ID
DeviceID Mandatory Opaque identifier

ElementName Optional User-friendly name

Name Mandatory OS Device Name

NameFormat Mandatory Format for name

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Table 253 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
216

NO_ANSI_ID Cascading Subprofile
24.8.12 CIM_LogicalIdentity (General)

Associates local resource (e.g., StorageExtent) to a remote (imported) resource (e.g., StorageVolume or
LogicalDisk).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 254 describes class CIM_LogicalIdentity (General).

24.8.13 CIM_LogicalIdentity (LogicalDisk)

Associates local StorageExtent to a remote (imported) LogicalDisk.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '7' ('LogicalDisk').

Table 255 describes class CIM_LogicalIdentity (LogicalDisk).

24.8.14 CIM_LogicalIdentity (StorageVolume)

Associates local StorageExtent to a remote (imported) StorageVolume.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '3' ('StorageVolume').

Table 254 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (General)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the remote (imported) resource.

SameElement Mandatory This is a reference to the local resource that maps to the
remote (imported) resource.

Table 255 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (LogicalDisk)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the remote (imported) LogicalDisk.

SameElement Mandatory This is a reference to the local StorageExtent that maps to
the remote (imported) LogicalDisk.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 217

Cascading Subprofile NO_ANSI_ID
Table 256 describes class CIM_LogicalIdentity (StorageVolume).

24.8.15 CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all resource instances (in the AllocatedResources collection). Each
association is created as a result of the Allocate method or as a side effect of a cascading profile specific operation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 257 describes class CIM_MemberOfCollection (Allocated Resources).

24.8.16 CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all resource instances (in the RemoteResources collection). Each
association (and the RemoteResources collection, itself) is created through external means.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_RemoteResources is modeled.

Table 258 describes class CIM_MemberOfCollection (Remote Resources).

Table 256 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (StorageVolume)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the remote (imported)
StorageVolume.

SameElement Mandatory This is a reference to the local StorageExtent that maps to
the remote (imported) StorageVolume.

Table 257 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated
Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 258 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote
Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory
218

NO_ANSI_ID Cascading Subprofile
24.8.17 CIM_Namespace (Leaf)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if Leaf ObjectManagers are modeled.

Table 259 describes class CIM_Namespace (Leaf).

24.8.18 CIM_NamespaceInManager (Leaf)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if Leaf ObjectManagers are modeled.

Table 260 describes class CIM_NamespaceInManager (Leaf).

Table 259 - SMI Referenced Properties/Methods for CIM_Namespace (Leaf)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

ObjectManagerCreati
onClassName

Mandatory

ObjectManagerName Mandatory

CreationClassName Mandatory

Name Mandatory

ClassType Mandatory

DescriptionOfClassT
ype

Mandatory Mandatory if ClassType is set to 'Other'

ClassInfo Optional Deprecated in the MOF, but required for 1.0 compatibility.

DescriptionOfClassIn
fo

Optional Deprecated in the MOF, but mandatory for 1.0 compatibility.
Mandatory if ClassInfo is set to 'Other'

Table 260 - SMI Referenced Properties/Methods for CIM_NamespaceInManager (Leaf)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 219

Cascading Subprofile NO_ANSI_ID
24.8.19 CIM_ObjectManager (Leaf)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 261 describes class CIM_ObjectManager (Leaf).

24.8.20 CIM_RegisteredProfile (Leaf)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 262 describes class CIM_RegisteredProfile (Leaf).

Table 261 - SMI Referenced Properties/Methods for CIM_ObjectManager (Leaf)

Properties Flags Requirement Description & Notes

Name Mandatory

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

ElementName Mandatory

Description Mandatory

OperationalStatus Mandatory

Started Mandatory

StopService() Optional

Table 262 - SMI Referenced Properties/Methods for CIM_RegisteredProfile (Leaf)

Properties Flags Requirement Description & Notes

InstanceID Mandatory This is a unique value for the profile instance.

RegisteredOrganizati
on

Mandatory This is the official name of the organization that created the
Profile. For SMI-S profiles, this would be SNIA.

OtherRegisteredOrga
nization

Optional
220

NO_ANSI_ID Cascading Subprofile
24.8.21 CIM_RemoteServiceAccessPoint (Leaf)

CIM_RemoteServiceAccessPoint is an instance that provides access information for accessing the actual leaf
profile via a management interface.

CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 263 describes class CIM_RemoteServiceAccessPoint (Leaf).

24.8.22 CIM_SAPAvailableForElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_RemoteServiceAccessPoint is modeled.

RegisteredName Mandatory This is the name assigned by the organization that created
the profile.

RegisteredVersion Mandatory This is the version number of the organization that defined
the profile.

AdvertiseTypes Mandatory Defines the advertisement of this profile. If the property is
null then no advertisement is defined. A value of 1 is used
to indicate 'other' and a 3 is used to indicate 'SLP'

AdvertiseTypeDescri
ptions

Optional This shall not be NULL if 'Other' is identified in
AdvertiseType

Table 263 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Leaf)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
management interface.

SystemName Mandatory The name of the Computer System hosting the
management interface.

CreationClassName Mandatory The CIM Class name of the management interface.

Name Mandatory The unique name of the management interface.

Table 262 - SMI Referenced Properties/Methods for CIM_RegisteredProfile (Leaf)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 221

Cascading Subprofile NO_ANSI_ID
Table 264 describes class CIM_SAPAvailableForElement.

24.8.23 CIM_StorageVolume

A remote StorageVolume that is imported to the referencing profile. If the referencing profile has access to the leaf
profile, the data in this class should reflect what the referencing profile obtains from that profile. If the referencing
profile does not have access to the leaf profile, then this should be filled out as best can be done.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '3' ('StorageVolume').

Table 265 describes class CIM_StorageVolume.

Table 264 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Leaf System

AvailableSAP Mandatory

Table 265 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier

ElementName Optional User-friendly name

Name CD Mandatory The identifier for this volume

OtherIdentifyingInfo CD Optional Additional correlatable names

IdentifyingDescription
s

Optional

NameFormat Mandatory The type of identifier in the Name property.

NameNamespace Mandatory The namespace that defines uniqueness for the
NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.
222

NO_ANSI_ID Cascading Subprofile
24.8.24 CIM_SystemDevice (Leaf Devices)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '3'|'4'|'7' (StorageVolume |
StorageExtent | LogicalDisk).

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Table 265 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 223

Cascading Subprofile NO_ANSI_ID
Table 266 describes class CIM_SystemDevice (Leaf Devices).

24.8.25 SNIA_AllocatedResources

An instance of a default SNIA_AllocatedResources defines the set of remote (leaf) resources that are allocated
and in use by the Cascading Profile.

SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the SNIA_AllocatedResources shall exist for a Profile and shall be hosted by one of the
ComputerSystems of that Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 267 describes class SNIA_AllocatedResources.

24.8.26 SNIA_AllocationService

The SNIA_AllocationService class provides methods for allocating and deallocating remote resources for use in
the Cascading Profile.

The SNIA_AllocationService class is subclassed from CIM_Service.

There may be an instance of the SNIA_AllocationService if Allocation or Deallocation are supported.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the SNIA_CascadingCapabilities.

Created By: Static
Modified By: Static
Deleted By: Static

Table 266 - SMI Referenced Properties/Methods for CIM_SystemDevice (Leaf Devices)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Leaf Computer System that contains this device.

PartComponent Mandatory The logical device that is managed by a computer system.

Table 267 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection
(e.g., AllocatedVolumes).

ElementType Mandatory The type of remote resources collected by the
AllocatedResources collection.

For this version of SMI-S, the only value supported is '3'
(StorageVolume).
224

NO_ANSI_ID Cascading Subprofile
Requirement: Optional

Table 268 describes class SNIA_AllocationService.

24.8.27 SNIA_CascadingCapabilities

An instance of the SNIA_CascadingCapabilities class defines the specific support provided with the
implementation of the Cascading Profile.

There would be zero or one instance of this class in a profile. There would be none if the profile did not support the
Cascading Subprofile. There would be exactly one instance if the profile did support the Cascading Subprofile.

SNIA_CascadingCapabilities class is subclassed from CIM_Capabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 269 describes class SNIA_CascadingCapabilities.

Table 268 - SMI Referenced Properties/Methods for SNIA_AllocationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Allocate() Optional Support for this method is optional. This method allocates
remote (leaf) resources to the AllocatedResources
collection.

Deallocate() Optional Support for this method is optional. This method is used to
remove remote (leaf) resources from the
AllocatedResources collection.

Table 269 - SMI Referenced Properties/Methods for SNIA_CascadingCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

FeaturesSupported Mandatory ValueMap { '2', '3', '4', '5' },

Values {'Ownership', 'Leaf Credentials', 'OM
Dependencies', 'Allocation Service'}
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 225

Cascading Subprofile NO_ANSI_ID
24.8.28 SNIA_RemoteResources

An instance of a default SNIA_RemoteResources defines the set of remote (leaf) resources that are available to be
used by the Cascading Profile.

SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the SNIA_RemoteResources would exist for each Element type for a Profile and shall be hosted
by one of the ComputerSystems of that Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 270 describes class SNIA_RemoteResources.

EXPERIMENTAL

SupportedElementTy
pes

Mandatory For this version of SMI-S, only the value '3'
(StorageVolume) is supported.

ValueMap { '2', '3', '4', '5', '6', '7', '8' },

Values {'Any Type', 'StorageVolume', 'StorageExtent',
'StoragePool', 'ComputerSystem', 'LogicalDisk', 'FileShare'}

SupportedSynchrono
usActions

Mandatory ValueMap { '2', '3' },

Values {'Allocation', 'Deallocation'}

SupportedAsynchron
ousActions

Mandatory ValueMap { '2', '3' },

Values {'Allocation', 'Deallocation'}

Table 270 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection
(e.g., RemoteVolumes).

ElementType Mandatory The type of remote resources collected by the
RemoteResources collection.

For this version of SMI-S, the only value supported is '3'
(StorageVolume).

Table 269 - SMI Referenced Properties/Methods for SNIA_CascadingCapabilities

Properties Flags Requirement Description & Notes
226

NO_ANSI_ID Health Package
STABLE

Clause 25: Health Package

25.1 Description
Failures and abnormal occurrences are a common and expected part of monitoring, controlling, and configuring
devices and applications. A SMI-S client needs to be prepared at all times to trap unexpected situations and take
appropriate action. This package defines the general mechanisms used in the expression of health in SMI-S. This
package does not define the particular way a particular profile, subprofile, or package reports health.

This package builds on the Health and Fault Management (HFM) Clause. In particular, this package defines the
basis of all the sections that currently and will exist in this specification or future versions of same.

25.1.1 Error Reporting Mechanism

Error are reports for many reasons. Not all the reasons are directly related to the operation being imposed on the
implementation by the client. It is therefore necessary for the client to be able to distinguish between errors that are
associated to problems in the formation and invocation of a method, extrinsic or intrinsic, or are related to other
conditions.

The client application may need to reform the method call itself, by fixing parameters for example, or the client may
need to stop what its attempting. At a basic level, the client needs to know that this operation will succeed at all,
given the prevailing conditions on the managed element. A client may also need to notify the end-user of the
situation that is preventing the client from fulfilling its function. A HFM application may need to investigate the
failure and develop a prognosis.

The types of errors are categorized in the three following types.

a) Errors associated to the method call

b) Errors caused by adverse prevailing conditions in the managed element

c) Errors causes by adverse prevailing conditions in the WBEM Server or related, infrastructural compo-
nents

Obviously, the method called may not exist. There may be a spelling mistake for the method name. One or more of
the parameters may be incorrectly formed, expressed, or otherwise invalid. The first type of error, type a, is
designed to inform the client that the operation attempted is still valid, but that the request was faulty. The intent of
such an error is to tell the client what is wrong with the method call and allow the method to be invoked again.

On the other hand, the device or application may be in some failure condition which prevents it from honoring this
particular or several method calls. This type of error, type b, tells the client that the it is unlikely that the method
being attempted will be honored. Specifically, the method execution is blocked by the prevailing condition being
described in the error itself. Given the presence of both type a and type b error situations, the implementation

should report the type b error. In this case, it does not matter how many fixes are made to the method call, the
method call will fail anyway.

The WBEM Service is a separate architectural element from the managed element itself. It can fail, even though
the methods and the managed element itself are without error. For example, the WBEM Server may allow only a
limited number of concurrent connection or request and reject all others. The server may be shutting down or
starting up and thus be unable to process any requests at the time. Unlike type b errors, type c errors are usually
transient in nature. Since a failure in the WBEM Server or its components constitutes a communications failure, the
reporting of type c errors shall take precedence over all other existing error type conditions.

The WBEM Server returns a error response or a results response to the request, which contains the operation
previous mentioned. Errors in WBEM may be reported through two ways. The status code itself provides basic
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 227

Health Package NO_ANSI_ID
failure information. The number of status codes is very limited. Also on conveyed on the error response, is a Error
instance. The Error provides vastly most information than the status code and, as such, is a superior mechanism
for reporting errors.

The CIM Error provides attributes to express the categorization and severity of the error. More importantly, the CIM
Error and AlertIndication, to be discussed later, contain the exact expression of the nature of the error and
additional parameters to that error.

25.1.2 Event Reporting Mechanism

It is not sufficient to simply report the adverse conditions of the device or application through the error reporting
mechanism. Many of the adverse conditions that would be reported to a client application attempting control or
configuration operations are also of interest to client applications monitoring the very same device or application.

The CIM Event model provides a special class for reporting event conditions, AlertIndication. The AlertIndication is
used to report a device or application conditions that may also be represented in one or more other instances.
When the implementation detects the presence of a supported condition, it generates an AlertIndication to those
listening clients.

It is recommended that the type b and type c errors reported in are also be reported through AlertIndications.

25.1.3 Standard Events

The expression of Error or an Alertindication is not entirely meaningful to the SMI-S client without the
standardization. A client can use these classes to determine the category, severity, and some other
characteristics of the event, but the client can not determine the exact nature of the event without this
standardization.

Standard events are registered and this registry is maintained by some organization or company, like SNIA.

Primary event identification and characterization properties:

• OwningEntity
This property defines the registration entity for the event. The entities that are in scope for SMI-S are “DMTF”
and “SNIA”. If the OwningEntity is neither of these, then this specification provides no meaning for this event.

• MessageID
This property defines an event identifier that is unique for the OwningEntity. The combination of the
OwningEntity and MessageID defines the entry in the registry.

• Message
This property contains the message that can be forwarded to the end-user. The message is built from using
the static, MessageFormatString, and dynamic, MessageArguments, components. This text may be
localized. This text is not intended for programmatic processing

• MessageArguments
This property defines the variable content for the message. The client would programmatically process the
arguments to get further details on the nature of the event. For example, the message argument can tell the
client which method parameter has a problem and what the problem is.

• MessageFormatString
This property defines the static component of the message. This property is not included in the event
instance itself and is only present in the event registry.

25.1.4 Reporting Health

Many devices or applications can attempt to fix themselves upon encountering some adverse condition. The set of
components which the device or application can attempt to fix is called the Fault Region. The set may include part
or all of other devices or applications. Having the Fault Regions declared helps a HFM application, acting as a
doctor, to do no harm by attempting to interfere and thereby adversely effect the corrective action being attempted.
228

NO_ANSI_ID Health Package
When components fail or become degraded, they can cause other components to fail or become degraded. For an
HFM application to report or attempt to diagnose the problem, the device or application should express what the
cause and effect relationships are that define the extent of the components affected by the failure or degradation.
The RelatedElementCausingError class provides just such a mechanism.

The cause and effect relationships identified by the RelatedElementCausingError association may be a chain of
cause and effect relationships with many levels. Given that devices or applications are sometimes subject to
several levels of decomposition, each level of may have its own set of these associations that represent the
ranking of cause and effect relationships and their effect on the parent component on the given level.

25.1.5 Computer System Operational Status

For most profiles, the ComputerSystem class is used to define the top or head of the object hierarchy. A profile
may allow for partitioning or clustering by having more than one ComputerSystem, but one ComputerSystem often
represents the device or application representation. In this role, it is important the summary of the health of the
device or application is declared in the ComputerSystem instance.

OperationalStatus is an array. The primary and subsidiary statuses are both OperationalStatus property, and are
summarized in Table 271. If the subsidiary operational status is present in the array, it is intended to provide

Table 271 - OperationalStatus Details

Primary Operational Status Subsidiary Operational
Status

Description

2 “OK” The system has a good status.

2 “OK” 4 “Stressed” The system is stressed, for example the
temperature is over limit or there is too
much IO in progress.

2 “OK” 5 “Predictive Failure” The system will probably fail sometime
soon.

3 “Degraded” The system is operational but not at 100%
redundancy. A component has suffered a
failure or something is running slow.

6 “Error” An error has occurred causing the system
to stop. This error may be recoverable
with operator intervention.

6 “Error” 7 “Non-recoverable error” A severe error has occurred. Operator
intervention is unlikely to fix it.

6 “Error” 16 “Supporting entity in error” A modeled element has failed.

12 “No contact” The provider knows about the array but
has not talked to it since last reboot.

13 “Lost communication” The provider used to be able to
communicate with the array, but has now
lost contact.

8 “Starting” The system is starting up.

9 “Stopping” The system is shutting down.

10 “Stopped” The data path is OK but shut down, the
management channel is still working.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 229

Health Package NO_ANSI_ID
additional clarification to the primary operational status. The implementation shall report one of the above
combinations of statuses. It may also report additional statuses beyond the ones defined in Table 271.

The operational status combinations listed in Table 271 that include descriptions about “provider” (i.e., the CIM
Provider), are only valid in those cases where the implementation of SMI-S employs a proxy provider.

The operational statuses listed in Table 271 shall not be used to report the status of the WBEM Server itself.

EXPERIMENTAL

25.1.6 Event Reporting

The implementation may report Event or AlertIndication instances. The profile, subprofile, or package that includes
this package defines whether or not these events are supported and when the events are produced.

If the support Event or AlertIndication is implemented, then the implementation shall also support the common
messages through both Errors and AlertIndications. This means that the implementation produce the common
event listed in the registry when the condition, also described in the registry, is present.

It is mandatory to report error conditions through both AlertIndication or Lifecycle indication and Error in those
cases where Error is returned when the method call failed for reasons other than the method call itself. For
example, if the device is over heated, then a method call can fail because of this condition. It is expected that the
device will report an over heat AlertIndication to listening clients as well.

25.1.7 Fault Region

If the device or application is itself attempting to rectify an adverse condition reported through a standard error,
then the implementation shall report what corrective action, if any, it is taking. This is necessary to prevent a HFM
application from also trying to rectify the very same condition. An HFM application should avoid a interfering with
ongoing corrective action taken by the device or application itself.

The corrective action may be a process, like hardware diagnostics or volume rebuild. In which case, the above
requirement is fulfilled by expressing the instances representing the process.

The corrective action may be a state change, like reboot. In which case, the above requirement is fulfilled by
expressing the state change in some CIM Instances.

In all cases, the profile, subprofile, or package that includes this package defines the standard events included and
the associated, possible corrective actions taken in response to these events.

25.1.8 RelatedElementCausingError

This package provides a mechanism in which the effect of a component failure on other components can be
reported. the RelatedElementCausingError association defines what components are causing a particular
component to failure or become degraded.

Some effects are more germane to the failure or degradation than others. In other words, there are primary and
second effects. This association provides a mechanism for ranking the effect. The implementing shall provide the
EffectCorrelation property, but it recommended that the implementation also provide the
FailureRelationshipInitiated and Ranking properties

If there are these cause and effect relationships, the RelatedElementCausingError association should be
implemented to report the causes of the failure or degradation.

EXPERIMENTAL
230

NO_ANSI_ID Health Package
25.1.9 HealthState

The HealthState property in LogicalDevice defines the state for a particular component. The OperationalStatus
defines operational status. For example, a disk or port may be taken off-line for service. The component’s health
may still be OK or not OK. The two properties, when used in combination, disambiguate the health of the
component. For example, a OperationStatus of 10 “Stopped” and a HealthState of 30 “Major Failure” means that
the component is off-line and has failed. While a OperationalStatus of 10 “Stopped” and a HealthState of 5 “OK” for
the very same component means that although the component is off-line, the component is still in good working
order.

The HealthState of a component should not represent the health of any other component as well by way of a
summary or aggregate health state. However, if the component is itself relies on other components for its health,
because the component itself is an aggregate of components, then the HealthState may represent a summary
HealthState by side-effect.

HealthState is a mandatory for all system device logical devices that are defined by the profile or subprofile that
includes this package. It is recommended that HealthState is something other than 0 “Unknown”. However, a
component may report “Unknown” after it has reported one of the other HealthStates. When HealthState changes
from 5 “OK”, it is mandatory that a LogicalDevice report some other HealthState (e.g. 30 “Major Failure”) before
reporting 0 “Unknown”. Such a requirement is necessary, so that the client can notice the adverse state change via
polling or indication before the component is no longer responding.

25.2 Health and Fault Management Considerations
Not defined in this standard.

25.3 Cascading Considerations
Not defined in this standard.

25.4 Supported Subprofiles and Packages
Not defined in this standard.

25.5 Client Considerations and Recipes
Not defined in this standard.

Not defined in this standard.

25.6 Registered Name and Version
Health version 1.2.0

25.7 CIM Elements
Table 272 describes the CIM elements for Health.

Table 272 - CIM Elements for Health

Element Name Requirement Description

25.7.1 CIM_ComputerSystem Mandatory

25.7.2 CIM_LogicalDevice Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 231

Health Package NO_ANSI_ID
25.7.1 CIM_ComputerSystem

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 273 describes class CIM_ComputerSystem.

25.7.3 CIM_RelatedElementCausingError Optional

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus[*] <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus[*]

Mandatory CQL -Operational Status change of the device
and application.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Operational Status change
of the device and application.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDevice AND
SourceInstance.CIM_LogicalDevice::HealthSt
ate <>
PreviousInstance.CIM_LogicalDevice::Health
State

Mandatory CQL -Health State change of the logical
component.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDevice AND
SourceInstance.HealthState <>
PreviousInstance.HealthState

Mandatory Deprecated WQL -Health State change of the
logical component.

Table 273 - SMI Referenced Properties/Methods for CIM_ComputerSystem

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory

OperationalStatus Mandatory Overall status of the Host

Table 272 - CIM Elements for Health

Element Name Requirement Description
232

NO_ANSI_ID Health Package
25.7.2 CIM_LogicalDevice

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 274 describes class CIM_LogicalDevice.

25.7.3 CIM_RelatedElementCausingError

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 275 describes class CIM_RelatedElementCausingError.

Table 274 - SMI Referenced Properties/Methods for CIM_LogicalDevice

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

HealthState Mandatory Reports the health of the component beyond the
operational status.

Table 275 - SMI Referenced Properties/Methods for CIM_RelatedElementCausingError

Properties Flags Requirement Description & Notes

FailureRelationshipIn
itiated

Optional Reports the date and time when this cause and effect was
created. The population of this property is
RECOMMENDED.

EffectCorrelation Mandatory Describes the general nature of the cause and effect
correlation.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 233

Health Package NO_ANSI_ID
STABLE

Ranking Optional Describes the order of effect from 1, the highest effect, on.
If there is only one of these associations between two
elements, the ranking shall 1. Once more associations are
added, then it RECOMMENDED that the implementation
assist the client by stating which of the cause and effect
relationship should be reviewed and addressed first. This
property assists a client in accomplishing a triage of known
problems.

Antecedent Mandatory Element causing the failure

Dependent Mandatory

Table 275 - SMI Referenced Properties/Methods for CIM_RelatedElementCausingError

Properties Flags Requirement Description & Notes
234

NO_ANSI_ID Job Control Subprofile
STABLE

Clause 26: Job Control Subprofile

26.1 Description
In some profiles, some or all of the methods described may take some time to execute (longer than a HTTP time-
out). In this case, a mechanism is needed to handle asynchronous execution of the method as a 'Job'.

This subprofile defines the constructs and behavior for job control for SNIA profiles that make use of the subprofile.

Note: The subprofile describes a specific use of the constructs and properties involved. The actual CIM
capability may be more, but this specification clearly states what clients may depend on in SNIA profiles
that implement the Job Control subprofile.

26.1.1 Instance Diagram

A normal instance diagram is provided in Figure 35.

When the Job Control Subprofile is implemented and a client executes a method that executes asynchronously, a
reference to an instance of ConcreteJob is returned and the return value for the method is set to “Method
parameters checked - job started”.

The ConcreteJob instance allows the progress of the method to be checked, and instance Indications can be used
to subscribe for Job completion.

The associations OwningJobElement and AffectedJobElement are used to indicate the service whose method
created the job by side-effect and the element being affected by the job. The job itself may create, modify and/or
delete many elements during its execution. The nature of this affect is the creation or deletion of the instances or
associations or the modification of instance properties. These elements, albeit regular instances or associations,

Figure 35 - Job Control Subprofile Model

Service
(e.g., StorageConfigurationService)

OwningJobElement

ManagedElement
(e.g., StorageVolume)AffectedJobElement

AssociatedJobMethodResult

ConcreteJob

MethodResult
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 235

Job Control Subprofile NO_ANSI_ID
are said to be affected by the job. The elements linked by AffectedJobElement may change through the execution
of the job, and in addition, the job may be associated to more than one Input and/or Output elements or other
elements affected by side-effect. Input and Output elements are those referenced by method parameters of the
same type, input and output parameters respectively.

EXPERIMENTAL

The following set of rules defines the nature of the AffectedJobElement associations for a given job in terms of the
references passed as parameters to the service method that spawned the job. Obviously, the distinction of Input
element from Output element in the following rules only makes sense if these parameters are not both Input and
Output elements.

• If all Elements created by the method exists immediately upon the return from the method, then
AffectedJobElement shall reference the Output Element.

• If the Output Element, one or more, does not exist until the job has completed, the AffectedJobElement shall
reference the Input Element until the job completes, at which time AffectedJobElement shall then reference
the Output Element instead.

• In the event the job fails and the Output Element created during the job and referenced by
AffectedJobElement is no longer available, AffectedJobElement shall revert to referencing the Input Element.

• If the method affects elements without referencing elements as Output parameters, then the
AffectedJobElement Association shall reference the Input element, one or more.

• If the method only modifies the elements referenced with method parameters, then the AffectedJobElement
association references the modified elements. Elements modified by the job shall be reference by this
association.

• If the method affects elements but references no elements as either Input or Output parameters or the only
Input elements referenced are those of the elements to be deleted, then AffectJobElement associations shall
exist to other elements that are affected by the job.

• Other elements whose references are not used in the method invocation, but that are created or modified by
side-effect of the job’s execution shall be associated to the job via the AffectJobElement association, but may
cease to be associated once the job has finished execution.

The lifetime of a completed job instance, and thus the AffectedJobElement association to the appropriate Element
is currently implementation dependent. However, the set of AffectedJobElement associations to Input and Output
element present when the job finishes execution shall remain until the job is deleted.

26.1.2 MethodResult

Jobs are produced by side effect of the invocation of an extrinsic method. Reporting the resulting Job is the
purpose of this subprofile. The MethodResult class is used to report the extrinsic method called and the
parameters passed to the method. In this way, third party observers of a CIMOM can tell what the job is and what
it is doing. A MethodResult instance contains the LifeCycle indications that have been or would have been
produced as the result of the extrinsic method invocation. That is, the instance contains the indications whether or
not there were the appropriate indication subscription at the time the indication were produced.

A client may fetch the method lifecycle indication produced when the method was called from the PreCallIndication
attribute. This indication, an instance of InstMethodCall, contains the input parameters provided by the client that
called the method.

A client may fetch the method lifecycle indication produced once the method execution was completed from the
PostCallIndication. This indication contains the input parameters provided by the client that called the method and
236

NO_ANSI_ID Job Control Subprofile
output parameters returned by the method implementation. Parameters that are both input and output parameters
will contain the output parameter provided by the method implementation.

EXPERIMENTAL

26.1.3 OperationalStatus for Jobs

 The OperationalStatus property is used to communicate that status of the job that is created. As such, it is critical
that implementations are consistent in how this property is set. The values that shall be supported consistently are:

• 2 “OK” - combined with 17 “Completed” to indicate that the job completed with no error.

• 6 “Error” - combined with 17 “Completed” to indicate that the job did not complete normally and that an error
occurred.

• 10 “Stopped” implies a clean and orderly stop.

• 17 “Completed” indicates the Job has completed its operation. This value should be combined with either 2
“OK” or 6 “Error, so that a client can tell if the complete operation passed (Completed with OK), and failure
(Completed with Error).

26.1.4 JobState for Jobs

The JobState property is used to communicate Job specific states and statuses.

• 2 “New” - Job was created but has not yet started

• 3 “Starting” - Job has started

• 4 “Running” - Job is current executing

• 5 “Suspended” - Job has been suspended. The Job may be suspended for many reasons like it has been
usurped by a higher priority or a client has suspended it (not described within this subprofile).

• 6 “Shutting Down” - Job is completing its work, has been terminated, or has been killed. The Job may be
cleaning up after only having completed some of its work.

• 7 “Completed” - Job has completed normally, its work has been completed successfully.

• 8 “Terminated” - Job has been terminated

• 9 “Killed” - Job has been aborted. The Job may not cleanup after itself.

• 10 “Exception” - Job failed and is in some abnormal state. The client may fetch the error conditions from the
job. See 26.5.2.

Table 276 maps the standard mapping between the OperationalStatus and JobState properties on ConcreteJob.
The actual values of the properties are listed in Table 276with the associated value from the property’s ValueMap
qualifier.

Table 276 - OperationalStatus to Job State Mapping

OperationalStatus JobState Job is

2 “OK”, 17 “Completed” 7 “Completed” Completed normally

6 “Error”, 17 “Completed” 10 “Exception” Completed abnormally

10 “Stopped” 8 “Terminated” Terminated
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 237

Job Control Subprofile NO_ANSI_ID
26.1.5 Determining How Long a Job Remains after Execution

The Job shall report how long it will remain after it has finished executing, fails on its own, is terminated, or is killed.
The TimeBeforeRemoval attribute reports a datetime offset.

The TimeBeforeRemoval and DeleteOnCompletion attributes are related. If the DeleteOnCompletion is FALSE,
then the Job shall remain until is it explicitly deleted. If the DeleteOnCompletion is TRUE, then the Job shall exist
for the length of time specified in the TimeBeforeRemoval attribute. An implementation may not support the setting
of the DeleteOnCompletion attribute because it does not support the client modifying the Job instance.

The amount of time specified in the TimeBeforeRemoval should be five or more minutes. This amount of time
allows a client to recognize that the Job has failed and retrieve the Error.

26.2 Health and Fault Management
The implementation should report CIM Errors from the ConcreteJob.GetError() method. See Clause 25: Health
Package for details.

EXPERIMENTAL

The standards messages specific to this profile are listed in Table 277. See Clause 9: Standard Messages in
Storage Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6 for a description of
standard messages and the list all standard messages

EXPERIMENTAL

6 “Error” 9 “Killed” Aborted / Killed

2 “OK” 4 “Running” Executing

15 “Dormant” 2 “New” Created but not yet executing

2 “OK”, 8 “Starting” 3 “Starting” Starting up

2 “OK” 5 “Suspended” Suspended

2 “OK”, 9 “Stopping” 6 “Shutting Down” Terminated and potentially
cleaning up

6 “Error” 6 “Shutting Down” Killed and is aborting

Table 277 - Standard Message for Job Control Subprofile

Message ID Message Name

DRM22 Job failed to start

DRM23 Job was halted

Table 276 - OperationalStatus to Job State Mapping

OperationalStatus JobState Job is
238

NO_ANSI_ID Job Control Subprofile
26.3 Cascading Considerations
Not defined in this standard.

26.4 Support Subprofiles and Packages
Not defined in this standard.

26.5 Methods of the Profile

26.5.1 Job Modification

A Job instance may be modified. The DeleteOnCompletion and TimeBeforeRemoval properties are writable. If the
intrinsic ModifyInstance method is supported, then the setting of both attributes shall be supported.

EXPERIMENTAL

26.5.2 Getting Error Conditions from Jobs

uint32 GetError(
[Out, EmbeddedObject] string Error);

This method is used to fetch the reason for the job failure. The type of failure being report is when a Job stops
executing on its own. That is, the Job was not killed or terminated. An Embedded Object, encoded in a string,
shall returned if the method is both supported and the job has failed. The Job shall report the 10 “Exception” status
when the Job has failed on its own.

The GetError method should be supported.

The Error string contains a Error instance. See Clause 25: Health Package for details on how to process this CIM
Instance.

EXPERIMENTAL

26.5.3 Suspending, Killing or Terminating a Job

A Job may be suspended, terminated or killed. Suspending a Job means that the Job will not be executing and be
suspended until it is resumed. Terminating a job means to request that the Job stop executing and that the Job
clean-up its state prior to completing. Killing a job means to request that the Job abort executing, usually meaning
there is little or no clean-up of Job state.

uint32 RequestStateChange(
[In] RequestedState,
[In] TimeoutPeriod);

A client may request a state change on the Job.

• RequestedState - The standard states that can requested are “Start”, “Suspend”, “Terminate”, “Kill”, “Service”.
A new Job may be started. A suspended Job may be resumed, using the “Started” requested status. A
executing Job may be suspended, terminated, or killed. A new or executing Job may be put into the “Service”
state. The “Service” state is vendor specific. An implementation can indicate what state transitions are
supported by not returning the 4 098 “Invalid State Transition” return code

• TimeoutPeriod - The client the state transition to occur within the specified amount of time. The
implementation may support the method but not this parameter.

Return codes:
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 239

Job Control Subprofile NO_ANSI_ID
• 0 “Completed with No Error”

• 1 “Not Supported” - The method is not supported

• 2 “Unknown/UnSpecified Error” - Failure for some vendor specific reason

• 3 “Can not complete within Timeout Period” - The requested amount of time is less than how long the
requested state transition takes

• 4 “Failed”

• 5 “Invalid Parameters” - The parameters are incorrect

• 6 “In Use” - Another client has requested a state change that has not completed

• 4 096 “Method Parameters Checked - Transition Started” - The method can return before the state transition
completes. This error code tells that calling that this situation has occurred

• 4 097 “Invalid State Transition” - The state change requested is invalid for the current state. 4 098 “Use of
Timeout Parameter Not Supported” - This implementation does not support the TimeoutPeriod parameter. A
client may pass a NULL for the TimeoutPeriod and try again. There is no mechanism to determine what state
changes are supported by a particular implementation. Such a mechanism is planned for a future version of
this specification.

• 4 099 “Busy” - A state change is underway in the Job and, as such, the state can not be changed. An
implementation may use this return code to indicate the job can not be suspended, killed, or terminated at all or
in the current phase of execution

26.6 Client Considerations and Recipes
If the operation will take a while (longer than an HTTP timeout), a handle to a newly minted ConcreteJob is
returned. This allows the job to continue in the background. Note a few things:

• The job is associated to the Service via OwningJobElement and is also linked to the object being modified/
created via AffectedJobElement. For example, a job to create a StorageVolume may start off pointing to a Pool
until the Volume is instantiated at which point the association would change to the StorageVolume.

• These jobs do not have to get instantiated! If the method completes quickly, a null can be returned as a handle,
as illustrated in Figure 36.

• It may take some time before the Job starts.

• A Job may be terminated or killed.

• Jobs may be modified.

• Jobs may be restarted.
240

NO_ANSI_ID Job Control Subprofile
26.7 Registered Name and Version
Job Control version 1.3.0

26.8 CIM Elements
Table 278 describes the CIM elements for Job Control.

Figure 36 - Storage Configuration

Table 278 - CIM Elements for Job Control

Element Name Requirement Description

26.8.1 CIM_AffectedJobElement Mandatory

26.8.2 CIM_AssociatedJobMethodResult Mandatory

26.8.3 CIM_ConcreteJob Mandatory

26.8.4 CIM_MethodResult Mandatory

26.8.5 CIM_OwningJobElement Mandatory

Cluster

StorageSystem

StorageConfigurationService

ConcreteJob

StoragePool

StorageVolume

AffectedJobElement

OwningJobElement

AffectedJobElement

Describes range of
capabilities of Pools/Volumes
that can be created
with the Service

StorageCapabilities

Element
Capabilities

HostedService
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 241

Job Control Subprofile NO_ANSI_ID
SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.CIM_ConcreteJob::JobStatus
<>
PreviousInstance.CIM_ConcreteJob::JobStat
us

Optional CQL -Deprecated. Modification of Job Status
for a Concrete Job

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.JobStatus <>
PreviousInstance.JobStatus

Optional Deprecated WQL -Deprecated: Modification of
Job Status for a Concrete Job

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.CIM_ConcreteJob::PercentC
omplete <>
PreviousInstance.CIM_ConcreteJob::Percent
Complete

Mandatory CQL -Modification of Percentage Complete for
a Concrete Job

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.PercentComplete <>
PreviousInstance.PercentComplete

Mandatory Deprecated WQL -Modification of Percentage
Complete for a Concrete Job

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND ANY
SourceInstance.CIM_ConcreteJob::Operation
alStatus[*] = 17 AND ANY
SourceInstance.CIM_ConcreteJob::Operation
alStatus[*] = 2

Mandatory CQL -Modification of Operational Status for a
Concrete Job to 'Complete' and 'OK'

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.OperationalStatus = 17 AND
SourceInstance.OperationalStatus = 2

Mandatory Deprecated WQL -Modification of Operational
Status for a Concrete Job to 'Complete' and
'OK'

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND ANY
SourceInstance.CIM_ConcreteJob::Operation
alStatus[*] = 17 AND ANY
SourceInstance.CIM_ConcreteJob::Operation
alStatus[*] = 6

Mandatory CQL -Modification of Operational Status for a
Concrete Job to 'Complete' and 'Error'

Table 278 - CIM Elements for Job Control

Element Name Requirement Description
242

NO_ANSI_ID Job Control Subprofile
26.8.1 CIM_AffectedJobElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 279 describes class CIM_AffectedJobElement.

26.8.2 CIM_AssociatedJobMethodResult

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.OperationalStatus = 17 AND
SourceInstance.OperationalStatus = 6

Mandatory Deprecated WQL -Modification of Operational
Status for a Concrete Job to 'Complete' and
'Error'

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.CIM_ConcreteJob::JobState
<>
PreviousInstance.CIM_ConcreteJob::JobStat
e

Mandatory CQL -Modification of Job State for a Concrete
Job

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.JobState <>
PreviousInstance.JobState

Mandatory Deprecated WQL -Modification of Job State
for a Concrete Job

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ConcreteJob

Mandatory Creation of a ConcreteJob

Table 279 - SMI Referenced Properties/Methods for CIM_AffectedJobElement

Properties Flags Requirement Description & Notes

AffectedElement Mandatory The ManagedElement affected by the execution of the Job.

AffectingElement Mandatory The Job that is affecting the ManagedElement.

Table 278 - CIM Elements for Job Control

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 243

Job Control Subprofile NO_ANSI_ID
Table 280 describes class CIM_AssociatedJobMethodResult.

26.8.3 CIM_ConcreteJob

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 281 describes class CIM_ConcreteJob.

Table 280 - SMI Referenced Properties/Methods for CIM_AssociatedJobMethodResult

Properties Flags Requirement Description & Notes

Job Mandatory The Job that has parameters.

JobParameters Mandatory The parameters for the method which by side-effect
created the Job.

Table 281 - SMI Referenced Properties/Methods for CIM_ConcreteJob

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Name Mandatory The user-friendly name for this instance of Job. In addition,
the user-friendly name can be used as a property for a
search or query. (Note: Name does not have to be unique
within a namespace.)"

OperationalStatus Mandatory Describes whether the Job is running or not.

JobStatus Optional Add additional detail beyond OperationalStatus about the
runtime status of the Job. This property is free form and
vendor specific.

JobState Mandatory Add additional detail beyond the OperationalStatus about
the runtime state of the Job.

ElapsedTime Optional The time interval that the Job has been executing or the
total execution time if the Job is complete.

PercentComplete Mandatory The percentage of the job that has completed at the time
that this value is requested. Optimally, the percentage
should reflect the amount of work accomplished in relation
to the amount of work left to be done. 0 percent complete
means that the job has not started and 100 percent
complete means the job has finished all its work. However,
in the degenerate case, 50 percent complete means that
the job is running and may remain that way until the job
completes.
244

NO_ANSI_ID Job Control Subprofile
26.8.4 CIM_MethodResult

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

DeleteOnCompletion Mandatory Indicates whether or not the job should be automatically
deleted upon completion. If this property is set to false and
the job completes, then the extrinsic method
DeleteInstance shall be used to delete the job versus
updating this property. Even if the Job is set to delete on
completion, the job shall remain for some period of time,
see GetError() method.

ErrorCode Optional A vendor specific error code. This is set to zero if the job
completed without error.

ErrorDescription Optional A free form string containing the vendor error description.

TimeBeforeRemoval Mandatory The amount of time the job will exist after the execution of
the Job if DeleteOnCompletion is set to FALSE. Jobs that
complete successfully or fail shall remaining for at least this
period of time before being removed from the model
(CIMOM).

GetError() Mandatory This method is used to retrieve the error that caused the
Job to fail. The Job shall remain in the model long enough
to allow client to a) notice that the job was stopped
executing and b) to retrieve the error using this method.
There are not requirements for how long the job must
remain; however, it is suggested that the Job remain for at
least five minutes. JobStatus=10 (Exception) tell the client
that the job failed and this method can be called to retrieve
the reason why embedded in the CIM_Error, see GetError()
method.

RequestStateChange
()

Optional This method changes the state of the job. The client may
suspend, terminate, or shutdown the job. To terminate a job
means to request a clean shutdown of the job, have it finish
some portion of it's work and terminate or to roll back the
changes done by the job to date. The implement can make
the choice which behavior. To kill a job means to abort the
job, perhaps leaving some element of the work partially
done and in an unknown state.

Table 281 - SMI Referenced Properties/Methods for CIM_ConcreteJob

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 245

Job Control Subprofile NO_ANSI_ID
Table 282 describes class CIM_MethodResult.

26.8.5 CIM_OwningJobElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 283 describes class CIM_OwningJobElement.

STABLE

Table 282 - SMI Referenced Properties/Methods for CIM_MethodResult

Properties Flags Requirement Description & Notes

InstanceID Mandatory

PreCallIndication Mandatory Contains a copy of the CIM_InstMethodCall produced
when the configuration or control change method was
called. This Embedded Instance shall contain the
configuration or control change extrinsic method name
(MethodName) and parameters (MethodParameters).

PostCallIndication Mandatory Contains a copy of the CIM_InstMethodCall produced
when the configuration or control change method has
completed execution and control was returned to the client.
This Embedded Instance shall contain the configuration or
control change extrinsic method name (MethodName) and
parameters (MethodParameters).

Table 283 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwningElement Mandatory The ManagedElement responsible for the creation of the
Job. (e.g., StorageConfigurationService)

OwnedElement Mandatory The Job created by the ManagedElement.
246

NO_ANSI_ID Location Subprofile
STABLE

Clause 27: Location Subprofile

27.1 Description
Associated with product information, a PhysicalPackage may also have a location. This is indicated using an
instance of a Location class and the PhysicalElementLocation association.

27.1.1 Instance Diagram

Figure 37 illustrates a typical instance diagram.

27.2 Health and Fault Management Considerations
Not defined in this standard.

27.3 Cascading Considerations
Not defined in this standard.

27.4 Supported Subprofiles and Packages
None.

27.5 Methods of the Profile
None.

27.6 Client Considerations and Recipes
None

Figure 37 - Location Instance

PhysicalPackage

Location

PhysicalElementLocation
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 247

Location Subprofile NO_ANSI_ID
27.7 Registered Name and Version
Location version 1.3.0

27.8 CIM Elements
Table 284 describes the CIM elements for Location.

27.8.1 CIM_Location

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 285 describes class CIM_Location.

27.8.2 CIM_PhysicalElementLocation

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 284 - CIM Elements for Location

Element Name Requirement Description

27.8.1 CIM_Location Mandatory

27.8.2 CIM_PhysicalElementLocation Mandatory Associates the location to package

Table 285 - SMI Referenced Properties/Methods for CIM_Location

Properties Flags Requirement Description & Notes

Name Mandatory A free-form string defining a label for the Location.

PhysicalPosition Mandatory A free-form string indicating the placement of a
PhysicalElement.

ElementName Optional User-friendly name.

Address Optional A free-form string indicating a street, building or other type
of address for the PhysicalElement's Location.
248

NO_ANSI_ID Location Subprofile
Table 286 describes class CIM_PhysicalElementLocation.

STABLE

Table 286 - SMI Referenced Properties/Methods for CIM_PhysicalElementLocation

Properties Flags Requirement Description & Notes

Element Mandatory

PhysicalLocation Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 249

Location Subprofile NO_ANSI_ID
250

NO_ANSI_ID Extra Capacity Set Subprofile
DEPRECATED

Clause 28: Extra Capacity Set Subprofile

The functionality of the Extra Capacity Set Subprofile has been replaced by the Clause 30: Multiple Computer
System Subprofile.

The Extra Capacity Set Subprofile is defined in section B.8 of SMI-S 1.0.2.

DEPRECATED
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 251

Extra Capacity Set Subprofile NO_ANSI_ID
252

NO_ANSI_ID Cluster Subprofile
DEPRECATED

Clause 29: Cluster Subprofile

The functionality of the Cluster Subprofile has been subsumed by Clause 30: Multiple Computer System
Subprofile.

The Cluster Subprofile is defined in section 7.3.3.3 of SMI-S 1.0.2. Any instrumentation that complies to the
Multiple Computer System Subprofile defined in this specification may also claim compliance to that version of the
Cluster Subprofile and may register as both a 1.1.0 Multiple Computer System Subprofile and 1.0.2 Cluster
Subprofile.

DEPRECATED
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 253

Cluster Subprofile NO_ANSI_ID
254

NO_ANSI_ID Multiple Computer System Subprofile
STABLE

Clause 30: Multiple Computer System Subprofile

30.1 Description
The Multiple Computer System Subprofile models multiple systems that cooperate to present a “virtual” computer
system with additional capabilities or redundancy. This virtual aggregate system is sometimes referred to as a
cluster. and is illustrated in Figure 38.

The general pattern for the redundancy aspect of Multiple Systems uses an instance of RedundancySet to
aggregate multiple “real” ComputerSystem instances (labeled RCS0 and RCS1 in the diagram). Another
ComputerSystem instance (TCS0) is associated to the RedundancySet instance using a ConcreteIdentity
association and is associated to the real ComputerSystems using ComponentCS.

30.1.1 Top Level System

The top (“virtual”) system in this diagram (labeled TCS0) is referred to as the Top Level System. Note that for
single-system configurations, the top-level system is the only system. Top-level systems have characteristics
different from the underlying ComputerSystem instances.

The Top Level System is associated to the registered profile described in Clause 42: Server Profile. Other elements
such as LogicalDevices (ports, volumes), ServiceAccessPoints, and Services are associated to the top-level
system if these elements are supported by multiple underlying systems (for example, the underlying systems
provide failover and/or load balancing). Alternatively, elements can be associated to an underlying system if that
system is a single point of failure. For example, a RAID array may associate StorageVolume instances to a top-
level system since these are available when one underlying system (RAID controller) fails, all the port elements are
associated to one underlying system because the ports become unavailable when this system fails.

The Dedicated property is required for top-level systems. Each profile defines the values that are appropriate for
Dedicated.

Figure 38 - Two Redundant Systems Instance Diagram

Top-level System
included in profile

RCS0: ComputerSystem

RedundancySet

ConcreteIdentity

TCS0: ComputerSystem

RCS1: ComputerSystem

MemberOfCollection MemberOfCollection

ComponentCS ComponentCS
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 255

Multiple Computer System Subprofile NO_ANSI_ID
30.1.2 Non-Top-Level Systems

Each ComputerSystem instance shall have a unique Name property. For non-top-level systems, Name may be
vendor-unique; in which case, NameFormat shall be set to “Other”.

ComputerSystem.Dedicated should not be used in non-top-level systems.

Non-top-level systems shall not be associated to registered profiles or subprofiles.

Each non-top-level ComputerSystem shall be associated to the top-level system using ComponentCS. Note that
non-top-level systems may not be members of a RedundancySet. For example, a top-level system may be
associated to a RedundancySet with two systems as described in Figure 38 and also associated via
ComponentCS to another Computer (not a member of a RedundancySet) representing a service processor.

30.1.3 Types of RedundancySets

The TypeOfSet property of RedundancySet is a list describing the types of redundancy. Its values are summarized
in Table 287.

Table 287 - Redundancy Type

Redundancy
Type

Description

N+1 All ComputerSystems are active, are unaware and function independent of one
another. However, there exists at least one extra ComputerSystem to achieve
functionality.

Load Balanced All computer systems are active. However, their functionality is not independent
of each other. Their functioning is determined by some sort of load balancing
algorithm (implemented in hardware and/or software). 'Sparing' is implied (i.e.
each computer system can be a spare for the other(s).

Sparing All computer systems are active and are aware of each other. However, their
functionality is independent until failover. Each computer system can be a spare
for the other(s).

Limited Sparing All members are active, and they may or may not be aware of each and they are
not spares for each other. Instead, their redundancy is indicated by the IsSpare
relationship.

Other/Unspecified The relationship between the computer systems is not specified.
256

NO_ANSI_ID Multiple Computer System Subprofile
30.1.4 Multiple Tiers of Systems

The diagram above describes two tiers of systems; the real systems (labeled RCS0 and RCS1) in the lower tier are
aggregated into a top-level system (TCS0) in the upper tier. There may be more than two tiers, as depicted in
Figure 39.

The systems in the bottom tier (RCS0-RCS3) represent "real" systems.

RedundancySet.TypeOfSet can be used as part of multiple tier configurations to describe different types of
redundancy at different tiers. For example, a virtualization system has four controllers that operate in pairwise
redundancy. This could be modeled using the model in the diagram above and setting TypeOfSet in the top
RedundancySet to “N+1” and setting TypeOfSet to “LoadBalancing” in the lower two RedundacySets.

30.1.5 Associations between ComputerSystems and other Logical Elements

SystemDevice associates device (subclasses of LogicalDevice such as LogicalPort or StorageVolume) and
ComputerSystem instances. The cardinality of SystemDevice is one-to-many; a LogicalDevice may be associated
with one and only one ComputerSystem. If the device availability is equivalent to that of the top-level system, it
shall be associated to the top-level system via SystemDevice. If the device may become unavailable while the
system as a whole remains available, the device shall be associated to a non-top-level system that has availability
equivalent to the device. This system could be a real system or a system in an intermediate tier (representing some
redundancy less than full redundancy).

This same approach shall be used for all other logical CIM elements with associations to systems. For example,
HostedService and HostedAccessPoint shall associate elements (services, access points, and protocol endpoints)
to the ComputerSystem with availability to the element.

Based on the arrangement of systems in figure 31, associations from systems to service and capabilities classes
shall not be lower than associations to other classes. For the purpose of formally stating this rule, each
ComputerSystem is assigned a level number. The profile's top-level ComputerSystem has level number 0. The
ComputerSystem instances that are members of RedundancySets associated via ConcreteIdentity to the top-level
system have level number 1. The members of redundancy sets associated to the level number 1 systems via
ConcreteIdentity have level number 2. In general, the ComputerSystem members of redundancy sets associated
to the level number n systems via ConcreteIdentity have level number n+1. The level of non-system objects is the
level of the ComputerSystem instance associated to the object via associations such as SystemDevice,
HostedAccessPoint, HostedService, or ElementCapabilities.

Figure 39 - Multiple Redundancy Tier Instance Diagram

RCS0: ComputerSystem

RedundancySet

ConcreteIdentity

ComputerSystem

RCS1: ComputerSystem

MemberOf
Collection

MemberOf
Collection

RCS2: ComputerSystem

RedundancySet

ConcreteIdentity

ComputerSystem

RCS3: ComputerSystem

MemberOf
Collection

MemberOf
Collection

RedundancySet

ConcreteIdentity

TCS0: ComputerSystem

MemberOf
Collection

Component
CS
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 257

Multiple Computer System Subprofile NO_ANSI_ID
Figure 40 demonstrates these system level numbers using the same configuration from Figure 39. Note that
ComponentCS diagrams are omitted from this diagram to avoid clutter.

All subclasses of CIM_Service and CIM_Capabilities shall have a level number less than or equal to the level
number of storage classes (ports, volumes, etc.) that are influenced by the properties and methods of the Service
and Capabilities classes. In some cases, different storage classes are influenced by different Service or
Capabilities classes; the “level number less than or equal to” requirement may apply differently to different Service/
Capabilities classes. It is always valid to associate Service and Capabilities classes to the top-level
ComputerSystem since the level number of the top-level system (0) is always less than or equal to the level
number of any other system.

Example 1 - An array with two controllers is modeled as a top-level ComputerSystem with real systems
representing the controllers. The system’s storage volumes remain available when one controller fails, but each
LogicalPort becomes unavailable when a controller fails. The StorageVolumes should be associated to the top-
level ComputerSystem and the LogicalPorts should be associated to one of the real ComputerSystems.
Example 2 - An array with four pair-wise redundant controllers. Each LogicalPort is associated with a pair of
controllers - if one controller in a pair fails, the port is still accessible through the alternate controller. This
corresponds to Figure 39; the ports should be associated with one of the ComputerSystems in the middle tier.
A provider shall delete and create associations between ComputerSystems and logical elements (e.g., ports,
logical devices) during failover or failback to represent changes in availability. This includes SystemDevice,
HostedAccessPoint, HostedService, or HostedFileSystem associations (and other associations weak to systems).
The effect of the creation and deletion of associations is to switch these elements from one ComputerSystem to
another. The profiles that include Multiple Computer System Subprofile shall specify the affected associations and
indications for creation and deletion of these associations.

30.1.6 Associations between ComputerSystems and PhysicalPackages and Products

The relationship between ComputerSystems, PhysicalPackages, and Products is defined in the Physical Package
Package (see Clause 32: Physical Package Package) which may be required by the profile including the Multiple
Computer System Subprofile. Typically, the top-level system is associated to a PhysicalPackage which is
associated to a Product. Non-top-level systems may also be associated to PhysicalPackage and indirectly to a

Figure 40 - System Level Numbers

RCS0: ComputerSystem

RedundancySet

ConcreteIdentity

ComputerSystem

RCS1: ComputerSystem

MemberOf
Collection

MemberOf
Collection

RCS2: ComputerSystem

RedundancySet

ConcreteIdentity

ComputerSystem

RCS3: ComputerSystem

MemberOf
Collection

MemberOf
Collection

RedundancySet

ConcreteIdentity

TCS0: ComputerSystem

MemberOf
Collection

Level 0 System

Level 2 Systems

Level 1 System Level 1 System
258

NO_ANSI_ID Multiple Computer System Subprofile
Product. If all underlying ComputerSystems share the same physical package, a single PhysicalPackage should
be associated to the upper ComputerSystem.

The relationships between ComputerSystems, redundancy sets, and CIM logical elements serve as a redundancy
topology - informing the client of the availability of subsets of logical elements. The relationships between
PhysicalPackages and logical elements serve as a physical topology. These two topologies need not be
equivalent. Consider these examples:

Example 1: a RAID array with a single controller (no redundancy); the controller and all backend disks are housed
in a single chassis. This is modeled as a single ComputerSystem, no RedundancySets, no ComponentCS
associations, and a single PhysicalPackage with a single associated Product.

Example 2: a RAID array with two redundant controllers; both controllers and all backend disks share a single
chassis. In this case, the redundancy topology matches Figure 38. The top-level ComputerSystem is associated to
a PhysicalPackage with a single associated Product.

Example 3: two arrays described in example 1 are assembled as part of common rack and sold as a single
product. Note that although there are two controllers, there is no redundancy - the two controllers act completely
independently. This is modeled as two top-level computer systems attached to separate PhysicalPackages
(representing the two internal chassis); These two PhysicalPackages have a Container association to third
PhysicalPackage representing the assembly - which has an association to a Product.

Example 4: two arrays described in Example 1 are assembled as part of a common rack and also share a high-
speed trunk and a mutual failover capability. This failover capability means the two controllers share a
RedundancySet and common top-level system. The result is similar to example 2, but each real ComputerSystem
is now associated to separate PhysicalPackages which have Contiainer associations to a common
PhysicalPackage.

30.1.7 Storage Systems without Multiple Systems

In configurations where the instrumentation does not model multiple ComputerSystem instances, all the
associations described above reference the one and only ComputerSystem.

30.1.8 Durable Names and Correlatable IDs of the Subprofile

This subprofile does not impose any requirements on names. The requirements for ComputerSystem names are
defined in the profiles that depend on Multiple Computer System Subprofile and in Storage Management Technical
Specification, Part 1 Common Architecture, 1.3.0 Rev 6 Clause 7: Correlatable and Durable Names. Clients should
not expect that a network name or IP address is exposed as a ComputerSystem property. The Access Points
subprofile should be used to model a network access point.

30.2 Health and Fault Management Considerations
The requirements for OperationalStatus of a ComputerSystem are discussed in Clause 25: Health Package.

30.3 Cascading Considerations
None
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 259

Multiple Computer System Subprofile NO_ANSI_ID
30.4 Supported Subprofiles and Packages
Table 288 describes the supported profiles for Multiple Computer System.

30.5 Methods of the Profile
This subprofile does not include any extrinsic methods. A client may use this subprofile to discover information
about the topology of computer systems, but cannot change the topology.

30.6 Client Considerations and Recipes
A client cannot generally, interoperably navigate the redundancy topology using ComponentCS because some
Component CS associations may not parallel RedundancySet associations. But a client may use ComponentCS
selectively to speed up certain tasks. In particular, a client may locate the top-level system from other
ComputerSystems using ComponentCS.

30.6.1 Find Top-level Computer Systems

Top-level systems are the only objects in SMI-S associated to RegisteredProfile via ElementConformsToProfile.
(See 43.5.5.)

30.6.2 Find the Top-level Computer System for any LogicalDevice

/

// DESCRIPTION:

// Find the Top-level Computer System for any CIM_LogicalDevice

//

// Preconditions:

// $Device - Reference the LogicalDevice

//

// Find Systems associated to $Device

$Systems->[] = AssociatorNames($Device->, // ObjectName

 “CIM_SystemDevice”, // AssocClass

 “CIM_System”, // ResultClass

 “PartComponent”, // Role

 “GroupComponent”) // ResultRole

if ($Systems == null || $Systems->[].size != 1) {

 <ERROR! must be exactly one ComputerSystem Associated via

 SystemDevice to each LogicalDevice instance>

}

// System->[0] is the associated system; see if it’s the

// top-level system for the scoping profile. All ComponentCS

// association GroupComponent references must refer to the

Table 288 - Supported Profiles for Multiple Computer System

Registered Profile Names Mandatory Version

Storage Server Asymmetry No 1.2.0
260

NO_ANSI_ID Multiple Computer System Subprofile
// profile’s top-level system.

$UpperSystems->[] = AssociatorNames($System->[0],

“CIM_ComponentCS”,// AssocClass

“CIM_ComputerSystem”,// ResultClass

“PartComponent”,// Role

“GroupComponent”) // ResultRole

if ($UpperSystems != null && $UpperSystems->[].size > 1) {

// The restriction below is a characteristic of this subprofile

// and matches the DMTF Partinion white paper.

 <ERROR! must be no more than one ComputerSystem Associated

 via ComponentCS to each LogicalDevice instance>

}

// If an upper system was found, it must be the top-level

// system; if not, then the system associated to the device

// must be the top-level system

if ($UpperSystems->[].size == 1) {

 $TopLevelSystem = $UpperSystems->[0]

} else {

 $TopLevelSystem = $System->[0]

}

// The remaining steps are not needed to locate the top-level

// system, but validate the classes and associations.

//

// The system associated to the device may also be part of a RedundancySet.

// If so, follow a chain from that system to the RedundancySet, then

// follow ConcreteIdentity to a system - then check to see if it has

// ConponentCS to the top-level system. Keep iterating till no more

// RedundancySets - this must be the same system as TopLevelSystem.

do {

 // Get the RedundancySet that $System->[0] is a member of

 $RedundancySets->[] = AssociatorNames($System->[0],

“CIM_MemberOfCollection”,

“CIM_RedundancySet”,

“Member”,

“Collection”)

 if ($RedundancySets == null || $RedundancySets->[].size ==0) {

 #InARedundancySet = false

 } else {

 #InARedundancySet = true

// Error is more than one RedundancySet

if ($RedundancySets->[].size != 1) {

 <ERROR: A system cannot be the member of multiple RedundancySets>

}

 $Systems->[] = AssociatorNames($RedundancySets->[0], // ObjectName

 “CIM_LogicalIdentity”, // AssocClass

 “CIM_System”, // ResultClass
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 261

Multiple Computer System Subprofile NO_ANSI_ID
 “SameElement”, // Role

 “SystemElement”) // ResultRole

 if ($Systems == null || $Systemss->[].size != 1) {

 <ERROR: There must be exactly one System associated to each

 RedundancySet>

}

// if System->[0] is not the TopLevelSystem, it must have ComponentCS

if ($System->[0] != $TopLevelSystem) {

 $UpperSystems->[] = AssociatorNames($System->[0],

 “CIM_ComponentCS”,// AssocClass

 “CIM_ComputerSystem”,// ResultClass

 “PartComponent”,// Role

 “GroupComponent”) // ResultRole

 if ($UpperSystems == null && $UpperSystems->[].size != 1) {

 <ERROR: must be no more than one ComputerSystem Associated

 via ComponentCS to each LogicalDevice instance>

 }

 if ($UpperSystems->[0] != $TopLevelSystem) {

 <ERROR: The one end of every ComponentCS must be the Top Level

 system>

 }

}

 }

} while (#InARedundancySet)

// The top-level system must be associated to a RegisteredProfile

$Profiles->[] = AssociatorNames($TopLevelSystem,

“CIM_ElementConformsToProfile”,

“CIM_RegisteredProfile”,

NULL, NULL)

if ($Profiles == null || $Profiles->[].size == 0) {

 <ERROR: Top-Level system not associated to RegisteredProfile>

}

30.7 Registered Name and Version
Multiple Computer System version 1.2.0
262

NO_ANSI_ID Multiple Computer System Subprofile
30.8 CIM Elements
Table 288 describes the CIM elements for Multiple Computer System.

Table 289 - CIM Elements for Multiple Computer System

Element Name Requirement Description

30.8.1 CIM_ComponentCS Mandatory Associates non-top-level systems to the top-
level system

30.8.2 CIM_ComputerSystem (Non-Top-Level
System)

Mandatory Non-Top-level System

30.8.3 CIM_ConcreteIdentity Mandatory Associates aggregate (possibly top-level)
ComputerSystem and RedundancySet

30.8.4 CIM_IsSpare Optional Associates the ComputerSystem that may be
used as a spare to the RedundancySet of
ActiveComputerSystem.

30.8.5 CIM_MemberOfCollection Mandatory Associates RedundancySet and its member
ComputerSystems

30.8.6 CIM_RedundancySet Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Creation of a ComputerSystem instance

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of a ComputerSystem instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Operational
Status of a ComputerSystem instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus

Mandatory CQL -Change of Operational Status of a
ComputerSystem instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_RedundancySet AND
SourceInstance.RedundancyStatus <>
PreviousInstance.RedundancyStatus

Mandatory Deprecated WQL -Change of redundancy
status

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_RedundancySet AND
SourceInstance.CIM_RedundancySet::Redun
dancyStatus <>
PreviousInstance.CIM_RedundancySet::Redu
ndancyStatus

Mandatory CQL -Change of redundancy status
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 263

Multiple Computer System Subprofile NO_ANSI_ID
30.8.1 CIM_ComponentCS

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 290 describes class CIM_ComponentCS.

30.8.2 CIM_ComputerSystem (Non-Top-Level System)

Non-Top-level system

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 291 describes class CIM_ComputerSystem (Non-Top-Level System).

30.8.3 CIM_ConcreteIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 290 - SMI Referenced Properties/Methods for CIM_ComponentCS

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Top-Level ComputerSystem; must be assocated to a
RegisteredProfile

PartComponent Mandatory The contained (Sub)ComputerSystem

Table 291 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Non-Top-Level Sys-
tem)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory

NameFormat Mandatory Non-top-level system names are not correlatable, any
format is valid

ElementName Mandatory

OperationalStatus Mandatory
264

NO_ANSI_ID Multiple Computer System Subprofile
Table 292 describes class CIM_ConcreteIdentity.

30.8.4 CIM_IsSpare

Associates the ComputerSystem that may be used as a spare to the RedundancySet of ActiveComputerSystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 293 describes class CIM_IsSpare.

30.8.5 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 294 describes class CIM_MemberOfCollection.

30.8.6 CIM_RedundancySet

Table 292 - SMI Referenced Properties/Methods for CIM_ConcreteIdentity

Properties Flags Requirement Description & Notes

SystemElement Mandatory

SameElement Mandatory

Table 293 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Flags Requirement Description & Notes

SpareStatus Mandatory

FailoverSupported Mandatory

Dependent Mandatory The RedundancySet

Antecedent Mandatory The spare system

Table 294 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 265

Multiple Computer System Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 295 describes class CIM_RedundancySet.

STABLE

Table 295 - SMI Referenced Properties/Methods for CIM_RedundancySet

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

RedundancyStatus Mandatory The redundancy status shall be either 'Unknown' 0,
'Redundant' 2, or 'Redundancy Lost'. The implementation
should report 2 or 3 most of the time, although it may report
0 sometimes. It should report 2 when there is at least one
spare per the RedundancySet. It should report 3 when
there are no more spares (via IsSpare association) per the
RedundancySet.

TypeOfSet Mandatory
266

NO_ANSI_ID Policy Package
IMPLEMENTED

Clause 31: Policy Package

31.1 Description
The Policy Package would be deployed by any profile or subprofile that provides Policy management capability.
Any profile or subprofile that supports the Policy Package is referred to as a “Policy based” profile or subprofile. In
the current version of SMI-S, there is no profile defined for a “Global Policy Manager” that provides policy
management for a variety of other SMI-S profiles. The intent of this version of the SMI-S Policy Package is to
support policy mechanisms “inside” Arrays, Storage Virtualizers, Volume Management, NAS, Storage Libraries,
and Fabric components of a storage network. As a result, there are some limitations in the current version of the
Policy Package and there are some simplifying assumptions that can be made about the Policy mechanisms. For
example, most arrays today don’t support providing a general policy mechanism for a storage network. The
policies and the context of the execution of the policies are confined to the array.

There are, however, some complications that will be dealt with. In particular, cascading profiles, such as Volume
Management, Storage Virtualizers and NAS Heads will have to deal with policies that derive context from other
profiles (e.g., arrays and/or fabric). Note: In the future, the Policy Package will be expanded to support a Specific
Policy Profile as implemented in a Global Policy Manager and this may raise additional requirements.

Note: This Package covers “Policy-Based” support. That is, it only covers implementation of Policy constructs
(classes and associations) in the policy based profile or subprofile. It does not cover requirements on
underlying profiles that may be used by the policy based profile or subprofile.

It is important to understand the limitations of the 1.1.0 Policy Package. While one could argue that a host based
volume manager has a broad view of the storage network and could, in theory, perform policy based SAN
management, there is no expectation that a volume manager will (or should) be the vehicle for SAN management.
The policies that would be supported by a Volume Management Profile would be policies for automating certain
administrative functions of the volume manager.

31.1.1 Instance Diagrams

Support for the Policy Package entails support for a number of constructs and the methods to support them. Any
given implementation may support only a subset of the constructs and methods, based on how flexible their
support is. This will be discussed in more detail in 31.6.1.

Policy constructs will be discussed in the following sections, starting with the basics and then building on those
basics to describe more complicated functions and constructs.
SMI-S 1.3.0 Rev 6 SNIA Technical Position 267

Policy Package NO_ANSI_ID
31.1.1.1 Basics of Policy Support
The basic constructs used by the Policy Package are illustrated in Figure 41

There are five basic constructs that define a policy:

PolicyRule – This defines a policy to be applied. Specifically, it collects a number of other constructs that compose
the policy.

PolicyCondition – A condition to be evaluated at the time the Policy Rule is checked. The PolicyCondition would be
subclassed to a specific condition (e.g., QueryCondition) that can be evaluated in the context of the policy based
profile or subprofile.

Figure 41 - Basic Policy Package Instance Diagram

PolicyAction

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyActionName
DoActionLogging

PolicyRule

ElementName
CommonName
PolicyDecisionStrategy
Enabled
SystemCreationClassName
SystemName
CreationClassName
PolicyRuleName
ConditionListType
RuleUsage
SequencedActions
ExecutionStrategy

PolicyCondition

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName

PolicyConditionInPolicyRule PolicyActionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem
268

NO_ANSI_ID Policy Package
PolicyAction – An action to be executed based on conditions of the policy rule. The PolicyAction would be
subclassed to a specific PolicyAction (e.g., a MethodAction) supported by the policy based profile or subprofile.

PolicySetAppliesToElement – An association that may be referenced by a PolicyCondition or PolicyAction (e.g.,
used as part of the query string in QueryConditions or MethodActions) to constrain the application of the
PolicyRule. The “ManagedElement” would generally be any ManagedElement within the profile of the policy based
profile or subprofile.

Note: In the case of a Policy-based cascading profile, the ManagedElement could be a reference to a
ManagedElement in a leaf profile (see 31.3)

PolicyRuleInSystem – An association that is used to define the System scope of the PolicyRule. For policy based
profiles or subprofiles, the system in question would be the “top level” system for the profile.

Note: In the case where a Policy-based cascading profile cascades to a Policy-based leaf profile, it is
possible for a PolicyRule to be defined at the leaf and referenced by the cascading profile (i.e.,
cascading policy rules). See 31.3 for more information on this case.

In addition there are associations to define what Policy conditions are used in what Policy Rules (the
PolicyConditionInPolicyRule association) and what Policy Actions are used by what Policy Rules (the
PolicyActionInPolicyRule association).

A PolicyRule is the central class used for representing the 'If Condition then Action' semantics of a policy rule. A
PolicyRule condition, in the most general sense, is represented as either an OR’ed set of AND’ed conditions
(Disjunctive Normal Form, or DNF) or an AND’ed set of OR’ed conditions (Conjunctive Normal Form, or CNF).
Individual conditions may either be negated (not C) or unnegated (C). The actions specified by a PolicyRule are to
be performed if and only if the PolicyRule condition (whether it is represented in DNF or CNF) evaluates to TRUE.

The conditions and actions associated with a PolicyRule are modeled, respectively, with instances of
PolicyCondition and PolicyAction. These condition and action objects are tied to instances of PolicyRule by the
PolicyConditionInPolicyRule and PolicyActionInPolicyRule aggregations.

The PolicyRule class uses the property ConditionListType, to indicate whether the conditions for the rule are in
DNF (disjunctive normal form), CNF (conjunctive normal form) or, in the case of a rule with no conditions, as an
UnconditionalRule. The PolicyConditionInPolicyRule aggregation contains two additional properties to complete
the representation of the Rule's conditional expression. The first of these properties is an integer to partition the
referenced PolicyConditions into one or more groups, and the second is a Boolean to indicate whether a
referenced Condition is negated.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 269

Policy Package NO_ANSI_ID
31.1.1.2 Query Conditions
The basic constructs used by QueryConditions are illustrated in Figure 42

A QueryCondition is a subclass of PolicyCondition that defines the criteria for generating a set of instances that
result from the contained query. If there are no instances returned from the query, then the result is false;
otherwise, true.

Note: A QueryCondition instance has a Trigger property. This property indicates whether or not the query is to
be used to trigger evaluation of all QueryConditions of the PolicyRule. If the Trigger Boolean is set to
TRUE, then the QueryCondition is a trigger. When the QueryCondition evaluates to TRUE, then all the
QueryConditions are evaluated.

Note: None, some or all query conditions in a PolicyRule may have the Trigger Boolean set to TRUE. If no
Trigger property is set to TRUE, then the conditions are to be periodically evaluated (with the period
selected by the policy based profile or subprofile). See 31.1.1.9.

The following query is an example of a QueryCondition query that might be used:

Figure 42 - Policy Package QueryCondition Support Instance Diagram

PolicyAction

PolicyRule #7

QueryCondition

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName
Query
QueryLanguage
Trigger

PolicyConditionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

PolicyActionInPolicyRule
270

NO_ANSI_ID Policy Package
SELECT

OBJECTPATH(primordial) AS POBJ,

OBJECTPATH(concrete) AS COBJ,

OBJECTPATH(service) AS SOBJ,

concrete.TotalManagedSpace * .25 AS AmountToIncrease

FROM

CIM_PolicyAppliesToElement applies,

CIM_StoragePool concrete,

CIM_StoragePool primordial.

CIM_AllocatedFromStoragePool alloc,

CIM_PolicySet policy,

CIM_HostedService hosted,

CIM_HostedStoragePool hostedpool,

CIM_ComputerSystem, system,

CIM_StorageConfigurationService service

WHERE (concrete.RemainingManagedSpace/primordial.TotalManagedSpace * 100) < 75

 and concrete.Primordial = false

// Join Primordial Pool with Concrete Pools

 and OBJECTPATH(primordial) = alloc.Antecedent

 and OBJECTPATH(concrete) = alloc.Dependent

// Determine what concrete Pools the PolicySet applies to

 and policy.CommonName = "Pool Exhausting Policy Condition"

 and OBJECTPATH(policy) = element.PolicySet

 and OBJECTPATH(concrete) = element.ManagedElement

// Join found primordial Pool with Service

 and OBJECTPATH(primoridal) = hostedpool.PartComponent

 and OBJECTPATH(system) = hostedpool.GroupComponent

 and OBJECTPATH(system) = hosted.Antecedent

 and OBJECTPATH(service) = hosted.Dependent

 and service ISA "CIM_StorageConfigurationService"
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 271

Policy Package NO_ANSI_ID
31.1.1.3 MethodActions
The basic constructs for MethodActions of the Policy Package are illustrated in Figure 43

A MethodAction is a PolicyAction that is a method that invokes an action defined by a query. The action is defined
by a method of an ObjectName, which may be an intrinsic method of a CIM Namespace or an extrinsic method of
a ManagedElement. The input parameters to the method are defined by the query and may be fixed values defined
by literals or may be defined by reference to one or more properties of result instance from a QueryCondition
query, a MethodAction query, or other instances.

The following query is an example of a MethodAction query that might be used:
SELECT

SOBJ, // Service object path

'CreateOrModifyStoragePool',

NULL, // ElementName parameter

NULL, // Goal parameter, take default Setting

AmountToIncrease, // Size parameter

Figure 43 - Policy Package MethodAction Support Instance Diagram

MethodAction

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyActionName
InstMethodCallName
DoActionLogging
Query
QueryLanguage

PolicyRule #7

PolicyCondition

PolicyConditionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

PolicyActionInPolicyRule
272

NO_ANSI_ID Policy Package
POBJ, // InPools parameter

NULL, // InExtents parameter

COBJ // Pool parameter

FROM

CIM_QueryCondition condition,

CIM_QueryResult result,

CIM_PolicySet policy,

CIM_PolicyConditionInPolicyRule inpolicyset

WHERE

policy.CommonName = "Pool Exhausting Policy Condition"

 and OBJECTPATH(policy) = inpolicyset.GroupComponent

 and OBJECTPATH(condition) = inpolicyset.PartComponent

 and CLASSNAME(result) = QueryResult.QueryResultSubclassName

31.1.1.4 PolicySetAppliesToElement
PolicySetAppliesToElement makes explicit which PolicyRules are currently applied to a particular Element. This
association indicates that the PolicyRules that are appropriate for a ManagedElement (specified using the
PolicyRoleCollection aggregation) have actually been implemented in the policy management infrastructure. One
or more QueryCondition or MethodAction instances may reference the PolicySetAppliesToElement association as
part of its query. PolicySetAppliesToElement shall not be used if the associated PolicyRule does not make use of
the association. Note that if the named Element refers to a Collection, then the PolicyRule is assumed to be
applied to all the members of the Collection.

PolicyRules are defined in the context of the System in which they apply. For policy based profiles or subprofiles,
this is the “top level” system of the profile. The top level system can have many PolicyRules. A priority may be
assigned to these rules using the Priority property of the PolicyRuleInSystem association.

31.1.1.5 Context Passing
The execution of a PolicyRule involves establishing and naming the results of Query execution in QueryConditions
and Queries associated with MethodActions. These Query results are transient instances that only exist in the
context of the PolicyRule. The QueryResultName is a Property of QueryCondition that identifies the output of the
query in the QueryCondition instance. The InstMethodCallName is a Property of a MethodAction that identifies the
output of the query in the MethodAction instance.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 273

Policy Package NO_ANSI_ID
31.1.1.6 Static Rules Support
A policy based profile or subprofile may support a set of “Static” PolicyRules. These are PolicyRules that cannot be
modified by a client (except for enabling or disabling the rule or defining a PolicySetAppliesToElement association).
The constructs used for this are illustrated in Figure 44.

Figure 44 shows 3 static rules (PolicyRules #1, #3 and #4). These illustrate four distinct types of Static policy rules.

The first PolicyRule (PolicyRule #1) has no condition(s) and action(s) (or PolicySetAppliesToElement association).
It merely names a specified policy rule. The only aspect of the PolicyRule that may (or may not) be changed is the
“Enabled” property of the PolicyRule. This type of static policy rule is used to identify a behavior supported by the
policy based profile. For example, Arrays might define a PolicyRule named “Controller Failover Type 1” or
“Controller Failover Type 2” to indicate how controller failover works. Any particular Array Profile implementation
would only support one of these PolicyRules. The client would determine behavior of failover by inspecting which
PolicyRule is followed. But the actual behavior is not actually modeled in CIM. It is merely referenced using this
simple form of static policy rules.

The second PolicyRule (PolicyRule #3) is has condition(s) and action(s), but is not referenced by any
PolicySetAppliesToElement association. It behaves exactly like any other PolicyRule, except the
QueryCondition(s) and MethodAction(s) are fixed and cannot be changed. The only aspects of the PolicyRule that

Figure 44 - Policy Package for Static Rules Instance Diagram

MethodAction

PolicyRule #4

QueryCondition

PolicyConditionInPolicyRule PolicyActionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

PolicyRule #3
PolicyRule #1

MethodActionQueryCondition

PolicyConditionInPolicyRule

PolicyActionInPolicyRule

PolicyRuleInSystem
274

NO_ANSI_ID Policy Package
may (or may not) be changed is the “Enabled” property of the PolicyRule. This type of static policy rule is more
descriptive than the first, in that it models conditions that are evaluated and actions that are taken.

The third PolicyRule (PolicyRule #4) has condition(s) and action(s), and is referenced by a
PolicySetAppliesToElement association. It behaves exactly like any other PolicyRule, except the
QueryCondition(s) and MethodAction(s) are fixed and cannot be changed. The only aspects of the PolicyRule that
may be changed are the “Enabled” property of the PolicyRule and the PolicySetAppliesToElement association (to
identify the managed element in which to apply the rule). In this case, the Query Condition or MethodAction refers
to the PolicySetAppliesToElement association to constrain where or how the policy rule is applied. This type of
static Policy Rule can be applied to specific managed elements in the profile. For example, an Array PolicyRule
might define a policy for automatic extension of a StoragePool. The application of this policy to specific
StoragePools would be governed by use of the PolicySetAppliesToElement.

Note: All PolicyRules have a PolicyRuleInSystem association to the System in which the PolicyRule is
evaluated. In most cases, this will be the Top Level Object (System) for the policy based profile (i.e., the
RegisteredProfile that a specific Policy RegisteredSubprofile supports). In order for the execution of the
Policy to be constrained to the profile in question the QueryConditions and MethodActions should
include a reference to PolicyRuleInSystem.

If any of these types of “Static Rules” are supported by a specific Policy Subprofile implementation then the
PolicyFeaturesSupported array property of the PolicyCapabilities shall be set to include the “Static Rules” value.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 275

Policy Package NO_ANSI_ID
31.1.1.7 Static Conditions and Actions
In addition to Static Rules, there are “Dynamic” PolicyRules that can be constructed using static conditions and
static actions. The constructs used for this are illustrated in Figure 45.

Dynamic PolicyRules are constructed out of PolicyRule templates. In Figure 45, PolicyContainer C is a template,
and PolicyRule #6 is the policy rule constructed from the template. The PolicyContainer C merely collects all the
“static” Conditions and “Static” actions that may be used to construct the PolicyRule. The ReusablePolicy
associations are what connects the QueryConditions and MethodActions to the ReusablePolicyContainer
(template). Note that a QueryCondition or MethodAction may appear in multiple ReusablePolicyContainers (e.g.,
ReusablePolicyContainer B and ReusablePolicyContainer C share a common QueryCondition).

To construct PolicyRule #6, the client would need to create PolicyRule #6 (giving it a client defined name) and
creating the associations to the conditions and actions that are desired.

Figure 45 - Policy Package Support for Static Conditions and Actions Instance Diagram

MethodAction

PolicyRule #6

PolicyRuleName=
‘PRname 2’

QueryCondition

PolicyConditionInPolicyRule

PolicyActionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

MethodActionQueryCondition

MethodAction

ReusablePolicy

ReusablePolicy

ReusablePolicyContainer:
C

Name=’PRname 2'

ReusablePolicyContainer: A

Name=’Dynamic PolicyRule Templates’

ReusablePolicyContainer:
B

Name=’PRname 1'

PolicyContainerInPolicyContainer

ReusablePolicy

ReusablePolicy
276

NO_ANSI_ID Policy Package
Note: Creation of the PolicyRule and the associations to QueryConditions and MethodActions are done using
the CreateInstance intrinsic. Until all associations are in place and correctly configured, the “Enabled”
property of the PolicyRule should be “disabled.” Once everything is in place and correct, the client may
enable the rule).

If any of these types of “Dynamic Rules” are supported by a specific Policy Subprofile implementation then the
PolicyFeaturesSupported array property of the PolicyCapabilities shall be set to include the “Dynamic Rules” value.

31.1.1.8 Dynamic Conditions and Actions
The most general policy support includes support for dynamic conditions and actions. The constructs used for this
are the basic policy constructs as illustrated in Figure 46.

In the dynamic conditions and actions case, all constructs are built using CreateInstance. The client would first
create (and name) the PolicyRule, setting the Enabled property to ‘disabled’. Then the client would create the
QueryConditions and MethodActions, and associate them to the PolicyRule.

Note: At least one QueryCondition should have a Trigger property of TRUE. If all the QueryConditions have a
Trigger property of FALSE, the conditions will be evaluated at the convenience of the CIM server.

SMI-S only recognizes CQL Query statements in the QueryConditions. An implementation may support other
QueryLanguages, but these would not be covered by SMI-S.

Figure 46 - Policy Package support for Dynamic Conditions and Actions Instance Diagram

MethodAction

PolicyRule #7

QueryCondition

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule
PolicyConditionInPolicyRule
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 277

Policy Package NO_ANSI_ID
CQL defines “levels” of support. These levels are recognized for the purposes of Policy definitions. The CQL levels
shall be identified in the CQLFeatures property of the QueryCapabilities instance associated to a specific Policy
Subprofile (See 31.1.1.13.)

