
Storage Management Technical Specification,
Part 4 File Systems

Version 1.3.0, Rev 6

This document has been released and approved by the SNIA. The SNIA believes that the ideas, methodologies
and technologies described in this document accurately represent the SNIA goals and are appropriate for
widespread distribution. Suggestion for revision should be directed to the Technical Council Managing Director at
tcmd@snia.org.

SNIA Technical Position

21 April, 2009

NO_ANSI_ID
Revision History

Revison 1
Date

 4 January, 2007

SCRs Incorporated and other changes

Comments
 Format and variables updated for new revision, editorial comments displayed.

Revison 2
Date

 14 April 2007

SCRs Incorporated and other changes
Filesystem Performance Profile Subprofile

 - Updated XML and frame text (SMIS-130-Draft-SCR00002) (4-0-0)

File Server Manipulation Profile Subprofile

 - Updated the diagrams and changed the CIM Elements section (SMIS-130-Draft-SCR00009) (4-0-0)

Filesystem Copy (Abstract) subprofile

 - Added this new profile (FSM TWG SCR 00055) (3-0-0)

Filesystem Copy Configuration (Abstract) subprofile

 - Added this new profile (FSM TWG SCR 00055) (3-0-0)

Filesystem Checkpoint Configuration subprofile

 - Added this new profile (FSM TWG SCR 00055) (3-0-0)

Filesystem Local Mirror Configuration subprofile

 - Added this new profile (FSM TWG SCR 00055) (3-0-0)

NAS Head Profile (FSM-TWG-SCR00056) (4-0-0)

 - Changed the version number of the profile to be 1.3.0

 - Added Indication Events subclauses of the Implementation subclause (marked as DRAFT)

 - Added Bellwether Indications subclauses of the Implementation subclause (marked as DRAFT)

 - Added a Standard Messages subclause in the Health & Fault Management subclause

 - Changed profile version numbers to 1.3.0 in the “Supported Subprofiles and Packages” subclause

 - Made changes for Comments on 1.2.0 NAS Head

File Export Manipulation profile
 SMI-S 1.3.0 Rev 6 SNIA Technical Position iii

NO_ANSI_ID
 - Based on SMIS-120-Errata-SCR00039)

Filesystem Manipulation profile

 - Based on SMIS-120-Errata-SCR00038)

Filesystem profile

 - Based on SMIS-120-Errata-SCR00040)

Comments
Only minor editorial work for this revision.

Revison 3
Date

 19 June 2007

SCRs Incorporated and other changes
File Export Profile

 - Incorporate errata from 1.2.0 (SMIS-120-Errata-SCR00059) (8-1-0)

File Storage Profile

 - Incorporate errata from 1.2.0 (SMIS-120-Errata-SCR00058) (9-0-0)

Filesystem Performance Profile Subprofile

 - Updated and Promote to Experimental (SMIS-130-Draft-SCR00002) (5-0-0)

Filesystem Quotas Profile

 - Incorporate errata from 1.2.0 (SMIS-120-Errata-SCR00063) (7-0-2)

File Server Manipulation Profile Subprofile

 - Updated and Promote to Experimental (SMIS-130-Draft-SCR00009) (2-0-1)

Host Filesystem Profile

 - Deleted Host Filesystem profile (FSM-TWG-SCR00050) (3-0-0)

NAS Head Profile (FSM-TWG-SCR00056) (4-0-0)

 - Changed SNIA_LogicalFile in the Instance Diagram to just LogicalFile

 - Fixed the Instance diagram for the optional Initiator Ports profile

 - Fixed the File Storage diagram to delete the reference to the Initiator Ports profile

 - Deleted the Recipe Conventions bullets from the beginning of the Client Considerations and Recipes
section

 - Deleted the Recipe Subroutines and replace with "Not defined in this version of the specification"

Self-Contained NAS Profile (FSM-TWG-SCR00057) (4-0-0)

 - Changed the version number of the profile to be 1.3.0
iv

NO_ANSI_ID
 - Added Indication Events subclauses of the Implementation subclause (marked as DRAFT)

 - Added Bellwether Indications subclauses of the Implementation subclause (marked as DRAFT)

 - Added a Standard Messages subclause in the Health & Fault Management subclause

 - Changed profile version numbers to 1.3.0 in the “Supported Subprofiles and Packages” subclause

 - Changed SNIA_LogicalFile in the Instance Diagram to just LogicalFile

 - Deleted the Recipe Conventions bullets from the beginning of the Client Considerations and Recipes
section

 - Deleted the Recipe Subroutines and replace with "Not defined in this version of the specification"

 - Added Conditions for TCPProtocolEndpoint, IPProtocolEndpoint & LANEndpoint and applied them to
the appropriate associations

 - Made BindsToLANEndpoint conditional on implementation of LANEndpoint

 - Made BindsTo conditional on implementation of TCPProtocolEndpoint or IPProtocolEndpoint

 - Made DeviceSAPImplementation for the LANEndpoint conditional on implementation of LANEndpoint

 - Changed the Dependent ProtocolEndpoint in a BindsToLANEndpoint from TCPProtocolEndpoint to
IPProtocolEndpoint

 - Replaced the HostedAccessPoint for TCP, IP and LAN endpoints with three HostedAccessPoints and
made them conditional

 - Separated SystemDevice for LogicalDisks from LogicalDisks to "tighten" the spec to show two
LogicalDevices supported by the Self-Contained NAS

 - Global changed SC NAS to Self-contained NAS

Volumes on Files Profile

 - Deleted Volumes on Files profile (FSM-TWG-SCR00049) (2-0-2)

Pools on Filesystems Profile

 - Deleted Pools on Filesystems profile (FSM-TWG-SCR00049) (2-0-2)

Comments
Editorial notes displayed.

Responses to INCITS editor queries re SMI-S 1.1.0 incorporated as applicable.

Typographical Conventions revised in all books: Revised explanation of Experimental text (per SMIS-120-
Errata-SCR00061 - Typographical Conventions), added explanations of Draft and Editorial text.

Revision 4
Date

 20 July 2007

SCRs Incorporated and other changes
Filesystem Quotas Profile (FSM-TWG-SCR00058) (5-0-0)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position v

NO_ANSI_ID
 - Change references to 1.2.0 to 1.3.0.

File Server Manipulation Profile Subprofile (FSM-TWG-SCR00046) (5-0-0)

 - Changed “Draft” to “Experimental” in frame file.

 - Removed duplicate class definitions

 - Removed classes that are defined in other profiles

 - Added Conditions “CIFSSettings”, “NFSSettings”, “DNSSettings”, “NISSettings”, and “VLANSettings”.
Modified conditional associations to use these.

 - Various other changes

 - Modified the two Visio diagrams by removing unnecessary classes that are defined in other profiles

NAS Head Profile (FSM-TWG-SCR00056) (5-0-0)

 - Deleted the DRAFT sections on Indications and Standard Messages

 - Deleted the references to those sections from the CIM Elements table

Self-Contained NAS Profile (FSM-TWG-SCR00057) (5-0-0)

 - Deleted the DRAFT sections on Indications and Standard Messages

Comments
Editorial notes displayed, but the DRAFT material is not.

Revision 5
Date

 14 November 2007

SCRs Incorporated and other changes
Clause 10: Filesystem Performance Profile (FSM-TWG-SCR00059)
 - Made SNIA_FileSystemStatisticsManifestCollection conditional (on Capabilities property)
Clause 6: File Server Manipulation Subprofile (FSM-TWG-SCR00060)
 - Updated a couple of figures and removed one of the ElementCapabilities tables

Comments
Editorial notes and DRAFT material are not displayed.

Revision 6
Date

 14 January 2009

SCRs Incorporated and other changes
References to Storage Management Technical Specification, Part 7 Information Lifecycle Management,
deleted.
Removed test CARDINALITY (SMIS-130-Errata-SCR00001)
Filesystem Performance Profile changes (SMIS-130-Errata-SCR00007)
Invalid version numbers in supported profiles tables replaced with valid numbers (SMIS-130-Errata-
SCR00017)
vi

NO_ANSI_ID
Updated NAS Head Profile (SMIS-130-Errata-SCR0042)
Updated SC NAS Profile (SMIS-130-Errata-SCR0043)
Updated Filesystem Profile (SMIS-130-Errata-SCR0044)
Updated File Export Profile (SMIS-130-Errata-SCR0045)
Updated File Export Manipulation Profile (SMIS-130-Errata-SCR00046)
Updated Filesystem Manipulation Profile (SMIS-130-Errata-SCR00047)

Comments
Editorial notes and DRAFT material are not displayed.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage Management
Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position vii

NO_ANSI_ID
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration,
and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced must acknowledge the SNIA copyright on that material, and must credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

Copyright © 2003-2009 Storage Networking Industry Association.
viii

NO_ANSI_ID
INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and promoting
interoperable multi-vendor SANs through the SNIA organization.

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2009 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of
their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed Management Task
Force (DMTF). The CIM classes that are documented have been developed and reviewed by both the Storage
Networking Industry Association (SNIA) and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.

CHANGES TO THE SPECIFICATION
Each publication of this specification is uniquely identified by a three-level identifier, comprised of a version
number, a release number and an update number. The current identifier for this specification is version 1.2.0.
Future publications of this specification are subject to specific constraints on the scope of change that is
permissible from one publication to the next and the degree of interoperability and backward compatibility that
should be assumed between products designed to different publications of this standard. The SNIA has defined
three levels of change to a specification:

• Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

• Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of the
specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

• Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.x.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

This specification has been structured to convey both the formal requirements and assumptions of the SMI-S API
and its emerging implementation and deployment lifecycle. Over time, the intent is that all content in the
specification will represent a mature and stable design, be verified by extensive implementation experience, assure
consistent support for backward compatibility, and rely solely on content material that has reached a similar level of
maturity. Unless explicitly labeled with one of the subordinate maturity levels defined for this specification, content
is assumed to satisfy these requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three subordinate levels
of implementation maturity that identify important aspects of the content’s increasing maturity and stability. Each
subordinate maturity level is defined by its level of implementation experience, its stability and its reliance on other
 SMI-S 1.3.0 Rev 6 SNIA Technical Position vii

NO_ANSI_ID
emerging standards. Each subordinate maturity level is identified by a unique typographical tagging convention
that clearly distinguishes content at one maturity model from content at another level.

Experimental Maturity Level
No material is included in this specification unless its initial architecture has been completed and reviewed. Some
content included in this specification has complete and reviewed design, but lacks implementation experience and
the maturity gained through implementation experience. This content is included in order to gain wider review and
to gain implementation experience. This material is referred to as “Experimental”. It is presented here as an aid to
implementers who are interested in likely future developments within the SMI specification. The contents of an
Experimental profile may change as implementation experience is gained. There is a high likelihood that the
changed content will be included in an upcoming revision of the specification. Experimental material can advance
to a higher maturity level as soon as implementations are available. Figure 1 is a sample of the typographical
convention for Experimental content.

Implemented Maturity Level
Profiles for which initial implementations have been completed are classified as “Implemented”. This indicates that
at least two different vendors have implemented the profile, including at least one provider implementation. At this
maturity level, the underlying architecture and modeling are stable, and changes in future revisions will be limited to
the correction of deficiencies identified through additional implementation experience. Should the material become
obsolete in the future, it must be deprecated in a minor revision of the specification prior to its removal from
subsequent releases. Figure 2 is a sample of the typographical convention for Implemented content.

Stable Maturity Level
Once content at the Implemented maturity level has garnered additional implementation experience, it can be
tagged at the Stable maturity level. Material at this maturity level has been implemented by three different vendors,
including both a provider and a client. Should material that has reached this maturity level become obsolete, it may
only be deprecated as part of a minor revision to the specification. Material at this maturity level that has been
deprecated may only be removed from the specification as part of a major revision. A profile that has reached this
maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next.
As a result, Profiles at or above the Stable maturity level shall not rely on any content that is Experimental. Figure 3
is a sample of the typographical convention for Implemented content.

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

IMPLEMENTED

Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag
viii

NO_ANSI_ID
Finalized Maturity Level
Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying the
requirements for the Stable maturity level, content at the Finalized maturity level must solely depend upon or refine
material that has also reached the Finalized level. If specification content depends upon material that is not under
the control of the SNIA, and therefore not subject to its maturity level definitions, then the external content is
evaluated by the SNIA to assure that it has achieved a comparable level of completion, stability, and
implementation experience. Should material that has reached this maturity level become obsolete, it may only be
deprecated as part of a major revision to the specification. A profile that has reached this maturity level is
guaranteed to preserve backward compatibility from one minor specification revision to the next. Over time, it is
hoped that all specification content will attain this maturity level. Accordingly, there is no special typographical
convention, as there is with the other, subordinate maturity levels. Unless content in the specification is marked
with one of the typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material
Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections identified as
“Deprecated” contain material that is obsolete and not recommended for use in new development efforts. Existing
and new implementations may still use this material, but shall move to the newer approach as soon as possible.
The maturity level of the material being deprecated determines how long it will continue to appear in the
specification. Implemented content shall be retained at least until the next revision of the specialization, while
Stable and Finalized material shall be retained until the next major revision of the specification. Providers shall
implement the deprecated elements as long as it appears in the specification in order to achieve backward
compatibility. Clients may rely on deprecated elements, but are encouraged to use non-deprecated alternatives
when possible.

Deprecated sections are documented with a reference to the last published version to include the deprecated
section as normative material and to the section in the current specification with the replacement. Figure 4 contains
a sample of the typographical convention for deprecated content.

STABLE

Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

DEPRECATED

Content that has been deprecated appears here.

DEPRECATED

Figure 4 - Deprecated Tag
 SMI-S 1.3.0 Rev 6 SNIA Technical Position ix

NO_ANSI_ID
USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

3) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration.

4) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.
x

NO_ANSI_ID
Contents
Revision History... iii
List of Tables... xv
List of Figures .. xxi
Foreword... xxiii
1. Scope ...1
2. Normative References..3

2.1 General .. 3
2.2 Approved references.. 3
2.3 References under development ... 3
2.4 Other references .. 3

3. Terms and definitions ..5
3.1 General .. 5
3.2 Definitions .. 5

4. File Export Profile ...7
4.1 Description ... 7
4.2 Health and Fault Management Consideration.. 9
4.3 Cascading Considerations ... 9
4.4 Supported Profiles, Subprofiles, and Packages... 9
4.5 Methods of the Profile .. 9
4.6 Client Considerations and Recipes .. 10
4.7 Registered Name and Version ... 10
4.8 CIM Elements... 10

5. File Export Manipulation Subprofile ...17
5.1 Description ... 17
5.2 Health and Fault Management Considerations.. 22
5.3 Cascading Considerations ... 24
5.4 Supported Subprofiles and Packages.. 24
5.5 Methods of the Profile .. 25
5.6 Client Considerations and Recipes .. 40
5.7 Registered Name and Version ... 52
5.8 CIM Elements... 52

6. File Server Manipulation Subprofile ...69
6.1 Synopsis... 69
6.2 Description ... 69
6.3 Supported Profiles, Subprofiles, and Packages... 74
6.4 Methods of the Profile .. 75
6.5 Client Considerations and Recipes .. 85
6.6 Registered Name and Version ... 85
6.7 CIM Elements... 86

7. File Storage Profile ...103
7.1 Description ... 103
7.2 Health and Fault Management Consideration.. 104
7.3 Cascading Considerations ... 104
7.4 Supported Profiles, Subprofiles, and Packages... 106
7.5 Methods of the Profile .. 106
7.6 Client Considerations and Recipes .. 107
7.7 Registered Name and Version ... 107
7.8 CIM Elements... 107

8. Filesystem Profile ...109
8.1 Description ... 109
8.2 Health and Fault Management Consideration.. 112
8.3 Cascading Considerations ... 113
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xiii

NO_ANSI_ID
8.4 Supported Profiles, Subprofiles, and Packages... 114
8.5 Methods of the Profile .. 114
8.6 Client Considerations: Use Cases ... 114
8.7 Registered Name and Version ... 124
8.8 CIM Elements... 124

9. Filesystem Manipulation Subprofile ...139
9.1 Description ... 139
9.2 Health and Fault Management Considerations.. 146
9.3 Cascading Considerations ... 148
9.4 Supported Subprofiles and Packages.. 148
9.5 Methods of the Profile .. 149
9.6 Client Considerations and Recipes .. 171
9.7 Registered Name and Version ... 190
9.8 CIM Elements... 191

10. Filesystem Performance Profile ..225
10.1 Synopsis... 225
10.2 Description ... 226
10.3 Implementation... 227
10.4 Methods of the Profile .. 232
10.5 Use Cases.. 237
10.6 CIM Elements... 240

11. Filesystem Quotas Profile..261
11.1 Description ... 261
11.2 Health and Fault Management Considerations.. 264
11.3 Supported Profiles, Subprofiles, and Packages... 264
11.4 Methods of the Profile .. 265
11.5 Client Considerations and sample code... 267
11.6 Registered Name and Version ... 274
11.7 CIM Elements... 274

12. NAS Head Profile ..281
12.1 Description ... 281
12.2 Health and Fault Management Considerations.. 288
12.3 Cascading Considerations ... 289
12.4 Supported Subprofiles and Packages.. 290
12.5 Methods of the Profile .. 291
12.6 Client Considerations and Recipes .. 291
12.7 Registered Name and Version ... 291
12.8 CIM Elements... 292

13. Self-Contained NAS Profile ...315
13.1 Description ... 315
13.2 Health and Fault Management Considerations.. 321
13.3 Cascading Considerations ... 322
13.4 Supported Subprofiles and Packages.. 322
13.5 Methods of the Profile .. 323
13.6 Client Considerations and Recipes .. 324
13.7 Registered Name and Version ... 324
13.8 CIM Elements... 324

Annex A. (Informative) State Transitions from Storage to File Shares............................343
xiv

NO_ANSI_ID
List of Tables

Table 1. FileShare OperationalStatus ..9
Table 2. Supported Profiles for File Export...9
Table 3. CIM Elements for File Export..10
Table 4. SMI Referenced Properties/Methods for CIM_ConcreteDependency..11
Table 5. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)..12
Table 6. SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting) ...12
Table 7. SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share) ..13
Table 8. SMI Referenced Properties/Methods for CIM_HostedShare..14
Table 9. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..14
Table 10. SMI Referenced Properties/Methods for CIM_SharedElement..15
Table 11. Operational Status for FileExport Service ..22
Table 12. Operational Status for File Server ComputerSystem ...23
Table 13. Supported Profiles for File Export Manipulation ...24
Table 14. FileExportManipulation Methods ..25
Table 15. Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings ..27
Table 16. Parameters for Extrinsic Method FileExportServices.CreateExportedShare ...30
Table 17. Parameters for Extrinsic Method FileExportServices.ModifyExportedShare..34
Table 18. Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare ...39
Table 19. SMI-S File Export Supported Capabilities Patterns..51
Table 20. CIM Elements for File Export Manipulation ..52
Table 21. SMI Referenced Properties/Methods for CIM_ConcreteDependency..54
Table 22. SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration) ..55
Table 23. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)..55
Table 24. SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)..56
Table 25. SMI Referenced Properties/Methods for CIM_HostedService ...56
Table 26. SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)...56
Table 27. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..57
Table 28. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement ..57
Table 29. SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities) ...58
Table 30. SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES Capabilities)59
Table 31. SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)...............................60
Table 32. SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)..61
Table 33. SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configuration)64
Table 34. SMI Referenced Properties/Methods for SNIA_FileExportService...65
Table 35. SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share) ..65
Table 36. SMI Referenced Properties/Methods for SNIA_HostedShare..66
Table 37. SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined).......................................67
Table 38. SMI Referenced Properties/Methods for SNIA_SharedElement ..67
Table 39. Operational Status for File Server ComputerSystem ...73
Table 40. Supported Profiles for File Server Manipulation ...74
Table 41. File Server Manipulation Methods ..75
Table 42. Array Element Mappings for TemplateGoalSettings and SupportedGoalSettings ...76
Table 43. Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings..77
Table 44. Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer ...79
Table 45. Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer ...81
Table 46. Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer..82
Table 47. Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface...83
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xv

NO_ANSI_ID
Table 48. Parameters for Extrinsic Method FileServerConfigurationService.ModifyIPInterface ..84
Table 49. Parameters for Extrinsic Method FileServerConfigurationService.DeleteIPInterface...85
Table 50. CIM Elements for File Server Manipulation ..86
Table 51. SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to CIFSSettingData).......88
Table 52. SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to DNSSettingData)88
Table 53. SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData) .

88
Table 54. SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NFSSettingData)........89
Table 55. SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NISSettingData).........89
Table 56. SMI Referenced Properties/Methods for CIM_DNSSettingData ..90
Table 57. SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationService to FileServerCa-

pabilities) ..90
Table 58. SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationService to FileServer-

ConfigurationCapabilities) ..90
Table 59. SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem FileServer to FileServerSet-

tings)...91
Table 60. SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint) .