If this types of “Client defined rules” are supported by a specific Policy Subprofile implementation then the
PolicyFeaturesSupported array property of the PolicyCapabilities shall be set to include the “Client Defined Rules”
value.

31.1.1.9 Trigger Conditions
Trigger Conditions are QueryConditions that, when TRUE, cause evaluation of all conditions in the Policy Rule. A
trigger condition is a QueryCondition with the Trigger property set to TRUE. This is illustrated in Figure 47.

Figure 47 - Policy Package support for Trigger Conditions Instance Diagram

MethodAction

PolicyRule #7

QueryCondition

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule
PolicyConditionInPolicyRule
278

NO_ANSI_ID Policy Package
Figure 47 shows a PolicyRule with three QueryConditions. Two of the QueryConditions have Trigger set to TRUE.
In the third, the Trigger property is set to FALSE. If either of the first two QueryConditions are true the third is
evaluated.

31.1.1.10 TimePeriod Conditions
PolicyRules may be constrained by one or more time periods that define when the PolicyRule is to be active. The
constructs used for this are illustrated in Figure 48 .

A PolicyRule may also be associated with one or more policy time periods, indicating the schedule according to
which the policy rule is active and inactive. In this case it is the PolicySetValidityPeriod aggregation that provides
this linkage.

Evaluation of Policy conditions may be consider to be done in the following sequence:

1) Trigger Conditions - triggers are treated like indications to initiate evaluation of other conditions

Figure 48 - Policy Package support for Time Periods Instance Diagram

M ethodAction

PolicyRule #8

QueryCondition

ManagedElem ent

PolicySetAppliesToElem ent

System

PolicyRuleInSystem

QueryCondition

Trigger= 'TRUE'

PolicyActionInPolicyRule

PolicyConditionInPolicyRule

PolicyTim ePeriodCondition

Elem entNam e
Com m onNam e
PolicyKeywords[]
System CreationClassNam e
System Nam e
PolicyRuleCreationClassNam e
PolicyRuleNam e
CreationClassNam e
PolicyConditionNam e
Tim ePeriod
M onthOfYearM ask[]
DayOfM onthM ask[]
DayOfW eekM ask[]
Tim eOfDayMask[]
LocalOrUtcTim e

PolicyTim ePeriodCondition

Elem entNam e
Com m onNam e
System CreationClassNam e
System Nam e
PolicyRuleCreationClassNam e
PolicyRuleNam e
CreationClassNam e
PolicyConditionNam e
Tim ePeriod
M onthOfYearM ask[]
DayOfM onthM ask[]
DayOfW eekM ask[]
Tim eOfDayM ask[]
LocalOrUtcTim e

PolicySetValidityPeriod

PolicySetValidityPeriod
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 279

Policy Package NO_ANSI_ID
2) TimePeriod Conditions - to determine if the remaining conditions need to be evaluated

3) Non-Trigger Conditions - the remaining Policy Conditions.

When there are compound conditions, the evaluation of each compound condition is evaluated independently. And
the evaluation of a compound condition would follow the logical sequence described above.

When there are multiple PolicyTimePeriodConditions in a PolicyRule, then all shall evaluate to true. If there are no
PolicyTimePeriodConditions specified in a PolicyRule, then all times are valid.

There are also two special cases in which one of the date/time strings is replaced with a special string defined in
RFC 2445.

• If the first date/time is replaced with the string 'THISANDPRIOR', then the property indicates that a PolicyRule
is valid [from now] until the date/time that appears after the '/'.

• If the second date/time is replaced with the string 'THISANDFUTURE', then the property indicates that a
PolicyRule becomes valid on the date/time that appears before the '/', and remains valid from that point on.

31.1.1.11 Compound Conditions
QueryConditions may be aggregated into rules and into compound conditions. The constructs used for this are
illustrated in Figure 49
280

NO_ANSI_ID Policy Package
A PolicyRule aggregates zero or more instances of the QueryCondition class, via the PolicyConditionInPolicyRule
association. A Rule that aggregates zero Conditions is not valid; it may, however, be in the process of being
defined. Note that a PolicyRule should have no effect until it is enabled.

QueryConditions may be aggregated into rules and into compound conditions. PolicyConditionStructure is the
abstract aggregation class for the structuring of policy conditions.

The Conditions aggregated by a PolicyRule or CompoundPolicyCondition are grouped into two levels of lists: either
an OR’ed set of AND’ed sets of conditions (DNF, the default) or an AND’ed set of OR’ed sets of conditions (CNF).
Individual QueryConditions in these lists may be negated. The property ConditionListType specifies which of these
two grouping schemes applies to a particular PolicyRule or CompoundPolicyCondition instance.

Figure 49 - Policy Package support for Compound Conditions Instance Diagram

MethodAction

PolicyRule #7

CompoundPolicyCondition

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyConditionName
ConditionListType

PolicyConditionInPolicyRule

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem
QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule

PolicyConditionInPolicyRule

QueryCondition QueryCondition

PolicyConditionInPolicyCondition
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 281

Policy Package NO_ANSI_ID
One or more PolicyTimePeriodConditions may be among the conditions associated with a PolicyRule or
CompoundPolicyCondition via the PolicyConditionStructure subclass association. In this case, the time periods are
simply additional Conditions to be evaluated along with any others that are specified.

A CompoundPolicyCondition aggregates zero or more instances of the QueryCondition class, via the
PolicyConditionInPolicyCondition association. A CompoundPolicyCondition that aggregates zero Conditions is not
valid; it may, however, be in the process of being defined. Note that a CompoundPolicyCondition should have no
effect until it is valid.

31.1.1.12 Compound Actions
PolicyActions may be aggregated into rules and into compound actions. The constructs used for this are illustrated
in Figure 50

Figure 50 - Policy Package support for Compound Actions Instance Diagram

CompoundPolicyAction

ElementName
CommonName
SystemCreationClassName
SystemName
PolicyRuleCreationClassName
PolicyRuleName
CreationClassName
PolicyActionName
SequencedActions
ExecutionStrategy

PolicyRule #9

QueryCondition

ManagedElement

PolicySetAppliesToElement

System

PolicyRuleInSystem

QueryCondition

Trigger='TRUE'

PolicyActionInPolicyRule
PolicyConditionInPolicyRule

MethodAction MethodAction

PolicyActionInPolicyAction PolicyActionInPolicyAction
282

NO_ANSI_ID Policy Package
A PolicyRule aggregates zero or more instances of the PolicyAction class, via the PolicyActionInPolicyRule
association. A Rule that aggregates zero Actions is not valid--it may, however, be in the process of being entered
into a PolicyRepository or being defined for a System. Alternately, the actions of the policy may be explicit in the
definition of the PolicyRule. Note that a PolicyRule should have no effect until it is valid.

The Actions associated with a PolicyRule may be given a required order, a recommended order, or no order at all.
For Actions represented as separate objects, the PolicyActionInPolicyRule aggregation can be used to express an
order.

This aggregation does not indicate whether a specified action order is required, recommended, or of no
significance; the property SequencedActions in the aggregating instance of PolicyRule provides this indication.

A series of examples will make ordering of PolicyActions clearer: ActionOrder is an unsigned integer 'n' that
indicates the relative position of a PolicyAction in the sequence of actions associated with a PolicyRule or
CompoundPolicyAction. When 'n' is a positive integer, it indicates a place in the sequence of actions to be
performed, with smaller integers indicating earlier positions in the sequence. The special value '0' indicates 'don't
care'. If two or more PolicyActions have the same non-zero sequence number, they may be performed in any
order, but they shall all be performed at the appropriate place in the overall action sequence.

If all actions have the same sequence number, regardless of whether it is '0' or non-zero, any order is acceptable.

The values:

1:ACTION A

2:ACTION B

1:ACTION C

3:ACTION D

indicate two acceptable orders: A,C,B,D or C,A,B,D,

since A and C can be performed in either order, but only at the '1' position.

The values:

0:ACTION A

2:ACTION B

3:ACTION C

3:ACTION D

require that B,C, and D occur either as B,C,D or as B,D,C. Action A may appear at any point relative to B, C, and
D. Thus the complete set of acceptable orders is: A,B,C,D; B,A,C,D; B,C,A,D; B,C,D,A; A,B,D,C; B,A,D,C;
B,D,A,C; B,D,C,A.

Note: The non-zero sequence numbers need not start with '1', and they need not be consecutive. All that
matters is their relative magnitude.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 283

Policy Package NO_ANSI_ID
EXPERIMENTAL

31.1.1.13 Policy (and Query) Capabilities
Implementations of a specific Policy Subprofile can vary in degree of support. The degree of support provided by
an implementation can be determined by inspection of the QueryCapabilities and PolicyCapabilities. The
constructs used for this are illustrated in Figure 51

In this figure, the policy based profile is an Array Profile. And it has two Specific Policy Subprofiles:

1) a Pool Management Policy Subprofile and,

2) a Copy Management Policy.

Figure 51 - Policy Package support for Policy Capabilities Instance Diagram

RegisteredSuprofile

RegisteredName='[Specific]Policy'
 (e.g., PoolManagement Policy)

RegisteredProfile
(Policy-Based Profile)

(e.g.,, Array)

SubprofileRequiresProfile

SNIA_PolicyCapabilities

ElementName
InstanceID
PolicyFeaturesSupported[]

ElementCapabilities

QueryCapabilities

ElementName
InstanceID
CQLFeatures[]

ElementCapabilities
ObjectManager

QueryCapabilities

ElementName
InstanceID
CQLFeatures[]

ElementCapabilities

HostedProfile

RegisteredSuprofile

RegisteredName='Policy-based Subprofile'
(e.g., Copy Services)

RegisteredSuprofile

RegisteredName='[Specific]Policy'
(e.g., Copy Management Policy)

SubprofileRequiresProfile

SubprofileRequiresProfile

SNIA_PolicyCapabilities

ElementName
InstanceID
PolicyFeaturesSupported[]

ElementCapabilities

ElementCapabilities
284

NO_ANSI_ID Policy Package
Each of these subprofiles shall have their Policy capabilities defined by associating an instance of
PolicyCapabilities to each. Similarly, each may refer to a QueryCapabilities instance.

A policy based profile or subprofile would identify its basic capabilities using 2 capabilities classes: A
QueryCapabilities class instance and a PolicyCapabilities class instance. Both instances will be associated to a
specific Policy RegisteredSubprofile of the Policy-based RegisteredProfile. These classes and associations should
be populated in the InterOp Namespace (with the RegisteredSubprofile). If they are populated in the policy based
profile namespace, then the ElementCapabilities associations shall (at least) be populated in the
InteropNamespace.

Also shown in Figure 51 are the ObjectManager (representing the CIM Server) and its QueryCapabilities instance.
The QueryCapabilities instance that is associated to the ObjectManager represents the general capabilities of the
CIM Server and may offer more capabilities than are supported for defining QueryConditions for PolicyRules. This
instance is not part of the Policy Package (or either of the specific Policy Subprofiles). The ObjectManager version
of the QueryCapabilities need not be present. The QueryCapabilities associated with a Specific Policy Subprofile is
mandatory if the profile supports “Client defined” QueryConditions. If Client defined QueryConditions are not
supported by the profile or subprofile, then the QueryCapabilities instance is not needed for the Specific Policy
Subprofile.

The QueryCapabilities that may be supported for the purpose of client defined policies are “Basic Query”, “Simple
Join”, “Complex Join”, “Time”, “Basic Like”, ”Full Like”, “Array Elements”, ”Embedded Objects“, “Order By”,
“Aggregations”, “Subduer”, “Satisfies Array”, “Distinct”, “Forestland “Path Functions”. For definitions of these
values see the CIM Query Language Specification.

Any or all of these may be specified in the QueryCapabilities associated with a specific Policy
Subprofile.

The second capabilities instance associated to the specific Policy Subprofile is the PolicyCapabilities instance. The
PolicyCapabilities class has the following properties that define the capabilities of the subprofile:

PolicyFeaturesSupported[]

“Static Rules” – Static rules are pre-defined by the profile implementation and are available to the Client to enable
and disable (or set PolicySetAppliesToElement).

“Dynamic Rules” – Dynamic rules means that the profile implementation has populated PolicyContainers that
include QueryConditions and MethodActions that can be constructed into Client specified PolicyRules (using the
conditions and actions in the container).

 “Client Defined Rules” – Client Defined Rules means that a Client may create its own PolicyRules, specifying its
own (Client invented) QueryConditions and MethodActions. The QueryConditions and MethodActions shall, of
course, be valid operations on the profile in question. That is, QueryConditions shall address class instances and
properties that are part of the profile model and the MethodActions shall be actions supported by the profile.

EXPERIMENTAL

31.2 Health and Fault Management Considerations
Not defined in this standard.

31.3 Cascading Considerations
Not defined in this standard.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 285

Policy Package NO_ANSI_ID
31.4 Supported Subprofiles and Packages
Table 301 describes the supported profiles for Policy.

31.5 Methods of the Profile

31.5.1 Extrinsic Methods of the Profile (EXPERIMENTAL)

There are no Extrinsic methods defined for this Package. All Policy manipulation actions are done using intrinsic
methods. These are described in 31.5.2 and illustrated in 31.6. However, it is recognized that some Extrinsic
Methods may make Policy manipulation a lot easier and more efficient for clients. Such methods will be considered
in a future release.

31.5.2 Intrinsic Methods of the Profile

Table 297 identifies how Policy constructs get created, deleted or modified. Any class not listed is assumed to be
pre-existing (e.g., canned) or manipulated through another profile or subprofile.

Table 298 identifies how Policy constructs get created, deleted or modified. Any class not listed is assumed to be
pre-existing (e.g., canned) or manipulated through another profile or subprofile.

Table 296 - Supported Profiles for Policy

Registered Profile Names Mandatory Version

Server Yes 1.3.0

Table 297 - Static Policy Instance Manipulation Methods

Method Created Instances Deleted Instances Modified Instances

CreateInstance PolicySetAppliesToElement N/A N/A

DeleteInstance N/A PolicySetAppliesToElement N/A

SetProperty N/A N/A PolicyRule (Enabled)

Table 298 - Dynamic Policy Instance Manipulation Methods

Method Created Instances Deleted Instances Modified Instances

CreateInstance PolicyRule N/A N/A

CreateInstance PolicyConditionInPolicyRul
e

N/A N/A

CreateInstance PolicyActionInPolicyRule N/A N/A

DeleteInstance N/A PolicyRule N/A

DeleteInstance N/A PolicyConditionInPolicyRule N/A

DeleteInstance N/A PolicyActionInPolicyRule N/A
286

NO_ANSI_ID Policy Package
Table 299 identifies how Policy constructs get created, deleted or modified for dynamic policies.

ModifyInstance N/A N/A PolicyRule (Enabled)

ModifyInstance N/A N/A QueryCondition
(Trigger)

Table 299 - Methods that cause Instance Creation, Deletion or Modification of Dynamic Policy
Rules

Method Created Instances Deleted Instances Modified Instances

CreateInstance PolicyRule N/A N/A

CreateInstance QueryCondition N/A N/A

CreateInstance PolicyConditionInPolicyRule N/A N/A

CreateInstance PolicyConditionIn
PolicyCondition

N/A N/A

CreateInstance CompoundPolicyCondition N/A N/A

CreateInstance PolicySetValidityPeriod N/A N/A

CreateInstance PolicyTimePeriodCondition N/A N/A

CreateInstance CompoundPolicyAction N/A N/A

CreateInstance MethodAction N/A N/A

CreateInstance PolicyActionInPolicyRule N/A N/A

CreateInstance PolicyActionInPolicyAction N/A N/A

DeleteInstance N/A PolicyRule N/A

DeleteInstance N/A QueryCondition N/A

DeleteInstance N/A MethodAction N/A

DeleteInstance N/A PolicyConditionIn
PolicyRule

N/A

DeleteInstance N/A PolicyActionInPolicyRule N/A

DeleteInstance N/A CompoundPolicyCondition N/A

DeleteInstance N/A PolicyConditionIn
PolicyCondition

N/A

DeleteInstance N/A CompoundPolicyAction N/A

DeleteInstance N/A PolicyActionInPolicyAction N/A

DeleteInstance N/A PolicySetValidityPeriod N/A

DeleteInstance N/A PolicyTimePeriodCondition N/A

Table 298 - Dynamic Policy Instance Manipulation Methods (Continued)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 287

Policy Package NO_ANSI_ID
CreateInstance
 CreateInstance (

 [IN] <instance> NewInstance

)

The CreateInstance intrinsic method is used for the creation of PolicyRules, QueryConditions,
ReusablePolicyContainers and MethodActions, It is also used to create PolicyConditionInPolicyRule associations,
PolicyConditionInPolicyCondition associations, ReusablePolicyComponent associations, PolicyActionInPolicyRule
associations, PolicyActionInPolicyAction associations and PolicySetAppliesToElement associations.

Care should be taken when creating a policy. The following sequence should be followed for enabling Static
Policies:

• Creation of the PolicyRule (disabled)

• Creation of the QueryCondition(s)

• Immediately followed by Creation of the PolicyConditionInPolicyRule association(s)

• Creation of the MethodAction(s)

• Immediately followed by Creation of the PolicyActionInPolicyRule association(s)

• Creation of one or more PolicySetAppliesToElement associations (if needed)

ModifyInstance N/A N/A PolicyRule (Enabled)

ModifyInstance N/A N/A PolicyRuleInSystem

ModifyInstance N/A N/A QueryCondition
(Trigger)

ModifyInstance N/A N/A QueryCondition

ModifyInstance N/A N/A MethodAction

ModifyInstance N/A N/A PolicyConditionIn
PolicyRule

ModifyInstance N/A N/A PolicyActionInPolicyRul
e

ModifyInstance N/A N/A CompoundPolicy
Condition

ModifyInstance N/A N/A PolicyConditionIn
PolicyCondition

ModifyInstance N/A N/A CompoundPolicyAction

ModifyInstance N/A N/A PolicyTimePeriod
Condition

ModifyInstance N/A N/A PolicyActionIn
PolicyAction

Table 299 - Methods that cause Instance Creation, Deletion or Modification of Dynamic Policy
Rules (Continued)
288

NO_ANSI_ID Policy Package
• ModifyInstance of the PolicyRule (to enable)

If this sequence in not followed, there is no guarantee that the desired Policy will be created. Also note that all
steps would need to successfully execute to ensure creation of any of the instances involved in the PolicyRule.

If instances created are not immediately associated with an appropriate PolicyRule, they may be lost. A provider is
not required to keep “dangling” instances around indefinitely. Indeed, they are expected to do periodic clean up of
“dangling” instances.

The above sequence may not need to be done if there is no PolicySetAppliesToElement. In this case, all copies of
the static policy are the same. All that is required is to enable (ModifyInstance) the PolicyRule.

The following sequence should be followed for creating Dynamic PolicyRules:

• Creation of the PolicyRule (disabled) (based on a ReusablePolicyContainer)

• Associate selected QueryConditions to the PolicyRule

• Associate selected MethodActions to the PolicyRule

• Create the appropriate PolicySetAppliesToElement associations

• ModifyInstance of the PolicyRule (to enable)

If this sequence in not followed, there is no guarantee that the desired Policy will be created. Also note that all
steps would need to successfully execute to ensure creation of any of the instances involved in the PolicyRule

The following sequence should be followed for creating Client Defined Policies:

• Creation of the PolicyRule (disabled)

• Creation of the QueryCondition(s)

• Immediately followed by Creation of the PolicyConditionInPolicyRule association(s)

• Creation of the MethodAction(s)

• Immediately followed by Creation of the PolicyActionInPolicyRule association(s)

• Creation of one or more PolicySetAppliesToElement associations (if needed)

• ModifyInstance of the PolicyRule (to enable)

If this sequence in not followed, there is no guarantee that the desired Policy will be created. Also note that all
steps would need to successfully execute to ensure creation of any of the instances involved in the PolicyRule

DeleteInstance
Not defined in this standard.

ModifyInstance
Not defined in this standard.

31.6 Client Considerations and Recipes

31.6.1 SMI-S Supported PolicyCapabilities and QueryCapabilities Patterns

The PolicyCapabilities patterns that are formally recognized by the current version of SMI-S are shown in Table
300.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 289

Policy Package NO_ANSI_ID
Table 300 - SMI-S Supported PolicyCapabilities Patterns

31.7 Registered Name and Version
Policy version 1.2.0

31.8 CIM Elements
Table 301 describes the CIM elements for Policy.

PolicyLevels
Supported

Static Rules
Static Rules, Dynamic Rules
Static Rules, Client Defined Rules
Static Rules, Dynamic Rules, Client Defined
Rules
Dynamic Rules
Dynamic Rules, Client Defined Rules
Client Defined Rules

Table 301 - CIM Elements for Policy

Element Name Requirement Description

31.8.1 CIM_CompoundPolicyAction (Client
defined)

Optional A Client defined Policy action that groups
multiple method actions as a unit.

31.8.2 CIM_CompoundPolicyAction (Pre-
defined)

Optional A predefined Policy action that groups
multiple method actions as a unit.

31.8.3 CIM_CompoundPolicyCondition (Client
defined)

Optional A Client defined Policy condition that groups
multiple query conditions as a unit.

31.8.4 CIM_CompoundPolicyCondition (Pre-
defined)

Optional A predefined Policy condition that groups
multiple query conditions as a unit

31.8.5 CIM_ElementCapabilities (Policy
Capabilities)

Optional This associates the SNIA_PolicyCapabilities
to the specific Policy RegisteredSubprofile.

31.8.6 CIM_ElementCapabilities (Query
Capabilities)

Optional This associates the QueryCapabilities to the
specific Policy RegisteredSubprofile.

31.8.7 CIM_MethodAction (Client defined) Optional Defines a Method (Client defined) to be
executed as part of a PolicyRule

31.8.8 CIM_MethodAction (Pre-defined) Optional Defines a Method (predefined) to be
executed as part of a PolicyRule

31.8.9 CIM_PolicyActionInPolicyAction (Client
defined)

Optional Associates a MethodAction to a Client defined
CompoundPolicyAction.

31.8.10 CIM_PolicyActionInPolicyAction (Pre-
defined)

Optional Associates a MethodAction to a predefined
CompoundPolicyAction.

31.8.11 CIM_PolicyActionInPolicyRule (Client
defined)

Optional Associates a MethodAction to the Client
defined PolicyRule of which it is a part.
290

NO_ANSI_ID Policy Package
31.8.12 CIM_PolicyActionInPolicyRule (Pre-
defined)

Optional Associates a MethodAction to the predefined
PolicyRule of which it is a part.

31.8.13
CIM_PolicyConditionInPolicyCondition (Client
defined)

Optional Associates a QueryCondition to a Client
defined CompoundPolicyCondition.

31.8.14
CIM_PolicyConditionInPolicyCondition (Pre-
defined)

Optional Associates a QueryCondition to a predefined
CompoundPolicyCondition.

31.8.15 CIM_PolicyConditionInPolicyRule
(Client defined)

Optional Associates a Client defined QueryCondition
to the PolicyRules of which it is part.

31.8.16 CIM_PolicyConditionInPolicyRule
(Pre-defined)

Optional Associates a predefined QueryCondition to
the PolicyRules of which it is part.

31.8.17
CIM_PolicyContainerInPolicyContainer

Optional Association that collects PolicyContainers in
other PolicyContainers.

31.8.18 CIM_PolicyRule (Dynamic or Client
defined)

Optional Defines a PolicyRule created by a client
(Dynamic or Client Defined policy).

31.8.19 CIM_PolicyRule (Pre-defined) Optional Defines a Static (predefined) PolicyRule.

31.8.20 CIM_PolicyRuleInSystem (Dynamic
or Client defined)

Optional Associates Dynamic or Client Defined
PolicyRules to the System that hosts them.

31.8.21 CIM_PolicyRuleInSystem (Pre-
defined)

Optional Associates Static PolicyRules to the System
that hosts them.

31.8.22 CIM_PolicySetAppliesToElement
(Dynamic or Client defined)

Optional An association that may be referenced in
QueryConditions or MethodActions to
constrain the application of a Dynamic or
Client defined PolicyRule. It associates the
PolicyRule to ManagedElements.

31.8.23 CIM_PolicySetAppliesToElement
(Pre-defined)

Optional An association that may be referenced in
QueryConditions or MethodActions to
constrain the application of a predefined
PolicyRule. It associates the PolicyRule to
ManagedElements.

31.8.24 CIM_PolicySetValidityPeriod
(Dynamic or Client defined)

Optional Associates a PolicyTimePeriodCondition to a
Dynamic or client defined PolicyRule.

31.8.25 CIM_PolicySetValidityPeriod (Pre-
defined)

Optional Associates a PolicyTimePeriodCondition to a
predefined PolicyRule.

31.8.26 CIM_PolicyTimePeriodCondition
(Dynamic or Client defined)

Optional A Dynamic or Client defined PolicyCondition
that specifies the valid time period for Policy
activation.

31.8.27 CIM_PolicyTimePeriodCondition
(Pre-defined)

Optional A predefined PolicyCondition that specifies
the valid time period for Policy activation.

Table 301 - CIM Elements for Policy

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 291

Policy Package NO_ANSI_ID
31.8.1 CIM_CompoundPolicyAction (Client defined)

CompoundPolicyAction is used to represent an expression consisting of an ordered sequence of action terms.
Each action term is represented as a subclass of the PolicyAction class. Compound actions are constructed by
associating dependent action terms together using the PolicyActionInPolicyAction aggregation.

CompoundPolicyAction is subclassed from PolicyAction.

An instance of CompoundPolicyAction will exist if any compound actions exist.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

31.8.28 CIM_QueryCapabilities Optional Defines the Query execution capabilities of
the profile or CIMOM.

31.8.29 CIM_QueryCondition (Dynamic or
Client defined)

Optional A Dynamic or Client defined Query that is
used as a condition of a PolicyRule. A
QueryCondition where Trigger=TRUE serves
as an indication to drive evaluation of other
QueryConditions in the PolicyRule.

31.8.30 CIM_QueryCondition (Pre-defined) Optional A predefined Query that is used as a
condition of a PolicyRule. A QueryCondition
where Trigger=TRUE serves as an indication
to drive evaluation of other QueryConditions in
the PolicyRule.

31.8.31 CIM_ReusablePolicy (Container to
MethodAction)

Optional ReusablePolicy associates Policy Conditions
and Policy Actions to a
ReusablePolicyContainer. It is used for
Dynamic Policy support.

31.8.32 CIM_ReusablePolicy (Container to
QueryCondition)

Optional ReusablePolicy associates Policy Conditions
and Policy Actions to a
ReusablePolicyContainer. It is used for
Dynamic Policy support.

31.8.33 CIM_ReusablePolicy (Container to
System)

Optional ReusablePolicy associates Policy Conditions
and Policy Actions to a
ReusablePolicyContainer. It is used for
Dynamic Policy support.

31.8.34 CIM_ReusablePolicyContainer Optional A ReusablePolicyContainer collects all the
Policy Conditions and Actions that may be
used in constructing a Dynamic PolicyRule.

31.8.35 SNIA_PolicyCapabilities Mandatory Defines the Policy capabilities of the profile or
CIMOM.

Table 301 - CIM Elements for Policy

Element Name Requirement Description
292

NO_ANSI_ID Policy Package
Table 302 describes class CIM_CompoundPolicyAction (Client defined).

Table 302 - SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Client defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another Client defined user-friendly name

CommonName Optional A client defined user-friendly name of the
CompoundPolicyAction

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyAction is
defined.

SystemName Mandatory The name of the System object in whose scope this
PolicyAction is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific PolicyAction, the CreationClassName of
the PolicyRule object with which this Action is associated.
For a reusable PolicyAction, a special value, 'NO RULE',
should be used.

CreationClassName Mandatory The name of the class or the subclass used in the creation
of an instance.

PolicyRuleName Mandatory For a rule-specific PolicyAction, the name of the PolicyRule
object with which this Action is associated. For a reusable
PolicyAction, a special value, 'NO RULE', should be used.

PolicyActionName Mandatory A client defined user friendly name of this policy (method)
action

DoActionLogging Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 293

Policy Package NO_ANSI_ID
31.8.2 CIM_CompoundPolicyAction (Pre-defined)

CompoundPolicyAction is used to represent an expression consisting of an ordered sequence of action terms.
Each action term is represented as a subclass of the PolicyAction class. Compound actions are constructed by
associating dependent action terms together using the PolicyActionInPolicyAction aggregation.

CompoundPolicyAction is subclassed from PolicyAction.

An instance of CompoundPolicyAction will exist if any compound actions exist.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

SequencedActions Optional This property gives a policy administrator (client) a way of
specifying how the ordering of the PolicyActions associated
with this PolicyRule is to be interpreted. Three values are
supported:

- mandatory(1): Do the actions in the indicated order, or
don't do them at all.

- recommended(2): Do the actions in the indicated order if
you can, but if you can't do them in this order, do them in
another order if you can.

- dontCare(3): Do them -- I don't care about the order.

The default value is 3 ("DontCare"). Values { "Mandatory",
"Recommended", "Dont Care" }

ExecutionStrategy Optional ExecutionStrategy defines the strategy to be used in
executing the sequenced actions aggregated by this
CompoundPolicyAction. There are three execution
strategies:

Do Until Success - execute actions according to predefined
order, until successful execution of a single action.

Do All - execute ALL actions which are part of the modeled
set, according to their predefined order. Continue doing
this, even if one or more of the actions fails.

Do Until Failure - execute actions according to predefined
order, until the first failure in execution of an action
instance.

The default value is 2 ("Do All"). Values { "Do Until
Success", "Do All", "Do Until Failure" }

Table 302 - SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Client defined)

Properties Flags Requirement Description & Notes
294

NO_ANSI_ID Policy Package
Table 303 describes class CIM_CompoundPolicyAction (Pre-defined).

Table 303 - SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Pre-defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another provider generated user-friendly name

CommonName Optional A provider generated user-friendly name of the
CompoundPolicyAction

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyAction is
defined.

SystemName Mandatory The name of the System object in whose scope this
PolicyAction is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific PolicyAction, the CreationClassName of
the PolicyRule object with which this Action is associated.
For a reusable PolicyAction, a special value, 'NO RULE',
should be used.

CreationClassName Mandatory The name of the class or the subclass used in the creation
of an instance.

PolicyRuleName Mandatory For a rule-specific PolicyAction, the name of the PolicyRule
object with which this Action is associated. For a reusable
PolicyAction, a special value, 'NO RULE', should be used.

PolicyActionName Mandatory A provider generated user-friendly name of this policy
(method) action

DoActionLogging Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 295

Policy Package NO_ANSI_ID
31.8.3 CIM_CompoundPolicyCondition (Client defined)

CompoundPolicyCondition is used to represent compound conditions formed by aggregating simpler policy
conditions. Compound conditions are constructed by associating subordinate condition terms together using the
PolicyConditionInPolicyCondition aggregation.

CompoundPolicyCondition is subclassed from PolicyCondition.

An instance of CompoundPolicyCondition will exist if any client defined compound conditions exist.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

SequencedActions Optional This property gives a profile designer a way of specifying
how the ordering of the PolicyActions associated with this
PolicyRule is to be interpreted. Three values are supported:

- mandatory(1): Do the actions in the indicated order, or
don't do them at all.

- recommended(2): Do the actions in the indicated order if
you can, but if you can't do them in this order, do them in
another order if you can.

- dontCare(3): Do them -- I don't care about the order.

The default value is 3 ("DontCare"). Values { "Mandatory",
"Recommended", "Dont Care" }

ExecutionStrategy Optional A profile designed ExecutionStrategy defines the strategy
to be used in executing the sequenced actions aggregated
by this CompoundPolicyAction. There are three execution
strategies:

Do Until Success - execute actions according to predefined
order, until successful execution of a single action.

Do All - execute ALL actions which are part of the modeled
set, according to their predefined order. Continue doing
this, even if one or more of the actions fails.

Do Until Failure - execute actions according to predefined
order, until the first failure in execution of an action
instance.

The default value is 2 ("Do All").

Values { "Do Until Success", "Do All", "Do Until Failure" }

Table 303 - SMI Referenced Properties/Methods for CIM_CompoundPolicyAction (Pre-defined)

Properties Flags Requirement Description & Notes
296

NO_ANSI_ID Policy Package
Table 304 describes class CIM_CompoundPolicyCondition (Client defined).

31.8.4 CIM_CompoundPolicyCondition (Pre-defined)

CompoundPolicyCondition is used to represent compound conditions formed by aggregating simpler policy
conditions. Compound conditions are constructed by associating subordinate condition terms together using the
PolicyConditionInPolicyCondition aggregation.

CompoundPolicyCondition is subclassed from PolicyCondition.

An instance of CompoundPolicyCondition will exist if any predefined compound conditions exist.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 304 - SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Client
defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another client defined user friendly name

CommonName Optional A client defined user friendly name of the
CompoundPolicyCondition.

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyCondition is
defined.

SystemName Mandatory The name of the System object in whose scope this
PolicyCondition is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific PolicyCondition, the CreationClassName
of the PolicyRule object with which this Condition is
associated. For a reusable PolicyCondition, a special
value, 'NO RULE', should be used to indicate that this
Condition is reusable and not associated with a single
PolicyRule.

PolicyRuleName Mandatory For a rule-specific PolicyCondition, the name of the
PolicyRule object with which this Condition is associated.
For a reusable PolicyCondition, a special value, 'NO
RULE', should be used to indicate that this Condition is
reusable and not associated with a single PolicyRule.

CreationClassName Mandatory The name of the class or the subclass used in the creation
of an instance.

PolicyConditionName Mandatory A client defined user friendly name of this PolicyCondition.

ConditionListType Optional Indicates whether the list of CompoundPolicyConditions
associated with this PolicyRule is in disjunctive normal form
(DNF) or conjunctive normal form (CNF).

The default value is 1 ("DNF"). Values { "DNF", "CNF" }
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 297

Policy Package NO_ANSI_ID
Table 305 describes class CIM_CompoundPolicyCondition (Pre-defined).

31.8.5 CIM_ElementCapabilities (Policy Capabilities)

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,CIM_RegisteredSubprofile)
and their Capabilities (e.g., SNIA_PolicyCapabilities).

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 305 - SMI Referenced Properties/Methods for CIM_CompoundPolicyCondition (Pre-
defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another provider supplied user friendly name

CommonName Optional A provider supplied user friendly name of the
CompoundPolicyCondition.

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyCondition is
defined.

SystemName Mandatory The name of the System object in whose scope this
PolicyCondition is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific PolicyCondition, the CreationClassName
of the PolicyRule object with which this Condition is
associated. For a reusable PolicyCondition, a special
value, 'NO RULE', should be used to indicate that this
Condition is reusable and not associated with a single
PolicyRule.

PolicyRuleName Mandatory For a rule-specific PolicyCondition, the name of the
PolicyRule object with which this Condition is associated.
For a reusable PolicyCondition, a special value, 'NO
RULE', should be used to indicate that this Condition is
reusable and not associated with a single PolicyRule.

CreationClassName Mandatory The name of the class or the subclass used in the creation
of an instance.

PolicyConditionName Mandatory A provider supplied user friendly name of this
PolicyCondition.

ConditionListType Optional Indicates whether the list of CompoundPolicyConditions
associated with this PolicyRule Is in disjunctive normal form
(DNF) or conjunctive normal form (CNF).

The default value is 1 ("DNF"). Values { "DNF", "CNF" }
298

NO_ANSI_ID Policy Package
Table 306 describes class CIM_ElementCapabilities (Policy Capabilities).

31.8.6 CIM_ElementCapabilities (Query Capabilities)

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,CIM_RegisteredSubprofile)
and their Capabilities (e.g., CIM_QueryCapabilities).

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 307 describes class CIM_ElementCapabilities (Query Capabilities).

31.8.7 CIM_MethodAction (Client defined)

MethodAction is a PolicyAction that invokes an action defined by a query. The action is defined by a method of an
ObjectName, which may be an intrinsic method of a CIM Namespace or an extrinsic method of a
CIM_ManagedElement. The input parameters to the method are defined by the query and may be fixed values
defined by literals or may be defined by reference to one or more properties of QueryConditionResult,
MethodActionResult, or other instances.

MethodAction is subclassed from PolicyAction.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 308 describes class CIM_MethodAction (Client defined).

Table 306 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Policy Capabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 307 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Query Capabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 308 - SMI Referenced Properties/Methods for CIM_MethodAction (Client defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another client defined user friendly name

CommonName Optional A client defined user friendly name of the MethodAction.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 299

Policy Package NO_ANSI_ID
31.8.8 CIM_MethodAction (Pre-defined)

MethodAction is a PolicyAction that invokes an action defined by a query. The action is defined by a method of an
ObjectName, which may be an intrinsic method of a CIM Namespace or an extrinsic method of a
CIM_ManagedElement. The input parameters to the method are defined by the query and may be fixed values
defined by literals or may be defined by reference to one or more properties of QueryConditionResult,
MethodActionResult, or other instances.

MethodAction is subclassed from PolicyAction.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyAction is
defined.

SystemName Mandatory The name of the System object in whose scope this
MethodAction is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific MethodAction, the CreationClassName
of the PolicyRule object with which this Action is
associated. For a reusable MethodAction, a special value,
'NO RULE', should be used.

PolicyRuleName Mandatory For a rule-specific MethodAction, the name of the
PolicyRule object with which this Action is associated. For a
reusable MethodAction, a special value, 'NO RULE', should
be used.

CreationClassName Mandatory The name of the class or the subclass used in the creation
of an instance.

PolicyActionName Mandatory A client defined user friendly name of this policy (method)
action

DoActionLogging Optional

InstMethodCallName Mandatory In the context of the associated PolicyRule,
InstMethodCallName defines a unique name for the query
results that invoke the method specified in the Query string.
It may be used in subsequent MethodActions of the same
PolicyRule. This string is treated as a class name, in a
query statement.

Query Mandatory The query that defines the method and the input
parameters to that method.

QueryLanguage Mandatory This defines the query language being used, and for the
current version of SMI-S, this shall be set to "2" (CQL).

Table 308 - SMI Referenced Properties/Methods for CIM_MethodAction (Client defined)

Properties Flags Requirement Description & Notes
300

NO_ANSI_ID Policy Package
Table 309 describes class CIM_MethodAction (Pre-defined).

31.8.9 CIM_PolicyActionInPolicyAction (Client defined)

PolicyActionInPolicyAction is used to represent the compounding of policy actions into a higher-level policy action.

PolicyActionInPolicyAction is subclassed from PolicyActionStructure.

This association will exist if there is a Client defined CompoundPolicyAction instance.

Created By: Static
Modified By: Static
Deleted By: Static

Table 309 - SMI Referenced Properties/Methods for CIM_MethodAction (Pre-defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another provider supplied user friendly name

CommonName Optional A provider supplied user friendly name of the
MethodAction.

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyAction is
defined.

SystemName Mandatory The name of the System object in whose scope this
MethodAction is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific MethodAction, the CreationClassName
of the PolicyRule object with which this Action is
associated. For a reusable MethodAction, a special value,
'NO RULE', should be used.

PolicyRuleName Mandatory For a rule-specific MethodAction, the name of the
PolicyRule object with which this Action is associated. For a
reusable MethodAction, a special value, 'NO RULE', should
be used.

CreationClassName Mandatory The name of the class or the subclass used in the creation
of an instance.

PolicyActionName Mandatory A provider supplied user friendly name of this policy
(method) action

DoActionLogging Optional

InstMethodCallName Mandatory In the context of the associated PolicyRule,
InstMethodCallName defines a unique name for the query
results that invoke the method specified in the Query string.
It may be used in subsequent MethodActions of the same
PolicyRule. This string is treated as a class name, in a
query statement.

Query Mandatory The query that defines the method and the input
parameters to that method.

QueryLanguage Mandatory This defines the query language being used, and for the
current version of SMI-S, it shall be set to "2" (CQL).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 301

Policy Package NO_ANSI_ID
Requirement: Optional

Table 310 describes class CIM_PolicyActionInPolicyAction (Client defined).

31.8.10 CIM_PolicyActionInPolicyAction (Pre-defined)

PolicyActionInPolicyAction is used to represent the compounding of policy actions into a higher-level policy action.

PolicyActionInPolicyAction is subclassed from PolicyActionStructure.

This association will exist if there is a predefined CompoundPolicyAction instance.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 311 describes class CIM_PolicyActionInPolicyAction (Pre-defined).

31.8.11 CIM_PolicyActionInPolicyRule (Client defined)

A PolicyRule aggregates zero or more instances of the PolicyAction class, via the PolicyActionInPolicyRule
association. A Rule that aggregates zero Actions is not valid--it may, however, be in the process of being entered
into a PolicyRepository or being defined for a System. Alternately, the actions of the policy may be explicit in the
definition of the PolicyRule. Note that a PolicyRule should have no effect until it is valid.

Table 310 - SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyAction (Client
defined)

Properties Flags Requirement Description & Notes

ActionOrder Optional ActionOrder is an unsigned integer 'n' that indicates the
relative position of a PolicyAction in the sequence of
actions associated with a PolicyRule or
CompoundPolicyAction.

GroupComponent Mandatory This property represents the CompoundPolicyAction that
contains one or more PolicyActions.

PartComponent Mandatory This property holds the name of a PolicyAction contained
by one or more CompoundPolicyActions.

Table 311 - SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyAction (Pre-
defined)

Properties Flags Requirement Description & Notes

ActionOrder Optional ActionOrder is an unsigned integer 'n' that indicates the
relative position of a PolicyAction in the sequence of
actions associated with a PolicyRule or
CompoundPolicyAction.

PartComponent Mandatory

GroupComponent Mandatory
302

NO_ANSI_ID Policy Package
The Actions associated with a PolicyRule may be given a required order, a recommended order, or no order at all.
For Actions represented as separate objects, the PolicyActionInPolicyRule aggregation can be used to express an
order.

This aggregation does not indicate whether a specified action order is required, recommended, or of no
significance; the property SequencedActions in the aggregating instance of PolicyRule provides this indication.

PolicyActionInPolicyRule is subclassed from PolicyActionStructure.

This association will exist if there are any Client defined PolicyRules that have MethodActions.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 312 describes class CIM_PolicyActionInPolicyRule (Client defined).

31.8.12 CIM_PolicyActionInPolicyRule (Pre-defined)

A PolicyRule aggregates zero or more instances of the PolicyAction class, via the PolicyActionInPolicyRule
association. A Rule that aggregates zero Actions is not valid--it may, however, be in the process of being entered
into a PolicyRepository or being defined for a System. Alternately, the actions of the policy may be explicit in the
definition of the PolicyRule. Note that a PolicyRule should have no effect until it is valid.

The Actions associated with a PolicyRule may be given a required order, a recommended order, or no order at all.
For Actions represented as separate objects, the PolicyActionInPolicyRule aggregation can be used to express an
order.

This aggregation does not indicate whether a specified action order is required, recommended, or of no
significance; the property SequencedActions in the aggregating instance of PolicyRule provides this indication.

PolicyActionInPolicyRule is subclassed from PolicyActionStructure.

This association will exist if there are any Static PolicyRules that have MethodActions.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 312 - SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyRule (Client
defined)

Properties Flags Requirement Description & Notes

ActionOrder Optional ActionOrder is an unsigned integer 'n' that indicates the
relative position of a PolicyAction in the sequence of
actions associated with a PolicyRule.

GroupComponent Mandatory This property represents the PolicyRule that contains one
or more PolicyActions.

PartComponent Mandatory This property holds the name of a PolicyAction contained
by one or more PolicyRules.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 303

Policy Package NO_ANSI_ID
Table 313 describes class CIM_PolicyActionInPolicyRule (Pre-defined).

31.8.13 CIM_PolicyConditionInPolicyCondition (Client defined)

A CompoundPolicyCondition aggregates zero or more instances of the PolicyCondition class, via the
PolicyConditionInPolicyCondition association. A CompoundPolicyCondition that aggregates zero Conditions is not
valid; it may, however, be in the process of being defined. Note that a CompoundPolicyCondition should have no
effect until it is valid.

CIM_PolicyConditionInPolicyCondition is subclassed from CIM_PolicyConditionStructure.

There would be at least on instance of this association if there are any Client defined CompoundPolicyConditions.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 314 describes class CIM_PolicyConditionInPolicyCondition (Client defined).

31.8.14 CIM_PolicyConditionInPolicyCondition (Pre-defined)

A CompoundPolicyCondition aggregates zero or more instances of the PolicyCondition class, via the
PolicyConditionInPolicyCondition association. A CompoundPolicyCondition that aggregates zero Conditions is not

Table 313 - SMI Referenced Properties/Methods for CIM_PolicyActionInPolicyRule (Pre-defined)

Properties Flags Requirement Description & Notes

ActionOrder Optional ActionOrder is an unsigned integer 'n' that indicates the
relative position of a PolicyAction in the sequence of
actions associated with a PolicyRule.

GroupComponent Mandatory

PartComponent Mandatory

Table 314 - SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Cli-
ent defined)

Properties Flags Requirement Description & Notes

GroupNumber Mandatory Unsigned integer indicating the group to which the
contained PolicyCondition belongs. This integer segments
the Conditions into the ANDed sets (when the
ConditionListType is "DNF") or, similarly, into the ORed sets
(when the ConditionListType is "CNF").

ConditionNegated Mandatory Indication of whether the contained PolicyCondition is
negated. TRUE indicates that the PolicyCondition IS
negated, FALSE indicates that it IS not negated.

GroupComponent Mandatory This property represents the CompoundPolicyCondition
that contains one or more PolicyConditions.

PartComponent Mandatory This property holds the name of a PolicyCondition
contained by one or more CompoundPolicyConditions.
304

NO_ANSI_ID Policy Package
valid; it may, however, be in the process of being defined. Note that a CompoundPolicyCondition should have no
effect until it is valid.

CIM_PolicyConditionInPolicyCondition is subclassed from CIM_PolicyConditionStructure.

There would be at least on instance of this association if there are any predefined CompoundPolicyConditions.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 315 describes class CIM_PolicyConditionInPolicyCondition (Pre-defined).

31.8.15 CIM_PolicyConditionInPolicyRule (Client defined)

A PolicyRule aggregates zero or more instances of the PolicyCondition class, via the PolicyConditionInPolicyRule
association. A Rule that aggregates zero Conditions is not valid; it may, however, be in the process of being
defined. Note that a PolicyRule should have no effect until it is valid.

CIM_PolicyConditionInPolicyRule is subclassed from CIM_PolicyConditionStructure.

There would be one instance of this association for each client defined PolicyCondition in a PolicyRule.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 315 - SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyCondition (Pre-
defined)

Properties Flags Requirement Description & Notes

GroupNumber Mandatory Unsigned integer indicating the group to which the
contained PolicyCondition belongs. This integer segments
the Conditions into the ANDed sets (when the
ConditionListType is "DNF") or, similarly, into the ORed sets
(when the ConditionListType is "CNF").

ConditionNegated Mandatory Indication of whether the contained PolicyCondition is
negated. TRUE indicates that the PolicyCondition IS
negated, FALSE indicates that it IS not negated.

PartComponent Mandatory

GroupComponent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 305

Policy Package NO_ANSI_ID
Table 316 describes class CIM_PolicyConditionInPolicyRule (Client defined).

31.8.16 CIM_PolicyConditionInPolicyRule (Pre-defined)

A PolicyRule aggregates zero or more instances of the PolicyCondition class, via the PolicyConditionInPolicyRule
association. A Rule that aggregates zero Conditions is not valid; it may, however, be in the process of being
defined. Note that a PolicyRule should have no effect until it is valid.

CIM_PolicyConditionInPolicyRule is subclassed from CIM_PolicyConditionStructure.

There would be one instance of this association for each predefined PolicyCondition in a PolicyRule.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 317 describes class CIM_PolicyConditionInPolicyRule (Pre-defined).

Table 316 - SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyRule (Client
defined)

Properties Flags Requirement Description & Notes

GroupNumber Mandatory Unsigned integer indicating the group to which the
contained PolicyCondition belongs. This integer segments
the Conditions into the ANDed sets (when the
ConditionListType is "DNF") or, similarly, into the ORed sets
(when the ConditionListType is "CNF").

ConditionNegated Mandatory Indication of whether the contained PolicyCondition is
negated. TRUE indicates that the PolicyCondition IS
negated, FALSE indicates that it IS not negated.

GroupComponent Mandatory This property represents the PolicyRule that contains one
or more PolicyConditions.

PartComponent Mandatory This property holds the name of a PolicyCondition
contained by one or more PolicyRules.

PartComponent Mandatory

GroupComponent Mandatory

Table 317 - SMI Referenced Properties/Methods for CIM_PolicyConditionInPolicyRule (Pre-
defined)

Properties Flags Requirement Description & Notes

GroupNumber Mandatory Unsigned integer indicating the group to which the
contained PolicyCondition belongs. This integer segments
the Conditions into the ANDed sets (when the
ConditionListType is "DNF") or, similarly, into the ORed sets
(when the ConditionListType is "CNF").

GroupComponent Mandatory

PartComponent Mandatory
306

NO_ANSI_ID Policy Package
31.8.17 CIM_PolicyContainerInPolicyContainer

A relationship that aggregates one or more lower-level ReusablePolicyContainer instances into a higher-level
ReusablePolicyContainer.

CIM_PolicyContainerInPolicyContainer is subclassed form CIM_SystemComponent.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 318 describes class CIM_PolicyContainerInPolicyContainer.

31.8.18 CIM_PolicyRule (Dynamic or Client defined)

Same rules as defined for predefined PolicyRules apply to Client Defined PolicyRules.

CIM_PolicyRule is subclassed from CIM_PolicySet.

There shall be at least one instance of PolicyRule for a policy based profile (a profile with an implementation of the
Policy Package).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 319 describes class CIM_PolicyRule (Dynamic or Client defined).

Table 318 - SMI Referenced Properties/Methods for CIM_PolicyContainerInPolicyContainer

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 319 - SMI Referenced Properties/Methods for CIM_PolicyRule (Dynamic or Client defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another client defined user friendly name

CommonName Optional A client defined user friendly name of policy rule.

PolicyDecisionStrate
gy

Mandatory PolicyDecisionStrategy defines the evaluation method used
for policies contained in the PolicySet. FirstMatching
enforces the actions of the first rule that evaluates to
TRUE. It is the only value currently defined.

Values { "First Matching" }
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 307

Policy Package NO_ANSI_ID
Enabled Mandatory Indicates whether this PolicySet is administratively enabled
or administratively disabled. SMI-S does not define a usage
for 'Enabled for Debug', but it may be supported by an
implementation.

ValueMap { "1", "2", "3" },

Values { "Enabled", "Disabled", "Enabled For Debug" }

SystemCreationClas
sName

Mandatory The scoping System's CreationClassName.

SystemName Mandatory The scoping System's Name.

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass used in the creation of an instance.

PolicyRuleName Mandatory A user-friendly name of this PolicyRule.

ConditionListType Optional Indicates whether the list of PolicyConditions associated
with this PolicyRule is in disjunctive normal form (DNF),
conjunctive normal form (CNF), or has no conditions (i.e., is
an UnconditionalRule) and is automatically evaluated to
"True."

The default value is 1 ("DNF").

Values { "Unconditional Rule", "DNF", "CNF" }

RuleUsage Optional A free-form string that can be used to provide guidelines on
how this PolicyRule should be used.

Table 319 - SMI Referenced Properties/Methods for CIM_PolicyRule (Dynamic or Client defined)

Properties Flags Requirement Description & Notes
308

NO_ANSI_ID Policy Package
31.8.19 CIM_PolicyRule (Pre-defined)

The central class used for representing the 'If Condition then Action' semantics of a policy rule. A PolicyRule
condition, in the most general sense, is represented as either an ORed set of ANDed conditions (Disjunctive
Normal Form, or DNF) or an ANDed set of ORed conditions (Conjunctive Normal Form, or CNF). Individual
conditions may either be negated (not C) or unnegated (C). The actions specified by a PolicyRule are to be
performed if and only if the PolicyRule condition (whether it is represented in DNF or CNF) evaluates to TRUE.

The conditions and actions associated with a PolicyRule are modeled, respectively, with subclasses of
PolicyCondition and PolicyAction. These condition and action objects are tied to instances of PolicyRule by the
PolicyConditionInPolicyRule and PolicyActionInPolicyRule aggregations.

A PolicyRule may also be associated with one or more policy time periods, indicating the schedule according to
which the policy rule is active and inactive. In this case it is the PolicySetValidityPeriod aggregation that provides
this linkage.

The PolicyRule class uses the property ConditionListType, to indicate whether the conditions for the rule are in
DNF (disjunctive normal form), CNF (conjunctive normal form) or, in the case of a rule with no conditions, as an
UnconditionalRule. The PolicyConditionInPolicyRule aggregation contains two additional properties to complete
the representation of the Rule's conditional expression. The first of these properties is an integer to partition the
referenced PolicyConditions into one or more groups, and the second is a Boolean to indicate whether a

SequencedActions Optional This property gives a policy administrator a way of
specifying how the ordering of the PolicyActions associated
with this PolicyRule is to be interpreted. Three values are
supported:

- mandatory(1): Do the actions in the indicated order, or
don't do them at all.

- recommended(2): Do the actions in the indicated order if
you can, but if you can't do them in this order, do them in
another order if you can.

- dontCare(3): Do them -- I don't care about the order.

The default value is 3 ("DontCare").

Values { "Mandatory", "Recommended", "Dont Care" }

ExecutionStrategy Mandatory ExecutionStrategy defines the strategy to be used in
executing the sequenced actions aggregated by this
PolicyRule. There are three execution strategies:

Do Until Success - execute actions according to predefined
order, until successful execution of a single action.

Do All - execute ALL actions which are part of the modeled
set, according to their predefined order. Continue doing
this, even if one or more of the actions fails.

Do Until Failure - execute actions according to predefined
order, until the first failure in execution of an action
instance.

Values { "Do Until Success", "Do All", "Do Until Failure" }

Table 319 - SMI Referenced Properties/Methods for CIM_PolicyRule (Dynamic or Client defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 309

Policy Package NO_ANSI_ID
referenced Condition is negated. An example shows how ConditionListType and these two additional properties
provide a unique representation of a set of PolicyConditions in either DNF or CNF.

Suppose we have a PolicyRule that aggregates five PolicyConditions C1 through C5, with the following values in
the properties of the five PolicyConditionInPolicyRule associations:

C1: GroupNumber = 1, ConditionNegated = FALSE

C2: GroupNumber = 1, ConditionNegated = TRUE

C3: GroupNumber = 1, ConditionNegated = FALSE

C4: GroupNumber = 2, ConditionNegated = FALSE

C5: GroupNumber = 2, ConditionNegated = FALSE

If ConditionListType = DNF, then the overall condition for the PolicyRule is:

(C1 AND (not C2) AND C3) OR (C4 AND C5)

On the other hand, if ConditionListType = CNF, then the overall condition for the PolicyRule is:

(C1 OR (not C2) OR C3) AND (C4 OR C5)

In both cases, there is an unambiguous specification of the overall condition that is tested to determine whether to
perform the PolicyActions associated with the PolicyRule.

PolicyRule instances may also be used to aggregate other PolicyRules and/or PolicyGroups. When used in this
way to implement nested rules, the conditions of the aggregating rule apply to the subordinate rules as well.
However, any side effects of condition evaluation or the execution of actions shall not affect the result of the
evaluation of other conditions evaluated by the rule engine in the same evaluation pass. That is, an implementation
of a rule engine may evaluate all conditions in any order before applying the priority and determining which actions
are to be executed.

CIM_PolicyRule is subclassed from CIM_PolicySet.

There shall be at least one instance of PolicyRule for a policy based profile (a profile with an implementation of the
Policy Package).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 320 describes class CIM_PolicyRule (Pre-defined).

Table 320 - SMI Referenced Properties/Methods for CIM_PolicyRule (Pre-defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another provider supplied user friendly name

CommonName Optional A provider supplied user friendly name of the policy rule

PolicyDecisionStrate
gy

Mandatory PolicyDecisionStrategy defines the evaluation method used
for policies contained in the PolicySet. FirstMatching
enforces the actions of the first rule that evaluates to
TRUE. It is the only value currently defined.

Values { "First Matching" }
310

NO_ANSI_ID Policy Package
Enabled Mandatory Indicates whether this PolicySet is administratively enabled
or administratively disabled. SMI-S does not define a usage
for 'Enabled for Debug', but it may be supported by an
implementation.

ValueMap { "1", "2", "3" },

Values { "Enabled", "Disabled", "Enabled For Debug" }

SystemCreationClas
sName

Mandatory The scoping System's CreationClassName.

SystemName Mandatory The scoping System's Name.

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass used in the creation of an instance.

PolicyRuleName Mandatory A user-friendly name of this PolicyRule.

ConditionListType Optional Indicates whether the list of PolicyConditions associated
with this PolicyRule is in disjunctive normal form (DNF),
conjunctive normal form (CNF), or has no conditions (i.e., is
an UnconditionalRule) and is automatically evaluated to
"True."

The default value is 1 ("DNF").

Values { "Unconditional Rule", "DNF", "CNF" }

RuleUsage Optional A free-form string that can be used to provide guidelines on
how this PolicyRule should be used.

Table 320 - SMI Referenced Properties/Methods for CIM_PolicyRule (Pre-defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 311

Policy Package NO_ANSI_ID
31.8.20 CIM_PolicyRuleInSystem (Dynamic or Client defined)

An association that links a PolicyRule to the System in whose scope the Rule is defined. It represents a
relationship between a System and a PolicyRule used in the administrative scope of that system (e.g.,
AdminDomain, ComputerSystem). The Priority property is used to assign a relative priority to a PolicyRule within
the administrative scope in contexts where it is not a component of another PolicySet.

CIM_PolicyRuleInSystem is subclassed from CIM_PolicySetInSystem.

There shall be at least one instance of this association for each Dynamic or Client Defined Policy Rule.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

SequencedActions Optional This property gives a policy administrator a way of
specifying how the ordering of the PolicyActions associated
with this PolicyRule is to be interpreted. Three values are
supported:

- mandatory(1): Do the actions in the indicated order, or
don't do them at all.

- recommended(2): Do the actions in the indicated order if
you can, but if you can't do them in this order, do them in
another order if you can.

- dontCare(3): Do them -- I don't care about the order.

The default value is 3 ("DontCare").

Values { "Mandatory", "Recommended", "Dont Care" }

ExecutionStrategy Mandatory ExecutionStrategy defines the strategy to be used in
executing the sequenced actions aggregated by this
PolicyRule. There are three execution strategies:

Do Until Success - execute actions according to predefined
order, until successful execution of a single action.

Do All - execute ALL actions which are part of the modeled
set, according to their predefined order. Continue doing
this, even if one or more of the actions fails.

Do Until Failure - execute actions according to predefined
order, until the first failure in execution of an action
instance.

Values { "Do Until Success", "Do All", "Do Until Failure" }

Table 320 - SMI Referenced Properties/Methods for CIM_PolicyRule (Pre-defined)

Properties Flags Requirement Description & Notes
312

NO_ANSI_ID Policy Package
Table 321 describes class CIM_PolicyRuleInSystem (Dynamic or Client defined).

31.8.21 CIM_PolicyRuleInSystem (Pre-defined)

An association that links a PolicyRule to the System in whose scope the Rule is defined. It represents a
relationship between a System and a PolicyRule used in the administrative scope of that system (e.g.,
AdminDomain, ComputerSystem). The Priority property is used to assign a relative priority to a PolicyRule within
the administrative scope in contexts where it is not a component of another PolicySet.

CIM_PolicyRuleInSystem is subclassed from CIM_PolicySetInSystem.

There shall be at least one instance of this association for each Static Policy rule.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 322 describes class CIM_PolicyRuleInSystem (Pre-defined).

31.8.22 CIM_PolicySetAppliesToElement (Dynamic or Client defined)

PolicySetAppliesToElement makes explicit which PolicySets (i.e., policy rules and groups of rules) ARE
CURRENTLY applied to a particular Element. This association indicates that the PolicySets that are appropriate for
a ManagedElement(specified using the PolicyRoleCollection aggregation) have actually been deployed in the
policy management infrastructure. One or more QueryCondition or MethodAction instances may reference the

Table 321 - SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Dynamic or Client
defined)

Properties Flags Requirement Description & Notes

Priority Optional The Priority property is used to specify the relative priority
of the referenced PolicySet (PolicyRule) when there are
more than one PolicySet instances applied to a managed
resource that are not PolicySetComponents and, therefore,
have no other relative priority defined. The priority is a non-
negative integer; a larger value indicates a higher priority.

Antecedent Mandatory The System in whose scope a PolicyRule is defined.

Dependent Mandatory A PolicyRule named within the scope of a System.

Table 322 - SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (Pre-defined)

Properties Flags Requirement Description & Notes

Priority Optional The Priority property is used to specify the relative priority
of the referenced PolicySet (PolicyRule) when there are
more than one PolicySet instances applied to a managed
resource that are not PolicySetComponents and, therefore,
have no other relative priority defined. The priority is a non-
negative integer; a larger value indicates a higher priority.

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 313

Policy Package NO_ANSI_ID
PolicySetAppliesToElement association as part of its query. PolicySetAppliesToElement shall not be used if the
associated PolicySet, (collectively though its rules, conditions, and actions), does not make use of the association.
Note that if the named Element refers to a Collection, then the PolicySet is assumed to be applied to all the
members of the Collection.

CIM_PolicySetAppliesToElement is not subclassed from anything.

An instance of this class may or may not exist.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 323 describes class CIM_PolicySetAppliesToElement (Dynamic or Client defined).

31.8.23 CIM_PolicySetAppliesToElement (Pre-defined)

PolicySetAppliesToElement makes explicit which PolicySets (i.e., policy rules and groups of rules) ARE
CURRENTLY applied to a particular Element. This association indicates that the PolicySets that are appropriate for
a ManagedElement(specified using the PolicyRoleCollection aggregation) have actually been deployed in the
policy management infrastructure. One or more QueryCondition or MethodAction instances may reference the
PolicySetAppliesToElement association as part of its query. PolicySetAppliesToElement shall not be used if the
associated PolicySet, (collectively though its rules, conditions, and actions), does not make use of the association.
Note that if the named Element refers to a Collection, then the PolicySet is assumed to be applied to all the
members of the Collection.

CIM_PolicySetAppliesToElement is not subclassed from anything.

An instance of this class may or may not exist.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 324 describes class CIM_PolicySetAppliesToElement (Pre-defined).

Table 323 - SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement (Dynamic or
Client defined)

Properties Flags Requirement Description & Notes

PolicySet Mandatory The PolicyRules and/or groups of rules that are currently
applied to an Element.

ManagedElement Mandatory The ManagedElement to which the PolicySet applies.

Table 324 - SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement (Pre-
defined)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

PolicySet Mandatory
314

NO_ANSI_ID Policy Package
31.8.24 CIM_PolicySetValidityPeriod (Dynamic or Client defined)

The rules for client defined PolicySetValidityPeriods are the same as those for predefined PolicySetValidityPeriods.

CIM_PolicySetValidityPeriod is subclassed from CIM_PolicyComponent.

An instance of this class may or may not exist.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 325 describes class CIM_PolicySetValidityPeriod (Dynamic or Client defined).

31.8.25 CIM_PolicySetValidityPeriod (Pre-defined)

The PolicySetValidityPeriod aggregation represents scheduled activation and deactivation of a PolicySet. A
PolicySet is considered "active" if it is both "Enabled" and in a valid time period.

If a PolicySet is associated with multiple policy time periods via this association, then the Set is in a valid time
period if at least one of the time periods evaluates to TRUE. If a PolicySet is contained in another PolicySet via the
PolicySetComponent aggregation (e.g., a PolicyRule in a PolicyGroup), then the contained PolicySet (e.g.,
PolicyRule) is in a valid period if at least one of the aggregate's PolicyTimePeriodCondition instances evaluates to
TRUE and at least one of its own PolicyTimePeriodCondition instances also evaluates to TRUE. (In other words,
the PolicyTimePeriodConditions are ORed to determine whether the PolicySet is in a valid time period and then
ANDed with the ORed PolicyTimePeriodConditions of each of PolicySet instances in the PolicySetComponent
hierarchy to determine if the PolicySet is in a valid time period and, if also "Enabled", therefore, active, i.e., the
hierarchy ANDs the ORed PolicyTimePeriodConditions of the elements of the hierarchy.

A Time Period may be aggregated by multiple PolicySets. A Set that does not point to a PolicyTimePeriodCondition
via this association, from the point of view of scheduling, is always in a valid time period.

CIM_PolicySetValidityPeriod is subclassed from CIM_PolicyComponent.

An instance of this class may or may not exist.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 325 - SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod (Dynamic or Cli-
ent defined)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory This property contains the name of a PolicySet that
contains one or more PolicyTimePeriodConditions.

PartComponent Mandatory This property contains the name of a
PolicyTimePeriodCondition defining the valid time periods
for one or more PolicySets.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 315

Policy Package NO_ANSI_ID
Table 326 describes class CIM_PolicySetValidityPeriod (Pre-defined).

31.8.26 CIM_PolicyTimePeriodCondition (Dynamic or Client defined)

The rules for client defined PolicyTimePeriodCondition are the same as those described for predefined
PolicyTimePeriodCondition.

CIM_PolicyTimePeriodCondition is subclassed from CIM_PolicyCondition.

An instance of this class may or may not exist. If they exist, they can be found by following PolicyConditionInRule
associations from PolicyRule instances or ReusablePolicy associations from ReusablePolicyContainer instances.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 327 describes class CIM_PolicyTimePeriodCondition (Dynamic or Client defined).

Table 326 - SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod (Pre-defined)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 327 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Dynamic or
Client defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another client defined user friendly name.

CommonName Optional A client defined user friendly name of policy object

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyCondition is
defined.

SystemName Mandatory The name of the System object in whose scope this
PolicyCondition is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific PolicyCondition, the CreationClassName
of the PolicyRule object with which this Condition is
associated. For a reusable Policy Condition, a special
value, 'NO RULE', should be used to indicate that this
Condition is reusable and not associated with a single
PolicyRule.

PolicyRuleName Mandatory For a rule-specific PolicyCondition, the name of the
PolicyRule object with which this Condition is associated.
For a reusable PolicyCondition, a special value, 'NO
RULE', should be used to indicate that this Condition is
reusable and not associated with a single PolicyRule.

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass used in the creation of an instance.
316

NO_ANSI_ID Policy Package
31.8.27 CIM_PolicyTimePeriodCondition (Pre-defined)

This class provides a means of representing the time periods during which a PolicySet is valid, i.e., active. At all
times that fall outside these time periods, the PolicySet has no effect. A PolicySet is treated as valid at ALL times,
if it does not specify a PolicyTimePeriodCondition.

In some cases a Policy Consumer may need to perform certain setup / cleanup actions when a PolicySet becomes
active / inactive. For example, sessions that were established while a PolicySet was active might need to be taken
down when the PolicySet becomes inactive. In other cases, however, such sessions might be left up. In this case,
the effect of deactivating the PolicySet would just be to prevent the establishment of new sessions.

Setup / cleanup behaviors on validity period transitions are not currently addressed by the Policy Model, and must
be specified in 'guideline' documents or via subclasses of CIM_PolicySet, CIM_PolicyTimePeriod Condition or
other concrete subclasses of CIM_Policy. If such behaviors need to be under the control of the policy administrator,
then a mechanism to allow this control shall also be specified in the subclasses.

PolicyTimePeriodCondition is defined as a subclass of PolicyCondition. This is to allow the inclusion of time based
criteria in the AND/OR condition definitions for a PolicyRule.

Instances of this class may have up to five properties identifying time periods at different levels. The values of all
the properties present in an instance are ANDed together to determine the validity period(s) for the instance. For
example, an instance with an overall validity range of January 1, 2000 through December 31, 2000; a month mask
that selects March and April; a day-of-the-week mask that selects Fridays; and a time of day range of 0800 through
1600 would be represented using the following time periods:

Friday, March 5, 2000, from 0800 through 1600;

Friday, March 12, 2000, from 0800 through 1600;

Friday, March 19, 2000, from 0800 through 1600;

Friday, March 26, 2000, from 0800 through 1600;

Friday, April 2, 2000, from 0800 through 1600;

Friday, April 9, 2000, from 0800 through 1600;

Friday, April 16, 2000, from 0800 through 1600;

Friday, April 23, 2000, from 0800 through 1600;

Friday, April 30, 2000, from 0800 through 1600.

PolicyConditionName Mandatory A user-friendly name of this PolicyCondition.

TimePeriod Optional

MonthOfYearMask Optional

DayOfMonthMask Optional

DayOfWeekMask Optional

TimeOfDayMask Optional

LocalOrUtcTime Optional

Table 327 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Dynamic or
Client defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 317

Policy Package NO_ANSI_ID
Properties not present in an instance of PolicyTimePeriodCondition are implicitly treated as having their value
'always enabled'. Thus, in the example above, the day-of-the-month mask is not present, and so the validity period
for the instance implicitly includes a day-of-the-month mask that selects all days of the month. If this 'missing
property' rule is applied to its fullest, we see that there is a second way to indicate that a PolicySet is always
enabled: associate with it an instance of PolicyTimePeriodCondition whose only properties with specific values are
its key properties.

CIM_PolicyTimePeriodCondition is subclassed from CIM_PolicyCondition.

An instance of this class may or may not exist. If they exist, they can be found by following PolicyConditionInRule
associations from PolicyRule instances or ReusablePolicy associations from ReusablePolicyContainer instances.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 328 describes class CIM_PolicyTimePeriodCondition (Pre-defined).

Table 328 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-
defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another provider supplied user friendly name.

CommonName Optional A provider supplied user friendly name of policy object.

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyCondition is
defined.

SystemName Mandatory The name of the System object in whose scope this
PolicyCondition is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific PolicyCondition, the CreationClassName
of the PolicyRule object with which this Condition is
associated. For a reusable Policy Condition, a special
value, 'NO RULE', should be used to indicate that this
Condition is reusable and not associated with a single
PolicyRule.

PolicyRuleName Mandatory For a rule-specific PolicyCondition, the name of the
PolicyRule object with which this Condition is associated.
For a reusable PolicyCondition, a special value, 'NO
RULE', should be used to indicate that this Condition is
reusable and not associated with a single PolicyRule.

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass used in the creation of an instance.

PolicyConditionName Mandatory A user-friendly name of this PolicyCondition.
318

NO_ANSI_ID Policy Package
TimePeriod Optional This property identifies an overall range of calendar dates
and times over which a PolicySet is valid. It is formatted as
a string representing a start date and time, in which the
character 'T' indicates the beginning of the time portion,
followed by the solidus character '/', followed by a similar
string representing an end date and time. The first date
indicates the beginning of the range, while the second date
indicates the end. Thus, the second date and time shall be
later than the first. Date/times are expressed as substrings
of the form yyyymmddThhmmss.

MonthOfYearMask Optional The purpose of this property is to refine the valid time
period that is defined by the TimePeriod property, by
explicitly specifying in which months the PolicySet is valid.
These properties work together, with the TimePeriod used
to specify the overall time period in which the PolicySet is
valid, and the MonthOfYearMask used to pick out the
months during which the PolicySet is valid.

DayOfMonthMask Optional The purpose of this property is to refine the valid time
period that is defined by the TimePeriod property, by
explicitly specifying in which days of the month the
PolicySet is valid. These properties work together, with the
TimePeriod used to specify the overall time period in which
the PolicySet is valid, and the DayOfMonthMask used to
pick out the days of the month during which the PolicySet is
valid.

DayOfWeekMask Optional The purpose of this property is to refine the valid time
period that is defined by the TimePeriod property, by
explicitly specifying in which days of the week the PolicySet
is valid. These properties work together, with the
TimePeriod used to specify the overall time period in which
the PolicySet is valid, and the DayOfWeekMask used to
pick out the days of the week during which the PolicySet is
valid.

Table 328 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-
defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 319

Policy Package NO_ANSI_ID
31.8.28 CIM_QueryCapabilities

This class defines the capabilities of the Specific Policy Subprofile associated via ElementCapabilities.

CIM_QueryCapabilities is subclassed from CIM_Capabilities.

An instance of this class may or may not exist. An instance of CIM_QueryCapabilities shall exist for each Specific
Policy Subprofile that supports client defined queries.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 329 describes class CIM_QueryCapabilities.

TimeOfDayMask Optional The purpose of this property is to refine the valid time
period that is defined by the TimePeriod property, by
explicitly specifying a range of times in a day during which
the PolicySet is valid. These properties work together, with
the TimePeriod used to specify the overall time period in
which the PolicySet is valid, and the TimeOfDayMask used
to pick out the range of time periods in a given day of during
which the PolicySet is valid.

LocalOrUtcTime Optional This property indicates whether the times represented in
the TimePeriod property and in the various Mask properties
represent local times or UTC times. There is no provision
for mixing of local times and UTC times: the value of this
property applies to all of the other time-related properties.
TimePeriods are synchronized worldwide by using the
enumeration value 'UTCTime'.

Table 329 - SMI Referenced Properties/Methods for CIM_QueryCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory This is a user friendly name of the capabilities instance.

CQLFeatures Mandatory Enumeration of CQL features supported by an Object
Manager or Provider associated via ElementCapabilities.
(See DSP0202 CIM Query Language Specification for a
normative definition of each feature.)

Values {"Basic Query", "Simple Join", "Complex Join",
"Time", "Basic Like", "Full Like", "Array Elements",
"Embedded Objects", "Order By", "Aggregations",
"Subquery", "Satisfies Array", "Distinct", "First", "Path
Functions"}

Table 328 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition (Pre-
defined)

Properties Flags Requirement Description & Notes
320

NO_ANSI_ID Policy Package
31.8.29 CIM_QueryCondition (Dynamic or Client defined)

QueryCondition defines the criteria for generating a set of QueryConditionResult instances that result from the
contained query. If there are no instances returned from the query, then the result is false; otherwise, true.

CIM_QueryCondition is subclassed from CIM_PolicyCondition.

QueryCondition instances may or may not exist. If they exist, they can be found by following PolicyConditionInRule
associations from PolicyRule instances or ReusablePolicy associations from ReusablePolicyContainer instances.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 330 describes class CIM_QueryCondition (Dynamic or Client defined).

Table 330 - SMI Referenced Properties/Methods for CIM_QueryCondition (Dynamic or Client
defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another user-friendly name.

CommonName Optional User-friendly name of the QueryCondition.

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyCondition is
defined.

SystemName Mandatory The name of the System object in whose scope this
PolicyCondition is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific PolicyCondition, the CreationClassName
of the PolicyRule object with which this Condition is
associated. For a reusable Policy Condition, a special
value, 'NO RULE', should be used to indicate that this
Condition is reusable and not associated with a single
PolicyRule.

PolicyRuleName Mandatory For a rule-specific PolicyCondition, the name of the
PolicyRule object with which this Condition is associated.
For a reusable PolicyCondition, a special value, 'NO
RULE', should be used to indicate that this Condition is
reusable and not associated with a single PolicyRule.

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass used in the creation of an instance.

PolicyConditionName Mandatory A user-friendly name of this PolicyCondition.

QueryResultName Mandatory In the context of the associated PolicyRule,
QueryResultName defines a unique alias for the query
results that may be used in subsequent QueryConditions or
MethodActions of the same PolicyRule. This string is
treated as a class name, in a query statement.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 321

Policy Package NO_ANSI_ID
31.8.30 CIM_QueryCondition (Pre-defined)

QueryCondition defines the criteria for generating a set of QueryConditionResult instances that result from the
contained query. If there are no instances returned from the query, then the result is false; otherwise, true.

CIM_QueryCondition is subclassed from CIM_PolicyCondition.

QueryCondition instances may or may not exist. If they exist, they can be found by following PolicyConditionInRule
associations from PolicyRule instances or ReusablePolicy associations from ReusablePolicyContainer instances.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 331 describes class CIM_QueryCondition (Pre-defined).

Query Mandatory A query expression that defines the condition(s) under
which QueryConditionResult instances will be generated.
The FROM clause may reference any class, including
QueryConditionResult.

NOTE that the property name, "QueryConditionPath", shall
not be used as the name of a select-list entry in the select-
criteria clause of the query.

QueryLanguage Mandatory The language in which the query is expressed. SMI-S only
recognizes "CQL" Other query languages may be encoded
for vendor specific support, but only CQL is supported for
SMI-S interoperability.

Values {"CQL", "DMTF Reserved", "Vendor Reserved"}

Trigger Mandatory If Trigger = true, and with the exception of any
PolicyTimePeriodConditions, PolicyConditions of this
PolicyRule are not evaluated until this "triggering" condition
query is true. There shall be no more than one
QueryCondition with Trigger = true associated with a
particular PolicyRule.

Table 331 - SMI Referenced Properties/Methods for CIM_QueryCondition (Pre-defined)

Properties Flags Requirement Description & Notes

ElementName Optional Another provider supplied user friendly name

CommonName Optional A provider supplied user friendly name of the
QueryCondition

SystemCreationClas
sName

Mandatory The name of the class or the subclass used in the creation
of the System object in whose scope this PolicyCondition is
defined.

Table 330 - SMI Referenced Properties/Methods for CIM_QueryCondition (Dynamic or Client
defined)

Properties Flags Requirement Description & Notes
322

NO_ANSI_ID Policy Package
31.8.31 CIM_ReusablePolicy (Container to MethodAction)

The ReusablePolicy association provides for the reuse of any subclass of Policy in a ReusablePolicyContainer. It is
used in the Policy Package to associate the ReusablePolicyContainer (Dynamic PolicyRule templates) to the
System in which the Dynamic PolicyRule can be defined.

SystemName Mandatory The name of the System object in whose scope this
PolicyCondition is defined.

PolicyRuleCreationCl
assName

Mandatory For a rule-specific PolicyCondition, the CreationClassName
of the PolicyRule object with which this Condition is
associated. For a reusable Policy Condition, a special
value, 'NO RULE', should be used to indicate that this
Condition is reusable and not associated with a single
PolicyRule.

PolicyRuleName Mandatory For a rule-specific PolicyCondition, the name of the
PolicyRule object with which this Condition is associated.
For a reusable PolicyCondition, a special value, 'NO
RULE', should be used to indicate that this Condition is
reusable and not associated with a single PolicyRule.

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass used in the creation of an instance.

PolicyConditionName Mandatory A user-friendly name of this PolicyCondition.

QueryResultName Mandatory In the context of the associated PolicyRule,
QueryResultName defines a unique alias for the query
results that may be used in subsequent QueryConditions or
MethodActions of the same PolicyRule. This string is
treated as a class name, in a query statement.

Query Mandatory A query expression that defines the condition(s) under
which QueryConditionResult instances will be generated.
The FROM clause may reference any class, including
QueryConditionResult.

NOTE that the property name, "QueryConditionPath", shall
not be used as the name of a select-list entry in the select-
criteria clause of the query.

QueryLanguage Mandatory The language in which the query is expressed. SMI-S only
recognizes "CQL". Other query languages may be encoded
for vendor specific support, but only CQL is supported for
SMI-S interoperability.

Values {"CQL", "DMTF Reserved", "Vendor Reserved"}

Trigger Mandatory If Trigger = true, and with the exception of any
PolicyTimePeriodConditions, PolicyConditions of this
PolicyRule are not evaluated until this 'triggering' condition
query is true. There shall be no more than one
QueryCondition with Trigger = true associated with a
particular PolicyRule.

Table 331 - SMI Referenced Properties/Methods for CIM_QueryCondition (Pre-defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 323

Policy Package NO_ANSI_ID
CIM_ReusablePolicy is subclassed from CIM_PolicyInSystem.

This would only be supported if the Policy Package supports Dynamic PolicyRules, as defined in the
PolicyFeaturesSupported property of the PolicyCapabilities instance for the Package. There would be one instance
of ReusablePolicy for every Dynamic PolicyRule template supported by the profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 332 describes class CIM_ReusablePolicy (Container to MethodAction).

31.8.32 CIM_ReusablePolicy (Container to QueryCondition)

The ReusablePolicy association provides for the reuse of any subclass of Policy in a ReusablePolicyContainer. It is
used in the Policy Package to associate the ReusablePolicyContainer (Dynamic PolicyRule templates) to the
System in which the Dynamic PolicyRule can be defined.

CIM_ReusablePolicy is subclassed from CIM_PolicyInSystem.

This would only be supported if the Policy Package supports Dynamic PolicyRules, as defined in the
PolicyFeaturesSupported property of the PolicyCapabilities instance for the Package. There would be one instance
of ReusablePolicy for every Dynamic PolicyRule template supported by the profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 333 describes class CIM_ReusablePolicy (Container to QueryCondition).

31.8.33 CIM_ReusablePolicy (Container to System)

The ReusablePolicy association provides for the reuse of any subclass of Policy in a ReusablePolicyContainer. It is
used in the Policy Package to associate the ReusablePolicyContainer (Dynamic PolicyRule templates) to the
System in which the Dynamic PolicyRule can be defined.

Table 332 - SMI Referenced Properties/Methods for CIM_ReusablePolicy (Container to MethodAc-
tion)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 333 - SMI Referenced Properties/Methods for CIM_ReusablePolicy (Container to QueryCon-
dition)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
324

NO_ANSI_ID Policy Package
CIM_ReusablePolicy is subclassed from CIM_PolicyInSystem.

This would only be supported if the Policy Package supports Dynamic PolicyRules, as defined in the
PolicyFeaturesSupported property of the PolicyCapabilities instance for the Package. There would be one instance
of ReusablePolicy for every Dynamic PolicyRule template supported by the profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 334 describes class CIM_ReusablePolicy (Container to System).

31.8.34 CIM_ReusablePolicyContainer

ReusablePolicyContainer is a class representing an administratively defined container for reusable policy-related
information. This class does not introduce any additional properties beyond those in its superclass AdminDomain.
It does, however, participate in a unique association for containing policy elements that may be used in
constructing Dynamic PolicyRules.

An instance of this class uses the NameFormat value "ReusablePolicyContainer".

CIM_ReusablePolicyContainer is subclassed from CIM_AdminDomain.

This would only be supported if the Policy Package supports Dynamic PolicyRules, as defined in the
PolicyFeaturesSupported property of the PolicyCapabilities instance for the Package. There would be one instance
of ReusablePolicyContainer for every Dynamic PolicyRule template supported by the profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 335 describes class CIM_ReusablePolicyContainer.

Table 334 - SMI Referenced Properties/Methods for CIM_ReusablePolicy (Container to System)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 335 - SMI Referenced Properties/Methods for CIM_ReusablePolicyContainer

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory This should be the Name of the PolicyRule Template as
specified in the profile.

NameFormat Mandatory This shall be set to "ReusablePolicyContainer"
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 325

Policy Package NO_ANSI_ID
31.8.35 SNIA_PolicyCapabilities

This class defines the policy capabilities of the Specific Policy Subprofile associated via ElementCapabilities.

SNIA_PolicyCapabilities is subclassed from CIM_Capabilities.

An instance of SNIA_PolicyCapabilities shall exist for each Specific Policy Subprofile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 336 describes class SNIA_PolicyCapabilities.

IMPLEMENTED

Table 336 - SMI Referenced Properties/Methods for SNIA_PolicyCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory This is a user friendly name of the capabilities instance.

PolicyFeaturesSuppo
rted

Mandatory This array identifies the Policy features supported by the
profile associated via ElementCapabilities.

Values {"Static Rules", "Dynamic Rules", "Client Defined
Rules"}
326

NO_ANSI_ID Physical Package Package
STABLE

Clause 32: Physical Package Package

32.1 Description
Physical Package Package models information about a storage system’s physical package and optionally about
internal sub-packages. A System is 'realized' using a SystemPackaging association to a PhysicalPackage (or a
subclasses such as Chassis). The physical containment model can then be built up using Container associations
and subclasses (such as PackageInChassis).

Physical elements are described as products using the Product class and ProductPhysicalComponent
associations, as shown in Figure 52. The Product instances may be built up into a hierarchy using the
ProductParentChild association. The Product class holds information such as vendor name, serial number and
version.

32.1.1 Well Defined Subcomponents

In addition to defining physical packages at the “System” level, PhysicalPackage may also be defined at a lower,
subcomponent level. For example, PhysicalPackage is used in the Disk Drive Lite Subprofile and for devices
supported by storage media libraries (e.g., TapeDrive and ChangerDevice). If the subcomponents are supported
by the Profile, they shall model their physical packaging. When subcomponents are modeled, there shall be a
container relationship between their physical package and the containing package (e.g., the System level physical
package). In addition, there shall be a ProductParentChild association between the subcomponent Product and the
parent Product.

The Physical Package constructs may also be used to model other aspects of the environment. However, this is
not mandatory. Note that each controller is realized by a card. The cards are contained in a controller chassis.

When establishing physical packages for subcomponents (e.g., disk drives, changers, etc.) the provider shall
populate both Container and Realizes associations. Similarly, when establishing the Product instances for the
packages the provider shall populate the ProductParentChild association to the parent product.

32.1.2 Multiple Product Identities

Instrumentation may optionally describe multiple product identities for a physical package, for example, product
information for both an OEM and vendor. This information should be modeled as multiple instances of
CIM_Product associated with the LogicalIdentity association. The Product instance that clients should treat as

Figure 52 - Physical Package Package Mandatory Classes

Physical Package Package

System

PhysicalPackage
(e.g., Chassis) Product

SystemPackaging

ProductPhysical
Component
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 327

Physical Package Package NO_ANSI_ID
primary is directly associated with PhysicalPackage via ProductPhysicalComponent. Additional product instances
are associated with the primary product using the LogicalIdentity association.

Figure 53 shows an example of the use of mandatory and optional physical package classes.

32.2 Health and Fault Management Considerations
Not defined in this standard.

32.3 Cascading Considerations
Not defined in this standard.

32.4 Supported Subprofiles and Packages
Not defined in this standard.

32.5 Methods of this Profile
Not defined in this standard.

32.6 Client Considerations and Recipes

32.6.1 Find Asset Information

Information about a system is modeled in PhysicalPackage. PhysicalPackage may be subclassed to Chassis; the
more general PhysicalPackage is used here to accommodate device implementations that are deployed in multiple
chassis. PhysicalPackage has an associated Product with physical asset information such as Vendor and Version.

Figure 53 - Physical Package Package with Optional Classes

System

PhysicalPackage
(e.g., Chassis) Product

SystemPackaging

ProductPhysicalComponent

PhysicalPackage Product

ProductPhysicalComponent

 LogicalDevice (e.g., Drive,
tape,device changer)

Realizes

ProductParentChildContainer
(e.g., PackageInChassis)

Product

LogicalIdentity
328

NO_ANSI_ID Physical Package Package
32.6.2 Finding Product information

To locate product information (Vendor, Serial number and product versions) information about a device that is
conforms to the profile, you would start with the “top-level” computer system and traverse the SystemPackaging to
the PhysicalPackage (e.g., a Chassis). From the PhysicalPackage, the client would then traverse the
ProductPhysicalComponent association to locate the Product instance. The primary Vendor, Serial Number and
version for the device is in the Product instance associated with the PhysicalPackage. Additional product identities
may be associated with the primary Product using the LogicalIdentity association.

32.6.3 Finding Asset information

There are certain subcomponents of a device that a client may be interested in locating. For example, disk drives in
an array or changer devices in a library. To locate the asset information of these subcomponents, the client would
follow the ProductParentChild association from the system Product to lower level Products.

Alternatively, if the client is starting from a LogicalDevice, it can locate the PhysicalPackage by following the
Realizes association from the LogicalDevice. From the PhysicalPackage, the client can find the Product
information by traversing the ProductPhysicalComponent association.

32.7 Registered Name and Version
Physical Package version 1.3.0

32.8 CIM Elements
Table 337 describes the CIM elements for Physical Package.

Table 337 - CIM Elements for Physical Package

Element Name Requirement Description

32.8.1 CIM_Card Optional A subclass of PhysicalPackage which may be
used to appropriately model a specific
implementation

32.8.2 CIM_Chassis Optional A subclass of PhysicalPackage which may be
used to appropriately model a specific
implementation

32.8.3 CIM_Container Optional Associates a PhysicalPackage to its
component physical packages (e.g., Drives in
a Storage System). This may be subclassed
(e.g., PackageInChassis), but only the
Container properties are required

32.8.4 CIM_LogicalIdentity Optional

32.8.5 CIM_PackageInChassis Optional Provided to allow component hierarchies

32.8.6 CIM_PhysicalConnector Optional

32.8.7 CIM_PhysicalElementLocation Conditional Conditional requirement: Support for the
Location profile..

32.8.8 CIM_PhysicalPackage Mandatory

32.8.9 CIM_Product Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 329

Physical Package Package NO_ANSI_ID
32.8.1 CIM_Card

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

32.8.2 CIM_Chassis

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

32.8.3 CIM_Container

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 338 describes class CIM_Container.

32.8.10 CIM_ProductParentChild Optional If more than one product comprises a system,
this association should be used to indicate the
'parent' product

32.8.11 CIM_ProductPhysicalComponent Mandatory

32.8.12 CIM_SystemPackaging Mandatory Associates a system and its physical
components. The ComputerSystemPackage
subclass should be used if the referenced
system is subclassed as ComputerSystem.

Table 338 - SMI Referenced Properties/Methods for CIM_Container

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 337 - CIM Elements for Physical Package

Element Name Requirement Description
330

NO_ANSI_ID Physical Package Package
32.8.4 CIM_LogicalIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

32.8.5 CIM_PackageInChassis

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

32.8.6 CIM_PhysicalConnector

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

32.8.7 CIM_PhysicalElementLocation

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for the Location profile..

Table 339 describes class CIM_PhysicalElementLocation.

32.8.8 CIM_PhysicalPackage

Created By: Static
Modified By: Static

Table 339 - SMI Referenced Properties/Methods for CIM_PhysicalElementLocation

Properties Flags Requirement Description & Notes

PhysicalLocation Mandatory

Element Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 331

Physical Package Package NO_ANSI_ID
Deleted By: Static
Requirement: Mandatory

Table 340 describes class CIM_PhysicalPackage.

32.8.9 CIM_Product

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 341 describes class CIM_Product.

32.8.10 CIM_ProductParentChild

Created By: Static
Modified By: Static

Table 340 - SMI Referenced Properties/Methods for CIM_PhysicalPackage

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Tag Mandatory

ElementName Optional

Name Optional

Manufacturer Mandatory

Model Mandatory

SerialNumber Optional

Version Optional

PartNumber Optional

Table 341 - SMI Referenced Properties/Methods for CIM_Product

Properties Flags Requirement Description & Notes

Name Mandatory

IdentifyingNumber Mandatory

Vendor Mandatory

Version Mandatory

ElementName Mandatory
332

NO_ANSI_ID Physical Package Package
Deleted By: Static
Requirement: Optional

Table 342 describes class CIM_ProductParentChild.

32.8.11 CIM_ProductPhysicalComponent

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 343 describes class CIM_ProductPhysicalComponent.

32.8.12 CIM_SystemPackaging

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 344 describes class CIM_SystemPackaging.

Table 342 - SMI Referenced Properties/Methods for CIM_ProductParentChild

Properties Flags Requirement Description & Notes

Parent Mandatory

Child Mandatory

Table 343 - SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 344 - SMI Referenced Properties/Methods for CIM_SystemPackaging

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 333

Physical Package Package NO_ANSI_ID
STABLE
334

EXPERIMENTAL

Clause 33: Power Supply Profile

33.1 Synopsis
Profile Name: Power Supply

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.11.0

Table 345 describes the related profiles for Power Supply.

Specializes: DMTF Power Supply Profile

The SNIA Power Supply profile specializes DSP1015: the DMTF Power Supply profile by adding indications.

33.2 Description
The SNIA Power Supply profile specializes the DMTF Power Supply profile by adding indications. No other
changes are made to the DMTF profile.

33.3 Implementation
See DSP1015: the DMTF Power Supply Profile.

33.3.1 Health and Fault Management Consideration

None

33.3.2 Cascading Considerations

None

33.4 Methods
See DSP1015: the DMTF Power Supply Profile.

33.5 Use Cases
See DSP1015: the DMTF Power Supply Profile.

Table 345 - Related Profiles for Power Supply

Profile Name Organization Version Requirement Description

Server SNIA 1.3.0 Mandatory
SMI-S 1.3.0 Rev 6 SNIA Technical Position 335

Power Supply Profile NO_ANSI_ID
33.6 CIM Elements
Table 345 describes the CIM elements for Power Supply.

Table 346 - CIM Elements for Power Supply

Element Name Requirement Description

33.6.1 CIM_ElementCapabilities Conditional Conditional requirement:
EnabledLogicalElementCapabilities

33.6.2
CIM_EnabledLogicalElementCapabilities

Optional

33.6.3 CIM_IsSpare Optional

33.6.4 CIM_MemberOfCollection Conditional Conditional requirement: Support for Power
Supply redundancy.

33.6.5 CIM_OwningCollectionElement Conditional Conditional requirement: Support for Power
Supply redundancy.

33.6.6 CIM_PowerSupply Mandatory

33.6.7 CIM_RedundancySet Optional

33.6.8 CIM_SuppliesPower Optional

33.6.9 CIM_SystemDevice Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_PowerSupply

Mandatory Creation of a PowerSupply instance

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_PowerSupply

Mandatory Deletion of a PowerSupply instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_PowerSupply AND
SourceInstance.CIM_PowerSupply::Operatio
nalStatus <>
PreviousInstance.CIM_PowerSupply::Operati
onalStatus

Mandatory CQL -Change of Operational Status of a
PowerSupply instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_PowerSupply AND
SourceInstance.CIM_PowerSupply::EnabledS
tate <>
PreviousInstance.CIM_PowerSupply::Enable
dState

Mandatory CQL -Change of EnabledState of a
PowerSupply instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_RedundancySet AND
SourceInstance.CIM_RedundancySet::Redun
dancyStatus <>
PreviousInstance.CIM_RedundancySet::Redu
ndancyStatus

Conditional Conditional requirement: Conditional on
support for Power Supply RedundancyCQL -
Change of redundancy status
336

NO_ANSI_ID Power Supply Profile
33.6.1 CIM_ElementCapabilities

CIM_ElementCapabilities is used to associate CIM_PowerSupply with CIM_EnabledLogicalElementCapabilities
that describes the capabilities of CIM_PowerSupply.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: null

Table 347 describes class CIM_ElementCapabilities.

33.6.2 CIM_EnabledLogicalElementCapabilities

CIM_EnabledLogicalElementCapabilities represents the capabilities of the power supply.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 348 describes class CIM_EnabledLogicalElementCapabilities.

33.6.3 CIM_IsSpare

CIM_IsSpare is used to associate CIM_PowerSupply with CIM_RedundancySet that the CIM_PowerSupply is a
member of and where CIM_PowerSupply represents a spare power supply.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 347 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 348 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Requirement Description & Notes

InstanceID Mandatory

RequestedStatesSupported Mandatory Array that contains the supported requested states for the
instance of CIM_PowerSupply.

ElementNameEditSupported Mandatory

MaxElementNameLen Conditional Conditional requirement: Support for Element Name
editing.Conditional on Support for Element Name editing.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 337

Power Supply Profile NO_ANSI_ID
Table 349 describes class CIM_IsSpare.

33.6.4 CIM_MemberOfCollection

CIM_MemberOfCollection is used to associate CIM_PowerSupply with CIM_RedundancySet that the
CIM_PowerSupply is a member of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for Power Supply redundancy.

Table 350 describes class CIM_MemberOfCollection.

33.6.5 CIM_OwningCollectionElement

CIM_OwningCollectionElement is used to associate CIM_RedundancySet with CIM_ComputerSystem that the
CIM_RedundancySet is a member of. The instance of CIM_OwningCollectionElement is conditional on having
instantiation of the CIM_RedundancySet class.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for Power Supply redundancy.

Table 351 describes class CIM_OwningCollectionElement.

Table 349 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Requirement Description & Notes

SpareStatus Mandatory

FailoverSupported Mandatory

Antecedent Mandatory The RedundancySet

Dependent Mandatory PowerSupply

Table 350 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 351 - SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Properties Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory
338

NO_ANSI_ID Power Supply Profile
33.6.6 CIM_PowerSupply

CIM_PowerSupply is used to represent the power supply.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 352 describes class CIM_PowerSupply.

33.6.7 CIM_RedundancySet

CIM_RedundancySet is used to represent the aggregation of redundant power supplies.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 353 describes class CIM_RedundancySet.

Table 352 - SMI Referenced Properties/Methods for CIM_PowerSupply

Properties Requirement Description & Notes

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

DeviceID Mandatory Key

TotalOutputPower Mandatory Shall match 0 when the power supply's total output power is
unknown.

ElementName Mandatory

OperationalStatus Mandatory

HealthState Mandatory

EnabledState Mandatory

RequestedState Mandatory

RequestStateChange() Mandatory The implementation shall support this method, but the method
may always return 'Not Supported.'

Table 353 - SMI Referenced Properties/Methods for CIM_RedundancySet

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory shall be formatted as a free formed string of variable length
(pattern ".+")
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 339

Power Supply Profile NO_ANSI_ID
33.6.8 CIM_SuppliesPower

CIM_SuppliesPower is used to associate CIM_PowerSupply with CIM_ManagedSystemElement that the power
supply represented by the CIM_PowerSupply instance supplies power to.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 354 describes class CIM_SuppliesPower.

33.6.9 CIM_SystemDevice

CIM_SystemDevice is used to associate CIM_PowerSupply with CIM_ComputerSystem that the
CIM_PowerSupply is a member of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 355 describes class CIM_SystemDevice.

RedundancyStatus Mandatory

TypeOfSet Mandatory

MinNumberNeeded Mandatory shall match 0 when the minimum number of power supplies
needed for the redundancy is unknown.

Failover() Optional

Table 354 - SMI Referenced Properties/Methods for CIM_SuppliesPower

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Shall reference the instance of the subclass of
CIM_ManagedSystemElement representing element receiving
the power.

Table 355 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 353 - SMI Referenced Properties/Methods for CIM_RedundancySet

Properties Requirement Description & Notes
340

NO_ANSI_ID Power Supply Profile
EXPERIMENTAL
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 341

Power Supply Profile NO_ANSI_ID
342

NO_ANSI_ID Fan Profile
EXPERIMENTAL

Clause 34: Fan Profile

34.1 Synopsis
Profile Name: Fan

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.11.0

Table 356 describes the related profiles for Fan.

Specializes: DMTF Fan Profile

The SNIA Fan profile specializes DSP1013: the DMTF Fan profile by adding indications.

34.2 Description
The SNIA Fan profile specializes the DMTF Fan profile by adding indications. No other changes are made to the
DMTF profile.

34.3 Implementation
See DSP1013: the DMTF Fan Profile.

34.3.1 Health and Fault Management Consideration

None

34.3.2 Cascading Considerations

None

34.4 Methods
See DSP1013: the DMTF Fan Profile.

34.5 Use Cases
See DSP1013: the DMTF Fan Profile.

Table 356 - Related Profiles for Fan

Profile Name Organization Version Requirement Description

Server SNIA 1.3.0 Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 343

Fan Profile NO_ANSI_ID
34.6 CIM Elements
Table 356 describes the CIM elements for Fan.

Table 357 - CIM Elements for Fan

Element Name Requirement Description

34.6.1 CIM_AssociatedCooling Optional

34.6.2 CIM_ElementCapabilities Conditional Conditional requirement:
EnabledLogicalElementCapabilities

34.6.3
CIM_EnabledLogicalElementCapabilities

Optional

34.6.4 CIM_Fan Mandatory

34.6.5 CIM_IsSpare Optional

34.6.6 CIM_MemberOfCollection Conditional Conditional requirement: Support for Fan
redundancy.

34.6.7 CIM_NumericSensor Optional

34.6.8 CIM_OwningCollectionElement Conditional Conditional requirement: Support for Fan
redundancy.

34.6.9 CIM_RedundancySet Optional

34.6.10 CIM_Sensor Optional

34.6.11 CIM_SystemDevice Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_Fan

Mandatory Creation of a Fan instance

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_Fan

Mandatory Deletion of a Fan instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Fan AND
SourceInstance.CIM_Fan::OperationalStatus
<>
PreviousInstance.CIM_Fan::OperationalStatu
s

Mandatory CQL -Change of Operational Status of a Fan
instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Fan AND
SourceInstance.CIM_Fan::EnabledState <>
PreviousInstance.CIM_Fan::EnabledState

Mandatory CQL -Change of EnabledState of a Fan
instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_RedundancySet AND
SourceInstance.CIM_RedundancySet::Redun
dancyStatus <>
PreviousInstance.CIM_RedundancySet::Redu
ndancyStatus

Conditional Conditional requirement: Support for Fan
redundancy.CQL -Change of redundancy
status
344

NO_ANSI_ID Fan Profile
34.6.1 CIM_AssociatedCooling

CIM_AssociatedCooling associates CIM_Fan with a subclass of CIM_ManagedSystemElement.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 358 describes class CIM_AssociatedCooling.

34.6.2 CIM_ElementCapabilities

CIM_ElementCapabilities is used to associate CIM_Fan with the CIM_EnabledLogicalElementCapabilities
instance that describes the capabilities of the fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: null

Table 359 describes class CIM_ElementCapabilities.

34.6.3 CIM_EnabledLogicalElementCapabilities

CIM_EnabledLogicalElementCapabilities represents the capabilities of the Fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 358 - SMI Referenced Properties/Methods for CIM_AssociatedCooling

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Shall reference an instance of a subclass of
CIM_ManagedSystemElement for which the fan is providing
cooling.

Table 359 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 345

Fan Profile NO_ANSI_ID
Table 360 describes class CIM_EnabledLogicalElementCapabilities.

34.6.4 CIM_Fan

CIM_Fan is used to represent the fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 361 describes class CIM_Fan.

Table 360 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Requirement Description & Notes

InstanceID Mandatory

RequestedStatesSupported Mandatory Array that contains the supported requested states for the
instance of CIM_Fan.

ElementNameEditSupported Mandatory

MaxElementNameLen Conditional Conditional requirement: Support for Element Name
editing.Conditional on Support for Element Name editing.

Table 361 - SMI Referenced Properties/Methods for CIM_Fan

Properties Requirement Description & Notes

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

DeviceID Mandatory Key

ElementName Mandatory

OperationalStatus Mandatory

HealthState Mandatory

EnabledState Mandatory

VariableSpeed Mandatory

DesiredSpeed Conditional Conditional requirement: Support for the SetSpeed method..

ActiveCooling Mandatory Shall have the value TRUE

RequestedState Mandatory

SetSpeed() Optional

RequestStateChange() Mandatory The implementation shall support this method, but the method
may always return 'Not Supported.'
346

NO_ANSI_ID Fan Profile
34.6.5 CIM_IsSpare

CIM_IsSpare is used to associate CIM_Fan with CIM_RedundancySet that the CIM_Fan is a member of and
where CIM_Fan represents a spare Fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 362 describes class CIM_IsSpare.

34.6.6 CIM_MemberOfCollection

CIM_MemberOfCollection is used to associate CIM_Fan with CIM_RedundancySet that the CIM_Fan is a member
of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for Fan redundancy.

Table 363 describes class CIM_MemberOfCollection.

34.6.7 CIM_NumericSensor

The CIM_NumericSensor class is defined by the Sensors Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 362 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Requirement Description & Notes

SpareStatus Mandatory

FailoverSupported Mandatory

Antecedent Mandatory The RedundancySet

Dependent Mandatory The Fan

Table 363 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Collection Mandatory

Member Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 347

Fan Profile NO_ANSI_ID
Table 364 describes class CIM_NumericSensor.

34.6.8 CIM_OwningCollectionElement

CIM_OwningCollectionElement is used to associate CIM_RedundancySet with CIM_ComputerSystem that the
CIM_RedundancySet is a member of. The instance of CIM_OwningCollectionElement is conditional on having
instantiation of the CIM_RedundancySet class.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for Fan redundancy.

Table 365 describes class CIM_OwningCollectionElement.

34.6.9 CIM_RedundancySet

CIM_RedundancySet is used to represent the aggregation of redundant power supplies.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 366 describes class CIM_RedundancySet.

Table 364 - SMI Referenced Properties/Methods for CIM_NumericSensor

Properties Requirement Description & Notes

SensorType Mandatory Shall be set to 5 (Tachometer)

BaseUnits Mandatory Shalll be 19 (RPM)

RateUnits Mandatory Shall be 0 (None)

Table 365 - SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Properties Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory

Table 366 - SMI Referenced Properties/Methods for CIM_RedundancySet

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory shall be formatted as a free formed string of variable length
(pattern ".+")

RedundancyStatus Mandatory

TypeOfSet Mandatory
348

NO_ANSI_ID Fan Profile
34.6.10 CIM_Sensor

The CIM_Sensor class is defined by the Sensors Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 367 describes class CIM_Sensor.

34.6.11 CIM_SystemDevice

CIM_SystemDevice is used to associate CIM_Fan with CIM_ComputerSystem that the CIM_Fan is a member of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 368 describes class CIM_SystemDevice.

EXPERIMENTAL

MinNumberNeeded Mandatory shall match 0 when the minimum number of power supplies
needed for the redundancy is unknown.

Failover() Optional

Table 367 - SMI Referenced Properties/Methods for CIM_Sensor

Properties Requirement Description & Notes

SensorType Mandatory Shall be set to 5 (Tachometer)

Table 368 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 366 - SMI Referenced Properties/Methods for CIM_RedundancySet

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 349

Fan Profile NO_ANSI_ID
350

NO_ANSI_ID Sensors Profile
EXPERIMENTAL

Clause 35: Sensors Profile

35.1 Synopsis
Profile Name: Sensors

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.11.0

Table 369 describes the related profiles for Sensors.

Specializes: DMTF Sensors Profile

The SNIA Sensors profile specializes DSP1009: the DMTF Sensors profile by adding indications.

35.2 Description
The SNIA Sensors profile specializes the DMTF Sensors profile by adding indications. No other changes are made
to the DMTF profile.

35.3 Implementation
See DSP1009: the DMTF Sensors Profile.

35.3.1 Health and Fault Management Consideration

None

35.3.2 Cascading Considerations

None

35.4 Methods
See DSP1009: the DMTF Sensors Profile.

35.5 Use Cases
See DSP1009: the DMTF Sensors Profile.

Table 369 - Related Profiles for Sensors

Profile Name Organization Version Requirement Description

Server SNIA 1.3.0 Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 351

Sensors Profile NO_ANSI_ID
35.6 CIM Elements
Table 369 describes the CIM elements for Sensors.

Table 370 - CIM Elements for Sensors

Element Name Requirement Description

35.6.1 CIM_AssociatedSensor Optional

35.6.2 CIM_ElementCapabilities Conditional Conditional requirement:
EnabledLogicalElementCapabilities

35.6.3
CIM_EnabledLogicalElementCapabilities

Optional

35.6.4 CIM_NumericSensor Conditional Conditional requirement: Absence of Support
for CIM_Sensor.

35.6.5 CIM_Sensor Conditional Conditional requirement: Absence of Support
for CIM_NumericSensor.

35.6.6 CIM_SystemDevice Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_Sensor

Mandatory Creation of a Sensor instance

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_Sensor

Mandatory Deletion of a Sensor instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Sensor
AND
SourceInstance.CIM_Sensor::OperationalStat
us <>
PreviousInstance.CIM_Sensor::OperationalSt
atus

Mandatory CQL -Change of Operational Status of a
Sensor instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Sensor
AND
SourceInstance.CIM_Sensor::EnabledState
<>
PreviousInstance.CIM_Sensor::EnabledState

Mandatory CQL -Change of EnabledState of a Sensor
instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Sensor
AND
SourceInstance.CIM_Sensor::CurrentState <>
PreviousInstance.CIM_Sensor::CurrentState

Mandatory CQL -Change of Current State of a Sensor
instance

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NumericSensor AND
SourceInstance.CIM_Sensor::CurrentReading
<>
PreviousInstance.CIM_Sensor::CurrentReadi
ng

Mandatory CQL -Change of Current Reading of a Sensor
instance
352

NO_ANSI_ID Sensors Profile
35.6.1 CIM_AssociatedSensor

CIM_AssociatedSensor associates CIM_Sensor or CIM_NumericSensor with a subclass of
CIM_ManagedSystemElement.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 371 describes class CIM_AssociatedSensor.

35.6.2 CIM_ElementCapabilities

CIM_ElementCapabilities is used to associate CIM_Sensor with the CIM_EnabledLogicalElementCapabilities
instance that describes the capabilities of the fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: null

Table 372 describes class CIM_ElementCapabilities.

35.6.3 CIM_EnabledLogicalElementCapabilities

CIM_EnabledLogicalElementCapabilities represents the capabilities of the Fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 371 - SMI Referenced Properties/Methods for CIM_AssociatedSensor

Properties Requirement Description & Notes

Antecedent Mandatory Shall be a reference to a specific instance of CIM_Sensor or
CIM_NumericSensor.

Dependent Mandatory Shall reference an instance of a subclass of
CIM_ManagedSystemElement for which the sensor is
monitoring.

Table 372 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 353

Sensors Profile NO_ANSI_ID
Table 373 describes class CIM_EnabledLogicalElementCapabilities.

35.6.4 CIM_NumericSensor

CIM_NumericSensor is used to represent an analog sensor. The CIM_NumericSensor class is mandatory when
the CIM_Sensor class is not implemented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Absence of Support for CIM_Sensor.

Table 374 describes class CIM_NumericSensor.

Table 373 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Requirement Description & Notes

InstanceID Mandatory

RequestedStatesSupported Mandatory Array that contains the supported requested states for the
instance of CIM_Sensor.

ElementNameEditSupported Mandatory

MaxElementNameLen Conditional Conditional requirement: EditSupportConditional on Support
for Element Name editing.

Table 374 - SMI Referenced Properties/Methods for CIM_NumericSensor

Properties Requirement Description & Notes

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

DeviceID Mandatory Key

BaseUnits Mandatory

UnitModifier Mandatory

RateUnits Mandatory

CurrentReading Mandatory

LowerThresholdNonCritical Conditional See DMTF Sensors Profile

UpperThresholdNonCritical Conditional See DMTF Sensors Profile

LowerThresholdCritical Conditional See DMTF Sensors Profile

UpperThresholdCritical Conditional See DMTF Sensors Profile

LowerThresholdFatal Conditional See DMTF Sensors Profile

UpperThresholdFatal Conditional See DMTF Sensors Profile
354

NO_ANSI_ID Sensors Profile
35.6.5 CIM_Sensor

CIM_Sensor is used to represent a discrete sensor. The CIM_Sensor class is mandatory if the
CIM_NumericSensor class is not implemented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Absence of Support for CIM_NumericSensor.

Table 375 describes class CIM_Sensor.

SupportedThresholds Mandatory See DMTF Sensors Profile

SettableThresholds Mandatory See DMTF Sensors Profile

SensorType Mandatory

PossibleStates Mandatory

CurrentState Mandatory

ElementName Mandatory

OtherSensorTypeDescription Conditional Conditional requirement: The OtherSensorTypeDescription
property shall be mandatory when the SensorType property is
set to a value of 1 (Other).The OtherSensorTypeDescription
property shall be formatted as a free-formed string of variable
length (pattern \.*\')..'

EnabledState Mandatory

RequestedState Mandatory

OperationalStatus Mandatory

HealthState Mandatory

RequestStateChange() SensorState
Management

RestoreDefaultThresholds() RestoreDefa
ultThreshold
Support

Table 375 - SMI Referenced Properties/Methods for CIM_Sensor

Properties Requirement Description & Notes

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

DeviceID Mandatory Key

Table 374 - SMI Referenced Properties/Methods for CIM_NumericSensor

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 355

Sensors Profile NO_ANSI_ID
35.6.6 CIM_SystemDevice

CIM_SystemDevice is used to associate CIM_Sensor with CIM_ComputerSystem that the CIM_Sensor is a
member of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 376 describes class CIM_SystemDevice.

EXPERIMENTAL

SensorType Mandatory

PossibleStates Mandatory See DMTF Sensors Profile

CurrentState Mandatory See DMTF Sensors Profile

ElementName Mandatory See DMTF Sensors Profile

OtherSensorTypeDescription Conditional Conditional requirement: The OtherSensorTypeDescription
property shall be mandatory when the SensorType property is
set to a value of 1 (Other).The OtherSensorTypeDescription
property shall be formatted as a free-formed string of variable
length (pattern \.*\')..'See DMTF Sensors Profile

EnabledState Mandatory See DMTF Sensors Profile

RequestedState Mandatory See DMTF Sensors Profile

OperationalStatus Mandatory

HealthState Mandatory

RequestStateChange() SensorState
Management

Table 376 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 375 - SMI Referenced Properties/Methods for CIM_Sensor

Properties Requirement Description & Notes
356

EXPERIMENTAL

Clause 36: Base Server Profile

36.1 Synopsis
Profile Name: Base Server

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.15.0

Table 378 describes the related profiles for Base Server.

Specializes: DMTF Base Server 1.0.0

Central Class: CIM_ComputerSystem

Scoping Class: CIM_ComputerSystem

The Base Server profile models a customer server or storage system.

36.2 Description
The SNIA Base Server profile models a customer server or storage system containing storage elements. This
profile may be used to scope one or more HBAs (or other storage elements).

This profile represents a physical system. The Virtual System profile is an alternatative for virtual systems.

36.3 Implementation
See DSP1004, DMTF Base Server profile for details on the model.

In a storage context, there are several related deployment options.

36.3.1 HBA Instrumentation

If an HBA vendor wishes to create HBA instrumentation that can be used with CIM instrumentation from a server
vendor, they would implement the component Storage HBA profile and work with the server vendor(s) to assure it
integrates effectively with their autonomous server profile. If an HBA vendor wishes to deliver a free-standing
implementation that does not rely on server-vendor software, they could implement this profile along with the

Table 377 - Related Profiles for Base Server

Profile Name Organization Version Requirement Description

Storage HBA SNIA 1.3.0 Optional

Host Hardware RAID
Controller

SNIA 1.3.0 Optional

Storage Enclosure SNIA 1.3.0 Optional
SMI-S 1.3.0 Rev 6 SNIA Technical Position 357

Base Server Profile NO_ANSI_ID
Storage HBA profile. Note that the HBA vendor could support both approaches and let a customer or installation
script determine which is most appropriate.

36.3.2 Host Hardware RAID Instrumentation

Host Hardware RAID vendors have the same deployment options as HBA vendors (see 36.3.1)

36.3.3 Storage Enclosure Instrumentation

In configurations where the Storage Enclosure profile is not used with a single autonomous profile, the Base Server
may be used as the referencing profile for the Storage Enclosure and other component profiles.

36.3.4 Health and Fault Management Consideration

36.3.5 Cascading Considerations

None

36.4 Methods
See DSP1004, DMTF Base Server profile.

36.5 Use Cases
See DSP1004, DMTF Base Server profile.

36.6 CIM Elements
Table 378 describes the CIM elements for Base Server.

36.6.1 CIM_ComputerSystem

The hosting system for the Storage Elements.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 378 - CIM Elements for Base Server

Element Name Requirement Description

36.6.1 CIM_ComputerSystem Mandatory The hosting system for the Storage Elements.

36.6.2 CIM_ComputerSystemPackage Mandatory

36.6.3
CIM_EnabledLogicalElementCapabilities

Optional

36.6.4 CIM_PhysicalPackage Mandatory
358

NO_ANSI_ID Base Server Profile
Table 379 describes class CIM_ComputerSystem.

36.6.2 CIM_ComputerSystemPackage

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 380 describes class CIM_ComputerSystemPackage.

36.6.3 CIM_EnabledLogicalElementCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 379 - SMI Referenced Properties/Methods for CIM_ComputerSystem

Properties Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the hosting system.

ElementName Mandatory User friendly name

NameFormat Mandatory

OtherIdentifyingInfo Mandatory

Dedicated Mandatory 0 (Not Dedicated)

OtherDedicatedDescriptions Optional

OperationalStatus Mandatory

EnabledState Mandatory

RequestedState Mandatory

Table 380 - SMI Referenced Properties/Methods for CIM_ComputerSystemPackage

Properties Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 359

Base Server Profile NO_ANSI_ID
Table 381 describes class CIM_EnabledLogicalElementCapabilities.

36.6.4 CIM_PhysicalPackage

One or more instances of CIM_PhysicalPackage represent the physical packaging of the computer system. Other
than the existence of at least one instance of CIM_PhysicalPackage, this profile does not specify any constraints
for CIM_PhysicalPackage beyond those specified in the Physical Asset Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

EXPERIMENTAL

Table 381 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Requirement Description & Notes

RequestedStatesSupported Mandatory
360

EXPERIMENTAL

Clause 37: Media Access Device Profile

37.1 Synopsis
Profile Name: Media Access Device

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.11.0

Table 384 describes the related profiles for Media Access Device.

The Media Access Device profile models media access devices - such as tape and CD drives.

37.2 Description
The Media Access Device profile models media access devices - such as tape and CD drives.

37.2.1 Location Indicator

The implementation may optionally support a drive location indicator (such as an LED) using
CIM_MediaAccessDevice.LocationIndicator. The client may set this to 2 (On) or 3 (Off)). If the implementation does
not support this feature, LocationIndicator shall have the value 4 (Not Supported).

37.2.2 Media Access Device Online/Offline

The drive may be started or stopped by setting the Starting and Stopping values in OperationalStatus using the
RequestStateChange method

Table 382 - Related Profiles for Media Access Device

Profile Name Organization Version Requirement Description

Software Inventory SNIA 1.3.0 Mandatory

Software Update DMTF 1.0.0 Optional

Indication SNIA 1.3.0 Optional
SMI-S 1.3.0 Rev 6 SNIA Technical Position 361

Media Access Device Profile NO_ANSI_ID
See Table 383.

37.3 Implementation

37.3.1 Health and Fault Management Consideration

The MediaAccessDevice.OperationalStatus contains the overall status of the disk, summarized in Table 383.

Figure 54 - Media Access Device Class Diagram

Table 383 - OperationalStatus For MediaAccessDevice

Primary Operational Status Subsidiary Operational
Status

Description

2 “OK” Media Access Device is enabled.

5 “Predictive Failure” Media Access Device is functionality
nominally but is predicting a failure

6 “Error” Media Access Device is no longer
functioning.

8 “Starting” Media Access Device is becoming
enabled.

MediaAccessDevice
(e.g. TapeDrive)

OperationalStatus[]
DeviceID

PhysicalPackage

Realizes

ComputerSystem

(referencing profile)

SystemDevice

SoftwareIdentity

ElementSoftwareIdentity

ProtocolEndpoint

ProtocolEndpoint

(Initiator ports)

SAPavailable
forElement

Connectivity
Collection

(Initiator ports)

MemberOf
Collection

Hosted
Access
Point

*

*

*

InitiatorTarget
LogicalUnitPath
362

NO_ANSI_ID Media Access Device Profile
37.3.2 Cascading Considerations

Not defined in this standard.

37.3.3 Hot swap insertion or Removal of Drives

Insertion of a drive shall cause an InstCreation indication for the MediaAccessDevice instance. Similarly, hot-swap
removal shall cause an InstDelete indication. ProtocolEndpoint, PhysicalPackage, SoftwareInventory, and related
associations will also be created and deleted when a drive is inserted or removed, but no indications shall be
produced for these other classes.

37.4 Methods

37.4.1 Request State Change

uint32 RequestStateChange(

 [In] uint16 RequestedState,

 [Out] CIM_ConcreteJob REF Job,

 [In] datetime TimeoutPeriod)

The allowed state changes are indicated by the RequestedStatesSupported property of
EnabledLogicalElementCapabilities. A Job shall be returned if the operation takes longer than the TimeoutPeriod.
The Requested State of Offline makes a drives extents unavailable to the dependent volume .

The Job may represent a drive rebuild if the RequestedState of the drive is Offline and a failover shall be complete
before the offline operation can finish.

37.5 Use Cases
Not defined in this standard.

37.6 CIM Elements
Table 384 describes the CIM elements for Media Access Device.

9 “Stopping” Media Access Device is being disabled.

10 “Stopped” Media Access Device is disabled.

Table 384 - CIM Elements for Media Access Device

Element Name Requirement Description

37.6.1
CIM_EnabledLogicalElementCapabilities

Mandatory

37.6.2 CIM_HostedAccessPoint Optional ComputerSystem to storage ProtocolEndpoint

37.6.3 CIM_MediaAccessDevice Mandatory Represents a tape or optical drive.

Table 383 - OperationalStatus For MediaAccessDevice (Continued)

Primary Operational Status Subsidiary Operational
Status

Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 363

Media Access Device Profile NO_ANSI_ID
37.6.1 CIM_EnabledLogicalElementCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 385 describes class CIM_EnabledLogicalElementCapabilities.

37.6.2 CIM_HostedAccessPoint

ComputerSystem to storage ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

37.6.4 CIM_PhysicalPackage Optional The physical aspects of the drive. This is
required when modeling physical drives and
shall not be implemented for virtual drives in
virtual system environments.

37.6.5 CIM_ProtocolEndpoint Optional

37.6.6 CIM_Realizes Mandatory Associates MediaAccessDevice and
PhysicalPackage.

37.6.7 CIM_SAPAvailableForElement Conditional Conditional requirement: Support for
ProtocolEndpoints..Associates
MediaAccessDevice to ProtocolEndpoint

37.6.8 CIM_SystemDevice Mandatory ComputerSystem to MediaAccessDevice.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_MediaAccessDevice

Optional MediaAccessDevice Creation. See37.3.3 Hot
swap insertion or Removal of Drives

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_MediaAccessDevice

Optional MediaAccessDevice Removal. See37.3.3 Hot
swap insertion or Removal of Drives

Table 385 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Requirement Description & Notes

RequestedStatesSupported Mandatory Possible states that can be requested when using the method
RequestStateChange(). If RequestState and
RequestStateChange are not implemented then
RequestedStatesSupported would indicate none supported.

Table 384 - CIM Elements for Media Access Device

Element Name Requirement Description
364

NO_ANSI_ID Media Access Device Profile
Table 386 describes class CIM_HostedAccessPoint.

37.6.3 CIM_MediaAccessDevice

Represents a tape or optical drive.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 387 describes class CIM_MediaAccessDevice.

37.6.4 CIM_PhysicalPackage

The physical aspects of the drive.

Table 386 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 387 - SMI Referenced Properties/Methods for CIM_MediaAccessDevice

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Name Mandatory

OperationalStatus Mandatory Shall be 2|5|6|8|10|11 (Okay or Predictive Failure or Error or
Starting or Stopping or Stopped).

LocationIndicator Mandatory

EnabledState Mandatory Possible values: 2 (Enabled - drive is Spun up and online), 3
(Disabled - drive is spun down, and offline), 4 (Shutting down -
drive is spinning down), 6 (Enabled but Offline - drive is spun
up but offline), 10 (Starting - drive is spinning up).

RequestedState Optional Possible RequestedStates: 2 Enabled (Spin up drive if it was
spun down and Online the drive if it was offline), 4 (Shut down
- spin down drive), 6 (Offline - offline drive).

RequestStateChange() RequestedSt
atesSupporte
d

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 365

Media Access Device Profile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 388 describes class CIM_PhysicalPackage.

37.6.5 CIM_ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 389 describes class CIM_ProtocolEndpoint.

37.6.6 CIM_Realizes

Associates MediaAccessDevice and PhysicalPackage.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 388 - SMI Referenced Properties/Methods for CIM_PhysicalPackage

Properties Requirement Description & Notes

CreationClassName Mandatory

Manufacturer Mandatory The name of the organization responsible for producing the
PhysicalElement.

Model Mandatory The name by which the PhysicalElement is generally known.

Version Mandatory The version of the physical element - not necessarily the same
as a software/firmware version.

SerialNumber Mandatory

PartNumber Mandatory

Table 389 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
366

NO_ANSI_ID Media Access Device Profile
Table 390 describes class CIM_Realizes.

37.6.7 CIM_SAPAvailableForElement

Associates MediaAccessDevice to ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ProtocolEndpoints..

Table 391 describes class CIM_SAPAvailableForElement.

37.6.8 CIM_SystemDevice

ComputerSystem to MediaAccessDevice.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 392 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 390 - SMI Referenced Properties/Methods for CIM_Realizes

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 391 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 392 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 367

Media Access Device Profile NO_ANSI_ID
368

EXPERIMENTAL

Clause 38: Storage Enclosure Profile

Synopsis

Table 393 describes the supported profiles for Storage Enclosure.

The Storage Enclosure profile describes an enclosure that houses storage components.

38.1 Description
The Storage Enclosure profile describes an enclosure that contains storage elements (e.g., disk or tape drives) and
enclosure elements (e.g., fans and power supplies). The logical aspects of the storage and enclosure elements are
defined in other profiles; this profile specializes the DMTF Physical Asset profile adding implementation details for
storage enclosures. This profile supports enclosures with a single type of storage component (such as an
enclosure of disks) or a mixture of different components.

The following terms apply to this profile:

• storage elements are CIM logical classes that relate to storage - CIM_DiskDrive, CIM_ComputerSystem
(representing a disk array or switch), etc.

• enclosure elements are CIM logical elements that relate to enclosure service and baseboard management -
fans, power supplies, sensors, etc.

• physical elements are CIM physical classes that map to storage or enclosure elements, and perhaps physical
hardware with no logical mapping.

38.1.1 Guidelines related to Referencing Profiles

The Storage Enclosure Profile is a component profile. The autonomous referencing profile may be Array, Storage
Virtualizer, or Host Hardware RAID controller. The following guidelines apply to how this profile is referenced by
other profiles:

Table 393 - Supported Profiles for Storage Enclosure

Registered Profile Names Mandatory Version

Power Supply No 1.0.0

Fan No 1.0.0

Sensors No 1.0.0

Disk Drive Lite No 1.3.0

Media Access Device No 1.0.0

Switch No 1.3.0
SMI-S 1.3.0 Rev 6 SNIA Technical Position 369

Storage Enclosure Profile NO_ANSI_ID
38.1.1.1 Guideline 1 - enclosure elements dedicated to a single top-level system
If the components of the enclosure are all dedicated to a single top-level System, then the profile defining that
system shall be the referencing profile for the enclosure. All components (storage elements, enclosure elements,
physical elements) need to be dedicated. For example, if the enclosure is used by a disk array, the
CIM_ComputerSystem from the Array profile serves as the scoping instance for all the elements of the enclosure.

Note that the top-level system may be part of an autonomous profile that supports the SNIA Multiple Computer
System profile.

Note that other autonomous profiles may be dedicated as a component of another autonomous profile. For
example, a Fibre Channel switch may share an enclosure with, and be dedicated as, a component of an Array.

38.1.1.2 Guideline 2 - enclosure elements shared by multiple top-level systems
If the elements of the enclosure support use by multiple top-level systems, then the referencing profile shall be the
base system profile.

Examples include a JBOD array access by multiple servers or multiple switch blades sharing an enclosure.

38.1.1.3 Guideline 3 - enclosure elements need not be scoped by the system as storage elements
CIM requires instantiation of all weak associations whenever the referenced elements are instantiated. For
example, every CIM_LogicalDevice instance shall be referenced by a CIM_SystemDevice association. But it is
possible to have devices scope to different systems associated to each other by non-weak associations. In
particular, when guideline 2 applies, enclosure elements scoped to the enclosure top-level system may be
associated to storage elements scoped to a different top-level system. For example, CIM_AssociatedCooling can
reference a CIM_Fan scoped to the enclosure system and a CIM_DiskDrive scoped to a server. In another
example, CIM_SuppliesPower references a CIM_PowerSupply scoped to an Array within an enclosure and a
CIM_ComputerSystem representing a switch.
370

NO_ANSI_ID Storage Enclosure Profile
Figure 55 is an example of two arrays that each have their own enclosure but share cooling. The two array
enclosures are contained in an enclosure that provides a fan shared by the array elements.

38.1.2 Examples of Storage Enclosure Configurations

38.1.2.1 Enclosure Dedicated to a Disk Array
The referencing profile is Array. Disk Drive Lite is a mandatory component profile. The physical model for disks as
defined in 38.2.5.2 is mandatory.

38.1.2.2 Enclosure Dedicated to a RAID Host Controller
The referencing profile is the Host Hardware RAID profile. Support for the Disk Drive Lite profile is mandatory. The
physical model for disks as defined in 38.2.5.2 is mandatory.

38.1.2.3 Enclosure Dedicated to non-RAID Controllers on a Single Server
The referencing profile is the Base System profile referencing the Storage HBA profile (or the FC HBA profile).

38.1.2.4 Enclosure Dedicated to non-RAID Controllers on Multiple Servers
Guideline 2 applies. The referencing profile is the base system profile.

Guideline 3 may apply.

Figure 55 - Enclosure with Two Arrays

Enclosure Profile

Array 2Array 1

ComputerSystem
(Array Profile)

DiskDrive
(Disk Drive Lite)

System
Device

Realizes

Chassis

SystemPackaging

PhysicalPackage

Slot

PackageInConnector

Container

ComputerSystem
(Array Profile)

DiskDrive
(Disk Drive Lite)

System
Device

Realizes

Chassis

SystemPackaging

PhysicalPackage

Slot

PackageInConnector

Container

ComputerSystem
(Base System

Profile)

Container

Chassis

Container

Fan

SystemPackaging

System
Device

AssociatedCooling AssociatedCooling
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 371

Storage Enclosure Profile NO_ANSI_ID
38.1.2.5 FC Switch as a Component of an Array
The Array and FC Switch share an enclosure, but the FC Switch is functionally a sub-component of the array
receiving cooling and power from the enclosure. In this configuration, Array is the referencing profile to the Storage
Enclosure. Guideline 3 may apply;

38.1.2.6 Enclosure containing multiple FC Switches (Director)
The enclosure is a director class switch which contains one or more switches and other devices including a FCIP
Extenders and iSCSI Gateway. The referencing profile is the base system profile. Guideline 2 applies. Guideline 3
may apply.

38.2 Implementation

38.2.1 Health and Fault Management Consideration

See the component profiles.

38.2.2 Cascading Considerations

Not defined in this standard.

38.2.3 Enclosure Elements

38.2.3.1 Power Supplies
A storage enclosure may be modeled with one or more power supplies for device powering.

The CIM_SystemDevice association is used in the Power Supply profile to connect the power supply to the
managed system. The CIM_SuppliesPower association may be used to represent device powering to other
enclosure elements of the top-level system as well as logical devices scoped to other systems.

38.2.3.2 Fans
A storage enclosure may be modeled with one or more fans for device cooling.

The CIM_SystemDevice association is used in the Fan profile to connect the fan to the managed system. The
CIM_AssociatedCooling association may be used to represent device powering to other enclosure elements of the
top-level system as well as logical devices scoped to other systems.

38.2.3.3 Sensors
A storage enclosure may be modeled with one or more sensors for monitoring such factors as temperature or fan
speed.

The CIM_SystemDevice association is used in the Sensors profile to connect the sensor to the managed system.
The CIM_AssociatedSensor association may be used to associate the sensor to other enclosure elements of the
top-level system as well as logical devices scoped to other systems.

38.2.4 Storage Elements

38.2.4.1 Considerations for Media Access Devices in a Storage Enclosure
A storage enclosure may contain devices such as disk drives or switches. Each media access device is described
by a corresponding device class as described in the corresponding profile. Each device may be associated to a
physical bay or slot. The physical model for a disk drive describes a CIM_MediaAccessDevice associated to
CIM_PhysicalPackage via CIM_Realizes, and CIM_Slot associated to the CIM_PhysicalPackage via
CIM_PackageInConnector. If the implementation also supports hierarchical packaging, the CIM_Slot shall be
associated to the CIM_PhysicalPackage realizing the referencing system or an enclosure nested in the system
CIM_PhysicalPackage.
372

NO_ANSI_ID Storage Enclosure Profile
38.2.4.2 Disk Drive Considerations
If the implementation also supports the Disk Drive Lite profile, the individual drives in the storage enclosure shall be
described by an instance of CIM_DiskDrive subclassed from CIM_MediaAccessDrive. CIM_PhysicalPackage and
CIM_Realizes from the Disk Drive Lite profile shall provide the instances described in 38.2.4.1.

38.2.4.3 Media Access Devices and the Fan Profile
The Fan profile describes fans used for device cooling and includes an AssociatedCooling association that
references a CIM_ManagedSystemElement. If the implementation supports both the Fan and Disk Drive Lite
profiles, and utilizes the CIM_AssociatedCooling association, the CIM_AssociatedCooling association shall
reference an instance of CIM_DiskDrive or an instance of CIM_Chassis.

38.2.4.4 Media Access Devices and the Power Supply Profile
The Power Supply profile describes power supplies used for device powering and includes a CIM_SuppliesPower
association that references a CIM_LogicalDevice. If the implementation supports both the Fan and Disk Drive Lite
profiles, and utilizes the CIM_SuppliesPower association, the CIM_SuppliesPower association shall reference an
instance of CIM_DiskDrive or an instance of CIM_Chassis.

38.2.4.5 Configuration Reporting Service
The CIM_ConfigurationReportingService may be used to query for the CIM_MediaAccessDevice or
CIM_LogicalPort subclasses supported within the enclosure, the supported total count and the currently installed
count. In this way the total number of supported device slots, storage devices or connection ports may be retrieved.
See the service method definitions in 38.3.1

38.2.5 Physical Assets

The physical representation of the storage enclosure is mandatory. The core frame of the storage enclosure is
described by CIM_Chassis.

38.2.5.1 Physical Package Hierarchy Considerations
A hierarchy of enclosures may be represented. The physical structure of a single enclosure, described by
CIM_Chassis, may be associated with a variety of enclosure components and media devices. Any number of
CIM_Packages may be used to group physical components. These packages may in turn be associated to one or
more CIM_Chassis instances. In this case the CIM_PackageInChassis association shall be used.

38.2.5.2 Disk Drive or Media Access Device
If the implementation models slots within the enclosure, CIM_Slot shall be used to describe the slot. The instance
of CIM_PhysicalPackage that describes the physical characteristics of the CIM_DiskDrive instance shall be
associated to CIM_Slot by the CIM_PackageInConnector association. If the instance of CIM_Slot is aggregated to
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 373

Storage Enclosure Profile NO_ANSI_ID
an instance of CIM_Chassis, the CIM_ConnectorOnPackage association shall be used. Figure 56 illustrates the
model.

38.3 Methods

38.3.1 Extrinsic Methods of the Profile

38.3.1.1 CIM_ConfigurationReportingService GetClassTypes
GetClassTypes is used to query for the supported or currently installed device classes contained in the enclosure
such as a CIM_DiskDrive or CIM_SASPort. Reporting of MediaAccessDevice derived classes directly contained
within the enclosure (Recursive = False) is mandatory. Reporting of LogicalPort derived classes is optional.

The instrumentation shall support InquiryType parameter values of 2 (Supports) and 3 (Installed).

The instrumentation shall support a Recusive parameter value of false.

The instrumentation shall accept a reference to the top-level ComputerSystem in the Target parameter.

38.3.1.2 CIM_ConfigurationReportingService GetUnitTypes
GetUnitTypes is used to query for the supported or currently installed type of devices contained in the enclosure.

The instrumentation shall support InquiryType parameter values of 2 (Supports) and 3 (Installed).

The instrumentation shall support a Recusive parameter value of false.

The parameter UnitTypes may be set to "Contained", "StorageMediaLocation", "Front Side" or "Back Side".
Support of the type "Contained" and "StorageMediaLocation" is mandatory. Support of "Front Side" or "Back Side"
is optional. Types "Front Side" or "Back Side" are used to query for the count of the respective LogicalPorts.

38.3.1.3 CIM_ConfigurationReportingService ReportCapacity
ReportCapacity is used after GetClassTypes or GetUnitTypes is issued to find what subclasses and types are
available in the enclosure, the ReportCapacity can be used to request the total supported or currently installed
storage device slot count or data connection ports for the enclosure.

The instrumentation shall support InquiryType parameter values of 2 (Supports) and 3 (Installed).

Figure 56 - Model for Disk in Enclosure

ComputerSystem
(referencing profile)

DiskDrive
(Disk Drive Lite)

System
Device

Realizes

Chassis

SystemPackaging

PhysicalPackage

Slot

PackageInConnector

Container
374

NO_ANSI_ID Storage Enclosure Profile
The instrumentation shall support a Recusive parameter value of false.

38.3.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:
• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

38.4 Use Cases

38.5 Registered Name and Version
Storage Enclosure version 1.3.0

Specialized DMTF Physical Asset version 1.0.0a

38.6 CIM Elements
Table 394 describes the CIM elements for Storage Enclosure.

Table 394 - CIM Elements for Storage Enclosure

Element Name Requirement Description

38.6.1 CIM_Card Optional CIM_Card is used to represent the card and
its FRU data.

38.6.2 CIM_Chassis Optional CIM_Chassis is used to represent the chassis
and its FRU data.

38.6.3 CIM_Chip Optional CIM_Chip is used to represent the chip and its
FRU data.

38.6.4 CIM_ComputerSystemPackage Conditional Conditional requirement: Support for a
Chassis instance.

38.6.5 CIM_ConfigurationCapacity Optional

38.6.6 CIM_ConfigurationReportingService Mandatory

38.6.7 CIM_ConnectedTo Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 375

Storage Enclosure Profile NO_ANSI_ID
38.6.8 CIM_Container Optional CIM_Container is used to associate a
Physical Package with Physical Elements
representing the physical elements that reside
within the package.

38.6.9 CIM_ElementCapabilities Conditional Conditional requirement: Support for a
PhysicalAssetCapabilities instance.

38.6.10 CIM_ElementCapacity Conditional Conditional requirement: Support for a
ConfigurationCapacity instance.

38.6.11 CIM_HostedService Mandatory Associates the
CIM_ConfigurationReportingService to the
System in the referencing profile.

38.6.12 CIM_PackageInConnector Optional CIM_PackageInConnector is used to
associate a CIM_PhysicalConnector or
CIM_Slot instance, representing the
connector or slot, with Physical Packages.

38.6.13 CIM_PhysicalAssetCapabilities Optional

38.6.14 CIM_PhysicalComponent Optional CIM_PhysicalComponent is used to represent
any physical element that cannot be further
decomposed, such as ASIC or tape, and its
FRU data.

38.6.15 CIM_PhysicalConnector Optional CIM_PhysicalConnector is used to represent
the physical connector.

38.6.16 CIM_PhysicalElement Mandatory At least one PhysicalElement subclass is
mandatory; see the subclasses for details.

38.6.17 CIM_PhysicalFrame Optional CIM_PhysicalFrame is used to represent the
frame and its FRU data.

38.6.18 CIM_PhysicalMemory Optional CIM_PhysicalMemory is used to represent the
physical memory and its FRU data.

38.6.19 CIM_PhysicalPackage Mandatory

38.6.20 CIM_Rack Optional CIM_Rack is used to represent the rack and
its FRU data.

38.6.21 CIM_Realizes Optional

38.6.22 CIM_Slot Optional CIM_Slot is used to represent the slot and its
FRU data.

38.6.23 CIM_SystemPackaging Optional Associates a system and its physical
components. The ComputerSystemPackage
subclass should be used if the referenced
system is subclassed as ComputerSystem.

Table 394 - CIM Elements for Storage Enclosure

Element Name Requirement Description
376

NO_ANSI_ID Storage Enclosure Profile
38.6.1 CIM_Card

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 395 describes class CIM_Card.

38.6.2 CIM_Chassis

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 396 describes class CIM_Chassis.

Table 395 - SMI Referenced Properties/Methods for CIM_Card

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

HostingBoard Mandatory

PackageType Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

CanBeFRUed Optional

VendorCompatibilityS
trings

Mandatory

ElementName Mandatory

Table 396 - SMI Referenced Properties/Methods for CIM_Chassis

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 377

Storage Enclosure Profile NO_ANSI_ID
38.6.3 CIM_Chip

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 397 describes class CIM_Chip.

PackageType Mandatory Shall be 3 (Chassis/Frame)

ChassisPackageTyp
e

Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

CanBeFRUed Optional should be implemented when the PhysicalElement can be
field replaced.

VendorCompatibilityS
trings

Mandatory

ElementName Mandatory

Table 397 - SMI Referenced Properties/Methods for CIM_Chip

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

CanBeFRUed Optional

ElementName Mandatory

Table 396 - SMI Referenced Properties/Methods for CIM_Chassis

Properties Flags Requirement Description & Notes
378

NO_ANSI_ID Storage Enclosure Profile
38.6.4 CIM_ComputerSystemPackage

CIM_ComputerSystemPackage is used to associate CIM_ComputerSystem, representing the managed system,
with a System Chassis.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for a Chassis instance.

Table 398 describes class CIM_ComputerSystemPackage.

38.6.5 CIM_ConfigurationCapacity

CIM_ConfigurationCapacity is used to advertise the possible configuration of a System Chassis.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 399 describes class CIM_ConfigurationCapacity.

Table 398 - SMI Referenced Properties/Methods for CIM_ComputerSystemPackage

Properties Flags Requirement Description & Notes

PlatformGUID Mandatory

Antecedent Mandatory Shall reference the System Chassis.

Dependent Mandatory

Table 399 - SMI Referenced Properties/Methods for CIM_ConfigurationCapacity

Properties Flags Requirement Description & Notes

Name Mandatory

ElementName Mandatory

ObjectType Mandatory

OtherTypeDescriptio
n

Conditional Conditional requirement: ConfigurationCapacity
ObjectType set to 0 (Other).\.'

MinimumCapacity Optional

MaximumCapacity Mandatory

Increment Mandatory

VendorCompatibilityS
trings

Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 379

Storage Enclosure Profile NO_ANSI_ID
38.6.6 CIM_ConfigurationReportingService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 400 describes class CIM_ConfigurationReportingService.

38.6.7 CIM_ConnectedTo

CIM_ConnectedTo is used to associate the CIM_PhysicalConnector or CIM_Slot instances that represent
connectors that are connected together.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 401 describes class CIM_ConnectedTo.

38.6.8 CIM_Container

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 400 - SMI Referenced Properties/Methods for CIM_ConfigurationReportingService

Properties Flags Requirement Description & Notes

ElementName Mandatory

Name Mandatory

CreationClassName Mandatory

GetClassTypes() Mandatory

GetUnitTypes() Mandatory

ReportCapacity() Mandatory

Table 401 - SMI Referenced Properties/Methods for CIM_ConnectedTo

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
380

NO_ANSI_ID Storage Enclosure Profile
Table 402 describes class CIM_Container.

38.6.9 CIM_ElementCapabilities

CIM_ElementCapabilities is used to associate Physical Elements with the CIM_PhysicalAssetCapabilities
instances that advertise the physical capabilities. CIM_ElementCapabilities shall be instantiated when an instance
of CIM_PhysicalAssetCapabilities exists.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for a PhysicalAssetCapabilities instance.

Table 403 describes class CIM_ElementCapabilities.

38.6.10 CIM_ElementCapacity

CIM_ElementCapacity is used to associate CIM_ConfigurationCapacity instances with a System Chassis.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for a ConfigurationCapacity instance.

Table 404 describes class CIM_ElementCapacity.

38.6.11 CIM_HostedService

Associates the CIM_ConfigurationReportingService to the System in the referencing profile.

Created By: Static

Table 402 - SMI Referenced Properties/Methods for CIM_Container

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 403 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 404 - SMI Referenced Properties/Methods for CIM_ElementCapacity

Properties Flags Requirement Description & Notes

Capacity Mandatory

Element Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 381

Storage Enclosure Profile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 405 describes class CIM_HostedService.

38.6.12 CIM_PackageInConnector

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 406 describes class CIM_PackageInConnector.

38.6.13 CIM_PhysicalAssetCapabilities

CIM_PhysicalAssetCapabilities is used to advertise whether the associated instance of subclass of
CIM_PhysicalElement contains FRU data.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 407 describes class CIM_PhysicalAssetCapabilities.

Table 405 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The reference to the System.

Dependent Mandatory The reference to the Service.

Table 406 - SMI Referenced Properties/Methods for CIM_PackageInConnector

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Antecedent Mandatory

Table 407 - SMI Referenced Properties/Methods for CIM_PhysicalAssetCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

FRUInfoSupported Mandatory
382

NO_ANSI_ID Storage Enclosure Profile
38.6.14 CIM_PhysicalComponent

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 408 describes class CIM_PhysicalComponent.

38.6.15 CIM_PhysicalConnector

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 409 describes class CIM_PhysicalConnector.

Table 408 - SMI Referenced Properties/Methods for CIM_PhysicalComponent

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

CanBeFRUed Optional

ElementName Mandatory

Table 409 - SMI Referenced Properties/Methods for CIM_PhysicalConnector

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

ConnectorLayout Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 383

Storage Enclosure Profile NO_ANSI_ID
38.6.16 CIM_PhysicalElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

38.6.17 CIM_PhysicalFrame

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 410 describes class CIM_PhysicalFrame.

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

ElementName Mandatory

Table 410 - SMI Referenced Properties/Methods for CIM_PhysicalFrame

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

PackageType Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

VendorCompatibilityS
trings

Mandatory

ElementName Mandatory

Table 409 - SMI Referenced Properties/Methods for CIM_PhysicalConnector

Properties Flags Requirement Description & Notes
384

NO_ANSI_ID Storage Enclosure Profile
38.6.18 CIM_PhysicalMemory

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 411 describes class CIM_PhysicalMemory.

38.6.19 CIM_PhysicalPackage

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 411 - SMI Referenced Properties/Methods for CIM_PhysicalMemory

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

FormFactor Mandatory

MemoryType Mandatory

Speed Mandatory

Capacity Mandatory

BankLabel Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

CanBeFRUed Optional

ElementName Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 385

Storage Enclosure Profile NO_ANSI_ID
Table 412 describes class CIM_PhysicalPackage.

38.6.20 CIM_Rack

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 413 describes class CIM_Rack.

Table 412 - SMI Referenced Properties/Methods for CIM_PhysicalPackage

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

VendorCompatibilityS
trings

Mandatory

CanBeFRUed Optional

ElementName Mandatory

Table 413 - SMI Referenced Properties/Methods for CIM_Rack

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

TypeOfRack Mandatory

PackageType Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo
386

NO_ANSI_ID Storage Enclosure Profile
38.6.21 CIM_Realizes

CIM_Realizes is used to associate an instance of subclass of CIM_LogicalDevice, representing the logical device,
with a Physical Element.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 414 describes class CIM_Realizes.

38.6.22 CIM_Slot

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 415 describes class CIM_Slot.

VendorCompatibilityS
trings

Mandatory

ElementName Mandatory

Table 414 - SMI Referenced Properties/Methods for CIM_Realizes

Properties Flags Requirement Description & Notes

Antecedent Mandatory Shall reference the System Chassis.

Dependent Mandatory

Table 415 - SMI Referenced Properties/Methods for CIM_Slot

Properties Flags Requirement Description & Notes

Tag Mandatory

CreationClassName Mandatory

Number Mandatory

ConnectorLayout Mandatory

Manufacturer Conditional Conditional requirement: FRUinfo

Model Conditional Conditional requirement: FRUinfo

SerialNumber Conditional Conditional requirement: FRUinfo

Table 413 - SMI Referenced Properties/Methods for CIM_Rack

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 387

Storage Enclosure Profile NO_ANSI_ID
38.6.23 CIM_SystemPackaging

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 416 describes class CIM_SystemPackaging.

EXPERIMENTAL

PartNumber Conditional Conditional requirement: FRUinfo

SKU Conditional Conditional requirement: FRUinfo

VendorCompatibilityS
trings

Mandatory

ElementName Mandatory

Table 416 - SMI Referenced Properties/Methods for CIM_SystemPackaging

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 415 - SMI Referenced Properties/Methods for CIM_Slot

Properties Flags Requirement Description & Notes
388

NO_ANSI_ID Software Subprofile
STABLE

Clause 39: Software Subprofile

39.1 Description
The Software Profile models software or firmware installed on a computer system.

Information on the installed software is given using the SoftwareIdentity class. This is linked to the system using a
InstalledSoftwareIdentity association.

Software information may be associated with the “top” level ComputerSystem (if all components are using the
same software) or a component ComputerSystem if the software loaded can vary by processor.

Firmware is modeled as SoftwareIdentity. InstalledSoftwareIdentity is used for firmware associated with a System.

Figure 57 contains the instance diagram for the Software Profile.

39.2 Health and Fault Management Considerations
Not defined in this standard.

39.3 Cascading Considerations
Not defined in this standard.

Figure 57 - Software Instance Diagram

SoftwareIdentity

InstalledSofwareIdentity

SoftwareIdentity

InstalledSoftwareIdentity

ComputerSystem

ComputerSystem

ComponentCS
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 389

Software Subprofile NO_ANSI_ID
39.4 Supported Subprofiles, and Packages
None.

39.5 Methods of the Profile
None.

39.6 Client Considerations and Recipes
None.

39.7 Registered Name and Version
Software version 1.3.0

39.8 CIM Elements
Table 417 describes the CIM elements for Software.

39.8.1 CIM_InstalledSoftwareIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 418 describes class CIM_InstalledSoftwareIdentity.

39.8.2 CIM_SoftwareIdentity

Created By: Static
Modified By: Static

Table 417 - CIM Elements for Software

Element Name Requirement Description

39.8.1 CIM_InstalledSoftwareIdentity Mandatory

39.8.2 CIM_SoftwareIdentity Mandatory

Table 418 - SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Properties Flags Requirement Description & Notes

System Mandatory

InstalledSoftware Mandatory
390

NO_ANSI_ID Software Subprofile
Deleted By: Static
Requirement: Mandatory

Table 419 describes class CIM_SoftwareIdentity.

STABLE

Table 419 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory

VersionString Mandatory

Manufacturer Mandatory

BuildNumber Optional

MajorVersion Optional

RevisionNumber Optional

MinorVersion Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 391

Software Subprofile NO_ANSI_ID
392

EXPERIMENTAL

Clause 40: Software Inventory Profile

40.1 Synopsis
Profile Name: Software Inventory

Version: 1.3.0

Organization: SNIA

CIM Schema Version: 2.15.0

Table 421 describes the related profiles for Software Inventory.

Specializes: DMTF Software Inventory profile 1.0.0

Central Class: CIM_SoftwareIdentity

Scoping Class: a CIM_System in a referencing autonomous profile

The Software Inventory profile models installed and available software and firmware. The SNIA version specializes
the DMTF profile in order to add indications.

40.2 Description
The Software Inventory profile models installed and available software and firmware. The SNIA version specializes
the DMTF profile in order to add indications.

40.2.1 Relationship to the SMI-S Software Profile

SMI-S defined a similar profile, the Software Subprofile (see Clause 39: Software Subprofile). There are several
differences between the two profiles:

• The Software Subprofile is limited to modeling software/firmware associated to a system and makes no
provision for software/firmware associated to other elements (drives, ports,...)

• The DMTF Software Inventory Profile provides additional functionality:

• software that is available on the system, but not installed - allowing the ability to model software/firmware
that has been downloaded, but not activated.

• collections of SoftwareIdentity instances

• locations (such as URLS) associated with SoftwareIdentity instances

Also note that supporting this profile in SMI-S allows us to utilize the DMTF profiles which in turn use the Software
Inventory profile.

Table 420 - Related Profiles for Software Inventory

Profile Name Organization Version Requirement Description

Indication SNIA 1.3.0 Mandatory
SMI-S 1.3.0 Rev 6 SNIA Technical Position 393

Software Inventory Profile NO_ANSI_ID
Note that although both profiles use InstalledSoftwareIdentity, the semantics are different. In the SMI-S Software
Subprofile, InstalledSoftwareIdentity indicates that the software is both available and installed on the system. In the
DMTF Software Inventory profile, InstalledSoftwareIdentity indicates that the software is available (downloaded) on
the system, and ElementSoftwareIdentity indicates that the software is active for the referenced element. ALso
note that Software Inventory profile has requirements for version proerties beyond those in the SNIA Software
subprofile.

40.3 Implementation
See DSP1023, DMTF Software Inventory profile.

40.3.1 Software Installation and Update

The CIM interface for Software Updates is described in the DMTF Software Update profile (DSP1025). As a side
effect of installation or updates, the inventory of software identities modeled in this profile is modified. This
specialization adds indication filters:

• InstCreation of SoftwareIdentity represents a newly available software element (or new version)

• InstDeletion of SoftwareIdentity represents the deletion of an inactive SoftwareIdentity

• InstAlert with a Standard Message is used when a software (or firmware) version is updated “in-place” without
installing a separate software/firmware package

• InstModification of ElementSoftwareIdentity.ElementSoftwareStatus (see 7.4.1.1 in DSP1023, DMTF Software
Inventory profile)

40.3.2 Health and Fault Management Consideration

None

40.3.3 Cascading Considerations

None

40.4 Methods
See DSP1023, DMTF Software Inventory profile.

40.5 Use Cases
See DSP1023, DMTF Software Inventory profile.

40.6 CIM Elements
Table 421 describes the CIM elements for Software Inventory.

Table 421 - CIM Elements for Software Inventory

Element Name Requirement Description

40.6.1 CIM_ElementSoftwareIdentity Optional

40.6.2 CIM_HostedAccessPoint Optional
394

NO_ANSI_ID Software Inventory Profile
40.6.1 CIM_ElementSoftwareIdentity

 CIM_ElementSoftwareIdentity is used to associate an instance of CIM_ManagedElement and an instance of
CIM_SoftwareIdentity when the instance of CIM_ManagedElement is instrumented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

40.6.3 CIM_HostedCollection Conditional Conditional requirement: Support for
collection of SoftwareIdentity instances.

40.6.4 CIM_InstalledSoftwareIdentity Optional

40.6.5 CIM_MemberOfCollection Conditional Conditional requirement: Support for
collection of SoftwareIdentity instances.

40.6.6 CIM_OrderedComponent Optional

40.6.7 CIM_OrderedDependency Optional

40.6.8 CIM_SAPAvailableForElement Conditional Conditional requirement: Support for
SoftwareIdentityResource instances.

40.6.9 CIM_SoftwareIdentity Mandatory

40.6.10 CIM_SoftwareIdentityResource Optional

40.6.11 CIM_SystemSpecificCollection Optional

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SoftwareIdentity

Mandatory Creation of a SoftwareIdentity. See 40.3.1
Software Installation and Update

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SoftwareIdentity

Mandatory Delete of a SoftwareIdentity. See 40.3.1
Software Installation and Update

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity=SNIA and
MessageID=\Core1\''

Mandatory In-place update of Software (or Firmware).
See 40.3.1 Software Installation and Update

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_SoftwareIdentity AND
SourceInstance.CIM_SoftwareIdentity::Eleme
ntSoftwareStatus <>
PreviousInstance.CIM_SoftwareIdentity::Elem
entSoftwareStatus

Optional CQL -Change in ElementSoftwareStatus
property of SoftwareIdentity. See 40.3.1
Software Installation and Update

Table 421 - CIM Elements for Software Inventory

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 395

Software Inventory Profile NO_ANSI_ID
Table 422 describes class CIM_ElementSoftwareIdentity.

40.6.2 CIM_HostedAccessPoint

CIM_HostedAccessPoint is used to associate CIM_System and CIM_SoftwareIdentityResource when an instance
of CIM_SoftwareIdentityResource is instrumented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 423 describes class CIM_HostedAccessPoint.

40.6.3 CIM_HostedCollection

CIM_HostedCollection is used to associate CIM_System and CIM_SystemSpecificCollection.
CIM_HostedCollection is conditional and shall be implemented when an instance of CIM_SystemSpecificCollection
is instrumented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for collection of SoftwareIdentity instances.

Table 424 describes class CIM_HostedCollection.

Table 422 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Properties Requirement Description & Notes

ElementSoftwareStatus Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 423 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 424 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
396

NO_ANSI_ID Software Inventory Profile
40.6.4 CIM_InstalledSoftwareIdentity

CIM_InstalledSoftwareIdentity is used to associate an instance of CIM_System and an instance of
CIM_SoftwareIdentity. CIM_InstalledSoftwareIdentity is conditional and shall be implemented when Installed
Software is modeled.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 425 describes class CIM_InstalledSoftwareIdentity.

40.6.5 CIM_MemberOfCollection

CIM_MemberOfCollection is used to associate an instance of CIM_SystemSpecificCollection and an instance of
CIM_SoftwareIdentity. CIM_MemberOfCollection is conditional and shall be implemented when an instance of
CIM_SystemSpecificCollection is instrumented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for collection of SoftwareIdentity instances.

Table 426 describes class CIM_MemberOfCollection.

40.6.6 CIM_OrderedComponent

 CIM_OrderedComponent is used to associate an instance of CIM_SoftwareIdentity that represents a Software
Bundle and an instance of CIM_SoftwareIdentity that represents one of the discrete software images contained in
the Software Bundle

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 425 - SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Properties Requirement Description & Notes

System Mandatory

InstalledSoftware Mandatory

Table 426 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Requirement Description & Notes

Collection Mandatory

Member Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 397

Software Inventory Profile NO_ANSI_ID
Table 427 describes class CIM_OrderedComponent.

40.6.7 CIM_OrderedDependency

 CIM_OrderedDependency is used to associate an instance of CIM_SoftwareIdentity that represents an Installation
Dependency and an instance of CIM_SoftwareIdentity for which the Installation Dependencies are represented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 428 describes class CIM_OrderedDependency.

40.6.8 CIM_SAPAvailableForElement

CIM_SAPAvailableForElement is used to associate CIM_SoftwareIdentityResource and CIM_SoftwareIdentity.
CIM_SAPAvailableForElement is conditional and shall be implemented when the location information of
CIM_SoftwareIdentity is represented

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for SoftwareIdentityResource instances.

Table 429 describes class CIM_SAPAvailableForElement.

Table 427 - SMI Referenced Properties/Methods for CIM_OrderedComponent

Properties Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 428 - SMI Referenced Properties/Methods for CIM_OrderedDependency

Properties Requirement Description & Notes

AssignedSequence Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 429 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory
398

NO_ANSI_ID Software Inventory Profile
40.6.9 CIM_SoftwareIdentity

 CIM_SoftwareIdentity is used to represent either Installed Software or Available Software.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 430 describes class CIM_SoftwareIdentity.

40.6.10 CIM_SoftwareIdentityResource

CIM_SoftwareIdentityResource is used to represent the location of a Software Identity, which could be used as
input to the software installation service.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 431 describes class CIM_SoftwareIdentityResource.

Table 430 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Requirement Description & Notes

InstanceID Mandatory

IsEntity Mandatory

VersionString Optional

BuildNumber Optional

MajorVersion Conditional Conditional requirement: No Support for
SoftwareIdentity.VersionString.

MinorVersion Conditional Conditional requirement: No Support for
SoftwareIdentity.VersionString.

RevisionNumber Conditional Conditional requirement: No Support for
SoftwareIdentity.VersionString.

TargetOSTypes Optional

Table 431 - SMI Referenced Properties/Methods for CIM_SoftwareIdentityResource

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 399

Software Inventory Profile NO_ANSI_ID
40.6.11 CIM_SystemSpecificCollection

CIM_SystemSpecificCollection is used to represent a collection of Available Software.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 432 describes class CIM_SystemSpecificCollection.

EXPERIMENTAL

InfoFormat Mandatory

AccessInfo Mandatory

ResourceType Optional

Table 432 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

Table 431 - SMI Referenced Properties/Methods for CIM_SoftwareIdentityResource

Properties Requirement Description & Notes
400

NO_ANSI_ID Software Repository Subprofile
EXPERIMENTAL

Clause 41: Software Repository Subprofile

41.1 Description
This profile provides the ability to expose a collection of SoftwareIdentity instances representing software
installation packages that can be used in conjunction with Clause 41: Software Installation Service Subprofile.
These two profiles form a ‘pair’ that can be used together within a single system or independently on different
unaware systems. The different use cases covered are shown in Figure 58.

A typical implementation of a representation would consist of multiple SoftwareIdentitys representing potential
upgrades associated by MemberOfCollection to an instance of a SoftwareIdentityCollection which represents the

Figure 58 - Software Repository Instance Diagram

SoftwareIdentityCollection

SoftwareIdentity

TargetType = “hp/nss/eva/5000”
MajorVersion = 2;
MinorVersion = 3;
RevisionNumber = 4;
versionString = ” V2.3 (4)"

SoftwareIdentity

TargetType = “hp/iss/proliant”
MajorVersion = 7;
MinorVersion = 1;
RevisionNumber = 2;
versionString = ” Smartpaq September
Release"

SoftwareIdentity

TargetType = “hp/nss/eva/5000”
MajorVersion = 2;
MinorVersion = 3;
RevisionNumber = 5;
versionString = ” V2.3 (5)"

MemberOfCollection

CIM_System

Notional admin domain or a specific
computer system

HostedCollection

RemoteServiceAccessPoint

AccessInfo = “ftp:firmware.hp.com/bits.zip”
InfoFormat = 200 \\ URL

SAPAvailableForElement

RemoteServiceAccessPoint

AccessInfo = “ftp:firmware.hp.com/
newbits.zip”
InfoFormat = 200 \\ URL

RemoteServiceAccessPoint

AccessInfo = “ftp:download.hp.com/
mybits.zip”
InfoFormat = 200 \\ URL

SAPAvailableForElement

SAPAvailableForElement
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 401

Software Repository Subprofile NO_ANSI_ID
collection itself. The ‘location’ of the bits needed to install a specific SoftwareIdentity are represented as
RemoteServiceAccessPoint instances one per URL) associated to the SoftwareIdentity by
SAPAvailableForElement.

41.1.1 Durable Names and Correlatable IDs of the Profile

Software Identity.TargetType is the only correlatable ID introduced by this subprofile. The TargetType parameter is
a correlatable identifier that indicates the ‘type’ of SoftwareIdentity. It allows a ‘repository’ to be queried for
applicable software/firmware.

The same format shall be used for the Software Repository and for the Software Installation Service so that
correlation can be performed.

Since the SoftwareInstallationService may be able to handle multiple TargetTypes, SoftwareInstallationServiceCa-
pabilities includes an array of supported TargetTypes that indicates the types supported by the service.

41.2 Health and Fault Management Considerations
Not defined in this standard.

41.3 Cascading Considerations
Not defined in this standard.

41.4 Methods of the Profile
None.

41.5 Supported Subprofiles, and Packages
None.

41.6 Client Considerations and Recipes
None.

41.7 Registered Name and Version
Software Repository version 1.3.0

41.8 CIM Elements
Table 433 describes the CIM elements for Software Repository.

Table 433 - CIM Elements for Software Repository

Element Name Requirement Description

41.8.1 CIM_HostedCollection Mandatory The SoftwareIdentityCollection is scoped to a
system.

41.8.2 CIM_MemberOfCollection Mandatory Associates SoftwareIdentities to the collection
402

NO_ANSI_ID Software Repository Subprofile
41.8.1 CIM_HostedCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 434 describes class CIM_HostedCollection.

41.8.2 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

41.8.3 CIM_RemoteServiceAccessPoint Mandatory Used to express the location of the 'bits' for a
software update as an URL

41.8.4 CIM_SAPAvailableForElement Mandatory Links one or more URLS to a SoftwareIdentity.

41.8.5 CIM_SoftwareIdentity Mandatory The information for an available software/
firmware update

41.8.6 CIM_SoftwareIdentityCollection Mandatory A collection of SoftwareIdentities that forms
the repository

41.8.7 CIM_System Mandatory Represents the system hosting the Software
Repository.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SoftwareIdentity

Mandatory Addition of Software Identity

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SoftwareIdentity

Mandatory Delete SoftwareIdentity

Table 434 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 433 - CIM Elements for Software Repository

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 403

Software Repository Subprofile NO_ANSI_ID
Table 435 describes class CIM_MemberOfCollection.

41.8.3 CIM_RemoteServiceAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 436 describes class CIM_RemoteServiceAccessPoint.

41.8.4 CIM_SAPAvailableForElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 435 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 436 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

ElementName Mandatory

AccessInfo Mandatory

InfoFormat Mandatory
404

NO_ANSI_ID Software Repository Subprofile
Table 437 describes class CIM_SAPAvailableForElement.

41.8.5 CIM_SoftwareIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 438 describes class CIM_SoftwareIdentity.

41.8.6 CIM_SoftwareIdentityCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 439 describes class CIM_SoftwareIdentityCollection.

41.8.7 CIM_System

Table 437 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 438 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory

TargetType C Mandatory

SerialNumber Optional

ReleaseDate Optional

Table 439 - SMI Referenced Properties/Methods for CIM_SoftwareIdentityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 405

Software Repository Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 440 describes class CIM_System.

EXPERIMENTAL

Table 440 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Name of Class

Name Mandatory System hosting the Software Repository
406

NO_ANSI_ID Server Profile
STABLE

Clause 42: Server Profile

42.1 Description
A CIM Server is anything that supports the CIM-XML protocol or other WBEM protocols and supports the basic
read functional profile as defined by the CIM Operations over HTTP specification.

The Server Profile is mandatory for all compliant SMI-S servers.

The object manager part of the model, shown in Figure 59, defines the capabilities of a CIM object manager based
on the communication mechanisms that it supports.

The namespace model of the Server Profile describes the namespaces managed by the object manager and the
type information contained within the namespace. The main information provided in the namespace part of the
model is the namespace itself and its association to the ObjectManager.

The InteropNamespace refers to the first namespace found in the InteropSchemaNamespace attribute of the SLP
Template.

A Server is modeled as a System with a HostedService association to an ObjectManager. The ObjectManager is
subclassed from Service.

It is mandatory that all namespaces supported by the Server be identified (the Namespace class) and associated
to the ObjectManager via the NamespaceInManager association.

The communication protocols supported by the ObjectManager should also be identified. Specifically, the
CIMXMLCommunicationMechanism shall be present for standard communication support for clients. This class is
associated to the ObjectManager via the CommMechanismForManager association.