91
Table 61. SMI Referenced Properties/Methods for CIM_HostedDependency ...92
Table 62. SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer System to FileServerConfiguration-

Service) ..92
Table 63. SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)..92
Table 64. SMI Referenced Properties/Methods for CIM_NetworkVLAN ..93
Table 65. SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSettingData)...................................93
Table 66. SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSettingData).................................94
Table 67. SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServerSettings)..............................94
Table 68. SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceSettingData)94
Table 69. SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSettingData)95
Table 70. SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSettingData)95
Table 71. SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSet-

tings)...96
Table 72. SMI Referenced Properties/Methods for SNIA_CIFSSettingData..96
Table 73. SMI Referenced Properties/Methods for SNIA_FileServerCapabilities..97
Table 74. SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities ..98
Table 75. SMI Referenced Properties/Methods for SNIA_FileServerConfigurationService ...99
Table 76. SMI Referenced Properties/Methods for SNIA_FileServerSettings ...99
Table 77. SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData...100
Table 78. SMI Referenced Properties/Methods for SNIA_NFSSettingData...101
Table 79. SMI Referenced Properties/Methods for SNIA_NISSettingData ..102
Table 80. Cascaded Storage..106
Table 81. CIM Elements for File Storage ...107
Table 82. SMI Referenced Properties/Methods for CIM_ResidesOnExtent...108
Table 83. Filesystem OperationalStatus...113
Table 84. Supported Profiles for Filesystem...114
Table 85. CIM Elements for Filesystem..124
Table 86. SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)126
Table 87. SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem) ...127
Table 88. SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)127
Table 89. SMI Referenced Properties/Methods for CIM_FileStorage ..127
Table 90. SMI Referenced Properties/Methods for CIM_FileSystemSetting..128
xvi

NO_ANSI_ID
Table 91. SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required)...............................129
Table 92. SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)..130
Table 93. SMI Referenced Properties/Methods for CIM_LocalFileSystem ..130
Table 94. SMI Referenced Properties/Methods for CIM_LogicalFile ...131
Table 95. SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable ..132
Table 96. SMI Referenced Properties/Methods for SNIA_LocalFileSystem ..133
Table 97. SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting ...134
Table 98. LocalFileSystem OperationalStatus ...146
Table 99. Supported Profiles for Filesystem Manipulation ...148
Table 100. Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification....................................149
Table 101. Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings ..151
Table 102. Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize..153
Table 103. Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettings155
Table 104. Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem ..159
Table 105. Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem...166
Table 106. Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem...170
Table 107. Filesystem Manipulation Supported Capabilities Patterns ...190
Table 108. CIM Elements for Filesystem Manipulation ..191
Table 109. SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)196
Table 110. SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabilities)196
Table 111. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration Capabilities)197
Table 112. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default) ..197
Table 113. SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)...............................197
Table 114. SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)198
Table 115. SMI Referenced Properties/Methods for CIM_FileStorage (Root Directory)..198
Table 116. SMI Referenced Properties/Methods for CIM_FileStorage (Shared Files and Directories)199
Table 117. SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)..............................199
Table 118. SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabilities)...............................199
Table 119. SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting)200
Table 120. SMI Referenced Properties/Methods for CIM_HostedFileSystem ...200
Table 121. SMI Referenced Properties/Methods for CIM_HostedService ...201
Table 122. SMI Referenced Properties/Methods for CIM_LogicalFile (Shared Files and Directories).....................................201
Table 123. SMI Referenced Properties/Methods for SNIA_ElementCapabilities (Default) ..202
Table 124. SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities ..202
Table 125. SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities ...203
Table 126. SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService..207
Table 127. SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)207
Table 128. SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Settings)209
Table 129. SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable ..211
Table 130. SMI Referenced Properties/Methods for SNIA_LocalFileSystem ..212
Table 131. SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities214
Table 132. SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting ...217
Table 133. SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Predefined FS Settings)221
Table 134. SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Predefined Local Access Settings)..222
Table 135. Related Profiles for Filesystem Performance ...225
Table 136. Summary of Element Types by Profile ...229
Table 137. Creation, Deletion and Modification Methods in the Filesystem Performance Subprofile232
Table 138. Summary of Statistics Support by Element ..237
Table 139. Formulas and Calculations - Calculated Statistics for a Time Interval ...238
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xvii

NO_ANSI_ID
Table 140. Filesystem Performance Subprofile Supported Capabilities Patterns ..239
Table 141. CIM Elements for Filesystem Performance ..240
Table 142. SMI Referenced Properties/Methods for CIM_ElementCapabilities...243
Table 143. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File Share Stats)243
Table 144. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port Stats)244
Table 145. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesystem Stats)244
Table 146. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element Type Stats)245
Table 147. SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined) ...245
Table 148. SMI Referenced Properties/Methods for CIM_HostedCollection (Default)...246
Table 149. SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)..246
Table 150. SMI Referenced Properties/Methods for CIM_HostedService ...247
Table 151. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined collection)247
Table 152. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of predefined collection)247
Table 153. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collection)248
Table 154. SMI Referenced Properties/Methods for CIM_StatisticsCollection ..248
Table 155. SMI Referenced Properties/Methods for SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined

collection) ...249
Table 156. SMI Referenced Properties/Methods for SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined

collection) ...250
Table 157. SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData ..250
Table 158. SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsCapabilities ..253
Table 159. SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Client Defined)254
Table 160. SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Provider Support).........................256
Table 161. SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection (Client Defined)257
Table 162. SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection (Provider Defined)258
Table 163. SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsService...259
Table 164. Supported Profiles for FileSystem Quotas ...264
Table 165. CIM Elements for FileSystem Quotas ..274
Table 166. SMI Referenced Properties/Methods for SNIA_FSDomainIdentity ..275
Table 167. SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement ...275
Table 168. SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal...276
Table 169. SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree ...276
Table 170. SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities..276
Table 171. SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry..277
Table 172. SMI Referenced Properties/Methods for SNIA_FSQuotaIndication ...278
Table 173. SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService ...279
Table 174. SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord ..279
Table 175. NetworkPort OperationalStatus ..288
Table 176. ProtocolEndpoint OperationalStatus ..289
Table 177. Supported Profiles for NAS Head...290
Table 178. CIM Elements for NAS Head..292
Table 179. SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS) ...295
Table 180. SMI Referenced Properties/Methods for CIM_BindsTo (TCP)...296
Table 181. SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint ..296
Table 182. SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)..296
Table 183. SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server) ...298
Table 184. SMI Referenced Properties/Methods for CIM_ConcreteComponent ...299
Table 185. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)299
Table 186. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)300
Table 187. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS) ...300
xviii

NO_ANSI_ID
Table 188. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)...300
Table 189. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN) ...301
Table 190. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)...301
Table 191. SMI Referenced Properties/Methods for CIM_HostedDependency ...302
Table 192. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint..302
Table 193. SMI Referenced Properties/Methods for CIM_LANEndpoint ...303
Table 194. SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS) ...305
Table 195. SMI Referenced Properties/Methods for CIM_NetworkPort...306
Table 196. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS) ...308
Table 197. SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)309
Table 198. SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks) ...311
Table 199. SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)..312
Table 200. SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)...312
Table 201. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint ..312
Table 202. NetworkPort OperationalStatus ..322
Table 203. ProtocolEndpoint OperationalStatus ..322
Table 204. Supported Profiles for Self-contained NAS System ...322
Table 205. CIM Elements for Self-contained NAS System ..324
Table 206. SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS) ...327
Table 207. SMI Referenced Properties/Methods for CIM_BindsTo (TCP)...328
Table 208. SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint ..328
Table 209. SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)..328
Table 210. SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server) ...330
Table 211. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)331
Table 212. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)331
Table 213. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS) ...332
Table 214. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)...332
Table 215. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN) ...332
Table 216. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)...333
Table 217. SMI Referenced Properties/Methods for CIM_HostedDependency ...333
Table 218. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint..333
Table 219. SMI Referenced Properties/Methods for CIM_LANEndpoint ...335
Table 220. SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS) ...336
Table 221. SMI Referenced Properties/Methods for CIM_NetworkPort...337
Table 222. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS) ...339
Table 223. SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks) ...340
Table 224. SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)..341
Table 225. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint ..341
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xix

NO_ANSI_ID
xx

NO_ANSI_ID
List of Figures

Figure 1. Experimental Maturity Level Tag ...x
Figure 2. Implemented Maturity Level Tag..x
Figure 3. Stable Maturity Level Tag ...xi
Figure 4. Deprecated Tag ..xi
Figure 5. File Export Instance .. 8
Figure 6. File Export Manipulation Subprofile Instance.. 18
Figure 7. Capabilities and Settings for Exported File Share Creation.. 21
Figure 8. File Server Classes and Associations (Read-only view)... 70
Figure 9. File Server Configuration classes and association ... 72
Figure 10. File Storage Instance .. 103
Figure 11. Cascading File Storage... 105
Figure 12. Filesystem Instance .. 110
Figure 13. LocalFileSystem Creation Instance Diagram.. 140
Figure 14. Capabilities and Settings for Filesystem Creation .. 145
Figure 15. Filesystem Performance Subprofile Summary Instance Diagram .. 228
Figure 16. Filesystem Quotas Instance Diagram... 264
Figure 17. NAS Head Profiles and Subprofiles .. 282
Figure 18. NAS Head Instance .. 283
Figure 19. NAS Storage Instance .. 285
Figure 20. NAS Head Support for Front-end Network Ports .. 286
Figure 21. NAS Head Cascading Support Instance... 287
Figure 22. Self-Contained NAS Profile and Subprofiles... 316
Figure 23. Self-Contained NAS Instance ... 317
Figure 24. NAS Storage Instance .. 319
Figure 25. Self-contained NAS Support for Front-end Network Ports.. 320
Figure A.1 State Transitions From LogicalDisk to FileShare.. 344
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxi

NO_ANSI_ID
xxii

NO_ANSI_ID
Foreword

The Filesystems Part of the Storage Management Technical Specifications contains Profiles and other clauses for
management of devices and programs that support filesystems. A filesystem is a specific formatting of storage for
storing and accessing files on external storage. This part describes how filesystems are created, modified and
deleted, as well as how they can be found and reported. This part also describe modeling for how filesystems are
exported for access from remote systems. The filesystem profiles use information from other parts of the Storage
Management Technical Specifications. Specifically, they reference profiles in the Common Profiles and the Block
Devices parts of the specification. This part describes how these profiles are used in filesystem profiles.

Parts of this Standard
This standard is subdivided in the following parts:

• Storage Management Technical Specification, Overview, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 2 Common Profiles, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 3 Block Devices, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 4 File Systems, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 5 Fabric, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 6 Host Elements, 1.3.0 Rev 6

• Storage Management Technical Specification, Part 7 Media Libraries, 1.3.0 Rev 6

SNIA Web Site
Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address
Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage
Networking Industry Association, 500 Sansome Street, Suite #504, San Francisco, CA 94111, U.S.A.

Acknowledgments
The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to recognize the
significant contributions made by the following members:

Organization Represented Name of Representative
Brocade .. John Crandall
Dell..Vance Corn
EMC..Mike Thompson
Hewlett Packard..Alex Lenart
..Steve Peters
Hitachi Data Systems..Steve Quinn
Individual member...Tom West
IBM ...Krishna Harathi
..Mike Walker
..Martine Wedlake
Olocity ...Scott Baker
Pillar ..Gary Steffens
Symantec..Steve Hand
..Paul von Behren
 SMI-S 1.3.0 Rev 6 SNIA Technical Position xxiii

NO_ANSI_ID
xxiv

NO_ANSI_ID Scope
Clause 1: Scope

The Filesystems Part of the Storage Management Technical Specification defines management profiles for
Autonomous (top level) profiles for programs and devices whose central function is providing support and access
to file data. In addition, it provides documentation of component profiles (or subprofiles) that deal with filesystems
and management interface functions that may be used by other autonomous profiles not included in this part of the
specification.

There is an informative annex that describes how storage is mapped from block storage to file shares exported by
the file system and the mechanisms involved in that establishing those mappings. This annex is recommended for
getting an overview of how the filesystem models work.

This version of the Filesystems part of the Storage Management Technical Specification includes two autonomous
profiles:

• The NAS Head Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users and gets
its storage from a SAN (array devices attached to the NAS Head device).

• The Self-Contained NAS Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users, but gets
its storage from disk drives that are internal to the NAS device (instead of externally attached arrays).

In addition to these autonomous profiles, this part of the specification defines a number of component profiles,
which are used by the autonomous NAS profiles and might also be used by other autonomous profiles that feature
filesystem elements and services. The component profiles (subprofiles) defined in this version of the specification
include:

• The File Export (component) Profile

This component profile defines the elements used to model the exporting of filesystems or directories for any
autonomous profile that exports file data to remote systems.

• The File Export Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
the file shares (the representation of exported filesystems or directories) for any autonomous profile that
provides manipulation of exported filesystems or directories.

• The File Storage (component) Profile

This component profile defines the elements used to model the storage of filesystems on logical disks. This
profile does not have services for maintaining the mapping of filesystems to logical disks. These services are
addressed in the Filesystem Manipulation Profile.

• The Filesystem (component) Profile

This component profile defines the elements used to model filesystems and its related elements, such as
logical files, directories and information on how the filesystem is addressed when mounted to a specific
system. The services for defining and maintaining the information in the Filesystem Profile are contained in the
Filesystem Manipulation Profile.

• The Filesystem Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
filesystems and their related elements.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 1

Scope NO_ANSI_ID
• The Filesystem Quotas (component) Profile

This component profile defines the elements used to model the elements associated with creating, maintaining
and reporting on quotas on various filesystem elements.
2

NO_ANSI_ID Normative References
Clause 2: Normative References

2.1 General
The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

2.2 Approved references
ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]

2.3 References under development
Storage Management Technical Specification, Part 1 Common Architecture, 1.3.0 Rev 6

Storage Management Technical Specification, Part 2 Common Profiles, 1.3.0 Rev 6

Storage Management Technical Specification, Part 3 Block Devices, 1.3.0 Rev 6

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

2.4 Other references
DMTF DSP0214:2004 CIM Operations over HTTP
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 3

Normative References NO_ANSI_ID
4

NO_ANSI_ID Terms and definitions
Clause 3: Terms and definitions

3.1 General
For the purposes of this document, the terms and definitions given in Storage Management Technical
Specification, Part 1 Common Architecture, 1.3.0 Rev 6 and the following apply.

3.2 Definitions

3.2.1 CIFS
Common Internet File System.

3.2.2 Directory
A subtree within a filesystem. A directory may contain files or other directories.

3.2.3 File
A logical file in a filesystem.

3.2.4 File Server
A system configuration which supports the exporting of files and files systems. A file server may be a virtual
system element.

3.2.5 File Share
Sharing protocols applied to a directory. A directory is exported to remote users through a file share.

3.2.6 Filesystem
A filesystem is the way in which files are named and where they are placed logically for storage and retrieval.

3.2.7 FS Quota
A quota (hard or soft limit) placed on filesystem resource usage.

3.2.8 Logical Disk
This refers to block storage on which filesystems are built. A logical disk would be formatted for a particular
filesystem.

3.2.9 NAS
Network Attached Storage. In the context of this specification this refers to devices that serve files to a network.

3.2.10 NAS Head
A NAS device that gets its physical storage from one or more arrays that are externally attached to the NAS device.

3.2.11 NFS
Network File System.

3.2.12 Self-Contained NAS
A NAS device that has its own internal (to the NAS device) storage.

3.2.13 Quota
A hard or soft limit defined for users, user groups or resource collections on the amount of resources that may be
consumed.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 5

Terms and definitions NO_ANSI_ID
6

NO_ANSI_ID File Export Profile
STABLE

Clause 4: File Export Profile

4.1 Description

4.1.1 Synopsis

Profile Name: File Export

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: SNIA_FileShare

Scoping Class: CIM_ComputerSystem

4.1.2 Overview

The File Export Profile is a subprofile for autonomous profiles that support exporting of filesystems. Specifically, in
this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles. In some of these autonomous
profiles the File Export is required. In others it may not be. See the parent profile to see if this profile is required or
not.

EXPERIMENTAL

NOTE: The ExportedFileShareSetting is defined as SNIA_ classes. While this is defined to hold new properties,
the CIM version of this class will be supported for backward compatibility.

EXPERIMENTAL

4.1.3 Implementation

Figure 5 illustrates the classes mandatory for modeling the export of File Shares for the filesystem profiles. This
profile is supported by the Self-contained NAS and the NAS Head Profiles. Figure 5 shows the ComputerSystem
that hosts the LocalFileSystem (“Filesystem Host”) as different from the ComputerSystem hosting the FileShare
(“File server”). While they may be different ComputerSystems, they may also be the same ComputerSystem
instance.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 7

File Export Profile NO_ANSI_ID
The referencing profile shall model any File Shares that have been exported to the network. A File Share shall be
represented as a FileShare instance with associations to the ComputerSystem that hosts the share (via
HostedShare), to the ExportedFileShareSetting (via ElementSettingData) and to the ProtocolEndpoint (via
SAPAvailableForElement) through which the Share can be accessed.

EXPERIMENTAL

The FileShare also has a SharedElement association to the LocalFileSystem on which the share is based.

EXPERIMENTAL

In addition, there may also be an association between the FileShare and the LogicalFile that the share represents
(via ConcreteDependency). This is provided for backward compatibility with SMI-S 1.1.0.

4.1.3.1 Associations to FileShare
The SAPAvailableForElement is a many to many association. That is, multiple FileShares may be exported through
the same ProtocolEndpoint and multiple ProtocolEndpoints may support the same FileShare.

Figure 5 - File Export Instance

File Export
Profile

File server

ComputerSystem

LogicalFile
(for Backward Compatibility to 1.1)

FileShare
NFS or CIFS SNIA_ExportedFileShareSetting

HostedShare SNIA_SharedElement

ProtocolEndPoint

ProtocolIFType = 4200 | 4201
('NFS" or "CIFS")

LocalFileSystem

Filesystem Host

ComputerSystem

FileStorage
(For Backward Compatibility to 1.1)

HostedFileSystem

SAPAvailableForElement

*

*

1

0..*

ElementSettingData
1 1

ConcreteDependency
(Optional)

(For Backward Compatibility to 1.1)

1

0..*
8

NO_ANSI_ID File Export Profile
The SharedElement association between the FileShare and a LocalFileSystem is many to one association. Zero or
more FileShares may be associated to one LocalFileSystem. But each FileShare shall only reference one
LocalFileSystem.

The ConcreteDependency association between the FileShare and the LogicalFile is a many to one association.
Zero or more FileShares may be associated to one LogicalFile. But each FileShare shall only reference one
LogicalFile.

The ElementSettingData association between the FileShare and the ExportedFileShareSetting is a one to one
association. That is, a FileShare shall have an ExportedFileShareSetting and that ExportedFileShareSetting shall
be associated to exactly one FileShare.

4.2 Health and Fault Management Consideration
The File Export Profile supports state information (e.g., OperationalStatus) on the following element of the model:

• FileShares that are exported (See section 4.2.1)

4.2.1 OperationalStatus for FileShares

4.3 Cascading Considerations
None

4.4 Supported Profiles, Subprofiles, and Packages
Table 3 describes the supported profiles for File Export.

4.5 Methods of the Profile

4.5.1 Extrinsic Methods of the Profile

None

Table 1 - FileShare OperationalStatus

OperationalStatus Description

OK FileShare is online

Error FileShare has a failure. This could be due to a
Filesystem failure.

Stopped FileShare is disabled

Unknown

Table 2 - Supported Profiles for File Export

Registered Profile Names Mandatory Version

Indication Yes 1.3.0
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 9

File Export Profile NO_ANSI_ID
4.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

4.6 Client Considerations and Recipes

4.6.1 List Existing FileShares on the system

A client shall be able to find FileShares attached to a system (e.g., a file server) by doing an association traversal
from the ComputerSystem that represents the system using the HostedShare association.

4.7 Registered Name and Version
File Export version 1.3.0

4.8 CIM Elements
Table 3 describes the CIM elements for File Export.

Table 3 - CIM Elements for File Export

Element Name Requirement Description

4.8.1 CIM_ConcreteDependency Optional Represents an association between a
FileShare element and the actual shared
LogicalFile or Directory on which it is based.
This is provided for backward compatibility.

4.8.2 CIM_ElementSettingData (FileShare) Mandatory Associates a FileShare and
ExportedFileShareSetting elements.

4.8.3 CIM_ExportedFileShareSetting (Setting) Mandatory The configuration settings for an Exported
FileShare that is a setting for a FileShare
available for exporting.

4.8.4 CIM_FileShare (Exported File Share) Mandatory Represents the sharing characteristics of a
particular file element.

4.8.5 CIM_HostedShare Mandatory Represents that a shared element is hosted
by a Computer System.
10

NO_ANSI_ID File Export Profile
4.8.1 CIM_ConcreteDependency

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 4 describes class CIM_ConcreteDependency.

4.8.2 CIM_ElementSettingData (FileShare)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

4.8.6 CIM_SAPAvailableForElement Mandatory Represents the association between a
ServiceAccessPoint to the shared element
that is being accessed through that SAP.

4.8.7 CIM_SharedElement Mandatory Associates a FileShare to the
LocalFileSystem on which it is based.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FileShare
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a
FileShare. PreviousInstance is optional, but
may be supplied by an implementation of the
Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FileShare
AND
SourceInstance.CIM_FileShare::OperationalS
tatus <>
PreviousInstance.CIM_FileShare::Operational
Status

Optional CQL -Change of Status of a FileShare.
PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

Table 4 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The Share that represents the LogicalFile being shared.

Table 3 - CIM Elements for File Export

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 11

File Export Profile NO_ANSI_ID
Table 5 describes class CIM_ElementSettingData (FileShare).

4.8.3 CIM_ExportedFileShareSetting (Setting)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 6 describes class CIM_ExportedFileShareSetting (Setting).

Table 5 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)

Properties Flags Requirement Description & Notes

IsDefault N Optional Not Specified in this version of the Profile

IsCurrent N Optional Not Specified in this version of the Profile

IsNext N Optional Not Specified in this version of the Profile

IsMinimum N Optional Not Specified in this version of the Profile

IsMaximum N Optional Not Specified in this version of the Profile

ManagedElement Mandatory The FileShare.

SettingData Mandatory The settings define on creation of the FileShare.

Table 6 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the setting.

ElementName Mandatory A user-friendly name for the Setting.

FileSharingProtocol Mandatory The file sharing protocol supported by this share. NFS (2)
and CIFS (3) are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing
protocol. A share may support multiple versions of the
same protocol.

InitialEnabledState N Optional Valid values are '1|2|3|7|8|9' for ('Other' | 'Enabled' |
'Disabled' | 'In Test' | 'Deferred' | 'Quiesce')

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is '1'.

DefaultUserIdSuppor
ted

N Optional Valid values are '2|3|4' for ('No Default User Id' | 'System-
Specified Default User Id' | 'Share-Specified Default User
Id').

RootAccess N Optional Valid values are '2|3' for ('No Root Access' | 'Allow Root
Access').
12

NO_ANSI_ID File Export Profile
4.8.4 CIM_FileShare (Exported File Share)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 7 describes class CIM_FileShare (Exported File Share).

AccessPoints N Optional Valid values are '2|3|4|5' for ('None' | 'Service Default' | 'All' |
'Named Points').

Caption N Optional Not Specified in this version of the Profile

Description N Optional Not Specified in this version of the Profile

DefaultReadWrite N Optional Not Specified in this version of the Profile

DefaultExecute N Optional Not Specified in this version of the Profile

ExecuteSupport N Optional Not Specified in this version of the Profile

WritePolicy N Optional Not Specified in this version of the Profile

Table 7 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the
path to the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is
useful when importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in
section 4.2.1

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile

InstallDate N Optional Not Specified in this version of the Profile

StatusDescriptions N Optional Not Specified in this version of the Profile

HealthState N Optional Not Specified in this version of the Profile

EnabledState N Optional Not Specified in this version of the Profile

OtherEnabledState N Optional Not Specified in this version of the Profile

Table 6 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 13

File Export Profile NO_ANSI_ID
4.8.5 CIM_HostedShare

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 8 describes class CIM_HostedShare.

4.8.6 CIM_SAPAvailableForElement

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 9 describes class CIM_SAPAvailableForElement.

RequestedState N Optional Not Specified in this version of the Profile

EnabledDefault N Optional Not Specified in this version of the Profile

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile

RequestStateChange
()

Optional Not Specified in this version of the Profile

Table 8 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile

Dependent Mandatory The Share that is hosted by a Computer System

Antecedent Mandatory The Computer System that hosts the FileShare.

Table 9 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The element that is made available through a SAP. In the
File Export subprofile, these are FileShares configured for
either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare.

Table 7 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes
14

NO_ANSI_ID File Export Profile
4.8.7 CIM_SharedElement

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 10 describes class CIM_SharedElement.

STABLE

Table 10 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is exporting some contained file
or directory as a FileShare.

SameElement Mandatory The FileShare that exposes a contained file or directory of
the LocalFileSystem as an exported object.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 15

File Export Profile NO_ANSI_ID
16

NO_ANSI_ID File Export Manipulation Subprofile
EXPERIMENTAL

Clause 5: File Export Manipulation Subprofile

5.1 Description

5.1.1 Synopsis

Profile Name: File Export Manipulation

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: FileExportService

Scoping Class: File server ComputerSystem element (with Dedicated property containing ”16”)

5.1.2 Overview

The File Export Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It makes
use of elements of the Filesystem subprofiles and supports creation, modification and deletion of FileShares that
are exported by the File Export subprofile. A number of other profiles and subprofiles also make use of elements of
the Filesystem subprofile and will be referred to in this specification as “filesystem related profiles” -- these include
but are not limited to the Filesystem subprofile, the Filesystem Manipulation subprofile, the File Export subprofile,
the NAS Head profile, the Self-Contained NAS profile, and so on.

In this release of SMI-S, the autonomous profiles that use the File Export Manipulation Subprofile are the NAS
Head and Self-Contained NAS profiles.

Annex A:, "(Informative) State Transitions from Storage to File Shares" describes the states that a storage element,
initially an unused LogicalDisk, goes through before it can be exported as a CIFS or NFS file share. The
Filesystem Manipulation subprofile provides the methods to create the filesystem as a LocalFileSystem and make
it locally accessible at a file server ComputerSystem (associated to the file server ComputerSystem via the
LocalAccessAvailable association). This profile (the File Export Manipulation Profile) provides the methods to
"Export a file share" from the file server that allows the file server to share its contents with remote operational
users. Sharing the contents of a LocalFileSystem can be from the root directory or some contained internal
directory, or some contained internal file. When a directory (root or otherwise) is shared, all files and sub-directories
of that directory are also automatically shared (recursively). The semantics of sharing are ultimately controlled by
the Authorization profiles and by the filesystem implementation, so sharing cannot violate the access rules
specified internally to the filesystem. In addition to specifying the object (file or directory) to be shared, the
filesystem implementation shall specify the protocol to use (CIFS, NFS, or other protocol) for sharing.

SMI-S uses a FileShare element to represent the externally accessible file share. A SharedElement association
will exist between the FileShare and the LocalFileSystem. The FileShare.Name property indicates the shared
object (it is the filesystem-specific path to the contained file or directory that is being shared). The format of Name
is specific to the filesystem type indicated by the associated FileSystemSetting.ActualFileSystemType property; the
LocalFileSystem.PathnameSeparatorString property indicates the "separator string" that may be used to split the
PathName into the components of a hierarchical path name from the root of the associated file system (indicated
by the LocalFileSystem).