Figure 59 - Server Model

Name (InstanceID)
ElementName

ObjectManager

Namespace

CIMXMLCommunicationMechanism

Namespace
InManager

CommMechanism
ForManager

(from Profile Registration profile)

RegisteredProfile
(from storage profile)

ManagedElement
(e.g., System)

Element
ConformsToProfile

SystemHostedService

Referenced
Profile

SoftwareIdentity

Element
SoftwareIdentity

Product

Product
SoftwareComponent
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 407

Server Profile NO_ANSI_ID
The Profile Registration profile describes the set of classes and associations deal with profiles supported by the
ObjectManager. The Profile Registration profile is required by the server profile.

Each RegisteredProfile and RegisteredSubprofile instance (from the Profile Registration profile) shall be
associated to one (or more) SoftwareIdentity instances containing information about the software packages
required to deploy the instrumentation (including providers). These are associated using ElementSoftwareIdentity.
SoftwareIdentity instance may optionally be associated to Product instances representing a software product.

EXPERIMENTAL

Implementers should be aware that an announced plan for converging web services standards is expected to
cause changes to WS-Management, WSDM, and related protocols. SNIA intends to specify the resulting
converged protocols for use with SMI-S, and hence use of web services protocols with SMI-S may remain
Experimental until stable versions of the converged protocol specifications are available. Implementers are
encouraged to experiment with web services protocols for SMI-S in the interim, but should consult the convergence
plan to understand the potential protocol changes and possible impacts.

EXPERIMENTAL

42.2 Use of model fields to Populate the SLP template
The data used to populate the SLP template for advertising SMI-S profiles is found in the CIM Server profile. The
SLP template fields are populated as follows:

template-url-syntax: =string
The following quotation is from the “WBEM SLP Template v1.0.0.
(http://www.dmtf.org/standards wbem/wbem.1.0.en)

“The template-url-syntax MUST be the WBEM URI Mapping of the location of one service access point
offered by the WBEM Server over TCP transport. This attribute must provide sufficient addressing
information so that the WBEM Server can be addressed directly using the URL.

The WBEM URI Mapping is defined in the WBEM URI Mapping Specification 1.0.0 (DSP0207). Example:
(template-url-syntax=https://localhost:5989 [^])”

service-hi-name: ObjectManager.ElementName

service-hi-description: ObjectManager.Description

service-id: ObjectManager.Name

Service-location-tcp: The location of one service access point offered by the CIM Server over TCP transport. This
attribute shall provide sufficient addressing information that the CIM Server can be addressed directly using only
this attribute.

CommunicationMechanism: ObjectManagerCommunicationMechanism.CommunicationMechanism

OtherCommunicationMechanism: ObjectManagerCommunicationMechanism.OtherCommunicationMechanism

InteropSchemaNamespace: Namespace.Name for the InteropNamespace

ProtocolVersion: ObjectManagerCommunicationMechanism.Version

FunctionalProfilesSupported: ObjectManagerCommunicationMechanism.FunctionalProfilesSupported

FunctionalProfileDescriptions: ObjectManagerCommunicationMechanism.FunctionalProfileDescriptions
408

NO_ANSI_ID Server Profile
MultipleOperationsSupported: ObjectManagerCommunicationMechanism.MultipleOperationsSupported

AuthenticationMechanismSupported:
ObjectManagerCommunicationMechanism.AuthenticationMechanismsSupported

OtherAuthenticationDescription:
ObjectManagerCommunicationMechanism.AuthenticationMechanismDescriptions

Namespace: Namespace.Name for each Namespace instance supported

Classinfo: Namespace.Classinfo for each Namespace instance

RegisteredProfilesSupported:

A list of profiles supported by the CIM providers running in this CIM Server. Each entry is this list is separate by a
comma and consists of two or three sub-fields, separated by colons. If an entry refers to a supported profile defined
in a RegisteredProfile (and not RegisteredSubProfile) instance, the format shall be

Organization:Name

where organization is the name of the organization that defined the profile (e.g., SNIA or DMTF) and Name is the
name of the profile. Note that this first format applies to autonomous or component profiles defined using
RegisteredProfile. If an entry refers to a supported subprofile defined in a RegisteredSubProfile instance, the
format shall be

Organization:Name:Subprofile-Name

where organization is the name of the organization that defined the profile (e.g., SNIA or DMTF), Name is the
name of the profile, and Subprofile-Name is the name of the subprofile.

For either format, Organization shall be identical to the RegisteredOrganization attribute in the appropriate
RegisteredProfile instance. For the first format, Name shall be identical to the RegisteredName attribute in the
appropriate RegisteredProfile instance. For the second format:

• Subprofile-Name shall be identical to the RegisteredName attribute in the appropriate RegisteredSubProfile
instance

• Name shall be identical to the RegisteredName attribute in the RegisteredProfile referenced by the
RegisteredSubProfile

Implementations are required to include an entry for each supported autonomous profile. Implementations are
required to include an entry for a component profile if the component profile definition in this standard states that
the component profile shall be advertised via SLP. It is recommended that other subprofiles and component
profiles be excluded from this list to minimize the size of the SLP template.

42.2.1 HTTP Security Background

Section 4.4 of “Specification for CIM Operations over HTTP, Version 1.1” from DMTF describes the requirements
for CIM clients and servers. The authentication methods referred to in the above specification are described in the
IETF RFCs 1945, 2616, and 2617. Transport Layer Security (TLS) is defined by IETF RFC 4346 which contains
specifications for both versions 1.0 and 1.1. The Secure Sockets Layer 3.0 is defined in reference SSL 3.0.

Section 4.4 of “Specification for CIM Operations over HTTP, Version 1.1" defines additional requirements for HTTP
authentication, above those found in IETF RFC 2616, or the HTTP authentication documents [IETF RFC 2617].
HTTP authentication generally starts with an HTTP client request, such as “GET Request-URI” (where Request-
URI is the resource requested). If the client request does not include an “Authorization” header line and
authentication is required, the server responds with a “401 unauthorized” status code, and a “WWW-Authenticate”
header line. The HTTP client shall then respond with the appropriate “Authorization” header line in a subsequent
request. The format of the “WWW-Authenticate” and “Authorization” header lines varies depending on the type of
authentication required: basic authentication or digest authentication. If the authentication is successful, the HTTP
server will respond with a status code of “200 OK”.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 409

Server Profile NO_ANSI_ID
Basic authentication involves sending the user name and password in the clear, and should only be used on a
secure network, or in conjunction with a mechanism that ensures confidentiality, such as TLS. Digest
authentication sends a secure digest of the user name and password (and other information including a nonce
value), so that the password is not revealed. “401Unauthorized” responses should not include a choice of
authentication

SSL 3.0 and TLS provide both confidentiality and integrity in communication, which precludes eavesdropping,
tampering, and message forgery. While TLS 1.1 and TLS 1.0 are based on SSL 3.0 and the differences between
them are not dramatic, it is important to note that these differences are significant enough that TLS 1.1, TLS 1.0
and SSL 3.0 will not interoperate. However, both versions of TLS do provide mechanisms for backwards
compatibility with the earlier versions.

Both TLS and SSL 3.0 package one key establishment, confidentiality, signature and hash algorithm into a “cipher
suite.” A registered 16-bit (4 hexadecimal digit) number, called the cipher suite index, is assigned for each defined
cipher suite. For example, RSA key agreement, RSA signature, Triple Data Encryption Standard (3DES) using
Encryption-Decryption-Encryption (EDE) and Cipher Block Chaining (CBC) confidentiality, and the Secure Hash
Algorithm (SHA-1) hash is assigned the hexadecimal value {0x000A} for TLS. Note especially that TLS 1.1
requires (IEFT RFC 4346, Section 9 – Mandatory Cipher Suites): “In the absence of an application profile standard
specifying otherwise, a TLS compliant application shall implement the cipher suite
TLS_RSA_WITH_3DES_EBE_CBC_ SHA” described above.

The client always initiates the TLS and SSL 3.0 session and starts cipher suite negotiation by transmitting a
handshake message that lists the cipher suites (by index value) that it will accept. The server responds with a
handshake message indicating which cipher suite it selected from the list or an “abort” as described below.
Although the client is required to order its list by increasing “strength” of cipher suite, the server may choose ANY
of the cipher suites proposed by the client. Therefore, there is NO guarantee that the negotiation will select the
strongest suite. If no cipher suites are mutually supported, the connection is aborted. When the negotiated options,
including optional public key certificates and random data for developing keying material to be used by the
cryptographic algorithms, are complete, messages are exchanged to place the communications channel in a
secure mode.

SMI-S clients and servers may be attacked by setting up a false SMI-S server to capture userids and passwords or
to insert itself as an undetected proxy between an SMI-S client and server. The most effective countermeasure for
this attack is the controlled use of server certificates with SSL 3.0 or TLS, matched by client controls on certificate
acceptance on the assumption that the false server will be unable to obtain an acceptable certificate. Specifically,
this could be accomplished by configuring clients to always use SSL 3.0 or TLS underneath HTTP authentication,
and only accept certificates from a specific local certificate authority. See 42.2.2 for requirements in this area. In the
absence of this countermeasure, some protection can by obtained by limiting the scope of SMI-S discovery,
including SLP, by IP address range (this involves client configuration plus SLP DA configuration, if any SLP DA is
used), and the use of firewalls to block ports used by SMI-S and SLP in order to prevent SMI-S access to/from
points outside a protected area of the network.

42.2.2 HTTP Security

This section specifies security requirements on the protocol for communication between a Client and an SMI-S
Server, but not the mechanism of authentication used by the SMI-S Server.

Client authentication to the SMI-S Server is based on an authentication service. Differing authentication schemes
may be supported, including host-based authentication, Kerberos, PKI, or other.

For the purposes of SMI-S, basic strength ciphersuites include 512-bit (or longer) asymmetric algorithms (RSA or
Diffie-Hellman), combined with 40-bit (or longer) symmetric algorithms (Triple DES, IDEA, RC4-128) and either
SHA-1 or MD5. Enhanced strength ciphersuites combine 1 024-bit (or longer) asymmetric algorithms (RSA or
410

NO_ANSI_ID Server Profile
Diffie-Hellman) with 128-bit (or longer) symmetric algorithms (Triple DES, IDEA, RC4-128, AES) and either SHA-1
or MD5.

42.2.2.1 General Requirements
The following are general requirements for the support of security when using HTTP.

a) SMI-S Servers and Clients shall conform to DMTF DSP0200 CIM Operations over HTTP 1.1 section 4.4.

b) HTTP Basic Authentication shall be implemented. HTTP Digest Authentication should be implemented.

c) To minimize compromising user identities, and credentials such as passwords, implementers should use
HTTP Basic Authentication ONLY in conjunction with SSL 3.0 or TLS and an enhanced strength cipher-
suite.

d) Where neither SSL 3.0 or TLS are used, or where they are used with a basic strength ciphersuite, imple-
menters should utilize HTTP Digest Authentication.

IMPLEMENTED

e) To ensure a minimum level of security and interoperability between implementations, support for the
TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite shall be included in all implementation. Imple-
menters are free to include additional cipher suites.

IMPLEMENTED

EXPERIMENTAL

When such cipher suites are supported, SSL_RSA_WITH_3DES_EDE_CBC_SHA for SSL 3.0 and
TLS_RSA_WITH_3DES_EDE_CBC_SHA for TLS shall be supported at a minimum. Additionally, Table
441 identifies the SSL and TLS cipher suites (in order of descending preference) that should be supported
and used by SMI-S implementations:

The order of the cipher suites in Table 441 is the order of preference (i.e., cipher suites higher in the table
are preferred over those lower in the table) when multiple cipher suites are offered unless overridden by
local security policy. Within each pair of cipher suites, the "_DHE_" suite uses a Diffie-Hellman exchange
to provide forward secrecy so that future disclosure of the RSA key(s) used will not compromise previous
secured traffic.

Table 441 - SSL and TLS Cipher Suites

TLS 1.0 & 1.1. SSL 3.0

TLS_DHE_RSA_WITH_AES_256_CBC_SHA SSL_DHE_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA SSL_DHE_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 411

Server Profile NO_ANSI_ID
Recognizing that implementers are likely to start with the least preferred 3DES-based cipher suites and
then consider the AES suites, it is important to note that the National Institute of Standards and Technology
(NIST) is currently encouraging transition to AES. Implementers should be aware that AES_128 is not only
a stronger encryption algorithm than 3DES, but also that AES_128 tends to be more efficient and of higher
performance when implemented.

For these reasons, if an SMI-S implementation supports 3DES, then support of AES_128 is strongly
recommended. It is reasonable to expect that a future version of SMI-S will include a mandatory AES_128-
based cipher suite.

EXPERIMENTAL

f) If no enhanced strength ciphersuite is supported, then HTTP Digest Authentication shall be imple-
mented.

g) A user identity and credential used with one type of HTTP Authentication (i.e., Basic or Digest) shall not
ever be subsequently used with the other type of HTTP Authentication. To avoid compromising the integ-
rity of a stronger scheme, established good security practices avoids the reuse of identity & credential
information across schemes of different strengths.

h) SSL 3.0 and TLS 1.0 shall be supported; TLS 1.1 is currently an allowed option that is strongly recom-
mended. SSL support is currently required for backwards compatibility as described in Appendix E of
RFC 4346.

EXPERIMENTAL

Additionally, SMI-S implementations shall have configurable mechanisms to only use cipher suites that
include RSA, DHE-RSA, or DHE-DSS key establishment mechanisms and RSA or DSA signature
mechanisms (i.e., only certificate-based cipher suites). These mechanisms shall further prevent the
negotiation of the “EXPORT” cipher suites (identified in Section A.5 of RFC 4346 as TLS 1.1 shall not
negotiate cipher suites; in addition, SMI-S prohibits use of "EXPORT" ciphersuites with SSL 3.0 and TLS
1.0).

Although DES is an allowed cipher when used with the appropriate key exchange mechanism, DES is
vulnerable to brute-force attacks. When such an attack is a concern, a stronger cipher should be used.

It is important to recognize that maintaining security often requires changing requirements to reflect
advances in technology, discovery of vulnerabilities, and defenses against new attacks. Consequently, it is
expected that future versions of SMI-S will require TLS 1.1 to be implemented, deprecate support for SSL
3.0, deprecate cipher suites that include DES (any key size) as the cipher, and deprecate cipher suites that
include MD5 as the hash.

EXPERIMENTAL

i) Clients that fail to contact an SMI-S server via HTTP over SSL 3.0 or TLS on TCP port 5 989 should retry
with HTTP on TCP port 5 988 if their security policy allows it.

j) In order for Clients and Servers to communicate, they need to be using a consistent approach to security.
It is possible for properly configured Clients and Servers to fail to communicate if one is relying upon port
5 989 and the other on port 5 988.

k) Servers can accelerate discovery that a secure channel is needed by responding to HTTP contacts on
TCP port 5 988 with an HTTP REDIRECT to the appropriate HTTPS: URL (HTTP over SSL or TLS on
TCP port 5 989) to avoid the need for clients to timeout the HTTP contact attempt. Clients should honor
such redirects in this situation.
412

NO_ANSI_ID Server Profile
l) Anonymous SSL/TLS ciphersuites should not be offered or used for CIM operation invocation by SMI-S
Clients. Anonymous SSL/TLS ciphersuites should not be used for indication delivery to indication listen-
ers that do not have certificates - see 42.2.2.

42.2.2.2 Requirements for the support of HTTP Realm
The relationship of the realm-value to an authentication service, and one or more sets of user identity and
credential, is determined separately by the configuration of each SMI-S client, and configurations may differ
between multiple SMI-S clients in the same system. The means of creating this configuration in the SMI-S client is
outside of the scope of this specification. The client configuration is expected to a contain at least a default set of
user identity and credential per realm-value. When the configuration associates a single realm-value with multiple
sets of user identity and credential, the basis on which a single set is selected is also outside of the scope of this
specification (and may include considerations such as the need to assert elevated privilege at the server to perform
specific operations.)

Where the Realm field is not used, or the realm-value is unrecognized, the SMI-S Client may use means outside of
the scope of this specification to identify the user identity and credential to be used, including the use of information
obtained during Service Discovery.

For this revision of the specification, it is recommended that a single realm-value per SMI-S Server be defined by
means such as a configuration file. In future revisions, the definition of multiple and dynamic user identities and
credentials per SMI-S Server will be addressed, and may use other communication methods in addition to, or in
place of, the Realm field.

a) The Realm field defined by HTTP Version 1.1 (see RFC 2617 section 1.2 and RFC 2616) shall be imple-
mented by the SMI-S Server, and should be used to identify to the Client the authentication service to be
used to access the server.

b) The realm-value contains information to help determine which specific user identity and credential (e.g.
user ID & password) and are to be used with the authentication service, but shall not contain any portion
of an identity or a credential itself.

c) The exact form of the authentication service is not defined by SMI-S, and may either be part of the config-
uration of an SMI-S Server, or may involve an external entity such as a RADIUS server. A single authen-
tication service may be utilized by multiple SMI-S Servers. Realm-values shall be unique throughout the
scope of the authentication service.

d) When provided, the realm-value shall meet all of the requirements contained in RFC 2616 and RFC
2617, with the exception of the specific requirement in section 3.2.1 of RFC 2617 that the realm-value
“be displayed to users”. In SMI-S, the realm-value may be handled by the SMI-S Client without reference
to a user.

e) Where no format for the realm-value has been defined by other standards or conventions, and where an
authentication is handled autonomously by an SMI-S server, then a string in the format defined in
42.2.2.3, "SMI-S defined format for HTTP Realm"” is recommended.

f) Where a single authentication service is utilized by multiple SMI-S Servers, the SMI-S recommended for-
mat defined in 42.2.2.3, "SMI-S defined format for HTTP Realm" should not be used, and use of SHA-1
in the creation of realm-values is recommended.

42.2.2.3 SMI-S defined format for HTTP Realm
The format is based on components of the definition of the Uniform Resource Identifier (URI) in IETF RFC 2396
and extended in IETF RFC 3986, and is described using the BNF-like grammar of those documents as:

[1*(unreserved) "."] "smis@" host

where:

• unreserved is as defined in section 2.3 of IETF RFC 2396
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 413

Server Profile NO_ANSI_ID
• "." is a dot

• "smis@" is a string literal

• host is as defined in section 3 of IETF RFC 3986

The combination of the unreserved and host portions should be defined in a manner that allows an administrator to
quickly identify a specific SMI-S Server in his configuration. Note that some portion of unreserved could be
generated randomly in the SMI-S Server to reduce the chance of accidental realm collisions.

An example of the use of the recommended format defined above is as follows: Consider a single server system
labelled Server6 owned by Widgets Inc. (owner of the example.com domain) that hosts two SMI-S Servers, one
from Acme Inc., and the other from XYZ Ltd. The realm-value reported by the Acme SMI-S Server might be
"ug723.acme.net.smis@server6.example.com". In the configuration of a specific SMI-S client accessing the Acme
SMI-S Server, this realm-value might identify a server-specific authentication service and a user identity of
"arrayuser74" and a password of "YT56z". Similarly, the realm-value reported by the XYZ Ltd. SMI-S Server might
be "bx48d.xyz.co.uk.smis@server6.example.com". In the configuration of a different SMI-S client accessing the
XYZ SMI-S Server, this realm-value might identify a SMI-S-server-specific authentication service and a user
identity of "42fred" and a password of "OTH3afa".

42.2.2.4 Certificate Usage with SSL 3.0 and TLS
Within SMI-S, SSL 3.0 and TLS are used with public key certificates (or identity certificates) for authentication.
These X.509 certificates conform to the format and semantics specified in IETF RFC 3280 and use a digital
signature to bind together a public key with an identity. These signatures will often be issued by a certification
authority (CA) associated with an internal or external public key infrastructure (PKI); however, an alternate
approach uses self-signed certificates (the certificate is digitally signed by the very same key-pair whose public part
appears in the certificate data). The trust models associated with these two approaches are very different. In the
case of PKI certificates, there is a hierarchy of trust and a trusted third-party that can be consulted in the certificate
validation process, which enhances security at the expense of increased complexity. The self-signed certificates
can be used to form a web of trust (trust decisions are in the hands of individual users/administrators), but is
considered less secure as there is no central authority for trust (e.g., no identity assurance or revocation). This
reduction in overall security, which may still offer adequate protections for some environments, is accompanied by
an easing of the overall complexity of implementation.

With PKI certificates, it is often necessary to traverse the hierarchy or chain of trust in search of a root of trust or
trust anchor (a trusted CA). This trust anchor may be an internal CA, which has a certificate signed by a higher
ranking CA, or it may be the end of a certificate chain with the highest ranking CA. This highest ranking CA
provides the ultimate in attestation authority in a particular PKI scheme and its certificate, known as a root
certificate, can only be self-signed. Establishing a trust anchor at the root certificate level, especially for commercial
CAs, can have undesirable side effects resulting from the implicit trust afforded all certificates issued by that
commercial CA. Ideally the trust anchor should be established with the lowest ranking CA that is practical.

The remainder of this subsection provides certificate related requirements that apply to any SMI-S implementation
that supports SSL 3.0 or TLS.

42.2.2.4.1 Require support for existing common practice for certificate usage.
SMI-S uses X.509 version 3 public key certificates that are conformant with the Certificate and Certificate
Extension Profile defined in Section 4 of IETF RFC 3280. This profile specifies the mandatory fields that shall be
included in the certificate as well as optional fields and extensions that may be included in the certificate.

Server certificates shall be supported and client certificates MAY be supported. A server certificate is presented by
the server to authenticate the server to the client; likewise, a client certificate is presented by the client to
authenticate itself to the server. For public web sites offering secure communications via SSL 3.0 or TLS, server
certificate usage is quite common, but client certificates are rarely used.
414

NO_ANSI_ID Server Profile
SMI-S clients and servers shall perform basic path validation, extension path validation, and CRL validation as
specified in Section 6 of IETF RFC 3280 for all presented certificates. These validations include, but are not limited
to, the following:

• The certificate is a validly constructed certificate

• The signature is correct for the certificate

• The date of its use is within the validity period (i.e., it has not expired)

• The certificate has not been revoked (applies only to PKI certificates)

• The certificate chain is validly constructed (considering the peer certificate plus valid issuer certificates up to
the maximum allowed chain depth; applies only to PKI certificates).

When SMI-S clients and servers use certificate revocation lists (CRL), they shall uses X.509 version 2 CRLs that
are conformant with the CRL and CRL Extension Profile defined in Section 5 of IETF RFC 3280.

When PKI certificates and self-signed certificates are used together in a single management domain, it is important
to recognize that the level of security is lowered to that afforded by self-signed certificates.

42.2.2.4.2 Allow customers to enforce their own certificate usage and acceptance policies.
All certificates identifying SMI-S management entities and their associated private keys shall be replaceable. SMI-
S clients and servers shall either 1) have the ability to import an externally generated certificate and corresponding
private key or 2) have the ability to generate and install a new self-signed certificate along with its corresponding
private key.

When PKI certificates are used by SMI-S clients and servers, the implementations shall include the ability to
import, install/store, and remove the CA root certificates; support for multiple trusted issuing CAs shall be included.
CA certificates are used to verify that a certificate has been signed by a key from an acceptable certification
authority.

To facilitate the use of certificates, SMI-S implementations should include configurable mechanisms that allow for
one of the following mutually exclusive operating modes to be in force at any point in time for end-entity certificates
(i.e., not CA certificates):

• Unverifiable end-entity (self-signed) certificates are automatically installed as trust anchors when they are
presented; such certificates shall be determined to not be CA root certificates prior to being installed as trust
anchors and shall not serve as trust anchors to verify any other certificates. If a CA certificate is presented as
an end-entity certificate in this mode, it shall be rejected. For SMI-S clients, a variant of this option, which
consults the user before taking action, should be implemented and used when possible.

Note: The use of this operating mode should be limited to a learning or enrollment period during which
communication is established with all other SMI-S systems with which security communication is
desired. Use of a timeout to force automatic exit from this mode is recommended.

• Unverifiable end-entity (self-signed) certificates can be manually imported and installed as trust anchors (in a
fashion similar to manually importing and installing a CA root certificate), but they are not automatically added
when initially encountered. Administrative privilege may be required to import and install an end-entity
certificate as a trust anchor. NOTE: This is considered the normal operating mode.

All certificate acceptance policies for SMI-S clients and servers shall be configurable. The configurable
mechanisms determine how the SMI-S implementation handles presented certificates. Under normal operating
mode, SMI-S servers should not accept certificates from unknown trust authorities (i.e., the CA root certificate has
not been installed).

When self-signed certificates are used in conjunction with SLPv2, the trustworthiness of these certificates becomes
an important factor in preventing SLPv2 from becoming an attack vector.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 415

Server Profile NO_ANSI_ID
42.2.2.4.2.1 Default to facilitating interoperability where not specifically disallowed by security policy.
Interactive clients should provide a means to query the user about acceptance of a certificate from an
unrecognized certificate authority (no corresponding CA root certificate installed in client), and accept responses
allowing use of the certificate presented, or all certificates from the issuing CA. Servers should not support
acceptance of unrecognized certificates; it is expected that a limited number of CAs will be acceptable for client
certificates in any site that uses them.

Pre-configuring root certificates from widely used CAs is OPTIONAL, but simplifies initial configuration of
certificate-based security, as certificates from those CAs will be accepted. These CA root certificates can be
exported from widely available web browsers.

42.2.2.4.3 Require support for certificate acquisition from and revocation by common PKI/CA software.

All interfaces for certificate configuration in b and c of 42.2.2.4 shall support the following certificate formats:

• DER encoded X.509
International Telecommunications Union Telecommunication Standardization Sector (ITU-T), Recommendation
X.509: Information technology - Open Systems Interconnection - The Directory: Public-key and attribute
certificate frameworks, May 2000.
Specification and technical corrigenda can be obtained from:
http://www.itu.int/ITU-T/publications/recs.html;

• Base64 encoded X.509 (often called PEM)
N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, IETF RFC 2045, November 1996, Section 6.8.
Available at: http://www.ietf.org/rfc/rfc2045.txt;

• PKCS#12
RSA Laboratories, PKCS #12: Personal Information Exchange Syntax, Version 1.0, June 1999. Specification
and Technical Corrigendum. Available at:
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12/index.html.

All certificate validation software shall support local certificate revocation lists, and at least one list per CA root
certificate supported. Support is REQUIRED for both DER encoded X.509 and Base64 encoded X.509 formats,
but this support MAY be provided by using one format in the software and providing a tool to convert lists from the
other format. OCSP and other means of immediate online verification of certificate validity are OPTIONAL, as
connectivity to the issuing Certificate Authority cannot be assured.

42.2.2.4.4 Allow security policy control to be restricted to security administrators.
All certificate interfaces required above shall support access restrictions that permit access only by suitably
privileged administrators. A suitably privileged security administrator shall be able to disable functionality for
acceptance of unrecognized certificates described in 42.2.2.4.3.

The above requirements can be satisfied via appropriate use of the readily-available OpenSSL toolkit software
(www.openssl.org). Support for PKCS#7 certificate format was deliberately omitted from the requirements. This
format is primarily used for online interaction with certificate authorities; such functionality is not appropriate to
require of all SMI-S storage management software, and tools are readily available to convert PKCS#7 certificates
to or from other certificate formats.

42.3 Health and Fault Management
Not defined in this standard.

42.4 Cascading Considerations
Not defined in this standard.
416

NO_ANSI_ID Server Profile
42.5 Supported Subprofiles and Packages
Table 442 describes the supported profiles for Server.

42.6 Methods of the Profile
None.

42.7 Client Considerations and Recipes

42.7.1 Applicability of Security Considerations

The security requirements for HTTP implementation given in 42.2.2, "HTTP Security" apply to both SMI-S servers
and clients. An SMI-S client shall comply with all security requirements for HTTP specified in 42.2.1, "HTTP
Security Background" that are applicable to clients.

SMI-S Client support for HTTP security is required. This includes the following requirements applicable to clients:

• SSL 3.0 and TLS shall be supported.

• HTTP Basic Authentication shall be supported. HTTP Digest Authentication should be supported.

• HTTP Realms shall be supported.

• All certificates, including CA Root Certificates used by clients for certificate validation, shall be replaceable.

• The DER encoded X.509, Base64 encoded X.509 and PKCS#12 certificate formats shall be supported.

• Certificate Revocation Lists shall be supported in the DER encoded X.509 and Base64 encoded X.509
formats.

The above list is not comprehensive; see 42.2.2, "HTTP Security" for the complete requirements. If there is any
conflict between this text and 42.2.2, "HTTP Security", the text in 42.2.2, "HTTP Security" is the final specification
of the requirements.

42.7.2 Segregate a SAN Device Type

// DESCRIPTION

// A management application wishes to manage a particular type of SAN

// device, but not other devices. So the management application needs to

// isolate the particular CIM Servers that support the type of device it

// wants to manage.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

Table 442 - Supported Profiles for Server

Registered Profile Names Mandatory Version

Object Manager Adapter No 1.3.0

Indication No 1.3.0

Profile Registration Yes 1.3.0
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 417

Server Profile NO_ANSI_ID
// 1.Assume CIM Servers have advertised their services (SrvReg)

// 2.Assume there are one or more Directory Agents in the subnet

// 3.Assume no security on SLP discovery

// 4.#DirectoryList[] is an array of directory URLs

// 5.#DirectoryEntries [] is an array of directory entry Structures.

// The structure matches the “wbem” SLP Template (see ‘Standard

// WBEM Service Type Templates).

// 6.Assume that the device is #DesiredProfile and the device is an

// SMI-S device (a SNIA defined profile)

// Step 1: Set the Previous Responders List to the Null String.

#PRList = ““

// Step 2: Multicast a Service Request for a Directory Server Service.

// This is to find Directory Agents in the subnet.

//

SrvRqst (

#PRList, // The Previous Responders list

service:directory-agent // Service type

“DEFAULT”, // The scope

NULL, // The predicate

NULL) // SLP SPI (security token)

// Step 3: Listen for Response from Directory Agent(s)

#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA

URL, // The URL of the DA

ScopeList,// The scopes supported by the DA

AttrList,// The DA Attributes

SLP SPI List,// SLP SPI (SPIs the DA can verify)

Authentication Block)

// Iterate on Steps 2 & 3, until a response has been received or the client

// has reached a UA configured CONFIG_RETRY_MAX seconds.

// Step 4: Unicast a Service Request to each of the DAs specifying a

// query predicate to select CIM Servers that support SNIA

// #DesiredDevice profiles and listen for responses.

for #j in #DirectoryList[]

{

SrvRqst (

#DAPRList, // The Previous Responders list

“service:wbem”, // Service type

“DEFAULT”, // The scope

“RegisteredProfilesSupported=SNIA:”+#DesiredProfile+”*”,

 // The predicate

NULL) // SLP SPI (security token)
418

NO_ANSI_ID Server Profile
#ServiceList [#j] = SrvRply (

Count, // count of URLs

#SAPRList[])

}

// Step 5: Next retrieve the attributes of each advertisement

For #i in #ServiceList[] // for each url in list

{

AttrRqst (

#SAPRList, // The Previous Responders list

#ServiceList[#i],// a url from #ServiceList[]

“DEFAULT”, // The scope

NULL, // Tag list. NULL means return all

// attributes

NULL) // SLP SPI (security token)

#DirectoryEntries [#i] = AttrRply (#attr-list)

}

// Step 7: Correlate the responses to the Service Request on unique

// “service-id” to determine unique CIM Servers. The client will get

// multiple responses (one for each access point) for each CIM

// Server. At this point, the client has a list of CIM Servers that

// claim to support SNIA #DesiredProfile profiles.

42.8 Registered Name and Version
Server version 1.3.0

42.9 CIM Elements
Table 442 describes the CIM elements for Server.

Table 443 - CIM Elements for Server

Element Name Requirement Description

42.9.1
CIM_CIMXMLCommunicationMechanism

Mandatory

42.9.2 CIM_CommMechanismForManager Mandatory This associates the ObjectManager and the
communication classes it supports

42.9.3 CIM_HostedAccessPoint Mandatory This associates the communication
mechanisms with the hosting System

42.9.4 CIM_HostedService Mandatory Connects the ObjectManager to the System
that is hosting the ObjectManager.

42.9.5 CIM_Namespace Mandatory This is a namespace within the Object
Manager.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 419

Server Profile NO_ANSI_ID
42.9.1 CIM_CIMXMLCommunicationMechanism

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 444 describes class CIM_CIMXMLCommunicationMechanism.

42.9.6 CIM_NamespaceInManager Mandatory This associates the namespace to the
ObjectManager.

42.9.7 CIM_ObjectManager Mandatory This is the Object Manager service of the CIM
Server.

42.9.8 CIM_System Mandatory The System that is hosting the Object
Manager (CIM Server)

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ObjectManager AND
SourceInstance.Started <>
PreviousInstance.Started

Optional Deprecated WQL -Start of object manager

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ObjectManager AND
SourceInstance.CIM_ObjectManager::Started
<>
PreviousInstance.CIM_ObjectManager::Starte
d

Optional CQL -Start of object manager

Table 444 - SMI Referenced Properties/Methods for CIM_CIMXMLCommunicationMechanism

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ElementName Mandatory

CommunicationMech
anism

Mandatory

Version Mandatory 'CIM Operations over HTTP' version. Shall be '1.0' or '1.1'
or '1.2'.

Table 443 - CIM Elements for Server

Element Name Requirement Description
420

NO_ANSI_ID Server Profile
42.9.2 CIM_CommMechanismForManager

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 445 describes class CIM_CommMechanismForManager.

42.9.3 CIM_HostedAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

CIMValidated Mandatory

FunctionalProfilesSu
pported

Mandatory

MultipleOperationsSu
pported

Mandatory

AuthenticationMecha
nismsSupported

Mandatory

OtherCommunication
MechanismDescriptio
n

Conditional Conditional requirement:
CIM_CIMXMLCommunicationMechanism requires the
unicationMechanismDescription property be populated if
the CommunicationMechanism property has a value of 1
(\Other\')..'This shall not be NULL if 'Other' is identified in
CommunicationMechanism

OperationalStatus Mandatory

StatusDescriptions Optional

FunctionalProfileDes
criptions

Optional

Table 445 - SMI Referenced Properties/Methods for CIM_CommMechanismForManager

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 444 - SMI Referenced Properties/Methods for CIM_CIMXMLCommunicationMechanism

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 421

Server Profile NO_ANSI_ID
Table 446 describes class CIM_HostedAccessPoint.

42.9.4 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 447 describes class CIM_HostedService.

42.9.5 CIM_Namespace

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 448 describes class CIM_Namespace.

Table 446 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 447 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 448 - SMI Referenced Properties/Methods for CIM_Namespace

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

ObjectManagerCreati
onClassName

Mandatory

ObjectManagerName Mandatory

CreationClassName Mandatory
422

NO_ANSI_ID Server Profile
42.9.6 CIM_NamespaceInManager

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 449 describes class CIM_NamespaceInManager.

42.9.7 CIM_ObjectManager

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Name Mandatory

ClassType Mandatory

DescriptionOfClassT
ype

Conditional Conditional requirement: CIM_Namespace requires the
DescriptionOfClassType property be populated if the
ClassType property has a value of 1 (\Other\')..'Mandatory if
ClassType is set to 1 ('Other')

ClassInfo Optional Deprecated.Deprecated in the MOF, but required for 1.0
compatibility. Not required if all hosted profiles are new in
1.1

DescriptionOfClassIn
fo

Optional Deprecated.Deprecated in the MOF, but mandatory for 1.0
compatibility. Mandatory if ClassInfo is set to 'Other'

Table 449 - SMI Referenced Properties/Methods for CIM_NamespaceInManager

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 448 - SMI Referenced Properties/Methods for CIM_Namespace

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 423

Server Profile NO_ANSI_ID
Table 450 describes class CIM_ObjectManager.

42.9.8 CIM_System

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 451 describes class CIM_System.

STABLE

Table 450 - SMI Referenced Properties/Methods for CIM_ObjectManager

Properties Flags Requirement Description & Notes

Name Mandatory

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

ElementName Mandatory

Description Mandatory

OperationalStatus Mandatory

Started Mandatory

StopService() Optional

Table 451 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory

Description Mandatory

ElementName Mandatory

OperationalStatus Mandatory

NameFormat Mandatory
424

EXPERIMENTAL

Clause 43: Profile Registration Profile

43.1 Synopsis
Profile Name: Profile Registration

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.12.0

Specializes: DMTF Profile Registration 1.0.0

No included profiles are defined in this standard.

Profile Registration Profile models the profiles registered in the object manager and the associations between
registration classes and the domain classes implementing the profile.

43.2 Description
The SNIA Profile Registration Profile specializes the DMTF Profile Registration Profile adding the following
classes:

• CIM_RegisteredSubProfile (subclass of CIM_RegisteredProfile)

• CIM_SubProfileRequiresProfile (subclass of CIM_ReferencedProfile)

• CIM_SoftwareIdentity

• CIM_ElementSoftwareIdentity

• CIM_Product

• CIM_ProductSoftwareComponent

43.3 Implementation
In DMTF profiles, the term ‘component profile’ is used similarly to the way ‘subprofile’ was used in SMI-S 1.0.x and
1.1.x; and the term ‘autonomous profile’ is used similarly to the way ‘profile’ was used in SMI-S 1.0.x and 1.1.x.
SNIA implementations may use the SNIA 1.0.x/1.1.x approach with the RegisteredSubProfile and
SMI-S 1.3.0 Rev 6 SNIA Technical Position 425

Profile Registration Profile NO_ANSI_ID
SubProfileRequiresProfile subclasses) or the DMTF approach using RegisteredProfile for component profiles and
ReferencedProfile. Figure 60 shows the Profile Registration Model.

SMI-S clients should use the superclasses (RegisteredProfile and ReferencedProfile) in CIM operations to assure
that implementations conforming to either SMI-S or DMTF profiles are discovered. ReferencedProfile associates
two instances of RegisteredProfile. The DMTF Profile Registration Profile describes how the Antecedent and
Dependent references should be used when one profile includes another in its supported/referenced profile list.
Implementations are inconsistent in the use of these references and clients should be prepared for either
approach; one technique to achieve this would be to specify NULL for Role and RemoteRole in Associator or
AssociatorName operations.

The Scoping Class methodology defined in the DMTF Profile Registration profile shall be implemented. The
Central Class methodology may be implemented.

For each Profile instance, the supported component profiles should be identified via the SubprofileRequiresProfile
or ReferencedProfile association. Subprofiles are modeled using RegisteredSubProfile (or ReferencedProfile).

Instances of RegisteredProfile, RegisteredSubProfile, SubProfileRequiresProfile, and ReferencedProfile are in the
Interop namespace. The ManagedElement is in the implementation namespace.

43.3.1 ElementConformsToProfile Association

In addition, the ElementConformsToProfile association ties the “top-level” autonomous profile (RegisteredProfile)
to scoping managed elements.

A single ManagedElement may have zero or more ElementConformsToProfile associations to RegisteredProfiles.
Regardless of the number of associated RegisteredProfiles, the ManagedElement represents one set of resources.
So for example, consider a ManagedElement that is a System that supports both the Array and Storage Virtualizer
profiles. If one asks for the total amount of mapped capacity, the answer applies to both Array and Virtualizer and is
not additive. See Rules for Combining (Autonomous) Profiles (B.5) in Storage Management Technical
Specification, Part 1 Common Architecture, 1.3.0 Rev 6.

43.3.2 Associations between Autonomous and Component Profile

The DMTF Profile Registration profile requires the RegisteredProfile instances representing a profile and its
supported profiles be associated via ReferencedProfile (which may be subclassed as SubProfileRequiresProfile).
SMI-S has the additional requirement, that all supported profiles (whether supported directly or indirectly), are
associated directly to the “top-level” autonomous profile.

l

Figure 60 - Profile Registration Model

RegisteredProfile
(for autonomous profiles)

RegisteredSubProfile

SubProfile
RequiresProfile

(from the registered profile)

ManagedElement
(e.g., System)

ElementConformsToProfileReferencedProfile

SubProfile
RequiresProfile

RegisteredProfile
(for component profiles)

Referenced
Profile
426

NO_ANSI_ID Profile Registration Profile
For example, as shown in Figure 61, the Array profile suports the Disk Sparing subprofile which supports the Job
Control. SMI-S requires both of these component profiles to be directly attached to the Array profile instance, even
though Job Control is actually a component profile of Disk Sparing. DMTF Profile Registration profile also requires
a ReferencedProfile association between the RegisteredProfiles for Disk Sparing and Job Control.

Each RegisteredProfile instance referenced by ElementConformsToProfile may have a set of supported profiles
with RegisteredProfile instances associated using ReferencedProfile or SubProfileReuiredProfile. Typically the
RegisteredProfile associated via ElementConformsToProfile is for an autonomous profile and the supported
profiles are component profiles. If there are multiple ElementConformsToProfile associations between a single
RegisteredProfile instance and multiple domain instances, the referenced domain implementaions shall support all
the profiles supported by the RegisteredProfile.

43.3.3 The SMI-S Registered Profile

SMI-S conformant implementations shall provide a technique that allows clients to determine which standard the
implementation conforms to. This requirement is different for RegisteredProfile instances representing an profile
from SMI-S versions before 1.2.0, which are required to use the standard’s version number (e.g., 1.0.3 or 1.1.0) in
the RegisteredVersion property of each RegisteredProfile (or RegisteredSubprofile) instance.

Each RegisteredProfile instance representing a profile from SMI-S version 1.2.0 or later shall also be associated to
a RegisteredProfile instance holding the SMI-S version number, as shown in Figure 62. The version number
(RegisteredVersion) of SMI-S profiles may or may not be the same as the version number of the SMI-S Registered
Profile. The RegisteredProfile instances are associated using ElementConformsToProfile where the
RegisteredProfile representing SMI storage profiles (e.g., Array, Switch) is referenced from the ManagedElement

Figure 61 - Associations between RegisteredProfile instances

RegisteredNam e: Array

RegisteredProfile

RegisteredNam e: D iskSparing

RegisteredProfile

(from the Array profile)

Com puterSystem

Elem entConform sToProfile

RegisteredNam e: Job Contro l

RegisteredProfile

Referenced
Profile

Referenced
Profile

Referenced
Profile

Required by SM I-S
and not DM TF
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 427

Profile Registration Profile NO_ANSI_ID
role of the association. Figure 62 depicts the RegisteredProfile representing the SMI-S standard on the left, and
RegisteredProfiles representing autonomous and component storage profiles in the middle.

SMI-S class diagrams generally do not include the names of roles on associations. The requirements of roles
(ConformantStandard and ManagedElement) of ElementConformsToProfile seemed critical to understand this
model, so they are added to Figure 62. The role names are under the ends of the ElementConformsToProfile lines.

43.3.3.1 Provider Versions
Each RegisteredProfile and RegisteredSubprofile instance (from the Profile Registration profile) shall be
associated to one (or more) SoftwareIdentity instances containing information about the software packages
required to deploy the instrumentation (including providers). These are associated using ElementSoftwareIdentity.
SoftwareIdentity instance may optionally be associated to Product instances representing a software product. The
model for Provider Versions is depicted in Figure 63.

43.3.3.2 Abstract Profile and Profile Registration
When profiles are defined for specialization, they may be defined as abstract and include this text in the Synposis
subclause:

This abstract profile specification shall not be directly implemented; implementations shall be based on a
profile specification that specializes the requirements of this profile.

RegisteredProfile instaces shall not be instantiated for abstract profiles. Information about abstract profiles shall
not be included in the SLP template.

Figure 62 - Model for SMI-S Registered Profile

Figure 63 - Model for Provider Versions

RegisteredProfile
(for autonomous profiles)

(from the registered profile)

ManagedElement
(e.g., System)RegisteredOrganization: 2(SNIA)

RegisteredName: SMI-S
RegisteredVersion: 1.2.0

RegisteredProfile

RegisteredProfile
(for component profiles, may be

RegisteredSubProfile)

ReferencedProfile
(or SubProfileRequiresProfile)

Conformant
Standard

ElementConforms
ToProfile Managed

Element

ElementConforms
ToProfileConformant

Standard

Conformant
Standard

Managed
Element

Managed
Element

ElementConforms
ToProfile

(from Profile Registration profile)

RegisteredProfile
(from storage profile)

ManagedElement
(e.g., System)

Element
ConformsToProfile

Referenced
Profile

SoftwareIdentity

Element
SoftwareIdentity

Product

Product
SoftwareComponent
428

NO_ANSI_ID Profile Registration Profile
43.3.4 Health and Fault Management Consideration

None

43.3.5 Cascading Considerations

None

43.4 Methods
None

43.5 Use Cases

43.5.1 Using the CIM Server Model to Determine SNIA Profiles Supported

All SNIA profiles require the implementation of the Server Profile as part of the CIM Server. This allows a client to
determine which SNIA profiles are supported by the a proxy, embedded or general purpose SMI-S Server. SMI-S
clients can use SLP to search for services that support SNIA profiles. Indeed, a client may restrict its search to
specific types of SNIA profiles. The client would get a response for each CIM Server service that supports a SNIA
profile. From the responses, the client should use the “service-id” to determine the unique CIM Servers it is dealing
with.

For each CIM Server, the client can determine the types of entities supported by inspecting the
RegisteredProfilesSupported attribute returned for the SLP entries. This identifies the types of entities (e.g.,
devices) supported by the CIM Server.

The client may determine more detail on the support for the profiles by going to the service advertised for the CIM
Server and inspecting the RegisteredProfiles maintained in the server profile. This would be done by enumerating
RegisteredProfiles and RegisteredSubprofiles within the interop namespace. By inspection of the actual profile
instances, the client can determine the SNIA version (RegisteredVersion) of profile, associated namespaces and
associated managed elements (e.g., systems).

From the RegisteredProfiles within the namespace of the ObjectManager, a client can determine other supported
profiles by following the ReferencedProfile association (or its subclass SubProfileRequiresProfile). This returns a
set of RegisteredProfile (or RegisteredSubProfile) instances that represent profiles supported by the specific
autonomous profile instance. See individual profile descriptions in this specification for the specific list of
“supported profiles”. For a given profile instance there may be zero, one or many supported profiles.

43.5.2 Recipe Assumptions

For discovery recipes, the following are assumed:

a) A top-level object (class instance) exists for each profile, and

b) the client knows what the top level object is.

The top-level object for each of the SMI-S profiles are:

• ComputerSystem: For Array, Storage (Media) Libraries, Virtualizers, Switches, and HBAs. This is the top-level
ComputerSystem instance for the profile (not the component ComputerSystem or the member
ComputerSystem);

• AdminDomain: For Fabric and HostDiscoveredResources;

• ObjectManager: For Server.

The top-level object (class instance) is associated to the RegisteredProfile instance for the profile via the
ElementConformsToProfile association.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 429

Profile Registration Profile NO_ANSI_ID
Note: Other ManagedElement instances may be associated to the RegisteredProfile, but the meaning and
behavior of such associations are not defined by SMI-S and are not mandatory.

43.5.3 Find Servers Supporting a Given Profile

// DESCRIPTION

// A management application wishes to find all CIM Servers on a

// particular subnet that support one or more SMI-S profiles.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume CIM Servers have advertised their services (SrvReg)

// 2.Assume there may (or may not) be Directory Agents in the subnet

// 3.Assume no security on SLP discovery

// 4.#DirectoryList[] is an array of directory URLs

// 5.#ServiceList[] is an array of service agent URLs

// 6.#DirectoryEntries [] is an array of directory entry Structures.

// The structure matches the wbem SLP Template (see Clause 5,

// section 10).

// Step 1: Set the Previous Responders List to the Null String.

#PRList = ““

// Step 2: Multicast a Service Request for a Directory Server Service.

// This is to find Directory Agents in the subnet.

//

SrvRqst (

#PRList, // The Previous Responders list

“service:directory-agent” // Service type

“DEFAULT”, // The scope

NULL, // The predicate

NULL) // SLP SPI (security token)

// Step 3: Listen for Response from Directory Agent(s)

#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA

URL, // The URL of the DA

ScopeList,// The scopes supported by the DA

AttrList,// The DA Attributes

SLP SPI List,// SLP SPI (SPIs the DA can verify)

Authentication Block)

// Iterate on Steps 2 & 3, until a response has been received or the client has

// reached a UA configured CONFIG_RETRY_MAX seconds. If no DA if found,

// proceed to step 4. If a DA is found, proceed to step 7.

// Step 4: Set the Previous Responders List to the Null String.

#SAPRList = ““

// Step 5: Multicast a Service Request for Service Agent Services. This

// is to find Service Agents in the subnet that are not advertised
430

NO_ANSI_ID Profile Registration Profile
// in a Directory.

SrvRqst (

#SAPRList, // The Previous Responders list

“service:service-agent” // Service type

“DEFAULT”, // The scope

“(Service-type=WBEM)”, // The predicate

NULL) // SLP SPI (security token)

// Step 6: Listen for Response from Service Agent(s)

#SAList[] = SAAdvert (

URL, // The URL of the SA

ScopeList,// The scopes supported by the SA

AttrList,// The SA Attributes

Authentication Block)

// Iterate on Steps 5 & 6, until a response has been received or the client has

// reached a UA configured CONFIG_RETRY_MAX seconds. If no SA if found,

// Then record an error. There are NO WBEM SAs. Otherwise proceed to

// Step 8.

//Step 7: Unicast a Service Request to each of the DAs specifying

// a query predicate to select CIM Servers that support SNIA profiles

// and listen for responses.

for #j in #DirectoryList[]

{

SrvRqst (

#PRList, // The Previous Responders list

“service:wbem”, // Service type

“DEFAULT”, // The scope

RegisteredProfilesSupported=”SNIA:*” // The predicate

NULL) // SLP SPI (security token)

#ServiceList [#j] = SrvRply (

Count, // count of URLs

URL for each SA returned)

}

Go to Step 9.

//Step 8: Unicast a Service Request to each of the SAs specifying

// a query predicate to select CIM Servers that support SNIA profiles

// and listen for responses.

for #j in #SAList[]

{

SrvRqst (

#PRList, // The Previous Responders list

“service:wbem”, // Service type

“DEFAULT”, // The scope
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 431

Profile Registration Profile NO_ANSI_ID
RegisteredProfilesSupported=”SNIA:*”, // The predicate

NULL) // SLP SPI (security token)

#ServiceList [#j] = SrvRply (

Count, // count of URLs

URL for each SA returned)

}

// Step 9: Next retrieve the attributes of each advertisement

For #i in #ServiceList[] // for each url in list

{

AttrRqst (

#PRList, // The Previous Responders list

#ServiceList[#i],// a url from #ServiceList[]

“DEFAULT”, // The scope

NULL, // Tag list. NULL means return all attributes

NULL) // SLP SPI (security token)

#DirectoryEntries [#i] = AttrRply (attr-list)

}

// Step 10: Correlate responses to the Service Request on unique

// “service-id” to determine unique CIM Servers. The client will get

// multiple responses (one for each access point) for each CIM

// Server. At this point, the client has a list of CIM Servers that

// claim to support SNIA profiles.

43.5.4 Enumerate Profiles Supported by a Given CIM Server

// DESCRIPTION

// A management application wishes to determine the Profiles supported by

// a particular CIM Server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client only wants to know the “top level” profiles

// supported by the CIM Server

// 2.Assume the client has used SLP to find the CIM Servers and has a

// #DirectoryEntries [] structure

// 3.This recipe describes the operations for one of the entries in

// the #DirectoryEntries [] structure.

// 4. Assume the index into #DirectoryEntries[] for the CIM Server of

// interest is #i.

// Step 1: Get the server url for the CIM Server.

#ServerName = #DirectoryEntries[#i].service-id

// Step 2: Get the Interop Namespace for the CIM Server.

#Inamespace = #DirectoryEntries[#i].InteropSchemaNamespace[1]
432

NO_ANSI_ID Profile Registration Profile
// Step 3: Establish a connection to the CIM Server with

// #INameSpace. Note that the WBEM operations throughout the remainder

// of this recipe are performed with this client handle.

<Make client connection to this server using the interop namespace>

// Step 4: Get the names of all the RegisteredProfiles in the

// Interop Namespace

#ProfileName[] = EnumerateInstances(“CIM_RegisteredProfile”,

TRUE, TRUE, FALSE, FALSE,

[“RegisteredName”])

// Step 5: Determine which RegisteredProfiles are autonomous.

// Subprofiles (aka component profiles) are associated to autonomous

// profiles via SubProfileRequiresProfile or its superclass,

// ReferencedProfile. The autonomous profile is refered to

// as the ‘referencing profile’ and the component/sub profile

// is referred the referenced profile. There may be more than

// two tiers, so profile may be both referenced and referencing.

// In practice, component or sub profiles would only be registered

// when their referencing autonomous profile(s) are registered, so

// any profile not referenced by another profile is autonomous.

#k = 0;

for #i in #ProfileName[i] { // walk all profiles

 $ReferencingProfiles->[] = Associators(#ProfileName[i]->,

 CIM_ReferencedProfile”, “CIM_RegisteredProfile”, “Dependent”,

 “Antecedent”, FALSE, FALSE, NULL);

 if ($ReferencingProfiles[] != null && $ReferencingProfiles[].length > 0) {

 // if the profile is not referenced by another profile,

 // add it to the list of autonomous profiles

 #Autonomous[#k+1]=#ProfileName[#i]

 }

}

// #Autonomous[] now holds the autonomous RegisteredProfiles

43.5.5 Identify the ManagedElement Defined by a Profile

// DESCRIPTION

// A management application wishes to determine the ManagedElement that

// is defined by a particular Profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client has located the profile and has its object path

// ($RegisteredProfile->)

// Step 1: Determine the ManagedElement (System) by traversing the
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 433

Profile Registration Profile NO_ANSI_ID
// ElementConformsToProfile association from the RegisteredProfile

// that is the top level Profile that applies to the System

$ManagedElement->[] = AssociatorNames (

$RegisteredProfile->,

“CIM_ElementConformsToProfile”,

“CIM_System”,

NULL,

NULL)

// Step 2: The object name of more than one System may be contained

// in the array returned. Examine the contents of $ManagedElement[]

// and save the name of the System of interest as $Name.

// NOTE: “Top level” object for each profile will be returned.

// To accommodate other potential ManagedElements, then it may

// be necessary need to throw out the ones that are not top level objects.

// NOTE: The object path for the ManagedElement may be in a Namespace

// that is different than the Interop Namespace. As a result, if the

// client wishes to actually access the ManagedElement, the client

// may get the namespace from the REF to the element:

#NameSpace=$Name.getNameSpace()

43.5.6 Determine the SNIA Version of a Profile

// DESCRIPTION

// A management application wishes to determine the SNIA version

// that a particular Profile supports.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client only wants to know version information

// for a SNIA profile

// 2.Assume the client has already found the profile and has the

// $RegisteredProfile-> reference

// Step 1: Get the Instance of the Profile name.

$Profile = GetInstance($RegisteredProfile->)

// Step 2: Look for an associated RegisteredProfile representing the

// SMI-S specification. This usage of RegisteredProfile was added in

// SMI-S 1.2.0, if none are found, then assume the implementation

// supports SMI-S 1.0.x or 1.1.x where the version of the profile

// matched the version of the specification. The use of ManagedElement

// and ConfomantStandard as the Role and ResultRoles asure that the

// returned list is restricted to RegisteredProfiles for SMI-S spec and

// does not include domain elements.
434

NO_ANSI_ID Profile Registration Profile
$SpecRegisteredProfiles->[] = Associators (

 $RegisteredProfile->,

 “CIM_ElementConformsToProfile”,

 “CIM_RegisteredProfile”,

 ManagedElement,

 ConformantStandard,

 false,

 false,

 [“RegisteredVersion”])

if ($SpecRegisteredProfiles[] == null ||

 $SpecRegsisteredProfiles[].length == 0) {

 // no RegisteredProfile for specs were found; assume the

 // version of the profile is the spec version.

 #SNIAVersion = $Profile.RegisteredVersion

} else {

 // At least one $SpecRegisteredProfile was returned; an implmentation may

 // conform to multiple spec versions

 <Sort $SpecRegisteredProfile[] in reversed order of VersionNumbers>

 // The most recent supported SMI-S version is in element 0

 #SNIAVersion = $SpecRegisteredProfiles[0].RegisteredVersion

}

43.5.7 Find all Profiles on a Server

// DESCRIPTION

// A management application wishes to list all the SNIA profiles and

// their related profiles for a specific CIM Server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client has already discovered the CIM Servers that

// support SNIA profiles

// Step 1: Get the names of all the RegisteredProfiles and their names

// in the Interop Namespace

$ProfileName[] = EnumerateInstances(“CIM_RegisteredProfile”

 true, true, false, false, {“RegisteredName”})

// Step 2: Get the ObjectName for the Profiles

for #i in #ProfileName[] {

 $Profile->[#i]=$Name.getObjectPath(#ProfileName[#i])

}

// Step 3: Get the (sub)profiles associated to the profiles.

// Since ReferencedProfile is the superclass for

// SubProfileRequiresProfile and RegisteredProfile is the

// supclass for RegsisteredSubProfile, this algorithm finds
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 435

Profile Registration Profile NO_ANSI_ID
// subprofiles and componement profiles referenced by a

// profile.

for #i in $ProfileName[]

{

 $Subprofile[] = Associators(

 $ProfileName[#j].getObjectPath(),

 “CIM_ReferencedProfile”,

 “CIM_RegisteredProfile”,

 NULL, NULL, false, false, NULL)

}

43.6 Registered Name and Version
Profile Registration version 1.3.0

43.7 CIM Elements
Table 452 describes the CIM elements for Profile Registration.

Table 452 - CIM Elements for Profile Registration

Element Name Requirement Description

43.7.1 CIM_ElementConformsToProfile
(Associates Domain object (e.g. System) to
RegisteredProfile)

Mandatory Ties managed elements (e.g., Systems
representing devices) to the registered profile
that applies

43.7.2 CIM_ElementConformsToProfile
(Associates RegisteredProfiles for SMI-S and
domain profiles)

Mandatory Associates RegisteredProfiles for SMI-S and
domain profiles

43.7.3 CIM_ElementSoftwareIdentity (Profile
and SW identity)

Mandatory Associates a domain RegisteredProfile and
SoftwareIdentity instances

43.7.4 CIM_ElementSoftwareIdentity
(Subprofile and SW identity)

Conditional Conditional requirement: Support for
instances of RegisteredSubprofile.Associates
the subprofile and SoftwareIdentity instances.

43.7.5 CIM_Product Optional Represents a software product aggregating
SoftwareIdentity instaces with provider
versions.

43.7.6 CIM_ProductSoftwareComponent Optional Associates Product and SoftwareIdentity.

43.7.7 CIM_ReferencedProfile Optional Associates referenced profiles using the
DMTF Profile Registration profile

43.7.8 CIM_RegisteredProfile (Domain
Registered Profile)

Mandatory An object representing a domain (e.g. Array or
Switch) profile.

43.7.9 CIM_RegisteredProfile (The SMI-S
Registered Profile)

Mandatory A registered profile that provides the version
of the SMI-S standard
436

NO_ANSI_ID Profile Registration Profile
43.7.1 CIM_ElementConformsToProfile (Associates Domain object (e.g. System) to RegisteredProfile)

The CIM_ElementConformsToProfile ties managed elements (e.g., Systems representing devices) to the
registered profile that applies.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 453 describes class CIM_ElementConformsToProfile (Associates Domain object (e.g. System) to
RegisteredProfile).

43.7.2 CIM_ElementConformsToProfile (Associates RegisteredProfiles for SMI-S and domain profiles)

Associates RegisteredProfiles for SMI-S and domain profiles

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

43.7.10 CIM_RegisteredSubProfile Optional Specialization of RegisteredProfile for legacy
SMI-S subprofiles.

43.7.11 CIM_SoftwareIdentity Mandatory A representation of some bundle of providers
and supporting software that shares a version
number.

43.7.12 CIM_SubProfileRequiresProfile Optional Specialization of ReferencedProfile
referencing a SubProfile

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_RegisteredProfile

Optional Creation of a registered profile instance

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_RegisteredProfile

Optional Deletion of a registered profile instance

Table 453 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Associates
Domain object (e.g. System) to RegisteredProfile)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A element implementing a profile (e.g., top-level system).

ConformantStandard Mandatory RegisteredProfile instance describing the domain profile.

Table 452 - CIM Elements for Profile Registration

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 437

Profile Registration Profile NO_ANSI_ID
Table 454 describes class CIM_ElementConformsToProfile (Associates RegisteredProfiles for SMI-S and domain
profiles).

43.7.3 CIM_ElementSoftwareIdentity (Profile and SW identity)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 455 describes class CIM_ElementSoftwareIdentity (Profile and SW identity).

43.7.4 CIM_ElementSoftwareIdentity (Subprofile and SW identity)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for instances of RegisteredSubprofile.

Table 456 describes class CIM_ElementSoftwareIdentity (Subprofile and SW identity).

43.7.5 CIM_Product

Table 454 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Associates
RegisteredProfiles for SMI-S and domain profiles)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The RegisteredProfile representing the domain profile

ConformantStandard Mandatory The SMI-S RegisteredProfile

Table 455 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity (Profile and SW
identity)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to SoftwareIdentity.

Dependent Mandatory Reference to domain RegegisteredProfile.

Table 456 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity (Subprofile and
SW identity)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to Software Identity.

Dependent Mandatory Reference to RegisteredSubProfile
438

NO_ANSI_ID Profile Registration Profile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 457 describes class CIM_Product.

43.7.6 CIM_ProductSoftwareComponent

Associates Product and SoftwareIdentity.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 458 describes class CIM_ProductSoftwareComponent.

43.7.7 CIM_ReferencedProfile

Associates referenced profiles using the DMTF Profile Registration profile

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 457 - SMI Referenced Properties/Methods for CIM_Product

Properties Flags Requirement Description & Notes

Name Mandatory Commonly used product name

IdentifyingNumber Mandatory Software serial number

Vendor Mandatory Product supplier

Version Mandatory Product version information

Table 458 - SMI Referenced Properties/Methods for CIM_ProductSoftwareComponent

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to Product

PartComponent Mandatory Reference to SoftwareIdentity
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 439

Profile Registration Profile NO_ANSI_ID
Table 459 describes class CIM_ReferencedProfile.

43.7.8 CIM_RegisteredProfile (Domain Registered Profile)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 460 describes class CIM_RegisteredProfile (Domain Registered Profile).

43.7.9 CIM_RegisteredProfile (The SMI-S Registered Profile)

Table 459 - SMI Referenced Properties/Methods for CIM_ReferencedProfile

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 460 - SMI Referenced Properties/Methods for CIM_RegisteredProfile (Domain Registered
Profile)

Properties Flags Requirement Description & Notes

InstanceID Mandatory This is a unique value for the profile instance

RegisteredOrganizati
on

Mandatory This is the official name of the organization that created the
Profile. For SMI-S profiles, this would be SNIA. For DMTF
profiles, this would be DMTF

OtherRegisteredOrga
nization

Conditional Conditional requirement: CIM_RegisteredProfile requires
the OtherRegisteredOrganization property be populated if
the RegisteredOrganization property has a value of 1
(\Other\')..'Mandatory if RegisteredOrganization is 1
('Other').

RegisteredName Mandatory This is the name assigned by the organization that created
the profile.

RegisteredVersion Mandatory This is the version number assigned by the organization
that defined the Profile.

AdvertiseTypes N Mandatory Defines the advertisement of this profile. If the property is
null then no advertisement is defined. A value of 1 is used
to indicate 'other' and a 3 is used to indicate 'SLP'

AdvertiseTypeDescri
ptions

Conditional Conditional requirement: CIM_RegisteredProfile requires
the AdvertiseTypeDescriptions property be populated if the
AdvertiseTypes property has a value of 1 (\Other\')..'This
shall not be NULL if 1 ('Other') is identified in AdvertiseType
440

NO_ANSI_ID Profile Registration Profile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 461 describes class CIM_RegisteredProfile (The SMI-S Registered Profile).

43.7.10 CIM_RegisteredSubProfile

Specialization of RegisteredProfile for legacy SMI-S subprofiles.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 462 describes class CIM_RegisteredSubProfile.

Table 461 - SMI Referenced Properties/Methods for CIM_RegisteredProfile (The SMI-S Registered
Profile)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique value for the profile instance.

RegisteredOrganizati
on

Mandatory Shall be 11 (SNIA).

RegisteredName Mandatory Shall be 'SMI-S'.

RegisteredVersion Mandatory The version number of the SMI specification the associated
profiles conform to.

AdvertiseTypes Mandatory Should be 2 (Not Advertised) or 3 (SLP). 2 is
recommended to avoid increasing size of SLP template.

AdvertiseTypeDescri
ptions

Conditional Conditional requirement: CIM_RegisteredProfile requires
the AdvertiseTypeDescriptions property be populated if the
AdvertiseTypes property has a value of 1 (\Other\')..'This
shall not be NULL if 'Other' is identified in AdvertiseType.

Table 462 - SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Properties Flags Requirement Description & Notes

InstanceID Mandatory This is a unique value for the subprofile instance

RegisteredOrganizati
on

Mandatory This is the official name of the organization that created the
subprofile. For SMI-S profiles, this would be 11 ('SNIA').

OtherRegisteredOrga
nization

Conditional Conditional requirement: CIM_RegisteredProfile requires
the OtherRegisteredOrganization property be populated if
the RegisteredOrganization property has a value of 1
(\Other\')..'Mandatory if RegisteredOrganization is 1
('Other').
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 441

Profile Registration Profile NO_ANSI_ID
43.7.11 CIM_SoftwareIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 463 describes class CIM_SoftwareIdentity.

43.7.12 CIM_SubProfileRequiresProfile

Specialization of ReferencedProfile referencing a SubProfile

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

RegisteredName Mandatory This is the name assigned by the organization that created
the subprofile.

RegisteredVersion Mandatory This is the version number assigned by the organization
that defined the subprofile.

AdvertiseTypes N Mandatory Should be 2 (Not Advertised) for subprofiles

AdvertiseTypeDescri
ptions

Conditional Conditional requirement: CIM_RegisteredProfile requires
the AdvertiseTypeDescriptions property be populated if the
AdvertiseTypes property has a value of 1 (\Other\')..'This
shall not be NULL if 1 ('Other') is identified in
AdvertiseType.

Table 463 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

Name Mandatory A user-friendly name for the instrumentation software.

InstanceID Mandatory

VersionString Mandatory

Manufacturer Mandatory The name of the company associated with the
instrumentation software.

Classifications Mandatory

ClassificationDescript
ions

Conditional Conditional requirement: CIM_SoftwareIdentity requires the
ClassificationDescriptions property be populated if the
Classifications property has a value of 1
(\Other\')..'Mandatory if Classifications is set to 1 ('Other').

Table 462 - SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Properties Flags Requirement Description & Notes
442

NO_ANSI_ID Profile Registration Profile
Table 464 describes class CIM_SubProfileRequiresProfile.

EXPERIMENTAL

Table 464 - SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to a RegisteredSubProfile.

Antecedent Mandatory Reference to a RegisteredProfile
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 443

Profile Registration Profile NO_ANSI_ID
444

NO_ANSI_ID Indication Profile
STABLE

Clause 44: Indication Profile

44.1 Description
Indications are support for event notifications. Each profile that supports event notification through CIM indications
would support this profile and its classes and associations.

The Indication Profile is a component profile of the Server Profile. It may also be a component profile of any other
profile (e.g., Array Profile).

Note: Refer to individual profile definitions to see whether or not the Indication Profile is mandatory. Figure 64
illustrates the structure of profiles, the Indication Profile and indication instances implied by an Array’s
support for the Indication Profile.

Indication filters are defined in the context of the namespace in which they are implemented. In Figure 64, this is
shown as the implementation namespace. The indication filters shall be defined in two places: The Interop
namespace and the namespace where the indications are intended to originate. For the Filters defined in the
InteropNamespace, the SourceNamespace property shall be filled out to indicate the implementation namespace
where the indications are to originate. For the IndicationFilters defined in the implementation namespace, this
property may be null (indicating the indications originate in the implementation namespace of the array).

Figure 64 - Indication Profile and Namespaces

Implementation NamespaceInterop NamespaceObjectManager

RegisteredProfile

RegisteredName =
"Server"

RegisteredSubprofile

RegisteredName =
"Indications"

SubProfile
RequiresProfile

RegisteredProfile

RegisteredName =
"Array"

SubProfile
RequiresProfile

Array:
ComputerSystem

IndicationFilter

IndicationFilter

ListenerDestinationCIMXML

IndicationSubscription

ElementConformsToProfile

ReferencedProfile

IndicationFilter

SourceNamespace =
Array Namespace

IndicationFilter

IndicationSubscription

ListenerDestinationCIMXML

IndicationSubscription
SMI-S 1.3.0 Rev 6 SNIA Technical Position 445

Indication Profile NO_ANSI_ID
The RegisteredProfile for the Array is associated to the ComputerSystem that is the top level system for the Array.
This is done via the ElementConformsToProfile association, which is a cross namespace association (populated by
the provider). The IndicationFilters may also be populated by the Provider (or they may be created by a client). In
either case, they are created in both the Interop Namespace and the implementation namespace of the array. The
ListenerDestinationCIMXML class shall be in the Interop Namespace and may also be in the “source”
implementation namespace. And there would be two instantiations of the IndicationSubscription association: one in
the Interop Namespace and one in the implementation namespace of the array.

SMI-S profile implementations that support indications shall support either the use of “predefined” indications
filters, “client defined” indication filters or both. In the case of an implementation that supports “predefined” filters,
the SMI-S Server would populate its model with indication filters that it supports. SMI-S Clients would select the
indication filters to which they wish to subscribe from the list supplied by the SMI-S Server (enumeration of
IndicationFilters in the appropriate namespace). In the case of an implementation that supports “client defined”
filters, the SMI-S Server shall support filter creation (and deletion) by clients and it shall support creation of at least
the filters defined by the profile.

Creation of an IndicationFilter will cause the creation of instances in both the InteropNamespace and the “Source”
implementation namespace. ListenerDestinationCIMXML instances should be created in the InteropNamespace,
but may also be created in the “Source” implementation namespace (for SMI-S 1.0.x compatibility reasons). If a
ListenerDestinationCIMXML instance is created in the “Source” implementation namespace, a duplicate instance
will be instantiated in the InteropNamespace. However, if a ListenerDestinationCIMXML is created in the
InteropNamespace, it may not be created in the “source” implementation namespace.

Note: An implementation may support both “predefined” filters and “Client Defined” filters.

SMI-S Clients would subscribe to the indications for the events to which they wish to be notified. They would also
supply an address (Indication listener) in which the indications are to be sent. SMI-S Clients shall use the subclass
ListenerDestinationCIMXML when creating subscriptions.

In any given implementation Indication Filters are scoped by NameSpace. That is, a subscription to the change of
operational status for a ComputerSystem can result in reporting of any change of operational status for ANY
ComputerSystem managed within a Namespace. A client should inspect any indication to see if it is for an element
that it manages.

A vendor implementation may support additional indication filters beyond those identified in a profile specification,
but all the filters identified in SMI-S shall be supported as specified by the profile.

Note: Indication filters may correspond to optional or conditional features in a profile. When a provider
supports an optional or conditional feature, the indications corresponding to the feature may be
conditional on the feature. This means that the provider shall supply the filters or shall allow a client to
define the filters. But optional indications that correspond to the feature need not be supported.
Indications corresponding to the filter shall be generated by the provider when a corresponding event
occurs. On the other hand, if a profile implementation does not support a component profile that defines
mandatory indications, then the profile implementation does not need to support those indications.

44.1.1 Basic Indication Classes and Association

Figure 65 illustrates the classes used in support of indications. Any given profile implementation may not include all
of these classes. But they would at least support IndicationFilters (possibly predefined),
446

NO_ANSI_ID Indication Profile
ListenerDestinationsCIMXML and IndicationSubscriptions. The actual types of indications supported can vary by
profile (see 44.8 CIM Elements to determine the types of indications supported).

Clients request indications to be sent to them by subscribing to the indication filters. Subscriptions are stored in the
SMI-S Server. A Subscription is expressed by the creation of a IndicationSubscription association instance that
references an IndicationFilter (a filter) instance, and an ListenerDestination (for the handler of the indications)
instance. A Filter contains the query that selects an indication class or classes.

SMI-S Servers that support SMI-S profiles that provide CIM indications support shall populate their models with the
filters as defined by the profile(s) or allow clients to create the filters that are defined for the profile(s). Additional
filters may also be created by indication consumers (e.g. SMI-S Clients), but this is not mandatory with SMI-S. The
client would create these filters using CreateInstance intrinsic method.

The query property of the IndicationFilter is a string that specifies which indications are to be delivered to the client.
There is also a query language property that defines the language of the query string. Example query strings are:

“SELECT * FROM AlertIndication”

“SELECT * FROM InstModification WHERE SourceInstance ISA ComputerSystem”

Figure 65 - Indication Profile Instance Diagram

ElementName
SystemCreationClassName
SystemName
CreationClassName
PersistenceTypePersistenceType
Name
Destination

ListenerDestinationCIMXML

IndicationIdentifier
CorrelatedIndications[]
IndicationTime
SourceInstance
SourceInstanceModelPath

InstDeletion

IndicationSubscription

IndicationIdentifier
CorrelatedIndications[]
IndicationTime
SourceInstance
SourceInstanceModelPath

InstCreation

ElementName
SystemCreationClassName
SystemName
CreationClassName
Name
SourceNamespace
Query
QueryLanguage

IndicationFilter

IndicationIdentifier
CorrelatedIndications[]
IndicationTime
SourceInstance
SourceInstanceModelPath
PreviousInstance

InstModification

IndicationIdentifier
CorrelatedIndications[]
IndicationTime
Description
AlertingManagedElement
AlertingElementFormat
AlertType
OtherAlertType
PerceivedSeverity
OtherSeverity
ProbableCause
ProbableCauseDescription
EventID
SystemCreationClassName
SystemName
ProviderName

AlertIndication
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 447

Indication Profile NO_ANSI_ID
AlertIndication and InstModification are types of indications. The first query says to deliver all alert type indications
to the client, and the second query says to deliver all instance modification indications to the client, where the
instance being modified is a ComputerSystem (or any subclass thereof).

See Annex C: (Normative) Indication Filter Strings in Storage Management Technical Specification, Part 1
Common Architecture, 1.3.0 Rev 6 for information on the use of indications filter strings.

A ListenerDestination specifies the means of delivering indications to the client. The subclass
ListenerDestinationCIMXML provides for XML encoded indications to be sent to a specific URL, which is specified
as a property of that class.

EXPERIMENTAL

The scheme (protocol prefix) portion of that URL value defines the protocol to be used by the SMI-S Server
(CIMOM) to deliver the indication. When the scheme (protocol prefix) is "https:", the SMI-S Server shall connect
using SSL or TLS when delivering the indication to the destination. General Requirements i), j), and k) in 42.2.2.1,
"General Requirements" shall not apply to indication delivery because the URL specifies the protocol to use. When
the "https:" protocol scheme is used, the Indication Listener should have a certificate that it will use as the SSL or
TLS server certificate; if the Indication Listener does not have such a certificate, SSL or TLS are forced to use
Anonymous cipher suites and no assurance can be provided that the indication was delivered to the intended
destination due to the lack of authentication of the Listener end of the secure channel.

EXPERIMENTAL

When a client receives an indication, it will receive some information with the indication, and then it may need to do
additional queries to determine all of the consequences of the event.

Note: To avoid multiple calls to get additional data for an indication, profile designers (or clients, for client
defined filters) should consider more elaborate Queries for Filters to return more information.

The instances of AlertIndications, InstCreation, InstDeletion and InstModification are temporary. They exist until
they are delivered to the subscribing clients. The ListenerDestinationCIMXML, IndicationFilter and
IndicationSubscription instance are permanent. That is, they persist until action is taken by client to delete them.

One final note on the indications supported. InstModification may or may not require the PreviousInstance property.
A profile may be designed to require it or not. If the SMI-S profile defines an IndicationFilter on InstModification it
shall specify whether or not PreviousInstance is required. It may always be recommended. If a profile defines
PreviousInstance as optional, then an implementation may provide a previous instance (or not). However, if the
SMI-S profile defines an IndicationFilter on InstModification with PreviousInstance required, then all
implementations shall implement the PreviousInstance property.

44.1.2 Life Cycle Indications

A life cycle indication is used to convey changes in the model. It is represented by a subclass of InstIndication. Life
cycle indications are concerned only with the creation, modification, or deletion of CIM Instances. The indication is
a CIM class whose properties contain copies of CIM Instances that have been created, modified, or deleted
(InstCreation, InstDeletion, InstModification). As such, life cycle indications can only report on classes that are
supported. Profile designers use life cycle indications as means where clients can monitor for significant changes
in a particular data model. The significant changes to the model are a reflection of changes in the managed
element the CIM instance(s) represents. An event like component overheat is likely to affected several
components. Therefore, in many cases the scope of the event can be observed through the telemetry
communicated through life cycle indications.
448

NO_ANSI_ID Indication Profile
44.1.3 AlertIndications

An alert indication is another type of indication but with a different purpose. Alert Indications are used to drawn
attention of subscribing client applications to the occurrence of an event. Alert Indication may describe aspects of
an event. The event's characteristics may or may not be wholly or partially represented in the data model (as
expressed through CIM). An Alert Indication is represented by a subclass of AlertIndication. The alert indication
itself is considered a change in the instrumentation's model.

An alert indication describes the category, severity, and event specifics. However, the event specifics may not be
understandable by an SMI-S Client. A standard message can convey the event specifics in a manner defined by
SMI-S or another related standard. (See Storage Management Technical Specification, Part 1 Common
Architecture, 1.3.0 Rev 6 Clause 9: Standard Messages.) The interpretation for the alert indication is either
contained within a standard message registry that is referenced by a profile, or defined by the profile to be
produced for some reason and identifiable in some manner.

The mandatory properties of an AlertIndication are:

• IndicationIdentifier - An identifier for the Indication that can be used for identification when correlating
Indications (see the CorrelatedIndications array).

• IndicationTime - The time and date of creation of the Indication.

• AlertingManagedElement - The identifying information of the entity (i.e., the instance) for which this Indication
is generated. The property contains the path of an instance, encoded as a string parameter - if the instance is
modeled in the CIM Schema. If not a CIM instance, the property contains some identifying string that names
the entity for which the Alert is generated.

EXPERIMENTAL

If the element in question is modeled by the profile implementation, then the format for this property should
be as a Typed WBEM URI as defined in DSP0207.

EXPERIMENTAL

• AlertingElementFormat - The format of the AlertingManagedElement property is interpretable based upon the
value of this property. Values are defined as: “Unknown”, “Other”, “CIMObjectPath”

• AlertType - This is an integer property that is a value map. The values supported are: “Other”,
“Communications Alert”, “Quality of Service Alert”, “Processing Error”, “Device Alert”, “Environmental Alert”,
“Model Change”, “Security Alert”

• PerceivedSeverity - An enumerated value that describes the severity of the Alert Indication from the notifier's
point of view. This is an integer property that is a value map. The values supported are: “Unknown”, “Other”,
“Information”, “Degraded/Warning”, “Minor”, “Major”, “Critical”, “Fatal/Non Recoverable”.

• ProbableCause - This is an integer property that is a value map. There are many values that may be set (refer
to the MOF for details).

• SystemCreationClassName - The scoping System's CreationClassName for the Provider generating this
Indication.

• SystemName - The scoping System's Name for the Provider generating this Indication.

The SystemName would typically be the same that for a system in the Implementation Namespace (unless
the Indication is an indication generated for Server Profile).

• ProviderName - The name of the Provider generating this Indication.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 449

Indication Profile NO_ANSI_ID
In addition, the following properties are recommended, but not mandatory:

• CorrelatedIndications[]

• Description - A short description of the Indication.

• OtherAlertType - This property is mandatory if the AlertType is 1 (for “other”).

• OtherSeverity - This property is mandatory if the PerceivedSeverity is 1 (for “other”)

• ProbableCauseDescription - Provides additional information related to the ProbableCause.

• EventID - An instrumentation or provider specific value that describes the underlying \”real-world\” event
represented by the Indication.

• OwningEntity - A string that uniquely identifies the entity that owns the definition of the format of the Message.
For messages owned by the SNIA, this shall be encoded as ‘SNIA’. However, for SMI-S, not all messages
need be owned by SNIA.

• MessageID - A string that uniquely identifies, within the scope of the OwningEntity, the format of the Message.

• Message - The formatted message (including the MessageArguments).

• MessageArguments - An array of strings that contain the dynamic content of the message.

For descriptions of how these properties should be encoded, see the profile for specific alert indications that are
supported. For encoding of the OwningEntity, MessageID, Message, and MessageArguments of SNIA messages,
see section 9.3 in the Storage Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6.

44.1.4 Special handling for Multiple events of the same type

When a client creates a subscription (using CreateInstance), the provider may fill in the RepeatNotificationPolicy
and related properties. This information describes the policy used by the implementation for reporting multiple
events of the same type (multiple events for the subscription). If the RepeatNotificationPolicy is “None”, then the
client will receive all indications. If the RepeatNotificationPolicy is “Suppress”, then all indications after the first ‘n’
(where ‘n’ is defined by the RepeatNotificationCount) are not sent (within the RepeatNotificationInterval time). If the
RepeatNotificationPolicy is “Delay”, then indications are collected and notification is only sent after a certain
number of events happen (as defined by RepeatNotificationCount) or the time interval (RepeatNotificationInterval)
lapses.

44.1.5 Indication Delivery

Acceptance of a subscription, represented by an instance of the IndicationSubscription association between an
instance of IndicationFilter and an instance of ListenerDestination, is a contract between the SMI-S Server and
SMI-S Client that requires that the SMI-S Server shall produce indications when the conditions described by the
associated indication filter are present. The SMI-S Server may not be able to deliver the indication for other
reasons like authentication failures or network connectivity failures, but the SMI-S Server shall attempt to deliver
the indication.

In some cases, the Client (ListenerDestination) may not be available when an event occurs that requires delivery to
the client. In such cases, the CIM Server should attempt delivery to the listener destination 3 times. If the delivery
cannot be made within 3 attempts, the indication may be considered delivered.

If the ListenerDestinationCIMXML.PersistenceType is set to "3" (transient), the IndicationSubscription may be
deleted after 3 attempts that fail. If the ListenerDestinationCIMXML.PersistenceType is set to "2" (permanent) the
IndicationSubscription shall be retained.
450

NO_ANSI_ID Indication Profile
44.1.6 Instrumentation Requirements

44.1.6.1 General Instrumentation Considerations
A SMI-S Server may allow a client to create indications filters. If the SMI-S Server does not support this option,
then the server shall send a return code indicating a request to create an instance of a filter is unsupported. This
allows the provider to inform clients which types of indications the provider supports. For example, a provider that
does not support SNMPTrapAlertIndications shall return unsupported for an indications filter create request.

EXPERIMENTAL

44.1.6.2 Indication Identification
Indications are identified through the IndicationIdentifier property. An indication can be correlated to previously
produced indications through the use of the CorrelatedIndication property. Generally, the identity of the indication is
only meaningful as a correlatable ID within the CorrelatedIndication property or in its relevancy to the
LastIndicationIdentifier property in the IndicationSubscription class.