Note: Some incompatibilities with SMI-S 1.1 (in which this profile was also "EXPERIMENTAL") have been
introduced in the parameters to some of the extrinsic methods.
SMI-S 1.3.0 Rev 6 SNIA Technical Position 17

File Export Manipulation Subprofile NO_ANSI_ID
5.1.3 Instance Diagrams

5.1.3.1 File Export Creation classes and associations
Figure 6 illustrates the constructs involved with creating a FileShare for a File Export subprofile. This summarizes
the mandatory classes and associations for this subprofile. Specific areas are discussed in later sections.

The FileExportService provides configuration support for exporting elements ('files' and ’directories’) of a
LocalFileSystem as FileShare elements. A FileExportService is hosted by the file server ComputerSystem that
exports the directories/files (these would be the file server ComputerSystems in the Filesystem subprofile that were
given local access to the filesystem). FileShares are accessed through ServiceAccessPoint(s) hosted by the file
server ComputerSystem. FileShares are associated with the FileExportService via ServiceAffectsElement and with
the ServiceAccessPoint(s) via SAPAvailableToElement.

If a filesystem related profile supports the File Export Manipulation Subprofile, it shall have at least one
FileExportService element. This FileExportService shall be hosted on the top level ComputerSystem of the File
Export subprofile (which shall be a file server ComputerSystem element in the filesystem related profiles). The
methods offered are CreateFileShare, ModifyFileShare, and ReleaseFileShare.

Figure 6 - File Export Manipulation Subprofile Instance

ExportedFileShareCapabilities

FileSharingProtocol
// ProtocolVersions[]

SupportedProperties[]
CreateGoalSettings()

FileExportService

CreateExportedShare()
ModifyExportedShare()

ReleaseExportedShare()

FileShare

Name=”path to shared
element”

ElementSettingData

ExportedFileShareSetting

FileSharingProtocol
// ProtocolVersions[]
InitialEnabledState
OtherEnabledState
DefaultReadWrite

DefaultExecute
ExecuteSupport

DefaultUserIdSupported
RootAccess
WritePolicy

AccessPoints

ElementCapabilities

LogicalFile
(or Directory)

(BC 1.1)

SharedElement

ProtocolEndPoint

ProtocolIFType="Other"
OtherTypeDescription='NFS"

or "CIFS"

SAPAvailableForElement

Dedicated[]=”File Server” 16

ComputerSystem

HostedShare

ServiceAffectsElement

HostedService

FileExportCapabilities

FileSharingProtocols[]
// ProtocolVersions[]

SynchronousExportMethods[]
AsynchronousExportMethods[]

InitialEnabledState
ElementCapabilities

HostedAccessPoint

ExportedFileShareSetting

SettingsDefineCapabilities

FileStorage
(BC 1.1)

LocalFileSystem

ConcreteDependency
(BC 1.1)

*

1

*

*
1

1

1

1

ElementCapabilities
Characteristics={“Default”}

1

1

*

1

1

1

1

1

1

*

*

*

1

*

1

*

*

1

LocalAccessAvailable
18

NO_ANSI_ID File Export Manipulation Subprofile
Associated to the FileExportService (via ElementCapabilities) shall be one FileExportCapabilities element that
describes the capabilities of the service. It identifies the methods supported, whether the methods support Job
Control or not, the protocols that the created file share can support, and whether or not the file share shall be made
available after creation.

For each file sharing protocol that is supported, there shall be one ExportedFileShareCapabilities element that
defines the range of capabilities supported for that particular file sharing protocol. The
ExportedFileShareCapabilities elements shall be associated via ElementCapabilities to the FileExportService.
One of the ExportedFileShareCapabilities may be identified as a default (by setting the property
ElementCapabilities.IsDefault). The default ExportedFileShareCapabilities element also indicates the default file
sharing protocol to be supported. These defaults apply if any of the extrinsic methods of the FileExportService are
invoked with a NULL value for the Capabilities parameter.

Each ExportedFileShareCapabilities element is defined by a set of ExportedFileShareSettings that are associated
to it by the SettingsDefineCapabilities association. These ExportedFileShareSettings may be structured to indicate
a range of supported and unsupported property values and shall have the same value for the FileSharingProtocol
property as the ExportedFileShareCapabilities element.

For the convenience of clients the File Export Manipulation subprofile may populate a set of “pre-defined”
ExportedFileShareSettings for each of the ExportedFileShareCapabilities. These shall be associated to the
ExportedFileShareCapabilities via the SettingsDefineCapabilities association -- the association shall have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and
theSettingsDefineCapabilities.ValueRole property set to "Supported".

Note: That they are pre-defined and therefore exist at all times does not imply that these
ExportedFileShareSettings must be made persistent by the implementation.

The ExportedFileShareCapabilities instance supports the CreateGoalSettings method, described in detail in 5.5.1,
"Extrinsic Methods of the Profile". This method supports establishing one client-defined ExportedFileShareSettings
(as a goal).

CreateGoalSettings takes an array of embedded SettingData elements as the input TemplateGoalSettings and
SupportedGoalSettings parameters and may generates an array of embedded SettingData elements as the output
SupportedGoalSettings parameter. However, this profile only uses a single embedded ExportedFileShareSettings
element in the input parameters (both TemplateGoalSettings and SupportedGoalSettings) and generate a single
valid embedded ExportedFileShareSettings element as output (SupportedGoalSettings). If a client supplies a
NULL ExportedFileShareSettings (i.e., the empty string) as input to this method, the returned
ExportedFileShareSettings structure shall be a default setting for the parent ExportedFileShareCapabilities. If the
input (the embedded ExportedFileShareSettings) is not NULL, the method may return a “best fit” to the requested
setting. The client may iterate on the CreateGoalSettings method until it acquires a setting that suits its needs. This
embedded settings structure may then be used when the CreateFileShare or ModifyFileShare methods are
invoked. The details of how iterative negotiation can work are discussed in 5.5.1.1,
"ExportedFileShareCapabilities.CreateGoalSettings". Note that the file sharing protocol indicated by the
FileSharingProtocol property is invariant in all of these interactions. It is an error if the client changes the
FileSharingProtocol property for a Setting and submits it as a goal to the Capabilities element that provided the
original Setting.

Note: It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back
mechanism is needed. This profile does not require negotiation -- an implementation may support only
a set of pre-defined correlated point settings that a client can preload and use without modification. The
implementation could also support only settings whose properties are selectable from an arithmetic
progression or from a fixed enumeration, so that the client may construct a goal setting that is
guaranteed to be supported without negotiation.

Note: That a client has obtained a goal setting supported by the implementation does not guarantee that a
create or modify request will succeed. Such a setting only specifies a supported static configuration not
that the current dynamic environment has the resources to implement a specific request.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 19

File Export Manipulation Subprofile NO_ANSI_ID
Armed with the goal (the embedded ExportedFileShareSettings element), a reference to a LocalFileSystem, and a
path to a file or directory contained within that LocalFileSystem, the client can now use the CreateFileShare
method to create the file share for export. The CreateFileShare method creates a FileShare element, and a new
ExportedFileShareSettings instance as well as several necessary associations. These associations are:

• HostedFileShare association between the FileShare and the file server ComputerSystem that hosts it.

• SharedElement association between the FileShare and the LocalFileSystem. In addition, the FileShare
element specifies the pathname for the shared element (file or directory) relative to the root of the
LocalFileSystem (using the Name property).

• ElementSettingData to associate the FileShare to the ExportedFileShareSetting defined for it

• For backward compatibility with the SMI-S 1.1 File Export subprofile:

• The file or directory of the LocalFileSystem that is being shared is represented as a LogicalFile

• A FileStorage association is created between the LogicalFile and the LocalFileSystem

• A ConcreteDependency association is created between the FileShare and the LogicalFile.

• In addition, optional parameters to the method can cause other classes to be created:

• DefaultUserId could create a Privilege (see Clause 5: File Export Manipulation Subprofile of Storage
Management Technical Specification, Part 2 Common Profiles, 1.3.0 Rev 6) associated to the FileShare as
AuthorizationTarget and to a UserIdentity as AuthorizationSource

• RootAccessHosts array parameter could create root access Privileges from a number of remote Host
ComputerSystems to the FileShare (also using the Security Authorization subprofile)

• AccessPointPorts array parameter could create SAPAvailableForElement associations to a number of
ProtocolEndPoints representing TCP/IP ports through which access is provided to this FileShare.

The ReleaseFileShare method is straightforward -- it deletes the FileShare and the ExportedFileShareSetting, and
the associations to those elements (HostedFileShare, the ElementSettingData element, SharedElement, all the
SAPAvailableForElement associations and all Privileges that reference this FileShare as an AuthorizationTarget).
Any ComputerSystem elements created to represent remote hosts with root access to this FileShare that have no
further references may also be removed. A LogicalFile element associated to the LocalFileSystem via FileStorage
will not necessarily be deleted (the implementation may keep track of the other users of this element and be able to
delete it). For similar reasons, a ProtocolEndPoint created as a result of being specified in the AccessPointPorts
parameter may not be deleted. In both these cases, if the element has no associations other than the scoping one
(FileStorage to LocalFileSystem for LogicalFile and HostedAccessPoint to ComputerSystem for ProtocolEndPoint)
the provider may stop surfacing it at any time.

The ModifyFileShare method modifies an existing FileShare -- this requires a new ExportedFileShareSetting
element to be used as a goal. But not any ExportedFileShareSetting will do; the client shall use the
ExportedFileShareCapabilities.CreateGoalSettings method which would have been used to create the file share,
or an appropriate compatible ExportedFileShareCapabilities instance. The CreateGoalSettings method is used to
establish a new ExportedFileShareSetting goal (as with the original file share creation, it may be necessary to
iterate on the CreateGoalSettings method). Since only properties controlled by Settings can be changed by
ModifyFileShare, elements surfaced as a side-effect of creating or modifying a file share (i.e., any
ComputerSystems created to represent remote hosts with root access or an ProtocolEndPoints created to
represent access points for the share, or any user id created as a default user id) cannot be deleted, though new
ones can be created and/or added), the effect of ModifyFileShare is to change some properties of the FileShare or
of the associated ExportedFileShareSetting.
20

NO_ANSI_ID File Export Manipulation Subprofile
5.1.3.2 Finding File Export Services, Capabilities and Pre-defined Settings
When creating a file share the first step is to determine what can be created. Figure 7 illustrates an instance
diagram showing the elements that shall exist for supporting fileshare creation.

At least one FileExportService shall exist if the File System Profile has implemented the File Export Manipulation
Subprofile. The instance(s) of this service can be found by following the HostedService association and filtering on
the target class of FileExportService.

Note: If no service is found from the Top Level file server ComputerSystem, the client should look for other
component file server ComputerSystems that may be hosting the service. This is not recommended,
but permitted for backward compatibility with SMI-S 1.1.

An instance of the FileExportCapabilities shall be associated to the FileExportService via the ElementCapabilities
association. A client should follow this association (filtering on the result value of "CIM_FileExportCapabilities") to
inspect the configuration capabilities that are supported. The client would choose between the file sharing
protocols specified in the array property FileSharingProtocol.

For each entry in the FileSharingProtocol array, there shall be one instance of ExportedFileShareCapabilities with
the same value for the FileSharingProtocol property that shall be associated to the FileExportService using the
ElementCapabilities association (filtering on the result value of "CIM_ExportedFileShareCapabilities"). This

Figure 7 - Capabilities and Settings for Exported File Share Creation

ExportedFileShareCapabilities

FileSharingProtocol
// ProtocolVersions[]

SupportedProperties[]
CreateGoalSettings()

FileExportService

CreateExportedShare()
ModifyExportedShare()

ReleaseExportedShare()

FileShare
Name=”path to

LogicalFile”

LogicalFile
(or Directory)

(BC 1.1)

SharedElement

ProtocolEndPoint

ProtocolIFType="Other"
OtherTypeDescription='NFS"

or "CIFS"

SAPAvailableForElement

Dedicated[]=”File Server” 16

ComputerSystem

HostedShare

ServiceAffectsElement

HostedService

FileExportCapabilities

FileSharingProtocols[]
// ProtocolVersions[]

SynchronousExportMethods[]
AsynchronousExportMethods[]

InitialEnabledState

ElementCapabilities

HostedAccessPoint

ExportedFileShareSetting

FileSharingProtocol

FileStorage
(BC 1.1)

LocalFileSystem

ConcreteDependency
(BC 1.1)

ExportedFileShareCapabilities

FileSharingProtocol
// ProtocolVersions[]

SupportedProperties[]
CreateGoalSettings()

ElementCapabilities

ElementCapabilities
Characteristics={“Default”}

ExportedFileShareSetting

FileSharingProtocol

SettingsDefineCapabilities

ElementSettingData

1
1

*

LocalAccessAvailable
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 21

File Export Manipulation Subprofile NO_ANSI_ID
ExportedFileShareCapabilities element shall specify the supported capabilities for that FileSharingProtocol using a
collection of ExportedFileShareSetting elements. These ExportedFileShareSetting shall be associated the
ExportedFileShareCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined ExportedFileShareSetting that clients could use directly if
desired. The SettingsDefineCapabilities association from the ExportedFileShareCapabilities to the pre-defined
ExportedFileShareSettings shall have the PropertyPolicy property be "Correlated", the ValueRole property be
"Supported" and the ValueRange property be "Point". Other pre-defined combinations of property values may be
specified by ExportedFileShareSetting whose SettingsDefineCapabilities association has the PropertyPolicy be
"Independent", ValueRole property be "Supported" and the ValueRange array property contain "Minimums",
"Maximums", or "Increment". These settings can be used by the client to compose ExportedFileShareSetting that
are more likely to be directly usable.

5.2 Health and Fault Management Considerations
The key elements of this profile are the FileExportService and the file server ComputerSystem.

5.2.1 OperationalStatus for FileExportService

Table 11 - Operational Status for FileExport Service

Primary OperationalStatus Description

2 “OK” The service is running with good status

3 “Degraded” The service is operating in a degraded mode. This could be
due to the health state of the underlying file server, or of the
storage being degraded or in error.

4 “Stressed” The services resources are stressed

5 “Predictive Failure” The service might fail because some resource or component is
predicted to fail

6 “Error” An error has occurred causing the service to become
unavailable. Operator intervention through SMI-S to restore
the service may be possible.

6 “Error” An error has occurred causing the service to become
unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The service is not functioning. Operator intervention through
SMI-S will not fix the problem.

8 “Starting” The service is in process of initialization and is not yet
available operationally.

 9 “Stopping” The service is in process of stopping, and is not available
operationally.

10 “Stopped” The service cannot be accessed operationally because it is
stopped -- if this did not happened because of operator
intervention or happened in real-time, the OperationalStatus
would have been “Lost Communication” rather than “Stopped”.

11 “In Service” The service is offline in maintenance mode, and is not
available operationally.
22

NO_ANSI_ID File Export Manipulation Subprofile
5.2.2 OperationalStatus for File Server ComputerSystem

13 “Lost Communications” The service cannot be accessed operationally -- if this
happened because of operator intervention it would have been
“Stopped” rather than “Lost Communication”.

14 “Aborted” The service is stopped but in a manner that may have left it in
an inconsistent state.

15 “Dormant” The service is offline; and the reason for not being accessible
is unknown.

16 “Supporting Entity in Error” The service is in an error state, or may be OK but not
accessible, because a supporting entity is not accessible.

Table 12 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description

2 “OK” The file server is running with good status

3 “Degraded” The file server is operating in a degraded mode. This could be
due to the health state of some component of the
ComputerSystem, due to load by other applications, or due to
the health state of backend or front-end network interfaces.

4 “Stressed” The file server resources are stressed

5 “Predictive Failure” The file server might fail because some resource or
component is predicted to fail

6 “Error” An error has occurred causing the ComputerSystem to
become unavailable. Operator intervention through SMI-S to
restore the service may be possible.

6 “Error” An error has occurred causing the ComputerSystem to
become unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The file server ComputerSystem is not functioning. Operator
intervention through SMI-S will not fix the problem.

8 “Starting” The ComputerSystem is in process of initialization and is not
yet available operationally.

 9 “Stopping” The ComputerSystem is in process of stopping, and is not
available operationally.

10 “Stopped” The ComputerSystem cannot be accessed operationally
because it is stopped -- if this did not happened because of
operator intervention or happened in real-time, the
OperationalStatus would have been “Lost Communication”
rather than “Stopped”.

Table 11 - Operational Status for FileExport Service

Primary OperationalStatus Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 23

File Export Manipulation Subprofile NO_ANSI_ID
5.3 Cascading Considerations
Not Applicable.

5.4 Supported Subprofiles and Packages
Table 20 describes the supported profiles for File Export Manipulation.

11 “In Service” The ComputerSystem is offline in maintenance mode, and is
not available operationally.

13 “Lost Communications” The ComputerSystem cannot be accessed operationally -- if
this happened because of operator intervention it would have
been “Stopped” rather than “Lost Communication”.

14 “Aborted” The ComputerSystem is stopped but in a manner that may
have left it in an inconsistent state.

15 “Dormant” The ComputerSystem is offline; and the reason for not being
accessible is unknown.

16 “Supporting Entity in Error” The ComputerSystem is in an error state, or may be OK but
not accessible, because a supporting entity is not accessible.

Table 13 - Supported Profiles for File Export Manipulation

Registered Profile Names Mandatory Version

Job Control No 1.3.0

File Export Yes 1.3.0

Security No 1.1.0

Indication Yes 1.3.0

Table 12 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description
24

NO_ANSI_ID File Export Manipulation Subprofile
5.5 Methods of the Profile

5.5.1 Extrinsic Methods of the Profile

5.5.1.1 ExportedFileShareCapabilities.CreateGoalSettings
This extrinsic method of the ExportedFileShareCapabilities class validates support for a caller-proposed
ExportedFileShareSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this
method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
ExportedFileShareSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and

Table 14 - FileExportManipulation Methods

Method Created Instances Deleted Instances Modified Instances

CreateExportedShare FileShare (Export)
ExportedFileShareSetti
ng
ElementSettingData
HostedShare
SharedElement
SAPAvailableForElemen
t
ServiceAffectsElement
LogicalFile (or
Directory) (for bc to
1.1)
ProtocolEndPoint

N/A N/A

ModifyExportedShare ExportedFileShareSetti
ng
FileShare (Export)
ProtocolEndPoint

ReleaseExportedShar
e

N/A FileShare (Export)
ExportedFileShareSetti
ng
ElementSettingData
HostedShare
SharedElement
ServiceAffectsElement
ProtocolEndPoint
LogicalFile

N/A

CreateGoalSettings N/A N/A N/A
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 25

File Export Manipulation Subprofile NO_ANSI_ID
SupportedGoalSettings are string arrays containing embedded instances of type ExportedFileShareSetting. As
such, these settings do not exist in the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass previously
returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation
may determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are
the same. A client may infer from the same result that the TemplateGoalSettings must be modified.

5.5.1.1.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges with respect to the filesystem, the filesystem host, or the file server or
the file share. During negotiation, the client will show the current state to the user -- the SupportedGoalSettings
received to date (either the latest or some subset), the TemplateGoalSettings proposed (the most recent, but
possibly more). But the administrator needs a representation of what is available, possibly the range or sets of
values that the different setting properties can take. Some decisions are assumed to have been made already,
such as the file-sharing protocol to be used or the filesystem element to be shared or the resources allocated for
providing local access to the filesystem from the file server.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified using ExportedFileShareSettings -- these points
can be further qualified to indicate whether these are supported (or not), and even whether they represent some
ideal point in the space -- a "minimum", or a "maximum", or an "optimal" point. Other settings can provide ranges
for properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can
be specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for
a property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
ExportedFileShareSetting elements that are associated to the ExportedFileShareCapabilities via SettingDefi-
nesCapabilities association with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"

• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the ExportedFileShareSetting elements that are
associated to the ExportedFileShareCapabilities via SettingDefinesCapabilities association with the following
property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"
26

NO_ANSI_ID File Export Manipulation Subprofile
• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

5.5.1.1.2 Signature and Parameters of CreateGoalSettings

Table 15 - Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings

Parameter
Name

Qualifier Type Description & Notes

TemplateGoalSe
ttings[]

IN string EmbeddedInstance
("SNIA_ExportedFileShareSetting")

TemplateGoalSettings is a string array containing
embedded instances of class
ExportedFileShareSetting, or a derived class. This
parameter specifies the client’s requirements and
is used to locate matching settings that the
implementation can support.

SupportedGoalS
ettings[]

INOUT string EmbeddedInstance
("SNIA_ExportedFileShareSetting")

SupportedGoalSettings is a string array containing
embedded instances of class
ExportedFileShareSetting, or a derived class. On
input, it specifies a previously returned set of
Settings that the implementation could support. On
output, it specifies a new set of Settings that the
implementation can support. If the output set is
identical to the input set, both client and
implementation may conclude that this is the best
match for the TemplateGoalSettings that is
available.
If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method shall
return "Alternative Proposed".
If the output is NULL, the method shall return an
“Failed”.

Normal Return

Status uint32 "Success",
"Failed",
"Timeout",
"Alternative Proposed"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 27

File Export Manipulation Subprofile NO_ANSI_ID
5.5.1.2 FileExportServices.CreateExportedShare
This extrinsic method creates a FileShare providing access to a contained sub-element of a LocalFileSystem
(either a LogicalFile or its sub-class Directory). A reference to the created FileShare is returned as the output
parameter TheShare. This FileShare element is hosted by the same file server ComputerSystem that hosts the
FileExportService. The LocalFileSystem whose element is exported shall be locally accessible to the file server
ComputerSystem (and need not be hosted by it), as represented by the LocalAccessAvailable association from the
file server ComputerSystem to the LocalFileSystem.

The LocalFileSystem whose sub-element is being exported is specified by the input parameter Root. The input
string parameter SharedElementPath specifies a pathname from the root directory of the Root to the sub-element
to be exported. If SharedElementPath is NULL or the empty string, it specifies the root directory of Root. The
format of SharedElementPath is implementation-specific -- the most common format is as a sequence of directory
names separated by a character or short string indicated by the FileSystemSetting.PathNameSeparatorString
property.

Note: The root directory of Root is the base from which a path to the LogicalFile being shared is specified. In
the simplest and possibly the most common case, the LogicalFile element is the root directory of Root
and the path is NULL or the empty string.

The desired settings for the FileShare are specified by the Goal parameter (a string-valued EmbeddedInstance
object of class ExportedFileShareSetting). An ExportedFileShareSetting element shall be created that represents
the settings of the created FileShare and will be associated via ElementSettingData to the FileShare. (This
ExportedFileShareSetting may be identical to the Goal or may be its equivalent). The created element shall be
returned as the output Goal parameter.

The input Goal parameter can be NULL, in which case the ExportedFileShareSetting associated with the default
ExportedFileShareCapabilities of the FileExportService is used as the goal. In that case, the following references
to Goal are to the output value of the Goal parameter.

If Goal.DefaultUserIdSupported="Share-Specified Default User Id" and the input parameter DefaultUserId is not
NULL, the FileShare will support the specified user id as the default user when the share is accessed. This access
privilege will be represented by creating instances of the Privilege class as described in the Security Authorization
subprofile. The Security Authorization subprofile shall be used for fine-grained access to, or modification of, the
default user.

Note: If the Security Authorization subprofile is not supported, this parameter may be set at creation but
cannot be accessed later. It can only be replaced with a new DefaultUserId using the
ModifyExportedShare method.

Note: The format of the user id is not specified by this sub-profile. If a Security Principal sub-profile or a
Filesystem Quota subprofile is defined, the user id format defined therein may be used.

If Goal.RootAccess="Allow Root Access" then the input parameter RootAccessHosts will be an array of URIs of
ComputerSystems from which root access will be permitted. This access privilege will be represented by creating
instances of the Privilege class as described in the Security Authorization subprofile. The Security Authorization
subprofile shall be used for fine-grained access to, or modification of, the set of hosts with root access.

Note: If the Security Authorization subprofile is not supported, this parameter may be set at creation but
cannot be accessed later. It can only be replaced by specifying a new RootAccessHosts array using
the ModifyExportedShare method.

Note: The computer systems may not be managed by this implementation, so they may not be represented
by ComputerSystem references.