The LastIndicationIdentifier property on the IndicationSubscription association should record the identity of the last
indication produced for the combination of IndicationFilter and IndicationDestination that the association instance
represents.

Note: The LastIndicationIdentifier property will become mandatory in a future release of SMI-S as WBEM
infrastructures are enhanced to support the property.

The client can determine if it did get delivery of any indication destined for it by comparing the last indication it
received, or the last indication it received for a particular indication subscription, with the LastIndicationIdentifier. It
is important for clients to be able to determine if there are interruptions in the indication telemetry. Confidence in the
indication delivery combined with the ability to determine the extent of the failure to receive indications, provides
clients with a mechanism to gauge appropriately the response to the failures and avoid having to flush state and
explore the SMI-S Server's model again.

Note: In future release of SMI-S, the modeling of the health of the indication delivery system or service will help
clients determine if there are problems in the configuration of the subscription and related credentials, or in the
indication delivery configuration of the SMI-S Server. This design will require the logging of the errors produced in
the delivery of the indications.

The naming algorithm, shown in Figure 66 for the IndicationIdentifier property includes the population of the two
subcomponents of the property, OrgID and LocalID, as separated by a colon ":". The OrgID shall contain a
registered trademark for the developer of the implementation producing the indication. The LocalID shall contain
the combination of the CIM Object Name of the IndicationFilter that produced the Indication, production sequence
number, and a delivery sequence number. These sequence numbers are in the form of an unsigned integer. These
three elements within the LocalID are separated by a hash "#". The omission of the Handler key property of the
indication subscription, which is the object name of the indication destination, means that the client should assume
that the indication was correctly delivered to it.

The production sequence number is a count of all indications produced by this SMI-S implementation. The
sequence shall be unique by device or application instrumented through SMI-S. The production sequence number
shall not be unique by indication filter, but instead shall represent the count of indications produced for this device
or application. Any gaps in the production sequence number represent indications that were produced but were not

Figure 66 - Anatomy of IndicationIdentifier

<Trademark>:<Object Name of IndicationFilter>#<production sequence number>#<delivery sequence number>
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 451

Indication Profile NO_ANSI_ID
delivered because there is no indications subscribers or a SMI-S Client did not receive the indication because it
was not subscribed to it.

The delivery sequence number range shall be unique and independent by indication subscription. The delivery
sequence number reported shall increase by one and only one with every indication produced for that subscription.
In other words, this delivery sequence number can be viewed as a count of indications produced for a particular
indication subscription. Any gaps in the delivery sequence number represent indications that were produced for a
particular destination (e.g. a SMI-S Client) but were not delivered for some reason. Since an SMI-S Server, the
infrastructure, is normally in charge of forwarding indications delivered to it by CIM Providers, it is best able to able
to produce this sequence number. SMI-S Servers should produce this sequence number, but may omit it if
unsupported by the CIM Server.

It is recommend that the sequence numbers have a 16-bit range. It other words, the sequence numbers should
start at 1 and iterate to 65,536. The implementation may use a larger range, like 218 (262,144), and should do so if
there is a possibility that 65,536 indications per a given indication subscription can be produced within a twenty-
four hour period. Regardless, the maximum sequence number shall be a power of two.

The implementation may roll-over the sequence number and start again at one. The requirement that the sequence
number shall be a power of two allows a client to determine what the maximum the sequence could be, like 65,536,
in order to determine if the last sequence number received for an indication subscription, e.g., 65,533, is the last
one it should have received. Clients can not be certain how many indications were missed when the sequence
number rolls over given the unknown frequency of indication production and the unknown maximum value of the
sequence.

Conformance to the indication identifier naming algorithm is mandatory.

However, an indicator that many indications for a given subscription may have been missed is contained in the
LastIndicationProductionDateTime property. The difference between now and the date and time value of
LastIndicationProductionDateTime is significant, then the possibility exists.

EXPERIMENTAL

44.1.6.3 SMI-S Dedicated Server Considerations
The dedicated server should supply more detailed queries as described in the profile sections.

A standard implementation of indications requires the server to accept client requests to create
ListenerDestinations. The dedicated server implementation uses the Instance Manipulation functional group in
addition to Basic Read.

44.1.6.4 Additional Indications
Most Indication Filters defined in the “CIM Elements” section of the specification are mandatory. However, a profile
may also document additional Indication Filters as optional filters. A client can determine whether or not
“additional” indication filters are supported by one of two techniques:

1) Enumerating Predefined Indication Filters – this will return all the indication filters that have been predefined
by the provider for the Namespace.

2) CreateInstance of the desired “additional” Indication Filter – if the “additional” indication filter is supported, the
CreateInstance will succeed.

44.1.6.5 Support for Query Languages
For versions of the standard prior to 1.3.0, CQL had not been approved as a standard and was treated as
recommended and experimental. For those early versions, WQL (also referred to as the SMI-S query Language)
was the non-experimental query language.
452

NO_ANSI_ID Indication Profile
For versions of the standard starting at 1.3.0, CQL is mandatory for newly defined indication filters; WQL
alternatives shall not be defined in the standard.

DEPRECATED

Support for the SMI-S 1.0.x Query Language is being deprecated.

DEPRECATED

See Annex C: (Normative) Indication Filter Strings in Storage Management Technical Specification, Part 1
Common Architecture, 1.3.0 Rev 6 for information on the use of indications filter strings.

44.1.6.6 Timing of Delivery of Indications
There are no standards for how quickly an implementation shall deliver an indication. All reasonable attempts
should be made by the implementation to deliver all indications at the CIM Server’s earliest convenience.

There are also no standard guidelines on how long or how many attempts should be made to deliver an indication.
As a general guideline an implementation should make at least 3 attempts to deliver an indication before giving up
trying to deliver the indication. Similarly, delivery of indications should allow at least 30 seconds to elapse before
giving up trying to deliver the indication. The intent is to allow sufficient time to allow any network problems to clear.

44.1.6.7 Handling of Indication Storms
Occasionally an event may occur that causes many indication filters to evaluate to true (an trigger many
indications). This situation is referred to as an “indication storm.” These can be very expensive and degrade the
performance of the environment. To contain the impact of this an implementation can employ any one of three
techniques:

• use the RepeatNotificationPolicy (and related properties) of the IndicationSubscription.

EXPERIMENTAL

• Use of Bellwether events (if they are defined by the profile) (EXPERIMENTAL)

• Use of batching (EXPERIMENTAL)

EXPERIMENTAL

44.1.6.8 Use of RepeatNotificationPolicy
The RepeatNotificationPolicy property defines the desired behavior for handling Indications that report the
occurrence of the same underlying event (e.g., the disk is still generating I/O errors and has not yet been repaired).
For SMI-S, this is extended to include multiple indications that are generated from a single IndicationFilter.

The related properties are RepeatNotificationCount, RepeatNotificationInterval, and RepeatNotificationGap. The
defined semantics for these properties depend on the value of RepeatNotificationPolicy, but values for these
properties shall be set if the property is defined for the selected policy.

If the value of RepeatNotificationPolicy is 2 (None), special processing of repeat Indications shall not be performed.

If the value is 3 (Suppress) the first RepeatNotificationCount Indications, describing the same event, shall be sent
and all subsequent Indications for this event suppressed for the remainder of the time interval
RepeatNotificationInterval. A new interval starts when the next Indication for this event is received.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 453

Indication Profile NO_ANSI_ID
If the value of RepeatNotificationPolicy is 4 (Delay) and an Indication is received, this Indication shall be
suppressed if, including this Indication, RepeatNoticationCount or fewer Indications for this event have been
received during the prior time interval defined by RepeatNotificationInterval. If this Indication is the
RepeatNotificationCount + 1 Indication, this Indication shall be sent and all subsequent Indications for this event
ignored until the RepeatNotificationGap has elapsed. A RepeatNotificationInterval may not overlap a
RepeatNotificationGap time interval.

For SMI-S, a single indication filter that identifies a change in OperationalStatus on StorageVolumes would be
subjected to the RepeatNotificationPolicy, even though the repeat notifications may be from multiple
StorageVolumes.

The RepeatNotificationPolicy can vary by implementation (or even IndictationFilter). However, it shall be specified
on any subscription. The valid values for an SMI-S implementation are:

• 2 (None),

• 3 (Suppress), or

• 4 (Delay)

An SMI-S profile may restrict this further for any given indication filter, but it cannot expand this to other policies
without breaking interoperability. For example, a profile might restrict InstCreation filters for ComputerSystems to
“None” and restrict InstModification filters on StorageVolume to “Suppress” or “Delay.” But an SMI-S profile shall
not define “unknown” as a valid SMI-S setting for the RepeatNotificationPolicy.

Note: RepeatNotificationPolicy set to 2 “none” is compatible with SMI-S 1.0.

EXPERIMENTAL

44.1.6.9 Use of Bellwether Events
There are many state changes in the model for a device or application that results in changes in many CIM
instances. For example, the addition of a device or application representation to a CIMOM should result in creation
indications for every single member instance of that device or application. The activation of a ZoneSet from one of
the member Switches in a fabric should result to indication listeners on another Switch's namespace creation
indications for every instance of the new ZoneSet.

The worse case risk is that several of this type of situation may occur simultaneously and result in network storms
and the sudden saturation of the LAN. Additionally, the use of computing resources of the device or application
producing the indication or client receiving the indications may be unacceptably high.

Indications provide the most value when they are used by a client as a mechanism to pick a significant or small
number of changes in CIMOMs of interest. In order to capture a wide variety of changes, any of which may be
pertinent to the client application, the client is likely to create many indication subscriptions and keep them all
active simultaneously. This approach is not problematic because the number of management related changes to
any device or application in the network is usually very small.

As mentioned previously, there are several potential situations where an excessive number of indications can be
produced, thereby potentially overloading the network, originating CIMOM, and receiving client's resources.
There is no need to occur such a risk because it is likely that the client is not going to be interested in all things at
all times. The interest of the client in instance changes usually follows the needs of the current users of that client
application.

Bellwether indications are used by SMI-S designers and individual implementation to signal many instance
changes with one event. A client can assume that some previously defined graph of associated CIM instances
are affected when it receives a bellwether indication. It can then choose, if warranted, to fetch all or some of these
instances. This design prevent the previously mentioned adverse side effects.
454

NO_ANSI_ID Indication Profile
Some rules being considered are:

• When a device or application is added to a namespace and there are indication subscription that cover some
or all of the graph of instances added by side effect of the addition, then only a create indication is produced for
the top level object for the device or application, like ComputerSystem, provided that there is an indication
subscription for changes in the top-level object. Similarly, if a device or application is deleted in the same
situation, then only a delete indication will be produced.

• Bellwether indication are mandatory if they exist in SMI-S and will be easily identified as being bellwether
events.

• The classes associated to the bellwether indication will be part of the definition of the indication. The client
can assume that instances of these classes will have been affected and can choose to harvest that data.
The implementation is not required to produce instances of every class listed as per the requirements
defined elsewhere in SMI-S.

• SMI-S Designer's are encouraged to define bellwether indications, which can be of any class of indication, for
major state changes of a model. In the previous examples, the device creation could be a life cycle
indication where changes in ZoneSet change may be best communicated by an Alert Indication.

44.1.6.10 Bellwether Indications for ComputerSystem
It is important to not overload a SMI-S client when device or applications are added or removed from CIM Object
Managers. The addition or removal of the representation of a device or application is attributed to the creation or
deletion of a top-level computer system instance. This overloading would arise from a SMI-S Agent sending
creation or deletion indications to every indication destination for all component or dependent instances to the top-
level computer system. For this profile, when a top-level computer system instance is created in the model, the
SMI-S agent shall not produce indications for indication subscriptions, on indications that do not reference the top-
level computer system, that would otherwise receive InstCreation indications. Likewise, for this profile, when a top-
level computer system is deleted from the model, the SMI-S agent shall not produce indications for indication
subscriptions, on indications that do not reference the top-level computer system, that would otherwise receive
InstDeletion indications.

EXPERIMENTAL

44.1.6.11 Clarification of indication generation

44.1.6.11.1 General Requirements
To minimize the use of stale object references by WBEM Clients, a WBEM Server shall generate instance deletion
indications, where defined as mandatory profile elements, whenever a MSE instance is removed while the WBEM
Server is operational. The indication shall be generated for all causes of removal, which include but are not limited
to, explicit WBEM instance manipulation by some WBEM Client, internal implementation of the WBEM Server
outside the scope of SMI-S, and a side effect of invoking some WBEM extrinsic method.

A WBEM Server should generate instance deletion indications, where defined as mandatory profile elements,
whenever a MSE instance that was present before a failure of the device or application is no longer present when
the device or application recovers from the failure. Note: SMI-S already requires WBEM Servers to persist WBEM
Client subscription for indications.

A WBEM Server shall generate instance creation indications, where defined as mandatory profile elements,
whenever a MSE instance is created while the WBEM Server is operational. A WBEM Server shall also generate
instance creation indications, where defined as mandatory profile elements, whenever a MSE instance that was
not present before a failure of the device or application is present when the device or application recovers from the
failure.

Almost universally in SMI-S profiles, all MSE's can be linked by association back to a specific “top-level” MSE. In
most profiles this is either a ComputerSystem or a AdminDomain. A WBEM Server that is providing information on
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 455

Indication Profile NO_ANSI_ID
multiple devices will have multiple MSE instances, one for each of the devices. The behavior of WBEM Operations
in the face of a failure of the device or applications differs.

44.1.6.11.2 Definition of “failed” MSE
A MSE instance is defined to be failed if any of the following conditions hold:

1) Failure status are contained in the OperationalStatus attribute, when present, and OperationalStatus array
does not contain “OK”

2) EnumerateInstances, EnumerateInstanceNames, Associators, AssociatorNames, References, Reference-
Names WBEM Operations might return meaningless or no information for any mandatory profile element.
OperationalStatus when present in the class will have meaningful data and will have a failure status. Explicit
values for “unknown” or “undetermined” are completely meaningful when defined for a profile element.

3) WBEM extrinsic operations that ERR_FAILED may indicate that this instance is failed.

4) CIM Instances that were returned before the failure of the MSE might not be returned after the failure. Indica-
tions representing the OperationalStatus change to a failure status were produced for the this 'top-level' CIM
Instance or 'top-level' parent CIM Instance. The combination of these two situations define failure in this case

A MSE with an OperationalStatus of “Lost Communications” or “No Contact” obviously shall be considered failed
because no WBEM operations can succeed.

An OperationalStatus of “Starting”, “Stopping”, or “Stopped” does not mandate failure. The detailed behavior of the
MSE with regard to the conditions given above, determines whether these status's indicate failure. The WBEM
Client should be warned of a possible failure scenario when receiving these status.

44.1.6.11.3 Minimal function for failed MSEs
Any failed instance represented by any WBEM Server shall support the following functionality. If the WBEM Server
is not able to support the functionality on a failed instance, it shall delete the instance.

1) EnumerateInstances, EnumerateInstanceNames, Associators, AssociatorNames, References, and Referer-
enceNames WBEM Operations that include the failed instance as part of the return set will complete without
error. The Key and the OperationalStatus attributes, when present, shall be properly provided.

2) When a GetInstance WBEM Operation is attempted on the failed instance, CIM_ERR_FAILED shall be
returned with a message describing or indicating the failure of the device or application.

3) Failed instance names shall be returned from WBEM Operations that return Object Names. Failed instances
shall be returned for WBEM Operations that return Instances but only the keys and OperationalStatus, when
present, are mandatory.

4) Method invocations on failed MSEs will fail with the CIM_ERR_FAILED error.

44.1.6.11.4 Isolation of failed top-level MSE's
For efficiency and consistency of navigation, a WBEM Client should not be able to retrieve false or meaningless
information from the WBEM Server about a MSE instance.

A WBEM Server can take one of two actions in the Failed MSE case and top-level MSE instances. It shall set the
OperationalStatus on the top-level MSE instance to reflect the failed state and forward the related CIM Indications
as required. It may also remove all directly or indirectly associated instances, generating the corresponding
indications.

A WBEM Client shall be prepared to deal with a WBEM Object CIM_ERR_NOT_FOUND error, indicating the use
of a stale object reference not avoided by timely receipt and processing of an instance deletion indication. A WBEM
Client shall also consider the OperationalStatus of any MSE for which OperationalStatus is a mandatory profile
element before treating the other attributes and associations of the instance as meaningful.
456

NO_ANSI_ID Indication Profile
EXPERIMENTAL

44.1.6.12 HTTP Security
HTTP security shall be implemented for Indications as specified in 42.2.2, "HTTP Security" with additional
requirements specified in this section. For applying the requirements in 42.2.2, "HTTP Security" to Indications, the
term "SMI-S Client" shall be read to mean "any SMI-S entity that can function as an Indication Listener." HTTP
security support for Indications is a mandatory part of Indications support for SMI-S Servers. An SMI-S Client that
does not support certificates may omit SSL/TLS support for reception of Indications, but shall comply with all other
requirements. The following security requirements based on 42.2.2, "HTTP Security" apply to Indications:

• SSL 3.0 and TLS shall be supported.

• HTTP Basic Authentication shall be supported. HTTP Digest Authentication should be supported.

• HTTP Realms shall be supported.

• SMI-S Servers shall support certificates, SMI-S Clients may support certificates. This includes
Indication functionality in both cases.

• All certificates, including CA Root Certificates used for certificate validation, shall be replaceable.

• The DER encoded X.509, Base64 encoded X.509 and PKCS#12 certificate formats shall be
supported.

• Certificate Revocation Lists shall be supported in the DER encoded X.509 and Base64 encoded
X.509 formats.

The above list is not comprehensive - see 42.2.2, "HTTP Security" for the complete requirements. If there is any
conflict between the above list and 42.2.2, the text in 42.2.2 is the final specification of the requirements. In addition
the remainder of this section states additional requirements, some of which modify the requirements in 42.2.2.1,
"General Requirements".

Determination of whether to use SSL/TLS is based on the scheme of the URL in the ListenerDestinationCIMXML
property of the indication - see 44.1.1. General Requirements i), j), and k) in 42.2.2.1, "General Requirements"
shall not apply to indication delivery because the URL specifies the protocol to use.

The SSL/TLS roles of client and server for Indication delivery are reversed for Indications; the SMI-S Server
(CIMOM) is the SSL/TLS client and the Indication Listener (e.g., management application) is the SSL/TLS server.
Hence for indications, the certificate support requirements are:

• SMI-S Servers shall support certificates for sending Indications. These are SSL/TLS client
certificates.

• SMI-S Clients that function as Indication Listeners may support certificates for receiving
Indications. SMI-S Servers that can function as Indication Listeners shall support certificates for
receiving indications. These are SSL/TLS server certificates in both cases.

In order to use SSL or TLS for indication delivery, the Indication Listener is required to have a certificate; since the
SMI-S Server should also have a certificate, mutual SSL/TLS Authentication is possible. SMI-S Servers should not
use SSL or TLS for indication delivery when the Indication Listener does not present a certificate, and shall support
a configurable operating mode in which indication delivery is not performed via SSL or TLS when the Listener does
not present a certificate. This can be accomplished by preventing the use of Anonymous SSL/TLS cipher suites.

Mutual authentication can be achieved in the two certificate case. All SMI-S entities shall use certificates
consistently - the certificate used for CIM operation invocation over SSL/TLS shall be used for indication delivery
when SSL/TLS is employed for indication delivery. For SMI-S Servers, this requires that the SSL/TLS server
certificate used to receive CIM operations via SSL/TLS shall be provided as the SSL/TLS client certificate for
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 457

Indication Profile NO_ANSI_ID
indication delivery when mutual authentication is used (i.e., when an anonymous SSL/TLS cipher suite is not
used). For SMI-S Clients that support certificates and can function as Indication Listeners, this means that the SSL/
TLS client certificate used for CIM operation invocation over SSL/TLS shall be used as the SSL/TLS server
certificate for receiving indications.

EXPERIMENTAL

44.2 Health and Fault Management Considerations

44.2.1 Elements Reporting Health

The Indication Profile has no classes that report health information. However, indications are a means available
for reporting changes in health status.

44.2.2 Health State Transformations and Dependencies

No Indications class have OperationalStatus or HealthState properties.

44.2.3 Standard Errors Produced

All manipulation of Indication classes and associations are done using intrinsic methods. The errors produced are
those listed for intrinsic methods.

44.2.4 Cause and effect associations

Cause and effect associations are defined as part of the Health and Fault Management Package.

EXPERIMENTAL

44.2.5 Indication Correlation

There are cases where many indications are produced in response to a single event. In fact, the indications
themselves are correctly viewed as presenting an aspect or view of the event itself and not as a comprehensive
representation of the event. AlertIndications provide a means of notification that is direct to the point than life cycle
indications, even though the production of life cycle indications are also important. The subtleties of the effect of
the event are better communicated through life cycle indications.

A given event, like a network port communication failure, can itself be reported as an AlertIndication. It is also
important to communicate the change in status of the port itself through life cycle indications. It is probable that the
network port communication failure will cause some function of the device which contains the point to also fail or
become degraded. The impact of the failure (or significant state or status change) is of great interest to
management clients as it assist in the triage of the error and potentially can also assist HFM aware clients to
contain the failure, fence off the failing component, or even prevent a more serious failure of the system in which
the component participates, like the failure of business function (like closing the book at quarter end or dropping
transactions at Christmas time).

SMI-S provides the mechanism where storage management can be affected without requiring a priori knowledge of
the device or application being managed. In this world, the overall system or service component that is most able
to assess and report the impact of the failure (or significant state or status change) is the managed device or
application itself. Indication correlation provides the mechanism that can be used to asynchronously report the
changes brought about by the event.

The mechanism requires that a single indication be the first reporter of the event. This first reporter may be an
AlertIndication or a life cycle indication. This indication should report the state or status change caused by the
event in the simplest and most direct manner. All other indications that report state or status change and are
associated directly to the first reporter indications should correlated to the first reported indication. Indication
458

NO_ANSI_ID Indication Profile
correlation shall be done by the implementation through reporting the IndicationIdentifier of the correlated and
previously produced indications in the CorrelatedIndications array. The elements in the CorrelatedIndications may
be in any order. The linkage of indication thusly correlated is like a one-way linked list. The beginning of the
correlation link is indicated by the nullness of the CorrelatedIndications property.

Indication correlation shall be accomplished in the path of cause and effect or scoping relationships. If indication B
is to correlated to indication A, then the model change reported by B is caused by or is a side-effect of the model
change reported by A. Indication correlation shall not be accomplished by sorting the indications to be correlated
by PerceivedSeverity. That being said, Indication correlation should not be used to report secondary events,
themselves caused by the primary event, and side-effects of the secondary event.

Indication correlation provides important information about the onset of the condition and its immediate impact that
may not be retrievable when the client can react. The spread of the effects of the event within a device or
application can certainly be faster than maximum speed of the management network.

Indication correlation shall be accomplished through scoping relationships, like the part to group component or
dependent to antecedent relationships, or across direct cause and effect relationships for peer components. For
example, given that a network port communication failure within a given device causes changes to the status of
port, the scoping computer system, the port communications statistics, the status of the network pipe, and the
overall communication statistics of the device, then indication correlation shall not report correlation of the network
port communication failure to the changes in the overall communications statistics of the device. This requirement
is necessary to limit the potentially lengthy correlation and impose undue burden on the implementation without
value to the client.

EXPERIMENTAL

44.3 Cascading Considerations
Not Applicable.

44.4 Supported Profiles, Subprofiles and Packages
Related Profiles for Indication: Not defined in this standard.

44.5 Methods of the Profile

44.5.1 Extrinsic Methods of the Profile

No extrinsics are specified on the Indication Profile.

44.5.2 Intrinsic Methods of the Profile

The Indication Profile is mostly populated by providers and is accessible to clients using basic read and association
traversal. However, there are two constructs that would be created by Clients. These are the
ListenerDestinationCIMXML and the IndicationSubscription. In addition, a client may be able to create an
IndicationFilter. In addition to being able to create them, client may delete them (except “pre-defined” filters which
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 459

Indication Profile NO_ANSI_ID
cannot be deleted), and a client may modify any IndicationFilter that was client created. These functions are
performed using the intrinsics shown in Table 465.

CreateInstance - for ListenerDestinationCIMXML, IndicationSubscription and IndicationFilter

<instanceName>CreateInstance (

 [IN] <instance> NewInstance

)

If successful, the return value defines the object path of the new CIM Instance relative to the target Namespace
(i.e. the Model Path), created by the CIM Server.

Note that for CreateInstance of an IndicationSubscription requires that the ListenerDestinationCIMXML instance
and the IndicationFilter exist.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does not exist),
CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists), CIM_ERR_FAILED (some other unspecified
error occurred).

Note that a ListenerDestinationCIMXML instance should be created in the Interop namespace. However, they may
be created in the “Source” namespace. If the client creates a ListenerDestinationCIMXML instance in the “Source”
namespace, then a duplicate ListenerDestinationCIMXML instance will be created in the Interop Namespace.

Note: The inverse is not true. If the client creates the ListenerDestinationCIMXML instance in the Interop
Namespace, no instance will be created in another namespace (there is nothing that would indicate
which Namespace would be the Source namespace).

IndicationFilters shall be created in either the Interop Namespace or the Namespace in which the indications are to
originate. In either case, the Client only needs to create one instance (and providers will automatically create the
corresponding instance in the other namespace).

Note: If a client attempts to create an IndicationFilter that already exists (has the same key fields), but other
properties are different, then the request will fail. If the Client attempts to create an IndicationFilter that

Table 465 - Indication Profile Methods that cause Instance Creation, Deletion or Modification

Method CreatedInstances Deleted Instances Modified Instances

CreateInstance ListenerDestinationCIMXML N/A N/A

CreateInstance IndicationSubscription N/A N/A

CreateInstance IndicationFilter N/A N/A

DeleteInstance N/A ListenerDestinationCIMXML N/A

DeleteInstance N/A IndicationSubscription N/A

DeleteInstance N/A IndicationFilter N/A

ModifyInstance N/A N/A IndicationFilter
460

NO_ANSI_ID Indication Profile
has identical properties to an existing IndicationFilter instance, it will succeed and CreateInstance need
not treat the instance as a separate instance.

When a client creates an IndicationSubscription the client only needs to create a subscription to one of the
IndicationFilters (the provider will automatically generate the corresponding subscription to the other filter
instance). Even though there are two instance of the IndicationFilter created (and two instances of the subscription)
duplicate indications will not be sent to the ListenerDestination.

Indeed, in general, redundant subscriptions need not produce duplicate indications (that is, if the same listener
subscribes to two filters that are equivalent, then an implementation need not produce two indications).

DeleteInstance - for ListenerDestinationCIMXML, IndicationSubscription and IndicationFilter

void DeleteInstance (

 [IN] <instanceName> InstanceName

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted.

If successful, the specified Instance (ListenerDestinationCIMXML, IndicationSubscription or IndicationFilter) shall
have been removed by the CIM Server.

The deletion of a ListenerDestinationCIMXML or an IndicationFilter instance will cause the automatic deletion of
any associated IndicationSubscription instances. Deletion of an IndicationSubscription will not cause the deletion
of any corresponding ListenerDestinationCIMXML or IndicationFilter instances. For example, the deletion of an
instance may cause the automatic deletion of all associations that reference that instance. Or the deletion of an
instance may cause the automatic deletion of instances (and their associations) that have a Min(1) relationship to
that instance.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified namespace),
CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance does not exist in the specified
namespace), CIM_ERR_FAILED (some other unspecified error occurred).

Note: Deleting the instance of an IndicationFilter in the Interop Namespace will cause the corresponding
IndicationFilter in the “SourceNamespace” to also be deleted (and vice versa). Deletion of an indication
filter will also cause all subscriptions to that filter to be deleted. However, deletion of a filter will not
cause the deletion of any listener destination.

Note: Deleting the instance of an IndicationSubscription in the InteropNamespace will cause the
corresponding IndicationSubscription in the “SourceNamespace” to also be deleted (and vice versa).
However, deleting a subscription will not delete filters or listener destinations.

Note: Deleting the instance of ListenerDestinationCIMXML in either the InteropNamespace or the “source”
namespace will cause the corresponding instance (if one exists) to be deleted.

ModifyInstance - for IndicationFilters

void ModifyInstance (

 [IN] <namedInstance> ModifiedInstance,

 [IN, Optional, NULL] string propertyList[] = NULL

)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 461

Indication Profile NO_ANSI_ID
The ModifiedInstance input parameter identifies the name of the Instance to be modified, and defines the set of
changes to be made to the current Instance definition.

The only Property that may be specified in the PropertyList input parameter is the Query property. Modification of
all other properties is not specified by SMI-S.

If successful, the specified Instance shall have been updated by the CIM Server.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does not exist),
CIM_ERR_NOT_FOUND (the CIM Instance does not exist), CIM_ERR_FAILED (some other unspecified error
occurred)

44.6 Client Considerations and Recipes

44.6.1 Use of Profile Specific Recipes

See Recipes in related profile sections.

44.6.2 General Client Considerations

The indication filters that a client subscribes to are either “predefined” and populated by the profile, or they are
created by the client. If the profile supports “predefined” indication filters the client can find them via an
enumeration. If the client cannot find the filter it is looking for, it may attempt to create the desired indication filter. If
this fails, the client should fall back to creating a filter exactly as it exists in SMI-S. This shall work. The “predefined”
indication filters in this specification shall be populated in the profile or it shall be possible to create it.

44.6.3 Discovery of Implementation variations

A client will need to discovery the variations that are allowed in SMI-S profile implementations. A profile
implementation has the following degrees of variability:

• Client defined IndicationFilters, pre-defined IndicationFilters or both

• InstModification, with or without PreviousInstance

• Additional Indications

To determine if an implementation supports Client Defined filters, the client should attempt to create an SMI-S
specified filter. If it succeeds, the implementation supports client defined filters. At this point, the client can attempt
to create a filter of its own choice or making (e.g., using the client’s desired query). If it fails, this means the
implementation does not support an indication based on the query used.

If the attempt to create an SMI-S specified indication filter fails, this means client defined queries are not supported.
At this point, the client should look for pre-defined filters. This can be done by enumerating filters in the namespace
of the profile the client wishes to monitor.

An implementation may (or may not) support PreviousInstance, when the SMI-S specification for the profile
identifies InstModification as the indication filter and PreviousInstance is identified as optional. If a client wishes to
determine whether or not the implementation actually supports PreviousInstance, it can only tell by receiving an
InstModification indication.

Additional Indications are IndicationFilters that are supported by the implementation, but not mandatory with SMI-
S. If the implementation supports pre-defined Filters, these can easily be discovered in the enumeration of
462

NO_ANSI_ID Indication Profile
IndicationFilters. If the implementation does not support pre-defined filters, then the only way a client can discover
these is through trial and error (or specific knowledge of the implementation).

44.6.4 Client Defined Filters

Clients need to avoid Filters that generate excessive events. Subscriptions to a general-purpose Server should be
specific to the provider – for example “select * from CompanyCorp_InstCreation” rather than “select * from
CIM_InstCreation”.

44.6.5 Determine if the indication subscription requested already exists
// DESCRIPTION

// Determine if the indication subscription requested already exists. If

// not, then attempt to create the indication subscription passed in. If

// the CIM Server does not support the addition of indication, then the

// CIM Client will need to poll for these instance changes. This recipes

// does not handle the issue of providing the target URL for indications.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The namespace of interest has previously been identified and

// defined in the #SomeNameSpace variable

// 2.The list of filters of interest has been previously built in the

// #filters[] array. Each element is this array is the WQL filter itself

// FUNCTION: createIndication

sub createIndication ($Filter)

{

try {

<create indications as per SMIS specification>

} catch(CIM_ERROR_NOT_SUPPORTED) {

<setup this class of instances to be polled for>

}

}

// MAIN

$ExistingInstances[] = EnumerateInstances(#SomeNameSpace, “CIM_IndicationFilter”)

for #i in $ExistingInstances

{

for #j in #filters

{

if(!compare($ExistingInstances[#j].Query, #filters[#j])

{

&createIndiciation(#filters[#j])

}

}

}

44.6.6 Listenable Instance Notification

// DESCRIPTION
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 463

Indication Profile NO_ANSI_ID
// Create an indication subscription for every indication that is

// required by the profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1.The namespace of interest has previously been identified and

// defined in the #SomeNameSpace variable

#filters[] = <array of SMIS filters for the target profile>

@{Determine if Indications already exist or have to be created} #filters

44.6.7 Life Cycle Event Subscription Description

// DESCRIPTION

// Create an indication subscription for the operational status for a

// computer systems defined within a given CIM agent and namespace. This

// subscription will only be made in those CIM agents that have SAN

// devices or applications of interest defined in them. The client will

// have to determine once having received the indication, whether the

// computer system related to this indication (AlertingManagedElement

// attribute) is of interest. This recipe does not handle the target URL

// for the indication.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// None

#filter[0] = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ComputerSystem

 AND SourceInstance.OperationalStatus[0] <>

 PreviousInstance.OperationalStatus[0]”

@{Determine if Indications already exist or have to be created} #filter

44.6.8 Subscription for alert indications

// DESCRIPTION

// Create an indication subscription for the alert indications defined

// within a given CIM agent and namespace. This subscription will only be

// made in those CIM agents that have SAN devices or applications of

// interest defined in them. The client will have to determine once having

// received the indication, whether the computer system related to this

// indication (AlertingManagedElement attribute) is of interest. Each

// specific alert indication will have also specific handling required

// for it by the CIM Client.

// NOTE: This recipe does not handle the target URL for the indication.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// None

#filter[0] = “SELECT * FROM CIM_AlertIndication”

@{Determine if Indications already exist or have to be created} #filter
464

NO_ANSI_ID Indication Profile
44.6.9 Listenable Interface Modification Notification

// DESCRIPTION

// Create an indication subscription for every indication

// that isrequired by the profile

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The namespace of interest has previously been identified and

// defined in the #SomeNameSpace variable

#filters[] = <array of SMIS filters for the target profile>

@{Determine if Indications already exist or have to be created} #filters

44.6.10 Subscribe for Lifecycle Events where OperationalStatus Changes

// DESCRIPTION

// Create an indication subscription for the operational status for a

// computer systems defined within a given CIM agent and namespace. This

// subscription will only be made in those CIM agents that have SAN

// devices or applications of interest defined in them. The client will

// have to determine once having received the indication, whether the

// computer system related to this indication (AlertingManagedElement

// attribute) is of interest. This recipe does not handle the target URL

// for the indication.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// None

#filter[0] = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ComputerSystem

 AND SourceInstance.OperationalStatus[0] <>

 PreviousInstance.OperationalStatus[0]”

@{Determine if Indications already exist or have to be created} #filter

44.7 Registered Name and Version
Indication version 1.3.0
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 465

Indication Profile NO_ANSI_ID
44.8 CIM Elements
Table 466 describes the CIM elements for Indication.

44.8.1 CIM_AlertIndication

A CIM_AlertIndication is a specialized type of CIM_Indication that contains information about the severity, cause,
recommended actions and other data of a real world event.

CIM_AlertIndication is subclassed from CIM_ProcessIndication.

Created By: Static

Table 466 - CIM Elements for Indication

Element Name Requirement Description

44.8.1 CIM_AlertIndication Optional This Indication is used to capture events that
occur in the profile, but may not be related to a
specific part of the model.

44.8.2 CIM_IndicationFilter (client defined) Optional This is for 'client defined' CIM_IndicationFilter
instances. CIM_IndicationFilter defines the
criteria for generating an Indication and what
data should be returned in the Indication.

44.8.3 CIM_IndicationFilter (pre-defined) Optional This is for 'pre-defined' CIM_IndicationFilter
instances. CIM_IndicationFilter defines the
criteria for generating an Indication and what
data should be returned in the Indication.

44.8.4 CIM_IndicationSubscription Mandatory This association defines a subscription to a
specific IndicationFilter instance by a specific
indication handler (as represented by a
ListenerDestinationCIMXML instance).

44.8.5 CIM_InstCreation Optional CIM_InstCreation is an indication of the
creation of a CIM instance. It would be
generated when an instance of the
SourceInstance class is created (either
explicitly or implicitly).

44.8.6 CIM_InstDeletion Optional CIM_InstDeletion is an indication of the
Deletion of a CIM instance. It would be
generated when an instance of the
SourceInstance class is deleted from the
model (either explicitly or implicitly).

44.8.7 CIM_InstModification Optional CIM_InstModification is an indication of the
modification or change to a CIM instance. It
would be generated when an instance of the
SourceInstance class is modified or changed
(either explicitly or implicitly).

44.8.8 CIM_ListenerDestinationCIMXML
(Indication Handler)

Mandatory A CIM_ListenerDestinationCIMXML describes
the destination for CIM Export Messages to be
delivered via CIM-XML.
ListenerDestinationCIMXML is subclassed
from ListenerDestination.
466

NO_ANSI_ID Indication Profile
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 467 describes class CIM_AlertIndication.

Table 467 - SMI Referenced Properties/Methods for CIM_AlertIndication

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime N Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

Description Optional Recommendation.ITU|X733.Additional text

AlertingManagedEle
ment

Mandatory The identifying information of the entity for which this
Indication is generated.

If the element in question is modeled by the profile
implementation, then the format for this property should be
as a Typed WBEM URI as defined in DSP0207.

AlertingElementForm
at

Mandatory Valid SMI-S values are 0|1|2 ('Unknown' | 'Other' |
'CIMObjectPath')

AlertType Mandatory This shall be 1|2|3|4|5|6|7|8 ('Other' | 'Communications
Alert' | 'Quality of Service Alert' | 'Processing Error' | 'Device
Alert' | 'Environmental Alert' | 'Model Change' | 'Security
Alert')

OtherAlertType Optional

PerceivedSeverity Mandatory This shall be 0|1|2|3|4|5|6|7 ('Unknown', 'Other' |
'Information' | 'Degraded/Warning' | 'Minor' | 'Major' |
'Critical' | 'Fatal/NonRecoverable')

OtherSeverity Optional

ProbableCause Mandatory Many possible values in a value map. See MOF.

ProbableCauseDescr
iption

Optional

EventID Optional

SystemCreationClas
sName

Mandatory

SystemName Mandatory The scoping System's Name for the Provider generating
this Indication.

The SystemName would typically be the same name that
for a system in the Implementation Namespace (unless the
Indication is an indication generated for Server Profile).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 467

Indication Profile NO_ANSI_ID
44.8.2 CIM_IndicationFilter (client defined)

CIM_IndicationFilter instances that are 'client defined' are IndicationFilters that are be created by a client using
CreateInstance. If a profile implementation can support client defined IndicationFilters, the implementation would
support 'client defined' IndicationFilter instances. The implementation shall support 'client defined' filters that are
defined by SMI-S profile as mandatory, but may also support additional filters supported by the implementation
(See QueryCapabilities).

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Optional

Table 468 describes class CIM_IndicationFilter (client defined).

ProviderName Mandatory

OwningEntity N Optional A string that uniquely identifies the entity that owns the
definition of the format of the Message.

MessageID N Optional A string that uniquely identifies, within the scope of the
OwningEntity, the format of the Message.

Message N Optional The formatted message (including the
MessageArguments).

MessageArguments N Optional An array of strings that contain the dynamic content of the
message.

OtherAlertingElement
Format

N Optional Not Specified in this version of the Profile.

Trending N Optional Not Specified in this version of the Profile.

RecommendedAction
s

N Optional Not Specified in this version of the Profile.

EventTime N Optional Not Specified in this version of the Profile.

Table 468 - SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

Table 467 - SMI Referenced Properties/Methods for CIM_AlertIndication

Properties Flags Requirement Description & Notes
468

NO_ANSI_ID Indication Profile
44.8.3 CIM_IndicationFilter (pre-defined)

CIM_IndicationFilter instances that are 'pre-defined' are IndicationFilters that are populated automatically by the
profile provider. If a profile implementation cannot support client defined IndicationFilters, the implementation can
populate its model with 'pre-defined' IndicationFilter instances. 'Pre-defined' filters shall include those that are
required by the profile, but may also contain additional filters supported by the implementation.

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 469 describes class CIM_IndicationFilter (pre-defined).

SourceNamespace N Optional For instances in the InteropNamespace, this shall be the
namespace where the indications are to originate. For
instances in the implementation namespace where the
indications are to originate (e.g., the namespace of the
profile that supports the filter), this may be NULL to indicate
the Filter is registered in the Namespace where the
indications originate.

Query Mandatory

QueryLanguage Mandatory This shall be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName Optional A Client Defined user friendly string that identifies the
Indication Filter.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

Table 469 - SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

Table 468 - SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 469

Indication Profile NO_ANSI_ID
44.8.4 CIM_IndicationSubscription

A CIM_IndicationSubscription is not subclassed from anything.

Created By: CreateInstance
Modified By: Static
Deleted By: DeleteInstance
Requirement: Mandatory

Table 470 describes class CIM_IndicationSubscription.

SourceNamespace N Optional For instances in the InteropNamespace, this shall be the
namespace where the indications are to originate. For
instances in the implementation namespace where the
indications are to originate (e.g., the namespace of the
profile that supports the filter), this may be NULL to indicate
the Filter is registered in the Namespace where the
indications originate.

Query Mandatory

QueryLanguage Mandatory This shall be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional This should be NULL for pre-defined indication filters.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

Table 470 - SMI Referenced Properties/Methods for CIM_IndicationSubscription

Properties Flags Requirement Description & Notes

RepeatNotificationPo
licy

Mandatory SMI-S supports a restricted set of values.

This shall be 2|3|4 ('None' | 'Suppress' | 'Delay')

RepeatNotificationInt
erval

Optional Mandatory if the RepeatNotificationPolicy is 'Suppress' or
'Delay'.

RepeatNotificationGa
p

Optional Mandatory if the RepeatNotificationPolicy is 'Delay'.

RepeatNotificationCo
unt

Optional Mandatory if the RepeatNotificationPolicy is 'Suppress' or
'Delay'.

LastIndicationIdentifi
er

Optional The IndicationIdentifier of the last indication produced for
this subscription regardless if that indication were delivered

LastIndicationProduc
tionDateTime

Optional The date and time of the production of the last indication
produced for this subscription regardless if that indication
were delivered

Table 469 - SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)

Properties Flags Requirement Description & Notes
470

NO_ANSI_ID Indication Profile
44.8.5 CIM_InstCreation

CIM_InstCreation notifies a handler when a new instance (of a class defined in the Filter QueryString) is created.

CIM_InstCreation is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 471 describes class CIM_InstCreation.

OnFatalErrorPolicy N Optional Not Specified in this version of the Profile.

OtherOnFatalErrorPo
licy

N Optional Not Specified in this version of the Profile.

FailureTriggerTimeInt
erval

N Optional Not Specified in this version of the Profile.

SubscriptionState N Optional Not Specified in this version of the Profile.

OtherSubscriptionSta
te

N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

SubscriptionDuration N Optional Not Specified in this version of the Profile.

SubscriptionStartTim
e

N Optional Not Specified in this version of the Profile.

SubscriptionTimeRe
maining

N Optional Not Specified in this version of the Profile.

OtherRepeatNotificati
onPolicy

N Optional Not Specified in this version of the Profile.

AlertOnStateChange N Optional Not Specified in this version of the Profile.

Filter Mandatory

Handler Mandatory

Table 471 - SMI Referenced Properties/Methods for CIM_InstCreation

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

Table 470 - SMI Referenced Properties/Methods for CIM_IndicationSubscription

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 471

Indication Profile NO_ANSI_ID
44.8.6 CIM_InstDeletion

CIM_InstDeletion notifies a handler when a new instance (of a class defined in the Filter QueryString) is deleted.

CIM_InstDeletion is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 472 describes class CIM_InstDeletion.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

SourceInstanceHost N Optional Not Specified in this version of the Profile.

Table 472 - SMI Referenced Properties/Methods for CIM_InstDeletion

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

SourceInstanceHost N Optional Not Specified in this version of the Profile.

Table 471 - SMI Referenced Properties/Methods for CIM_InstCreation

Properties Flags Requirement Description & Notes
472

NO_ANSI_ID Indication Profile
44.8.7 CIM_InstModification

CIM_InstModification notifies a handler when a new instance (of a class defined in the Filter QueryString) is
modified or changed. To avoid undue effort on Providers, the select list (in the query filter) for this indication should
only call for properties that are needed.

CIM_InstModification is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 473 describes class CIM_InstModification.

44.8.8 CIM_ListenerDestinationCIMXML (Indication Handler)

CIM_ListenerDestinationCIMXML is subclassed from CIM_ListenerDestination.

Created By: CreateInstance
Modified By: Static
Deleted By: DeleteInstance
Requirement: Mandatory

Table 473 - SMI Referenced Properties/Methods for CIM_InstModification

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PreviousInstance Optional A copy of the 'previous' instance whose change generated
the Indication. PreviousInstance contains 'older' values of
an instance's properties (as compared to SourceInstance),
selected by the IndicationFilter's Query.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

SourceInstanceHost N Optional Not Specified in this version of the Profile.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 473

Indication Profile NO_ANSI_ID
Table 474 describes class CIM_ListenerDestinationCIMXML (Indication Handler).

STABLE

Table 474 - SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication
Handler)

Properties Flags Requirement Description & Notes

ElementName Mandatory A client defined user friendly string that identifies the
CIMXML Listener destination.

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

PersistenceType Mandatory For SMI-S, this shall be 2|3 ('permanent' | 'transient')

Destination Mandatory The destination URL to which CIM-XML Export Messages
are to be delivered. The scheme prefix shall be consistent
with the DMTF CIM-XML specifications.If a scheme prefix
is not specified, the scheme \http:\'shallbeassumed.'

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

OtherPersistenceTyp
e

N Optional Not Specified in this version of the Profile.
474

NO_ANSI_ID Object Manager Adapter Subprofile
STABLE

Clause 45: Object Manager Adapter Subprofile

45.1 Description
The ObjectManagerAdapter model defines the protocol adapters that are supported for a CIM Server. This model
is optional for the CIM Server Profile. If implemented, the ObjectManagerAdapterModel shall adhere to the
“required elements” table.

45.1.1 Instance Diagram

ObjectManagerAdapter subprofile is not advertised. Figure 67 illustrates the model.

45.2 Health and Fault Management
Not defined in this standard.

45.3 Cascading Considerations
Not defined in this standard.

Figure 67 - ObjectManagerAdapter Subprofile Model

[Default CommunicationMechanism = "XML over HTTP"]
WBEMProtocolVersion
CIMValidated

CIMXMLCommunictionMechanism

Name
Handle
ProtocolAdapterType
OtherProtocolAdapterType

ProtocolAdapter

CommMechanismForAdapter
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 475

Object Manager Adapter Subprofile NO_ANSI_ID
45.4 Supported Subprofiles and Packages
None.

45.5 Methods of the Profile
None.

45.6 Client Considerations and Recipes
None.

45.7 Registered Name and Version
Object Manager Adapter version 1.3.0

45.8 CIM Elements
Table 475 describes the CIM elements for Object Manager Adapter.

45.8.1 CIM_CommMechanismForObjectManagerAdapter

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 476 describes class CIM_CommMechanismForObjectManagerAdapter.

Table 475 - CIM Elements for Object Manager Adapter

Element Name Requirement Description

45.8.1
CIM_CommMechanismForObjectManagerAd
apter

Mandatory

45.8.2 CIM_ObjectManagerAdapter Mandatory

Table 476 - SMI Referenced Properties/Methods for
CIM_CommMechanismForObjectManagerAdapter

Properties Flags Requirement Description & Notes

Dependent Mandatory The encoding/protocol/set of operations that may be used
to communicate between the Object Manager and the
referenced ObjectManagerAdapter.

Antecedent Mandatory The specific ObjectManagerAdapter whose communication
mechanism with the CIM Object Manager is described.
476

NO_ANSI_ID Object Manager Adapter Subprofile
45.8.2 CIM_ObjectManagerAdapter

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 477 describes class CIM_ObjectManagerAdapter.

STABLE

Table 477 - SMI Referenced Properties/Methods for CIM_ObjectManagerAdapter

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ElementName Mandatory

Handle Mandatory

AdapterType Mandatory

OtherAdapterTypeDe
scription

Optional

OperationalStatus Mandatory

StatusDescriptions Conditional Conditional requirement: CIM_ObjectManagerAdapter
requires the StatusDescriptions property be populated if the
OperationalStatus property has a value of 1 (\Other\')..'This
shall not be NULL if 'Other' is identified in
OperationalStatus

Started Mandatory

StartService() Mandatory

StopService() Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 477

Object Manager Adapter Subprofile NO_ANSI_ID
478

EXPERIMENTAL

Clause 46: Proxy Server System Management Subprofile

46.1 Description
This subprofile addresses the question of how an SMI-S server can discover the devices it is going to manage.
Knowledge of the external devices must be set by the client and retained in some fashion by the SMI-S server.
Note that the mechanics of storing that information is beyond the scope of this profile. Typically, in order for the
SMI-S server to discover and manage these devices, the client will need to provide some connection information,
such as IP addresses, and authorization/authentication information (e.g. user name and password) to allow access
to the device. SMI-S defines the two roles of SMI-S servers -- Embedded and Proxy (Architecture book, pg124-
125). Proxy servers typically manage one or more devices that are separate from the computer system the proxy is
running on. Embedded servers are internal to the device being managed. While it is more likely that the Proxy
server will need client help to determine which devices to manage, it may also be the case that Embedded services
may also take advantage of this capability. Therefore this profile does not distinguish between Proxy and Embeded
servers.

This subprofile defines a new service, SystemRegistrationService with three methods, AddSystem,
DiscoverSystems, and RemoveSystem. AddSystem will supply all the parameters, such as IP Address, that will
allow the proxy to add the device. DiscoverSystems is similar to AddSystem but relies on the SMI-S server to go
out and discover devices that it can manage. The Credential Management and Device Credentials subprofiles will
be used to support the passing of the security credentials to the device to be added or discovered. RemoveSystem
will remove the device from management by the proxy.

When a system is added to the proxy, it will result in the creation of the top-level system and all the other objects
needed to correctly model that system. Similarly, when a system is removed, it results in the deletion of the top-
level computer system and corresponding objects. The Client Considerations section below will cover this in more
detail.

46.1.1 Relationship to Server profile

This profile is a component profile (or subprofile) and extends the functionality of the Server profile, which in turn
references this as a component profile. This profile introduces a new Service that is associated to the Server
System.

46.1.2 Model

The service shall be modeled as an instance of SNIA_SystemRegistrationService associated to the System that is
associated to the ObjectManager via HostedService as defined in the Server Profile. Figure 68 shows the Proxy
Server System Management model. The service shall have an associated Capabilities object,
SNIA_SystemRegistrationCapabilities, that is associated to the service via ElementCapabilities.
SMI-S 1.3.0 Rev 6 SNIA Technical Position 479

Proxy Server System Management Subprofile NO_ANSI_ID
Table 478 describes each associated capability.

Figure 68 - Proxy Server System Management Model

Table 478 - Capabilities

Capability Description

SupportedSynchronousMethods[] Lists methods of the profile that do not result in a job
being created

SupportedAsynchronousMenthods[] Lists methods of the profile that do result in a job being
created. If a method is listed in both, the client needs
to check the Job parameter to see if a job was created

System

SNIA_SystemRegistrationService

AddSystem()
DiscoverSystem()
RemoveSystem()

SNIA_SystemRegistrationCapabilities

SupportedSynchronousMethods[]
SupportedAsynchronousMenthods[]
AutonomousProfilesSupported[]
VendorsSupported[]

HostedService

ElementCapabilities

ObjectManager

HostedService

Server Profile
480

NO_ANSI_ID Proxy Server System Management Subprofile
46.1.3 Creation Considerations

The methods in this profile shall not support the creation of new namespaces. The namespace supplied to the
method shall already exist. The SMI-S server may restrict the namespaces that can be used. An instance of the
SNIA_SystemRegistrationService shall be created in each namespace supported and shall be associated to the
System in the interop namespace. For some SMI-S servers, addition of a device in one namespace may result in
the device being accessible from other namespace. One specific use case for this is where a proxy supports
namespaces for prior versions of SMI-S for backwards compatibility with clients. The same code may support
these multiple namespaces by default. There is no mechanism in this profile for a client to determine if this is
indeed the case.

46.2 Health and Fault Management Consideration
Not defined in this standard.

46.3 Cascading Considerations
Not applicable

46.4 Supported Profiles, Subprofiles, and Packages
Related Profiles for Proxy Server System Management: Not defined in this standard.

46.5 Methods of the Profile
This subprofile defines three new methods, AddSystem, DiscoverSystem, and RemoveSystem. AddSystem will
have parameters such as IP Address that will allow the proxy to discover the device. The security aspect needs
some refinement. It may take advantage of the Security profiles.

46.5.1 AddSystem

The AddSystem method shall result in the SMI-S server contacting the device and creating the instances
necessary to model that device in the requested namespace. If the device has already been added to the SMI-S,

AutonomousProfilesSupported[] This property identifies the profiles that this service is
capable of discovering and managing. For example, a
block device could potentially list “Array” and “Storage
Virtualizer”. An attempt to discover a different kind of
device, like a Fibre Channel switch would fail.

VendorsSupported[] This property identifies the vendors whose devices
this service can discover. For example, if the list
contains “Vendor A” then only “Vendor A” devices with
the supported autonomous profiles listed in
AutonomousProfilesSupported[] can be discovered.
Attempting to discover other vendors devices would
result in an error. This should include at least the
instrumentation vendor, and may include other
vendors. (e.g. due to OEM relationships)

Table 478 - Capabilities

Capability Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 481

Proxy Server System Management Subprofile NO_ANSI_ID
then calling this method shall result in an update to the instances already in existence. Note that this may result in
the creation of new and deletion of old instances. See Client Considerations for more details on what happens with
this method call.

Method signature:

uint32 AddSystem(CIM_Job REF Job, String Namespace, String Addresses[], uint32 PortNumbers[], uint16
AddressTypes[], String ElementName, String Description, SharedSecret REF Secret, OUT CIM_System REF
AddedSystem)

Return codes:

Table 479 - AddSystem

Parameters Description

Job Reference to a Job, if one is created

UseNamespace Name of the Namespace to create the system in. Namespace must already
exist

Addresses[] Address of the device (e.g. IP address(es) of array controller). Shall have the
same number of elements as AddressTypes[]

PortNumbers Port number to use for each address given. Shall either be null if not applicable
or shall ave one entry per entry in the Addresses array

AddressTypes[] Type of address (valid values are URL, IPAddress, DeviceName, WWN), Each
entry in AddressTypes[] is matched with the entry in Addresses[]

ElementName User-friendly name to give to the system

Description Description to use for the system

Secret Reference to previously created SharedSecret to pass along to device

AddedSystem Reference to system added

Table 480 - Return Codes

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot
be modified

Invalid namespace Namespace supplied does
not exist or service not
supported for that namespace
482

NO_ANSI_ID Proxy Server System Management Subprofile
46.5.2 DiscoverSystems

The DiscoverSystems method shall result in the SMI-S server attempting to discover devices that are available.
The difference between AddSystem and DiscoverSystems is that DiscoverSystems does not need connection
information. Upon discovery, the SMI-S server shall create the instances necessary to model that device in the
requested namespace. If the device has already been added to the SMI-S server, then calling this method shall
result in an update to the instances already in existence. Note that this may result in the creation of new and
deletion of old instances. See Client Considerations for more details on what happens with this method call.

Method signature:

uint32 DiscoverSystems(CIM_Job REF Job, String Namespace, SharedSecret REF Secret, OUT CIM_System
REF DiscoveredSystems[])

Device profile not supported Device at the address
specified does not support
any of the automonous
profiles supported

Vendor not supported Device at the address
specified from a vendor that is
not supported

Device not found No device found at address
given

Communication error Unable to communicate with
device

Invalid credentials Invalid credentails for device

4096: Method Parameters Checked - Job started Job was started

Table 481 - DiscoverSystem

Parameter Description

Job Reference to a Job, if one is created

UseNamespace Name of the Namespace to create the system in. Namespace must already
exist

Secret Reference to previously created SharedSecret to pass along to device

DiscoveredSystems[] System discovered

Table 480 - Return Codes

Value Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 483

Proxy Server System Management Subprofile NO_ANSI_ID
46.5.3 RemoveSystem

The RemoveSystem method shall result in the removal of all instances related to that device from the proxy server.

Method signature:

uint32 RemoveSystem(CIM_Job REF Job, String Namespace, CIM_System REF Device)

Table 482 - Return Codes

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot
be modified

Invalid namespace Namespace supplied does
not exist or service not
supported for that namespace

Device profile not supported Device at the address
specified does not support
any of the automonous
profiles supported

Vendor not supported Device at the address
specified from a vendor that is
not supported

Device not found No device found at address
given

Communication error Unable to communicate with
device

Invalid credentials Invalid credentails for device

4096: Method Parameters Checked - Job started Job was started
484

NO_ANSI_ID Proxy Server System Management Subprofile
46.6 Client Considerations and Recipes
One of the key client considerations is indications. Because adding and removing a device will result in the creation
or deletion of a large number of instances, care must be taken to avoid “indication storms” that overwhelm clients
with large numbers of indications. To this end, the proxy shall only send an InstCreation or InstDeletion indication
for the creation or deletion of the top-level ComputerSystem, respectively. Note that these are exactly the
indications specified in the autonomous device profiles Fabric, Array, and Storage Virtualizer.

Another consideration is what happens if the proxy does not support the device being added. For example, a proxy
for an array is asked to discover a switch, or vendor A’s proxy is asked to discover vendor B’s device. To prevent
clients from having to try-and-fail a request, the SNIA_SystemRegistrationCapabilities class provides
AutonomousProfilesSupported and VendorsSupported arrays. When adding a device, the client will probably have
enough information at hand about that device to know, based on these arrays, whether or not the AddSystem call
would succeed for that device.

The following are the anticipated uses cases that will drive development of the functionality.

46.6.1 Use Case 1: Add Device

In this use case, the client wishes to discover a new device just installed

Pseudo-code:

Assume IP address, user name and password are known

Step 1: Create SharedSecret

Step 2: Create indication listener

Step 3: Call AddSystem

Step 4: If Job created, wait for indication

Step 5: Remove indication listener

46.6.2 Use Case 2: Remove Device

In this use case, the client wishes to delete a device that has just been replaced.

Assume IP address, user name and password are known

Step 1: Create indication listener

Step 2: Call RemoveSystem

Step 3: If Job created, wait for indication

Table 483 - RemoveSystem

Parameters Description

Job Reference to a Job, if one is created

Namespace Name of the Namespace to create the system in. Namespace must already
exist

Device Reference to device currently managed
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 485

Proxy Server System Management Subprofile NO_ANSI_ID
Step 4: Remove indication listener

46.7 CIM Element

46.8 Registered Name and Version
Proxy Server System Management version 1.3.0

46.9 CIM Elements
Table 484 describes the CIM elements for Proxy Server System Management.

46.9.1 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 485 describes class CIM_HostedService.

46.9.2 SNIA_SystemRegistrationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Table 484 - CIM Elements for Proxy Server System Management

Element Name Requirement Description

46.9.1 CIM_HostedService Mandatory

46.9.2 SNIA_SystemRegistrationCapabilities Mandatory

46.9.3 SNIA_SystemRegistrationService Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Addition of a device (ComputerSystem)

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of a device (ComputerSystem)

Table 485 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
486

NO_ANSI_ID Proxy Server System Management Subprofile
Requirement: Mandatory

Table 486 describes class SNIA_SystemRegistrationCapabilities.

46.9.3 SNIA_SystemRegistrationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 487 describes class SNIA_SystemRegistrationService.

EXPERIMENTAL

Table 486 - SMI Referenced Properties/Methods for SNIA_SystemRegistrationCapabilities

Properties Flags Requirement Description & Notes

AutonomousProfiles
Supported

Mandatory This property identifies the profiles that this service is
capable of discovering and managing. For example, a block
device could potentially list ‚ÄúArray‚Ä? and ‚ÄúStorage
Virtualizer‚Ä?

VendorsSupported Mandatory This property identifies the vendors whose devices this
service can discover. For example, if the list contains
‚ÄúVendor A‚Ä? then only ‚ÄúVendor A‚Ä? devices can be
discovered. This should include at least the instrumentation
vendor, and may include other vendors. (e.g. due to OEM
relationships)

SupportedAsynchron
ousActions

Mandatory Indicates which methods are executed asynchronously.

SupportedSynchrono
usActions

Mandatory Indicates which methods are executed synchronously.

Table 487 - SMI Referenced Properties/Methods for SNIA_SystemRegistrationService

Properties Flags Requirement Description & Notes

AddSystem() Mandatory

DiscoverSystems() Optional

RemoveSystem() Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 487

Proxy Server System Management Subprofile NO_ANSI_ID
488

NO_ANSI_ID Device Credentials Subprofile
STABLE

Clause 47: Device Credentials Subprofile

47.1 Description
Many devices require a shared secret to be provided to access them. This shared secret is different that the
credentials used by the SMI-S Client for authentication with the CIM Server. This Subprofile is used to change this
device shared secrets.

The SMI-S Client shall not be provided with the password, only the principle. The SMI-S Client can use the
principle to change the shared secret appropriately.

The device credentials can be exposed throughout the CIM model such that a CIM Client may manipulate them.
The credentials are modeled as shared secrets.

47.1.1 Instance Diagram

Figure 69 provides a sample instance diagram.

47.2 Health and Fault Management Considerations
Not defined in this standard.

47.3 Cascading Considerations
Not defined in this standard.

47.4 Supported Subprofiles and Packages
Not defined in this standard.

47.5 Extrinsic Methods of this Profile
Not defined in this standard.

Figure 69 - DeviceCredentials Subprofile Model

SharedSecret
IsShared

*w

1

SharedSecretService

Algorithm: string
Protocol: string

SharedSecret

RemoteID: string [key]
Secret: string
Algorithm: string
Protocol: string

1
Hosted
Service

*w

ComputerSystem

OtherIdentifyingInfo: string[]
IdentifyingDescriptions: string[]
Dedicated: uint16[]
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 489

Device Credentials Subprofile NO_ANSI_ID
47.6 Client Considerations and Recipes
None.

47.7 Registered Name and Version
Device Credentials version 1.3.0

47.8 CIM Elements
Table 488 describes the CIM elements for Device Credentials.

47.8.1 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 489 describes class CIM_HostedService.

47.8.2 CIM_SharedSecret

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 488 - CIM Elements for Device Credentials

Element Name Requirement Description

47.8.1 CIM_HostedService Mandatory

47.8.2 CIM_SharedSecret Mandatory

47.8.3 CIM_SharedSecretIsShared Mandatory

47.8.4 CIM_SharedSecretService Mandatory

Table 489 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
490

NO_ANSI_ID Device Credentials Subprofile
Table 490 describes class CIM_SharedSecret.

47.8.3 CIM_SharedSecretIsShared

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 491 describes class CIM_SharedSecretIsShared.

47.8.4 CIM_SharedSecretService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 490 - SMI Referenced Properties/Methods for CIM_SharedSecret

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

ServiceCreationClas
sName

Mandatory

ServiceName Mandatory

RemoteID Mandatory

Secret Mandatory

Table 491 - SMI Referenced Properties/Methods for CIM_SharedSecretIsShared

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 491

Device Credentials Subprofile NO_ANSI_ID
Table 492 describes class CIM_SharedSecretService.

STABLE

Table 492 - SMI Referenced Properties/Methods for CIM_SharedSecretService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ElementName Mandatory
492

NO_ANSI_ID Security Profile
EXPERIMENTAL

Clause 48: Security Profile

48.1 Description

48.1.1 Overview

Security requirements can be divided into four major categories: authentication, authorization, confidentiality, and
integrity (including non-repudiation), brief definitions follow. Authentication is verifying the identity of an entity (client
or server). Authorization is deciding if an entity is allowed to perform a given operation. Confidentiality is restricting
information to only those intended recipients. Integrity is guaranteeing that information, passed between entities,
has not been modified.

This top level Security Profile primarily addresses authentication, 42.2.1 HTTP Security Background addresses
confidentiality, and authorization is addressed by Clause 49: Authorization Subprofile.

Issues not covered include threat models, protection against specific attack vectors, (such as denial of service,
replay, buffer overflow, man in the middle, etc.), topics related to key management, and data integrity. Development
of threat models, and specific attack countermeasures required for robust security elements, such as integrity has
been left for future work.

Security concerns occur in three areas of an SMI-S implementation:

1) First an SMI-S Server may also be a client of other services, (sometimes conceptualized as a devices.).
Those services, (or devices), may require a login before discovery or operations are allowed to be performed.
The information needed to perform this login is generically referred to as “credentials”, (or in the case of
devices as “device credentials”). An SMI-S server or provider needs to obtain these credentials in order to
talk to the service, and they should be provided confidentially.

2) Second, an SMI-S Server may need to authenticate an SMI-S Client. Not all Clients may be allowed to query
the object model, and not all Clients may be allowed to perform operations on objects in the model. The SMI-
S Server is responsible for the process of authenticating credentials received from an SMI-S Client. Success-
ful authentication establishes a trust relationship, which is represented on the SMI-S Server by an authenti-
cated Identity. Authenticating the client is the first step in determining what that Client is allowed to do.

3) Thirdly, should implementers of an SMI-S Server be unaware of secure development practices, attackers
may be able to exploit insecurely developed implementations. (Note, potential attacks might include, but not
be limited to buffer overflows, obtaining secure information handled by the SMI-S implementation, like pass-
words, etc.) In an effort to increase the general knowledge of SMI-S developers, for secure development
practices, one resources is referenced: Building Secure Software by Gary McGraw and John Viega (ISBN:
020172152X).

48.1.2 Security Subprofiles

This profile describes minimum requirements on Authentication and Authorization services of an SMI-S Server,
where an authenticated Identity is assumed to be authorized. This capability is then extended and constrained by
various subprofiles. These are summarized in Table 493.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 493

Security Profile NO_ANSI_ID
.

The purpose of the Security profile is to enable the monitoring and management an entity's rights to act on,
(including to view or detect), the operational or management aspects of particular objects within a System. Such an
entity is known in CIM by an instance of Identity. With respect to the particular objects, at any point in time an entity
is either authenticated or not. This is tracked in the Identity instance as CurrentlyAuthenticated. An Identity with
CurrentlyAuthenticated set to True represents a security principal. Authentication is a key criteria for Authorization,
where authenticated entities are granted rights to act on particular objects.

Support for this profile declares the ability to discover Identities maintained on an SMI-S Server. Unless modified by
a subprofile, entities represented by authenticated Identities are granted all rights to all objects within the scope
that the identified entity is known.

Table 493 - Security Subprofiles

Security
Subprofile

Depends on References Description

3rdPartyAuthentication IdentityManagement

Security

CredentialManagement Specifies additional
requirements on an SMI-S
Server when it is also a
client of a 3rd party
authentication service

Authorization Security Specifies additional
requirements on an SMI-S
Server that supports an
authorization service

CredentialManagement Security Specifies additional
requirements on an SMI-S
Server that is also a client of
some other service that
enforces security

IdentityManagement Security Specifies additional
requirements on an SMI-S
Server that supports the
management of Identities,
including establishing
Accounts, and defining User
and Organizational entities
and Groups of those
entities.

RBAC Authorization

Security

Specifies additional
requirements on an SMI-S
Server that supports Role
Based Access Control.

ResourceOwnership Authorization

Security

RBAC Specifies additional
requirements on an SMI-S
Server that supports the
capability to restrict
authorization rights.
494

NO_ANSI_ID Security Profile
This profile contains a number of options. It is up to the profile or subprofile that depends on this profile to specify
which options are acceptable

48.1.2.1 Selecting an Identity
To act on a system which enforces security, a requestor needs to be authenticated. The process of authentication
maps a requestor to a well-defined Identity. From a management point of view, rights to act on particular resources
of a system are granted to Identities.

Figure 70 shows that an Identity instance may be associated with the entity being identified via AssignedIdentity.
Commonly this ManagedElement will be an instance of UserContact. UserContact provides information about a
user, including UserID.

If AssignedIdentity is not used, an alternative is to use a subclass of Identity with additional properties and to
algorithmically equate those properties to a requesting entity in a known way. StorageHardwareID instances are an
example of the second option. Each StorageHardwareID contains a StorageID that uniquely identifies a requesting
port.

An Identity is only valid within some scope. This is defined by an IdentityContext association, typically to a System
or RemoteServiceAccessPoint. If there is more than one System or if there are RemoteServiceAccessPoint
instances in the Profile namespace, then IdentityContext is mandatory for this profile.

In all cases, the InstanceID of an Identity should be treated as opaque.

Two options are available for managing the Authentication process within a System.

One option is to use the Identity aspect of Account via ConcreteIdentity. The UserID and UserPassword properties
of Account are matched to the authentication information provided by a requestor and the associated Identity
instances are selected.

The other option is to associate an AuthenticationRule via PolicySetAppliesToElement.

An Account may be used together with an AuthenticationRule.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 495

Security Profile NO_ANSI_ID
See Clause 53: IdentityManagement Subprofile for specification of the ability to add Accounts, UserContacts, and
Identities to an SMI-S Server.

48.1.2.2 Authentication Policy
If an AuthenticationRule is not associated with an Identity, then CurrentlyAuthenticated property of Identity is set to
True whenever a requestor authenticates to an Identity, and False otherwise.

An AuthenticationRule may be associated with Identity via PolicySetAppliesToElement.

If specified, it further defines or constrains the authentication for the associated Identity. For instance, a
PolicyTimePeriodCondition may be associated to the AuthenticationRule via PolicySetValidationPeriod.
Additionally, there are a number of specific subclasses of AuthenticationCondition which may be used to further
qualify the AuthenticationRule. The CurrentlyAuthenticated property of one of these Identity instances is set to True
whenever a requestor matches to an Identity and the conditions of the AuthenticationRule are met, and is set to
False otherwise.

The incorporating profile or subprofile shall specify which subclasses of Identity and AuthenticationRule are
allowable.

48.1.2.3 Authorization
Unless further constrained by a subprofile or by an incorporating profile, if the CurrentlyAuthenticated property of
Identity is set to True, then the identified requesting entity is granted permission to perform any supported action on
all elements of the System that conforms to this profile.

See Clause 49: Authorization Subprofile and Clause 52: Security Role Based Access Control Subprofile for
additional specification of SMI-S conformant authorization rules.

48.2 Health and Fault Management Considerations
Not defined in this standard.

Figure 70 - Identity

Id e n t i t y
In s t a n c e ID : s t r in g
C u r r e n t ly A u t h e n t ic a t e d : b o o le a n

Id e n t i f ie d E le m e n t :
M a n a g e d E le m e n t

A s s ig n e d Id e n t i t y

0 . .1

Id e n t i ty C o n te x t

*
*

*

S y s t e m

C o n c r e te Id e n t i ty

A c c o u n t
U s e r ID : s t r in g
U s e r C e r t i f ic a te [] : s t r in g
U s e r P a s s w o r d [] : s t r in g

A c c o u n tO n S y s te m

*

*

1

*

A u th e n t ic a t io n R u leP o l ic y S e tA p p l ie s T o E le m e n t * *

1

P o l ic y R u le In S y s te m

O p t io n 2

O p t io n 1

R e g is t e r e d P r o f i le

R e g is t e r e d N a m e = “ S e c u r i t y ”

E le m e n t C o n f o r m s T o P r o f i le

R e g is t e r e d P r o f i le
R e f e r e n c e d P r o f i le

B o ld : Im p l ie s R e q u ir e d

*
*

* *

S c o p in g E le m e n t :
M a n a g e d E le m e n t

T y p ic a l ly a S y s te m o r a
R e m o te S e r v ic e A c c e s s P o in t

*

496

NO_ANSI_ID Security Profile
48.3 Cascading Considerations
Not defined in this standard.

48.4 Supported Subprofiles and Packages
Table 494 describes the supported profiles for Security.

48.5 Methods of the Profile
None.

48.6 Client Considerations and Recipes
Included is one recipe to list and classify Identities.

48.6.1 List and classify Identities

// DESCRIPTION

// This recipe describes how to identify existing Identities and classify them

// by type. The current authentication status of each Identity is determined.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

// 1. The name of a top-level System instance in the Security Profile has

// previously been discovered via SLP and is known as $System->.

// MAIN

// Step 1. Locate the known Identities on the system.

$Identities[] = Associators($System->,

“CIM_IdentityContext”,

“CIM_Identity”,

“ElementProvidingContext”,

“ElementInContext”,

false,

false,

{“CurrentlyAuthenticated”})

// Verify that one or more Identities exist on the system.

if ($Identities[] == null || $Identities[].length < 1) {

 <ERROR! No known Identities on the system>

}

Table 494 - Supported Profiles for Security

Registered Profile Names Mandatory Version

Security Identity Management No 1.1.0

Security Credential Management No 1.1.0

Security Authorization No 1.1.0
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 497

Security Profile NO_ANSI_ID
// Step 2. Create a list entry for each Identity and classify it by type.

#IdentityType[]// contains {“HardwareID”, “Entity”, “Unknown”}

#IdentityUserID[]// contains UserID if the Identity is for an Account.

for (#i in $Identities[]) {

 #IsAuthenticated[#i] = $Identities[#i].CurrentlyAuthenticated

 $Identity-> = $Identities[#i].getObjectPath()

 if ($Identity-> ISA CIM_StorageHardwareID) {

#IdentityType[#i] = “HardwareID”

#IdentityUserID[#i] = ““

 } else if ($Identity-> ISA CIM_IPNetworkID) {

#IdentityType[#i] = “IPNetworkID”

#IdentityUserID[#i] = ““

 } else {

// Determine the matching entity type

$Entity[] = Associators($Identity->,

“CIM_AssignedIdentity”,

“CIM_ManagedElement”,

“IdentityInfo”,

“ManagedElement”,

false,

false,

{“UserID”})

// There will be at most one matching entity

if ($Entity[] == null || $Entity[].length == 0) {

 // Not enough information present to determine type of Identity

 #IdentityType[#i] = “Unknown”

 #IdentityUserID[#i] = ““

} else {

 // Determine the matching entity type.

 if ($Identity[#i] ISA CIM_UserContact) {

// Identity of a User

#IdentityType[#i] = “User”

#IdentityUserID[#i] = $Entity[0].UserID

 } else {

// Identity of some other type of Entity

#IdentityType[#i] = “Entity”

#IdentityUserID[#i] = ““

 }

}

 }

 // Determine if there is an associated Account.

 $Entity[] = Associators($Identity->,
498

NO_ANSI_ID Security Profile
 “CIM_ConcreteIdentity”,

 “CIM_Account”,

 “SameElement”,

 “SystemElement”,

 null,

 null,

 {“UserID”})

 if ($Entity[] != null && $Entity[].length = 1) {

#IdentityUserID[#i] = Entity[1].UserID

 }

}

48.7 Registered Name and Version
Security version 1.1.0

48.8 CIM Elements
Table 494 describes the CIM elements for Security.

48.8.1 CIM_Account

Table 495 - CIM Elements for Security

Element Name Requirement Description

48.8.1 CIM_Account Optional Represents information about an entity that
may act on resources

48.8.2 CIM_AccountOnSystem Optional Identifies the conformant element

48.8.3 CIM_AssignedIdentity Optional Identifies the conformant element

48.8.4 CIM_AuthenticationRule Optional A policy the defines the rules for
authenticating an Identity

48.8.5 CIM_ConcreteIdentity Optional Identifies the conformant element

48.8.6 CIM_Identity Optional Represents an entity that may act on
resources

48.8.7 CIM_IdentityContext Optional Identifies the conformant element

48.8.8 CIM_ManagedElement Optional Represents either an entity or a resource

48.8.9 CIM_PolicyRuleInSystem Optional Identifies the System which supports the
associated PolicyRule.

48.8.10 CIM_PolicySetAppliesToElement Optional Identifies the conformant element

48.8.11 CIM_System Mandatory System containing elements supporting
Authentication and basic Authorization
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 499

Security Profile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 496 describes class CIM_Account.

48.8.2 CIM_AccountOnSystem

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 497 describes class CIM_AccountOnSystem.

48.8.3 CIM_AssignedIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 496 - SMI Referenced Properties/Methods for CIM_Account

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

UserID Mandatory

UserPassword Mandatory

OrganizationName Mandatory

Table 497 - SMI Referenced Properties/Methods for CIM_AccountOnSystem

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory
500

NO_ANSI_ID Security Profile
Table 498 describes class CIM_AssignedIdentity.

48.8.4 CIM_AuthenticationRule

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 499 describes class CIM_AuthenticationRule.

48.8.5 CIM_ConcreteIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 500 describes class CIM_ConcreteIdentity.

48.8.6 CIM_Identity

Table 498 - SMI Referenced Properties/Methods for CIM_AssignedIdentity

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

IdentityInfo Mandatory

Table 499 - SMI Referenced Properties/Methods for CIM_AuthenticationRule

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

PolicyRuleName Mandatory Key

Table 500 - SMI Referenced Properties/Methods for CIM_ConcreteIdentity

Properties Flags Requirement Description & Notes

SystemElement Mandatory

SameElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 501

Security Profile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 501 describes class CIM_Identity.

48.8.7 CIM_IdentityContext

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 502 describes class CIM_IdentityContext.

48.8.8 CIM_ManagedElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

48.8.9 CIM_PolicyRuleInSystem

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 501 - SMI Referenced Properties/Methods for CIM_Identity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory Indicates whether or not an entity has been authenticated
to use this Identity.

Table 502 - SMI Referenced Properties/Methods for CIM_IdentityContext

Properties Flags Requirement Description & Notes

ElementInContext Mandatory

ElementProvidingCo
ntext

Mandatory
502

NO_ANSI_ID Security Profile
Table 503 describes class CIM_PolicyRuleInSystem.

48.8.10 CIM_PolicySetAppliesToElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 504 describes class CIM_PolicySetAppliesToElement.

48.8.11 CIM_System

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 505 describes class CIM_System.

EXPERIMENTAL

Table 503 - SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 504 - SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 505 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 503

Security Profile NO_ANSI_ID
504

NO_ANSI_ID Authorization Subprofile
EXPERIMENTAL

Clause 49: Authorization Subprofile

49.1 Description
The Authorization subprofile extends the Security profile. The Authorization subprofile specifies base support to
enable management of the rights of particular subjects to perform specific operations on selected target elements
within a CIM Service.

49.1.1 Authorization

Assuming successful authentication, the system needs to assure that the requestor is authorized to perform the
request. Figure 71 shows the elements needed to manage authorization. This subprofile constrains the Security
profile. When applied, authenticated requestors are not automatically granted all rights. Instead, this subprofile
automatically denies all rights unless specifically granted. See 49.1.2, "Authorization Rights", for a detailed
description of rights.

Rights to act on a resource are granted or denied to entities using the ChangeAccess method of a
PrivilegeManagementService instance. Resources and entities are represented by ManagedElements and
Identities, respectively. Granted rights are displayed using the ShowAccess method.

In complex environments two additional associations are used to select the correct PrivilegeManagementService:

• The first is ServiceAvailableToElement, which is not mandatory unless there are more than one System
instances in the profile namespace. If there are more than one System, then a ServiceAvailableToElement
association between the applicable System and the PrivilegeManagementService is mandatory.

• The second is ServiceAffectsElement associations, which are not mandatory unless there are more than one
PrivilegeManagementService instances in the profile namespace. If there are more than one
PrivilegeManagementService, then a ServiceAffectsElement association between the
PrivilegeManagementService and elements that it can operate on is mandatory.

Sets of rights are represented by Privilege instances. An implementation may publish Privilege instances to use as
templates for granting rights. This is done by associating Privilege instances to a PrivilegeManagementService
instance via ConcreteDependency.

When a set of rights are granted, the implementation may make this concrete by instantiating an
AuthorizedPrivilege instance to represent the set of rights and then using AuthorizedSubject and AuthorizedTarget
to associate the authorized Identity and resource. Profiles that incorporate this subprofile may require these
associations to be made explicit.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 505

Authorization Subprofile NO_ANSI_ID
A request is made to act on some element. In the case of Intrinsic Methods, this is first a Namespace, which may or
may not be modeled, and which may propagate sub-requests to one or more other ManagedElements published in
that Namespace. In the case of Extrinsic Methods, the element shall be the ManagedElement which supports the
method.

If it is desired to place restrictions on all elements within a Namespace, then modeling the Namespace is required.
The Namespace instance is used as the “ManagedElement” instance shown in Figure 71.

Good practice requires the implementation of each ManagedElement to enforce authorization. A simpler, but less
robust model allows the ObjectManager or the Provider of the ManagedElement to authorize the request. Since
enforcement at either the ObjectManager or Provider level does not assure there are no back-doors to the
implementation, and since the ObjectManager has limited semantic information about the model elements, (and
therefore the meaning of the rights passed in Privilege instances,) these simpler schemes are not always
applicable. As a result, this Profile RECOMMENDS the more general model.

When the request is delivered, the Identity of the requestor shall be available to the AuthorizationService. The
Provider for a ManagedElement can then ask the AuthorizationService to verify that the requested action is
allowed. The AuthorizationService maps the request to the rights specified by the Activities, ActivityQualifiers, and
QualifierFormat properties of AuthorizedPrivilege. The means for the Provider of a ManagedElement to ask this
question of the AuthorizationService is not specified by this Profile.

Figure 71 - Authorization

ConcreteDependency

Subject: Identity
InstanceID: string
CurrentlyAuthenticated: boolean

AuthorizedPrivilegeAuthorizedSubject
ManagedElement

AuthorizedTarget

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

*
*

* Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities: uint16 [] {enum}
ActivityQualifiers: string []
QualifierFormats: uint16 [] {enum}
RepresentsAuthorizationRights:boolean

*

System

1

*

ServiceAffectsElement

ServiceAffectsElement

*

*

HostedService

*

ServiceAvailableToElement

*

*
*

Subprofile: Security
Subprofile: Security Authorization

BOLD: Indicates Required Classes

RegisteredProfile

RegisteredName = “Security”
ElementConformsToProfile

Registered Profile

Incorporating Profile

ReferencedProfile

RegisteredSubProfile

RegisteredName = “Security Authorization”
SubProfileRequiresProfile

*

*

*

*

0..1

* *
506

NO_ANSI_ID Authorization Subprofile
The client shall use either ChangeAccess (recommended), or AssignAccess and RemoveAccess to grant or deny
rights.

49.1.2 Authorization Rights

Rights are encoded within the properties of Privilege, two of which operate on all rights defined by the Privilege
instance and three of which define a set of rights. The Privilege global properties are:

• PrivilegeGranted: This boolean controls whether the rights defined by the instance are granted or denied2. The
default is TRUE.

• RepresentsAuthorizationRights: This boolean controls whether the rights defined by the instance specifies
access rights or authorization rights. Access rights grant a subject access to a target. Authorization rights grant
a subject the right to assign, change, or remove the specified rights for a target to other subjects. The default is
FALSE.

The properties which define rights are each an indexed array. Corresponding array entries across all three
represent a single access or authorization right. These properties are:

• Activities: Each entry is an enumeration that specifies whether the corresponding right is “Read”. “Write”,
“Execute”, “Create”, “Delete”, or “Detect”.

• ActivityQualifiers: Each entry is a string that qualifies the corresponding Activity entry. For instance, if the
Activities is “Execute”, then the corresponding entry might be a comma separated list of method names. An
entry may be NULL which specifies that the corresponding Activity is not qualified.

• QualifierFormats: Each entry is an enumeration that specifies the format of the string in the corresponding
ActivityQualifiers entry. If an ActivityQualifiers entry is not NULL then the corresponding QualifierFormats entry
shall be specified. Otherwise it shall be NULL. Possible enumerations are: “Class Name”, “<Class.>Property”,
“<Class.>Method”, “Object Reference”, “Namespace”, “URL”, “Directory/File Name”, “Command Line
Instruction”, “SCSI Command”, and “Packet”. In the “Execute” example above, the QualifierFormats entry shall
be “<Class.>Method”.

Specification of allowable combinations of rights is left to the profiles or subprofiles that incorporate this subprofile.

49.1.3 Authorization Policy

The default authorization policy is to deny all requests that are not explicitly granted via either an
AuthorizationPolicy or by an explicit ChangeAccess or AssignAccess method.

An AuthorizationRule may be specified as part of a ChangeAccess method. The AuthorizationRule may then grant
rights implicitly.

Identities, Privileges, and target ManagedElements may be associated to an AuthorizationRule by
AuthorizationRuleAppliesToIdentity, AuthorizationRuleAppliesTo-AuthorizedPrivilege, and
AuthorizationRuleAppliesToTarget respectively. This is shown in Figure 72. When an AuthorizedPrivilege, is added
to the AuthorizationRule, an AuthorizedSubject or AuthorizedTarget may be instantiated.

2.When used with ChangeAccess, the meaning of PrivilegeGranted changes to specify whether the rights defined by
the instance are added or subtracted.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 507

Authorization Subprofile NO_ANSI_ID
The details of the specification of AuthorizationRules are left to the profiles and subprofiles that reference this
subprofile.

49.1.4 Privilege Propagation Policies

In most instances, the propagation rules for a particular type of target element are clear and apply to all subjects. In
this case, the semantics of the target element can imply a particular propagation policy. When a subject may select
from multiple possible propagation strategies for a target element, there needs to be a means to specify the
propagation strategy. Subclasses of PrivilegePropagationRule provide this ability. When associated with a target
element via PolicySetAppliesToElement, the PrivilegePropagationRule specifies the default policy to apply. When
associated to an AuthorizedPrivilege, via PolicySetAppliesToElement, the PrivilegePropagationRule specifies the
policy used to propagate the named rights.

When an AuthorizedPrivilege instance representing propagated rights is returned, it will have the IsPropagated
boolean set to True.

The details of the specification of PrivilegePropagationRules are left to the profiles and subprofiles that reference
this subprofile.

For illustrative purposes only, the following example illustrates the creation of a PrivilegePropagationRule using
QueryCondition (not shown) and MethodAction (not shown) classes associated via PolicyConditionInPolicyRule
(not shown) and PolicyActionInPolicyRule (not shown) respectively. The QueryLanguage property of the
QueryCondition and MethodAction instances shall be set to “2”, meaning “CQL”. Assume the
QueryCondition.QueryResultName is set to “SNIA_AuthorizationConditionExample” and its Query property set to

“SELECT (M.SourceInstanceHost || “/” || M.SourceInstanceModelPath) AS PMSPath,

 M.MethodParameters.Subject,

 ObjectPath(E) AS Target,

Figure 72 - Policy Rules

Subject: Identity AuthorizedPrivilege
AuthorizedSubject

Target: ManagedElement
AuthorizedTarget* *

Privilege

AuthorizationRule

AuthorizationRuleAppliesToTarget
AuthorizationRuleAppliesToPrivilege

*

*

*

AuthorizationRuleAppliesToIdentity

System

*
1

PrivilegePropagationRule

PolicySetAppliesToElement

*

*

*
*

PrivilegePropagationRule

PolicyRuleInSystem

*
*

Subprofile: Security Authorization
Subprofile: Security
508

NO_ANSI_ID Authorization Subprofile
 M MethodParameters.Privileges

FROM

CIM_InstMethodCall M,

CIM_Collection C,

CIM_MemberOfCollection MoC,

CIM_ManagedElement E

CIM_PolicySetAppliesToElement PSATE

CIM_PolicyConditionInPolicyRule PCIPR

CIM_PrivilegePropagationRule PPR

WHERE

M.MethodName = “ChangeAccess”

AND M.ReturnValue = 0

AND M.PreCall = FALSE

AND M.MethodParameters.Target ISA CIM_Collection

AND M.Target = MoC.Collection

AND ObjectPath(E) = MoC.Element

AND ObjectPath() = PCIPR.PartComponent

AND ObjectPath(PPR) = PCIPR.GroupComponent

AND ObjectPath(PPR) = PSATE.PolicySet

AND ObjectPath(E) = PSATE.ManagedElement”

This assures that this query is being run on behalf of a PrivilegePropagationRule that is applied to the Collection.
This assures that propagation does not pass through collections that are not appropriate.

The corresponding MethodAction instance would have its Query property set to

“SELECT (Ex.PMSPath || “.” || “ChangeAccess”) AS Methadone,
 Ex.Subject AS Subject,
 Ex.Target AS Target,
 NULL AS PropagationPolicies,
 Ex.Privileges AS Privileges
FROM SNIA_AuthorizationConditionExample Ex”

The ChangeAccess method enables a client to specify a PrivilegePropagationRule to use while assigning rights.
(See Figure 72.)

49.1.5 Reporting Granted Rights

Granted rights are reported using the ShowAccess method. (See Figure 71.) This method takes as input one or
both of a subject Identity and target ManagedElement. Output is a list of Identity, Privilege, target triples that
represent granted Privileges. This output shall reflect a consistent current state at the time of the call, regardless of
whether or not corresponding instances of AuthorizedPrivilege, AuthorizedTarget, and AuthorizedSubject have
been instantiated.

49.2 Health and Fault Management Considerations
Not defined in this standard.

49.3 Cascading Considerations
Not defined in this standard.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 509

Authorization Subprofile NO_ANSI_ID
49.4 Supported Subprofiles and Packages
None.

49.5 Methods of the Profile
None.

49.6 Client Considerations and Recipes

49.6.1 Show access rights

// DESCRIPTION

// This recipe describes how to identify the authorized subjects and their

// rights for a specified resource.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The name of a top-level System instance in the Security Profile has

// previously been discovered via SLP and is known as $System->.

// 2. The name of a managed element on $System-> whose authorized subjects and

// rights has previously been discovered and is known as $Resource->.

// This function locates the PrivilegeManagementService that manages the

// specified managed element. If no such service is located, null is returned.

sub CIMObjectPath GetPrivilegeServiceForElement(CIMObjectPath[] $Services->[],

CIMObjectPath $Resource->) {

 $Service-> = null

 // Verify that there is one or more instance of PrivilegeManagementService

 // hosted by the system.

 if ($Services->[] != null && $Services->[] > 0) {

// Locate the service that manages the privileges of the specified

// managed element.

$ResourceServices->[] = AssociatorNames($Resource->,

“CIM_ServiceAffectsElement”,

“CIM_PrivilegeManagementService”,

“UserOfService”,

“ServiceProvided”)

if ($ResourceServices->[] != null || $ResourceServices->[].length > 0) {

 for (#i in $ResourceServices->[]) {

for (#j in $Services->[]) {

 if ($ResourceServices->[#i] == $Services->[#j)) {

$Service-> = Services->[#j]

break

 }

}

 }

}

 }
510

NO_ANSI_ID Authorization Subprofile
 return $Service->

}

// MAIN

// Step 1. Locate the PrivilegeManagementServices on the system.

$PrivilegeServices->[] = AssociatorNames($System->,

“CIM_HostedService”,

“CIM_PrivilegeManagementService”,

“Antecedent”,

“Dependent”)

// There must be exactly one PrivilegeManagementService for the managed element.

$PrivilegeService-> = &GetPrivilegeServiceForElement($PrivilegeServices->[],

$Resource->)

if ($PrivilegeService-> == null) {

 <EXIT! The required PrivilegeManagementService was not found>

}

// Step 2. Retrieve the authorized subjects and their rights for the specified

// resource.

%InArgs[“Subject”] = null

%InArgs[“Target”] = $Resource->

#Result = InvokeMethod($PrivilegeService->,

“ShowAccess”,

%InArgs[],

%OutArgs[])

// Verify that the operation performed successfully.

if (#Result != 0) {

 <EXIT! Retrieving access for the specified resource failed>

}

// Step 3. Retrieve the references to the Identities (or other subjects)

// authorized for the resource.

$OutSubjects->[] = %OutArgs[“OutSubjects”]

// Step 4. Retrieve the references to the Privileges corresponding to the

// subject entries.

$OutPrivileges->[] = %OutArgs[“Privileges”]

49.6.2 Grant an access right

// DESCRIPTION

// This recipe describes how to apply a set of rights to a given resource

// and subject.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 511

Authorization Subprofile NO_ANSI_ID
// 1. The name of a top-level System instance in the Security Profile has

// previously been discovered via SLP and is known as $System->.

// 2. The name of a managed element on $System-> has previously been

// discovered and is known as $Resource->.

// 3. The name of a subject has previously been discovered and is known as

// $Subject->.

// 4. A container of activities to be granted or denied is known as #Activity[].

// 5. A container of additional information related to the activities is known

// as #ActivityQualifiers[].

// 6. A container of sematic descriptions of the formats of the elements in

// #ActivityQualifiers[] is known as #QualifierFormats[].

// MAIN

// Step 1. Locate the PrivilegeManagementServices on the system.

$PrivilegeServices->[] = AssociatorNames($System->,

“CIM_HostedService”,

“CIM_PrivilegeManagementService”,

“Antecedent”,

“Dependent”)

// There must be exactly one PrivilegeManagementService for the managed element.

$PrivilegeService-> = &GetPrivilegeServiceForElement($PrivilegeServices->[],

$Resource->)

if ($PrivilegeService-> == null) {

 <EXIT! The required PrivilegeManagementService was not found>

}

// Step 2. Create an Access Privilege

$Privilege = newInstance(“CIM_Privilege”)

$Privilege.PrivilegeGranted = true

$Privilege.RepresentsAuthorizationRights = false

$Privilege.Activity[] = #Activity[]

$Privilege.ActivityQualifiers[] = #ActivityQualifiers[]

$Privilege.QualifierFormats[] = #QualifierFormats[]

// Step 3. Add the right and get the resultant rights.

%InArgs[“Subject”] = $Subject->

%InArgs[“Target”] = $Resource->

%InArgs[“PropagationPolicies”] = null

$Privileges[0] = $Privilege

%InArgs[“Privileges”] = $Privileges[]

#Result = InvokeMethod($PrivilegeService->,

“ChangeAccess”,

%InArgs[],

%OutArgs[])

// Verify that the operation performed successfully.
512

NO_ANSI_ID Authorization Subprofile
if (#Result != 0) {

 <EXIT! Changing access for the specified resource failed>

}

// Step 4. Retrieve the references to the Privileges that represent the

// resulting rights between the subject and target instances.

$OutPrivileges->[] = %OutArgs[“Privileges”]

49.6.3 Deny a right

// DESCRIPTION

// This recipe describes how to remove a right from a given resource.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The name of a top-level System instance in the Security Profile has

// previously been discovered via SLP and is known as $System->.

// 2. The name of a managed element on $System-> has previously been

// discovered and is known as $Resource->.

// 3. The name of a subject has previously been discovered and is known as

// $Subject->.

// 4. A container of activities to be granted or denied is known as #Activity[].

// 5. A container of additional information related to the activities is known

// as #ActivityQualifiers[].

// 6. A container of sematic descriptions of the formats of the elements in

// #ActivityQualifiers[] is known as #QualifierFormats[].

// MAIN

// Step 1. Locate the PrivilegeManagementServices on the system.

$PrivilegeServices->[] = AssociatorNames($System->,

“CIM_HostedService”,

“CIM_PrivilegeManagementService”,

“Antecedent”,

“Dependent”)

// There must be exactly one PrivilegeManagementService for the managed element.

$PrivilegeService-> = &GetPrivilegeServiceForElement($PrivilegeServices->[],

$Resource->)

if ($PrivilegeService-> == null) {

 <EXIT! The required PrivilegeManagementService was not found>

}

// Step 2. Create an Access Privilege

$Privilege = newInstance(“CIM_Privilege”)

$Privilege.PrivilegeGranted = false

$Privilege.RepresentsAuthorizationRights = false

$Privilege.Activity[] = #Activity[]

$Privilege.ActivityQualifiers[] = #ActivityQualifiers[]

$Privilege.QualifierFormats[] = #QualifierFormats[]
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 513

Authorization Subprofile NO_ANSI_ID
$Privilege[1] = $Privilege

// Step 3. Remove the right and get the resultant rights.

%InArgs[“Subject”] = $Subject->

%InArgs[“Target”] = $Resource->

%InArgs[“PropagationPolicies”] = null

$Privileges[0] = $Privilege

%InArgs[“Privileges”] = $Privileges[]

#Result = InvokeMethod($PrivilegeService->,

“ChangeAccess”,

%InArgs[],

%OutArgs[])

// Verify that the operation performed successfully.

if (#Result != 0) {

 <EXIT! Changing access for the specified resource failed>

}

// Step 4. Retrieve the references to the Privileges that represent the

// resulting rights between the subject and target instances.

$OutPrivileges->[] = %OutArgs[“Privileges”]

49.7 Registered Name and Version
Security Authorization version 1.1.0

49.8 CIM Elements
Table 506 describes the CIM elements for Security Authorization.

Table 506 - CIM Elements for Security Authorization

Element Name Requirement Description

49.8.1 CIM_AuthorizationRule Optional

49.8.2
CIM_AuthorizationRuleAppliesToIdentity

Optional

49.8.3
CIM_AuthorizationRuleAppliesToPrivilege

Optional

49.8.4
CIM_AuthorizationRuleAppliesToTarget

Optional

49.8.5 CIM_AuthorizedPrivilege Optional

49.8.6 CIM_AuthorizedSubject Optional

49.8.7 CIM_AuthorizedTarget Optional
514

NO_ANSI_ID Authorization Subprofile
49.8.1 CIM_AuthorizationRule

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 507 describes class CIM_AuthorizationRule.

49.8.8 CIM_ConcreteDependency Optional

49.8.9 CIM_ConcreteDependency Optional

49.8.10 CIM_HostedService Mandatory

49.8.11 CIM_Identity Optional

49.8.12 CIM_ManagedElement Optional

49.8.13 CIM_PolicyRuleInSystem Optional

49.8.14 CIM_PolicySetAppliesToElement Optional

49.8.15 CIM_Privilege Optional

49.8.16 CIM_PrivilegeManagementService Mandatory

49.8.17 CIM_PrivilegePropagationRule Optional

49.8.18 CIM_ServiceAffectsElement (Service
to AuthorizedProvolege)

Optional

49.8.19 CIM_ServiceAffectsElement (Service
to Iden tity)

Optional

49.8.20 CIM_ServiceAffectsElement (Service
to ManagedElement)

Optional

49.8.21 CIM_ServiceAffectsElement (Service
to Privilege)

Optional

49.8.22 CIM_ServiceAvailableToElement Mandatory

49.8.23 CIM_System Mandatory

Table 507 - SMI Referenced Properties/Methods for CIM_AuthorizationRule

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

Table 506 - CIM Elements for Security Authorization

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 515

Authorization Subprofile NO_ANSI_ID
49.8.2 CIM_AuthorizationRuleAppliesToIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 508 describes class CIM_AuthorizationRuleAppliesToIdentity.

49.8.3 CIM_AuthorizationRuleAppliesToPrivilege

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 509 describes class CIM_AuthorizationRuleAppliesToPrivilege.

49.8.4 CIM_AuthorizationRuleAppliesToTarget

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

CreationClassName Mandatory Key

PolicyRuleName Mandatory Key

Table 508 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 509 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 507 - SMI Referenced Properties/Methods for CIM_AuthorizationRule

Properties Flags Requirement Description & Notes
516

NO_ANSI_ID Authorization Subprofile
Table 510 describes class CIM_AuthorizationRuleAppliesToTarget.

49.8.5 CIM_AuthorizedPrivilege

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 511 describes class CIM_AuthorizedPrivilege.

49.8.6 CIM_AuthorizedSubject

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 512 describes class CIM_AuthorizedSubject.

49.8.7 CIM_AuthorizedTarget

Table 510 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 511 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

RepresentsAuthorizat
ionRights

Mandatory Must be an Access right for this subprofile.

PrivilegeGranted Mandatory Only Grant type privileges are allowed.

Table 512 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

Privilege Mandatory

PrivilegedElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 517

Authorization Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 513 describes class CIM_AuthorizedTarget.

49.8.8 CIM_ConcreteDependency

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 514 describes class CIM_ConcreteDependency.

49.8.9 CIM_ConcreteDependency

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 515 describes class CIM_ConcreteDependency.

Table 513 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

Privilege Mandatory

TargetElement Mandatory

Table 514 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 515 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
518

NO_ANSI_ID Authorization Subprofile
49.8.10 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 516 describes class CIM_HostedService.

49.8.11 CIM_Identity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 517 describes class CIM_Identity.

49.8.12 CIM_ManagedElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

49.8.13 CIM_PolicyRuleInSystem

Created By: Static
Modified By: Static

Table 516 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory

Dependent Mandatory

Table 517 - SMI Referenced Properties/Methods for CIM_Identity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory The Identified entity is authenticated or not
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 519

Authorization Subprofile NO_ANSI_ID
Deleted By: Static
Requirement: Optional

Table 518 describes class CIM_PolicyRuleInSystem.

49.8.14 CIM_PolicySetAppliesToElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 519 describes class CIM_PolicySetAppliesToElement.

49.8.15 CIM_Privilege

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 520 describes class CIM_Privilege.

Table 518 - SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 519 - SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 520 - SMI Referenced Properties/Methods for CIM_Privilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

RepresentsAuthorizat
ionRights

Mandatory Indicates the privilege is to assign the named rights to
subjects.

PrivilegeGranted Optional Only Grant type privileges are allowed.
520

NO_ANSI_ID Authorization Subprofile
49.8.16 CIM_PrivilegeManagementService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 521 describes class CIM_PrivilegeManagementService.

49.8.17 CIM_PrivilegePropagationRule

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 522 describes class CIM_PrivilegePropagationRule.

49.8.18 CIM_ServiceAffectsElement (Service to AuthorizedProvolege)

Created By: Static

Table 521 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

ChangeAccess() Optional

ShowAccess() Optional

Table 522 - SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

PolicyRuleName Mandatory Key
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 521

Authorization Subprofile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 523 describes class CIM_ServiceAffectsElement (Service to AuthorizedProvolege).

49.8.19 CIM_ServiceAffectsElement (Service to Iden tity)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 524 describes class CIM_ServiceAffectsElement (Service to Iden tity).

49.8.20 CIM_ServiceAffectsElement (Service to ManagedElement)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 525 describes class CIM_ServiceAffectsElement (Service to ManagedElement).

Table 523 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to
AuthorizedProvolege)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory

AffectedElement Mandatory

Table 524 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Iden
tity)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory

AffectingElement Mandatory

Table 525 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Man-
agedElement)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory

AffectingElement Mandatory
522

NO_ANSI_ID Authorization Subprofile
49.8.21 CIM_ServiceAffectsElement (Service to Privilege)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 526 describes class CIM_ServiceAffectsElement (Service to Privilege).

49.8.22 CIM_ServiceAvailableToElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 527 describes class CIM_ServiceAvailableToElement.

49.8.23 CIM_System

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 526 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Privi-
lege)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory

AffectedElement Mandatory

Table 527 - SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Properties Flags Requirement Description & Notes

ServiceProvided Mandatory

UserOfService Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 523

Authorization Subprofile NO_ANSI_ID
Table 528 describes class CIM_System.

EXPERIMENTAL

Table 528 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key
524

NO_ANSI_ID Credential Management Subprofile
EXPERIMENTAL

Clause 50: Credential Management Subprofile

50.1 Description
This subprofile provides for management of credentials used by a client to establish its identity to a serving system.
An administrator of both the client and server systems establishes an Identity for the client on the server system
and creates a credential for the client on the client system.

Note: SMI-S Servers are often clients of other services. For instance, a device that is managed by an SMI-S
Server may require a login before it allows a client to discover or manage its components. Credentials
used to access devices are known within this specification as “device credentials”.

As shown in Figure 73, this subprofile applies to a System as a whole.

Credentials are created by a LocalCredentialManagementService. There shall be a one or more
LocalCredentialManagementService instances on a System conforming to this subprofile.

The Credentials are intended to authenticate a client on this System to a service running on a remote system.
There shall be one or more RemoteServiceAccessPoint instances for each of the Systems to which Credentials
may be presented.

50.1.1 Credential setup

The administrator needs to have prior knowledge about the type of Credential required by the remote system. The
LocalCredentialManagementService is subclassed into two types, a SharedSecretService and a
PublicKeyManagementService. If the latter is present, then UnsignedPubliKey Credentials are supported. If the
former, then SharedSecretService.Protocol = “SharedSecret” specifies that SharedSecret credentials are
supported and SharedSecretService.Protocol = “IKE” specifies that NamedSharedIKESecret credentials are
supported

The administrator uses CreateInstance and DeleteInstance to create or delete Credentials. The details of each are
described below. In common to all is that the key properties: SystemCreationClassName, SystemName,
ServiceCreationClassName, and ServiceName of each Credential shall be fully specified at creation time. This
information is used by the system to locate the correct LocalCredentialManagementService instance and to snap
the required IKESecretIsNamed, SharedSecretIsShared or LocallyManagedPublicKey associations. Additionally
certain remaining properties of each credential shall be filled in as described below.

• Expires: Set to the datetime after which this credential will not be valid. Use a value of
“99991231235959.999999+999” if this field is to be ignored.

50.1.2 SharedSecret Credential

• RemoteID: Set to the User ID or other value by which the client is known on the remote system. Typically this
will correspond to Account.Userid or Person.UserID as stored on the remote system.

• Secret: Set to the password or other value by which the client is authenticated on the remote system. The
value is provided in clear text. There is an underlying assumption that there is a secure communication path
being used between the administrator and the CIM Service on the client system. This property is writable, but
shall not be readable. Typically this will correspond to Account.Userid or Person.UserID as stored on the
remote system.

50.1.3 NamedSharedIKE Credential

• PeerIdentityType: This describes the type of identity used to locate the remote peer. It is an enumerated type
that shall correspond to one of the following values: “IPV4_ADDR”, “FQDN”, “USER_FQDN”,
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 525

Credential Management Subprofile NO_ANSI_ID
“IPV4_ADDR_SUBNET”,”IPV6_ADDR”, “IPV6_ADDR_SUBNET”, “IPV4_ADDR_RANGE”,
“IPV6_ADDR_RANGE”, “DER_ASN1_DN”, “DER_ASN1_GN”, or “KEY_ID”.

• PeerIdentity: An identity value conforming to the PeerIdentityType and naming the remote peer with whom a
direct trust relation exists.

• LocalIdentityType: This describes the type of identity used to name the local peer. It is an enumerated type that
shall correspond to one of the following values: “IPV4_ADDR”, “FQDN”, “USER_FQDN”,
“IPV4_ADDR_SUBNET”,”IPV6_ADDR”, “IPV6_ADDR_SUBNET”, “IPV4_ADDR_RANGE”,
“IPV6_ADDR_RANGE”, “DER_ASN1_DN”, “DER_ASN1_GN”, or “KEY_ID”.

• LocalIdentity: An identity value conforming to the LocalIdentityType and naming the local peer with whom a
direct trust relation exists.

• SharedSecretName: On creation, this is set to the password or other shared value used to authenticate the
client. When read, this is an indirect reference to a shared secret. The SecretService does not expose the
actual secret.

50.1.4 UnsignedPublicKey Credential

• PeerIdentityType: This describes the type of identity used to locate the remote peer. It is an enumerated type
that shall correspond to one of the following values: “IPV4_ADDR”, “FQDN”, “USER_FQDN”,
“IPV4_ADDR_SUBNET”,”IPV6_ADDR”, “IPV6_ADDR_SUBNET”, “IPV4_ADDR_RANGE”,
“IPV6_ADDR_RANGE”, “DER_ASN1_DN”, “DER_ASN1_GN”, or “KEY_ID”.

• PeerIdentity: An identity value conforming to the PeerIdentityType and naming the remote peer with whom a
direct trust relation exists.

• PublicKey: The DER-encoded raw public key
526

NO_ANSI_ID Credential Management Subprofile
.

50.1.5 Credential Use

Once set up, a Credential may be enabled or disabled for use by using CreateInstance or DeleteInstance to add or
remove CredentialContext associations between a Credential and the RemoteServiceAccessPoint used to access
a remote system.

See Clause 47:, "Device Credentials Subprofile" for a complete discussion of the SMI-S requirements for modeling
device credentials.

The SMI-S Server shall securely store the device credentials local to the SMI-S Server. A proxy SMI-S Server may
need to store the credentials on disk so that they are available upon reboot. In this case the credentials shall be
encrypted for confidentiality.

The device credentials shall be transmitted securely from the SMI-S Server to the device. The mechanism of
communicating the credentials to the device is outside the scope of this specification, but it should be over a secure
channel if possible.

A SMI-S Server may be configured with the device credentials necessary to talk to the device. If a SMI-S Server
supports SSL 3.0 or TLS, the HTTP Client shall use SSL 3.0 or TLS to pass device credentials to the SMI-S Server.

Figure 73 - Credential Management

SharedSecretService

Algorithm: string
Protocol : string

Credential

SharedSecret

SystemCreationClassName: string {key}
SystemName: string {key}
ServiceCreationClassName: string {key}
ServiceName: string {key}
RemoteID: string {key}
Secret: string
Algorithm: string
Protocol: string

SharedSecretIsShared

*w

1

NamedSharedIKESecret

SystemCreationClassName: string {key}
SystemName: string {key}
ServiceCreationClassName: string {key}
ServiceName: string {key}
PeerIdentityType: uint16 {key}
PeerIdentity: string {key}
LocalIdentityType: uint16 {key, enum}
LocalIdentity: string {key}
SharedSecretName: string

IKESecretIsNamed
1

*w

PublicKeyManagementService

UnsignedPublicKey

SystemCreationClassName: string {key}
SystemName: string {key}
ServiceCreationClassName: string {key}
ServiceName: string {key}
PeerIdentity: string {key}
PeerIdentityType: uint16 {enum}
PublicKey: uint8[] {octetstring}

LocallyManagedPublicKey

*w

1

LocalCredentialManagementService

SystemCreationClassName: string {key}
SystemName: string {key}
CreationClassName: string {key}
Name: string {key}

System

CreationClassName: string {key}
Name: string {key}

1
HostedService

RegisteredProfile

RegisteredName = “Security”

RegisteredSubProfile

RegisteredName = “Security CredentialManagement

ElementConformsToProfile

SubProfileRequiresProfile*

*

0..1

*
1

HostedAccessPoint

RemoteServiceAccessPoint
AccessInfo : string
InfoFormat : uint16 {enum}
OtherInfoFormatDescription : stringCredentialContext* *

*w

*w
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 527

Credential Management Subprofile NO_ANSI_ID
When new device credentials are passed to an SMI-S Server, the device credential information in the device shall
be updated immediately.

Only the SMI-S Server responsible for communicating with the device has access to the properties of the
SharedSecret object. No other SMI-S Client may read the Secret property of this object as it shall be implemented
Write-Only.

50.2 Health and Fault Management Considerations
Not defined in this standard.

50.3 Cascading Considerations
Not defined in this standard.

50.4 Supported Subprofiles and Packages
None.

50.5 Methods of the Profile
None.

50.6 Client Considerations and Recipes
None.

50.7 Registered Name and Version
Security Credential Management version 1.1.0

50.8 CIM Elements
Table 529 describes the CIM elements for Security Credential Management.

Table 529 - CIM Elements for Security Credential Management

Element Name Requirement Description

50.8.1 CIM_CredentialContext Optional

50.8.2 CIM_HostedAccessPoint Mandatory

50.8.3 CIM_HostedService Mandatory

50.8.4 CIM_IKESecretIsNamed Optional

50.8.5 CIM_LocallyManagedPublicKey Optional

50.8.6 CIM_NamedSharedIKESecret Mandatory

50.8.7 CIM_PublicKeyManagementService Mandatory

50.8.8 CIM_RemoteServiceAccessPoint Mandatory
528

NO_ANSI_ID Credential Management Subprofile
50.8.1 CIM_CredentialContext

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 530 describes class CIM_CredentialContext.

50.8.2 CIM_HostedAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 531 describes class CIM_HostedAccessPoint.

50.8.3 CIM_HostedService

50.8.9 CIM_SharedSecret Mandatory

50.8.10 CIM_SharedSecretIsShared Optional

50.8.11 CIM_SharedSecretService Mandatory

50.8.12 CIM_System Mandatory

50.8.13 CIM_UnsignedPublicKey Mandatory

Table 530 - SMI Referenced Properties/Methods for CIM_CredentialContext

Properties Flags Requirement Description & Notes

ElementProvidingCo
ntext

Mandatory

ElementInContext Mandatory

Table 531 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 529 - CIM Elements for Security Credential Management

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 529

Credential Management Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 532 describes class CIM_HostedService.

50.8.4 CIM_IKESecretIsNamed

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 533 describes class CIM_IKESecretIsNamed.

50.8.5 CIM_LocallyManagedPublicKey

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 534 describes class CIM_LocallyManagedPublicKey.

Table 532 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 533 - SMI Referenced Properties/Methods for CIM_IKESecretIsNamed

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 534 - SMI Referenced Properties/Methods for CIM_LocallyManagedPublicKey

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
530

NO_ANSI_ID Credential Management Subprofile
50.8.6 CIM_NamedSharedIKESecret

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 535 describes class CIM_NamedSharedIKESecret.

50.8.7 CIM_PublicKeyManagementService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 536 describes class CIM_PublicKeyManagementService.

Table 535 - SMI Referenced Properties/Methods for CIM_NamedSharedIKESecret

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

ServiceCreationClas
sName

Mandatory Key

ServiceName Mandatory Key

PeerIdentity Mandatory Key, The identity of the remote peer trusted entity.

PeerIdentityType Mandatory The type of the remote PeerIdentity.

LocalIdentity Mandatory Key, The identity of the local peer trusted entity.

LocalIdentityType Mandatory The type of the LocalIdentity.

SharedSecretName M Mandatory The name of the shared secret,

Table 536 - SMI Referenced Properties/Methods for CIM_PublicKeyManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 531

Credential Management Subprofile NO_ANSI_ID
50.8.8 CIM_RemoteServiceAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 537 describes class CIM_RemoteServiceAccessPoint.

50.8.9 CIM_SharedSecret

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 538 describes class CIM_SharedSecret.

50.8.10 CIM_SharedSecretIsShared

Table 537 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

Table 538 - SMI Referenced Properties/Methods for CIM_SharedSecret

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

ServiceCreationClas
sName

Mandatory Key

ServiceName Mandatory Key

RemoteID Mandatory Key, The identity of the client as known on the remote
system.

Secret Mandatory A secret
532

NO_ANSI_ID Credential Management Subprofile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 539 describes class CIM_SharedSecretIsShared.

50.8.11 CIM_SharedSecretService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 540 describes class CIM_SharedSecretService.

50.8.12 CIM_System

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 539 - SMI Referenced Properties/Methods for CIM_SharedSecretIsShared

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 540 - SMI Referenced Properties/Methods for CIM_SharedSecretService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

Protocol M Mandatory Select 'IKE' for Shared IKE secrets and 'SharedSecret' for
Shared secrets.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 533

Credential Management Subprofile NO_ANSI_ID
Table 541 describes class CIM_System.

50.8.13 CIM_UnsignedPublicKey

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 542 describes class CIM_UnsignedPublicKey.

EXPERIMENTAL

Table 541 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

Table 542 - SMI Referenced Properties/Methods for CIM_UnsignedPublicKey

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

ServiceCreationClas
sName

Mandatory Key

ServiceName Mandatory Key

PeerIdentity Mandatory Key, The identity of the peer trusted entity.

PeerIdentityType Mandatory The type of the PeerIdentity.

PublicKey M Mandatory Key, The identity of the peer trusted entity.
534

NO_ANSI_ID Security Resource Ownership Subprofile
EXPERIMENTAL

Clause 51: Security Resource Ownership Subprofile

51.1 Description

This subprofile3 provides the means to model restrictions on CIM operations associated with exclusive use of a
resource, For instance, a storage volume in an array. It is intended for environments in which multiple CIM clients
may not be completely aware of each other's activities, making it important that use of the resource not be
disrupted by a client that is unaware of its use. Specific examples include use of a volume by storage virtualizers
and NAS gateways, where attempts to manage the volume by clients not associated with this use could be
seriously disruptive. An intended configuration is that a CIM client exists in the cascading device that has exclusive
use of the volume, although this is not strictly necessary. The Security Resource Ownership Subprofile is optional.

.The model is permission-based (i.e., represents allowed operations, as opposed to forbidden ones). Where used,
the policy is to deny all rights except those explicitly granted. Specific details of how the Security Resource
Ownership Subprofile is applied are specified in the Resource Ownership Considerations subsection of the
Cascading Considerations section of the including profile; this includes definition of the contents of the Privilege
instances and definition of any propagation rules. The key class in Security Resource Ownership is the Privilege
class that is used to grant rights to subjects (for instance, the identity of an embedded CIM client) to act on targets
(resources that can be manipulated.)

3. The Security Resource Ownership subprofile was formerly known as Ownership. It has been renamed to avoid con-
fusion with the notion of file owner commonly found in filesystems.

Figure 74 - Security Resource Ownership

ConcreteDependency

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities: uint16 [] {enum}
ActivityQualifiers: string []
QualifierFormats: uint16 [] {enum}
RepresentsAuthorizationRights:boolean

System

1

HostedService

*

* Subprofile: Security Authorization
Subprofile: Security RBAC
Subprofile: Security Resource Ownership

RegisteredSubProfile

RegisteredName = “Security Authorization”

RegisteredSubProfile

RegisteredName = “Security ResourceOwnership

ElementConformsToProfile

SubProfileRequiresProfile

*

* 0..1

*

*
RegisteredSubProfile

RegisteredName = “Security RBAC”
ReferencedProfile

*
*

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 535

Security Resource Ownership Subprofile NO_ANSI_ID
Support for the ShowAccess method is mandatory. It is used to extract which rights have been granted to a subject
entity for a particular target resource. The implementation may also make this explicit by instantiating
AuthorizedPrivilege instances with appropriate AuthorizedSubject and AuthorizedTarget associations.

 An important aspect of this class is the RepresentsAuthorizationRights property:

• A Privilege with RepresentsAuthorizationRights = FALSE is an access privilege that controls invocation of CIM
operations. The basic operation of an access privilege is that only the authorized subject identities can perform
the Activities (including qualifiers) in the privilege on the authorized target(s).

• A Privilege with RepresentsAuthorizationRights = TRUE is a resource ownership privilege that controls the
ability to associate access privileges with objects. The basic operation of an ownership privilege is to control
the association of access privileges to target resource; for the Activities (including qualifiers) listed in the
ownership privilege. Only authorized subjects of the ownership privilege are permitted to associate an access
privilege containing any of those Activities with any target of the ownership privilege. An object that is an
authorized target of an ownership privilege is called an owned resource.

An object can be subject to operation restrictions imposed by this subprofile only when it is an owned resource
(i.e., the target of a resource ownership privilege). The algorithm is:

1) In the absence of an ownership privilege on a resource, any client may assign access privileges to that
resource.

2) If an object is an owned resource (the target of a resource ownership privilege) then only subjects repre-
sented by owning Identities may assign access rights covered by the ownership Privilege instance to that
resource.

3) In the absence of an access privilege on a resource, all clients are granted Read and Detect access (see the
CIM Authorization model for information on the intrinsic operations covered by Read and Detect). All other
access is denied.

4) All object reference parameters of each extrinsic method shall be checked; it is not sufficient to check only
the first object reference parameter on the theory that the extrinsic is invoked on that object.

5) When Security Resource Ownership is in use, the CIM Client shall authenticate to the CIMOM to prevent
misuse of Identity; an unauthenticated CIM Client will not be able to invoke any operation that is restricted by
an access privilege.

For an object to be both owned and manageable via the controlling CIM Client, that object needs to be the target of
a resource ownership privilege (for the ownership rights) and an access privilege (to allow management
operations).

To enable future flexibility and (hopefully) minimize the opportunity for client programming errors, a resource
supporting the Security Resource Ownership Subprofile shall either:

1) Instantiate one or more ownership Privilege instances containing allowable sets of rights to be granted.
These are associated to the PrivilegeManagementService via ConcreteDependency associations. To assign
ownership, the RepresentsAuthorizationRights property shall be set to TRUE in a copy of a Privilege instance
passed in the ChangeAccess method. Otherwise, access rights are defined.

2) Instantiate one or more Role instances having ownership Privilege instances associated via MemberOfCol-
lection. As above, these Privilege instances contain allowable sets of rights to be granted. Unless the Role
applies to all resources in the System, the Role instances shall be associated to applicable resources via
RoleLimitedToTarget. The infrastructure may restrict the ability of the client to modify Role instances, includ-
ing associations and associated Privileges. To assign ownership, a Role with Privileges, associated by Mem-
berOfCollection, that have RepresentsAuthorizationRights set to TRUE, shall be associated via
MemberOfCollection to one or more Identity instances. Each selected Identity instance shall be associated
via ServiceAffectsElement to PrivilegeManagementService that is also associated to the resource via Ser-
viceAffectsElement.
536

NO_ANSI_ID Security Resource Ownership Subprofile
Privilege propagation rules, as defined by an instance of PrivilegePropagationRule, is a means of specifying how
rights are propagated by a ChangeAccess call. The infrastructure may publish available propagation strategies via
instances of PrivilegePropagationRule associated to a resource via PolicySetAppliesToElement associations.
Alternatively, a Profile may define a set of “well-known” PrivilegePropagationRules that apply to particular types of
resources and which may be discovered via enumeration. In either case, these available rules may be referenced
in a ChangeAccess method.

51.1.1 Design Considerations

ServiceAffectsElement associations are assumed between Services and affected elements. (See Figure 75.) This
subprofile does not require an implementation to present these associations unless there is more than one
PrivilegeManagementService in the profiled Namespace.

ServiceAvailableToElement associations are assumed between Services and using elements (See Figure 75.) This
subprofile does not require an implementation to present these associations unless there is more than one System
in the profiled Namespace.

AuthorizedPrivilege instances are assumed when a Privilege is granted to a subject or assigned to a target. (See
Figure 76.) AuthorizedTarget and AuthorizedSubject associations are assumed between the AuthorizedPrivilege
and the target and subject entities respectively. This subprofile does not require the implementation to make these
instances explicit. Instead this profile relies on the ChangeAccess method to grant or deny rights and on the
ShowAccess method to display rights.

Figure 75 - Service Associations

P r i v i l e g e M a n a g e m e n t S e r v i c e

A s s ig n A c c e s s ()
R e m o v e A c c e s s ()
C h a n g e A c c e s s ()
S h o w A c c e s s ()

P r i v i l e g e

*

S u b p r o f i l e : S e c u r i t y R B A C
S u b p r o f i l e : S e c u r i t y A u t h o r i z a t i o n

S u b p r o f i l e : S e c u r i t y R e s o u r c e O w n e r s h i p
B o l d : R e q u i r e d

M a n a g e d E l e m e n t

*I d e n t i t y

*

S e r v i c e A f f e c t s E le m e n t
*S e r v i c e A f f e c t s E le m e n t

S y s t e m

S e r v i c e A v a i l a b l e T o E le m e n t
*

*

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 537

Security Resource Ownership Subprofile NO_ANSI_ID
51.2 Health and Fault Management Considerations
Not defined in this standard.

51.3 Cascading Considerations
Not defined in this standard.

51.4 Supported Subprofiles and Packages
None.

51.5 Methods of the Profile
None.

51.6 Client Considerations and Recipes

51.6.1 Show Ownership Rights

// DESCRIPTION

// List the Subjects that have authorization rights to a resource.

// These subjects have ownership for the associated privileges.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $Resource-> contains a reference to a resource (Any Managed Element)

// $PMS-> contains a reference to the PrivilegeManagementService

Figure 76 - AuthorizedPrivilege

M a n a g e d E le m e n t

A u th o r iz e d P r iv i le g e*
*

Id e n t i t y

A u th o r iz e d S u b je c t

*
P r iv i le g e

*
A u th o r iz e d T a r g e t

S u b p r o f i le : S e c u r i t y R B A C
S u b p r o f i l e : S e c u r i t y A u t h o r i z a t io n

S u b p r o f i l e : S e c u r i t y R e s o u r c e O w n e r s h ip

B o ld : R e q u i r e d
538

NO_ANSI_ID Security Resource Ownership Subprofile
//

// Get Privileges for resource

//

#result = $PMS->ShowAccess(,$Resource->, $OutSubject->[], null, $OutPrivilege[])

// Verify that the operation performed successfully.

if (#Result != 0) {

 <EXIT! Show access for the specified resource failed>

}

// Filter out the non authorization rights

//

#k = 0

for #j in $OutPrivilege[] {

 if ($OutPrivilege[#j].RepresentsAuthorizationRights = True) {

#k++

$Subject->[#k] = $OutSubject->[#j]

$Privilege->[#k] = $OutPrivilege->[#j]

 }

}

//

// $Resource-> contains resource

// $Subject->[] contains array of references to Identities (or other subjects),

// with Authorization rights to a resource

// $Privilege[] contains array of Privileges, corresponding to the subject
entries.

//

51.6.2 Deny ownership rights

51.6.3 // DESCRIPTION

// Remove a set of authorization rights, (represented by a Privilege), from a named

// Subject for a resource.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// The calling subject MUST be an owner for the named set of rights.

// Note: A resource is typically represented by an instance of some type of

// CIM_ManagedElement. Conceptually, a resource could also be an association instance.

// It is up to referencing Profiles to apply any additional constraints on the types of

// instances that are considered to be resource.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 539

Security Resource Ownership Subprofile NO_ANSI_ID
//

// $Identity-> contains a reference to a subject Identity

// $Resource-> contains a reference to a resource

// $Privilege contains a Privilege

// $PMS-> contains a reference to the PrivilegeManagementService

//

// This recipe is NOT dealing with Privilege Propagation.

//

// Set the Privilege to eliminate all rights

//

$Privilege[1] = $Privilege

$Privilege[1].PrivilegeGranted = False

$Privilege[1].RepresentsAuthorizationRights = True

// Eliminate all rights to the resource.

// Note that we don’t care whether someone else did it already.

//

#result = $PMS->ChangeAccess($Identity->,$Resource->,null,$Privilege[])

// Verify that the operation performed successfully.

if (#Result != 0) {

 <EXIT! Changing access for the specified resource failed>

}

// $Privilege[] contains the result array of Privileges between the subject and target

//

Grant ownership rights

// DESCRIPTION

// Give a named Subject a set of authorization rights,

// (represented by a Privilege) for a resource.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
540

NO_ANSI_ID Security Resource Ownership Subprofile
// The calling subject MUST be an owner.

// This call also makes the named subject an owner.

// The assumption is that the calling subject trusts the named subject.

//

// $Identity-> contains a reference to a subject Identity

// $Resource-> contains a reference to a resource

// $Privilege contains a Privilege to be granted

// $PMS-> contains a reference to the PrivilegeManagementService

//

// This recipe is NOT dealing with Privilege Propagation.

//

// Set the Privilege

//

$Privilege[1] = $Privilege

$Privilege[1].PrivilegeGranted = True

$Privilege[1].RepresentsAuthorizationRights = True

#result = $PMS->ChangeAccess($Identity->,$Resource->,null,$Privilege[])

// Verify that the operation performed successfully.

if (#Result != 0) {

 <EXIT! Changing access for the specified resource failed>

}

// $Privilege[] contains the result array of Privileges between the subject and
target

//

51.7 Registered Name and Version
Security Resource Ownership version 1.3.0

51.8 CIM Elements
Table 543 describes the CIM elements for Security Resource Ownership.

Table 543 - CIM Elements for Security Resource Ownership

Element Name Requirement Description

51.8.1 CIM_AuthorizationRule Optional

51.8.2
CIM_AuthorizationRuleAppliesToIdentity

Optional

51.8.3
CIM_AuthorizationRuleAppliesToPrivilege

Optional

51.8.4 CIM_AuthorizationRuleAppliesToRole Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 541

Security Resource Ownership Subprofile NO_ANSI_ID
51.8.5
CIM_AuthorizationRuleAppliesToTarget

Optional

51.8.6 CIM_AuthorizedPrivilege Optional

51.8.7 CIM_AuthorizedSubject Optional

51.8.8 CIM_AuthorizedTarget Optional

51.8.9 CIM_ConcreteDependency (Service to
AuthorizedPrivilege)

Optional

51.8.10 CIM_ConcreteDependency (Service
to Privilege)

Optional

51.8.11 CIM_HostedService Mandatory

51.8.12 CIM_Identity Optional

51.8.13 CIM_ManagedElement Optional

51.8.14 CIM_MemberOfCollection
(AuthorizedPrivilege to Role)

Optional

51.8.15 CIM_MemberOfCollection (Identity to
Role)

Optional

51.8.16 CIM_MemberOfCollection (Privilege
to Role)

Optional

51.8.17 CIM_MemberOfCollection (Role to
Role)

Optional

51.8.18 CIM_OwningCollectionElement Optional

51.8.19 CIM_PolicyRuleInSystem (System to
AuthorizationRule)

Optional

51.8.20 CIM_PolicyRuleInSystem (System to
PrivilegePropogationRule)

Optional

51.8.21 CIM_PolicySetAppliesToElement Optional

51.8.22 CIM_Privilege Optional

51.8.23 CIM_PrivilegeManagementService Mandatory

51.8.24 CIM_PrivilegePropagationRule Optional

51.8.25 CIM_Role Optional

51.8.26 CIM_RoleLimitedToTarget Optional

51.8.27 CIM_ServiceAffectsElement (Service
to AuthorizedPrivilege)

Optional

51.8.28 CIM_ServiceAffectsElement (Service
to Identity)

Optional

Table 543 - CIM Elements for Security Resource Ownership

Element Name Requirement Description
542

NO_ANSI_ID Security Resource Ownership Subprofile
51.8.1 CIM_AuthorizationRule

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 544 describes class CIM_AuthorizationRule.

51.8.2 CIM_AuthorizationRuleAppliesToIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 545 describes class CIM_AuthorizationRuleAppliesToIdentity.

51.8.29 CIM_ServiceAffectsElement (Service
to ManagedElement)

Optional

51.8.30 CIM_ServiceAffectsElement (Service
to Privilege)

Optional

51.8.31 CIM_ServiceAvailableToElement Mandatory

Table 544 - SMI Referenced Properties/Methods for CIM_AuthorizationRule

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

PolicyRuleName Mandatory Key

Table 545 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 543 - CIM Elements for Security Resource Ownership

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 543

Security Resource Ownership Subprofile NO_ANSI_ID
51.8.3 CIM_AuthorizationRuleAppliesToPrivilege

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 546 describes class CIM_AuthorizationRuleAppliesToPrivilege.

51.8.4 CIM_AuthorizationRuleAppliesToRole

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 547 describes class CIM_AuthorizationRuleAppliesToRole.

51.8.5 CIM_AuthorizationRuleAppliesToTarget

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 546 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 547 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToRole

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory
544

NO_ANSI_ID Security Resource Ownership Subprofile
Table 548 describes class CIM_AuthorizationRuleAppliesToTarget.

51.8.6 CIM_AuthorizedPrivilege

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 549 describes class CIM_AuthorizedPrivilege.

51.8.7 CIM_AuthorizedSubject

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 550 describes class CIM_AuthorizedSubject.

51.8.8 CIM_AuthorizedTarget

Created By: Static

Table 548 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 549 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

RepresentsAuthorizat
ionRights

Mandatory Must be an Access right for this subprofile.

PrivilegeGranted Mandatory Only Grant type privileges are allowed.

Table 550 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

Privilege Mandatory

PrivilegedElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 545

Security Resource Ownership Subprofile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 551 describes class CIM_AuthorizedTarget.

51.8.9 CIM_ConcreteDependency (Service to AuthorizedPrivilege)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 552 describes class CIM_ConcreteDependency (Service to AuthorizedPrivilege).

51.8.10 CIM_ConcreteDependency (Service to Privilege)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 553 describes class CIM_ConcreteDependency (Service to Privilege).

Table 551 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

Privilege Mandatory

TargetElement Mandatory

Table 552 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Service to Autho-
rizedPrivilege)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 553 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Service to Privi-
lege)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
546

NO_ANSI_ID Security Resource Ownership Subprofile
51.8.11 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 554 describes class CIM_HostedService.

51.8.12 CIM_Identity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 555 describes class CIM_Identity.

51.8.13 CIM_ManagedElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

51.8.14 CIM_MemberOfCollection (AuthorizedPrivilege to Role)

Created By: Static
Modified By: Static

Table 554 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 555 - SMI Referenced Properties/Methods for CIM_Identity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 547

Security Resource Ownership Subprofile NO_ANSI_ID
Deleted By: Static
Requirement: Optional

Table 556 describes class CIM_MemberOfCollection (AuthorizedPrivilege to Role).

51.8.15 CIM_MemberOfCollection (Identity to Role)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 557 describes class CIM_MemberOfCollection (Identity to Role).

51.8.16 CIM_MemberOfCollection (Privilege to Role)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 558 describes class CIM_MemberOfCollection (Privilege to Role).

Table 556 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (AuthorizedPrivi-
lege to Role)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 557 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identity to Role)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 558 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Privilege to Role)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory
548

NO_ANSI_ID Security Resource Ownership Subprofile
51.8.17 CIM_MemberOfCollection (Role to Role)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 559 describes class CIM_MemberOfCollection (Role to Role).

51.8.18 CIM_OwningCollectionElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 560 describes class CIM_OwningCollectionElement.

51.8.19 CIM_PolicyRuleInSystem (System to AuthorizationRule)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 559 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Role to Role)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 560 - SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 549

Security Resource Ownership Subprofile NO_ANSI_ID
Table 561 describes class CIM_PolicyRuleInSystem (System to AuthorizationRule).

51.8.20 CIM_PolicyRuleInSystem (System to PrivilegePropogationRule)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 562 describes class CIM_PolicyRuleInSystem (System to PrivilegePropogationRule).

51.8.21 CIM_PolicySetAppliesToElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 563 describes class CIM_PolicySetAppliesToElement.

51.8.22 CIM_Privilege

Created By: Static

Table 561 - SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (System to Authori-
zationRule)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 562 - SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem (System to Privi-
legePropogationRule)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 563 - SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory
550

NO_ANSI_ID Security Resource Ownership Subprofile
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 564 describes class CIM_Privilege.

51.8.23 CIM_PrivilegeManagementService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 565 describes class CIM_PrivilegeManagementService.

51.8.24 CIM_PrivilegePropagationRule

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 564 - SMI Referenced Properties/Methods for CIM_Privilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

RepresentsAuthorizat
ionRights

Mandatory Must be an Access right for this subprofile.

PrivilegeGranted Mandatory Only Grant type privileges are allowed.

Table 565 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

ChangeAccess() Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 551

Security Resource Ownership Subprofile NO_ANSI_ID
Table 566 describes class CIM_PrivilegePropagationRule.

51.8.25 CIM_Role

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 567 describes class CIM_Role.

51.8.26 CIM_RoleLimitedToTarget

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 568 describes class CIM_RoleLimitedToTarget.

51.8.27 CIM_ServiceAffectsElement (Service to AuthorizedPrivilege)

Table 566 - SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

PolicyRuleName Mandatory Key

Table 567 - SMI Referenced Properties/Methods for CIM_Role

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

Table 568 - SMI Referenced Properties/Methods for CIM_RoleLimitedToTarget

Properties Flags Requirement Description & Notes

TargetElement Mandatory

DefiningRole Mandatory
552

NO_ANSI_ID Security Resource Ownership Subprofile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 569 describes class CIM_ServiceAffectsElement (Service to AuthorizedPrivilege).

51.8.28 CIM_ServiceAffectsElement (Service to Identity)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 570 describes class CIM_ServiceAffectsElement (Service to Identity).

51.8.29 CIM_ServiceAffectsElement (Service to ManagedElement)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 569 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to
AuthorizedPrivilege)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory

AffectingElement Mandatory

Table 570 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Iden-
tity)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory

AffectingElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 553

Security Resource Ownership Subprofile NO_ANSI_ID
Table 571 describes class CIM_ServiceAffectsElement (Service to ManagedElement).

51.8.30 CIM_ServiceAffectsElement (Service to Privilege)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 572 describes class CIM_ServiceAffectsElement (Service to Privilege).

51.8.31 CIM_ServiceAvailableToElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 573 describes class CIM_ServiceAvailableToElement.

EXPERIMENTAL

Table 571 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Man-
agedElement)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory

AffectingElement Mandatory

Table 572 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Privi-
lege)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory

AffectingElement Mandatory

Table 573 - SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Properties Flags Requirement Description & Notes

ServiceProvided Mandatory

UserOfService Mandatory
554

NO_ANSI_ID Security Role Based Access Control Subprofile
EXPERIMENTAL

Clause 52: Security Role Based Access Control Subprofile

52.1 Description

52.1.1 Overview

The Role Based Access Control (RBAC.) subprofile enables management of authorization using RBAC Roles,
(see Figure 77). The Security RBAC subprofile is a subprofile of the Security Authorization subprofile.

If this subprofile is supported, the CIM Server may publish some number of Roles via OwningCollectionElement
associations to the top level System. Rights are granted to a Role by Privilege instances associated via
MemberOfCollection. Target resources are associated to a Role via RoleLimitedToTarget associations.

If a subject Identity is associated to a Role via MemberOfCollection and if CurrentlyAuthenticated is true, then the
entity named by the Identity is authorized to exercise all rights granted by the Role to target resources.

If there are no RoleLimitedToTarget associations, then the Role applies to all resources in the System. If there are
RoleLimitedToTarget association, then those associations identify the target resources of the role.

A Role may collect other Roles via MemberOfCollection. Privileges of the included Role are granted to Identities of
the including Role for those resources that are scoped to both Roles.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 555

Security Role Based Access Control Subprofile NO_ANSI_ID

52.1.2 Default Authorization

The ChangeAccess method is not used to grant or deny authorization via Roles. Rather, this subprofile uses CIM
Intrinsic methods CreateInstance and DeleteInstance on appropriate associations and on the Role class itself. The
following describes the

• All resources of a system conforming to this subprofile are scoped to any Role with no RoleLimitedToTarget
associations.

Figure 77 - Role-Based Access Control

ConcreteDependency

Subject: Identity

InstanceID: string
CurrentlyAuthenticated: boolean

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities: uint16 [] {enum}
ActivityQualifiers: string []
QualifierFormats: uint16 [] {enum}
RepresentsAuthorizationRights:boolean

System 1
HostedService *

MemberOfCollection

MemberOfCollection *

*

*

*

Subprofile: Security Authorization
Subprofile: Security RBAC

RegisteredSubProfile

RegisteredName = “Security Authorization”

RegisteredSubProfile

RegisteredName = “Security RBAC

ElementConformsToProfile

SubProfileRequiresProfile

*

*0..1

*

OwningCollectionElement

*
Role

CreationClassName: string {key}
Name: string {key}
BusinessCategory: string
CommonName: string {Req'd}

OtherRoleInformation

CreationClassName: string {key}
Name: string {key}
ObjectClass: String []
BusinessCategory: string[]
CommonName: string[]
Descriptions: string[]
DestinationIndicator: string[]
FacsimileTelephoneNumber: string[]
InternationaliSDNNumber: string[]
OU: string[]
PhysicalDeliveryOfficeName: string[]
PostalAddress: string[]
PostalCode: string[]
PostOfficeBox: string[]
PreferredDeliveryMethod: string
RegisteredAddress:string[]
SeeAlso: string[]
StateOrProvince: string[]
Street: string[]
TelephoneNumber: string[]
TeletexTerminalIdentifier: string[]
TelexNumber: string[]
X121Address: string[]

MoreRoleInfo

1

0..1

*
ManagedElement

*

RoleLimitedToTarget

*
MemberOfCollection *

*

0..1

RegisteredProfile

RegisteredName = “Security”

SubProfileRequiresProfile

* 0..1
556

NO_ANSI_ID Security Role Based Access Control Subprofile
• Only resources associated by RoleLimitedToTarget are scoped to a Role with RoleLimitedToTarget
associations. CreateInstance and DeleteInstance are used to add or delete RoleLimitedToTarget associations.

• MemberOfCollection associations are used to grant Privileges to a Role. CreateInstance and DeleteInstance
are used to add or delete MemberOfCollection associations between Privilege and Role instances.

• MemberOfCollection associations are used to place Identities into a Role. CreateInstance and DeleteInstance
are used to add or delete MemberOfCollection associations between Identity and Role instances.

• Every Identity in a Role is authorized with all rights defined by all Privileges granted to the Role for all
resources scoped to the Role. The set of authorized rights is adjusted dynamically as a result of
CreateInstance and DeleteInstance operations on the MemberOfCollection and RoleLimitedToTarget
associations described above.

• MemberOfCollection associations are used to incorporate one Role into another Role. CreateInstance and
DeleteInstance are used to add or delete MemberOfCollection associations between Role instances. The
following additional rules apply:

• Identities of the incorporating Role are authorized with all rights defined by all Privileges granted to the
incorporated Role for all resources that are scoped to the intersection of the set of resources scoped to each
Role.

• This process is recursive through the MemberOfCollection association between Roles with the added
conditions that:

- At each level, the intersecting set of resources found at level n is intersected with the set of resources
scoped to level n+1.

- This intersection forms the set of resources to which the Identities of level 1 are authorized with the
Privileges of level n+1.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 557

Security Role Based Access Control Subprofile NO_ANSI_ID
52.1.3 Authorization Policy

This subprofile extends the Authorization Policy defined in the Security Authorization subprofile.

In addition associations specified in the Security Authorization subprofile. AuthenticationRuleAppliesToRole may
be used to incorporate a Role into an AuthenticationRule. This is shown in Figure 78.

The details of the specification of AuthorizationRules are left to the profiles and subprofiles that reference this
subprofile.

52.1.4 Design Considerations

ConcreteDependency associations are assumed between Services and the elements that they directly manage
(See Figure 79.) This subprofile does not REQUIRE an implementation to present these associations unless there
is more than one PrivilegeManagementService in the profiled Namespace.

ServiceAffectsElement associations are assumed between Services and affected elements. (See Figure 79.) This

Figure 78 - Policy Rules

ConcreteDependency

Subject: Identity

InstanceID: string
CurrentlyAuthenticated: boolean

AuthorizedPrivilege

AuthorizedSubject

Target: ManagedElement
AuthorizedTarget

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

*

*
*

*

Privilege

InstanceID: string {key}
PrivilegeGranted: boolean (True)
Activities: uint16 [] {enum}
ActivityQualifiers: string []
QualifierFormats: uint16 [] {enum}
RepresentsAuthorizationRights:boolean

AuthorizationRule

AuthorizationRuleAppliesToTarget

AuthorizationRuleAppliesToPrivilege

*

*

*

AuthorizationRuleAppliesToIdentity

System

*1

HostedService

*

1

PrivilegePropagationRule

PolicySetAppliesToElement

*

*

*

Role

MemberOfCollection

AuthorizationRuleAppliesToRole

RoleLimitedToTarget

MemberOfCollection

*

MemberOfCollection

*

*

*
*

*

*

*

PolicyRuleInSystem

*

*
Subprofile: Security Authorization
Subprofile: Security RBAC

OwningCollectionElement

0..1

*

558

NO_ANSI_ID Security Role Based Access Control Subprofile
subprofile does not REQUIRE an implementation to present these associations unless there is more than one
PrivilegeManagementService in the profiled Namespace.

ServiceAvailableToElement associations are assumed between Services and using elements (See Figure 79.) This
subprofile does not REQUIRE an implementation to present these associations unless there is more than one
System in the profiled Namespace.

This subprofile does not require the implementation to make AuthorizedPrivilege instances explicit. However, there
existence is assumed whenever a Role containing one or more Privileges is associated by MemberOfCollection to
an Identity.

• In the case where there is no RoleLimitedToTarget association, then all ManagedElements are implicitly
authorized to the collected Identity instances.

• If RoleLimitedToTarget associations are used, then only those ManagedElements are authorized. Figure 80
shows this case.

• Additionally Figure 80 shows the case where a Role is collected into another role. Only the intersection of
target resources between the included and including Roles are granted permission for Identities of the
including Role. For example, in Figure 80, note that Identity B does not become authorized to

Figure 79 - Service Associations

PrivilegeManagem entService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

*

Subprofile: Security RBAC

Subprofile: Security Authorization

Bold: Required

ManagedElem ent

*Identity

*

ServiceAffectsElement *

System

ServiceAvailableToElement

*

*

Role *
ConcreteDependency
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 559

Security Role Based Access Control Subprofile NO_ANSI_ID
ManagedElement A. However, Identity A does become authorized to ManagedElement AB.This subprofile
relies on the ShowAccess method to display rights the rights granted by membership in a Role.

52.2 Health and Fault Management Consideration
Not defined in this standard.

52.3 Cascading Considerations
Not defined in this standard.

52.4 Supported Subprofiles and Packages
None.

52.5 Methods of the Profile
None.

Figure 80 - AuthorizedPrivilege

A: ManagedElement

AA: AuthorizedPrivilege*
*A: Identity AuthorizedSubject

*

A: Privilege
*

AuthorizedTarget

A: Role

MemberOfCollection

RoleLimitedToTarget

*

*
*

B: Role

MemberOfCollection

*

C: ManagedElement*

*

*

BC: AuthorizedPrivilege

*

B: Privilege
*

Subprofile: Security Authorization

Subprofile: Security RBAC

Bold: Required

AC: AuthorizedPrivilege

*

AuthorizedSubject

*

B: Identity *

MemberOfCollection

*

*

*

*

MemberOfCollection

*

*

*

*

B: ManagedElement

*

RoleLimitedToTarget

*

RoleLimitedToTarget * AuthorizedTarget

*BB: AuthorizedPrivilege

MemberOfCollection

AuthorizedSubject

*

* * *

AuthorizedTarget
560

NO_ANSI_ID Security Role Based Access Control Subprofile
52.6 Client Considerations and Recipes

52.6.1 List the Roles associated with an Identity

// DESCRIPTION

// For a specific Identity, this recipe lists all associated Roles

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $Identity-> contains a reference to an Identity

//

//==

// Subroutines of SecurityRBAC 1

//==

Sub GetMemberRoles($StartRoles->[], $Roles->[])

{

 // Get Member Roles

 for #i in $StartRoles->[]

 {

 $MemberRoles->[] = AssociatorNames($StartRoles->[#i],

“CIM_MemberOfCollection”,”CIM_Role”,Collection,)

 // Append Member Roles to Roles output.

// Note that on the first iteration size of Roles is 0.

// On the next interation Roles.size is now size of previous
MemberRoles.

 //

 #i = $Roles->[].size

 for #j in $MemberRoles->[]

 {

 $Roles->[(#i+#j] = $MemberRoles->[#j]

 }

// Get Members of Members

//

 &GetMemberRoles($MemberRoles->[], Roles->[])

}

//==

//SecurityRBAC 1 Recipe starts here

//==

// Find the first-level Roles of an Identity.

//

$Roles->[] = AssociatorNames($Identity>,
“CIM_MemberOfCollection”,”CIM_Role”,Member,)

//Append Member Roles
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 561

Security Role Based Access Control Subprofile NO_ANSI_ID
&GetMemberRoles($Roles->[], $Roles->[])

// ON OUTPUT

//

// $Roles->[] contains a list of pointers to Roles

//

52.6.2 List the Privileges of a Role

// DESCRIPTION

// For a specific Role, this recipe lists all associated Privileges obtained

// via membership in various Roles.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $Role-> contains a reference to a Role

//

//===

// Subroutines of SecurityRBAC 2

//===

Sub GetMemberPrivileges($StartRoles->[], $Roles->[], $Privileges->[])

{

 // Get Member Roles

 for #i in $StartRoles->[]

 {

 $MemberRoles->[] = AssociatorNames($StartRoles->[#i],

“CIM_MemberOfCollection”,”CIM_Role”,Collection,)

 // Append Member Roles to Roles output.

// Note that on the first iteration size of Roles is 0.

// On the next interation Roles.size is now size of previous

// MemberRoles.

 //

 #i = $Roles->[].size

 for #j in $MemberRoles->[]

 {

 $Roles->[#i+#j] = $MemberRoles->[#j]

 // Now append the Privileges for each member

 //

 $MemberPrivs->[] = AssociatorNames(&MemberRoles-[#j],

“CIM_MemberOfCollection”,”CIM_Privilege”,Collection,)

#k = $Privileges->[].size

 for #l in $MemberPrivs->[]

 {

 $Privileges->[#k+#l] = $MemberPrivs->[#l]

 }

 }
562

NO_ANSI_ID Security Role Based Access Control Subprofile
// Get Members of Members

//

 &GetMemberRoles($MemberRoles->[], Roles->[], $Privileges->[])

}

//===

//SecurityRBAC 2 Recipe starts here

//===

// Find the first-level Privileges

//

 $Privileges->[] = AssociatorNames($Role->,

“CIM_MemberOfCollection”,”CIM_Privilege”,Collection,)

//Append Member Privileges

$Roles->[1] = $Role->&GetMemberPrivileges($Roles->[], $Roles->[], $Privileges->[])

// ON OUTPUT

//

// $Roles->[] contains a list of pointers to Roles in the Role hierarchy

// $Privileges->[] contains a list of pointers to Privileges from the Role
hierachy

//

52.7 Registered Name and Version
Security RBAC version 1.1.0

52.8 CIM Elements
Table 574 describes the CIM elements for Security RBAC.

Table 574 - CIM Elements for Security RBAC

Element Name Requirement Description

52.8.1 CIM_AuthorizationRule Optional

52.8.2 CIM_AuthorizationRuleAppliesToRole Optional

52.8.3 CIM_ConcreteDependency Mandatory

52.8.4 CIM_HostedService Mandatory

52.8.5 CIM_Identity Optional

52.8.6 CIM_ManagedElement Optional

52.8.7 CIM_MemberOfCollection Optional

52.8.8 CIM_MoreRoleInfo Optional
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 563

Security Role Based Access Control Subprofile NO_ANSI_ID
52.8.1 CIM_AuthorizationRule

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 575 describes class CIM_AuthorizationRule.

52.8.2 CIM_AuthorizationRuleAppliesToRole

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

52.8.9 CIM_OtherRoleInformation Optional

52.8.10 CIM_OwningCollectionElement Optional

52.8.11 CIM_PolicyRuleInSystem Optional

52.8.12 CIM_Privilege Optional

52.8.13 CIM_PrivilegeManagementService Optional

52.8.14 CIM_Role Optional

52.8.15 CIM_RoleLimitedToTarget Optional

52.8.16 CIM_System Mandatory

Table 575 - SMI Referenced Properties/Methods for CIM_AuthorizationRule

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

PolicyRuleName Mandatory Key

Table 574 - CIM Elements for Security RBAC

Element Name Requirement Description
564

NO_ANSI_ID Security Role Based Access Control Subprofile
Table 576 describes class CIM_AuthorizationRuleAppliesToRole.

52.8.3 CIM_ConcreteDependency

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 577 describes class CIM_ConcreteDependency.

52.8.4 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 578 describes class CIM_HostedService.

52.8.5 CIM_Identity

Created By: Static
Modified By: Static
Deleted By: Static

Table 576 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToRole

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 577 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 578 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 565

Security Role Based Access Control Subprofile NO_ANSI_ID
Requirement: Optional

Table 579 describes class CIM_Identity.

52.8.6 CIM_ManagedElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

52.8.7 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 580 describes class CIM_MemberOfCollection.

52.8.8 CIM_MoreRoleInfo

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 579 - SMI Referenced Properties/Methods for CIM_Identity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory Entity is authenticated to use this Identity.

Table 580 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
566

NO_ANSI_ID Security Role Based Access Control Subprofile
Table 581 describes class CIM_MoreRoleInfo.

52.8.9 CIM_OtherRoleInformation

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 582 describes class CIM_OtherRoleInformation.

52.8.10 CIM_OwningCollectionElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 583 describes class CIM_OwningCollectionElement.

52.8.11 CIM_PolicyRuleInSystem

Created By: Static
Modified By: Static
Deleted By: Static

Table 581 - SMI Referenced Properties/Methods for CIM_MoreRoleInfo

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 582 - SMI Referenced Properties/Methods for CIM_OtherRoleInformation

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key, Must match that of Role

Table 583 - SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 567

Security Role Based Access Control Subprofile NO_ANSI_ID
Requirement: Optional

Table 584 describes class CIM_PolicyRuleInSystem.

52.8.12 CIM_Privilege

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 585 describes class CIM_Privilege.

52.8.13 CIM_PrivilegeManagementService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 586 describes class CIM_PrivilegeManagementService.

Table 584 - SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 585 - SMI Referenced Properties/Methods for CIM_Privilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

RepresentsAuthorizat
ionRights

Mandatory Rights are to assign rights.

PrivilegeGranted Mandatory Instantiated Privileges will only be granted.

Table 586 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key
568

NO_ANSI_ID Security Role Based Access Control Subprofile
52.8.14 CIM_Role

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 587 describes class CIM_Role.

52.8.15 CIM_RoleLimitedToTarget

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 588 describes class CIM_RoleLimitedToTarget.

52.8.16 CIM_System

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

CreationClassName Mandatory Key

Name Mandatory Key

Table 587 - SMI Referenced Properties/Methods for CIM_Role

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

Table 588 - SMI Referenced Properties/Methods for CIM_RoleLimitedToTarget

Properties Flags Requirement Description & Notes

TargetElement Mandatory

DefiningRole Mandatory

Table 586 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 569

Security Role Based Access Control Subprofile NO_ANSI_ID
Table 589 describes class CIM_System.

EXPERIMENTAL

Table 589 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key
570

NO_ANSI_ID IdentityManagement Subprofile
EXPERIMENTAL

Clause 53: IdentityManagement Subprofile

53.1 Description
This subprofile of the Security profile provides support for adding and managing users of a system and for mapping
those users to accounts, people and organizations.

Users are assumed to have Identity instances to represent their ability to be authenticated. Identity instances may
stand alone or may be linked to Accounts, Organizations, OrgUnits, UserContacts, Persons, Groups or Roles.

All Identity instances shall be unique within the namespace of the conformant System.

53.1.1 Identities

Identities represent a user of a system and when authenticated, represent a security principal.’

Authentication is performed by an authentication service which may be represented as an AuthenticationService. If
represented, this specification relies on the implementation to instantiate appropriate ServiceAffectsElement
associations between the AuthenticationService and an Identities.

If there are multiple Systems in the namespace, and the Identity is scoped to a particular System, then
IdentityContext associations shall be instantiated between the Identity and the scoping System. CreateInstance
and DeleteInstance may be used to instantiate IdentityContext associations. IdentityContext instances shall be
deleted by the infrastructure as a side-affect of deleting an Identity.

Figure 81 - Identities

Identity

InstanceID: string
CurrentlAuthenticated: boolean

System

CreationClassName: string {key}
Name: string {key}

RegisteredProfile

RegisteredName = “Security”

RegisteredSubProfile

RegisteredName = “Security IdentityManagement

ElementConformsToProfile

SubProfileRequiresProfile*

*

0..1

*

IdentityContext

*

*

StorageHardwareID
StorageID: string
IDType: uint16 {enum}
OtherIDType: string

GatewayPathID

GatewayID: string
GatewayIDType: uint16 {enum}

AuthenticationService

HostedService

1

*
*

ConcreteDependency
ServiceAvailableToElement

*

*

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 571

IdentityManagement Subprofile NO_ANSI_ID
53.1.1.1 Standalone Identities
Two types of stand-alone Identities may be instantiated, StorageHardwareID and GatewayPathID. Use
CreateInstance and DeleteInstance to instantiate stand-alone Identities. The detailed specification for use of
StorageHardwareID and GatewayPathID instances is deferred to profiles or subprofiles that reference this
subprofile.

53.1.1.2 Network Identities
NetworkIdentities represent a particular IPProtocolEndpoint or a collection of IPProtocolEndpoints.

53.1.2 Accounts

Accounts are used for the purpose of authenticating Identities and may additionally be used to as a basis for
tracking other information about the use of a system by a particular Identity. Account is essentially another aspect
of Identity and is associated via ConcreteIdentity.

When creation of Accounts is supported, the implementation shall present an AccountManagementService
instance together with HostedService and ServiceAvailableToElement associations.

If an AccountManagementService is present, instances of Account may be added or deleted using the
CreateInstance and DeleteInstance intrinsic methods. The key properties: SystemCreationClassName,
SystemName, CreationClassName, and Name of each Account shall be fully specified at creation time. The
implementation shall add or delete the AccountOnSystem associations automatically.

Modeling one or more AccountManagementService instances is optional for this subprofile. If there is only one
AccountManagementService with a ServiceAvailableToElement association to the named System, then a
ManagesAccount association may be implied or the implementation may automatically instantiate one. However if
there is more than one AccountManagementService with a ServiceAvailableToElement association to the named
System, an instance of ManagesAccount shall be added by a CreateInstance of an Account. The choice of which
AccountManagementService to associate to is made intrinsically by the implementation. ManagesAccount
instances are deleted automatically when an Account is deleted.

Figure 82 - IPNetworkIdentity

Identity

InstanceID: string
CurrentlAuthenticated: boolean

*

0..1

IPNetworkIdentity

IdentityType: uint16 {enum}
IdentityValue: string

IPProtocolEndpont
AssignedIdentity

RangeOfIPAddresses
AssignedIdentity

0..1

MemberOfCollection*
*

IdentityContext

*

*

ManagedElement
572

NO_ANSI_ID IdentityManagement Subprofile
For each Account instance, this subprofile recommends a corresponding Identity instance, associated by
ConcreteIdentity. When the Account is created, UserID is set and the UserPassword is specified in clear-text. The
creation request is expected to be performed over a secure channel. This subprofile REQUIRES that the
UserPassword property shall be write only.

UserContact and Person instances that are associated to an Account via a common Identity instance may have the
same, non-null UserID. Setting UserID, UserCertificate or UserPassword properties on such related Account,
UserContact or Person instances shall also set the corresponding entries in matching instances.

53.1.3 Organizational Directories

There are three basic types of OrganizationalEntities that may be stored in a namespace:

• Organization instances describe top-level entities, like organizations. (See 53.1.3.1.)

• OrgUnit instances describe sub-units of organizations. (See 53.1.3.1.)

• UserEntity instances describe people. (See 53.1.3.2.)

Any OrganizationalEntity may aggregate any number of Collections, such as Groups or Roles. This is managed by
CreateInstance or DeleteInstance of CollectionInOrganization associations. This association may be used to
associate a Collection to at most one OrganizationalEntity.

Any System may aggregate any number of Collections. This is managed by CreateInstance or DeleteInstance of
OwningCollectionElement associations. This association may be used to associate a Collection to at most one
System.

A single Collection shall not have both OwningCollectionElement and CollectionInOrganization associations.

Any OrganizationalEntity may aggregate any number of other OrganizationalUnits. For example, a Company may
have Business Units and Business Units may have Departments. This is managed by CreateInstance or
DeleteInstance of OrgStructure associations. An OrganizationalUnit may belong to at most one OrganizationalUnit.

Figure 83 - Account Management

AccountManagementService

*

Account

SystemCreationClassName: string {key}
SystemName: string {key}
CreationClassName: string {key}
Name: string{key}
Userid: string
ObjectClass: String []
Descriptions: string[]
Host: string[]
LocalityName: string[]
OrganizationName: string[]
OU: string[]
SeeAlso: string[]
UserCertificate: string[] {octetstring}
UserPassword: string[] {octetstring}

AccountOnSystem

*w

*ManagesAccount

Identity

InstanceID: string
CurrentlAuthenticated: boolean

ConcreteIdentity*
*

AccountMapsToAccount

*

*

System

CreationClassName: string {key}
Name: string {key}

1

HostedService

1

*w

ServiceAvailableToElement

*

*

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 573

IdentityManagement Subprofile NO_ANSI_ID
53.1.3.1 Organizations
There are two types of OrganizationalEntities. (See Figure 85.) The difference between the two is largely
subjective, however this subprofile RECOMMENDS that Organization instances be used to describe businesses,
clubs, families, or governments and that OrgUnit instances be used to describe sub-units within Organizations. To
make the amount of information provided in these classes more manageable, much of the less commonly used
information is defined by properties of the OtherOrganizationInfo and OtherOrgUnitInfo classes respectively,

The key properties: CreationClassName and Name of each shall be fully specified at creation time. Name defines
a namespace unique name for the instance of the class. Additionally, the OganizationName or OU properties are
also required and name the OrganizationalEntity.

Either or these classes may be added or deleted by the CreateInstance or DeleteInstance intrinsic methods.

At most one OtherOrganizationalInfo or OtherOrgUnitInfo instance per respective Organization or OrgUnit may be
instantiated using CreateInstance or DeleteInstance. When instantiated a MoreOrganizationInfo or

Figure 84 - OrganizationalEntities

*

OrganizationalEntity

0..1

UserEntity

<See People>

Organization

<See Organization>

OrgStructure

OrgUnit

<See Organization>
574

NO_ANSI_ID IdentityManagement Subprofile
MoreOrgUnitInfo association is instantiated to the corresponding Organization or OrgUnit with the same Name. It is
an error if either there is no matching instance or there is already an instance of this type with the same Name.

53.1.3.2 People
A person may be represented by either an Account instance, (see 53.1.2), or by a UserContact instance, (see
Figure 86.) Subjectively, Accounts are used to authenticate and track user of a system, where UserContacts are
used to represent a person to clients of a system.

The Person class subclasses from UserContact and provides additional information about a person. This is further
enhanced by OtherPersonInformation.

Figure 85 - Organizations and OrgUnits

M o re O rg a n iz a t io n In fo

O rg a n iz a t io n a lE n t i ty

O rg a n iz a t io n

C re a t io n C la s s N a m e : s t r in g {K e y }
N a m e : s t r in g {K e y }
B u s in e s s C a te g o ry : s t r in g
F a c s im ile T e le p h o n e N u m b e r : s t r in g
L o c a li ty N a m e : s t r in g
M a il: s t r in g
O rg a n iz a t io n N a m e : s t r in g {R e q 'd }
P o s ta lA d d re s s : s t r in g []
P o s ta lC o d e : s t r in g
S ta te O rP ro v in c e : s t r in g
T e le p h o n e N u m b e r : s t r in g

O th e rO rg a n iz a t io n In fo rm a t io n

C re a t io n C la s s N a m e : s t r in g { k e y }
N a m e : s t r in g {k e y }
O b je c tC la s s : S t r in g []
B u s in e s s C a te g o ry : s t r in g []
D e s c r ip t io n s : s t r in g []
D e s t in a t io n In d ic a to r : s t r in g []
F a c s im ile T e le p h o n e N u m b e r : s t r in g []
In te rn a t io n a l iS D N N u m b e r : s t r in g []
L a b e le d U R I : s t r in g []
L o c a l i ty N a m e : s t r in g []
M a il: s t r in g []
M a n a g e r : s t r in g []
O rg a n iz a t io n N a m e : s t r in g []
O th e rM a ilb o x : s t r in g []
P h y s ic a lD e l iv e r y O f f ic e N a m e : s t r in g []
P o s ta lA d d re s s : s t r in g []
P o s ta lC o d e : s t r in g []
P o s tO f f ic e B o x : s t r in g []
P re fe r re d D e liv e r y M e th o d : s t r in g
R e g is te re d A d d re s s :s t r in g []
S e a rc h G u id e : s t r in g []
S e e A ls o : s t r in g []
S ta te O rP ro v in c e : s t r in g []
S t r e e t: s t r in g []
T e le p h o n e N u m b e r : s t r in g []
T e le te x T e rm in a lId e n t i f ie r : s t r in g []
T e le x N u m b e r : s t r in g []
T h u m b n a ilL o g o : s t r in g [] {o c te ts t r in g }
U n iq u e Id e n t i f ie r : s t r in g []
U s e rP a s s w o rd : s t r in g [] {o c te ts t r in g }
X 1 2 1 A d d re s s : s t r in g []

1

0 . .1

O rg U n it

C re a t io n C la s s N a m e : s t r in g { k e y }
N a m e : s t r in g {k e y }
B u s in e s s C a te g o ry : s t r in g
F a c s im ile T e le p h o n e N u m b e r : s t r in g
L o c a li ty N a m e : s t r in g
O U : s t r in g {R e q 'd }
P o s ta lA d d re s s : s t r in g []
P o s ta lC o d e : s t r in g
S ta te O rP ro v in c e : s t r in g
T e le p h o n e N u m b e r : s t r in g

O th e rO rg U n it In fo rm a t io n

C re a t io n C la s s N a m e : s t r in g { k e y }
N a m e : s t r in g {k e y }
O b je c tC la s s : S t r in g []
B u s in e s s C a te g o ry : s t r in g []
D e s c r ip t io n s : s t r in g []
D e s t in a t io n In d ic a to r : s t r in g []
F a c s im ile T e le p h o n e N u m b e r : s t r in g []
In te rn a t io n a l iS D N N u m b e r : s t r in g []
L o c a l i ty N a m e : s t r in g []
O U : s t r in g []
P h y s ic a lD e l iv e r y O f f ic e N a m e : s t r in g []
P o s ta lA d d re s s : s t r in g []
P o s ta lC o d e : s t r in g []
P o s tO f f ic e B o x : s t r in g []
P re fe r re d D e liv e r y M e th o d : s t r in g
S e a rc h G u id e : s t r in g []
S e e A ls o : s t r in g []
S ta te O rP ro v in c e : s t r in g []
S t r e e t: s t r in g []
T e le p h o n e N u m b e r : s t r in g []
T e le te x T e rm in a lId e n t i f ie r : s t r in g []
T e le x N u m b e r : s t r in g []
U s e rP a s s w o rd : s t r in g [] {o c te ts t r in g }
X 1 2 1 A d d re s s : s t r in g []

M o re O rg U n it In fo

1

0 . .1
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 575

IdentityManagement Subprofile NO_ANSI_ID
A Person instance together with an OtherPersonInformation instance provides UserID and Password. As such, the
pair could be used for authentication, in place of Account. However this subprofile RECOMMENDS that Account
instances be used for authentication and that UserContact instances be used to describe directory information
about a person.

Instances of UserContact, Person, OtherPersonInformation, and MorePersonInfo may be added or deleted using
CreateInstance and DeleteInstance intrinsic methods. The key properties of each shall be fully specified at creation
time. Additionally the Surname property is required for UserContact or Person instances.

There shall be exactly one Person instance with the same Name property for each instantiated OtherPersonInfo
instance.