If Goal.AccessPoints="Named Points", then the input parameter AccessPointPorts will be an array of references to
ProtocolEndpoints that provide access to this FileShare. This will be represented by creating instances of the
SAPAvailableForElement association between the FileShare and the specified ProtocolEndpoint. Fine-grained
28

NO_ANSI_ID File Export Manipulation Subprofile
access to this set of ProtocolEndpoints or modification this set can be performed using the ModifyExportedShare
method.

Note: This changes the type of the AccessPointPorts parameter from a string array in the previous version to
an array of references to ProtocolEndpoints (or more generally to ServiceAccessPoints).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 29

File Export Manipulation Subprofile NO_ANSI_ID
5.5.1.2.1 Signature and Parameters of CreateExportedShare

Table 16 - Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter
Name

Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the FileShare being
created. If NULL, then a system-supplied default
name can be used.

The value shall be stored in the 'ElementName'
property for the created element.

Comment IN string An end user relevant comment for the FileShare
being created. If NULL, then a system-supplied
default comment can be used.

The value shall be stored in the 'Description'
property for the created element.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

Root IN, REF SNIA_LocalF
ileSystem

A reference indicating a LocalFileSystem element
whose sub-element is being exported. The
LocalFileSystem shall be locally available (either
explicitly or implicitly) to the file server
ComputerSystem that hosts the FileExportService.

SharedElement
Path

IN, OUT string An opaque string representing a path to the shared
element from the root directory of the FileSystem
indicated by the Root parameter. The format of
this is as a sequence of directory names (from the
\”root\”) separated by the
PathNameSeparatorString property.

Multiple paths could lead to the same element but
the access rights or other privileges could be
specific to the path. The client needs to specify the
path.

If SharedElementPath is NULL or is the empty
string, it indicates the \”root\” directory of the file
system indicated by Root.

The value shall be stored in the 'Name' property for
the created element.
30

NO_ANSI_ID File Export Manipulation Subprofile
Goal IN, OUT, EI string EmbeddedInstance
("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the SNIA_ExportedFileShareSetting
class, or a derived class, encoded as a string-
valued embedded object parameter. If NULL or the
empty string, the default configuration will be
specified by the FileExportService.

TheShare OUT, REF CIM_FileSha
re

If successful, this returns a reference to the created
file share.

DefaultUserId IN, OUT,
REF, NULL
allowed,

CIM_identity A reference to a concrete derived class of
CIM_Identity that indicates the user id to use for
default access to this share. A NULL value on input
indicates that no user id is requested. A NULL
value on output indicates that no user id has been
assigned, even by default. The provider is
expected to surface this access using the
Authorization subprofile.

A default user id per share is not supported by the
CIFS Protocol so this is ignored if the Goal
specifies creating a CIFSShare.

RootAccessHost
s[]

IN, OUT,
URI, NULL
allowed

string An array of strings that specify the hosts that have
root access to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess
property is set to 'Allow Root Access'. Each entry
specifies a host by a URI. All entries up to the first
empty string are allowed root access; the entries
after the first empty string are denied root access.
If this parameter is NULL, root access will be
denied to all hosts, effectively overriding the value
of the property
SNIA_ExportedFileShareSetting.RootAccess. If
the first entry is the empty string, root access will
be allowed from all hosts, and subsequent entries
will be denied root access. The provider is
expected to surface this access using the
Authorization subprofile. This property needs to be
an array of URIs because the remote host may not
be known to the provider and therefore a reference
to the host may not exist.

Root Access is not supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

Table 16 - Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 31

File Export Manipulation Subprofile NO_ANSI_ID
5.5.1.3 FileExportServices.ModifyExportedShare
This extrinsic method modifies a FileShare element that is exporting a contained sub-element of a LocalFileSystem
(either a LogicalFile or its sub-class Directory). The FileShare is specified by the reference parameter TheShare.
TheShare cannot be NULL and it shall be hosted by the same file server ComputerSystem that hosts the
FileExportService. The input parameters Root and SharedElementPath shall be NULL or shall be the same as the
corresponding parameters when the FileShare was created (i.e., these cannot be changed using this method).

The precise constraint is that the sub-element shall not be changed even if the Root and SharedElementPath are
different. For instance, this would allow a different path that leads to the same sub-element. However, this
subprofile does not allow this flexibility.

AccessPointPort
s[]

IN, OUT,
REF, NULL
Allowed

CIM_Service
AccessPoints

An array of references to the ProtocolEndpoints
that can connect to this Share, if the
SNIA_ExportedFileShareSetting.AccessPoints
property is set to 'Named Ports'.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of
the property
ExportedFileShareSetting.AccessPoints.

If the array has multiple entries and the first entry in
the array is NULL, all access points supported by
the service will be supported, and subsequent
entries will be denied access.

The provider is expected to surface these access
rights (whether granted or denied) using the
Authorization subprofile. Any AccessPoints granted
access via this parameter will also be associated to
this share with SAPAvailableForElement. If the
AccessPoint is not already enabled it will appear in
a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

Normal Return

Status OUT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 16 - Parameters for Extrinsic Method FileExportServices.CreateExportedShare

Parameter
Name

Qualifier Type Description & Notes
32

NO_ANSI_ID File Export Manipulation Subprofile
The new desired settings for the FileShare are specified by the input parameter Goal (a string-valued
EmbeddedInstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element that
represents the settings of the created FileShare (either identical to the Goal or its equivalent) will be associated via
ElementSettingData to the FileShare. The implementation shall modify the existing ExportedFileShareSetting.
The Setting that is actually established will be returned as the output parameter Goal.

The Goal parameter can be NULL on input, in which case, the settings for the FileShare are not changed. This can
happen if this method is being called to provide new values for DefaultUserId, RootAccessHosts, or
AccessPointPorts without changing any settings. In that case, the following references to Goal are to the output
value or the parameter.

If Goal.DefaultUserIdSupported="Share-Specified Default User Id" and the input parameter DefaultUserId is not
NULL, the FileShare will support the specified user id as the default user when the share is accessed. Any
existing DefaultUserId specified will be overridden. This access privilege will be represented by creating instances
of the Privilege class as described in the Security subprofile. The Security subprofile shall also be used to access
or modify this privilege. If DefaultUserId is NULL, the existing specification will not be changed.

Note: If the Security subprofile is not supported, this parameter may be set but cannot be accessed later. It
can only be replaced with a new DefaultUserId using the ModifyExportedShare method.

If Goal.RootAccess="Allow Root Access" then the non-NULL input parameter RootAccessHosts will be an array of
URIs of ComputerSystems from which root access will be permitted. This access privilege will be represented by
creating instances of the Privilege class as described in the Security subprofile. Any existing specification of root
access by hosts will be overridden. If RootAccessHosts is NULL, the existing specification will not be changed.

Note: If the Security subprofile is not supported, this parameter may be set at creation but cannot be
accessed later. It can only be replaced by specifying a new RootAccessHosts array using the
ModifyExportedShare method.

If Goal.AccessPoints="Named Points", then the non-NULL input parameter AccessPointPorts will be an array of
references to ProtocolEndpoints that provide access to this FileShare. This will be represented by creating
instances of the SAPAvailableForElement association between the FileShare and the specified ProtocolEndpoint.
Any existing specification of access points to the FileShare will be overridden. If AccessPointPorts is NULL, the
existing specification will not be changed.

Note: This changes the type of the AccessPointPorts parameter from a string array to an array of references
to ProtocolEndpoints (or more generally to ServiceAccessPoints).

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this method if
the FileShare is in use and the method requires that no operations be in progress during that execution.

Note: The WaitTime and InUseOptions parameters are supported if the
ExportedFileShareCapabilities.SupportedProperties includes the "RequireInUseOptions" option. This
requires a change to the MOF that may not show up in this document as enumerations are not
documented in the spec?.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 33

File Export Manipulation Subprofile NO_ANSI_ID
5.5.2 Signature and Parameters of ModifyExportedShare

Table 17 - Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes

ElementName IN string A new end-user relevant name for the FileShare
being modified. If NULL or the empty string, the
existing name stored in the 'ElementName'
property for the created element not be changed.

Comment IN string A new end-user relevant comment for the
FileShare being modified. If NULL or the empty
string, the existing comment stored in the
'Description' property will not be changed.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

Root IN, OUT,
REF

CIM_Manage
dElement

A reference indicating a LocalFileSystem element
whose sub-element is being exported. In the
ModifyExportedShare method, this shall not
indicate a different filesystem from the one
indicated when the file share was created (even if
the reference is to a different instance of
LocalFileSystem).

If Root is NULL on input it is ignored.

As an OUT parameter, a reference to the
LocalFileSystem is returned.

SharedElement
Path

IN, OUT string A string representing a path to the shared element
from the root directory of the LocalFileSystem
indicated by Root.

The ModifyExportedShare method cannot be used
to change the object indicated by the path, but the
path itself can be different as multiple paths could
lead to the same element. Such a change may
have side-effects, for instance, the access rights or
other privileges could be specific to the path.

If SharedElementPath is NULL, it indicates no
change to the current path. If SharedElementPath
consists of a single empty string, it indicates the
root directory of the FileSystem indicated by Root.

As an OUT parameter, the current path is returned.

The value shall be stored in the 'Name' property for
the created element.
34

NO_ANSI_ID File Export Manipulation Subprofile
Goal IN, OUT, EI string EmbeddedInstance
("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the SNIA_ExportedFileShareSetting
class, or a derived class, encoded as a string-
valued embedded instance parameter. If NULL or
the empty string, the current setting will be re-
applied.

As an OUT parameter, the current Setting is
returned.

TheShare IN, OUT,
REF

CIM_FileSha
re

As an IN Parameter, it specifies the share that is to
be modified or whose settings are being queried.
As an OUT Parameter, this specifies the share if
the request is successful.

DefaultUserId IN, OUT,
REF, NULL
allowed,

CIM_identity As an IN parameter, this is a reference to a
concrete derived class of CIM_Identity that
indicates the user id to use for default access to
this share. A NULL value indicates no change to
the existing user id, if one has been specified. The
provider is expected to surface this access using
Authorization subprofile. As an OUT Parameter,
this returns a reference to the current
DefaultUserId.

A default user per share is not supported by the
CIFS Protocol so this is ignored if the file share is a
CIFSShare.

Table 17 - Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 35

File Export Manipulation Subprofile NO_ANSI_ID
RootAccessHost
s[]

IN, OUT,
URI, NULL
allowed

string An array of strings that specify the hosts that have
root access to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess
property is set to 'Allow Root Access'. Each entry
specifies a host by a URI. The set of hosts
specified is added to the existing set of hosts with
root access.

If this parameter is NULL, root access will be
denied to all hosts, including the ones currently
allowed root access, effectively overriding the
value of the property
SNIA_ExportedFileShareSetting.RootAccess.

Each entry specifies a host by a URI. All entries up
to the first empty string are allowed root access;
the entries after the first empty string are denied
root access.

If the first entry is the empty string, root access will
continue to be allowed from the existing hosts, and
subsequent entries in the array will be denied root
access.

The provider is expected to surface this access
using the Authorization subprofile.

This property needs to be an array of URIs
because the remote host may not be known to the
provider and therefore a reference to the host may
not exist.

Root Access is not supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

Table 17 - Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes
36

NO_ANSI_ID File Export Manipulation Subprofile
AccessPointPort
s[]

IN, OUT,
REF, NULL
Allowed

CIM_Service
AccessPoints

An array of references to the ProtocolEndpoints
that can connect to this Share, if the
SNIA_ExportedFileShareSettings.AccessPoints
property is set to 'Named Ports'. The set of access
points specified in the array is added to the existing
set of access points.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of
the property
SNIA_ExportedFileShareSetting.AccessPoints.

If the first entry in the array is NULL, existing
access points supported by the service will be
supported, and subsequent entries in the array will
be access points that are denied access.

The provider is expected to surface these access
rights (whether granted or denied) using the
Authorization subprofile. Any AccessPoints granted
access via this parameter will also be associated to
this share with SAPAvailableForElement. If the
AccessPoint is not already enabled it will appear in
a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

InUseOptions IN uint16 An enumerated integer that specifies the action
that the provider should take if the FileShare is still
in use when this request is made. The WaitTime
parameter indicates the specified time used for this
function.

This option is only relevant if the FileShare needs
to be made unavailable while the request is being
executed.

WaitTime IN uint16 An integer that indicates the time (in seconds) that
the provider needs to wait before executing this
request if it cannot be done while the FileShare is
in use. If WaitTime is not zero, the method will
create a job, if supported by the provider, and
return immediately. If the provider does not support
asynchronous jobs, there is a possibility that the
client could time-out before the job is completed.

The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait
(forever) until Quiescence, then Execute Request'
and will be performed asynchronously if possible.

Table 17 - Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 37

File Export Manipulation Subprofile NO_ANSI_ID
5.5.2.1 FileExportServices.ReleaseExportedShare
This is an extrinsic method that will delete a FileShare specified by the parameter TheShare and delete any
associated instances and associations that are no longer needed. The deleted instances will include the Directory
(or LogicalFile) if it had been created only for the purpose of representing the shared sub-element.

Note: Deleting the Directory or LogicalFile deletes only the representation of the file or directory for
management and does not delete the underlying operational element

The deleted associations include HostedShare, ElementSettingData, and any elements and associations created
to support the DefaultUserId, RootAccessHosts, and AccessPointPorts parameters. In addition, the
ExportedFileShareSetting will be deleted if appropriate.

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this method if
the FileShare is in use and the method requires that no operations be in progress during that execution.

Note: The WaitTime and InUseOptions parameters are supported if the
ExportedFileShareCapabilities.SupportedProperties includes the "RequireInUseOptions" option.

Normal Return

Status OUT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 17 - Parameters for Extrinsic Method FileExportServices.ModifyExportedShare

Parameter
Name

Qualifier Type Description & Notes
38

NO_ANSI_ID File Export Manipulation Subprofile
5.5.3 Signature and Parameters of ReleaseExportedShare

5.5.4 Intrinsic Methods of the Profile

Table 18 - Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter
Name

Qualifier Type Description & Notes

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

TheShare IN, OUT,
REF

CIM_FileSha
re

As an IN Parameter, it specifies the share that is to
be modified or whose settings are being queried.
As an OUT Parameter, this specifies the share if
the request is successful.

InUseOptions IN uint16 An enumerated integer that specifies the action
that the provider should take if the FileShare is still
in use when this request is made. The WaitTime
parameter indicates the specified time used for this
function.

This option is only relevant if the FileShare needs
to be made unavailable while the request is being
executed.

WaitTime IN uint16 An integer that indicates the time (in seconds) that
the provider needs to wait before executing this
request if it cannot be done while the FileShare is
in use. If WaitTime is not zero, the method will
create a job, if supported by the provider, and
return immediately. If the provider does not support
asynchronous jobs, there is a possibility that the
client could time-out before the job is completed.

The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait
(forever) until Quiescence, then Execute Request'
and will be performed asynchronously if possible.

Normal Return

Status OUT uint32 ValueMap{}, Values{}

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 39

File Export Manipulation Subprofile NO_ANSI_ID
The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

5.6 Client Considerations and Recipes

EXPERIMENTAL

Conventions used in all the filesystem related profiles for recipes:

• When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is used without further validation. Real code will need to be more robust.

• In SMI-S, Values and Valuemap members as equivalent. In real code, client-side magic is required to convert
the integer representation into the string form given in the MOF.

• Error returns using the CIM_Error mechanism are not explicitly handled; the client shall implement handlers for
these asynchronous returns.

• These recipes do not show the details of negotiating a setting acceptable to both client and provider.

• The recipes do not show the details of managing a Job if a method returns after setting one up.

All the recipes show very simple examples of the operations that should be supported. Some recipes have been
simplified so that they would not even be minimally useful to a real client, but only show how more complete
functionality would be implemented.

5.6.1 Creation of a FileShare for Export

// DESCRIPTION

// GOAL: Create an NFS or CIFS FileShare that makes a specified

// directory or file of a filesystem available to clients

// and supports the properties specified in the array

// parameter $propertynames[].

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file server ComputerSystem host of the FileExportService

// will also be the host of the FileShare that will be

// made available to NFS or CIFS clients.

//

// FUNCTION CreateFileSystemShare

// This function takes a filesystem and a file server host

// ComputerSystem and creates a file share that will
40

NO_ANSI_ID File Export Manipulation Subprofile
// support the specified properties.

// INPUT Parameters:

// sharetype: The file sharing protocol (NFS or CIFS) that this

// share should support.

// fs: A reference to the LocalFileSystem whose element is

// to be shared.

// server: A reference to the file server ComputerSystem that

// provides local access to the filesystem $fs.

// fspath: A path to the sub-element that is to be shared.

// name: A name for the created file share.

// comment: A comment to be associated with the created file share.

// propnames: An array of property names that the capabilities

// element should support.

// propvals: An array of property values corresponding to the

// property names that specify values for those properties.

// OUTPUT Parameters:

// fssh: A reference to the newly created FileShare element

// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub CreateFileSystemShare(IN String $sharetype, // CIFS, NFS, etc.

 IN REF CIM_FileSystem $fs, // the filesystem

 IN REF CIM_ComputerSystem $server // the File Server

 IN String $fspath, // subpath in the filesystem,
or ““

 IN String $name,

 IN String $comment,

 IN String[] $propnames, // names of desired properties

 IN String[] $propvals, // values of desired
properties

 OUT REF CIM_FileShare $fssh,

 OUT REF CIM_Job $job)

{

 //

 // Get the service and capabilities

 //

//// &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 41

File Export Manipulation Subprofile NO_ANSI_ID
 “Antecedent”,

 “Dependent”)->[0];

 // Assumption: There is only one FileExportService per File Server

 //

 // Get an ExportedFileShareCapabilities from the FileExportService

 // via the ElementCapabilities association to the ComputerSystem

 // (it’s indexed by NFS/CIFS/other sharing service and possibly

 // other properties)

 // Note: NFS and CIFS are two capabilities of the same service

 // with different values of the FileSharingProtocol property

 // In this example, we look for the

 // ExportedFileShareCapabilities.IsDefault property to get a

 // default sharetype.

 //

 $efscapabilities = Associators($feservice,

 “CIM_ElementCapabilities”

 “SNIA_ExportedFileShareCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {

 #j = 0;

 while (($efscapability = $efscapabilities->[#j]) != NULL) {

 if (($sharetype == ““) && $efscapability.IsDefault ||

 ($efscapabilities->[#j].FileSharingProtocol == $sharetype)) {

 $sharetype = $efscapability.FileSharingProtocol;

 // Should check here that the properties named in

 // $propnames-[] are supported by this capabilities

 // element. If not, the method should fail as this profile

 // does not support multiple capabilities with the same

 // file sharing protocol that may have different.

 break;

 }

 #j++;

 }

 // Handle the error if any

 if (#j == $efscapabilities-[].length) {

 <indicate error>

 return false;

 }

 //

 // Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to
get

 // the next goal for EFSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.
42

NO_ANSI_ID File Export Manipulation Subprofile
 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 &CreateGoal($efscapability, NULL, $goal);

 //

 // Inspect Goal and modify properties as desired.

 //

 #i = 0;

 while ($propnames->[#i] != NULL) {

 $goal.$propnames->[#i] = $propvals->[#i];

 #i++;

 }

 // Iterate over the goal at least once

 &CreateGoal($efscapability, $goal, $settings);

 #i = 0;

 while ($propnames->[#i] != NULL) {

 // funky syntax for propnames property of settings

 if ($settings.$propnames->[#i] != $propvals->[#i]) {

 //

 // give up

 //

 return false;

 }

 #i++;

 }

 // Verify that the FileSystem is locally accessible

 // Does this fileserver have local access -- if not, there is no setting!

 $laassocs->[] = ReferenceNames($server,

 “SNIA_LocalAccessAvailable”,

 “FileSystem”

 $fs);

 if ($laassocs->[] == NULL || $laassocs->[].length != 1) {

 {

 // If the filesystem is not locally accessible from the server

 // there is no setting to be found

 return false;

 }

 $laassoc = $laassocs->[0];

 //
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 43

File Export Manipulation Subprofile NO_ANSI_ID
 // Get all the LocallyAccessibleFileSystemSettings

 // associated with the CIM_FileSystem (via ElementSettingData)

 //

 $lasettings->[] = Associators($fs,

 “CIM_ElementSettingData”,

 “SNIA_LocallyAccessibleFileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($lasettings->[] == NULL || $lasettings->[].length == 0) {

 // This is an ERROR but for now we return with no results

 return NULL;

 }

 #i = 0;

 $lasetting = NULL;

 while ($lasettings->[#i] != NULL) {

 // Get the association that points to this setting

 $reference->[] = References($lasettings->[#i],

 “CIM_ElementSettingData”,

 “SettingData”);

 // There should be exactly one association to this SettingData

 if ($reference->[] == NULL || $reference->[].length != 1) {

 // This is an error -- should we continue?

 continue;

 // return NULL;

 }

 // The following test assumes that we only look at a setting

 // that is marked as IsCurrent. There may be many such

 // settings but they will be scoped to other file servers.

 if ($reference->[0].IsCurrent == “Is Current”) {

 // Is this scoped to the fileserver?

 $servers = Associators($settings->[#i],

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($servers->[] != NULL && $servers->[].length != 0 && $servers->[0]
== $fileserver) {

 $lasetting = GetInstance($lasettings->[#i]);

 break;

 }

 }

 #i++;

 }

 // if not found return NULL

 if ($lasetting == NULL) {

 return false;
44

NO_ANSI_ID File Export Manipulation Subprofile
 }

 //

 // Note, this profile uses the FileSystem $fs as the Root

 // parameter to CreateExportedShare and does not support

 // other classes.

 // The fspath is a string that is FileSystemType-specific

 // If path is NULL or empty, it

 // identifies the root directory of the File System.

 //

// $feservice.CreateExportedShare($name, $comment,

// $job, $fs, $fspath, $settings, $fssh);

 #result = $feservice.CreateExportedShare(

 $name, // share name

 $comment, // comment associated with share

 $job, // OUTPUT parameter if needed

 $fs, // file system of the shared element

 $fspath, // relative path to shared element

 $settings, // EmbeddedInstance of Goal

 $fssh, // OUTPUT parameter -- reference to File Share

 NULL, // $defaultUserId -- not being set in this example

 NULL, // $RootAccessHosts[] -- not being set

 NULL // $AccessPointPEs[] -- not being set

)

 // Should handle failure and other errors here.

 return true;

}

5.6.2 Modification of an Exported FileShare

// DESCRIPTION

// GOAL: Modify the creation-time settings of a NFS or

// CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through

// SMI-S.

// 2. The file share has been defined with an associated

// ExportedFileShareSettings element and hosted on an

// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides

// this method.

//

// FUNCTION ModifyFileSystemShare

// This function modifies the settings and some mutable

// properties of an existing file share hosted by the
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 45

File Export Manipulation Subprofile NO_ANSI_ID
// same ComputerSystem as the host of the service.

// This routine cannot be used to change

// the filesystem, the sharetype, or the file server.

// It can be used to change the name, the comment, and

// setting property values.

// INPUT Parameters:

// name: A new name for the file share.

// comment: A comment to be associated with the created file share.

// fssh: A reference to the newly created FileShare element

// propnames: An array of property names that the capabilities

// element should support.

// propvals: An array of property values corresponding to the

// property names that specify values for those properties.

// OUTPUT Parameters:

// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub ModifyFileSystemShare(IN String $name,

 IN String $comment,

 IN CIM_FileShare $fssh,

 IN String $propnames[],

 IN String $propvals[],

 OUT CIM_Job $job)

{

 //

 // Get a client-side copy of the ExportedFileShareSetting

 // associated with the ExportedFileShare (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fssh,

 “CIM_ElementSettingData”,

 “CIM_ExportedFileShareSetting”,

 “ManagedElement”,

 “SettingData”)->[0];

 #i = 0;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i].Name);

 break;

 }

 }

 //

 // Get the sharetype from the FileSystemShare
46

NO_ANSI_ID File Export Manipulation Subprofile
 // -- this cannot be changed by this method

 //

 $sharetype = $setting.FileSharingProtocol;

 //

 // Get the File Server

 //

// &GetFileExportServer($fs, $server);

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $server = Associators($fssh,

 “CIM_HostedFileShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the service and capabilities

 //

// &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,

 “Antecedent”,

 “Dependent”)->[0];

 // Assumption: There is only one FileExportService per File Server

 //

 // Get an ExportedFileShareCapabilities from the FileExportService

 // via the ElementCapabilities association to the ComputerSystem

 // (it’s indexed by NFS/CIFS/other sharing service and possibly

 // other properties)

 // Note: NFS and CIFS are two capabilities of the same service

 // with different values of the FileSharingProtocol property

 // The $sharetype must match the property

 // ExportedFileShareCapabilities.FileSharingProtocol.