UserContact and Person instances associated to the same Identity match an Account instance with the same, non-
null UserID. Setting UserID, UserCertificate or UserPassword properties on Account, UserContact or Person
instances shall also set the corresponding entries in matching instances.

For this subprofile, when a UserContact or Person instance is created, it is mandatory to create an Identity
associated via AssignedIdentity.

53.1.4 Groups

A Group is an aggregation of ManagedElements. These shall be Identities. An Identity is assigned to a Group via
AssignedIdentity in order to assign privileges to a Group or to incorporate a Group into a Role. Unless otherwise
specified, the Authentication policy for the Group Identity is that a successful authentication of a
MemberOfCollection Identity also authenticates the Group Identity for that user.

Both Groups and Roles may be aggregated via OwningCollectionElement into an OrganizationalEntity instance.

Figure 86 - People

UserEntity

Person

BusinessCategory: string
CommonName: string {Req'd}
EmployeeNumber: string
EmployeeType: string
FacsimileTelephoneNumber: string
HomePhone: string
HomePostalAddress: string[]
JpegPhoto: uint8[] {octetstring}
Manager: string
Mobile: string
OU: string
Pager: string
PreferredLanguage: string
Secretary: string
Title: string

1
0..1

UserContact

CreationClassName: string {key}
Name: string {key}
GivenName: string
Surname: string {Req'd}
Mail:string
UserID: string
LocalityName: string
PostalAddress: string[]
StateOrProvince: string
PostalCode: string
TelephoneNumber: string

MorePersonInfo

OtherPersonInformation

CreationClassName: string {key}
Name: string {key}
ObjectClass: String []
Audio: string[] {octetstring}
BusinessCategory: string[]
CarLicense: string[]
CommonName: string[]
CountryName: string[]
DepartmentNumber: string[]
Descriptions: string[]
DestinationIndicator: string[]
DisplayName: string[]
EmployeeNumber: string
EmployeeType: string[]
FacsimileTelephoneNumber: string[]
GenerationQualifier:string[]
GivenName: string[]
HomeFax: string[]
HomePhone: string[]
HomePostalAddress: string[]
Initials: string[]
InternationaliSDNNumber: string[]
JpegPhoto: string[] {octetstring}
LabeledURI: string[]
LocalityName: string[]
Mail:string[]
Manager: string[]
MiddleName: string[]
Mobile: string[]
OrganizationName: string[]
OrganizationalStatus: string[]
OtherMailbox: string[]

OU: string[]
Pager: string[]
PersonalTitle: string[]
Photo: string[] {octetstring}
PhysicalDeliveryOfficeName: string[]
PostalAddress: string[]
PostalCode: string[]
PostOfficeBox: string[]
PreferredDeliveryMethod: string
PreferredLanguage: string
RegisteredAddress : string[]
RoomNumber: string[]
Secretary: string[]
SeeAlso: string[]
StateOrProvince: string[]
Street: string[]
Surname: string[]
TelephoneNumber: string[]
TeletexTerminalIdentifier: string[]
TelexNumber: string[]
ThumbnailLogo: string[] {octetstring}
ThumbnailPhoto: string[] {octetstring}
Title: string[]
UserID: string[]
UniqueIdentifier: string[]
UserCertificate: string[] {octetstring}
UserPassword: string[] {octetstring}
UserPKCS12: string[] {octetstring}
UserSMIMECertificate: string[] {octetstring}
X121Address: string[]
X500UniqueIdentifier: string[] {octetstring}

Identity

InstanceID: string
CurrentlAuthenticated: boolean

AssignedIdentity *

*

576

NO_ANSI_ID IdentityManagement Subprofile
Member information defined by an OtherGroupInformation instance may be associated to a Group via the
MoreGroupInfo association.

All of these associations, OwningCollectionElement, MemberOfCollection, AssignedIdentity, and
MoreGroupInformation, may be added or deleted via CreateInstance or DeleteInstance intrinsic methods: The key
properties of each shall be fully specified at creation time.

All may be added or deleted using CreateInstance and DeleteInstance intrinsic methods. The key properties of
each shall be fully specified at creation time. In addition to their keys, both Roles and Groups require that the
CommonName property shall be specified at creation time.

There shall be exactly one Group instance with the same Name property for each instantiated
OtherGroupInformation instance.

53.2 Health and Fault Management Considerations
TBD

53.3 Cascading Considerations
TBD

53.4 Supported Profiles and Packages
TBD

Figure 87 - Groups and Roles

OrganizationalEntity

0..1

Group

CreationClassName: string {key}
Name: string {key}
BusinessCategory: string
CommonName: string {Req'd}

OtherGroupInformation

CreationClassName: string {key}
Name: string {key}
ObjectClass: String []
BusinessCategory: string[]
CommonName: string[]
Descriptions: string[]
OrganizationName: string[]
OU: string[]
Owner: string[]
SeeAlso: string[]

1

MoreGroupInfo

0..1

MemberOfCollection *

*
Identity

Of Group Members

AssignedIdentity *

MemberOfCollection

*

*

OwningCollectionElement

*

Identity
Of the Group

*

System

CreationClassName: string {key}
Name: string {key}

OwningCollectionElement

0..1
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 577

IdentityManagement Subprofile NO_ANSI_ID
53.5 Methods of the Profile
TBD

53.6 Client Considerations and Recipes

53.6.1 Create a new User instance with an associated Identity

// DESCRIPTION

// This recipe will create a UserContact and an associated Identity.

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $User is a template supplied by the application for a new

// instance of the class CIM_UserContact or one of its subclasses.

// It is up to the incorporating profile to define exactly what subclass of

// UserContact and any constraints on properties that must be filled in and what
values are permissible.

// Create a new Identity for the UserContact

//

$Identity = NewInstance(“CIM_Identity”)

$Identity-> = CreateInstance($Identity)

// Create the UserContact instance

//

$User-> = CreateInstance($User);

// Create AssignedIdentity between UserContact and Identity

//

$AssignedIdentity = NewInstance(“CIM_AssignedIdentity”)

$AssignedIdentity.IdentityInfo = $Identity->

$AssignedIdentity.ManagedElement= $User->

$AssignedIdentity-> = CreateInstance($AssignedIdentity)

// ON OUTPUT

//

// $User-> References the User

// $Identity-> References the Identity of the Account

// $AssignedIdentity-> References the AssignedIdentity association

53.6.2 Create an Account for an Identity

// DESCRIPTION

// This recipe creates an Account and attaches it to an existing Identity.

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// $Identity-> points to an Identity.

//

// $Account contains a new Account.

// Account.UserID MUST be set. It is synonomous with User Name.
578

NO_ANSI_ID IdentityManagement Subprofile
// If the named Identity has an AssignedIdentity association to a
UserContact instance, then

// theAccount.UserID MUST match that of UserContact.

// Account.Password must be set to the encrypted value that it will compare
to.

// Create the Account

//

$Account-> = CreateInstance($Account);

// Create ConcreteIdentity between Account and Identity

//

$ConcreteIdentity = NewInstance(“CIM_ConcreteIdentity”)

$ConcreteIdentity.SameElement = $Identity->

$ConcreteIdentity.SystemElement = $Account->

$ConcreteIdentity-> = CreateInstance($ConcreteIdentity)

// ON OUTPUT

//

// $Account-> References the Account

// $Identity-> References the Identity of the Account

// $ConcreteIdentity-> References the ConcreteIdentity association

53.6.3 Create an Account and attach it to an existing User

// DESCRIPTION

// This recipe creates an Account and attach it to an existing User.

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// $User-> points to an UserContact.

// This recipe assumes that each UserContact instance has at least one
Identity

// A user may have zero or more accounts. Each Account/User pair has exactly
one Identity.

// Account and Identity correlate on UserID

//

// $Account contains a new Account.

// Account.UserID MUST be set. It is synonomous with User Name.

// If the named Identity has an AssignedIdentity association to a
UserContact instance, then

// theAccount.UserID MUST match that of UserContact.

// Account.Password must be set to the encrypted value that it will compare
to.

// Get Identities currrently assigned to the User.

//

$Identity->[] = AssociatorNames ($User->, “CIM_AssignedIdentity”,null,null)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 579

IdentityManagement Subprofile NO_ANSI_ID
// Case 1: Account.UserID matches User.UserID

//

if ($Account.UserID = $User->UserID)

{

 // This is the principal Account.

 // To simplify, this recipe assumes this is the first Account added.

 //

 if ($Identity->[]size() != 1)

 {

<ERROR! Expecting exactly one Identity when adding principal account>

 }

 $Account2->[] = AssociatorNames ($Identity[1]->,
“CIM_ConcreteIdentity”,”CIM_Account”,null,null)

 if ($Account2->[]size() != 0)

 {

<ERROR! Principal account is already added.>

 }

 // Create the Account

 //

 $Account-> = CreateInstance($Account);

 // Create ConcreteIdentity between Account and Identity

 //

 $ConcreteIdentity = NewInstance(“CIM_ConcreteIdentity”)

 $ConcreteIdentity.SameElement = $Identity->[1]

 $ConcreteIdentity.SystemElement = $Account->

 $ConcreteIdentity-> = CreateInstance($ConcreteIdentity)

 <EXIT: “Principal Account Added”>

}

// If we are here, we are adding a secondary account. We assume the account does
not already exist.

// But don’t take it for granted.

for #i in $Identity->[]

{

 $Account2[] = AssociatorNames ($Identity->[#i],
“CIM_ConcreteIdentity”,”CIM_Account”,null,null)

 for #j in $Account2->[]

 {

 if (Account.UserID = Account2->[#j].UserID)

 {

 <ERROR! Specified secondary account is already added.>

 }

 }

}

580

NO_ANSI_ID IdentityManagement Subprofile
// Create the Account and create a new Identity instance together with
associations.

//

$Account-> = CreateInstance($Account);

$Identity = NewInstance($Identity);

$Identity-> = CreateInstance($Identity);

// Create ConcreteIdentity between Account and Identity

//

$ConcreteIdentity = NewInstance(“CIM_ConcreteIdentity”)

$ConcreteIdentity.SameElement = $Identity->

$ConcreteIdentity.SystemElement = $Account->

$ConcreteIdentity-> = CreateInstance($ConcreteIdentity)

// Create AssignedIdentity between User and Identity

//

$AssignedIdentity = NewInstance(“CIM_AssignedIdentity”)

$AssignedIdentity.IdentityInfo = $Identity->

$AssignedIdentity.ManagedElement= $User->

$AssignedIdentity-> = CreateInstance($AssignedIdentity)

// Check that all these instances are created

//

try {

$Account = GetInstance($Account->)

$Identity = GetInstance($Identity->)

$ConcreteIdentity = GetInstance($ConcreteIdentity->)

$AssignedIdentity = GetInstance($AssignedIdentity->)

}

catch (CIM Exception $Exception) {

throw $Exception

}

<EXIT: “Secondary Account Added”>

53.7 Registered Name and Version
Security Identity Management version 1.1.0
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 581

IdentityManagement Subprofile NO_ANSI_ID
53.8 CIM Elements
Table 590 describes the CIM elements for Security Identity Management.

Table 590 - CIM Elements for Security Identity Management

Element Name Requirement Description

53.8.1 CIM_Account Optional

53.8.2 CIM_AccountManagementService Optional

53.8.3 CIM_AccountMapsToAccount Mandatory

53.8.4 CIM_AccountOnSystem Mandatory

53.8.5 CIM_AssignedIdentity Mandatory

53.8.6 CIM_AuthenticationService Optional

53.8.7 CIM_ConcreteDependency Mandatory

53.8.8 CIM_ConcreteIdentity Mandatory

53.8.9 CIM_GatewayPathID Optional

53.8.10 CIM_Group Optional

53.8.11 CIM_HostedService Mandatory

53.8.12 CIM_IPNetworkIdentity Optional

53.8.13 CIM_Identity Optional

53.8.14 CIM_IdentityContext Mandatory

53.8.15 CIM_ManagedElement Optional

53.8.16 CIM_ManagesAccount Mandatory

53.8.17 CIM_MemberOfCollection Optional

53.8.18 CIM_MoreGroupInfo Optional

53.8.19 CIM_MoreOrgUnitInfo Optional

53.8.20 CIM_MoreOrganizationInfo Optional

53.8.21 CIM_MorePersonInfo Optional

53.8.22 CIM_OrgStructure Optional

53.8.23 CIM_OrgUnit Optional

53.8.24 CIM_Organization Optional

53.8.25 CIM_OrganizationalEntity Optional

53.8.26 CIM_OtherGroupInformation Optional

53.8.27 CIM_OtherOrgUnitInformation Optional

53.8.28 CIM_OtherOrganizationInformation Optional

53.8.29 CIM_OtherPersonInformation Optional
582

NO_ANSI_ID IdentityManagement Subprofile
53.8.1 CIM_Account

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 591 describes class CIM_Account.

53.8.2 CIM_AccountManagementService

Created By: Static

53.8.30 CIM_OwningCollectionElement Optional shall not be present if
CollectionInOrganization is present.

53.8.31 CIM_Person Optional

53.8.32 CIM_ServiceAvailableToElement Mandatory

53.8.33 CIM_StorageHardwareID Optional

53.8.34 CIM_System Mandatory

53.8.35 CIM_UserContact Optional

Table 591 - SMI Referenced Properties/Methods for CIM_Account

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

UserID Mandatory The name the user is known by in the System. Matches any
UserContact or Person with the same value. Changing here
changes corresponding values on matching UserContact or
Person instances.

UserCertificate Mandatory The Public Key Certificate of this user. Changing here
changes corresponding values on matching UserContact or
Person instances.

UserPassword Mandatory The password used with the UserID. Changing here
changes corresponding values on matching UserContact or
Person instances.

Table 590 - CIM Elements for Security Identity Management

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 583

IdentityManagement Subprofile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 592 describes class CIM_AccountManagementService.

53.8.3 CIM_AccountMapsToAccount

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 593 describes class CIM_AccountMapsToAccount.

53.8.4 CIM_AccountOnSystem

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 592 - SMI Referenced Properties/Methods for CIM_AccountManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

Table 593 - SMI Referenced Properties/Methods for CIM_AccountMapsToAccount

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
584

NO_ANSI_ID IdentityManagement Subprofile
Table 594 describes class CIM_AccountOnSystem.

53.8.5 CIM_AssignedIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 595 describes class CIM_AssignedIdentity.

53.8.6 CIM_AuthenticationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 596 describes class CIM_AuthenticationService.

53.8.7 CIM_ConcreteDependency

Table 594 - SMI Referenced Properties/Methods for CIM_AccountOnSystem

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 595 - SMI Referenced Properties/Methods for CIM_AssignedIdentity

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

IdentityInfo Mandatory

Table 596 - SMI Referenced Properties/Methods for CIM_AuthenticationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 585

IdentityManagement Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 597 describes class CIM_ConcreteDependency.

53.8.8 CIM_ConcreteIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 598 describes class CIM_ConcreteIdentity.

53.8.9 CIM_GatewayPathID

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 599 describes class CIM_GatewayPathID.

Table 597 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 598 - SMI Referenced Properties/Methods for CIM_ConcreteIdentity

Properties Flags Requirement Description & Notes

SameElement Mandatory

SystemElement Mandatory

Table 599 - SMI Referenced Properties/Methods for CIM_GatewayPathID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory True if currently authenticated
586

NO_ANSI_ID IdentityManagement Subprofile
53.8.10 CIM_Group

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 600 describes class CIM_Group.

53.8.11 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 601 describes class CIM_HostedService.

53.8.12 CIM_IPNetworkIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 600 - SMI Referenced Properties/Methods for CIM_Group

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

CommonName Mandatory The Name by which the Group is known

Table 601 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 587

IdentityManagement Subprofile NO_ANSI_ID
Table 602 describes class CIM_IPNetworkIdentity.

53.8.13 CIM_Identity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 603 describes class CIM_Identity.

53.8.14 CIM_IdentityContext

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 604 describes class CIM_IdentityContext.

53.8.15 CIM_ManagedElement

Table 602 - SMI Referenced Properties/Methods for CIM_IPNetworkIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory True if currently authenticated

Table 603 - SMI Referenced Properties/Methods for CIM_Identity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory True if currently authenticated

Table 604 - SMI Referenced Properties/Methods for CIM_IdentityContext

Properties Flags Requirement Description & Notes

ElementInContext Mandatory

ElementProvidingCo
ntext

Mandatory
588

NO_ANSI_ID IdentityManagement Subprofile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

53.8.16 CIM_ManagesAccount

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 605 describes class CIM_ManagesAccount.

53.8.17 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 606 describes class CIM_MemberOfCollection.

53.8.18 CIM_MoreGroupInfo

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 605 - SMI Referenced Properties/Methods for CIM_ManagesAccount

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 606 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 589

IdentityManagement Subprofile NO_ANSI_ID
Table 607 describes class CIM_MoreGroupInfo.

53.8.19 CIM_MoreOrgUnitInfo

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 608 describes class CIM_MoreOrgUnitInfo.

53.8.20 CIM_MoreOrganizationInfo

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 609 describes class CIM_MoreOrganizationInfo.

53.8.21 CIM_MorePersonInfo

Created By: Static
Modified By: Static
Deleted By: Static

Table 607 - SMI Referenced Properties/Methods for CIM_MoreGroupInfo

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 608 - SMI Referenced Properties/Methods for CIM_MoreOrgUnitInfo

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 609 - SMI Referenced Properties/Methods for CIM_MoreOrganizationInfo

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
590

NO_ANSI_ID IdentityManagement Subprofile
Requirement: Optional

Table 610 describes class CIM_MorePersonInfo.

53.8.22 CIM_OrgStructure

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 611 describes class CIM_OrgStructure.

53.8.23 CIM_OrgUnit

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 612 describes class CIM_OrgUnit.

53.8.24 CIM_Organization

Table 610 - SMI Referenced Properties/Methods for CIM_MorePersonInfo

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 611 - SMI Referenced Properties/Methods for CIM_OrgStructure

Properties Flags Requirement Description & Notes

Child Mandatory

Parent Mandatory

Table 612 - SMI Referenced Properties/Methods for CIM_OrgUnit

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

OU Mandatory The Name by which the Organizational Unit is known
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 591

IdentityManagement Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 613 describes class CIM_Organization.

53.8.25 CIM_OrganizationalEntity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

53.8.26 CIM_OtherGroupInformation

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 614 describes class CIM_OtherGroupInformation.

53.8.27 CIM_OtherOrgUnitInformation

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 613 - SMI Referenced Properties/Methods for CIM_Organization

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

OrganizationName Mandatory The Name by which the Organization is known

Table 614 - SMI Referenced Properties/Methods for CIM_OtherGroupInformation

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key, Must match that of Group
592

NO_ANSI_ID IdentityManagement Subprofile
Table 615 describes class CIM_OtherOrgUnitInformation.

53.8.28 CIM_OtherOrganizationInformation

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 616 describes class CIM_OtherOrganizationInformation.

53.8.29 CIM_OtherPersonInformation

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 617 describes class CIM_OtherPersonInformation.

Table 615 - SMI Referenced Properties/Methods for CIM_OtherOrgUnitInformation

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key, Must match that of OrgUnit.

Table 616 - SMI Referenced Properties/Methods for CIM_OtherOrganizationInformation

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key, Must match that of Organization.

Table 617 - SMI Referenced Properties/Methods for CIM_OtherPersonInformation

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key, Must match that of Person.

UserID Mandatory The Name by which the User is known to the System.
Matches all Account or Person instances in the namespace
with the same UserID. Changing here changes
corresponding values on matching UserContact or Account
instances.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 593

IdentityManagement Subprofile NO_ANSI_ID
53.8.30 CIM_OwningCollectionElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 618 describes class CIM_OwningCollectionElement.

53.8.31 CIM_Person

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 619 describes class CIM_Person.

UserCertificate Mandatory The Public Key Certificate of this user. Changing here
changes corresponding values on matching UserContact or
Account instances.

UserPassword Mandatory The password used with the UserID. Changing here
changes the corresponding values on matching
UserContact or Account instances.

Table 618 - SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory

Table 619 - SMI Referenced Properties/Methods for CIM_Person

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

Table 617 - SMI Referenced Properties/Methods for CIM_OtherPersonInformation

Properties Flags Requirement Description & Notes
594

NO_ANSI_ID IdentityManagement Subprofile
53.8.32 CIM_ServiceAvailableToElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 620 describes class CIM_ServiceAvailableToElement.

53.8.33 CIM_StorageHardwareID

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 621 describes class CIM_StorageHardwareID.

53.8.34 CIM_System

Surname Mandatory The Name by which the User is known to other Persons

UserID Mandatory The Name by which the User is known to the System.
Matches all Account or Person instances in the namespace
with the same UserID. Changing here changes
corresponding values on matching UserContact or Account
instances.

Table 620 - SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Properties Flags Requirement Description & Notes

ServiceProvided Mandatory

UserOfService Mandatory

Table 621 - SMI Referenced Properties/Methods for CIM_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory True if currently authenticated

Table 619 - SMI Referenced Properties/Methods for CIM_Person

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 595

IdentityManagement Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 622 describes class CIM_System.

53.8.35 CIM_UserContact

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 623 describes class CIM_UserContact.

EXPERIMENTAL

Table 622 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

Table 623 - SMI Referenced Properties/Methods for CIM_UserContact

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key

Surname Mandatory The Name by which the User is known to other users.

UserID Mandatory The Name by which the User is known to the System.
Matches all Account or Person instances in the namespace
with the same UserID. Changing here changes
corresponding values on matching Person or Account
instances.
596

NO_ANSI_ID 3rd Party Authentication Subprofile
EXPERIMENTAL

Clause 54: 3rd Party Authentication Subprofile

54.1 Description
This subprofile extends the Security Identity Management profile by specifying the necessary elements required to
manage the relationships between a CIM Server and 3rd party Authentication Servers such as Radius.

The implementation shall use a HostedService association between the System and the AuthenticationService.

In this environment, the local AuthenticationService may delegate authentication requests to a 3rd-party
authentication service which is accessed through a RemoteServiceAccessPoint as shown in Figure 88. The
implementation shall instantiate a ServiceSAPDependency between the RemoteServiceAccessPoint and the
AuthenticationService.

If the 3rd Party Authentication Service requires that the local system authenticate itself, then the required
Credential is associated via CredentialContext to the RemoteServiceAccessPoint instance. (See the Security
CredentialMangement subprofile.) This may be accomplished using intrinsic operations.

UserContact.Name, Group.Name, and Role.Name are used as a correlatable identifier for users, groups, and roles
respectively. Note that the UserID property of UserContact is synonymous with a typical user Name. A user may
have multiple Identities. This specification restricts a Group to at most one Identity and does not assign Identities to
Roles. An Identity for a UserContact is matched via an AssignedIdentity association and a match on both Name
and UserID in the UserContact.

In the event that there is more than one 3rd Party Authentication Service, this profile does not specify the means
used by which the local authentication service locates the correct 3rd Party Authentication Service, UserID, and if
specified the Realm. See 42.2.1 HTTP Security Background. A sufficient authentication strategy is to pass the
requestor’s UserID, Realm and credentials to each Authentication service.

The 3rd Party Authentication Service should respond true or false, and if true should also respond with a list of
discontinued names which represent at most one authenticated UserContact and a set of Group, and Role
elements to which the authenticated user belongs. Each returned distinguished name matches the Name property
of at most one such element.

If a UserContact is matched via Name, the UserID shall match that instance of UserContact or that of an
associated Account instance. This specification allows a UserContact to be associated via AssignedIdentity to
multiple Identities, which in turn may be associated to at most one Account via ConcreteIdentity. An Identity is
selected which has matching Name and either a matching UserID or an associated Account with a matching
UserID. If no match is found, then this user is not known on this system. A profile that incorporates this subprofile
may define an AuthenticationRule that designates some other Identity to authenticate in the case a matching
Identity is not found by the above algorithm.

Additionally, the 3rd Party Authentication Service may return the distinguished names of groups or roles to which
the user belongs. These names correlated to Group.Name or Role.Name. This specification restricts a Group to at
most one Identity associated via AssignedIdentity. If a Group is matched, then the user belongs to the group and
the Groups Identity is authenticated. If a Role is matched, then the user is authenticated for the Role. Profiles or
subprofiles that rely on this profile may further qualify the types of Identity and AuthenticationRules that may be
used.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 597

3rd Party Authentication Subprofile NO_ANSI_ID
54.1.1 Durable Names and Correlatable IDs of the Profile

When a UserID is passed from an SMI-S Client to an SMI-S Server and then to a 3rd Party Authentication service,
there needs to be some means to assure that each is referring to the same entity. The process specified here is for
the client to pass the server a UserID, together with Realm and Credential information. The server passes this
through to the authentication service, which maps this to a particular user and zero or more groups and roles to
which the User belongs. This subprofile specifies that users, groups, and roles need to have unique distinguished
names, (see IETF RFC 4514) These distinguished names are returned to the SMI-S Server by the 3rd Party
Authentication service. The SMI-S Server correlates these distinguished names to the Name property of
UserContact, Group, or Role instances.

The Identity of a user is determined by a match on both the UserID provided by the SMI-S Client and the
distinguished name returned by the 3rd Party Authentication service. (See the algorithm described in the previous
section.)

54.2 Client Considerations and Recipes

54.2.1 Create a new User instance with an associated Identity.

The client should use the “Create a new User instance with an associated Identity” recipe defined in the Security
Identity Management subprofile. The UserContact (or subclass) instance supplied by the SMI-S Client shall have

Figure 88 - 3rd Party Authentication for the CIM Service

AuthenticationService

RemoteServiceAccessPoint

<To AuthenticationService on 3rd
party authentication system >

ServiceSAPDependency

Credential

CredentialContext

HostedService

System

CreationClassName: string {key}
Name: string {key}

RegisteredProfile

RegisteredName = “Security IdentityMangement”

RegisteredSubProfile

RegisteredName = “Security 3rdPartyAuthentication

ElementConformsToProfile

SubProfileRequiresProfile

*

*
0..1

* 1

*
*
*

*

*

ReferencedProfile

*

Identity

InstanceID: string
CurrentlyAuthenticated: boolean

IdentityContext*
*

AssignedIdentity *

RegisteredSubProfile

RegisteredName = “Security CredentialManagement”

*

0..1

UserContact

CreationClassName: string {key}
Name: string {key}
G ivenName: string
Surname: string {Req'd}
Mail:string
UserID: string
LocalityName: string
PostalAddress: string[]
StateOrProvince: string
PostalCode: string
TelephoneNumber: string

*

ConcreteDependency

*

Group

CreationClassName: string {key}
Name: string {key}
BusinessCategory: string
CommonName: string {Req'd}

AssignedIdentity

0..1

Account

SystemCreationClassName: string {key}
SystemName: string {key}
CreationClassName: string {key}
Name: string{key}
Userid: string
ObjectClass: String []
Descriptions: string[]
Host: string[]
LocalityName: string[]
OrganizationName: string[]
OU: string[]
SeeAlso: string[]
UserCertificate: string[] {octetstring}
UserPassword: string[] {octetstring}

ConcreteIdentity

*

*

SubProfileRequiresProfile

*

0..1

RegisteredProfile

RegisteredName = “Security”

HostedAccessPoint*

System

Correlated to the System of the 3rd
party authentication service

AccountOnSystem

*
1

SubProfileRequiresProfile

MemberOfCollection

Role

CreationClassName: string {key}
Name: string {key}
BusinessCategory: string
CommonName: string {Req'd}

*

*

598

NO_ANSI_ID 3rd Party Authentication Subprofile
the Name property set to match the corresponding information on held on the system supporting the 3rd Party
Authentication service. The UserID property shall be that of the principal account for that user.

54.2.2 Add an Account for a User.

If more than one Identity is maintained for a user on the SMI-S server, the client should use the “Create an Account
and attach it to an existing User.” recipe defined in the Security Identity Management subprofile. The UserContact
(or subclass) instance named by the SMI-S client shall correspond by NAME to the distinguished name of the user
as known on the system of the 3rd Party Authentication service. If this is the principal account, the UserID property
of the Account shall match that of the named UserContact instance. In all cases the UserID property of the supplied
Account shall match the UserID used to authenticate the user. Since the Account is not directly authenticated, the
Password property shall not be specified.

54.3 Registered Name and Version
Security Authorization version 1.1.0

54.4 CIM Elements
Table 624 describes the CIM elements for Security Authorization.

Table 624 - CIM Elements for Security Authorization

Element Name Requirement Description

54.4.1 CIM_AuthorizationRule Optional

54.4.2
CIM_AuthorizationRuleAppliesToIdentity

Optional

54.4.3
CIM_AuthorizationRuleAppliesToPrivilege

Optional

54.4.4
CIM_AuthorizationRuleAppliesToTarget

Optional

54.4.5 CIM_AuthorizedPrivilege Optional

54.4.6 CIM_AuthorizedSubject Optional

54.4.7 CIM_AuthorizedTarget Optional

54.4.8 CIM_ConcreteDependency Optional

54.4.9 CIM_ConcreteDependency Optional

54.4.10 CIM_HostedService Mandatory

54.4.11 CIM_Identity Optional

54.4.12 CIM_ManagedElement Optional

54.4.13 CIM_PolicyRuleInSystem Optional

54.4.14 CIM_PolicySetAppliesToElement Optional

54.4.15 CIM_Privilege Optional

54.4.16 CIM_PrivilegeManagementService Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 599

3rd Party Authentication Subprofile NO_ANSI_ID
54.4.1 CIM_AuthorizationRule

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 625 describes class CIM_AuthorizationRule.

54.4.2 CIM_AuthorizationRuleAppliesToIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

54.4.17 CIM_PrivilegePropagationRule Optional

54.4.18 CIM_ServiceAffectsElement (Service
to AuthorizedProvolege)

Optional

54.4.19 CIM_ServiceAffectsElement (Service
to Iden tity)

Optional

54.4.20 CIM_ServiceAffectsElement (Service
to ManagedElement)

Optional

54.4.21 CIM_ServiceAffectsElement (Service
to Privilege)

Optional

54.4.22 CIM_ServiceAvailableToElement Mandatory

54.4.23 CIM_System Mandatory

Table 625 - SMI Referenced Properties/Methods for CIM_AuthorizationRule

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

PolicyRuleName Mandatory Key

Table 624 - CIM Elements for Security Authorization

Element Name Requirement Description
600

NO_ANSI_ID 3rd Party Authentication Subprofile
Table 626 describes class CIM_AuthorizationRuleAppliesToIdentity.

54.4.3 CIM_AuthorizationRuleAppliesToPrivilege

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 627 describes class CIM_AuthorizationRuleAppliesToPrivilege.

54.4.4 CIM_AuthorizationRuleAppliesToTarget

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 628 describes class CIM_AuthorizationRuleAppliesToTarget.

54.4.5 CIM_AuthorizedPrivilege

Created By: Static
Modified By: Static
Deleted By: Static

Table 626 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToIdentity

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 627 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToPrivilege

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 628 - SMI Referenced Properties/Methods for CIM_AuthorizationRuleAppliesToTarget

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 601

3rd Party Authentication Subprofile NO_ANSI_ID
Requirement: Optional

Table 629 describes class CIM_AuthorizedPrivilege.

54.4.6 CIM_AuthorizedSubject

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 630 describes class CIM_AuthorizedSubject.

54.4.7 CIM_AuthorizedTarget

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 631 describes class CIM_AuthorizedTarget.

Table 629 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

RepresentsAuthorizat
ionRights

Mandatory Must be an Access right for this subprofile.

PrivilegeGranted Mandatory Only Grant type privileges are allowed.

Table 630 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

Privilege Mandatory

PrivilegedElement Mandatory

Table 631 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

Privilege Mandatory

TargetElement Mandatory
602

NO_ANSI_ID 3rd Party Authentication Subprofile
54.4.8 CIM_ConcreteDependency

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 632 describes class CIM_ConcreteDependency.

54.4.9 CIM_ConcreteDependency

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 633 describes class CIM_ConcreteDependency.

54.4.10 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 632 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 633 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 603

3rd Party Authentication Subprofile NO_ANSI_ID
Table 634 describes class CIM_HostedService.

54.4.11 CIM_Identity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 635 describes class CIM_Identity.

54.4.12 CIM_ManagedElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

54.4.13 CIM_PolicyRuleInSystem

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 634 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory

Dependent Mandatory

Table 635 - SMI Referenced Properties/Methods for CIM_Identity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

CurrentlyAuthenticat
ed

Mandatory The Identified entity is authenticated or not
604

NO_ANSI_ID 3rd Party Authentication Subprofile
Table 636 describes class CIM_PolicyRuleInSystem.

54.4.14 CIM_PolicySetAppliesToElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 637 describes class CIM_PolicySetAppliesToElement.

54.4.15 CIM_Privilege

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 638 describes class CIM_Privilege.

54.4.16 CIM_PrivilegeManagementService

Created By: Static

Table 636 - SMI Referenced Properties/Methods for CIM_PolicyRuleInSystem

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 637 - SMI Referenced Properties/Methods for CIM_PolicySetAppliesToElement

Properties Flags Requirement Description & Notes

PolicySet Mandatory

ManagedElement Mandatory

Table 638 - SMI Referenced Properties/Methods for CIM_Privilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key

RepresentsAuthorizat
ionRights

Mandatory Indicates the privilege is to assign the named rights to
subjects.

PrivilegeGranted Optional Only Grant type privileges are allowed.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 605

3rd Party Authentication Subprofile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 639 describes class CIM_PrivilegeManagementService.

54.4.17 CIM_PrivilegePropagationRule

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 640 describes class CIM_PrivilegePropagationRule.

54.4.18 CIM_ServiceAffectsElement (Service to AuthorizedProvolege)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 639 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

ChangeAccess() Optional

ShowAccess() Optional

Table 640 - SMI Referenced Properties/Methods for CIM_PrivilegePropagationRule

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

PolicyRuleName Mandatory Key
606

NO_ANSI_ID 3rd Party Authentication Subprofile
Table 641 describes class CIM_ServiceAffectsElement (Service to AuthorizedProvolege).

54.4.19 CIM_ServiceAffectsElement (Service to Iden tity)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 642 describes class CIM_ServiceAffectsElement (Service to Iden tity).

54.4.20 CIM_ServiceAffectsElement (Service to ManagedElement)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 643 describes class CIM_ServiceAffectsElement (Service to ManagedElement).

54.4.21 CIM_ServiceAffectsElement (Service to Privilege)

Table 641 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to
AuthorizedProvolege)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory

AffectedElement Mandatory

Table 642 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Iden
tity)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory

AffectingElement Mandatory

Table 643 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Man-
agedElement)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory

AffectingElement Mandatory
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 607

3rd Party Authentication Subprofile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 644 describes class CIM_ServiceAffectsElement (Service to Privilege).

54.4.22 CIM_ServiceAvailableToElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 645 describes class CIM_ServiceAvailableToElement.

54.4.23 CIM_System

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 646 describes class CIM_System.

Table 644 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Service to Privi-
lege)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory

AffectedElement Mandatory

Table 645 - SMI Referenced Properties/Methods for CIM_ServiceAvailableToElement

Properties Flags Requirement Description & Notes

ServiceProvided Mandatory

UserOfService Mandatory

Table 646 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key

Name Mandatory Key
608

NO_ANSI_ID 3rd Party Authentication Subprofile
EXPERIMENTAL
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 609

3rd Party Authentication Subprofile NO_ANSI_ID
610

NO_ANSI_ID Cross Profile Considerations
Clause 55: Cross Profile Considerations

55.1 Overview
Many applications access data from multiple profiles to perform operations. This section describes algorithms that
can be used to associate objects from different profiles to understand connections between the profiles. The
algorithms use Durable Names to match objects from different profiles. Figure 90 and Figure 91 are simplified
instance diagrams that are used to illustrate the algorithms.

55.2 HBA model
Figure 90 represents a simple “Host Bus Adapter”. The model includes objects that represent a single port Fibre
channel HBA. The model also includes a storage volume being accessed through the HBA.

Figure 89 - System Diagram

Figure 90 - Host Bus Adapter Model

Array Agent Switch Agent Host/HBA Agent

Client Application

Virtualization
Provider

StorageVolume

DeviceId: Durable
Name

ComputerSystem

SCSIProtocolController

FcPort

LogicalPortGroup

ProtocolControllerForPort

MemberOfCollection

ProtocolControllerAccessesUnitSystemDevice

SCSIProtocolEndpoint

DeviceSAPImplementation

HostedAccess
Point
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 611

Cross Profile Considerations NO_ANSI_ID
55.3 Switch Model
Figure 91 represents a two-port Fibre channel switch. The model also includes objects representing links to remote
ports the switch agent knows about, and ComputerSystems

55.3.1 Recipes

55.3.1.1 Disclaimer
The recipes in this section are included for illustrative purposes only. As of version 1.2.0 of this specification, these
recipes are not part of CTP and may not have been validated.

55.3.1.2 Create MAP
// DESCRIPTION

// Create a map of how elements in a SAN are connected together via Fibre-Channel
ports

//

// The map is built in array $attachedFcPorts->[], where the index is a

// WWN of any device port on the SAN, and the value at that index is

// the object path of the connected switch port.

//

// First find all the switches in a SAN. Get all the FCPorts for each

Figure 91 - Switch Model

FCPort

ComputerSystem

dedicated[x] '= 'Switch'

Product
ComputerSystemPackage

FCPortProtocolEndpointProtocolEndpoint

CIM_SystemDeviceCIM_DeviceSAPImplementationCIM_ActiveConnectionCIM_DeviceSAPImplementation

FCPort FCPortProtocolendpoint

CIM_DeviceSAPImplementationCIM_ActiveConnection

ProtocolEndpoint

CIM_DeviceSAPImplementation

ComputerSystem

dedicated[x] '= 'Unknown'

CIM_SystemDevice

ComputerSystem

dedicated[x] '= 'Unknown'

CIM_SystemDevice
612

NO_ANSI_ID Cross Profile Considerations
// switch and get the Attached FCPorts for each Switch FCPort. Save

// these device ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 1. All agents/namespaces supporting Fabric Profile previously identified using
SLP

// Do this for each CIMOM supporting Fabric Profile

switches[] = enumerateInstances(“CIM_ComputerSystem”, true, false, true, true,
null)

for #i in $switches[]

{

 if (!contains(5, $switches[#i].Dedicated))

 continue // only process switches, not other computer systems

 $fcPorts->[] = AssociatorNames(

 $switches[#i].getObjectPath(),

 “CIM_SystemDevice”,

 “CIM_FCPort”,

 “GroupComponent”,

 “PartComponent”)

 for #j in $fcPorts->[]

 {

 $protocolEndpoints->[] = AssociatorNames(

 fcPorts->[#j],

 “CIM_DeviceSAPImplementation”,

 “CIM_ProtocolEndpoint”,

 “Antecedent”,

 “Dependent”);

 // NOTE - It is possible for this collection to be empty (ports that are not

 // connected). It is NOT possible for this collection to have more than
one

 // element

 if ($protocolEndpoints->[].length == 0)

 continue

 $attachedProtocolEndpoints->[] = AssociatorNames(

 $protocolEndpoints->[0],

 “CIM_ActiveConnection”,

 “CIM_ProtocolEndpoint”,

 null, null) // NOTE: role & resultRole are null as the

 // direction of the association is not

 // dictated by the specification
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 613

Cross Profile Considerations NO_ANSI_ID
 for #k in $attachedProtocolEndpoints->[] {

 // $attachedFcPort is either a device port or an ISLÂ’d

 // switch port from another switch. We store this result

 // (i.e. which device FCPort is connected to which switch

 // FCPort) in a suitable data structure for subsequent

 // correlation to ports discovered on devices.

 $attachedFcPorts->[] = Associators(

 $attachedProtocolEndpoints->[#k],

 “CIM_DeviceSAPImplementation”,

 “CIM_FCPort”,

 “Dependent”,

 “Antecedent”,

 false,

 false,

 [“PermanentAddress”])

 $attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed
by model

 #wwn = $attachedFcPort.PermanentAddress

 $attachedFcPorts->[#wwn] = $fcPorts->[#j]

 }

 }

}

55.3.1.3 HBA to Switch Physical Path
// DESCRIPTION

// Determine physical path from HBA to switch.

//

// For each HBA port on every host, determine the connected switch

// port. NOTE: Not every HBA port will be connected to a switch port,

// and not every switch port will be connected to a device port. Only

// the connections between HBA ports and switch ports are discovered

// by this recipe

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces supporting HBA Profile previously identified using
SLP

// 2. Array $attachedFcPorts->[] is a map of how elements in a SAN are

// connected together via Fibre-Channel ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the

// connected switch port.

// Do this for each CIMOM supporting HBA Profile

$hosts[] = enumerateInstances(“CIM_ComputerSystem”)

for #i in $hosts->[]
614

NO_ANSI_ID Cross Profile Considerations
{

 if (!contains(0, $hosts[#i].Dedicated))

 continue // only process systems that are “not dedicated”

 $fcPorts[] = Associators(

 $hosts[#i].getObjectPath(),

 “CIM_SystemDevice”,

 “CIM_FCPort”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 [“PermanentAddress”])

 for #j in $fcPorts[]

 {

 // Get the FCPort WWN

 #wwn = $fcPorts[#j].PermanentAddress

 // Match this device port WWN to one (or less) switch

 // ports, by using the mapping table

 $attachedSwitchPort-> = $attachedFcPorts->[#wwn]

 // Note - if there is no entry in the mapping array, this

 // port is not connected to any switch

 }

}

55.3.1.4 Array to Switch Physical Path
// DESCRIPTION

// Determine physical path from Storage Arrays to Switches

//

// For each fibre-channel port on every array, determine the connected

// switch port. NOTE: This identifies the FrontEnd I/O Controllers

// (and Storage Arrays) whose ports are physically connected to

// some of the ports of some of the Switches. This recipe does not

// distinguish and does not filter the front-end FC Port from the

// back-end FC Ports.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces supporting Array Profile previously identified using
SLP

// 2. Array $attachedFcPorts[] is a map of how elements in a SAN are

// connected together via Fibre-Channel ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 615

Cross Profile Considerations NO_ANSI_ID
// connected switch port.

// Do this for each CIMOM supporting the Array Profile

$storageArrays[] = enumerateInstances(“CIM_ComputerSystem”);

// NOTE: Some of the ports contained will be back-end ports, but they will

// have no connectivity to switches, so we won’t distinguish them

// from unconnected front-end ports

for #i in $storageArrays[]

{

 if (!contains(3, $storageArrays[#i].Dedicated))

 continue // only process systems that are dedicated “storage”

 if (!contains(15, $storageArrays[#i].Dedicated))

 continue // only process systems that are dedicated “block server”

 $fcPorts[] = Associators(

 $storageArrays[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 [“PermanentAddress”])

 for #j in $fcPorts[]

 {

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch

// ports, by using the mapping table

 $attachedSwitchPort-> = $attachedFcPorts->[#wwn]

 // Note - if there is no entry in the mapping array, this

 // port is not connected to any switch

 }

}

616

NO_ANSI_ID Cross Profile Considerations
55.4 Array Model
Figure 92 is a simple model of a disk array. The array has a single controller with a single Fibre channel port on the
front end and a single parallel SCSI port for the disks. The model shows two disks that are members of a single
redundancy group. Part of the redundancy group is made available over the Fibre channel as a single volume.

55.5 Storage Virtualization Model
Figure 93 is a simple model of a Storage Virtualizer. The model shows the basic controller and pool. The model
also shows a single volume being used and a single volume being served to a host.

Figure 92 - Array Instance

SCSIProtocolController

ConnectionRole=”Server”

 CIM_ComputerSystem

dedicated[x] '= 'Block
Server'

StorageVolume

DeviceId: Durable
Name

StorageVolume

DeviceId: Durable
Name

FCPort

AllocatedFromPool

ProtocolControllerForPort

SCSIProtocolController

ConnectionRole=”Client”
ProtocolControllerAccessesUnit

StorageVolume

DeviceId: Durable
Name

StoragePool

SystemDevice

ProtocolControllerForUnit

ConcreateComponentConcreateComponent

SCSIProtocol
Endpoint

DeviceSAPImplementation
SystemDevice

SCSIProtocol
Endpoint

DeviceSAPImplementation

FCPort

ProtocolControllerForPortSystemDevice
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 617

Cross Profile Considerations NO_ANSI_ID
Figure 93 - Virtualization Instance

dedicated[x] =
 "StorageVirtualizer"

ComputerSystem

StorageVolume

Name: //VPD pg 83 ID
DefaultAccessMode

StorageConfiguration
Service

ProtocolControllerAccessesUnit

StoragePool

AllocatedFromStoragePool

FCPort

SCSIProtocolController

ConnectionRole=”Server”

ProtocolControllerForUnit

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

SCSIProtocolController

ConnectionRole=”Client”

FCPort

ProtocolControllerForPort

SystemDevice

SCSIProtocol
Endpoint

HostedAccessPoint

HostedService

Component

SAPAvailable
ForElementDeviceSAPImplemetation

SCSIProtocol
Endpoint

DeviceSAPImplemetation

SystemDevice

HostedAccessPoint

ProvidesServiceTo
618

NO_ANSI_ID Cross Profile Considerations
55.6 Fabric Topology (HBA, Switch, Array)

A map of a SAN that shows all the elements and the connections between them is very useful. To create the map
all the elements in the SAN with their Fibre channel ports are first located. Next the ports are linked together.

To locate all the elements in a SAN, you start by locating the agents. SMI-S agents are located using SLP. Once the
agents are located, intrinsic methods are used to enumerate ComputerSystem objects. Each ComputerSystem
object represents an element in the SAN. The ComputerSystem object’s “Dedicated” attribute can be used to
identify the type of the element.

After the elements are located, Fibre channel ports for each element are discovered. For each ComputerSystem
object follow SystemDeviceFCPort objects and ProtocolController objects. For each ProtocolController object
follow the ProtocolControllerForPort associations to FCPort objects. Use the information in the FCPort objects

Figure 94 - Fabric Topology

Storage
Volume

DeviceSAPImplementation Physical Path Between the HBA
Port (of the Logical Path) and its
corresponding Storage Array Port
(of the Logical Path) through one or
more Switches in the Fabric

Protocol
EndPoint

Switch Profile

FC Port

Computer
System
(Switch)

0 or more
Switches

Host & HBA Profile

ProtocolControllerAccessesUnit

Computer
System
(Host)

SCSIProtocol
Controller

SystemDevice

ProtocolControllerForPort

FC Port

Protocol
EndPoint

DeviceSAPImplementation SystemDevice

DeviceSAPImplementation

Protocol
EndPoint

Protocol
EndPoint

FC Port

Storage Profile

FC Port

SCSIProtocol
Controller

Computer
System

(Storage Array)

ProtocolControllerForPort

Storage
Volume

ProtocolControllerForPort

Logical Path
Between Volumes

accessed through an
HBA Port and Volume

served through a
Storage Array Port

DeviceSAPImplementation

Computer
System
(Switch)

SystemDevice

ActiveConnection
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 619

Cross Profile Considerations NO_ANSI_ID
found to determine the Durable Name for the FCPort object. The Durable Name is used to match the ports to
objects in other profiles.

Now to link the elements’ ports together find the Switch elements. Switches know about ports on elements logged
into their ports. To find this information start by locating the ComputerSystem objects that represents switches.
Switches can be identified by the “Dedicated” attribute of the ComputerSystem object being set to “Switch”. For
each switch follow the SystemDeviceFCPort objects that represent the ports of the switch. Next look for
ActiveConnection ActiveConnectionFCPort objects. These FCPort objects represent the ports on the other side of
a link. Use attributes from the FCPort object to determine the Durable Name. These identifiers are then matched to
identifiers found in other profiles to complete the connections.

55.6.1 Logical Device Composition

The Logical Device Composition Recipe traces the objects and associations that make up a LogicalDevice across
profile boundaries. It serves performance and fault identification use-cases by allowing the user to map out all the
objects in the I/O stack that may contribute to the storage services a LogicalDevice provides to applications. It
covers the Disk Partition, Volume Manager, Disk, Multipath, Host Discovered Resources, Common Initiator, Fabric,
iSCSI Target, Storage Virtualizer, Array, and Storage Library profiles and subprofiles. This recipe also shows how
Correlatable Naming conventions may be used to identify and correlate instances of objects within, and across
profiles.

55.6.1.1 Main Recipe
Logical Device Composition Recipe

// This main recipe is profile-independent. It

// uses subroutines which are profile-dependent.

//

// DESCRIPTION:

//

// By stitching together information from

// multiple profiles, determine the logical composition

// a host LogicalDevice in terms of its constituent

// LogicalDevices, ProtocolControllers, Ports, StoragePools,

// etc. and the associations between them. This host LogicalDevice

// would typically either be a disk volume or tape device.

// Collect sufficient information to allow a graph to be drawn.

// Where possible, allow network topologies to be attached.

//

// PREEXISTING CONDITIONS AND ASSUMPTIONS:

//

// That all providers relevant to the logical composition

// of the device have been discovered (see the Server Profile

// recipe “Find Servers Supporting a Given Profile),

// can be queried for the information they have to contribute,

// and follow SMI-S 1.2

//

// Durable Names naming conventions to allow stitching

// across profiles and providers. Correlatable, unique

// and durable names are assumed if this is to work.

// In particular, this must be true of instances of:

//
620

NO_ANSI_ID Cross Profile Considerations
// CIM_LogicalDisk

// CIM_TapeDrive

// CIM_StorageExtent

// CIM_SCSIProtocolEndpoint // From Host Discovered Resources.

// CIM_iSCSIProtocolEndpoint // From iSCSI Initiator

//

// Which are node objects, included in multiple profiles.

//

// Other CIM Classes to be added as nodes are:

//

// CIM_SCSIProtocolController

// CIM_ProtocolEndpoint

// CIM_LogicalPort

// CIM_ComputerSystem

// CIM_iSCSISession

// CIM_EthernetPort

// CIM_StoragePool

// CIM_DiskDrive

// CIM_GenericDiskPartition

// SUBROUTINES:

//

// Each subroutine of this recipe has access to all

// providers relevant to the path under consideration.

// Add $node to $nodes[] if it has not already been added.

// If a new node was added, set #new_added to true.

sub AddIfNotAlreadyAdded(IN CIM_LogicalElement $node,

 IN/OUT CIM_LogicalElement[] $nodes[],

 OUT boolean #new_added,

 OUT int #error_code);

// Add $link to $links[] if it has not already been added.

// If a new link was added, set #new_added to true.

sub AddLinkIfNotAlreadyAdded(IN CIM_Dependency $link,

 IN/OUT CIM_Dependency[] $links[],

 OUT boolean #new_added,

 OUT int #error_code);

// Compare two LogicalElement references to determine if

// they represent the same modelled object. The two nodes

// may come from entirely different providers/profiles.

// This method uses correlatable naming conventions defined

// for the classes in question by the Profiles/SubProfiles.

sub RepresentsTheSameObject(IN CIM_LogicalElement $node1,
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 621

Cross Profile Considerations NO_ANSI_ID
 IN CIM_LogicalElement $node2,

 OUT int #error_code);

// Compare two Dependency references to determine if

// they represent the same modelled association. The two links

// may come from entirely different providers/profiles.

// This method uses correlatable naming conventions defined

// for the endpoints in question by the Profiles/SubProfiles.

sub RepresentsTheSameAssociation(IN CIMObjectPath $link1->,

 IN CIMObjectPath $link2->,

 OUT int #error_code) {

// Given the Names and NameFormats of two object instances,

// determine if the two instances represent the same modelled object

// unambiguously according to correlatable names semantics.

// Return true only if the match is unambiguous.

sub MatchUnambiguouslyByNameNameFormat(string name1,

 string nameFormat1,

 string name2,

 string nameFormat2

);

// Given the Names and ConnectionTypes of two SCSIProtocolEndpoint instances,

// determine if the two instances represent the same modelled object

// unambiguously according to correlatable names semantics for

// SCSIProtocolEndpoint.

// Return true only if the match is unambiguous.

sub MatchUnambiguouslyByNameAndConnectionType(string name1,

 int16 conType1,

 string name2,

 int16 conType2

);

// Given the IdentifyingDescriptions and OtherIDentifyingInfo

// arrays of two object instances,

// determine if the two instances represent the same object

// unambiguously according to Correlatable names semantics

// for ComputerSystem names.

// Return true only if the match is unambiguous.

sub MatchUnambiguouslyByIdentifyingInfo(string info1[],

 string desc1[],

 string info2[],

 string desc2[]

);

// Given an instance of an object from one provider,

// find the instance of the same object in the current
622

NO_ANSI_ID Cross Profile Considerations
// provider. Return null if not found.

sub GetProviderInstanceOf(IN CIM_LogicalElement $that_node,

 OUT CIM_LogicalElement $this_node,

 OUT int #error_code);

// In this function, the layer is passed references

// to the working graph. It is expected that the layer

// will search the structures for objects it recognizes

// and can add new objects and associations to the graph.

// If the layer does not exist or does not recognize

// any of the objects or associations in the graph

// as objects it manages or knows about, it adds nothing.

// Set #new_added to true if the layer contributed anything new to

// contribute to the graph.

sub AddToGraphFromLayerXXX(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code

);

// This fictitious function would draw a node in

// this logical composition on a canvas. The net effect

// of drawing all the nodes would be

// an arrangement of boxes containing CIM class names

// and identifiers of those objects.

sub DrawNode($node);

// This fictitious function would draw a line representing

// the specified association between two nodes. The net

// result would be a graph directed graph of the nodes

// with their associations.

sub DrawLinkBetweenNodes($link);

// ------ Main Recipe ------

// Begin with a CIM_LogicalDevice reference representing a

// volume on which a filesystem has been placed or is

// being used “raw” by an application managing its own

// block structures. The CIM_LogicalDeivce could also

// represent a tape device such as (/dev/rmtX or \\.\\TAPEX)

$logicaldevice;
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 623

Cross Profile Considerations NO_ANSI_ID
// The goal is to build two arrays: An array of objects

// representing nodes in the logical topology graph, and

// an array of Associations linking those objects to form

// a directed graph.

// CIM_LogicalElement[] $nodes[];

// CIM_Dependency[] $links[];

// Define some other flow control variables.

boolean #new_objects_added = true;

int #error_code = 0;

// Start by adding the top level volume.

$node[0] = $logicaldevice;

#new_objects_added = true;

// Now, build down through the layers building what

// should be a breadth-first traversal of the tree graph.

// Repeatedly cycle through the layers until no new objects

// have been added. This allows for multiple layers of

// virtualization and network to kick in if new objects are found

// from the layers above added in previous passes.

while (#new_objects_added) {

 boolean #added;

 #new_objects_added = false;

 &AddToGraphFromLayerVolumeManager($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerDiskPartitioning($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerLocalDiskDrive($nodes[],

 $links[],

 #new_objects_added,

 #error_code);
624

NO_ANSI_ID Cross Profile Considerations
 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerMultipath($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerHostDiscoveredResources($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerCommonInitiator($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerFabric($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerIPNetwork($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerStorageVirtualizer($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerArray($nodes[],

 $links[],

 #added,
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 625

Cross Profile Considerations NO_ANSI_ID
 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerStorageLibrary($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

} // while.

// Now “draw” the logical device composition. In reality these functions

// would need to rather sophisticated with geometric constraints

// to draw a nice looking graph.

for #i in $nodes[] {

 &DrawNode($nodes[#i]);

}

for #i in $links[] {

 &DrawLinkBetweenNodes($link[#i]);

}

// ------ Supporting Subroutines ------

sub AddIfNotAlreadyAdded(IN CIM_LogicalElement $node,

 IN/OUT CIM_LogicalElement[] $nodes[],

 OUT boolean #new_added,

 OUT int #error_code) {

 boolean #wasFound = false;

 boolean #new_added = false;

 // Search through the nodes looking for a match.

 // Not a particularly efficient way of doing it, but functional.

 for #i in $nodes[] {

 if (&RepresentsTheSameObject($node, $nodes[i], #error_code)) {

 if (compare(#error_code, 0)) {

 #wasFound = true;

 }

 break;

 }

 }
626

NO_ANSI_ID Cross Profile Considerations
 // If we did not find a match, and there were no errors, add it.

 if ((!#wasFound) && (compare(#error_code, 0))) {

 $nodes[].add($node);

 #new_added = true;

 }

} // AddIfNotAlreadyAdded.

// We are not being too picky about strong typing here.

// This function will take associations that are not subclasses

// of CIM_Dependency (such as the trinary CIM_SCSIInitiatorLogicalUnitPath)

sub AddLinkIfNotAlreadyAdded(IN CIM_Dependency $link,

 IN/OUT CIM_Dependency[] $links[],

 OUT int #error_code) {

 boolean #wasFound = false;

 #new_added = false;

 // Search through the nodes looking for a match.

 // Not a particularly efficient way of doing it, but functional.

 for #i in $links[] {

 if (&RepresentsTheSameAssociation($link.getObjectPath(),

 $links[#i].getObjectPath(),

 #error_code)) {

 if (compare(#error_code,0)) {

 #wasFound = true;

 }

 break;

 }

 }

 // If we did not find a match, and there were no errors, add it.

 if ((!#wasFound) && (compare(#error_code, 0))) {

 $links[].add($link);

 #new_added = true;

 }

} // AddLinkIfNotAlreadyAdded.

sub RepresentsTheSameAssociation(IN CIMObjectPath $link1->,

 IN CIMObjectPath $link2->,

 OUT int #error_code) {

 // Determine if the links are the same by comparing thier class

 if (

 // Now compare the correlatable identifiers of their endpoints.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 627

Cross Profile Considerations NO_ANSI_ID
 if !compare($link1->getObjectClass(), $link2->getObjectClass()) return false;

 // Handle descendents of CIM_Dependency.

 if (($link1-> ISA CIM_Dependency) && ($link2-> ISA CIM_Dependency)) {

 if (

 (&RepresentsTheSameObject($link1->Antecedent,

 $link2->Antecedent, #error_code) &&

 (&RepresentsTheSameObject($link1->Dependent,

 $link2->Dependent, #error_code)

) {

 return true;

 } else {

 return false;

 }

 // Handle the trinary association here.

 } else if (($link1-> ISA CIM_SCSIInitiatorLogicalUnitPath) &&

 ($link2-> ISA CIM_SCSIInitiatorLogicalUnitPath)) {

 if (

 (&RepresentsTheSameObject($link1->Initiator,

 $link2->Initiator, #error_code) &&

 (&RepresentsTheSameObject($link1->Target, $link2->Target,

 #error_code) &&

 (&RepresentsTheSameObject($link1->LogicalUnit,

 $link2->LogicalUnit, #error_code)

) {

 return true;

 } else {

 return false;

 }

 // Handle the CIM_SAPAvailableForElement association here.

 } else if (($link1-> ISA CIM_SAPAvailableForElement) &&

 ($link2-> ISA CIM_SAPAvailableForElement)) {

 if (

 (&RepresentsTheSameObject($link1->AvailableSAP,

 $link2->AvailableSAP, #error_code) &&

 (&RepresentsTheSameObject($link1->ManagedElement, i

 $link2->ManagedElement, #error_code)

) {

 return true;

 } else {

 return false;

 }
628

NO_ANSI_ID Cross Profile Considerations
 } else {

 return false;

 }

}

sub RepresentsTheSameObject(IN CIM_LogicalElement $node1,

 IN CIM_LogicalElement $node2,

 OUT int #error_code) {

 int #error_code = 0;

 boolean #result;

 // First, check if this is the same instance by checking object path.

 if (compare($node1.getObjectPath(), $node2.getObjectPath())) {

 return true;

 }

 // SCSIProtocolEndpoint is handled by Name and ConnectionType.

 if ($node1 ISA CIM_SCSIProtocolEndpoint) &&

 ($node2 ISA CIM_SCSIProtocolEndpoint)) {

) {

 #result = &MatchUnambiguouslyByNameAndConnectionType(

 $node1.Name, $node1.ConnectionType,

 $node2.Name, $node2.ConnectionType);

 // LogicalDevice and its subclasses StorageExtent and

 // LogicalDisk are handled

 // by IdentifyingInfo.

 } else if (($node1 ISA CIM_LogicalDevice) &&

 ($node2 ISA CIM_LogicalDevice)) {

 #result = &MatchUnambiguouslyByIdentifyingInfo(

 $node1.OtherIdentifyingInfo[],

 $node1.IdentifyingDescriptions[],

 $node2.OtherIdentifyingInfo[],

 $node2.IdentifyingDescriptions[]);

 // ComputerSystems are compared by two methods.

 } else if ($node1 ISA CIM_ComputerSystem) &&

 ($node2 ISA CIM_ComputerSystem)) {

 #result = &MatchUnambiguouslyByNameNameFormat(

 $node1.Name, $node1.NameFormat,

 $node2.Name, $node2.NameFormat);

 if (!#result) {

 #result = &MatchUnambiguouslyByIdentifyingInfo(

 $node1.OtherIdentifyingInfo[],

 $node1.IdentifyingDescriptions[],

 $node2.OtherIdentifyingInfo[],
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 629

Cross Profile Considerations NO_ANSI_ID
 $node2.IdentifyingDescriptions[]);

 }

 // These objects are compared by name.

 } else if (($node1 ISA CIM_GenericDiskPartition) &&

 ($node2 ISA CIM_GenericDiskPartition)) {

 #result = (compare($node1.Name, $node2.Name));

 } else if (($node1 ISA CIM_FCPort) && ($node2 ISA CIM_FCPort)) {

 #result = (compare($node1.Name, $node2.Name));

 // These DiskDrive and StoragePool have their own monikers.

 } else if (($node1 ISA CIM_DiskDrive) && ($node2 ISA CIM_DiskDrive)) {

 #result = (compare($node1.DeviceID, $node2.DeviceID));

 } else if (($node1 ISA CIM_StoragePool) && ($node2 ISA CIM_StoragePool)) {

 #result = (compare($node1.InstanceID, $node2.InstanceID));

 } else {

 < this method can’t handle this type >

 #error_code = 1;

 return false;

 }

 return #result;

} // RepresentsTheSameObject.

sub MatchUnambiguouslyByNameAndConnectionType(string name1,

 int16 conType1,

 string name2,

 int16 conType2

) {

 if (conType1 != conType2) {

 return false;

 } else {

 if (compare(name1, name2)) {

 return true;

 }

 }

 return false;

}

sub MatchUnambiguouslyByNameNameFormat(string name1,

 string nameFormat1,

 string name2,

 string nameFormat2

) {
630

NO_ANSI_ID Cross Profile Considerations
 if (nameFormat1 != nameFormat2) {

 return false;

 } else {

 if (compare(name1, name2)) {

 return true;

 }

 }

 return false;

}

sub MatchUnambiguouslyByIdentifyingInfo(string info1[],

 string desc1[],

 string info2[],

 string desc2[]

) {

 boolean #matchFound = false;

 // Loop through both arrays looking for a match.

 for (#i=0; #i<info1[].length; #i++) {

 for (#j=0; #j<info2[].length; #j++) {

 if (MatchUnambiguouslyByNameNameFormat(desc1[#i],

 info1[#i],

 desc2[#j],

 info2[#j]

)

) {

 #matchFound = true;

 break;

 }

 if (#matchFound) {

 break;

 }

 }

 return #matchFound;

}

sub GetProviderInstanceOf(IN CIM_LogicalElement $that_node,

 OUT CIM_LogicalElement $this_node,

 OUT int #error_code) {

 CIM_LogicalElement $possible_matches[];

 $this_node = null;

 // Enumerate through all the instances of this class in this provider

 // looking for a match to $that_node.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 631

Cross Profile Considerations NO_ANSI_ID
 $possible_matches = EnumInstances($that_node.getClass(), false, false);

 for #i in $possible_matches[] {

 if (&RepresentsTheSameObject($that_node, $possible_matches[#i],

 #error_code)

 && !#error_code) {

 $this_node = $possible_matches[#i];

)

 }

} // GetProviderInstanceOf.

55.6.1.2 Array paths
// Array layer piece of the Logical Device Composition Recipe

// This is based on the

// Array Profile, which uses the Target Port Subprofile.

// It connects LogicalDevices left by the SCSI initiator

// side to StorageVolumes and their LogicalPorts on the array side

// to allow network and logical disk topologies to be correlated.

// Further analysis of the topology inside the array

// will be left fo the next release of SMI-S.

sub AddToGraphFromLayerArray(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

 // CIM_SCSIProtocolController $found_protocol_controllers[];

 // CIM_ProtocolControllerForUnit $found_for_unit_associations[];

 // CIM_ProtocolEndpoint $found_protocol_endpoints[];

 // CIM_DeviceSAPImplementation $found_sap_associations[];

 // CIM_LogicalPort $found_ports[];

 // CIM_SAPAvailableForElement $found_available_associations[];

 boolean #added = false;

 #new_added = false;

 for #i in $nodes[] {

 if ($nodes[#i] ISA CIM_LogicalDevice) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return;}
632

NO_ANSI_ID Cross Profile Considerations
 if ($node != null) {

 // Work up the path to include the network ports

 // for stitching in the network topology.

 // Follow an ProtocolControllerForUnit to a SCSIProtocolController.

 $found_protocol_controllers[] = Associators(

 $node.getObjectPath(),

 “CIM_SCSIProtocolControllerForUnit”,

 “CIM_SCSIProtocolController”,

 “Dependent”,

 “Antecedent”

);

 $found_for_unit_associations[] = References(

 $node.getObjectPath(),

 “CIM_SCSIProtocolController”,

 “Dependent”

);

 // Each LogicalDevice may be handled by multiple controllers.

 for #j in $found_protocol_controllers[] {

 &AddIfNotAlreadyAdded($found_protocol_controllers[#j],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_for_unit_associations[#j],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow an SAPAvailableForElement to a SCSIProtocolEndpoint.

 $found_protocol_endpoints[] = Associators(

 $found_protocol_controllers[#j].getObjectPath(),

 “CIM_SAPAvailableForElement”,

 “CIM_ProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”

);

 $found_available_associations[] = References(

 $found_protocol_controllers[#j].getObjectPath(),

 “CIM_ProtocolEndpoint”,

 “ManagedElement”

);
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 633

Cross Profile Considerations NO_ANSI_ID
 // Each controller may multipath through multiple ports.

 for #k in $found_protocol_endpoints[] {

 &AddIfNotAlreadyAdded($found_protocol_endpoints[#k],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_available_associations[#k],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow the DeviceSAPImplementation to a LogicalPort.

 // This is a 1:1 relationship.

 $found_ports[] = Associators(

 $found_protocol_endpoints[#k].getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References(

 $found_protocol_endpoints.getObjectPath(),

 “CIM_LogicalPort”,

 “Dependent”

);

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 } // for #k.

 } // for #j.

 } // for #i.

} // AddToGraphFromLayerArray.

55.6.1.3 Host Discovered Resource

// Host Discovered Resources layer piece of the Logical Device Composition Recipe

// It uses the Host Discovered Resources Profile.
634

NO_ANSI_ID Cross Profile Considerations
sub AddToGraphFromLayerHostDiscoveredResources(

 IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_LogicalElement $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

boolean #added = false;

#new_added = false;

for #i in $nodes[] {

 // CIM_SCSIInitiatorTargetLogicalUnitPath $scsi_paths[];

 // CIM_SCSIProtocolEndpoint $initiator_endpoint;

 // CIM_SCSIProtocolEndpoint $target_endpoint;

 #i =0;

 if ($nodes[#i] ISA CIM_LogicalDevice) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return; }

 if ($node != null) {

 // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

 // with $node as the LogicalUnit reference.

 $scsi_paths[] = References(

 $node.getObjectPath(),

 “CIM_SCSIInitiatorLogicalUnitPath”, //ResultClass

 “LogicalUnit” // Role

);

 for (#j=0; #j<$scsi_paths.length; #j++) {

 &AddLinkIfNotAlready($scsi_paths[#j], $links[],

 #added, #error_code);

 #new_added |= #added;

 $initiator_endpoint = $scsi_paths[#j].Initiator;

 $target_endpoint = $scsi_paths[#j].Target;

 &AddIfNotAlreadyAdded($initiator_endpoint, $nodes[],

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($target_endpoint, $nodes[],

 #added, #error_code);

 #new_added |= #added;

 }

 } // if $node != null.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 635

Cross Profile Considerations NO_ANSI_ID
 } // if $node ISA.

} // For #i.

} // AddToGraphFromLayerHostDiscoveredResources.

55.6.1.4 Common Initiator Port

// Common Initiator layer piece of the Logical Device Composition Recipe

// It uses one of the initiator port subprofiles (eg. FibreChannel or iSCSI).

sub AddToGraphFromCommonInitiator(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_LogicalElement $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

boolean #added = false;

#new_added = false;

// The Goal is to start with SCSIProtocolEndpoints and add

// the associated port objects.

for #i in $nodes[] {

 // CIM_LogicalPort $ports[];

 // CIM_DeviceSAPImplementation $sap_associations[];

 if ($nodes[#i] ISA CIM_SCSIProtocolEndpoint) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return; }

 if ($node != null) {

 // Follow the DeviceSAPImplementation assocation

 // to the LogicalPort object

 $ports[] = Associators($node.getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $sap_associations[] = References($node.getObjectPath(),
636

NO_ANSI_ID Cross Profile Considerations
 “CIM_LogicalPort”,

 “Dependent”

);

 // Add the port objects and associations to the graph.

 for #j in $ports[] {

 if ((null != $sap_associations[#j]) &&

 (null != $ports[#j])

) {

 &AddLinkIfNotAlreadyAdded($sap_associations[#j], $links[],

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($ports[#j], $nodes[], #added, #error_code);

 #new_added |= #added;

 }

 } for #j.

 } // if $node != null.

 } // if $nodes[#i] ISA.

} // AddToGraphFromLayerCommonInitiator.

55.6.1.5 Fabric Layer
Fibre Channel Fabric layer piece of the Logical Device Composition Recipe

It uses the Fabric profile.

Sub AddToGraphFromLayerFabric($nodes, $links, #error_code){

// This function does the following

//

// 1. Identifies all the Switches and adds their objects paths and the object

// paths of the FC Ports belonging to these Switches to the $nodes array

//

// 2. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Switch and a FC Port), setting its GroupComponent and

// PartComponent. Adds the object path of the Association to the $links array

//

// 3. Creates a map of all connected FC Ports (i.e., belonging to Switches

// that are ISL’d together and to Host HBAs and Storage System Front End

// Controllers)

//

// In this map, the FC Ports (i.e., the ones that are connected) are

// cross-connected.

//

// e.g., For a pair of FC Ports, one belonging to a Switch and the other
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 637

Cross Profile Considerations NO_ANSI_ID
// belonging to a Host (HBA), the map indexed by the Switch Port WWN returns

// the Host (HBA) FC Port object path and the map indexed by the Host (HBA) FC //
Port WWN returns the Switch FC Port object path.

//

// The Object stored in this Map is a composite of five objects and four

// associations. They are Switch, Switch FC Port, Switch end Protocol End Point,

// Attached Protocol End Point and Attached FC Port. The Associations are

// System Device, Device SAPImplementation, ActiveConnection, The attached side

// DeviceSAPImplementation.

// This information is kept in the Map. While traversing the Host-HBA part of

// the topology, the HBA FC Ports are matched in this Map to find out if there

// is a corresponding Switch side FC Port. If yes, only then all the objects

// are that lie on that path are saved in the Nodes Array and the corresponding

// Associations that lie on the path are stored in the Links Array.

//

// Similar relationship exists between the pairs of FC Ports where one belongs //
to a Switch and the other belonging belongs to a Storage
System Front End

// Controller and for FC Ports each of which belongs to a Switch.

//

// 4. Identifies all the Hosts and adds their objects paths to the $nodes array.

// Note that the object paths of the FC Ports (HBA Ports) belonging to these

// Hosts are already added to the $nodes array in step-3.

//

// 5. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Host and a FC Port), setting its GroupComponent and

// PartComponent. Adds the object path of the Association to the $links array.

//

// 6. Identifies all the Storage Systems and adds their objects paths to the

// $nodes array.

// Note that the object paths of the FC Ports (i.e., Front End Controller FC

// Ports) belonging to these Storage Systems are already added to the $nodes

// array in step-3.

//

// 7. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Storage System and a FC Port), setting its GroupComponent //
and PartComponent. Adds the object path of the
Association to the $links

// array.

//

// First find all the switches in a SAN. Get all the FC Ports for each

// switch and get the Attached FC Ports for each Switch FC Port. Save these

// device FC ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 1. All agents/namespaces supporting Fabric Profile previously identified

// using SLP. Do this for each CIMOM supporting Fabric Profile

// A composite elementsOnPath object is created. This object will be populated
638

NO_ANSI_ID Cross Profile Considerations
// as we go along and will be stored in elementsOnPathMap with the index

// of attached FC Port WWN

ElementsOnPath #elementsOnPath = new ElementsOnPath();

ElementsOnPathMap #elementsOnPathMap = new ElementsOnPathMap();

switches[] = enumerateInstances("CIM_ComputerSystem", true, false, true,

true, null)

for #i in $switches[]

{

if (!contains(5, $switches[#i].Dedicated))

continue // only process switches, not other computer systems

// Add the switch to the elementsOnPath object

#elementsOnPath.switch = $switches[#i];

// Get all the SystemDevice associations between this switch and its FC Ports

$sysDevAssoc[] = ReferenceNames($switches[#i],

 "CIM_FCPort",

 "GroupComponent");

// Add the system device associations to the links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

$fcPorts->[] = AssociatorNames(

$switches[#i].getObjectPath(),

"CIM_SystemDevice",

"CIM_FCPort",

"GroupComponent",

"PartComponent")

for #j in $fcPorts->[]

{

// Add the FC Port to the elementsOnPathObject

#elementsOnPath.swFCPort = fcPorts->[#j];

$protocolEndpoints->[] = AssociatorNames(

fcPorts->[#j],

"CIM_DeviceSAPImplementation",

"CIM_ProtocolEndpoint",

"Antecedent",

"Dependent");
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 639

Cross Profile Considerations NO_ANSI_ID
// NOTE - It is possible for this collection to be empty (i.e., ports that are not

// connected). It is NOT possible for this collection to have more than one

// element

if ($protocolEndpoints->[].length == 0)

continue

// Add the Protocol End Point to the elementsOnPathObject

#elementsOnPath.prorEP = protocolEndpoints[0];

// Add the associations between the fcPort and the Protocol end point to the

// links array

$devSAPImplassoc[] = ReferenceNames($fcPorts->[#j],

 "CIM_ProtocolEndpoint",

 "Antecedent");

for #a in $devSAPImplassoc->[]

$links.addIfNotAlreadyAdded ($devSAPImplassoc->[#a];

$attachedProtocolEndpoints->[] = AssociatorNames(

$protocolEndpoints->[0],

"CIM_ActiveConnection",

"CIM_ProtocolEndpoint",

 null, null)

//Add the AttachedProtocolEndPoint to the elementsOnPath object

elementsOnPath.attachedPEP = attachedProtocolEndpoints->[0];

// Get the associations between the Protocol end point and the Attached

// protocol endpoint

$actConnassoc[] = ReferenceNames($protocolEndpoint->[#0],

 "CIM_ActiveConnection",

 "Antecedent");

// Add it to the elementsOnPath object

elementsOnPath.actConn = actConnAssoc->[0];

// NOTE: role & resultRole are null as the direction of the association is not

// dictated by the specification

// $attachedFcPort is either a device FC port or an ISLÂ’d switch FC port from

// another switch. We store this result is stored (i.e. which device

// FC Port is connected // to which switch FC Port) in a suitable data
640

NO_ANSI_ID Cross Profile Considerations
// structure for subsequent correlation to ports discovered on devices.

for #k in $attachedProtocolEndpoints->[] {

$attachedFcPorts->[] = Associators(

$attachedProtocolEndpoints->[#k],

"CIM_DeviceSAPImplementation",

"CIM_FCPort",

"Dependent",

"Antecedent",

false,

false,

["PermanentAddress"]);

$attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed by model

// Add the attached FC Port to the elementsOnPath object

if $attachedFcPort != null

 #elementsOnPath.attFCPort = $attachedFcPort);

// Save the elementsOnPath object in elementsOnPath Map with the index of

// wwn of the attached fc port

elementsOnPathMap.put ($attachedfcPort.PermanentAddress, elementsOnPath);

}

}

}

 // HBA to switch paths

// DESCRIPTION

// Determine physical path from HBA to switch.

//

// For each HBA FC port on every host, determine the connected switch

//FC port. NOTE: Not every HBA FC port will be connected to a switch FC port,

// and not every switch FC port will be connected to a device FC port. Only

// the connections between HBA FC ports and switch FC ports are discovered

// by this recipe

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces supporting HBA Profile previously identified

// using SLP

// 2. Array $attachedFcPorts->[] is a map of how elements in a SAN are

// connected together via Fibre-ChannelFC ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the

// connected switch FC port.

// Do this for each CIMOM supporting HBA Profile
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 641

Cross Profile Considerations NO_ANSI_ID
$hosts[] = enumerateInstances("CIM_ComputerSystem")

for #i in $hosts->[]

{

if (!contains(0, $hosts[#i].Dedicated))

continue // only process systems that are "not dedicated"

$fcPorts[] = Associators(

$hosts[#i].getObjectPath(),

"CIM_SystemDevice",

"CIM_FCPort",

"GroupComponent",

"PartComponent",

false,

false,

["PermanentAddress"])

// If the Host has FC Ports, add the Host to the $nodes array

if $fcPorts[] != null

$nodes.addIfNotAlreadyAdded ($hosts[#i]);

// Get all the SystemDevice associations between this host and its FC Ports

$sysDevAssoc[] = ReferenceNames($hosts[#i],

 "CIM_FCPort",

 "GroupComponent");

// Add these associations to the $links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch FC ports, by using the

// mapping table built above

$elementsOnPath = elementsOnPathMap.get(#wwn);

// If a match is found, then add all the elements from the elementsOnPath

// object to nodes and links array.

// This will ensure that only those Switches and Switch FC Ports etc that are on a
path will be entered in the nodes and links array
642

NO_ANSI_ID Cross Profile Considerations
if elementsOnPath != null

{

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getSwitch());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getswFCPort());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getPEP());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.geAttPEP());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttFCPort());

 $links.addIfNotAlreadyAdded (elementsOnPath.getDevSAPImpl());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getActConn());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttDevSAPImpl());

}

}

// Determine physical path from Switch to Storage Arrays

// DESCRIPTION

// Determine physical path from Storage Arrays to Switches

//

// For each fibre-channelFC port on every array, determine the connected

// switch FC port. NOTE: This identifies the FrontEnd I/O Controllers

// (and Storage Arrays) whose FC ports are physically connected to

// some of the FC ports of some of the Switches. This recipe does not

// distinguish and does not filter the front-end FC Port from the

// back-end FC Ports.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces conforming to the Array profile previously

// identified

// 2. Array $attachedFcPorts[] is a map of how elements in a SAN are

// connected together via Fibre-ChannelFC ports. Each index is a WWN of

// any device FC port on the SAN, and the value at that index is the

// connected switch FC port.

// Do this for each CIMOM supporting the Array Profile:

// First identify upper-level computer systems for storage arrays -

// see the Server Profile clause for how to use the Server profile to do this,

// or (as here) enumerate all systems within a conforming namespace

$computerSystems[] = enumerateInstances("CIM_ComputerSystem");

#n = 0

for #i in $computerSystems[]

{

if (!contains(3, $computerSystems[#i].Dedicated))

continue // only process systems that are dedicated "storage"

if (!contains(15, $computerSystems[#i].Dedicated))

continue // only process systems that are dedicated "block server"

$storageSystems[#n++] = $computerSystems[#i]
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 643

Cross Profile Considerations NO_ANSI_ID
}

// Now accumulate all subsidiary computerSystems (cluster members or

// storage controllers) - treat $storageSystems[] as a queue and stuff

// newly discovered subsidiaries onto the end, so that ComponentCS

// associations are followed to arbitrary depth

#i = 0

while (#i < #n)

{

$subsidiaries[] = Associators(

$storageSystems[#i].getObjectPath(),

"CIM_ComponentCS",

"CIM_ComputerSystem",

"GroupComponent",

"PartComponent",

false,

false,

null)

for #j in $subsidiaries[]

{

$storageSystems[#n++] = $subsidiaries[#j]

}

#i++;

}

// Now get scoped FC ports for all the systems that have been accumulated

// NOTE: Some of the FC ports contained will be back-end ports, but they will

// have no connectivity to switches, so we won’t distinguish them

// from unconnected front-end FC ports

for #i in $storageSystems[]

{

$fcPorts[] = Associators(

$storageSystems[#i].getObjectPath(),

"CIM_SystemDevice",

"CIM_FCPort",

"GroupComponent",

"PartComponent",

false,

false,

["PermanentAddress"])

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// If the Storage System has FC Ports, add the storage system to the $nodes array

if $fcPorts[] != null
644

NO_ANSI_ID Cross Profile Considerations
$nodes.addIfNotAlreadyAdded ($storageSystems[#i]);

// Get all the SystemDevice associations between this host and its FC Ports

$sysDevAssoc[] = ReferenceNames($storageSystems[#i],

 "CIM_FCPort",

 "GroupComponent");

// Add these associations to the $links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch FC ports, by using the

// mapping table built above

$elementsOnPath = elementsOnPathMap.get(#wwn);

// If a match is found, then add all the elements from the elementsOnPath

// object to nodes and links array.

// This will ensure that only those Switches and Switch FC Ports etc that are on a
path will be entered in the nodes and links array

if elementsOnPath != null

{

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getSwitch());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getswFCPort());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getPEP());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.geAttPEP());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttFCPort());

 $links.addIfNotAlreadyAdded (elementsOnPath.getDevSAPImpl());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getActConn());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttDevSAPImpl());

}

}

}

}

 SMI-S 1.3.0 Rev 6 SNIA Technical Position 645

Cross Profile Considerations NO_ANSI_ID
55.6.1.6 IP Network Layer

// IP Network piece of the Logical Device Composition Recipe

// It uses the iSCSI Target Ports Subprofile.

// This subroutine tries to account for the logical topology

// of the IP network between an iSCSI Initiator and Target

// by adding an object representing the iSCSISession (NetworkPipe)

// between them.

sub AddToGraphFromLayerIPNetwork(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

// CIM_EnpointOfNetworkPipe $found_endpoints_of_pipe[];

// CIM_iSCSISession $found_sessions[];

// CIM_EthernetPort $found_ports[];

// CIM_DeviceSAPImplementation $found_sap_associations[];

boolean #added;

for #i in $nodes[] {

 if ($nodes[#i] instanceof iSCSIProtocolEndpoint) {

 // Find the iSCSIProtocolEndpoints left for us by the iSCSI

 // Initiator Port subprofile. These are correlated by Name-NameFormat.

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if ($node != null) {

 // Using the EndpointOfNetworkPipe, follow the association

 // to an iSCSISession. This represents the topology contribution

 // if the IP Network.