 //

 $efscapabilities = Associators($feservice,

 “CIM_ElementCapabilities”

 “SNIA_ExportedFileShareCapabilities”,

 “ManagedElement”,

 “Capabilities”);
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 47

File Export Manipulation Subprofile NO_ANSI_ID
 if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {

 #j = 0;

 while (($efscapability = $efscapabilities->[#j]) != NULL) {

 if ($efscapabilities->[#j].FileSharingProtocol == $sharetype) {

 // Should check here that the properties named in

 // $propnames-[] are supported by this capabilities

 // element. If not, the method should fail as this profile

 // does not support multiple capabilities with the same

 // file sharing protocol that may have different.

 break;

 }

 #j++;

 }

 // Handle the error if any

 if (#j == $efscapabilities-[].length) {

 <indicate error>

 return false;

 }

 //

 // Modify the copied ExportedFileShareSetting to the new

 // desired properties

 //

 #i = 0;

 while ($propnames->[#i] != NULL) {

 // Note funky syntax for accessing a named property of

 // the setting

 $setting.$propnames->[#i] = $propvals->[#i];

 }

 // Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to
get

 // the next goal for EFSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 &CreateGoal($efscapability, $setting, $newsetting);

 // Did we get a goal back?

 if ($newsetting==MULL)

 #i = 0;

 while ($propnames->[#i] != NULL) {

 if ($newsetting.$propnames->[#i] != $propvals->[#i]) {
48

NO_ANSI_ID File Export Manipulation Subprofile
 //

 // give up

 //

 return NULL;

 }

 #i++;

 }

 //

 #result = feservice.ModifyExportedShare(

 $name, // new name (no change if NULL)

 $comment, // new comment (no change if NULL)

 $job, // OUTPUT parameter if needed

 NULL, // $rootfilesystem - Cannot be changed

 NULL, // $Subelement -- cannot be changed

 $newsetting, // EmbeddedInstance of Goal

 $fssh, // reference to File Share

 NULL, // $defaultUserId -- not being changed in this example

 NULL, // $RootAccessHosts[] -- not being changed

 NULL, // $AccessPointPEs[] -- not being changed

 NULL, // $InUseOptions -- take default

 NULL // $WaitTime -- take default

)

 // Should handle failure and other errors here.

 return TRUE;

}

5.6.3 Removal of an Exported FileShare

// DESCRIPTION

// GOAL: UnExport an exported NFS or CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through

// SMI-S.

// 2. The file share has been defined with an associated

// ExportedFileShareSettings element and hosted on an

// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides

// this method.

//

// FUNCTION UnExportFileSystemShare

// This function removes an NFS or CIFS file share that is

// hosted by the same ComputerSystem as the host of the

// service.

// INPUT Parameters:
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 49

File Export Manipulation Subprofile NO_ANSI_ID
// fssh: A reference to the newly created FileShare element

// force: Whether the method should force all clients of the

// file share to be disconnected.

// waittime: The time in seconds to wait before implementing the

// specified force option (default 300 seconds).

// notification: A string used to notify clients that the file

// share is going to be unavailable. This is included in

// the alert indication sent to clients that subscribe for

// them (but... shouldn’t this go to operational clients?)

// OUTPUT Parameters:

// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub UnExportFileSystemShare(IN REF CIM_FileShare $fssh,

 IN uint16 $force,

 IN uint32 $waittime,

 IN String $notification,

 OUT REF CIM_Job $job);

{

 //

 // If waittime > 0, set force to 2 to distinguish between

 // a force with no wait and a force with wait

 // -- see the specification of ReleaseExportedShare.

 //

 if ($force > 0 && $waittime > 0) {

 $force = 2;

 }

 //

 // clients of the share may have registered for an indication

 // when a share is disconnected

 //

 <send indication -- see indications recipes>

 // Get the File Server

 //

// &GetFileExportServer($fs, $server);

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $server = Associators($fssh,

 “CIM_HostedFileShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];
50

NO_ANSI_ID File Export Manipulation Subprofile
 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,

 “Antecedent”,

 “Dependent”)->[0];

 //

 // Call ReleaseExportedShare() with the $force and $waittime values

 // which tell the share to wait for the specified time

 // if there are any clients still connected.

 //

 $feservice.ReleaseExportedShare($job, $fssh, $force, $waittime);

 // Should handle failure and other errors here.

 return TRUE;

}

EXPERIMENTAL

5.6.4 File Export Manipulation Supported Capabilities Patterns

Table 19 lists the capabilities patterns that are formally recognized by SMI-S 1.2.0 for determining capabilities of
various implementations:

Note: Asterisk (*) means any state is valid.

Table 19 - SMI-S File Export Supported Capabilities Patterns

FileSharingProtocols SynchronousMethods AsynchronousMethods InitialExportState

NFS, CIFS Export Creation, Export
Modification, Export
Deletion

Null *

NFS, CIFS Null Export Creation, Export
Modification, Export
Deletion

*

NFS, CIFS Null Null Null
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 51

File Export Manipulation Subprofile NO_ANSI_ID
5.7 Registered Name and Version
File Export Manipulation version 1.3.0

5.8 CIM Elements
Table 20 describes the CIM elements for File Export Manipulation.

Table 20 - CIM Elements for File Export Manipulation

Element Name Requirement Description

5.8.1 CIM_ConcreteDependency Optional

Represents an association between a
FileShare element and the actual shared
LogicalFile or Directory on which it is based.
This is provided for backward compatibility
with previous releases of SMI-S.

5.8.2 CIM_ElementCapabilities (FES
Configuration)

Mandatory Associates the File Export Service to the
FileExportCapabilities element that describes
the service capabilities.

5.8.3 CIM_ElementSettingData (FileShare
Setting)

Mandatory Associates a FileShare and
ExportedFileShareSetting elements.

5.8.4 CIM_FileStorage (Subelement) Conditional Conditional requirement: Required if parent
profile is NAS Head. or Required if parent
profile is a Self-contained NAS System..

Represents that a file or directory that is made
available for export is contained by a
LocalFileSystem specified as a dangling
reference.

5.8.5 CIM_HostedService Mandatory Associates the File Export Service to the
hosting File Server Computer System.

5.8.6 CIM_LogicalFile (Subelement) Conditional Conditional requirement: Required if parent
profile is NAS Head. or Required if parent
profile is a Self-contained NAS System..

 A LogicalFile (or Directory subclass) that is a
sub-element of a LocalFileSystem that is
made available for export via a fileshare
hosted on a ComputerSystem. This is
included for backward compatibility with
previous releases of SMI-S.

5.8.7 CIM_SAPAvailableForElement Mandatory Represents the association between a
ServiceAccessPoint to the shared element
that is being accessed through that SAP.

5.8.8 CIM_ServiceAffectsElement Mandatory Associates the File Export Service to the
elements that the service manages (such as a
FileShare configured for exporting a
LogicalFile).
52

NO_ANSI_ID File Export Manipulation Subprofile
5.8.9 SNIA_ElementCapabilities (FES
Capabilities)

Mandatory Associates the File Export Service to at least
one ExportedFileShareCapabilities element
that indicates that support is available for
managing an exported FileShare for at least
one of the file sharing protocols recognized by
this profile. These include: "NFS"/2, "CIFS"/3,
"DAFS"/4, "WebDAV"/5, "HTTP"/6, or "FTP"/7.

5.8.10 SNIA_ExportedFileShareCapabilities
(FES Capabilities)

Mandatory This element represents the Capabilities of
the File Export Service for managing
FileShares of a specific file sharing protocol
(and version). The file sharing protocol is
specified by the FileSharingProtocol and
ProtocolVersions properties.

5.8.11 SNIA_ExportedFileShareSetting
(FileShare Setting)

Mandatory The configuration settings for an Exported
FileShare; i.e., a setting for a FileShare
available for exporting.

 This setting may have been created or
modified by the extrinsic methods of this
profile. Note that CIFS allows in-band
creation, modification, or deletion of
FileShares; also, some systems might define
preexistent FileShares. All of these will be
surfaced.

5.8.12 SNIA_ExportedFileShareSetting (Pre-
defined)

Optional This element represents a predefined
configuration settings for exported FileShares
that is used to define a Capabilities element
associated with the FileExportService.

5.8.13 SNIA_FileExportCapabilities (FES
Configuration)

Mandatory This element represents the management
capabilities of the File Export Service.

5.8.14 SNIA_FileExportService Mandatory The File Export Service provides the methods
to create and export file elements as shares.

5.8.15 SNIA_FileShare (Exported File Share) Mandatory Represents the sharing characteristics of a
particular file element.

5.8.16 SNIA_HostedShare Mandatory Represents that a shared element is hosted
by a ComputerSystem.

5.8.17 SNIA_SettingsDefineCapabilities (Pre-
defined)

Optional Represents the association between a
ExportedFileShareCapabilities and a
predefined ExportedFileShareSetting element
that specifies what the Capabilities can
support.

5.8.18 SNIA_SharedElement Mandatory Associates a FileShare to the
LocalFileSystem on which it is based.

Table 20 - CIM Elements for File Export Manipulation

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 53

File Export Manipulation Subprofile NO_ANSI_ID
5.8.1 CIM_ConcreteDependency

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Optional

Table 21 describes class CIM_ConcreteDependency.

5.8.2 CIM_ElementCapabilities (FES Configuration)

Created By: Static

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA SNIA_FileShare

Mandatory Creation of an exported file share.

This indication returns the newly created
FileShare.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA SNIA_FileShare

Mandatory Deletion of an exported file share.

This indication returns the model path to the
deleted file share and its unique instance id.
(Question: Should this return the pathname of
the shared directory as well?) Note that a
model path is like a CIM object path but not
exactly the same.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA SNIA_FileShare
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of state of a
FileShare.

PreviousInstance is optional, but may be
supplied by an implementation of the
subprofile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA SNIA_FileShare
AND
SourceInstance.SNIA_FileShare::Operational
Status <>
PreviousInstance.SNIA_FileShare::Operation
alStatus

Optional CQL -Change of state of a FileShare.

PreviousInstance is optional, but may be
supplied by an implementation of the
subprofile.

Table 21 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The Share that represents the LogicalFile being shared.

Table 20 - CIM Elements for File Export Manipulation

Element Name Requirement Description
54

NO_ANSI_ID File Export Manipulation Subprofile
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 22 describes class CIM_ElementCapabilities (FES Configuration).

5.8.3 CIM_ElementSettingData (FileShare Setting)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 23 describes class CIM_ElementSettingData (FileShare Setting).

5.8.4 CIM_FileStorage (Subelement)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained NAS System..

Table 22 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The FileExportCapabilities.

ManagedElement Mandatory The FileExportService.

Table 23 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)

Properties Flags Requirement Description & Notes

IsCurrent N Optional Is always true in this version of the subprofile because we
only support one setting per share. However support for the
other flags, specifically, IsDefault and IsNext, could be
added in future releases.

IsDefault N Optional Not Specified in this version of the Profile

IsNext N Optional Not Specified in this version of the Profile

IsMinimum N Optional Not Specified in this version of the Profile

IsMaximum N Optional Not Specified in this version of the Profile

ManagedElement Mandatory The FileShare used for exporting an element.

SettingData Mandatory A Setting that specifies possible configurations of the
FileShare. In this version, we default this to
isCurrent="true"
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 55

File Export Manipulation Subprofile NO_ANSI_ID
Table 24 describes class CIM_FileStorage (Subelement).

5.8.5 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 25 describes class CIM_HostedService.

5.8.6 CIM_LogicalFile (Subelement)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained NAS System..

Table 26 describes class CIM_LogicalFile (Subelement).

Table 24 - SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)

Properties Flags Requirement Description & Notes

PartComponent Mandatory The file or directory that is made available for export.

GroupComponent Mandatory The Local File System that contains the exported File or
Directory.

Table 25 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting Computer System.

Dependent Mandatory The FileExportService

Table 26 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement Description & Notes

CSCreationClassNa
me

Mandatory CIM Class of the Computer System that hosts the
Filesystem of this File.

CSName Mandatory Name of the Computer System that hosts the Filesystem of
this File.

FSCreationClassNa
me

Mandatory CIM Class of the LocalFileSystem on the Computer System
that contains this File.
56

NO_ANSI_ID File Export Manipulation Subprofile
5.8.7 CIM_SAPAvailableForElement

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 27 describes class CIM_SAPAvailableForElement.

5.8.8 CIM_ServiceAffectsElement

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 28 describes class CIM_ServiceAffectsElement.

FSName Mandatory Name of the LocalFileSystem on the Computer System that
contains this File.

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory Name of this LogicalFile.

Table 27 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The element that is made available through a SAP. In the
File Export subprofile, these are FileShares configured for
either export.

AvailableSAP Mandatory The ProtocolEndpoint that is available to this FileShare.
This shall be 4200 (NFS) or 4201 (CIFS).

Table 28 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the
element. We allow Other to support vendor extensions. The
standard values are 1 (Other) and 5 (Manages).

OtherElementEffects
Descriptions

Mandatory A description of other element effects that this association
might be exposing.

Table 26 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 57

File Export Manipulation Subprofile NO_ANSI_ID
5.8.9 SNIA_ElementCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 29 describes class SNIA_ElementCapabilities (FES Capabilities).

5.8.10 SNIA_ExportedFileShareCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

AffectedElement Mandatory The FileShare.

AffectingElement Mandatory The FileExportService.

Table 29 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)

Properties Flags Requirement Description & Notes

Characteristics Mandatory If this array enum includes the value mapped to "Default",
it indicates that the ExportedFileShareCapabilities element
identified by this association is the default to be used for
any extrinsic method of the associated FileExportService
element.

Capabilities Mandatory The FileExportCapabilities. The FileSharingProtocol in
these capabilities shall be 2 (NFS), 3 (CIFS), 4 (DAFS), 5
(WebDAV), 6 (HTTP) or 7 (FTP).

ManagedElement Mandatory The FileExportService.

Table 28 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes
58

NO_ANSI_ID File Export Manipulation Subprofile
Table 30 describes class SNIA_ExportedFileShareCapabilities (FES Capabilities).

5.8.11 SNIA_ExportedFileShareSetting (FileShare Setting)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 30 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES
Capabilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a capability of a File Export
Service

ElementName Mandatory A provider supplied user-Friendly Name for this Capabilities
element.

FileSharingProtocol Mandatory This identifies the single file sharing protocol (e.g., NFS or
CIFS) that this Capabilities represents.

ProtocolVersions Optional An array listing the versions of the protocol specified by the
FileSharingProtocol property. A NULL value or entry
indicates support for all versions of this protocol.

 At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional. If
the property is NULL, all versions of the protocol are
supported.

SupportedProperties Mandatory This is the list of configuration properties (of
ExportedFileShareSetting) that are supported for
specification at creation time by this Capabilities element.

Properties that can appear in this array are:
"DefaultReadWrite" ("2"), "DefaultExecute" ("3"),
"DefaultUserId" ("4"), "RootAccess" ("5"), "WritePolicy"
("6"), "AccessPoints" ("7"), and "InitialEnabledState" ("8").

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a
ExportedFileShareSetting that is a supported variant of a
ExportedFileShareSetting passed in as an embedded IN
parameter TemplateGoalSettings[0]. The method returns
the supported ExportedFileShareSetting as an embedded
OUT parameter SupportedGoalSettings[0].
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 59

File Export Manipulation Subprofile NO_ANSI_ID
Table 31 describes class SNIA_ExportedFileShareSetting (FileShare Setting).

Table 31 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare
Setting)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique ID for the Setting.

ElementName Mandatory A client-defined user-friendly name for the Setting.

FileSharingProtocol Optional The file sharing protocol supported by this share. NFS (2)
and CIFS (3) are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing
protocol. A share may support multiple versions of the
same protocol. A NULL value or a NULL entry indicates
support for all versions.

 At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional.

InitialEnabledState N Optional This indicates the enabled/disabled states initially set for a
created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled"), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce")

 Note: We need to rethink the usage of this property once
the file share has been created. Maybe it should apply to
when the file share is re-activated when the share or
system is rebooted after a shutdown. With the current
definition, neither this nor OtherEnabledState make sense.

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is "1"
("Other").

DefaultUserIdSuppor
ted

N Optional Indicates whether the associated FileShare will use a
default user id to control access to the share if the id of the
importing client is not provided.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Default User Id"), "3" ("System-
Specified Default User Id") or "4" ("Share-Specified Default
User Id").

RootAccess N Optional Indicates whether the associated FileShare will support
default access privileges to administrative users from
specified hosts.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root
Access").
60

NO_ANSI_ID File Export Manipulation Subprofile
5.8.12 SNIA_ExportedFileShareSetting (Pre-defined)

Created By: Static_or_External
Modified By: External
Deleted By: External
Requirement: Optional

Table 32 describes class SNIA_ExportedFileShareSetting (Pre-defined).

AccessPoints N Optional An enumerated value that specifies the service access
points that are available to this FileShare element by
default (to be used by clients for connections). Any
ServiceAccessPoint elements that actually connect to this
FileShare element will be associated to it by a
SAPAvailableForElement association.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile. The default or built-in
access points can always be overridden by the privileges
explicitly defined through the Authorization subprofile.

 Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All") or "5" ("Named Points").

Caption N Optional Not Specified in this version of the Profile

Description N Optional Not Specified in this version of the Profile

DefaultReadWrite N Optional Not Specified in this version of the Profile

DefaultExecute N Optional Not Specified in this version of the Profile

ExecuteSupport N Optional Not Specified in this version of the Profile

WritePolicy N Optional Not Specified in this version of the Profile

Table 32 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this Setting element.

ElementName Mandatory A provider supplied user-friendly name for this Setting
element.

FileSharingProtocol Mandatory The file sharing protocol to which this Setting element
applies. The entries in the ProtocolVersions property
identify the specific versions of the protocol that are
supported. This profile only supports "NFS" (2) and "CIFS"
(3).

Table 31 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare
Setting)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 61

File Export Manipulation Subprofile NO_ANSI_ID
ProtocolVersions Optional This array identifies the versions of the file sharing protocol
(specified by FileSharingProtocol) to which this Setting
element applies. If NULL, it indicates support for all
versions.

 At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional.

InitialEnabledState Optional This indicates the enabled/disabled states initially set for a
created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled"), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce")

OtherEnabledState Optional A vendor-specific description of the initial enabled state of a
created fileshare if InitialEnabledState=1("Other").

DefaultUserIdSuppor
ted

Optional Indicates whether a FileShare created or modified by using
this Setting element will use a default user id to control
access to the share if the id of the importing client is not
provided.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

 Valid values are "2" ("No Default User Id"), "3" ("System-
Specified Default User Id") or "4" ("Share-Specified Default
User Id").

RootAccess Optional Indicates whether a FileShare created or modified by using
this Setting element will support default access privileges to
administrative users from specific hosts specified at
creation time.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root
Access").

AccessPoints Optional An enumerated value that specifies the service access
points that are available to a FileShare created or modified
by using this Setting element by default (to be used by
clients for connections). These default access points can
always be overridden by the privileges explicitly defined by
a supported authorization mechanism(s). Any
ServiceAccessPoints that actually connect to this share will
be associated to it by CIM_SAPAvailableForElement.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

 Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All") or "5" ("Named Points").

Table 32 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties Flags Requirement Description & Notes
62

NO_ANSI_ID File Export Manipulation Subprofile
5.8.13 SNIA_FileExportCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Caption N Optional Not Specified in this version of the Profile

Description N Optional Not Specified in this version of the Profile

DefaultReadWrite Optional Indicates the default privileges that are supported for read
and write authorization when creating or modifying a
FileShare using this Setting element.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Not Specified in this version of the Profile

DefaultExecute Optional Indicates the default privileges that are supported for
execute authorization when creating or modifying a
FileShare using this Setting element.

 Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Not Specified in this version of the Profile

ExecuteSupport Optional Indicates if the sharing mechanism provides specialized
support for executing a shared element when creating or
modifying a FileShare using this Setting element (for
instance, does it provide paging support for text pages).

Not Specified in this version of the Profile

WritePolicy Optional Indicates whether writes through a FileShare (created or
modified by using this Setting element) to the shared
element will be handled synchronously or asynchronously
by default.

 This policy may be overridden or surfaced using the Policy
subprofile.

Not Specified in this version of the Profile

Table 32 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 63

File Export Manipulation Subprofile NO_ANSI_ID
Table 33 describes class SNIA_FileExportCapabilities (FES Configuration).

5.8.14 SNIA_FileExportService

Created By: Static
Modified By: Static
Deleted By: Static

Table 33 - SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configura-
tion)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the capabilities of a File Export
Service.

ElementName Mandatory A provider supplied user-friendly name for this Capabilities
element.

FileSharingProtocol Mandatory An array listing all the protocols for file sharing supported
by the FileExportService represented by this
FileExportCapabilities element. Duplicate entries are
permitted because the corresponding entry in the
ProtocolVersions array property indicates the supported
version of the protocol.

 Each entry must correspond to an
ExportedFileShareCapabilities element associated via
ElementCapabilities to the FileExportService -- the
FileSharingProtocol and ProtocolVersion properties of that
element must match the entry.

ProtocolVersions Optional An array listing all the versions of the file sharing protocol
specified in the corresponding entry of the
FileSharingProtocol array property. A NULL entry indicates
support for all versions of the protocol.

 At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this property is optional in this
subprofile.

SupportedSynchrono
usMethods

N Mandatory An array listing the extrinsic methods of the
FileExportService that can be called synchronously.

 Note: Every supported method shall be listed either in this
property or in the SupportedAsynchronousMethods array
property.

SupportedAsynchron
ousMethods

N Mandatory An array listing the extrinsic methods of the
FileExportService that can be called synchronously.

 Note: Every supported method shall be listed either in this
property or in the SupportedSynchronousMethods array
property.

InitialEnabledState Optional This represents the state of initialization of a FileShare on
initial creation.
64

NO_ANSI_ID File Export Manipulation Subprofile
Requirement: Mandatory

Table 34 describes class SNIA_FileExportService.

5.8.15 SNIA_FileShare (Exported File Share)

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 35 describes class SNIA_FileShare (Exported File Share).

Table 34 - SMI Referenced Properties/Methods for SNIA_FileExportService

Properties Flags Requirement Description & Notes

ElementName Mandatory A provider supplied user-friendly name for this Service.

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Service.

SystemName Mandatory The name of the Computer System hosting the Service.

CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

CreateExportedShar
e()

Mandatory Create a FileShare element configured for exporting a file
or directory as a share.

ModifyExportedShar
e()

Mandatory Modify the configuration of a FileShare element setup to
export a file or directory as a share.

ReleaseExportedSha
re()

Mandatory Delete the FileShare element that is exporting a file or
directory as a share, thus releasing that element.

Table 35 - SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the
path to the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is
useful when importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in the
Health and Fault Management Clause.

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 65

File Export Manipulation Subprofile NO_ANSI_ID
5.8.16 SNIA_HostedShare

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 36 describes class SNIA_HostedShare.

5.8.17 SNIA_SettingsDefineCapabilities (Pre-defined)

Created By: Static_or_External
Modified By: External
Deleted By: External
Requirement: Optional

InstallDate N Optional Not Specified in this version of the Profile

StatusDescriptions N Optional Not Specified in this version of the Profile

HealthState N Optional Not Specified in this version of the Profile

EnabledState N Optional Not Specified in this version of the Profile

OtherEnabledState N Optional Not Specified in this version of the Profile

RequestedState N Optional Not Specified in this version of the Profile

EnabledDefault N Optional Not Specified in this version of the Profile

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile

RequestStateChange
()

Optional Not Specified in this version of the Profile

Table 36 - SMI Referenced Properties/Methods for SNIA_HostedShare

Properties Flags Requirement Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile

Dependent Mandatory The Share that is hosted by a Computer System

Antecedent Mandatory The Computer System that hosts a FileShare. It may be
any system, but the system shall have Dedicated=16 (File
Server)

Table 35 - SMI Referenced Properties/Methods for SNIA_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes
66

NO_ANSI_ID File Export Manipulation Subprofile
Table 37 describes class SNIA_SettingsDefineCapabilities (Pre-defined).

5.8.18 SNIA_SharedElement

Created By: Extrinsic: CreateExportedShare
Modified By: Extrinsic: ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 38 describes class SNIA_SharedElement.

EXPERIMENTAL

Table 37 - SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory

ValueRole Mandatory

ValueRange Mandatory

GroupComponent Mandatory An Exported FileShare Capabilities element that is defined
by a collection of ExportedFileShareSetting Settings.

PartComponent Mandatory A Exported FileShare Setting that provides a point or a
partial definition for a Exported FileShare Capabilities
element.

Table 38 - SMI Referenced Properties/Methods for SNIA_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is sharing a directory or file
through a SNIA_FileShare alter ego.

SameElement Mandatory The FileShare that is the alter ego for a directory or file in a
LocalFileSystem.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 67

File Export Manipulation Subprofile NO_ANSI_ID
68

EXPERIMENTAL

Clause 6: File Server Manipulation Subprofile

6.1 Synopsis
Profile Name: File Server Manipulation

Version: 1.3.0

Organization: SNIA

CIM schema version: 2.15

Central Class: FileServerConfigurationService

Scoping Class: ComputerSystem

6.2 Description

6.2.1 Overview

The File Server Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It makes
use of elements of the Filesystem subprofiles and supports creation, modification and deletion of FileServers. A
number of other profiles and subprofiles also make use of elements of the Filesystem subprofile and will be
referred to in this specification as “filesystem related profiles” -- these include but are not limited to the Filesystem
subprofile, the Filesystem Manipulation subprofile, the File Export subprofile, the NAS Head profile, the Self-
Contained NAS profile, and so on.

In this release of SMI-S, the autonomous profiles that use the file server Manipulation Subprofile are the NAS Head
and Self-Contained NAS profiles.

This profile models a file server as a virtualized system with virtual ports. The model doesn’t address the physical
ports involved. Throughout this subprofile, the term file server will be synonymous for “ComputerSystem with
Dedicated[]=”FileServer”.

The profile models a file server from a “read only” perspective and a “configuration” perspective. The read only
perspective defines the objects and attributes that describe a file server instance. The configuration perspective
defines the permitted actions on the file server for creating, deleting, and modifying instances. By providing these
two perspectives, this profile takes the place of having two separate profiles.
SMI-S 1.3.0 Rev 6 SNIA Technical Position 69

File Server Manipulation Subprofile NO_ANSI_ID
6.2.2 Instance Diagrams

6.2.2.1 File Server classes and associations (read-only view)
Figure illustrates the constructs that are involved in defining a file server. This summarizes the “read only” view of
the classes and associations for this subprofile.)

The file server is modeled as a ComputerSystem whose Dedicated property is set to “FileServer”. A file server may
be a ComponentCS of another computersystem such as a NAS Head or Self-Contained NAS for example. This

Figure 8 - File Server Classes and Associations (Read-only view)

ComputerSystem

FileServerSettings

HostLookupOrder
UserLoginLookupOrder
NFSCIFSAccountMapping
AccountMappingDomain

ComputerSystem

Dedicated=”FileServer”

ComponentCS

NFSSettingData

Enabled
Charset
MaximumTCPConnections
Port
NonNFSuid
NonNFSgid
UseReservedPorts
OnlyRootChown

CIFSSettingData

Enabled
Charset
UseTCPOnly
NETBIOSName
WINSIP
AuthenticationDomain
AuthenticationMode
UseKerberos
UseOppotunisticLocking
SMBSigningOnly
ClientsConnectAnonymously
JoinDomainAnonymously
DomainControllerUser
DomainControllerPassword
CIFSDomainController

DNSSettingData

DomainName
DNSServerAddresses[]

ElementSettingData

IPProtocolEndpoint

IPvAddress
IPv6Address
SubnetMask
PrefixLength

IPInterfaceSettingData

IPAddress
AddressType
SubnetMask
IPv6PrefixLength
VLANId
MTU

ComputerSystem

HostedAccessPoint

SettingsDefineState

FileServer Manipulation

NISSettingData

DomainName
ServerIP

TCPProtocolEndpoint

PortNumber

BindsTo

SystemDevice

ConcreteComponent

ElementSettingData

EthernetPort

NetworkVLAN

VLANId
TransmissionSize

MemberOfCollection

HostedDependency

FileServerConfigurationService

HostedService

FileServerCapabilities

FileServerConfigurationCapabilities

SynchronousMethodsSupported[]
AsynchronousMethodsSupported[]

ElementCapabilities

ElementCapabilities
70

NO_ANSI_ID File Server Manipulation Subprofile
top level ComputerSystem has a HostedService association with FileServerConfigurationService, which provides
the set of extrinsics for manipulating a file server.

A file server is hosted on a ComputerSystem. This may be a physical control unit or some other hardware system
that has the EthernetPort through which the file server will serve files via CIFS and/or NFS. The
HostedDependency association is used to relate the file server with the hosting ComputerSystem.

FileServerSettings captures the settings of the file server. It has ConcreteComponent associations with other
setting data that capture the file server’s settings for CIFS, NFS, NIS, DNS, and its IP Interface. A file server can be
created with the minimum of IPInterfaceSettingData being specified. But it cannot serve FileShare instances in this
state and will need to have either its CIFSSettingData or NFSSettingData specified in either the creation or
modification extrinsic methods. If neither CIFSettingData nor NFSSettingData are specified at creation time,
instances of both shall be created by the provider and their “Enabled” property will be set to “false”.

The file server has two separate associations with FileServerSettings. SettingsDefineState is used to represent the
current state of the file server’s setting data while ElementSettingData is used to capture the setting data used to
initially create or modify the file server.

When a file server is created or when it has additional IPInterfaces associated with it, an instance of NetworkVLAN
may be created if VLAN tagging should be associated with the IPInterface. NetworkVLAN instances are associated
with the specific IPProtocolEndpoint to capture the VLAN tag to be used when doing I/O on that IP interface. The
properties VLANid and MTU in IPInterfaceSettingData specify the values to use when creating the NetworkVLAN
instance.

The NISSettingData and DNSSettingData if present are used to resolve hosts and user names when
authenticating hosts and users.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 71

File Server Manipulation Subprofile NO_ANSI_ID
6.2.2.2 File Server Configuration classes and associations

Figure 9 illustrates the constructs that are involved in configuring a file server.

The top level ComputerSystem has a HostedService association with FileServerConfigurationService that defines
the extrinsics that can be used to manage a file server. There are 3 methods for managing a file server and 3
methods for managing additional IPInterfaces for a given file server.

FileServerConfigurationCapabilities lists the extrinsics that can be called synchronously or asychronously. It is
assocated with the FileServerConfigurationService via the ElementCapabilities assocation.

FileServerCapabilities provides one method CreateGoalSettings that can be used to arrive at a set of viable
SettingData instances that can be used for creating or modifying a file server. It also is associated with
FileServerConfigurationService via ElementCapabilities. It may have associations with SettingData instances that
reflect the Default settings for the file server. The SettingsDefineCapabilities association (with ValueRole=”Default”)
is used to capture these default SettingData instances.

Figure 9 - File Server Configuration classes and association

FileServerConfigurationService

CreateFileServer()
M odifyFileServer()
DeleteFileServer()
AddIP Interface()
M odifyIP Interface()
DeleteIPInterface()

Com puterSystem

FileServerCapabilities

CreateG oalSettings()

E lem entCapabilities

F ileServerSettings

Com puterSystem

Dedicated=”F ileServer”
Com ponentCS

FileServerConfigurationCapabilities

SynchronousM ethodsSupported []
AsynchronousM ethodsSupported []

E lem entCapabilities

NFSSettingData

CIFSSettingData

File Server M anipulation

HostedService

IPInterfaceSettingData

DNSSettingData

NISSettingData

SettingsDefineCapabilities
ValueRole=”Default”
72

NO_ANSI_ID File Server Manipulation Subprofile
6.2.3 Health and Fault Management Consideration

6.2.3.1 OperationalStatus for File Server ComputerSystem
A file server’s operational status will be influenced by the operational status of the ComputerSystem that is hosting
it via HostedDependency. For example, if the hosting ComputerSystem is “Stopped”, then the status of the file
server will be “Stopped”. Providers must take this into account when formulating the status of the file server.

Table 39 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description

2 “OK” The File Server is running with good status

3 “Degraded” The File Server is operating in a degraded mode. This could
be due to the health state of some component of the
ComputerSystem, due to load by other applications, or due to
the health state of backend or front-end network interfaces.

4 “Stressed” The File Server resources are stressed

5 “Predictive Failure” The File Server might fail because some resource or
component is predicted to fail

6 “Error” An error has occurred causing the File Server to become
unavailable. Operator intervention through SMI-S to restore
the service may be possible.

6 “Error” An error has occurred causing the File Server to become
unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The File Server is not functioning. Operator intervention
through SMI-S will not fix the problem.

8 “Starting” The File Server is in process of initialization and is not yet
available operationally.

 9 “Stopping” The File Server is in process of stopping, and is not available
operationally.

10 “Stopped” The File Server cannot be accessed operationally because it is
stopped -- if this did not happened because of operator
intervention or happened in real-time, the OperationalStatus
would have been “Lost Communication” rather than “Stopped”.

11 “In Service” The File Server is offline in maintenance mode, and is not
available operationally.

13 “Lost Communications” The File Server cannot be accessed operationally -- if this
happened because of operator intervention it would have been
“Stopped” rather than “Lost Communication”.

14 “Aborted” The File Server is stopped but in a manner that may have left it
in an inconsistent state.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 73

File Server Manipulation Subprofile NO_ANSI_ID
6.2.4 Cascading Considerations

Not Applicable.

6.3 Supported Profiles, Subprofiles, and Packages
Table 40 describes the supported profiles for File Server Manipulation.

15 “Dormant” The File Server is offline; and the reason for not being
accessible is unknown.

16 “Supporting Entity in Error” The File Server is in an error state, or may be OK but not
accessible, because a supporting entity is not accessible.

Table 40 - Supported Profiles for File Server Manipulation

Registered Profile Names Mandatory Version

Job Control No 1.3.0

Table 39 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description
74

NO_ANSI_ID File Server Manipulation Subprofile
6.4 Methods of the Profile

6.4.1 Extrinsic Methods of the Profile

6.4.1.1 FileSystemCapabilities.CreateGoalSettings
This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed Settings.

Table 41 - File Server Manipulation Methods

Method Created Instances Deleted Instances Modified Instances

CreateFileServer FileServerSettings
NISSettingData
DNSSettingData
CIFSSettingData
NFSSettingData

IPInterfaceSettingData
IPProtocolEndpoint

NetworkVLAN

N/A N/A

ModifyFileServer N/A N/A FileServerSettings
NISSettingData
DNSSettingData
CIFSSettingData
NFSSettingData

DeleteFileServer N/A FileServerSettings
NISSettingData
DNSSettingData
CIFSSettingData
NFSSettingData

IPInterfaceSettingData
IPProtocolEndpoint

NetworkVLA

N/A

CreateGoalSettings N/A N/A N/A

AddIPinterface IPInterfaceSettingData
IPProtocolEndPoint

NetworkVLAN

N/A

ModifyIPInterface N/A N/A IPInterfaceSettingData
IPProtocolEndPoint

NetworkVLAN

DeleteIPInterface N/A IPInterfaceSettingData
IPProtocolEndPoint

NetworkVLAN

N/A

CreateGoalSettings
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 75

File Server Manipulation Subprofile NO_ANSI_ID
The client shall pass six array elements in the TemplateGoalSettings parameter and six array elements in the
SupportedGoalSettings parameter. Each array element represents a congifurable aspect of a FileServer. A given
array element in index “y” in TemplateGoalSettings will be of the same class/type as that in array element in index
“y” in SupportedGoalSettings. As each array element in both parameters takes an EmbeddedInstance, this implies
that they do not exist in the provider’s implementation but are the responsibility of the client to create and manage.

Any or all of the TemplateGoalSetting array elements may be the empty string to represent a NULL entry. This
method will return a default CIM_Settings subclass object in SupportedGoalSettings corresponding to each
TemplateGoalSettings array element that is an empty string.

If any of the TemplateGoalSettings array elements specify values that cannot be supported, this method shall
return an appropriate error and should return a best match in the corresponding SupportedGoalSettings array
element.

When providing EmbeddedInstances as input for any of the SupportedGoalSettings array elements, the instance
should specify a previously returned CIM_Setting that the implementation could support. On output, this same
array element specifies a new CIM_Setting that the implementation can support. If the output array element is
identical to the input array element, both client and implementation may conclude that this is the best match for that
particular SupportedGoalSettings array element. If the output array elements do not match the corresponding
TemplateGoalSettings array elements and if any of the input SupportedGoalSettings array elements do not match
the output array elements provided in SupportedGoalSettings, then the method must return "Alternative Proposed".
If any of the output array elements are empty strings (representing the fact that no valid CIM_Setting could be
found), the method must return an “Failed”.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. As stated above, to assist the implementation in tracking the progress of the negotiation, the client may
pass previously returned values of SupportedGoalSettings array elements as new input values of
SupportedGoalSettings. The implementation may determine that a step has not resulted in progress if the input
and output values of any SupportedGoalSettings array elements are the same. A client may infer from the same
result that the TemplateGoalSettings array element(s) must be modified.

The array elements in TemplateGoalSettings and SupportedGoalSettings shall have the following index -
EmbeddedInstance mappings:

Table 42 - Array Element Mappings for TemplateGoalSettings and SupportedGoalSettings

Array Indice EmbeddedInstance

0 SNIA_FileServerSettings

1 SNIA_IPInterfaceSettingData

2 SNIA_CIFSSettingData

3 SNIA_NFSSettingData

4 SNIA_NISSettingData

5 SNIA_DNSSettingData
76

NO_ANSI_ID File Server Manipulation Subprofile
Table 43 shows the details of the method signature and return results.

Table 43 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string This contains an array of 6 elements, each of which
being an EmbeddedInstance of a CIM_Setting
subclass.

Each of the array elements shall contain either an
empty string to represent a “NULL” entry, or shall
contain an EmbeddedInstance.

Each array element contains a specific CIM_Setting
subclass as follows:

0: EmbeddedInstance ("SNIA_FileServerSettings")

1: EmbeddedInstance
("SNIA_IPInterfaceSettingData")

2: EmbeddedInstance ("SNIA_CIFSSettingData")

3: EmbeddedInstance ("SNIA_NFSSettingData")

4: EmbeddedInstance ("SNIA_NISSettingData")

5: EmbeddedInstance ("SNIA_DNSSettingData")

SupportedGoalSettings[] INOUT string This contains an array of 6 elements, each of which
being an EmbeddedInstance of a CIM_Setting
subclass.

On input, each of the array elements shall contain an
either an empty string to represent a “NULL” entry, or
shall contain an EmbeddedInstance. If it contains an
EmbeddedInstance, then this instance specifies a
previously returned CIM_Setting that the
implementation could support. On output, it specifies a
new CIM_Setting that the implementation can support.

Each array element contains a specific CIM_Setting
subclass as follows:

0: EmbeddedInstance ("SNIA_FileServerSettings")

1: EmbeddedInstance
("SNIA_IPInterfaceSettingData")

2: EmbeddedInstance ("SNIA_CIFSSettingData")

3: EmbeddedInstance ("SNIA_NFSSettingData")

4: EmbeddedInstance ("SNIA_NISSettingData")

5: EmbeddedInstance ("SNIA_DNSSettingData")

Normal Return
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 77

File Server Manipulation Subprofile NO_ANSI_ID
6.4.1.2 Signature and Parameters of FileServerConfigurationService.CreateFileServer
This extrinsic creates a new FileServer. The method takes several “goal” parameters that represent different
configurable aspects of the FileServer. Each of these parameters can be NULL, an empty string, or will contain an
EmbeddedInstance.

If a given parameter is NULL or an empty string, a default instance will be selected by the provider using the
corresponding element associated to the FileServerConfigurationService by the DefaultElementCapabilities
association. This element that is used will be returned in the parameter.

When creating a new FileServer, the client can decide to what degree the new FileServer will be configured by
providing the parameters of those aspects that should be configured. For example, to create a FileServer with a
minimum configuration, the client could provide just the ElementName. The newly created FileServer will take on
the configuration defaults as specified by the elements associated with FileServerService via the
SettingsDefineCapabilities association (with ValueRole=”Default”). Later, the client may modify any of these default
settings via the ModifyFileServer and ModifyIPInterface methods.

When creating a new FileServer, the client may associate a single IP Interface with the FileServer. If a client wishes
to associate more than one IP Interface with the FileServer, the AddIPInterface method should be used. It allows
the client to specify the additional IP information, Hosting ComputerSystem, and EthernetPort for the new IP
Interface.

A client may change an existing IP Interface by using the ModifyIPInterface method. It allows the client to modify
the IP Interface, Hosting ComputerSystem, and/or EtheretPort.

Status uint32 ValueMap{}, Values{}

"Success",
“Not Supported”,
“Unknown”,
"Failed",
"Timeout",
“Invalid Parameter”,
"Alternative Proposed"

Error Returns

Invalid Property Value OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid value

Invalid Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 43 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes
78

NO_ANSI_ID File Server Manipulation Subprofile

Table 44 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the file server being
created. The value shall be stored in the
'ElementName' property for the created element.
This parameter shall not be NULL or the empty
string.

Job OUT, REF CIM_Concr
eteJob

Reference to the job (may be null if job completed).

TheElement OUT, REF CIM_Comp
uterSystem

The newly created FileServer.

FileServerSettings IN, OUT, EI,
NULL
allowed

string EmbeddedInstance ("SNIA_FileServerSettings")

The FileServerSettings for the newly created
FileServer.

If NULL or the empty string, a default
FileServerSettings shall be used and returned on
output.

IPInterfaceSettingData IN,OUT, EI,
NULL
allowed

string EmbeddedInstance
("CIM_IPInterfaceSettingData")

The IPInterfaceSettingData that specifies the IP
Interface that the FileServer will use for servicing
all CIFS and NFS requests.

If NULL or the empty string, a default
IPInterfaceSettingData shall be used and returned
on output.

CIFSSettingData IN,OUT, EI,
NULL
allowed

string EmbeddedInstance ("SNIA_CIFSSettingData")

The CIFSSettingData that specifies the CIFS
settings for the FileServer being created.

If this is NULL, the FileServer shall not have CIFS
enabled and the resulting CIFSSettingData
instance created shall have its “Enabled” property
set to false. The CIFSSettingData instance will be
returned on output.

NFSSettingData IN,OUT, EI,
NULL
allowed

string EmbeddedInstance ("SNIA_NFSSettingData")

The NFSSettingData that specifies the NFS
settings for the FileServer being created.

If this is NULL, the FileServer shall not have NFS
enabled and the resulting NFSSettingData instance
created shall have its “Enabled” property set to
false. The NFSSettingData instance will be
returned on output.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 79

File Server Manipulation Subprofile NO_ANSI_ID
6.4.1.3 Signature and Parameters of FileServerConfigurationService.ModifyFileServer
This extrinsic modifies the settings for an existing FileServer. All settings except IPInterfaceSettingData, Hosting
ComputerSystem, and EthernetPort may be modified. To modify the IPInterfaceSettingData, Hosting
ComputerSystem, and/or EthernetPort properties, use the ModifyIPInterface extrinsic.

DNSSettingData IN, EI,
NULL
allowed,

string EmbeddedInstance ("CIM_DNSSettingData")

The DNSSettingData that specifies the DNS
settings for the FileServer being created.

If this is NULL, the FileServer shall not have
access to a DNS server and a DNSSettingData
instance shall not be instantiated for the FileServer.

NISSettingData IN, EI,
NULL
allowed,

string EmbeddedInstance ("CIM_DNSSettingData")

The NISSettingData that specifies the NIS settings
for the FileServer being created.

If this is NULL, the FileServer shall not have
access to a NIS server and a NISSettingData
instance shall not be instantiated for the FileServer.

NASComputerSystem IN, REF CIM_Comp
uterSystem

Either the NAS Head or Self-contained NAS
system that the FileServer shall be a component
system of.

HostingComputerSystem IN, REF CIM_Comp
uterSystem

The HostingComputerSystem identifies the
ComputerSystem that will host the FileServer.

EthernetPort IN, REF CIM_Ether
netPort

Fil

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property Value OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 44 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes
80

NO_ANSI_ID File Server Manipulation Subprofile
Table 45 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter
Name

Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_Comput
erSystem

The FileServer that is to be modified.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

ElementName IN, NULL
allowed

string An end user relevant name for the file server being
modified.

FileServerSettin
gs

IN, NULL
allowed

string EmbeddedInstance ("SNIA_FileServerSettings")

If non-NULL, this specifies the new
FileServerSettings for the FileServer

If NULL, then the FileServerSettings of the
FileServer shall ot be modified.

CIFSSettingDat
a

IN, NULL
allowed,

string EmbeddedInstance ("SNIA_CIFSSettingData")

IF non-NULL, this specifies the new CIFS settings
for the FileServer. If the “Enabled” property set to
false, CIFS will be disabled for the FileServer.

If NULL, then the CIFS setting of the FileServer
shall not be modified.

NFSSettingData IN, NULL
allowed,

string EmbeddedInstance ("SNIA_NFSSettingData")

IF non-NULL, this specifies the new NFS settings
for the FileServer. If the “Enabled” property set to
false, NFS will be disabled for the FileServer.

If NULL, then the NFS setting of the FileServer
shall not be modified.

DNSSettingData IN, NULL
allowed,

string EmbeddedInstance ("CIM_DNSSettingData")

IF non-NULL, this specifies the new DNS settings
for the FileServer.

If NULL, then the DNS setting of the FileServer
shall not be modified.

NISSettingData IN, NULL
allowed,

string EmbeddedInstance ("CIM_DNSSettingData")

IF non-NULL, this specifies the new NIS settings
for the FileServer.

If NULL, then the NIS setting of the FileServer shall
not be modified.

Normal Return
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 81

File Server Manipulation Subprofile NO_ANSI_ID
6.4.1.4 Signature and Parameters of FileServerConfigurationService.DeleteFileServer
This extrinsics deletes an existing FileServer.

6.4.1.5 Signature and Parameters of FileServerConfigurationService.AddIPInterface
This extrinsic adds a new IPInterface to an existing FileServer. The FileServer will respond to requests issued to
this new IP address. The number of IP addresses that a FileServer can respond on is system dependent and the
use of CreateGoalSettings to verify a new IP address is recommended.

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

CannotModify OUT,
Indication

CIM_Error The FileServer is in a state in which it cannot be
modified.

Table 46 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer

Parameter
Name

Qualifier Type Description & Notes

FileServer IN,REF CIM_Comput
erSystem

The FileServer that is to be deleted.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

CannotDelete OUT,
Indication

CIM_Error The FileServer is in a state in which it cannot be
deleted.

Table 45 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter
Name

Qualifier Type Description & Notes
82

NO_ANSI_ID File Server Manipulation Subprofile

6.4.1.6 Signature and Parameters of FileServerConfigurationService.ModifyIPInterface
This extrinsic modifies an existing IPInterface associated with a FileServer. The IPInterfaceSettingData, the
Hosting ComputerSystem, and/or the EthernetPort may be modified.

Table 47 - Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface

Parameter
Name

Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_Comput
erSystem

The FileServer to which the IPInterface will be
added.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

IPInterfaceSettin
gData

IN string EmbeddedInstance
("CIM_IPInterfaceSettingData")

The IPInterfaceSettingData that specifies the
settings of the IP Interface to be added to the
FileServer.

HostingComput
erSystem

IN, REF CIM_Comput
erSystem

The ComputerSystem that will host theFile Server
for the new IP Interface

EthernetPort IN, REF CIM_Etherne
tPort

The EthernetPort identifies the hardware port that
the File Server will use for mount requests on the
new IPAddress.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 83

File Server Manipulation Subprofile NO_ANSI_ID
6.4.1.7 Signature and Parameters of FileServerConfigurationService.DeleteIPInterface
This extrinsic deletes an existing IPInterface associated with a FileServer.