 $found_sessions[] = Associators(

 $node.getObjectPath(),

 “CIM_EndpointOfNetworkPipe”,

 “CIM_iSCSISession”,

 “Antecedent”,

 “Dependent”

);
646

NO_ANSI_ID Cross Profile Considerations
 $found_endpoints_of_pipe[] = References($node.getObjectPath(),

 “CIM_iSCSISession”,

 “Antecedent”

);

 &AddIfNotAlreadyAdded($found_sessions[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_endpoints_of_pipe[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Also follow the DeviceSAPImplementation association

 // from the protocol endpoint to the EthernetPort for completeness.

 $found_ports[] = Associators($node.getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_EthernetPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References($node.getObjectPath(),

 “CIM_EthernetPort”,

 “Dependent”

);

 // Add the ports and sap associations. There should only be one?

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 } // if $node != null.

 } // if $nodes[#i] instanceof.

} // for #i.

} // AddToGraphFromLayerIPNetwork.

55.6.1.7 Local Disk Layer

// Local Disk layer piece of the Logical Device Composition Recipe
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 647

Cross Profile Considerations NO_ANSI_ID
// It uses the Disk Subprofile.

sub AddToGraphFromLayerLocalDiskDrive(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

// Make sure we’ve recursively tracked down all the StorageExtents.

boolean #added = false;

// CIM_StorageExtent $found_extents[];

// CIM_BasedOn $found_associations[];

#new_added = false;

// Now see if there are any local disk drives making

// up those extents through the MediaPresent association.

// CIM_DiskDrive $disk_media[];

// CIM_MediaPresent $mediapresent_associations[];

for #i in $nodes[] {

 if ($nodes[#i] ISA CIM_StorageExtent) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return;}

 if ($node != null) {

 $disk_media[] = Associators($node.getObjectPath(),

 “CIM_MediaPresent”,

 “CIM_DiskDrive”,

 “Dependent”,

 “Antecedent”

);

 $mediapresent_associations[] = References($node.getObjectPath(),

 “CIM_DiskDrive”,

 “Dependent”

);

 }

 // There should be only one asociation found for each extent.

 if (0 != $disk_media.length) {

 &AddIfNotAlreadyAdded($disk_media[0], $nodes[], #added, #error_code);
648

NO_ANSI_ID Cross Profile Considerations
 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($mediapresent_associations[0], $links[],

 #added, #error_code);

 #new_added |= #added;

 }

 } if $node != null.

 } if $node ISA .

} // for.

} // AddToGraphFromLayerLocalDiskDrive.

55.6.1.8 Logical Disk Layers

// Logical Disk Partitioning piece of the Logical Device Composition Recipe

// It uses the Disk Partition Subprofile.

// Given a CIM_GenericDiskPartition, recursively traverse the CIM_BasedOn

// associations finding other CIM_GenericDiskPartitions on which

// this partition is based

// and adding the partitions and associations to the found_partitions

// and found_partition_associations as you go. Follow CIM_BasedOn associations

// to the underlying CIM_StorageExtents.

sub RecursivelyAddPartitions(

 IN CIM_GenericDiskPartition $found_partition,

 IN/OUT CIM_GenericDiskPartition[] $found_partitions[],

 IN/OUT CIM_BasedOn[] $found_partition_associations[],

 OUT boolean #new_added

);

sub AddToGraphFromLayerDiskPartitioning(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_LogicalElement $links[],

 OUT #new_added,

 OUT #error_code) {

// CIM_GenericDiskPartition $found_partitions[];

// CIM_LogicalDiskBasedOnPartition $found_partition_associations[];
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 649

Cross Profile Considerations NO_ANSI_ID
// CIM_StorageExtent $found_extents[];

// CIM_BasedOn $found_extent_associations[];

boolean $added = false;

#new_added = false;

for #j in $nodes[] {

 // In the Disk Partitioning Profile

 // start with a LogicalDisk object, as it is defined

 // as that on which storage applications (volume managers or

 // filesystems) may be placed.

 // The LogicalDisk object has DeviceID and Name attributes

 // that should be set to OS device names like

 // (/dev/sda1 on Linux or C: on Windows)

 if ($nodes[#j] ISA CIM_LogicalDisk) {

 &GetProviderInstanceOf($nodes[#j], $node, #error_code);

 if (#error_code) { return; }

 if ($node != null) {

 // One would then follow the LogicalDiskBasedOn Partition

 // association to a GenericDiskPartition object.

 $found_partitions[] = Associators($node.getObjectPath(),

 “CIM_LogicalDiskBasedOnPartition”,

 “CIM_GenericDiskPartition”,

 “Dependent”,

 “Antecedent”

);

 $found_partition_associations[] = References($node.getObjectPath(),

 “CIM_GenericDiskPartition”,

 “Dependent”

);

 // To found paritions, add all recursive BasedOn associations to

 // and their partitions.

 for (#i=0; #i<$found_partitions[].length; #i++) {

 &RecursivelyAddPartitions($found_partitions[#i],

 $found_partitions[],

 $found_partition_associations[]);

 }
650

NO_ANSI_ID Cross Profile Considerations
 // Now add all parititons and associations found so far.

 for (#i=0; #i<$found_partitions[].length; #i++) {

 &AddIfNotAlreadyAdded($found_partitions[#i], $nodes[],

 #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_partition_associations[#i],

 $links[], #added, #error_code);

 #new_added |= #added;

 }

 // Now follow the BasedOn associations from partitions

 // to extents.

 for #k in $found_partitions[] {

 // look for a BasedOn association that

 // leads to a StorageExtent.

 $found_extents[] = Associators($found_partitions[#k].getObjectPath(),

 “CIM_BasedOn”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”

);

 $found_extent_associations[] = References($node.getObjectPath(),

 “CIM_StorageExtent”,

 “Dependent”

);

 if (($found_extents[0] != null) &&

 ($found_extent_associations[0] != null) &&

) {

 &AddLinkIfNotAlreadyAdded($found_extent_associations[0], $links[],

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($found_extents[0], $nodes[],

 #added, #error_code);

 #new_added |= #added;

 }

 } // For over partitions.

 // The DeviceID field of those StorageExents that are

 // StorageVolumes should be correlatable

 // to a StorageVolume object maintained by the Array profile.

 // (see Host Discovered Resources profile).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 651

Cross Profile Considerations NO_ANSI_ID
 } // if $null != $node.

 } // if $node ISA.

} // For over nodes.

} // AddToGraphFromLayerDiskPartitioning.

sub RecursivelyAddPartitions(

 IN CIM_GenericDiskPartition $found_partition,

 IN/OUT CIM_GenericDiskPartition[] $found_partitions[],

 IN/OUT CIM_BasedOn[] $found_partition_associations[],

 OUT boolean #new_added

){

 // CIM_GenericDiskPartition $new_found_partitions[];

 // CIM_BasedOn $new_found_associations;

 $new_found_partitions[] = Associators($found_partition.getObjectPath(),

 “CIM_BasedOn”,

 “CIM_GenericDiskPartition”,

 “Dependent”,

 “Antecedent”

);

 $new_found_associations[] = References($node.getObjectPath(),

 “CIM_GenericDiskPartition”,

 “Dependent”

);

 for #i in $new_found_associations[] {

 $found_partition_associations[].add($new_found_associations[#i]);

 #new_added = true;

 }

 for #i in $new_found_partitions[] {

 $found_partitions[].add($new_found_partitions[#i]);

 &RecursivelyAddPartitions($new_found_partitions[#i],

 $found_partitions[],

 $found_partition_associations[]);

 #new_added = true;

 }

652

NO_ANSI_ID Cross Profile Considerations

} // RecursivelyAddPartitions.

55.6.1.9 Multipath Layer

// Multipath layer piece of the Logical Device Composition Recipe

// It uses the SCSI Multipath Management Subprofile

sub AddToGraphFromLayerMultipath(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

boolean #added = false;

#new_added = false;

for #j in $nodes[] {

 // CIM_SCSIInitiatorTargetLogicalUnitPath $scsi_paths[];

 // CIM_SCSIProtocolEndpoint $initiator_endpoint;

 // CIM_SCSIProtocolEndpoint $target_endpoint;

 #i = 0;

 if ($nodes[#j] ISA CIM_LogicalDisk) {

 &GetProviderInstanceOf($nodes[#j], $node, #error_code);

 if (#error_code) { return; }

 if ($node != null) {

 // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

 // with $node as the LogicalUnit reference.

 $scsi_paths[] = References($node.getObjectPath(),

 “CIM_SCSIProtocolEndpoint”, // ResultClass

 “LogicalUnit” // Role

);

 for (#i=0; #i<$scsi_paths.length; #i++) {

 &AddLinkIfNotAlreadyAdded($scsi_paths[#i], $links[],

 #added, #error_code);

 #new_added |= #added;

 $initiator_endpoint = $scsi_paths[#i].Initiator;

 $target_endpoint = $scsi_paths[#i].Target;

 &AddIfNotAlreadyAdded($initiator_endpoint, $nodes[],

 #added, #error_code);
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 653

Cross Profile Considerations NO_ANSI_ID
 #new_added |= #added;

 &AddIfNotAlreadyAdded($target_endpoint, $nodes[],

 #added, #error_code);

 #new_added |= #added;

 } // for.

 } // if $node != null.

 } // if $node ISA.

} // For over nodes.

} // AddToGraphFromLayerMultipath.

55.6.1.10 Virtualizer Layer

// Virtualizer layer piece of the Logical Device Composition Recipe

// It is based on the Storage Virtualizer Profile,

// which includes the Target Port Subprofile,

// the Block Services Package, and the

// Initiator Port Subprofile. It stitches StorageVolumes

// it finds up to their ingress ports, across the layers

// of virtualization, and out their egress ports.

// For simplicity, this subroutine assumes there is no multipathing

// of LogicalDevices across multiple ingress ports.

// Given a CIM_StoragePool, recursively traverse the

// CIM_AllocatedFromStoragePool

// associations finding other CIM_StoragePools on which this pool is based

// and adding the pools and associations to the found_pools

// and found_allocated_associations as you go. This method is implemented

// in Volume Manager Layer subroutine of this recipe.

sub RecursivelyAddPools(

 IN CIM_StoragePool$found_pool,

 IN/OUT CIM_StoragePool $found_pools[],

 IN/OUT CIM_AllocatedFromStoragePools $found_allocated_associations[],

 OUT boolean #new_added

);

sub AddToGraphFromLayerStorageVirtualizer(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 int #error_code) {
654

NO_ANSI_ID Cross Profile Considerations
 // CIM_SCSIProtocolController $found_protocol_controllers[];

 // CIM_ProtocolControllerForUnit $found_for_unit_associations[];

 // CIM_ProtocolEndpoint $found_protocol_endpoints[];

 // CIM_DeviceSAPImplementation $found_sap_associations[];

 // CIM_LogicalPort $found_ports[];

 // CIM_SAPAvailableForElement $found_available_associations[];

 // CIM_StorageVolume $found_storage_volumes[];

 // CIM_StoragePool $found_storage_pools[];

 // CIM_AllocatedFromStoragePool $found_allocated_associations[];

 // CIM_StorageExtent $found_component_disks[];

 // CIM_ConcreteComponent $found_component_associations[];

 boolean #added = false;

 #new_added = false;

 for #i in $nodes[] {

 if ($nodes[#i] ISA CIM_LogicalDevice) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return;}

 if ($node != null) {

 // First, work up the path to include the network port

 // for stitching in the network topology.

 // Follow an ProtocolControllerForUnit to a SCSIProtocolController.

 $found_protocol_controllers[] = Associators(

 $node.getObjectPath(),

 “CIM_SCSIProtocolControllerForUnit”,

 “CIM_SCSIProtocolController”,

 “Dependent”,

 “Antecedent”

);

 $found_for_unit_associations[] = References(

 $node.getObjectPath(),

 “CIM_SCSIProtocolController”,

 “Dependent”

);

 &AddIfNotAlreadyAdded($found_protocol_controllers[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 655

Cross Profile Considerations NO_ANSI_ID
 &AddLinkIfNotAlreadyAdded($found_for_unit_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow an SAPAvailableForElement to a SCSIProtocolEndpoint.

 $found_protocol_endpoints[] = Associators(

 $found_protocol_controllers[0].getObjectPath(),

 “CIM_SAPAvailableForElement”,

 “CIM_ProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”

);

 $found_available_associations[] = References(

 $found_protocol_controllers[].getObjectPath(),

 “CIM_ProtocolEndpoint”,

 “ManagedElement”

);

 &AddIfNotAlreadyAdded($found_protocol_endpoints[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_available_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow the DeviceSAPImplementation to a LogicalPort.

 $found_ports[] = Associators(

 $found_protocol_endpoints[0].getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References(

 $found_protocol_endpoints.getObjectPath(),

 “CIM_LogicalPort”,

 “Dependent”

);

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

656

NO_ANSI_ID Cross Profile Considerations
 // Now, starting from our StorageVolume node, work down the path

 // through the virtualization layer and out the other side

 // to the LogicalPorts.

 // Follow the AllocatedFromStoragePool to a StoragePool.

 $found_storage_pools[] = Associators(

 $node.getObjectPath(),

 “CIM_AllocatedFromStoragePool”,

 “CIM_StoragePool”,

 “Dependent”,

 “Antecedent”

);

 $found_allocated_associations[] = References($node.getObjectPath(),

 “CIM_StoragePool”,

 “Dependent”

);

 // Recursively add other StoragePools by following additional

 // AllocatedFromStoragePool associations.

 for #j in $found_storage_pools[] {

 &RecursivelyAddPools($found_storage_pools[#j],

 $found_storage_pools[],

 $found_allocated_associations[],

 #added

);

 #new_added |= #added;

 } // for #j.

 for #j in $found_storage_pools[] {

 // Add the pools and allocated associations.

 &AddIfNotAlreadyAdded($found_storage_pools[#j],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_allocated_associations[#j],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow the ConcreteComponent associations to StorageExtents.

 $found_component_disks[] = Associators(

 $found_storage_pools[#j].getObjectPath(),

 “CIM_ConcreteComponent”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”

);
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 657

Cross Profile Considerations NO_ANSI_ID
 $found_component_associations[] = References(

 $found_storage_pools[#j].getObjectPath(),

 “CIM_StorageExtent”,

 “Dependent”

);

 // Now, work down each component_disk using the

 // Initiator Port Subprofile.

 for #k in $found_component_disks[] {

 // Add the disks and component associations.

 &AddIfNotAlreadyAdded($found_component_disks[#k],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_component_associations[#k],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

 // with $found_component_disks[#k] as the LogicalUnit.

 $scsi_paths[] = References(

 $found_component_disks[#k].getObjectPath(),

 “CIM_SCSIProtocolEndpoint”, // ResultClass

 “LogicalUnit” // Role

);

 // Backward compatibility note: SMI-S 1.0 used an

 // SAPAvailableForElement association to get the the

 // SCSIProtocolEndpoint here. This recipe has been written

 // to the SMI-S 1.1 model, which uses the trinary association

 // SCSIInitiatorTargetLogicalUnitPath.

 for (#ii=0; #ii<$scsi_paths.length; #ii++) {

 &AddLinkIfNotAlreadyAdded($scsi_paths[#ii],

 $links[], #added, #error_code);

 #new_added |= #added;

 $initiator_endpoint = $scsi_paths[#ii].Initiator;

 $target_endpoint = $scsi_paths[#ii].Target;

 &AddIfNotAlreadyAdded($initiator_endpoint,

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($target_endpoint,

 $nodes[], #added, #error_code);

 #new_added |= #added;

 // Follow the DeviceSAPImplementation assocation
658

NO_ANSI_ID Cross Profile Considerations
 // to the LogicalPort object.

 $found_ports[] = Associators(

 $initiator_endpoint.getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References(

 $initiator_endpoints.getObjectPath(),

 “CIM_LogicalPort”,

 “Dependent”

);

 // Add the ports and sap associations.

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 } // for #ii.

 } // for #k.

 } // for #j.

 } // if $node != null.

 } // if $node ISA.

 } // for #i.

} // AddToGraphFromLayerStorageVirtualizer.

55.6.1.11 Volume Manager Layer

// Volume Manager layer piece of the Logical Device Composition Recipe

// It uses the Volume Management Profile.

// Given a CIM_StoragePool, recursively traverse the

// CIM_AllocatedFromStoragePool

// associations finding other CIM_StoragePools on which this pool is based

// and adding the pools and associations to the found_pools
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 659

Cross Profile Considerations NO_ANSI_ID
// and found_allocated_associations as you go.

sub RecursivelyAddPools(

 IN CIM_StoragePool$found_pool,

 IN/OUT CIM_StoragePool $found_pools[],

 IN/OUT CIM_AllocatedFromStoragePools $found_allocated_associations[],

 OUT boolean #new_added

);

// Given a CIM_LogicalDisk, recursively traverse the CIM_BasedOn

// associations finding other CIM_LogicalDisks on which this

// LogicalDisk is based

// and adding the disks and associations to the found_disks

// and found_basedon_associations as you go.

sub RecursivelyAddDisks(

 IN CIM_LogicalDisk $found_disk,

 IN/OUT CIM_LogicalDisk $found_disks[],

 IN/OUT CIM_AllocatedFromStoragePools $found_basedon_associations[],

 OUT boolean #new_added

);

// We want the CIM_StoragePools to be part of the

// composition topology if they exist.

sub AddToGraphFromLayerVolumeManager(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

#added = false;

for #j in $nodes[] {

 // CIM_StoragePool $found_storage_pools[];

 // CIM_AllocatedFromStoragePool $found_allocated_associations[];

 if ($nodes[#j] ISA CIM_LogicalDisk) {

 &GetProviderInstanceOf($nodes[#j], $node, #error_code);

 if (#error_code) { return;}

 if (($node != null)) {

 // This first method looks for cases where volume groups

 // have been created as StoragePools.
660

NO_ANSI_ID Cross Profile Considerations
 // Follow the CIM_AllocatedFromStoragePool association

 // to a CIM_StoragePool.

 $found_storage_pools[] = Associators($node.getObjectPath(),

 “CIM_AllocatedFromStoragePool”,

 “CIM_StoragePool”,

 “Dependent”,

 “Antecedent”

);

 $found_allocated_associations[] = References($node.getObjectPath(),

 “CIM_StoragePool”,

 “Dependent”

);

 // Then, recursively follow any CIM_AllocatedFromStoragePool

 // associations to other CIM_StoragePools, adding associations

 // and strorage pools as you go.

 for (#i=0; #i<$found_storage_pools[].length, #i++) {

 &RecursivelyAddPools($found_storage_pools[#i],

 $found_storage_pools[],

 $found_allocated_associations[],

 #added

);

 #new_added |= #added;

 }

 for #k in $found_allocated_associations[] {

 &AddLinkIfNotAlreadyAdded($found_allocated_association[#k], $links[],

 #added, #error_code);

 #new_added |= #added;

 }

 for #k in $found_storage_pools[] {

 &AddIfNotAlreadyAdded($found_pool_storage_pools[#k],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 }

 // Now find the component disks of the storage pools.

 // CIM_LogicalDisk[] $found_component_disks[];

 for #k in $found_storage_pools[] {

 $found_component_disks[] = Associators(

 $found_storage_pools[#k].getObjectPath(),

 “CIM_ConcreteComponent”,

 “CIM_CIMLogicalDisk”,

 “Dependent”,

 “Antecedent”

);
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 661

Cross Profile Considerations NO_ANSI_ID
 $found_component_associations[] = References(

 $found_storage_pools[#k].getObjectPath(),

 “CIM_LogicalDisk”,

 “Dependent”

);

 }

 for (#i=0; i < $found_component_disks[].length; #i++) {

 &AddLinkIfNotAlreadyAdded($found_component_associations[#i],

 $links[],

 #added,

 #error_code);

 #new_added |= #added;

 }

 // If this implementation does not use volume groups,

 // look for the BasedOn associations to find the disks.

 // CIM_LogicalDisk[] $found_logical_disks[];

 // CIM_BasedOn[] $found_basedon_associations[];

 $found_logical_disks[] = Associators($node.getObjectPath(),

 “CIM_BasedOn”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”

);

 $found_basedon_associations[] = References($node.getObjectPath(),

 “CIM_LogicalDisk”,

 “Dependent”

);

 // Add these disks to the component_disks.

 for (#i=0; #i<$found_basedon_associations[].length; #i++) {

 &AddLinkIfNotAlreadyAdded($found_basedon_associations[#i], $links[].

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($found_logical_disks[#i],

 $found_component_disks[],

 #added, #error_code);

 #new_added |= #added;

 }
662

NO_ANSI_ID Cross Profile Considerations
 // Follow all BasedOn associations to find more component disks

 // recursively.

 // CIM_LogicalDisk $recusive_disks[];

 // CIM_BasedOn $recursive_basedon_associations[];

 for (#i=0; #i<$found_component_disks[].length; #i++) {

 &RecursivelyAddDisks($found_component_disks[#i],

 $recursive_disks[],

 $recursive_basedon_associations[],

 #added);

 }

 // Now add the recursive disks and associations to the

 // $nodes[] and $links[] arrays.

 for (#i=0; #i<$recursive_disks[].length; #i++) {

 &AddLinkIfNotAlreadyAdded($recursive_basedon_associations[#i],

 $links[], #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($recursive_disks[#i],

 $nodes[],

 #added, #error_code);

 #new_added |= #added;

 }

 } // if $node != null.

 } // if $node ISA.

} // For over nodes.

} // AddToGraphFromLayerVolumeManager.

sub RecursivelyAddPools(

 IN CIM_StoragePool $found_pool,

 IN/OUT CIM_StoragePool $found_pools[],

 IN/OUT CIM_AllocatedFromStoragePools $found_allocated_associations[],

 OUT boolean #new_added

) {

 // CIM_StoragePool $new_found_pools;

 // CIM_AllocatedFromStoragePool $new_found_associations;

 #new_added = false;

 $new_found_pools[] = Associators($found_pool.getObjectPath(),

 “CIM_AllocatedFromStoragePool”,
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 663

Cross Profile Considerations NO_ANSI_ID
 “CIM_StoragePool”,

 “Dependent”,

 “Antecedent”

);

 $new_found_associations[] = References($node.getObjectPath(),

 “CIM_StoragePool”,

 “Dependent”

);

 for #i in $new_found_associations[] {

 $found_allocated_associations[].add($new_found_associations[#i]);

 #new_added = true;

 }

 for #i in $new_found_pools[] {

 $found_pools[].add($new_found_pools[#i]);

 &RecursivelyAddPools($new_found_pools[#i], $found_pools[],

 $found_allocated_associations[], #new_added);

 #new_added = true;

 }

} // RecursivelyAddPools.

sub RecursivelyAddDisks(IN CIM_LogicalDisk $found_disk,

 IN/OUT CIM_LogicalDisk $found_disks[],

 IN/OUT CIM_BasedOn $found_basedon_associations[],

 OUT boolean #new_added

) {

 // CIM_StoragePool $new_found_disks[];

 // CIM_AllocatedFromStoragePool $new_found_associations;

 #new_added = false;

 $new_found_disks[] = Associators($found_disk.getObjectPath(),

 “CIM_BasedOn”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”

);

 $new_found_associations[] = References($node.getObjectPath(),

 “CIM_LogicalDisk”,

 “Dependent”

);

 for #i in $new_found_associations[] {
664

NO_ANSI_ID Cross Profile Considerations
 $found_basedon_associations[].add($new_found_associations[#i]);

 #new_added = true;

 }

 for $new_found_disk in $new_found_disks[] {

 $found_disks[].add($new_found_disks[#i]);

 &RecursivelyAddDisks($new_found_disks[#i], $found_disks[],

 $found_basedon_associations[], #new_added);

 #new_added = true;

 }

} // RecursivelyAddDisks.

55.6.1.12 Storage Library

// Storage Library layer piece of the Logical Device Composition Recipe

// This is based on the

// Storage Library Profile, which can include the Target Port Subprofile.

// It connects LogicalDevices left by the SCSI initiator

// side to TapeDrives and their LogicalPorts on the array side

// to allow network and logical device topologies to be correlated.

sub AddToGraphFromLayerStorageLibrary(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

 // CIM_SCSIProtocolController $found_protocol_controllers[];

 // CIM_ProtocolControllerForUnit $found_for_unit_associations[];

 // CIM_ProtocolEndpoint $found_protocol_endpoints[];

 // CIM_DeviceSAPImplementation $found_sap_associations[];

 // CIM_LogicalPort $found_ports[];

 // CIM_SAPAvailableForElement $found_available_associations[];

 boolean #added = false;

 #new_added = false;

 for #i in $nodes[] {

 if ($nodes[#i] ISA CIM_LogicalDevice) {

 // This should correlate by OtherIdentifyingInfo and should find the

 // corresponding CIM_TapeDrive object instance in this profile.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 665

Cross Profile Considerations NO_ANSI_ID
 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return;}

 if ($node != null) {

 // Work up the path to include the network ports

 // for stitching in the network topology.

 // Follow an ProtocolControllerForUnit to a SCSIProtocolController.

 $found_protocol_controllers[] = Associators(

 $node.getObjectPath(),

 “CIM_SCSIProtocolControllerForUnit”,

 “CIM_SCSIProtocolController”,

 “Dependent”,

 “Antecedent”

);

 $found_for_unit_associations[] = References(

 $node.getObjectPath(),

 “CIM_SCSIProtocolController”,

 “Dependent”

);

 // Each LogicalDevice may be handled by multiple controllers.

 for #j in $found_protocol_controllers[] {

 &AddIfNotAlreadyAdded($found_protocol_controllers[#j],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_for_unit_associations[#j],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow an SAPAvailableForElement to a SCSIProtocolEndpoint.

 $found_protocol_endpoints[] = Associators(

 $found_protocol_controllers[#j].getObjectPath(),

 “CIM_SAPAvailableForElement”,

 “CIM_ProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”

);

 $found_available_associations[] = References(

 $found_protocol_controllers[#j].getObjectPath(),

 “CIM_ProtocolEndpoint”,

 “ManagedElement”
666

NO_ANSI_ID Cross Profile Considerations
);

 // Each controller may multipath through multiple ports.

 for #k in $found_protocol_endpoints[] {

 &AddIfNotAlreadyAdded($found_protocol_endpoints[#k],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_available_associations[#k],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow the DeviceSAPImplementation to a LogicalPort.

 // This is a 1:1 relationship.

 $found_ports[] = Associators(

 $found_protocol_endpoints[#k].getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References(

 $found_protocol_endpoints.getObjectPath(),

 “CIM_LogicalPort”,

 “Dependent”

);

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 } // for #k.

 } // for #j.

 } // for #i.

} // AddToGraphFromLayerStorageLibrary.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 667

Cross Profile Considerations NO_ANSI_ID
668

	Revision History
	List of Tables
	List of Figures
	Foreword
	Clause 1: Scope
	Clause 2: Normative References
	2.1 Approved References
	2.2 DMTF References (Final)
	2.3 IETF References (Standards or Draft Standards)
	2.4 References under development
	2.5 Other References

	Clause 3: Terms and definitions
	3.1 General
	3.2 Terms

	Clause 4: Profile Introduction
	4.1 Profile Overview
	4.1.1 Terminology

	4.2 Format for Profile Specifications

	Clause 5: Recipe Overview
	5.1 Recipe Concepts
	5.2 Recipe Pseudo Code Conventions
	5.2.1 Overview
	5.2.2 General Syntax
	5.2.3 CIM related variable and methods
	5.2.4 Data Structure
	5.2.5 Operations
	5.2.6 Control Operations
	5.2.7 Functions
	5.2.8 Exception Handling
	5.2.9 Built-in Functions
	5.2.10 Extrinsic method calls

	Clause 6: Generic Target Ports Profile
	6.1 Synopsis
	6.2 Description
	6.3 Implementation
	6.3.1 Modeling SCSI/SB Logical Units

	6.4 Methods of the Profile
	6.4.1 Extrinsic Methods
	6.4.2 Intrinsic Methods

	6.5 Use Cases
	6.6 CIM Elements
	6.6.1 CIM_ATAProtocolEndpoint
	6.6.2 CIM_DeviceSAPImplementation
	6.6.3 CIM_HostedAccessPoint (ATA)
	6.6.4 CIM_HostedAccessPoint (SCSI)
	6.6.5 CIM_LogicalPort
	6.6.6 CIM_ProtocolEndpoint
	6.6.7 CIM_SCSIProtocolEndpoint
	6.6.8 CIM_SystemDevice

	Clause 7: Parallel SCSI (SPI) Target Ports Profile
	7.1 Synopsis
	7.2 Description
	7.3 Implementation
	7.4 Health and Fault Management
	7.5 Methods
	7.5.1 Extrinsic Methods of this Subprofile

	7.6 CIM Elements
	7.6.1 CIM_ATAProtocolEndpoint
	7.6.2 CIM_DeviceSAPImplementation
	7.6.3 CIM_HostedAccessPoint (ATA)
	7.6.4 CIM_HostedAccessPoint (SCSI)
	7.6.5 CIM_SCSIProtocolEndpoint
	7.6.6 CIM_SCSIProtocolEndpoint
	7.6.7 CIM_SPIPort
	7.6.8 CIM_SystemDevice

	Clause 8: FC Target Ports Profile
	8.1 Synopsis
	8.2 Description
	8.3 Implementation
	8.3.1 SMI-S 1.0 backwards compatibility

	8.4 Durable Names and Correlatable IDs of the Subprofile
	8.5 Health and Fault Management
	8.6 Supported Profiles and Packages
	8.7 Extrinsic Methods of this Subprofile
	8.8 Client Considerations and Recipes
	8.9 CIM Elements
	8.9.1 CIM_ATAProtocolEndpoint
	8.9.2 CIM_DeviceSAPImplementation
	8.9.3 CIM_FCPort
	8.9.4 CIM_HostedAccessPoint (ATA)
	8.9.5 CIM_HostedAccessPoint (SCSI)
	8.9.6 CIM_ProtocolControllerForPort
	8.9.7 CIM_SCSIProtocolEndpoint
	8.9.8 CIM_SCSIProtocolEndpoint
	8.9.9 CIM_SystemDevice

	Clause 9: iSCSI Target Ports Subprofile
	9.1 Synopsis
	9.2 Description
	9.3 Implementation
	9.3.1 Mapping and Masking Considerations
	9.3.2 Settings
	9.3.3 Durable Names and Correlatable IDs of the Subprofile

	9.4 Health and Fault Management
	9.5 Supported Subprofiles and Packages
	9.6 Methods of this Subprofile
	9.6.1 CreateiSCSINode
	9.6.2 DeleteiSCSINode
	9.6.3 CreateiSCSIProtocolEndpoint
	9.6.4 DeleteiSCSIProtocolEndpoint
	9.6.5 BindiSCSIProtocolEndpoint

	9.7 Client Considerations and Recipes
	9.7.1 Discover the iSCSI Target Port capabilities.
	9.7.2 Identify the iSCSI Nodes in a target system.
	9.7.3 Identify the iSCSI Ports on an given iSCSI node.
	9.7.4 Identify the iSCSI sessions existing on an iSCSI node.
	9.7.5 Create an iSCSI Target Node on an iSCSI Network Entity
	9.7.6 Create an iSCSI Target Port on an iSCSI target node.
	9.7.7 Add a Network Portal to a Target Port.
	9.7.8 Determine the health of Nodes in a target system.
	9.7.9 Determine the health of a Session on a target system.
	9.7.10 Configure the default settings for Sessions created in a target computer system.
	9.7.11 Configure default settings for Connections on Network Portals used by an iSCSIProtocolEndpoint.
	9.7.12 Get the statistics for a Session on a target system
	9.7.13 Configure Enable/disable header and data digest

	9.8 CIM Elements
	9.8.1 CIM_BindsTo (TCPProtocolEndpoint to IPProtocolEndpoint)
	9.8.2 CIM_BindsTo (iSCSIProtocolEndpoint to TCPProtocolEndpoint)
	9.8.3 CIM_ConcreteDependency
	9.8.4 CIM_DeviceSAPImplementation (EthernetPort to IPProtocolEndpoint)
	9.8.5 CIM_DeviceSAPImplementation (EthernetPort to iSCSIProtocolEndpoint)
	9.8.6 CIM_ElementCapabilities (iSCSIConfigurationCapabilities to System)
	9.8.7 CIM_ElementCapabilities (iSCSIConfigurationCapabilities to iSCSIConfigurationService)
	9.8.8 CIM_ElementSettingData (iSCSIConnectionSettings to TCPProtocolEndpoint)
	9.8.9 CIM_ElementSettingData (iSCSIConnectionSettings to iSCSIProtocolEndpoint)
	9.8.10 CIM_ElementSettingData (iSCSISessionSettings to SCSIProtocolController)
	9.8.11 CIM_ElementSettingData (iSCSISessionSettings to System)
	9.8.12 CIM_ElementSettingData (iSCSISessionSettings to iSCSIProtocolEndpoint)
	9.8.13 CIM_ElementStatisticalData (iSCSILoginStatistics to SCSIProtocolController)
	9.8.14 CIM_ElementStatisticalData (iSCSISessionFailures to SCSIProtocolController)
	9.8.15 CIM_ElementStatisticalData (iSCSISessionStatistics to iSCSISession)
	9.8.16 CIM_EndpointOfNetworkPipe (iSCSIConnection to TCPProtocolEndpoint)
	9.8.17 CIM_EndpointOfNetworkPipe (iSCSISession to iSCSIProtocolEndpoint)
	9.8.18 CIM_EthernetPort
	9.8.19 CIM_HostedAccessPoint (System to IPProtocolEndpoint)
	9.8.20 CIM_HostedAccessPoint (System to TCPProtocolEndpoint)
	9.8.21 CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)
	9.8.22 CIM_HostedCollection
	9.8.23 CIM_HostedService
	9.8.24 CIM_IPProtocolEndpoint
	9.8.25 CIM_MemberOfCollection
	9.8.26 CIM_NetworkPipeComposition
	9.8.27 CIM_SAPAvailableForElement
	9.8.28 CIM_SCSIProtocolController
	9.8.29 CIM_SystemDevice (System to EthernetPort)
	9.8.30 CIM_SystemDevice (System to SCSIProtocolController)
	9.8.31 CIM_SystemSpecificCollection
	9.8.32 CIM_TCPProtocolEndpoint
	9.8.33 CIM_iSCSICapabilities
	9.8.34 CIM_iSCSIConfigurationCapabilities
	9.8.35 CIM_iSCSIConfigurationService
	9.8.36 CIM_iSCSIConnection
	9.8.37 CIM_iSCSIConnectionSettings
	9.8.38 CIM_iSCSILoginStatistics
	9.8.39 CIM_iSCSIProtocolEndpoint
	9.8.40 CIM_iSCSISession
	9.8.41 CIM_iSCSISessionFailures
	9.8.42 CIM_iSCSISessionSettings
	9.8.43 CIM_iSCSISessionStatistics

	Clause 10: Serial Attached SCSI (SAS) Target Port Subprofile
	10.1 Synopsis
	10.2 Description
	10.2.1 Health and Fault Management

	10.3 Methods
	10.3.1 Extrinsic Methods of this Subprofile
	10.3.2 Intrinsic Methods of this Subprofile

	10.4 Client Considerations and Recipes
	10.5 CIM Elements
	10.5.1 CIM_ATAProtocolEndpoint
	10.5.2 CIM_DeviceSAPImplementation
	10.5.3 CIM_HostedAccessPoint (ATA)
	10.5.4 CIM_HostedAccessPoint (SCSI)
	10.5.5 CIM_SASPort
	10.5.6 CIM_SCSIProtocolEndpoint
	10.5.7 CIM_SCSIProtocolEndpoint
	10.5.8 CIM_SystemDevice

	Clause 11: Serial ATA (SATA) Target Ports Profile
	11.1 Synopsis
	11.2 Description
	11.2.1 Health and Fault Management

	11.3 Methods of this Subprofile
	11.4 Client Considerations and Recipes
	11.5 CIM Elements
	11.5.1 CIM_ATAPort
	11.5.2 CIM_ATAProtocolEndpoint
	11.5.3 CIM_ATAProtocolEndpoint
	11.5.4 CIM_DeviceSAPImplementation
	11.5.5 CIM_HostedAccessPoint (ATA)
	11.5.6 CIM_HostedAccessPoint (SCSI)
	11.5.7 CIM_SCSIProtocolEndpoint
	11.5.8 CIM_SystemDevice

	Clause 12: SB Target Port Profile
	12.1 Synopsis
	12.2 Description
	12.3 Implementation
	12.4 Health and Fault Management Consideration
	12.5 Cascading Considerations
	12.6 Supported Profiles, Subprofiles, and Packages
	12.7 Methods of the Profile
	12.7.1 Extrinsic Methods of the Profile
	12.7.2 Intrinsic Methods of the Profile

	12.8 Client Considerations and Recipes
	12.9 CIM Elements
	12.9.1 CIM_ATAProtocolEndpoint
	12.9.2 CIM_DeviceSAPImplementation
	12.9.3 CIM_FCPort
	12.9.4 CIM_HostedAccessPoint (ATA)
	12.9.5 CIM_HostedAccessPoint (SCSI)
	12.9.6 CIM_SCSIProtocolEndpoint
	12.9.7 CIM_SystemDevice
	12.9.8 SNIA_SBProtocolEndpoint

	Clause 13: Direct Attach (DA) Ports Profile
	13.1 Description
	13.2 Health and Fault Management
	13.3 Supported Profiles and Packages
	13.4 Extrinsic Methods
	13.5 Client Considerations and Recipes
	13.6 CIM Elements
	13.6.1 CIM_ATAProtocolEndpoint
	13.6.2 CIM_DAPort
	13.6.3 CIM_DeviceSAPImplementation
	13.6.4 CIM_HostedAccessPoint (ATA)
	13.6.5 CIM_HostedAccessPoint (SCSI)
	13.6.6 CIM_ProtocolEndpoint
	13.6.7 CIM_SCSIProtocolEndpoint
	13.6.8 CIM_SystemDevice

	Clause 14: Generic Initiator Ports Profile
	14.1 Synopsis
	14.2 Description
	14.3 Implementation
	14.3.1 Remote Device Models
	14.3.2 Health and Fault Management Considerations
	14.3.3 Cascading Considerations

	14.4 Methods
	14.4.1 Extrinsic Methods of this Profile
	14.4.2 Intrinsic Methods of this Profile

	14.5 Detailed Use Cases and Recipes
	14.6 CIM Elements
	14.6.1 CIM_ConnectivityCollection
	14.6.2 CIM_DeviceSAPImplementation
	14.6.3 CIM_HostedAccessPoint (Initiator)
	14.6.4 CIM_HostedAccessPoint (Target)
	14.6.5 CIM_HostedCollection
	14.6.6 CIM_LogicalPort
	14.6.7 CIM_MemberOfCollection
	14.6.8 CIM_SystemDevice (Initiator Ports)
	14.6.9 CIM_SystemDevice (Non-port devices)

	Clause 15: Parallel SCSI (SPI) Initiator Ports Profile
	15.1 Synopsis
	15.2 Description
	15.3 Implementation
	15.3.1 Health and Fault Management Considerations
	15.3.2 Cascading Considerations

	15.4 Methods
	15.4.1 Extrinsic Methods of this Profile
	15.4.2 Intrinsic Methods of this Profile

	15.5 Detailed Use Cases and Recipes
	15.6 CIM Elements
	15.6.1 CIM_ConnectivityCollection
	15.6.2 CIM_DeviceSAPImplementation
	15.6.3 CIM_HostedAccessPoint (Initiator)
	15.6.4 CIM_HostedAccessPoint (Target)
	15.6.5 CIM_HostedCollection
	15.6.6 CIM_MemberOfCollection
	15.6.7 CIM_SCSIInitiatorTargetLogicalUnitPath
	15.6.8 CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)
	15.6.9 CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint)
	15.6.10 CIM_SPIPort
	15.6.11 CIM_SystemDevice (Initiator Ports)
	15.6.12 CIM_SystemDevice (Non-port devices)

	Clause 16: iSCSI Initiator Port Profile
	16.1 Synopsis
	16.2 Description
	16.3 Implementation
	16.3.1 Health and Fault Management Considerations
	16.3.2 Cascading Considerations

	16.4 Methods
	16.4.1 Extrinsic Methods of this Profile
	16.4.2 Intrinsic Methods of this Profile

	16.5 Detailed Use Cases and Recipes
	16.6 CIM Elements
	16.6.1 CIM_BindsTo
	16.6.2 CIM_DeviceSAPImplementation (IPProtocolEndpoint to EthernetPort)
	16.6.3 CIM_DeviceSAPImplementation (iSSIProtocolEndpoint to EthenetPort)
	16.6.4 CIM_EthernetPort
	16.6.5 CIM_HostedAccessPoint (System to IPProtocolEndpoint)
	16.6.6 CIM_HostedAccessPoint (System to TCPProtocolEndpoint)
	16.6.7 CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)
	16.6.8 CIM_IPProtocolEndpoint
	16.6.9 CIM_LogicalDevice
	16.6.10 CIM_SystemDevice (System to EthernetPort)
	16.6.11 CIM_SystemDevice (System to LogicalDevice)
	16.6.12 CIM_TCPProtocolEndpoint
	16.6.13 CIM_iSCSIProtocolEndpoint

	Clause 17: Fibre Channel Initiator Port Profile
	17.1 Synopsis
	17.2 Description
	17.3 Implementation
	17.3.1 Port Statistics
	17.3.2 Logical Port Group (FC Node)
	17.3.3 Health and Fault Management Considerations
	17.3.4 Cascading Considerations

	17.4 Methods
	17.4.1 Extrinsic Methods of this Profile
	17.4.2 Intrinsic Methods of this Profile

	17.5 Detailed Use Cases and Recipes
	17.6 CIM Elements
	17.6.1 CIM_ConnectivityCollection
	17.6.2 CIM_DeviceSAPImplementation
	17.6.3 CIM_FCPort
	17.6.4 CIM_HostedAccessPoint (Initiator)
	17.6.5 CIM_HostedAccessPoint (Target)
	17.6.6 CIM_HostedCollection
	17.6.7 CIM_MemberOfCollection
	17.6.8 CIM_ProtocolControllerForPort
	17.6.9 CIM_SCSIInitiatorTargetLogicalUnitPath
	17.6.10 CIM_SCSIProtocolController
	17.6.11 CIM_SCSIProtocolEndpoint (Initiator)
	17.6.12 CIM_SCSIProtocolEndpoint (Target)
	17.6.13 CIM_SystemDevice (Initiator Ports)
	17.6.14 CIM_SystemDevice (Non-port devices)

	Clause 18: SAS Initiator Ports Profile
	18.1 Synopsis
	18.2 Description
	18.2.1 Health and Fault Management Considerations

	18.3 Methods of the profile
	18.4 Client Considerations and Recipes
	18.5 CIM Elements
	18.5.1 CIM_ConnectivityCollection
	18.5.2 CIM_DeviceSAPImplementation
	18.5.3 CIM_HostedAccessPoint (Initiator)
	18.5.4 CIM_HostedAccessPoint (Target)
	18.5.5 CIM_HostedCollection
	18.5.6 CIM_MemberOfCollection
	18.5.7 CIM_SASPort
	18.5.8 CIM_SCSIInitiatorTargetLogicalUnitPath
	18.5.9 CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)
	18.5.10 CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint)
	18.5.11 CIM_SystemDevice (Initiator Ports)
	18.5.12 CIM_SystemDevice (Non-port devices)

	Clause 19: ATA Initiator Ports Profile
	19.1 Synopsis
	19.2 Description
	19.3 Implementation
	19.3.1 Health and Fault Management Consideration
	19.3.2 Cascading Considerations

	19.4 Methods of the profile
	19.4.1 Extrinsic Methods of the Profile
	19.4.2 Intrinsic Methods of this Profile

	19.5 Client Considerations and Recipes
	19.6 CIM Elements
	19.6.1 CIM_ATAPort
	19.6.2 CIM_ATAProtocolEndpoint (Initiator ProtocolEndpoint)
	19.6.3 CIM_ATAProtocolEndpoint (Target or non-local ProtocolEndpoint)
	19.6.4 CIM_ConnectivityCollection
	19.6.5 CIM_DeviceSAPImplementation
	19.6.6 CIM_HostedAccessPoint (Initiator)
	19.6.7 CIM_HostedAccessPoint (Target)
	19.6.8 CIM_HostedCollection
	19.6.9 CIM_MemberOfCollection
	19.6.10 CIM_SystemDevice (Initiator Ports)
	19.6.11 CIM_SystemDevice (Non-port devices)

	Clause 20: FC-SB-x Initiator Ports Profile
	20.1 Synopsis
	20.2 Description
	20.3 Implementation
	20.3.1 Health and Fault Management Considerations
	20.3.2 Cascading Considerations

	20.4 Methods
	20.4.1 Extrinsic Methods of the Profile
	20.4.2 Intrinsic Methods of this Profile

	20.5 Client Considerations and Recipes
	20.6 CIM Elements
	20.6.1 CIM_ConnectivityCollection
	20.6.2 CIM_DeviceSAPImplementation
	20.6.3 CIM_FCPort
	20.6.4 CIM_HostedAccessPoint (Initiator)
	20.6.5 CIM_HostedAccessPoint (Target)
	20.6.6 CIM_HostedCollection
	20.6.7 CIM_MemberOfCollection
	20.6.8 CIM_SystemDevice (Initiator Ports)
	20.6.9 CIM_SystemDevice (Non-port devices)
	20.6.10 SNIA_SBInitiatorTargetLogicalUnitPath
	20.6.11 SNIA_SBProtocolEndpoint (Initiator ProtocolEndpoint)
	20.6.12 SNIA_SBProtocolEndpoint (Target or non-local ProtocolEndpoint)

	Clause 21: SAS/SATA Initiator Port Profile
	21.1 Synopsis
	21.2 Description
	21.3 Implementation
	21.4 Health and Fault Management Considerations
	21.4.1 Health and Fault Management Considerations
	21.4.2 Cascading Considerations

	21.5 Methods
	21.5.1 Extrinsic Methods of this Profile
	21.5.2 Intrinsic Methods of this Profile

	21.6 Detailed Use Cases and Recipes
	21.7 CIM Elements
	21.7.1 CIM_ATAProtocolEndpoint (Initiator ProtocolEndpoint)
	21.7.2 CIM_ATAProtocolEndpoint (Target or non-local ProtocolEndpoint)
	21.7.3 CIM_ConnectivityCollection
	21.7.4 CIM_DeviceSAPImplementation
	21.7.5 CIM_HostedAccessPoint (Initiator)
	21.7.6 CIM_HostedAccessPoint (Target)
	21.7.7 CIM_HostedCollection
	21.7.8 CIM_LogicalPort
	21.7.9 CIM_MemberOfCollection
	21.7.10 CIM_SASSATAPort (Initiator ProtocolEndpoint)
	21.7.11 CIM_SCSIInitiatorTargetLogicalUnitPath
	21.7.12 CIM_SCSIProtocolEndpoint (Initiator ProtocolEndpoint)
	21.7.13 CIM_SCSIProtocolEndpoint (Target or non-local ProtocolEndpoint)
	21.7.14 CIM_SystemDevice (Initiator Ports)
	21.7.15 CIM_SystemDevice (Non-port devices)

	Clause 22: Backend Ports Subprofile
	Clause 23: Access Points Subprofile
	23.1 Description
	23.2 Health and Fault Management Considerations
	23.3 Cascading Considerations
	23.4 Supported Subprofiles and Packages
	23.5 Methods of this Profile
	23.6 Client Considerations and Recipes
	23.7 Registered Name and Version
	23.8 CIM Elements
	23.8.1 CIM_HostedAccessPoint
	23.8.2 CIM_RemoteServiceAccessPoint
	23.8.3 CIM_SAPAvailableForElement

	Clause 24: Cascading Subprofile
	24.1 Description
	24.1.1 Instance Diagrams

	24.2 Health and Fault Management Considerations
	24.2.1 Reporting Health of Leaf Systems, Resources and Object Managers
	24.2.2 Cascading Indications of Health

	24.3 Cascading Considerations
	24.4 Supported Subprofiles and Packages
	24.5 Methods of this Subprofile
	24.5.1 Allocate
	24.5.2 Deallocate

	24.6 Client Considerations and Recipes
	24.6.1 Recipe MPCP01: Determining Resources used by cascading Profiles
	24.6.2 Recipe MPCP02: Monitoring the existence of Cascading Profiles
	24.6.3 OPTIONAL: Recipe MPCP03: Allocation of Leaf Resources
	24.6.4 OPTIONAL: Recipe MPCP04: Deallocation of Leaf Resources
	24.6.5 Recipe MPCP05: Monitoring the existence of “Stitching” between Profiles
	24.6.6 Supported SNIA_CascadingCapabilities Patterns

	24.7 Registered Name and Version
	24.8 CIM Elements
	24.8.1 CIM_ComputerSystem (Leaf System)
	24.8.2 CIM_Dependency (Object Managers)
	24.8.3 CIM_Dependency (Profile to Object Manager)
	24.8.4 CIM_Dependency (Systems)
	24.8.5 CIM_ElementCapabilities
	24.8.6 CIM_ElementConformsToProfile (Leaf)
	24.8.7 CIM_HostedCollection (Allocated Resources)
	24.8.8 CIM_HostedCollection (Remote Resources)
	24.8.9 CIM_HostedService (Allocation Service)
	24.8.10 CIM_HostedService (Object Manager)
	24.8.11 CIM_LogicalDisk
	24.8.12 CIM_LogicalIdentity (General)
	24.8.13 CIM_LogicalIdentity (LogicalDisk)
	24.8.14 CIM_LogicalIdentity (StorageVolume)
	24.8.15 CIM_MemberOfCollection (Allocated Resources)
	24.8.16 CIM_MemberOfCollection (Remote Resources)
	24.8.17 CIM_Namespace (Leaf)
	24.8.18 CIM_NamespaceInManager (Leaf)
	24.8.19 CIM_ObjectManager (Leaf)
	24.8.20 CIM_RegisteredProfile (Leaf)
	24.8.21 CIM_RemoteServiceAccessPoint (Leaf)
	24.8.22 CIM_SAPAvailableForElement
	24.8.23 CIM_StorageVolume
	24.8.24 CIM_SystemDevice (Leaf Devices)
	24.8.25 SNIA_AllocatedResources
	24.8.26 SNIA_AllocationService
	24.8.27 SNIA_CascadingCapabilities
	24.8.28 SNIA_RemoteResources

	Clause 25: Health Package
	25.1 Description
	25.1.1 Error Reporting Mechanism
	25.1.2 Event Reporting Mechanism
	25.1.3 Standard Events
	25.1.4 Reporting Health
	25.1.5 Computer System Operational Status
	25.1.6 Event Reporting
	25.1.7 Fault Region
	25.1.8 RelatedElementCausingError
	25.1.9 HealthState

	25.2 Health and Fault Management Considerations
	25.3 Cascading Considerations
	25.4 Supported Subprofiles and Packages
	25.5 Client Considerations and Recipes
	25.6 Registered Name and Version
	25.7 CIM Elements
	25.7.1 CIM_ComputerSystem
	25.7.2 CIM_LogicalDevice
	25.7.3 CIM_RelatedElementCausingError

	Clause 26: Job Control Subprofile
	26.1 Description
	26.1.1 Instance Diagram
	26.1.2 MethodResult
	26.1.3 OperationalStatus for Jobs
	26.1.4 JobState for Jobs
	26.1.5 Determining How Long a Job Remains after Execution

	26.2 Health and Fault Management
	26.3 Cascading Considerations
	26.4 Support Subprofiles and Packages
	26.5 Methods of the Profile
	26.5.1 Job Modification
	26.5.2 Getting Error Conditions from Jobs
	26.5.3 Suspending, Killing or Terminating a Job

	26.6 Client Considerations and Recipes
	26.7 Registered Name and Version
	26.8 CIM Elements
	26.8.1 CIM_AffectedJobElement
	26.8.2 CIM_AssociatedJobMethodResult
	26.8.3 CIM_ConcreteJob
	26.8.4 CIM_MethodResult
	26.8.5 CIM_OwningJobElement

	Clause 27: Location Subprofile
	27.1 Description
	27.1.1 Instance Diagram

	27.2 Health and Fault Management Considerations
	27.3 Cascading Considerations
	27.4 Supported Subprofiles and Packages
	27.5 Methods of the Profile
	27.6 Client Considerations and Recipes
	27.7 Registered Name and Version
	27.8 CIM Elements
	27.8.1 CIM_Location
	27.8.2 CIM_PhysicalElementLocation

	Clause 28: Extra Capacity Set Subprofile
	Clause 29: Cluster Subprofile
	Clause 30: Multiple Computer System Subprofile
	30.1 Description
	30.1.1 Top Level System
	30.1.2 Non-Top-Level Systems
	30.1.3 Types of RedundancySets
	30.1.4 Multiple Tiers of Systems
	30.1.5 Associations between ComputerSystems and other Logical Elements
	30.1.6 Associations between ComputerSystems and PhysicalPackages and Products
	30.1.7 Storage Systems without Multiple Systems
	30.1.8 Durable Names and Correlatable IDs of the Subprofile

	30.2 Health and Fault Management Considerations
	30.3 Cascading Considerations
	30.4 Supported Subprofiles and Packages
	30.5 Methods of the Profile
	30.6 Client Considerations and Recipes
	30.6.1 Find Top-level Computer Systems
	30.6.2 Find the Top-level Computer System for any LogicalDevice

	30.7 Registered Name and Version
	30.8 CIM Elements
	30.8.1 CIM_ComponentCS
	30.8.2 CIM_ComputerSystem (Non-Top-Level System)
	30.8.3 CIM_ConcreteIdentity
	30.8.4 CIM_IsSpare
	30.8.5 CIM_MemberOfCollection
	30.8.6 CIM_RedundancySet

	Clause 31: Policy Package
	31.1 Description
	31.1.1 Instance Diagrams

	31.2 Health and Fault Management Considerations
	31.3 Cascading Considerations
	31.4 Supported Subprofiles and Packages
	31.5 Methods of the Profile
	31.5.1 Extrinsic Methods of the Profile (EXPERIMENTAL)
	31.5.2 Intrinsic Methods of the Profile

	31.6 Client Considerations and Recipes
	31.6.1 SMI-S Supported PolicyCapabilities and QueryCapabilities Patterns

	31.7 Registered Name and Version
	31.8 CIM Elements
	31.8.1 CIM_CompoundPolicyAction (Client defined)
	31.8.2 CIM_CompoundPolicyAction (Pre-defined)
	31.8.3 CIM_CompoundPolicyCondition (Client defined)
	31.8.4 CIM_CompoundPolicyCondition (Pre-defined)
	31.8.5 CIM_ElementCapabilities (Policy Capabilities)
	31.8.6 CIM_ElementCapabilities (Query Capabilities)
	31.8.7 CIM_MethodAction (Client defined)
	31.8.8 CIM_MethodAction (Pre-defined)
	31.8.9 CIM_PolicyActionInPolicyAction (Client defined)
	31.8.10 CIM_PolicyActionInPolicyAction (Pre-defined)
	31.8.11 CIM_PolicyActionInPolicyRule (Client defined)
	31.8.12 CIM_PolicyActionInPolicyRule (Pre-defined)
	31.8.13 CIM_PolicyConditionInPolicyCondition (Client defined)
	31.8.14 CIM_PolicyConditionInPolicyCondition (Pre-defined)
	31.8.15 CIM_PolicyConditionInPolicyRule (Client defined)
	31.8.16 CIM_PolicyConditionInPolicyRule (Pre-defined)
	31.8.17 CIM_PolicyContainerInPolicyContainer
	31.8.18 CIM_PolicyRule (Dynamic or Client defined)
	31.8.19 CIM_PolicyRule (Pre-defined)
	31.8.20 CIM_PolicyRuleInSystem (Dynamic or Client defined)
	31.8.21 CIM_PolicyRuleInSystem (Pre-defined)
	31.8.22 CIM_PolicySetAppliesToElement (Dynamic or Client defined)
	31.8.23 CIM_PolicySetAppliesToElement (Pre-defined)
	31.8.24 CIM_PolicySetValidityPeriod (Dynamic or Client defined)
	31.8.25 CIM_PolicySetValidityPeriod (Pre-defined)
	31.8.26 CIM_PolicyTimePeriodCondition (Dynamic or Client defined)
	31.8.27 CIM_PolicyTimePeriodCondition (Pre-defined)
	31.8.28 CIM_QueryCapabilities
	31.8.29 CIM_QueryCondition (Dynamic or Client defined)
	31.8.30 CIM_QueryCondition (Pre-defined)
	31.8.31 CIM_ReusablePolicy (Container to MethodAction)
	31.8.32 CIM_ReusablePolicy (Container to QueryCondition)
	31.8.33 CIM_ReusablePolicy (Container to System)
	31.8.34 CIM_ReusablePolicyContainer
	31.8.35 SNIA_PolicyCapabilities

	Clause 32: Physical Package Package
	32.1 Description
	32.1.1 Well Defined Subcomponents
	32.1.2 Multiple Product Identities

	32.2 Health and Fault Management Considerations
	32.3 Cascading Considerations
	32.4 Supported Subprofiles and Packages
	32.5 Methods of this Profile
	32.6 Client Considerations and Recipes
	32.6.1 Find Asset Information
	32.6.2 Finding Product information
	32.6.3 Finding Asset information

	32.7 Registered Name and Version
	32.8 CIM Elements
	32.8.1 CIM_Card
	32.8.2 CIM_Chassis
	32.8.3 CIM_Container
	32.8.4 CIM_LogicalIdentity
	32.8.5 CIM_PackageInChassis
	32.8.6 CIM_PhysicalConnector
	32.8.7 CIM_PhysicalElementLocation
	32.8.8 CIM_PhysicalPackage
	32.8.9 CIM_Product
	32.8.10 CIM_ProductParentChild
	32.8.11 CIM_ProductPhysicalComponent
	32.8.12 CIM_SystemPackaging

	Clause 33: Power Supply Profile
	33.1 Synopsis
	33.2 Description
	33.3 Implementation
	33.3.1 Health and Fault Management Consideration
	33.3.2 Cascading Considerations

	33.4 Methods
	33.5 Use Cases
	33.6 CIM Elements
	33.6.1 CIM_ElementCapabilities
	33.6.2 CIM_EnabledLogicalElementCapabilities
	33.6.3 CIM_IsSpare
	33.6.4 CIM_MemberOfCollection
	33.6.5 CIM_OwningCollectionElement
	33.6.6 CIM_PowerSupply
	33.6.7 CIM_RedundancySet
	33.6.8 CIM_SuppliesPower
	33.6.9 CIM_SystemDevice

	Clause 34: Fan Profile
	34.1 Synopsis
	34.2 Description
	34.3 Implementation
	34.3.1 Health and Fault Management Consideration
	34.3.2 Cascading Considerations

	34.4 Methods
	34.5 Use Cases
	34.6 CIM Elements
	34.6.1 CIM_AssociatedCooling
	34.6.2 CIM_ElementCapabilities
	34.6.3 CIM_EnabledLogicalElementCapabilities
	34.6.4 CIM_Fan
	34.6.5 CIM_IsSpare
	34.6.6 CIM_MemberOfCollection
	34.6.7 CIM_NumericSensor
	34.6.8 CIM_OwningCollectionElement
	34.6.9 CIM_RedundancySet
	34.6.10 CIM_Sensor
	34.6.11 CIM_SystemDevice

	Clause 35: Sensors Profile
	35.1 Synopsis
	35.2 Description
	35.3 Implementation
	35.3.1 Health and Fault Management Consideration
	35.3.2 Cascading Considerations

	35.4 Methods
	35.5 Use Cases
	35.6 CIM Elements
	35.6.1 CIM_AssociatedSensor
	35.6.2 CIM_ElementCapabilities
	35.6.3 CIM_EnabledLogicalElementCapabilities
	35.6.4 CIM_NumericSensor
	35.6.5 CIM_Sensor
	35.6.6 CIM_SystemDevice

	Clause 36: Base Server Profile
	36.1 Synopsis
	36.2 Description
	36.3 Implementation
	36.3.1 HBA Instrumentation
	36.3.2 Host Hardware RAID Instrumentation
	36.3.3 Storage Enclosure Instrumentation
	36.3.4 Health and Fault Management Consideration
	36.3.5 Cascading Considerations

	36.4 Methods
	36.5 Use Cases
	36.6 CIM Elements
	36.6.1 CIM_ComputerSystem
	36.6.2 CIM_ComputerSystemPackage
	36.6.3 CIM_EnabledLogicalElementCapabilities
	36.6.4 CIM_PhysicalPackage

	Clause 37: Media Access Device Profile
	37.1 Synopsis
	37.2 Description
	37.2.1 Location Indicator
	37.2.2 Media Access Device Online/Offline

	37.3 Implementation
	37.3.1 Health and Fault Management Consideration
	37.3.2 Cascading Considerations
	37.3.3 Hot swap insertion or Removal of Drives

	37.4 Methods
	37.4.1 Request State Change

	37.5 Use Cases
	37.6 CIM Elements
	37.6.1 CIM_EnabledLogicalElementCapabilities
	37.6.2 CIM_HostedAccessPoint
	37.6.3 CIM_MediaAccessDevice
	37.6.4 CIM_PhysicalPackage
	37.6.5 CIM_ProtocolEndpoint
	37.6.6 CIM_Realizes
	37.6.7 CIM_SAPAvailableForElement
	37.6.8 CIM_SystemDevice

	Clause 38: Storage Enclosure Profile
	38.1 Description
	38.1.1 Guidelines related to Referencing Profiles
	38.1.2 Examples of Storage Enclosure Configurations

	38.2 Implementation
	38.2.1 Health and Fault Management Consideration
	38.2.2 Cascading Considerations
	38.2.3 Enclosure Elements
	38.2.4 Storage Elements
	38.2.5 Physical Assets

	38.3 Methods
	38.3.1 Extrinsic Methods of the Profile
	38.3.2 Intrinsic Methods of this Profile

	38.4 Use Cases
	38.5 Registered Name and Version
	38.6 CIM Elements
	38.6.1 CIM_Card
	38.6.2 CIM_Chassis
	38.6.3 CIM_Chip
	38.6.4 CIM_ComputerSystemPackage
	38.6.5 CIM_ConfigurationCapacity
	38.6.6 CIM_ConfigurationReportingService
	38.6.7 CIM_ConnectedTo
	38.6.8 CIM_Container
	38.6.9 CIM_ElementCapabilities
	38.6.10 CIM_ElementCapacity
	38.6.11 CIM_HostedService
	38.6.12 CIM_PackageInConnector
	38.6.13 CIM_PhysicalAssetCapabilities
	38.6.14 CIM_PhysicalComponent
	38.6.15 CIM_PhysicalConnector
	38.6.16 CIM_PhysicalElement
	38.6.17 CIM_PhysicalFrame
	38.6.18 CIM_PhysicalMemory
	38.6.19 CIM_PhysicalPackage
	38.6.20 CIM_Rack
	38.6.21 CIM_Realizes
	38.6.22 CIM_Slot
	38.6.23 CIM_SystemPackaging

	Clause 39: Software Subprofile
	39.1 Description
	39.2 Health and Fault Management Considerations
	39.3 Cascading Considerations
	39.4 Supported Subprofiles, and Packages
	39.5 Methods of the Profile
	39.6 Client Considerations and Recipes
	39.7 Registered Name and Version
	39.8 CIM Elements
	39.8.1 CIM_InstalledSoftwareIdentity
	39.8.2 CIM_SoftwareIdentity

	Clause 40: Software Inventory Profile
	40.1 Synopsis
	40.2 Description
	40.2.1 Relationship to the SMI-S Software Profile

	40.3 Implementation
	40.3.1 Software Installation and Update
	40.3.2 Health and Fault Management Consideration
	40.3.3 Cascading Considerations

	40.4 Methods
	40.5 Use Cases
	40.6 CIM Elements
	40.6.1 CIM_ElementSoftwareIdentity
	40.6.2 CIM_HostedAccessPoint
	40.6.3 CIM_HostedCollection
	40.6.4 CIM_InstalledSoftwareIdentity
	40.6.5 CIM_MemberOfCollection
	40.6.6 CIM_OrderedComponent
	40.6.7 CIM_OrderedDependency
	40.6.8 CIM_SAPAvailableForElement
	40.6.9 CIM_SoftwareIdentity
	40.6.10 CIM_SoftwareIdentityResource
	40.6.11 CIM_SystemSpecificCollection

	Clause 41: Software Repository Subprofile
	41.1 Description
	41.1.1 Durable Names and Correlatable IDs of the Profile

	41.2 Health and Fault Management Considerations
	41.3 Cascading Considerations
	41.4 Methods of the Profile
	41.5 Supported Subprofiles, and Packages
	41.6 Client Considerations and Recipes
	41.7 Registered Name and Version
	41.8 CIM Elements
	41.8.1 CIM_HostedCollection
	41.8.2 CIM_MemberOfCollection
	41.8.3 CIM_RemoteServiceAccessPoint
	41.8.4 CIM_SAPAvailableForElement
	41.8.5 CIM_SoftwareIdentity
	41.8.6 CIM_SoftwareIdentityCollection
	41.8.7 CIM_System

	Clause 42: Server Profile
	42.1 Description
	42.2 Use of model fields to Populate the SLP template
	42.2.1 HTTP Security Background
	42.2.2 HTTP Security

	42.3 Health and Fault Management
	42.4 Cascading Considerations
	42.5 Supported Subprofiles and Packages
	42.6 Methods of the Profile
	42.7 Client Considerations and Recipes
	42.7.1 Applicability of Security Considerations
	42.7.2 Segregate a SAN Device Type

	42.8 Registered Name and Version
	42.9 CIM Elements
	42.9.1 CIM_CIMXMLCommunicationMechanism
	42.9.2 CIM_CommMechanismForManager
	42.9.3 CIM_HostedAccessPoint
	42.9.4 CIM_HostedService
	42.9.5 CIM_Namespace
	42.9.6 CIM_NamespaceInManager
	42.9.7 CIM_ObjectManager
	42.9.8 CIM_System

	Clause 43: Profile Registration Profile
	43.1 Synopsis
	43.2 Description
	43.3 Implementation
	43.3.1 ElementConformsToProfile Association
	43.3.2 Associations between Autonomous and Component Profile
	43.3.3 The SMI-S Registered Profile
	43.3.4 Health and Fault Management Consideration
	43.3.5 Cascading Considerations

	43.4 Methods
	43.5 Use Cases
	43.5.1 Using the CIM Server Model to Determine SNIA Profiles Supported
	43.5.2 Recipe Assumptions
	43.5.3 Find Servers Supporting a Given Profile
	43.5.4 Enumerate Profiles Supported by a Given CIM Server
	43.5.5 Identify the ManagedElement Defined by a Profile
	43.5.6 Determine the SNIA Version of a Profile
	43.5.7 Find all Profiles on a Server

	43.6 Registered Name and Version
	43.7 CIM Elements
	43.7.1 CIM_ElementConformsToProfile (Associates Domain object (e.g. System) to RegisteredProfile)
	43.7.2 CIM_ElementConformsToProfile (Associates RegisteredProfiles for SMI-S and domain profiles)
	43.7.3 CIM_ElementSoftwareIdentity (Profile and SW identity)
	43.7.4 CIM_ElementSoftwareIdentity (Subprofile and SW identity)
	43.7.5 CIM_Product
	43.7.6 CIM_ProductSoftwareComponent
	43.7.7 CIM_ReferencedProfile
	43.7.8 CIM_RegisteredProfile (Domain Registered Profile)
	43.7.9 CIM_RegisteredProfile (The SMI-S Registered Profile)
	43.7.10 CIM_RegisteredSubProfile
	43.7.11 CIM_SoftwareIdentity
	43.7.12 CIM_SubProfileRequiresProfile

	Clause 44: Indication Profile
	44.1 Description
	44.1.1 Basic Indication Classes and Association
	44.1.2 Life Cycle Indications
	44.1.3 AlertIndications
	44.1.4 Special handling for Multiple events of the same type
	44.1.5 Indication Delivery
	44.1.6 Instrumentation Requirements

	44.2 Health and Fault Management Considerations
	44.2.1 Elements Reporting Health
	44.2.2 Health State Transformations and Dependencies
	44.2.3 Standard Errors Produced
	44.2.4 Cause and effect associations
	44.2.5 Indication Correlation

	44.3 Cascading Considerations
	44.4 Supported Profiles, Subprofiles and Packages
	44.5 Methods of the Profile
	44.5.1 Extrinsic Methods of the Profile
	44.5.2 Intrinsic Methods of the Profile

	44.6 Client Considerations and Recipes
	44.6.1 Use of Profile Specific Recipes
	44.6.2 General Client Considerations
	44.6.3 Discovery of Implementation variations
	44.6.4 Client Defined Filters
	44.6.5 Determine if the indication subscription requested already exists
	44.6.6 Listenable Instance Notification
	44.6.7 Life Cycle Event Subscription Description
	44.6.8 Subscription for alert indications
	44.6.9 Listenable Interface Modification Notification
	44.6.10 Subscribe for Lifecycle Events where OperationalStatus Changes

	44.7 Registered Name and Version
	44.8 CIM Elements
	44.8.1 CIM_AlertIndication
	44.8.2 CIM_IndicationFilter (client defined)
	44.8.3 CIM_IndicationFilter (pre-defined)
	44.8.4 CIM_IndicationSubscription
	44.8.5 CIM_InstCreation
	44.8.6 CIM_InstDeletion
	44.8.7 CIM_InstModification
	44.8.8 CIM_ListenerDestinationCIMXML (Indication Handler)

	Clause 45: Object Manager Adapter Subprofile
	45.1 Description
	45.1.1 Instance Diagram

	45.2 Health and Fault Management
	45.3 Cascading Considerations
	45.4 Supported Subprofiles and Packages
	45.5 Methods of the Profile
	45.6 Client Considerations and Recipes
	45.7 Registered Name and Version
	45.8 CIM Elements
	45.8.1 CIM_CommMechanismForObjectManagerAdapter
	45.8.2 CIM_ObjectManagerAdapter

	Clause 46: Proxy Server System Management Subprofile
	46.1 Description
	46.1.1 Relationship to Server profile
	46.1.2 Model
	46.1.3 Creation Considerations

	46.2 Health and Fault Management Consideration
	46.3 Cascading Considerations
	46.4 Supported Profiles, Subprofiles, and Packages
	46.5 Methods of the Profile
	46.5.1 AddSystem
	46.5.2 DiscoverSystems
	46.5.3 RemoveSystem

	46.6 Client Considerations and Recipes
	46.6.1 Use Case 1: Add Device
	46.6.2 Use Case 2: Remove Device

	46.7 CIM Element
	46.8 Registered Name and Version
	46.9 CIM Elements
	46.9.1 CIM_HostedService
	46.9.2 SNIA_SystemRegistrationCapabilities
	46.9.3 SNIA_SystemRegistrationService

	Clause 47: Device Credentials Subprofile
	47.1 Description
	47.1.1 Instance Diagram

	47.2 Health and Fault Management Considerations
	47.3 Cascading Considerations
	47.4 Supported Subprofiles and Packages
	47.5 Extrinsic Methods of this Profile
	47.6 Client Considerations and Recipes
	47.7 Registered Name and Version
	47.8 CIM Elements
	47.8.1 CIM_HostedService
	47.8.2 CIM_SharedSecret
	47.8.3 CIM_SharedSecretIsShared
	47.8.4 CIM_SharedSecretService

	Clause 48: Security Profile
	48.1 Description
	48.1.1 Overview
	48.1.2 Security Subprofiles

	48.2 Health and Fault Management Considerations
	48.3 Cascading Considerations
	48.4 Supported Subprofiles and Packages
	48.5 Methods of the Profile
	48.6 Client Considerations and Recipes
	48.6.1 List and classify Identities

	48.7 Registered Name and Version
	48.8 CIM Elements
	48.8.1 CIM_Account
	48.8.2 CIM_AccountOnSystem
	48.8.3 CIM_AssignedIdentity
	48.8.4 CIM_AuthenticationRule
	48.8.5 CIM_ConcreteIdentity
	48.8.6 CIM_Identity
	48.8.7 CIM_IdentityContext
	48.8.8 CIM_ManagedElement
	48.8.9 CIM_PolicyRuleInSystem
	48.8.10 CIM_PolicySetAppliesToElement
	48.8.11 CIM_System

	Clause 49: Authorization Subprofile
	49.1 Description
	49.1.1 Authorization
	49.1.2 Authorization Rights
	49.1.3 Authorization Policy
	49.1.4 Privilege Propagation Policies
	49.1.5 Reporting Granted Rights

	49.2 Health and Fault Management Considerations
	49.3 Cascading Considerations
	49.4 Supported Subprofiles and Packages
	49.5 Methods of the Profile
	49.6 Client Considerations and Recipes
	49.6.1 Show access rights
	49.6.2 Grant an access right
	49.6.3 Deny a right

	49.7 Registered Name and Version
	49.8 CIM Elements
	49.8.1 CIM_AuthorizationRule
	49.8.2 CIM_AuthorizationRuleAppliesToIdentity
	49.8.3 CIM_AuthorizationRuleAppliesToPrivilege
	49.8.4 CIM_AuthorizationRuleAppliesToTarget
	49.8.5 CIM_AuthorizedPrivilege
	49.8.6 CIM_AuthorizedSubject
	49.8.7 CIM_AuthorizedTarget
	49.8.8 CIM_ConcreteDependency
	49.8.9 CIM_ConcreteDependency
	49.8.10 CIM_HostedService
	49.8.11 CIM_Identity
	49.8.12 CIM_ManagedElement
	49.8.13 CIM_PolicyRuleInSystem
	49.8.14 CIM_PolicySetAppliesToElement
	49.8.15 CIM_Privilege
	49.8.16 CIM_PrivilegeManagementService
	49.8.17 CIM_PrivilegePropagationRule
	49.8.18 CIM_ServiceAffectsElement (Service to AuthorizedProvolege)
	49.8.19 CIM_ServiceAffectsElement (Service to Iden tity)
	49.8.20 CIM_ServiceAffectsElement (Service to ManagedElement)
	49.8.21 CIM_ServiceAffectsElement (Service to Privilege)
	49.8.22 CIM_ServiceAvailableToElement
	49.8.23 CIM_System

	Clause 50: Credential Management Subprofile
	50.1 Description
	50.1.1 Credential setup
	50.1.2 SharedSecret Credential
	50.1.3 NamedSharedIKE Credential
	50.1.4 UnsignedPublicKey Credential
	50.1.5 Credential Use

	50.2 Health and Fault Management Considerations
	50.3 Cascading Considerations
	50.4 Supported Subprofiles and Packages
	50.5 Methods of the Profile
	50.6 Client Considerations and Recipes
	50.7 Registered Name and Version
	50.8 CIM Elements
	50.8.1 CIM_CredentialContext
	50.8.2 CIM_HostedAccessPoint
	50.8.3 CIM_HostedService
	50.8.4 CIM_IKESecretIsNamed
	50.8.5 CIM_LocallyManagedPublicKey
	50.8.6 CIM_NamedSharedIKESecret
	50.8.7 CIM_PublicKeyManagementService
	50.8.8 CIM_RemoteServiceAccessPoint
	50.8.9 CIM_SharedSecret
	50.8.10 CIM_SharedSecretIsShared
	50.8.11 CIM_SharedSecretService
	50.8.12 CIM_System
	50.8.13 CIM_UnsignedPublicKey

	Clause 51: Security Resource Ownership Subprofile
	51.1 Description
	51.1.1 Design Considerations

	51.2 Health and Fault Management Considerations
	51.3 Cascading Considerations
	51.4 Supported Subprofiles and Packages
	51.5 Methods of the Profile
	51.6 Client Considerations and Recipes
	51.6.1 Show Ownership Rights
	51.6.2 Deny ownership rights
	51.6.3 // DESCRIPTION

	51.7 Registered Name and Version
	51.8 CIM Elements
	51.8.1 CIM_AuthorizationRule
	51.8.2 CIM_AuthorizationRuleAppliesToIdentity
	51.8.3 CIM_AuthorizationRuleAppliesToPrivilege
	51.8.4 CIM_AuthorizationRuleAppliesToRole
	51.8.5 CIM_AuthorizationRuleAppliesToTarget
	51.8.6 CIM_AuthorizedPrivilege
	51.8.7 CIM_AuthorizedSubject
	51.8.8 CIM_AuthorizedTarget
	51.8.9 CIM_ConcreteDependency (Service to AuthorizedPrivilege)
	51.8.10 CIM_ConcreteDependency (Service to Privilege)
	51.8.11 CIM_HostedService
	51.8.12 CIM_Identity
	51.8.13 CIM_ManagedElement
	51.8.14 CIM_MemberOfCollection (AuthorizedPrivilege to Role)
	51.8.15 CIM_MemberOfCollection (Identity to Role)
	51.8.16 CIM_MemberOfCollection (Privilege to Role)
	51.8.17 CIM_MemberOfCollection (Role to Role)
	51.8.18 CIM_OwningCollectionElement
	51.8.19 CIM_PolicyRuleInSystem (System to AuthorizationRule)
	51.8.20 CIM_PolicyRuleInSystem (System to PrivilegePropogationRule)
	51.8.21 CIM_PolicySetAppliesToElement
	51.8.22 CIM_Privilege
	51.8.23 CIM_PrivilegeManagementService
	51.8.24 CIM_PrivilegePropagationRule
	51.8.25 CIM_Role
	51.8.26 CIM_RoleLimitedToTarget
	51.8.27 CIM_ServiceAffectsElement (Service to AuthorizedPrivilege)
	51.8.28 CIM_ServiceAffectsElement (Service to Identity)
	51.8.29 CIM_ServiceAffectsElement (Service to ManagedElement)
	51.8.30 CIM_ServiceAffectsElement (Service to Privilege)
	51.8.31 CIM_ServiceAvailableToElement

	Clause 52: Security Role Based Access Control Subprofile
	52.1 Description
	52.1.1 Overview
	52.1.2 Default Authorization
	52.1.3 Authorization Policy
	52.1.4 Design Considerations

	52.2 Health and Fault Management Consideration
	52.3 Cascading Considerations
	52.4 Supported Subprofiles and Packages
	52.5 Methods of the Profile
	52.6 Client Considerations and Recipes
	52.6.1 List the Roles associated with an Identity
	52.6.2 List the Privileges of a Role

	52.7 Registered Name and Version
	52.8 CIM Elements
	52.8.1 CIM_AuthorizationRule
	52.8.2 CIM_AuthorizationRuleAppliesToRole
	52.8.3 CIM_ConcreteDependency
	52.8.4 CIM_HostedService
	52.8.5 CIM_Identity
	52.8.6 CIM_ManagedElement
	52.8.7 CIM_MemberOfCollection
	52.8.8 CIM_MoreRoleInfo
	52.8.9 CIM_OtherRoleInformation
	52.8.10 CIM_OwningCollectionElement
	52.8.11 CIM_PolicyRuleInSystem
	52.8.12 CIM_Privilege
	52.8.13 CIM_PrivilegeManagementService
	52.8.14 CIM_Role
	52.8.15 CIM_RoleLimitedToTarget
	52.8.16 CIM_System

	Clause 53: IdentityManagement Subprofile
	53.1 Description
	53.1.1 Identities
	53.1.2 Accounts
	53.1.3 Organizational Directories
	53.1.4 Groups

	53.2 Health and Fault Management Considerations
	53.3 Cascading Considerations
	53.4 Supported Profiles and Packages
	53.5 Methods of the Profile
	53.6 Client Considerations and Recipes
	53.6.1 Create a new User instance with an associated Identity
	53.6.2 Create an Account for an Identity
	53.6.3 Create an Account and attach it to an existing User

	53.7 Registered Name and Version
	53.8 CIM Elements
	53.8.1 CIM_Account
	53.8.2 CIM_AccountManagementService
	53.8.3 CIM_AccountMapsToAccount
	53.8.4 CIM_AccountOnSystem
	53.8.5 CIM_AssignedIdentity
	53.8.6 CIM_AuthenticationService
	53.8.7 CIM_ConcreteDependency
	53.8.8 CIM_ConcreteIdentity
	53.8.9 CIM_GatewayPathID
	53.8.10 CIM_Group
	53.8.11 CIM_HostedService
	53.8.12 CIM_IPNetworkIdentity
	53.8.13 CIM_Identity
	53.8.14 CIM_IdentityContext
	53.8.15 CIM_ManagedElement
	53.8.16 CIM_ManagesAccount
	53.8.17 CIM_MemberOfCollection
	53.8.18 CIM_MoreGroupInfo
	53.8.19 CIM_MoreOrgUnitInfo
	53.8.20 CIM_MoreOrganizationInfo
	53.8.21 CIM_MorePersonInfo
	53.8.22 CIM_OrgStructure
	53.8.23 CIM_OrgUnit
	53.8.24 CIM_Organization
	53.8.25 CIM_OrganizationalEntity
	53.8.26 CIM_OtherGroupInformation
	53.8.27 CIM_OtherOrgUnitInformation
	53.8.28 CIM_OtherOrganizationInformation
	53.8.29 CIM_OtherPersonInformation
	53.8.30 CIM_OwningCollectionElement
	53.8.31 CIM_Person
	53.8.32 CIM_ServiceAvailableToElement
	53.8.33 CIM_StorageHardwareID
	53.8.34 CIM_System
	53.8.35 CIM_UserContact

	Clause 54: 3rd Party Authentication Subprofile
	54.1 Description
	54.1.1 Durable Names and Correlatable IDs of the Profile

	54.2 Client Considerations and Recipes
	54.2.1 Create a new User instance with an associated Identity.
	54.2.2 Add an Account for a User.

	54.3 Registered Name and Version
	54.4 CIM Elements
	54.4.1 CIM_AuthorizationRule
	54.4.2 CIM_AuthorizationRuleAppliesToIdentity
	54.4.3 CIM_AuthorizationRuleAppliesToPrivilege
	54.4.4 CIM_AuthorizationRuleAppliesToTarget
	54.4.5 CIM_AuthorizedPrivilege
	54.4.6 CIM_AuthorizedSubject
	54.4.7 CIM_AuthorizedTarget
	54.4.8 CIM_ConcreteDependency
	54.4.9 CIM_ConcreteDependency
	54.4.10 CIM_HostedService
	54.4.11 CIM_Identity
	54.4.12 CIM_ManagedElement
	54.4.13 CIM_PolicyRuleInSystem
	54.4.14 CIM_PolicySetAppliesToElement
	54.4.15 CIM_Privilege
	54.4.16 CIM_PrivilegeManagementService
	54.4.17 CIM_PrivilegePropagationRule
	54.4.18 CIM_ServiceAffectsElement (Service to AuthorizedProvolege)
	54.4.19 CIM_ServiceAffectsElement (Service to Iden tity)
	54.4.20 CIM_ServiceAffectsElement (Service to ManagedElement)
	54.4.21 CIM_ServiceAffectsElement (Service to Privilege)
	54.4.22 CIM_ServiceAvailableToElement
	54.4.23 CIM_System

	Clause 55: Cross Profile Considerations
	55.1 Overview
	55.2 HBA model
	55.3 Switch Model
	55.3.1 Recipes

	55.4 Array Model
	55.5 Storage Virtualization Model
	55.6 Fabric Topology (HBA, Switch, Array)
	55.6.1 Logical Device Composition

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