Table 48 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyIPInterface

Parameter
Name

Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_Comput
erSystem

The FileServer from which the IPInterface will be
modified.

IPInterfaceSettin
gData

IN,REF SNIA_IPInter
faceSettingD
ata

The IPInterfaceSettingData that is to be modified.

This is used to identify which
IPInterfaceSettingData instance to modify.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

NewIPInterface
SettingData

IN, NULL
allowed

string EmbeddedInstance
("CIM_IPInterfaceSettingData")

If non-NULL, the IPInterfaceSettingData that will
replace an existing IPInterfaceSettingData instance
in the FileServer.

If NULL, then the IPInterfaceSettingData will not be
modified.

HostingComput
erSystem

IN, REF,
NULL
allowed

CIM_Comput
erSystem

If non-NULL, the new ComputerSystem that will
host the IPInterface..

If NULL, the current ComputerSystem hosting the
IPInterface will remain unchanged.

EthernetPort IN, REF,
NULL
allowed

CIM_Etherne
tPort

If non-NULL, the EthernetPort identifies the new
hardware port for the IPInterface .

If NULL, the current EthernetPort setting will not be
changed.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value
84

NO_ANSI_ID File Server Manipulation Subprofile
6.5 Client Considerations and Recipes
Under Consideration for a future standard.

6.6 Registered Name and Version
File Server Manipulation version 1.3.0

Table 49 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteIPInterface

Parameter
Name

Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_Comput
erSystem

The FileServer from which the IPInterface will be
deleted.

IPInterfaceSettin
gData

IN,REF SNIA_IPInter
faceSettingD
ata

The IPInterfaceSettingData that is to be deleted.

This is used to identify which
IPInterfaceSettingData instance to delete from the
FileServer.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 85

File Server Manipulation Subprofile NO_ANSI_ID
6.7 CIM Elements
Table 50 describes the CIM elements for File Server Manipulation.

Table 50 - CIM Elements for File Server Manipulation

Element Name Requirement Description

6.7.1 CIM_ConcreteComponent
(FileServerSettings to CIFSSettingData)

Optional Represents the association between a
FileServerSettings and CIFSSettingData.

6.7.2 CIM_ConcreteComponent
(FileServerSettings to DNSSettingData)

Conditional Conditional requirement: The DNSSettingData
has been defined.Represents the association
between a FileServerSettings and
DNSSettingData.

6.7.3 CIM_ConcreteComponent
(FileServerSettings to IPInterfaceSettingData)

Mandatory Represents the association between a
FileServerSettings and IPInterfaceSettingData

6.7.4 CIM_ConcreteComponent
(FileServerSettings to NFSSettingData)

Optional Represents the association between a
FileServerSettings and NFSSettingData.

6.7.5 CIM_ConcreteComponent
(FileServerSettings to NISSettingData)

Conditional Conditional requirement: The NISSettingData
has been defined.Represents the association
between a FileServerSettings and
NISSettingData.

6.7.6 CIM_DNSSettingData Optional This element represents the DNS setting data
to be used by a file server.

6.7.7 CIM_ElementCapabilities
(FileServerConfigurationService to
FileServerCapabilities)

Mandatory This associates the File Server Configuration
Service to the Capabilities element that
represents the capabilities supported for the
File Server.

6.7.8 CIM_ElementCapabilities
(FileServerConfigurationService to
FileServerConfigurationCapabilities)

Mandatory This associates the File Server Configuration
Service to the ConfigurationCapabilities
element that represents the capabilities that it
supports.

6.7.9 CIM_ElementSettingData
(ComputerSystem FileServer to
FileServerSettings)

Mandatory Associates a FileServer with its
FileServerSettings

6.7.10 CIM_ElementSettingData
(IPInterfaceSettingData to
IPProtocolEndpoint)

Mandatory The IPProtocolEndpoint associated with the
IPInterfaceSettingData

6.7.11 CIM_HostedDependency Mandatory Associates a File Server to the Computer
System hosting it.

6.7.12 CIM_HostedService (Hosting
Computer System to
FileServerConfigurationService)

Mandatory Associates the
FileServerConfigurationService with the
hosting computer system

6.7.13 CIM_MemberOfCollection (The
IPProtocolEndpoint to NetworkVLAN.)

Conditional Conditional requirement: The NetworkVLAN
has been defined.Associates an
IPProtocolEndPoint to NetworkVLAN
86

NO_ANSI_ID File Server Manipulation Subprofile
6.7.1 CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)

Created By: External

6.7.14 CIM_NetworkVLAN Optional This element represents the virtual LAN
(VLAN) tag settings for an IP interface. In the
context of a file server, it represents the VLAN
information

6.7.15 CIM_SettingsDefineCapabilities
(CIFSettingData)

Mandatory Associates CIFSSettingData with
FileServerCapabilities

6.7.16 CIM_SettingsDefineCapabilities
(DNSSettingData)

Mandatory Associates DNSSSettingData with
FileServerCapabilities

6.7.17 CIM_SettingsDefineCapabilities
(FileServerSettings)

Mandatory Associates FileServerSettings with
FileServerCapabilities

6.7.18 CIM_SettingsDefineCapabilities
(IPInterfaceSettingData)

Mandatory Associates IPInterfaceSettingData with
FileServerCapabilities

6.7.19 CIM_SettingsDefineCapabilities
(NFSSettingData)

Mandatory Associates NFSSSettingData with
FileServerCapabilities

6.7.20 CIM_SettingsDefineCapabilities
(NISSettingData)

Mandatory Associates NISSSettingData with
FileServerCapabilities

6.7.21 CIM_SettingsDefineState
(ComputerSystem FileServer to
FileServerSettings)

Mandatory The FileServer's state represented by its
FileServerSettings

6.7.22 SNIA_CIFSSettingData Mandatory This class contains the CIFS settings for the
File Server

6.7.23 SNIA_FileServerCapabilities Mandatory The capabilities of the File Server.

6.7.24
SNIA_FileServerConfigurationCapabilities

Mandatory This element represents the management
Capabilities of the File Server Configuration
Service.

6.7.25 SNIA_FileServerConfigurationService Mandatory The File Server Configuration Service
provides the methods to manipulate File
Servers.

6.7.26 SNIA_FileServerSettings Mandatory This class contains the settings for the File
Server

6.7.27 SNIA_IPInterfaceSettingData Mandatory This class contains the settings for single IP
interface.

6.7.28 SNIA_NFSSettingData Mandatory This class contains the NFS settings for the
File Server

6.7.29 SNIA_NISSettingData Optional This class contains the NIS settings for the
File Server

Table 50 - CIM Elements for File Server Manipulation

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 87

File Server Manipulation Subprofile NO_ANSI_ID
Modified By: Static
Deleted By: External
Requirement: Optional

Table 51 describes class CIM_ConcreteComponent (FileServerSettings to CIFSSettingData).

6.7.2 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)

Created By: External
Modified By: Static
Deleted By: External
Requirement: The DNSSettingData has been defined.

Table 52 describes class CIM_ConcreteComponent (FileServerSettings to DNSSettingData).

6.7.3 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 53 describes class CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData).

Table 51 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to CIFSSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings

PartComponent Mandatory The CIFSSettingData

Table 52 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to DNSSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings

PartComponent Mandatory The DNSSettingData

Table 53 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to IPInterfaceSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings

PartComponent Mandatory The IPInterfaceSettingData
88

NO_ANSI_ID File Server Manipulation Subprofile
6.7.4 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 54 describes class CIM_ConcreteComponent (FileServerSettings to NFSSettingData).

6.7.5 CIM_ConcreteComponent (FileServerSettings to NISSettingData)

Created By: External
Modified By: Static
Deleted By: External
Requirement: The NISSettingData has been defined.

Table 55 describes class CIM_ConcreteComponent (FileServerSettings to NISSettingData).

6.7.6 CIM_DNSSettingData

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: Optional

Table 54 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to NFSSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings

PartComponent Mandatory The NFSSettingData

Table 55 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to NISSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings

PartComponent Mandatory The NISSettingData
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 89

File Server Manipulation Subprofile NO_ANSI_ID
Table 56 describes class CIM_DNSSettingData.

6.7.7 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 57 describes class CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities).

6.7.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 58 describes class CIM_ElementCapabilities (FileServerConfigurationService to
FileServerConfigurationCapabilities).

Table 56 - SMI Referenced Properties/Methods for CIM_DNSSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the DNSSettingData.

DomainName Mandatory The DNS domain to use for looking up addresses.

DNSServerAddresse
s

Mandatory The addresses of DNS servers to contact. The array
specifies the order in which the DNS servers will be
contacted.

Table 57 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigu-
rationService to FileServerCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server Configuration Service

Capabilities Mandatory The File Server Capabilties element

Table 58 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigu-
rationService to FileServerConfigurationCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server Configuration Service

Capabilities Mandatory The File Server Configuration Capabilties element
90

NO_ANSI_ID File Server Manipulation Subprofile
6.7.9 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 59 describes class CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings).

6.7.10 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 60 describes class CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint).

6.7.11 CIM_HostedDependency

Created By: Extrinsic: CreateFileServer
Modified By: Static
Deleted By: Extrinsic: DeleteFileServer
Requirement: Mandatory

Table 59 - SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem
FileServer to FileServerSettings)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server ComputerSystem.

SettingData Mandatory The FileServerSettings.

Table 60 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSetting-
Data to IPProtocolEndpoint)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The IPProtocolEndpoint

SettingData Mandatory The IPInterfaceSettingData.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 91

File Server Manipulation Subprofile NO_ANSI_ID
Table 61 describes class CIM_HostedDependency.

6.7.12 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 62 describes class CIM_HostedService (Hosting Computer System to FileServerConfigurationService).

6.7.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: The NetworkVLAN has been defined.

Table 63 describes class CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.).

6.7.14 CIM_NetworkVLAN

Table 61 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The File Server ComputerSystem
(Dedicated="FileServer").

Antecedent Mandatory The hosting ComputerSystem

Table 62 - SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer Sys-
tem to FileServerConfigurationService)

Properties Flags Requirement Description & Notes

Dependent Mandatory The File Server Configuration Service.

Antecedent Mandatory The hosting ComputerSystem.

Table 63 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEnd-
point to NetworkVLAN.)

Properties Flags Requirement Description & Notes

Collection Mandatory The IPProtocolEndPoint.

Member Mandatory The NetworkVLAN.
92

NO_ANSI_ID File Server Manipulation Subprofile
Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: Optional

Table 64 describes class CIM_NetworkVLAN.

6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 65 describes class CIM_SettingsDefineCapabilities (CIFSettingData).

6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 64 - SMI Referenced Properties/Methods for CIM_NetworkVLAN

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the NetworkVLAN.

VLANId Mandatory The VLAN id that is to be associated with an IP interface.
The id shall be included in all IP packets being sent through
an IP interface.

TransmissionSize Mandatory The maximum transmission unit size that is associated with
an IP Interface.

Table 65 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSetting-
Data)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The CIFSSettingData reference.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 93

File Server Manipulation Subprofile NO_ANSI_ID
Table 66 describes class CIM_SettingsDefineCapabilities (DNSSettingData).

6.7.17 CIM_SettingsDefineCapabilities (FileServerSettings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 67 describes class CIM_SettingsDefineCapabilities (FileServerSettings).

6.7.18 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 68 describes class CIM_SettingsDefineCapabilities (IPInterfaceSettingData).

6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData)

Table 66 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSetting-
Data)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The CIFSSettingData reference.

Table 67 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServer-
Settings)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The FileServerSetting reference.

Table 68 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceS-
ettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The IPInterfaceSettingData reference.
94

NO_ANSI_ID File Server Manipulation Subprofile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 69 describes class CIM_SettingsDefineCapabilities (NFSSettingData).

6.7.20 CIM_SettingsDefineCapabilities (NISSettingData)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 70 describes class CIM_SettingsDefineCapabilities (NISSettingData).

6.7.21 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 69 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSetting-
Data)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The NFSSSettingData reference.

Table 70 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSetting-
Data)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The NISSSettingData reference.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 95

File Server Manipulation Subprofile NO_ANSI_ID
Table 71 describes class CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings).

6.7.22 SNIA_CIFSSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyCIFS
Deleted By: Extrinsic: DeleteFileServer
Requirement: Mandatory

Table 72 describes class SNIA_CIFSSettingData.

Table 71 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem
FileServer to FileServerSettings)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server ComputerSystem.

SettingData Mandatory The FileServerSettings.

Table 72 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the CIFSSettingData.

Enabled Mandatory This boolean indicates if CIFS is enabled on the File
Server.

Charset Optional Specifies the character set to be used by the File Server
when servicing CIFS Shares. The values are 0|1|2
('Standard-ASCII'|'IBM-437','IBM-850'). If absent, then
"Standard-ASCII" is assumed.

UseTCPOnly Optional This boolean if set to 'true' allows only TCP transport
connections. If 'false', then both TCP and Netbios transport
connections are allowed. The default value is 'false'.

NETBIOSName Optional The NetBIOS name of the FileServer.

WINSIP Optional An array of IP Addresses of Windows Internet Name
Servers.

AuthenticationDomai
n

Mandatory Name of CIFS domain to which the File Server is joined.
Represents either the NTLM domain or the ActiveDirectory
domain.

AuthenticationMode Mandatory Specifies if authentication is to be performed against either
NTLM or ActiveDirectory domains. Valid values are 'NTLM'
or 'ActiveDirectory'.

UseKerberos Optional Determines how ActiveDirectory authentication is
performed. If 'true', limit ActiveDirectory authentication to
use Kerberos. Otherwise do not limit to Kerberos only.
96

NO_ANSI_ID File Server Manipulation Subprofile
6.7.23 SNIA_FileServerCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 73 describes class SNIA_FileServerCapabilities.

UseOpportunisticLoc
king

Optional This boolean determines if opportunistic locking should be
used by CIFS FileServer. If 'true', enable opportunistic
locking.

SMBSigningOnly Optional This boolean determines if CIFS clients are allowed to
connect if they use SMB signing for security. If 'true', then
require clients to use SMB signing. Otherwise, do not
require.

ClientsConnectAnony
mously

Optional This boolean dictates if the FileServer joins the CIFS
Domain Controller anonymously or if a user and password
are required. If 'true', then join anonymously. Otherwise,
use DomainControllerUser and DomainControllerPassword
to join.

JoinDomainAnonymo
usly

Optional This boolean dictates if the FileServer joins the CIFS
Domain Controller anonymously or if a user and password
are required. If 'true', then join anonymously. Otherwise,
use DomainControllerUser and DomainControllerPassword
to join.

DomainControllerUse
r

Optional User name to use when the Fileserver joins the CIFS
Domain Controller

DomainControllerPas
sword

Optional Password to use when joining the CIFS Domain Controller

CIFSDomainControll
er

Optional Name of the CIFS Domain Controller

Table 73 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the FileServerCapabilities
element of a File Server Configuration Service.

Table 72 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 97

File Server Manipulation Subprofile NO_ANSI_ID
6.7.24 SNIA_FileServerConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 74 describes class SNIA_FileServerConfigurationCapabilities.

6.7.25 SNIA_FileServerConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

ElementName Mandatory A user-friendly name for this Capabilities element.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of
Settings that are a supported variant of the Settings passed
as embedded instances via IN parameters. The method
returns the supported Settings in OUT parameters, each
containing an array of embedded instances. Many of the IN
parameters are optional, and if left NULL result in NULL
being returned in the corresponding OUT parameters.

Table 74 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this element representing the
capabilities of a File Server Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

SynchronousMethod
sSupported

N Mandatory The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
synchronously. Note: A supported method shall be listed in
this property or in the AsynchronousMethodsSupported
property or both.

AsynchronousMetho
dsSupported

N Mandatory The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
asynchronously. Note: A supported method shall be listed
in this property or in the SynchronousMethodsSupported
property or both.

Table 73 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities

Properties Flags Requirement Description & Notes
98

NO_ANSI_ID File Server Manipulation Subprofile
Table 75 describes class SNIA_FileServerConfigurationService.

6.7.26 SNIA_FileServerSettings

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: Mandatory

Table 76 describes class SNIA_FileServerSettings.

Table 75 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClas
sName

Mandatory Key

SystemName Mandatory Key

CreationClassName Mandatory Key

Name Mandatory Key

CreateFileServer() Mandatory Create a new instance of File Server

ModifyFileServer() Mandatory Modify an existing File Server. This is used to modify
FileServerSettings, CIFSSettingData, NFSSettingData,
DNSSettingData, or NISSettingData.

DeleteFileServer() Mandatory Delete an existing File Server.

AddIPInterface() Optional Add a new IPInterface to an existing File Server

ModifyIPInterface() Optional Modify an IPInterface associated with an existing File
Server

DeleteIPInterface() Optional Delete an IPInterface associated with an existing File
Server

Table 76 - SMI Referenced Properties/Methods for SNIA_FileServerSettings

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the FileServerSettings.

HostLookupOrder Optional Specifies the services and order to use them for host
lookup. An array of elements with these values: 'DNS','NIS',
'None', or 'UploadedFile'. 'UploadedFile' refers to the
uploaded file of host names.

UserLoginLookupOrd
er

Optional Specifies the services and order to use them for user
lookup. An array of elements with these values: 'DNS','NIS',
'None', or 'UploadedFile'. 'file' 'UploadedFile' refers to the
uploaded file of user passwords.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 99

File Server Manipulation Subprofile NO_ANSI_ID
6.7.27 SNIA_IPInterfaceSettingData

Created By: Extrinsic: CreateFileServer | AddIPInterface
Modified By: Extrinsic: ModifyIPInterface
Deleted By: Extrinsic: DeleteFileServer | DeleteIPInterface
Requirement: Mandatory

Table 77 describes class SNIA_IPInterfaceSettingData.

6.7.28 SNIA_NFSSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyNFS
Deleted By: Extrinsic: DeleteFileServer

NFSCIFSAccountMa
pping

Optional Controls the mapping of accounts between NFS and CIFS.
Valid values are 'None', 'All', or 'Domain'. If 'None', then no
account mapping is performed. If 'All', then mapping is
done for all CIFS domains. If 'Domain', then mapping is
done for the users in the CIFS domain specified in
AccountMappingDomain.

AccountMappingDom
ain

Optional If NFSCIFSAccountMapping = 'Domain', then this property
will contain the name of the domain to use for NFS to CIFS
account mapping.

Table 77 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData

Properties Flags Requirement Description & Notes

IPAddress Mandatory The IPAddress that will be used by the File Server. This can
be either an IPv4 or IPv6 address.

AddressType Mandatory The IPAddress format. This can be either "IPv4" or "IPv6".

SubnetMask Mandatory The subnet mask that will be used by the File Server

IPv6PrefixLength Conditional Conditional requirement: Required if the array property
SNIA_IPInterfaceSettingData.AddressType contains the
string \IPv6\'.'If AddressType specifies IPv6, then this
specifies the prefix length for the IPv6 address in
IPAddress. Is this really needed???

VLANId Optional If present contains the ID of the VLAN that this IP setting
will be associated with.

MTU Optional If present contains the maximum transmission unit to be
used for this IP setting. If not present, then the default of
1500 will be used.

Table 76 - SMI Referenced Properties/Methods for SNIA_FileServerSettings

Properties Flags Requirement Description & Notes
100

NO_ANSI_ID File Server Manipulation Subprofile
Requirement: Mandatory

Table 78 describes class SNIA_NFSSettingData.

6.7.29 SNIA_NISSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: Optional

Table 78 - SMI Referenced Properties/Methods for SNIA_NFSSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the NFSSettingData.

Enabled Mandatory This boolean indicates if NFS is enabled on the File Server.

Charset Optional Specifies the character set to be used by the File Server
when servicing CIFS Shares. The values are 0|1|2
('Standard-ASCII'|'UTF8'|'ISO-8859-1'). If absent, then
'ISO-8859-1' is assumed.

MaximumTCPConne
ctions

Optional This specifies the number of concurrent TCP connections
that are allowed for the NFS protocol. If set to 0, then TCP
will be disabled for NFS.

Port Optional The port the File Server listens for mount requests. If
absent, default to 2049.

NonNFSuid Optional User ID to use for requests from non-NFS access. If
absent, default to -1.

NonNFSgid Optional Group ID to use for requests from non-NFS access. If
absent, default to -1.

UseReservedPorts Optional This boolean specifies that the File Server will only allow
NFS mount requests from client machine TCP/IP ports less
than 1024. If 'true', only allow mount requests from ports
less than 1024. Othewise, allow mount requests from any
client port.

OnlyRootChown Optional This boolean specifies if the root user is allowed to issue
chown (change ownership) requests. If 'true', then only let
root user issue chown request. Otherwise, allow any user
to issue chown requests.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 101

File Server Manipulation Subprofile NO_ANSI_ID
Table 79 describes class SNIA_NISSettingData.

EXPERIMENTAL

Table 79 - SMI Referenced Properties/Methods for SNIA_NISSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the NISSettingData.

DomainName Mandatory NIS Domain Name

ServerIP Mandatory An array of IP Addresses IP Addresses of NIS Servers
102

NO_ANSI_ID File Storage Profile
STABLE

Clause 7: File Storage Profile

7.1 Description

7.1.1 Synopsis

Profile Name: File Storage

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: N/A

Scoping Class: ComputerSystem

7.1.2 Overview

The File Storage Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this release
of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles.

7.1.3 Implementation

Figure 10 illustrates the mandatory and optional classes for the modeling of file storage for the profiles that support
filesystems. This profile is supported by the Self-contained NAS and the NAS Head Profiles.

Figure 10 - File Storage Instance

C o m p u te rS ys te m

L o g ica lD isk

L o ca lF ile S ys te m

H o s te d F ile S ys te m

R e s id e sO n E x te n t
(C o n d it io n a l)

F ile S to ra g e
P ro file

S ys te m D e v ice
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 103

File Storage Profile NO_ANSI_ID
The File Storage profile models the mapping of Filesystems to LogicalDisks. For the NAS Head and Self-contained
NAS profiles each Filesystem shall be established on one LogicalDisk. The relationship between the
LocalFileSystem and the LogicalDisk is represented by the ResidesOnExtent association. This association is listed
as conditional on the parent profile being either the NAS Head or the Self-contained NAS profile.The LogicalDisk
may be a LogicalDisk as defined in the Block Services Package or part of the parent profile.

The FileStorage Profile is a “read-only” profile. That is, the methods for creating, modifying or deleting a
LocalFileSystem are external to the File Storage Profile. The SMI-S prescribed way of performing these functions
are covered by the Filesystem Manipulation Profile.

7.2 Health and Fault Management Consideration
None.

EXPERIMENTAL

7.3 Cascading Considerations
In some cases, the parent profile does not implement Block Services Package. In this case, the parent profile
would implement a LogicalDisk that is “imported” from another Profile (e.g., a Volume Management Profile). This
section discusses those cascading considerations.

7.3.1 Cascaded Resources

A File Storage profile may get its storage from the operating system (HDR Profile), a volume manager, an Array or
Storage Virtualizer. As such, there is a cascading relationship between the File Storage Profile and the Profiles
(e.g., Volume Management Profiles) that provide the storage for the File Storage Profile. Figure 11 illustrates the
constructs to be used to model this cascading relationship.
104

NO_ANSI_ID File Storage Profile
Figure 11 shows two filesystems (LocalFileSystem). Both reside on one LogicalDisk. But the LogicalDisk on the
right is a composite of lower level LogicalDisks. The storage that is imported from the remote profile are
LogicalDisks at the lowest level of the Filesystem Profile. So, in the first (left side) case, the LogicalIdentity is
between the LogicalDisk on which the filesystem resides to the imported LogicalDisk (or StorageVolume). In the
second case (the right side) the LogicalIdentity is between the “lowest level” LogicalDisks in Volume Composition
and the imported LogicalDisks (or StorageVolumes).

Note: LogicalIdentity is an abstract class and would be subclassed by an implementation.

The ComputerSystem in the Filesystem Profile would be the computer system that hosts the filesystem. The
“Virtual” ComputerSystem is the top level ComputerSystem of the HDR, Volume Manager, Array or Storage
Virtualizer. There shall be a Dependency association between these computer systems. LogicalDisks (or
StorageVolumes) that are in use by the Filesystem Profile would have a MemberOfCollection association to the
SNIA_AllocatedResources collection. All the LogicalDisks (or StorageVolumes) that the Filesystem Profile can see
(including the ones that are allocated) would have a MemberOfCollection association to the
SNIA_RemoteResources instance.

Figure 11 - Cascading File Storage

V o lu m e C o m p o s it io n S u b p ro f i le

F i le S to ra g e P ro f i le

 C a s c a d in g S u b p ro f i le

C o m p u te r S y s te m

L o g ic a lD is k

N a m e = ” In te r n a l N a m e ”
O th e r Id e n t ify in g In fo []= ”O S X ”

C o m p u te r S y s te m
(V ir tu a l)

L o g ic a lD is k
(V ir tu a l)

N a m e = “ O S X ”

L o g ic a lD is k
(V ir tu a l)

S N IA _ R e m o te R e s o u rc e s

D e p e n d e n c y

R e m o te S e rv ic e A c c e s s P o in t

S A P A v a ila b le F o rE le m e n t

S y s te m D e v ic e

S N IA _ A llo c a te d R e s o u rc e s

M e m b e r O fC o lle c t io n

M e m b e rO fC o l le c t io n

S y s te m D e v ic e

L o g ic a l Id e n t i ty

L o c a lF i le S y s te m

R e s id e s O n E x te n t

L o g ic a lD is k

N a m e = ” In te rn a l N a m e ”

L o c a lF ile S y s te m

R e s id e s O n E x te n t

L o g ic a lD is k

N a m e = ” In te rn a l N a m e ”
O th e r Id e n t i fy in g In fo []= ”O S Y ”

L o g ic a lD is k

N a m e = ” In te r n a l N a m e ”
O th e r Id e n t i fy in g In fo []= ”O S Z ”

B a s e d O n B a s e d O n

C o m p o s ite E x te n t

B a s e d O n

L o g ic a lD is k
(V ir tu a l)

N a m e = “O S Y ”

L o g ic a lD is k
(V ir tu a l)

N a m e = “O S Z ”

L o g ic a lId e n t ity

L o g ic a lId e n t ity

M e m b e r O fC o l le c t io n

M e m b e rO fC o l le c t io n

M e m b e r O fC o l le c t io n
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 105

File Storage Profile NO_ANSI_ID
The RemoteServiceAccessPoint associated to the virtual computer system via SAPAvailableForElement would be
information on the management interface for the HDR, Volume Manager, Array or Storage Virtualizer.

Table 80 provides the specific cascading information for cascading file storage.

7.3.2 Ownership Privileges

In support of the cascading File Storage, an implementation may assert ownership over the LogicalDisks (or
StorageVolumes) that they import. If the Volume Management implementation supports Ownership, the File
Storage implementation may assert ownership using the following Privileges:

• Activity - Execute

• ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

• FormatQualifier - Method

Note: HDR does not support Block Storage Resource Ownership, so this cannot be supported if the
underlying profile is HDR.

7.3.3 Limitations on Cascading Subprofile

The File Storage Profile support for cascading places the following limitations and restrictions on the Cascading
Subprofile:

• Dependency - The Dependency may exist, even when there are no resources that are imported. This signifies
that the File Storage implementation has discovered the Volume Management or HDR profile, but has no
access to any of their LogicalDisks.

EXPERIMENTAL

7.4 Supported Profiles, Subprofiles, and Packages
Related Profiles for File Storage: Not defined in this standard.

7.5 Methods of the Profile

7.5.1 Extrinsic Methods of the Profile

None

Note: The methods for defining the various mappings would be handled by the Filesystem Manipulation
subprofile.

Table 80 - Cascaded Storage

File Storage
Resource

Leaf Profile Leaf Resource Association Notes

LogicalDisk Volume
Management or
HDR

LogicalDisk LogicalIdentity

LogicalDisk Array or Storage
Virtualizer

StorageVolume LogicalIdentity
106

NO_ANSI_ID File Storage Profile
7.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

7.6 Client Considerations and Recipes
None.

7.7 Registered Name and Version
File Storage version 1.3.0

7.8 CIM Elements
Table 81 describes the CIM elements for File Storage.

7.8.1 CIM_ResidesOnExtent

Created By: External
Modified By: Static
Deleted By: External
Requirement: NAS Profiles require that LocalFileSystems reside on one LogicalDisk. or NAS Profiles require that
LocalFileSystems reside on one LogicalDisk..

Table 81 - CIM Elements for File Storage

Element Name Requirement Description

7.8.1 CIM_ResidesOnExtent Conditional Conditional requirement: NAS Profiles require
that LocalFileSystems reside on one
LogicalDisk. or NAS Profiles require that
LocalFileSystems reside on one
LogicalDisk..Represents the association
between a local FileSystem and the
underlying LogicalDisk that it is built on.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 107

File Storage Profile NO_ANSI_ID
Table 82 describes class CIM_ResidesOnExtent.

STABLE

Table 82 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement Description & Notes

Dependent Mandatory The LocalFileSystem that is built on top of a LogicalDIsk.

Antecedent Mandatory The LogicalDIsk that underlies a LocalFileSystem.
108

NO_ANSI_ID Filesystem Profile
STABLE

Clause 8: Filesystem Profile

8.1 Description

8.1.1 Synopsis

Profile Name: Filesystem

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: LocalFileSystem

Scoping Class: ComputerSystem

The Filesystem Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this release
of SMI-S, this includes the NAS Head and the Self-Contained NAS profiles. A number of other profiles and
subprofiles make use of elements of the Filesystem profile and will be referred to in this specification as
“Filesystem related profiles” -- these include but are not limited to the Filesystem Manipulation subprofile, File
Export subprofile, File Export Manipulation subprofile, NAS Head profile, and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are described
in Annex A: (Informative) State Transitions from Storage to File Shares.

8.1.2 Instance Diagrams

Figure 12 illustrates the mandatory, optional, and conditional classes for the modeling of filesystems for the profiles
that support filesystems. This profile is supported by the Self-contained NAS and the NAS Head profiles. The
dashed box contains the elements that this profile supports -- the elements outside the dashed box depend on
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 109

Filesystem Profile NO_ANSI_ID
other profiles or subprofiles for their maintenance (creation, deletion, and modification). There are two

ComputerSystems shown outside the box that represent different dedicated roles that could be performed by
different actual computers (or could be performed by a single computer).

A filesystem shall be represented in the model as an instance of LocalFileSystem. A LocalFileSystem instance
shall have a ResidesOnExtent association to a LogicalDisk (shown, but outside this profile). A client would
determine the size (in bytes) of a filesystem by inspecting the size of the LogicalDisk on which the LocalFileSystem
resides.

Note: The Filesystem related profiles build LocalFileSystems on a LogicalDisk(s). In the cases supported in
this release of SMI-S, one LocalFileSystem may be established on one LogicalDisk. In a future release,
more elaborate mappings may exist between FileSystems and one or more LogicalDisks.

The LocalFileSystem shall have a HostedFileSystem association to a ComputerSystem. Normally this will be the
top level ComputerSystem of the parent profile (typically one of the Filesystem related profiles such as the NAS
Head or the Self-Contained NAS Profile). However, if the Multiple Computer System Subprofile is implemented, the
HostedFileSystem may be associated to a component ComputerSystem. See Clause 30: Multiple Computer
System Subprofile in Storage Management Technical Specification, Part 2 Common Profiles, 1.3.0 Rev 6.

The LocalFileSystem element may also have an ElementSettingData association to the FileSystemSetting for that
filesystem. However, the FileSystemSetting and ElementSettingData are optional in this profile.

There may be zero or more FileShare elements associated to the LocalFileSystem element via the SharedElement
association. An implementation would be required to populate only those FileShare elements representing files (or
directories) that are exported using a supported file sharing protocol (such as CIFS or NFS). The path to the file or
directory from the root of the LocalFileSystem is specified by the FileShare.PathName property.

Figure 12 - Filesystem Instance

File System Profile

FileSystem Host

ComputerSystem

SNIA_LocalFileSystem
LocalAccessDefinitionRequired

PathnameSeparatorString=”/”

HostedFileSystem

SNIA_FileSystemSetting
(Optional)

ElementSettingData
(Optional)

SNIA_FileShare

PathName=”/users/me”

SNIA_SharedElement

SNIA_LocallyAccessibleFileSystemSetting
(Optional)

ElementSettingData
(Optional)

File Server

ComputerSystem

SNIA_LocalAccessAvailable
LocalAccessPoint=”/etc/mnt”

(Conditional)

LogicalDisk

ResidesOnExtent

*

*

*

1

1

1
1

1

1

1

HostedDependency
(Optional)

SNIA_HostedShare

1

* *

*

1
*

LogicalFile
(BC 1.1)FileStorage

(BC 1.1)

ConcreteDependency
(BC 1.1)*

*

1

1

1

Dependency
(Conditional)

1

.

110

NO_ANSI_ID Filesystem Profile
Note: In order to support backward compatibility with the NAS Head and Self-contained NAS profiles in SMI-
S 1.1, the class LogicalFile (shown outside the dashed box in the figure) and two associations
(ConcreteDependency outside the dashed box and FileStorage shown inside the dashed box) must be
supported. These duplicate the functionality provided by specifying FileShare.PathName, at the cost of
requiring that certain LogicalFiles, but not all, be surfaced.

EXPERIMENTAL

8.1.2.1 Local Access Requirement
In addition, if the property LocalFileSystem.LocalAccessDefinitionRequired is set to true, the filesystem must be
made exportable via a file server. In that case, there shall be a LocalAccessAvailable association from the
LocalFileSystem element to the file server ComputerSystem and, optionally, a
LocallyAccessibleFileSystemSettings element associated via an ElementSettingData association to the
LocalFileSystem. The LocallyAccessibleFileSystemSettings element is an instance of ScopedSettingData and is
associated to the file server ComputerSystem via a ScopedSetting association. The ScopedSetting association
indicates that this setting is constrained by the associated file server. The LocalAccessAvailable association is
required but conditional on LocalAccessDefinitionRequired being true, while the
LocallyAccessibleFileSystemSettings element and the ScopedSetting association are not required (i.e., optional).

Note: They are still conditional on LocalAccessDefinitionRequired being true, but in this version of SMI-S,
that is not represented in the XML file.

Since LocalAccessAvailable is an association, there can only be ONE instance per LocalFileSystem for each
FileServer. This is a common restriction . For each LocalAccessAvailable association, there should only be zero (if
optionally not implemented) or one (if optionally implemented) instances of LocallyAccessibleFileSystemSettings.

EXPERIMENTAL

EXPERIMENTAL

8.1.2.2 Directory Service Use
A filesystem needs to be supported by a directory service that resolves user and group identifiers (referred to as
UID, GID, or SID) to specific operational users and groups. The enumerated property
LocalFileSystem.DirectoryServiceUsage indicates the kind of support a filesystem requires from a directory service
-- the options include “Not Used”, “Optional”, and “Required”. If “Required”, the filesystem will be associated to a
computer system that provides infrastructure support for such identity resolution.

The directory service may be hosted by any ComputerSystem, but it must be accessible in real-time to the
ComputerSystem that makes the filesystem available to operational users -- this is either a file server
ComputerSystem (one may already be required if LocalFileSystem.LocalAccessDefinitionRequired is true, but it is
optional otherwise) or the ComputerSystem hosting the filesystem. The directory service may be “natively” hosted
on that ComputerSystem (file server or filesystem host) or may be identified by that ComputerSystem in some way.

The support relationship between a LocalFileSystem element and the ComputerSystem that identifies and uses
the directory service shall be represented by a Dependency association with the ComputerSystem element as the
Antecedent and the LocalFileSystem element as the Dependent.

In the instance diagram above, the Dependency association has been shown between the LocalFileSystem and a
file server ComputerSystem (with Dedicated[]=”16”). A LocalFileSystem element shall only identify one
ComputerSystem for directory service access. In addition, the consistency of filesystem security implementation
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 111

Filesystem Profile NO_ANSI_ID
requires that all the file server ComputerSystems that make a filesystem locally available must use the same
directory service or use mutually consistent directory services.

EXPERIMENTAL

8.2 Health and Fault Management Consideration
The Filesystem Profile supports state information (e.g., OperationalStatus) on the following elements of the model:

• Local File Systems (See Table 94 - SMI Referenced Properties/Methods for CIM_LogicalFile)
112

NO_ANSI_ID Filesystem Profile
8.2.1 OperationalStatus for Filesystems

8.3 Cascading Considerations
None.

Table 83 - Filesystem OperationalStatus

Primary OperationalStatus Description

2 “OK” The filesystem has good status

3 “Degraded” The filesystem is operating in a degraded mode. This could be
due to the health state of the underlying storage being
degraded or in error.

4 “Stressed” The filesystem resources are stressed

5 “Predictive Failure” The filesystem might fail because some resource or
component is predicted to fail

6 “Error” An error has occurred causing the filesystem to become
unavailable. Operator intervention through SMI-S (managing
the LocalFileSystem) to restore the filesystem may be
possible.

6 “Error” An error has occurred causing the filesystem to become
unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The filesystem is not functioning. Operator intervention
through SMI-S will not fix the problem.

8 “Starting” The filesystem is in process of initialization and is not yet
available operationally.

 9 “Stopping” The filesystem is in process of stopping, and is not available
operationally.

10 “Stopped” The filesystem cannot be accessed operationally because it is
stopped -- if this did not happened because of operator
intervention or happened in real-time, the OperationalStatus
would have been “Lost Communication” rather than “Stopped”.

11 “In Service” The filesystem is offline in maintenance mode, and is not
available operationally.

13 “Lost Communications” The filesystem cannot be accessed operationally -- if this
happened because of operator intervention it would have been
“Stopped” rather than “Lost Communication”.

14 “Aborted” The filesystem is stopped but in a manner that may have left it
in an inconsistent state.

15 “Dormant” The Filesystem is offline; and the reason for not being
accessible is unknown.

16 “Supporting Entity in Error” The filesystem is in an error state, or may be OK but not
accessible, because a supporting entity is not accessible.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 113

Filesystem Profile NO_ANSI_ID
8.4 Supported Profiles, Subprofiles, and Packages
Table 84 describes the supported profiles for Filesystem.

8.5 Methods of the Profile

8.5.1 Extrinsic Methods of the Profile

None.

8.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

8.6 Client Considerations: Use Cases
The following client use cases are supported by this profile:

• List Existing Filesystems hosted by the Referencing Profile (parent Filesystem related profile).

• Get FileSystemSettings for a FileSystem

• Get the ComputerSystem that hosts a FileSystem

• Get all File Servers and Access Paths that have Local Access to this FileSystem

• Get the Access Path to this FileSystem on the specified File Server

• Get the Local Access Settings for this FileSystem on the specified File Server

• Get the FileShares and shared File path of this FileSystem on all File Servers

• Get the FileShares and shared File path of this FileSystem on the specified FileServer

Table 84 - Supported Profiles for Filesystem

Registered Profile Names Mandatory Version

Indication Yes 1.3.0
114

NO_ANSI_ID Filesystem Profile
EXPERIMENTAL

These use cases have been elaborated as prototype recipes in the following sections.

8.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile

// DESCRIPTION

// Goal: Locate all LocalFileSystems hosted on the top level

// ComputerSystem of the Filesystem Profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the top level ComputerSystem was previously

// discovered and is defined in the $System-> variable.

//

// FUNCTION ListFileSystems

// This function takes a given top level ComputerSystem and locates

// the LocalFileSystems which it hosts or are hosted by any component

// ComputerSystem.

// INPUT Parameters:

// System: A reference to the top level ComputerSystem of

// the Filesystem Profile.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: An array of reference(s) to the LocalFileSystems

// hosted by the top level ComputerSystem or component

// ComputerSystems. It returns NULL if it does not find

// any hosted LocalFileSystems.

sub CIMInstance[] ListFileSystems(REF CIM_ComputerSystem $System->) {

 // Step 1. Locate the LocalFileSystems hosted directly by the

 // top-level ComputerSystem of the Filesystem Profile.

 #FSProps[] = {“CSCreationClassName”, “CSName”, “CreationClassName”,

 “Name”, “OperationalStatus”, “CaseSensitive”, “CasePreserved”,

 “MaxFileNameLength”, “FileSystemType”,

 “MultipleDisksSupported”,

 “LocalAccessDefinitionRequired”,

 “PathNameSeparatorString” }

 $FileSystems[] = Associators($System->,

 “CIM_HostedFileSystem”,

 “CIM_LocalFileSystem”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #FSProps[])

 // Step 2. Locate all the component ComputerSystems of the top level
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 115

Filesystem Profile NO_ANSI_ID
 // ComputerSystem of the Filesystem Profile implementation.

 // This assumes that the top level ComputerSystem of the Filesystem

 // Profile is the same as the top level ComputerSystem of the

 // Multiple Computer System Subprofile. This recipe does not

 // check if this assumption is correct.

 try {

 REF CIM_ComputerSystem $ComponentSystems->[] =

 AssociatorNames($System->,

 “CIM_ComponentCS,

 “CIM_ComputerSystem”,

 “GroupComponent”,

 “PartComponent”)

 // Step 3. Locate the LocalFileSystems hosted by the component

 // ComputerSystem and add to the list of found LocalFileSystems.

 if ($ComponentSystems->[] != null &&

 $ComponentSystems->[].length > 0) {

 REF CIM_FileSystem $ComponentFS[]

 #fsCounter = $FileSystems[].length

 for (#i in $ComponentSystems->[]) {

 $ComponentFS[] =

 Associators($ComponentSystems->[#i],

 “CIM_HostedFileSystem”,

 “CIM_LocalFileSystem”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #FSProps[])

 if ($ComponentFS[] != null && $ComponentFS[].length > 0) {

 for (#j in $ComponentFS->[]) {

 $FileSystems[#fsCounter] = $ComponentFS[#j]

 #fsCounter++

 }

 }

 }

 }

 } catch (CIMException $Exception) {

 // ComponentCS may not be included in the model implemented at all if

 // the Multiple Computer System Subprofile is not supported.

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

 return $FileSystems[]

 }

 <ERROR! An unexpected failure occured>

 }

 return $FileSystems[]

}

116

NO_ANSI_ID Filesystem Profile
// MAIN

$HostedFileSystems[] = ListFileSystems($TopLevelComputerSystem->)

8.6.2 Get FileSystemSettings for a FileSystem

// DESCRIPTION

// Goal: Get the FileSystemSettings associated with a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. There is only one setting for the file system

//

// FUNCTION GetFSSetting

// This function takes a given LocalFileSystem and returns the

// FileSystemSetting element that specifies its configuration.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem .

// OUTPUT Parameters:

// setting: A reference to the FileSystemSetting element is returned.

// RESULT:

// Returns: Nothing

//

sub GetFSSetting(IN REF CIM_LocalFileSystem $fs,

 OUT CIM_FileSystemSetting $setting)

{

 //

 // Get a reference to the FileSystemSetting associated with the

 // LocalFileSystem (via ElementSettingData association)

 $setting = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,

 “ManagedElement”,

 “SettingData”)->[0];

}

8.6.3 Get the ComputerSystem that hosts a FileSystem

// DESCRIPTION

// Goal: Get the ComputerSystem that hosts a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemHost

// This function takes a given LocalFileSystem and returns the

// ComputerSystem that hosts it.

// INPUT Parameters:
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 117

Filesystem Profile NO_ANSI_ID
// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// system: A reference to the hosting ComputerSystem is returned.

// RESULT:

// Returns: Nothing

//

sub GetFileSystemHost(IN REF CIM_LocalFileSystem $fs,

 OUT CIM_ComputerSystem $system)

{

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

}

// Retained for backward compatability with SMI-S 1.1

sub GetFSServer(IN REF CIM_FileSystem $fs,

 OUT CIM_ComputerSystem $system)

{

GetFileSystemHost($fs, $system);

}

8.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem

// DESCRIPTION

// Goal: Get the file server ComputerSystems that access the

// LocalFileSystem and the local access points on those

// ComputerSystems

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemServersAndPaths

// This function takes a given LocalFileSystem and returns the

// file server ComputerSystems that have local access to it

// and the local access points on those ComputerSystems.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// systems: An array of references to the file server ComputerSystems.

// paths: An array of strings that are the local access points on the

// corresponding file server

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemServersAndPaths(IN REF CIM_LocalFileSystem $fs,

 OUT REF CIM_ComputerSystem $systems[],
118

NO_ANSI_ID Filesystem Profile
 OUT string #paths[])

{

 REF CIM_LocalAccessAvailable $assocs->[] = References($fs,

 “SNIA_LocalAccessAvailable”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”);

 #counter = 0;

 if ($assocs->[] != null && $assocs->[].length > 0) {

 #count = $assocs->[].length;

 for (#i in $assocs->[]) {

 $systems->[#counter] = $assocs->[#i].FileServer;

 #paths->[#counter] = $assocs->[#i].LocalAccessPoints;

 #counter++;

 }

 }

 return #counter;

}

8.6.5 Get the Access Path to this FileSystem on the specified File Server

// DESCRIPTION

// Goal: Get the local access point to this LocalFileSystem on the

// specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously

// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerPath

// This function takes a given LocalFileSystem and file server

// ComputerSystem that has access to the filesystem and returns

// the local access point on that file server ComputerSystem.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: A string representing the local access path to the

// filesystem on the file server

//

sub string GetFileSystemServerPath(IN REF CIM_FileSystem $fs,

 IN REF CIM_ComputerSystem $server)

{

 REF CIM_LocalAccessAvailable $assocs->[] = References($fs,

 “SNIA_LocalAccessAvailable”,
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 119

Filesystem Profile NO_ANSI_ID
 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”);

 #path = ““;

 if ($assocs->[] != null && $assocs->[].length > 0) {

 for (#i in $assocs->[]) {

 if ($server == $assocs->[#i].FileServer) {

 #path = $assocs->[#i].LocalAccessPoint;

 break;

 }

 }

 }

 return #path;

}

8.6.6 Get the Local Access Settings for this FileSystem on the specified File Server

// DESCRIPTION

// Goal: Get the LocallyAccessibleFileSystemSetting for this

// LocalFileSystem on the specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously

// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerAccessSettings

// This function takes a given LocalFileSystem and file server

// ComputerSystem that has access to the filesystem and returns

// the LocallyAccessibleFileSystemSetting for that FileSystem

// in the context of that file server ComputerSystem

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// setting: A reference to the SNIA_LocallyAccessibleFileSystemSetting

// RESULT:

// Returns: Nothing

// (Optionally) A string containing the setting as an EmbeddedInstance

//

sub GetFileSystemServerAccessSettings(IN REF CIM_FileSystem $fs,

 IN REF CIM_ComputerSystem $server,

 OUT REF SNIA_LocallyAccessibleFileSystemSetting
setting)

{

 REF SNIA_LocallyAccessibleFileSystemSetting $settings->[] =
AssociatorNames($fs,

 “CIM_ElementSettingData”,
120

NO_ANSI_ID Filesystem Profile
 “SNIA_LocallyAccessibleFileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 $setting = NULL;

 $settingEI = ““;

 if ($settings->[] != null && $settings->[].length > 0) {

 for (#i in $settings->[]) {

 // Find the server that scopes this setting; assumes at least one is
returned

 REF CIM_ComputerSystem scope = AssociatorNames($settings->[#i],

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “ScopedSettingData,

 “ManagedElement”)->[0];

 if ($server == $scope) {

 $setting = $settings->[#i];

 $settingEI = $setting->GetInstance();

 break;

 }

 }

 } else {

 // There is no setting => it is defaulted by the server and opaque to the
client

 // Is this an Error?

 #ERROR(“Cannot find LocallyAccessibleFileSystemSetting for
LocalFileSystem.”);

 }

 return $settingEI;

}

8.6.7 Get the FileShares and shared File path of this FileSystem on all File Servers

// DESCRIPTION

// Goal: Get all the FileShare elements and filesystem-relative

// path to the shared file or directory of this LocalFileSystem

// on all file server ComputerSystems (that

// support local access to this LocalFileSystem)

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemServersSharesAndSharedPaths

// This function takes a given LocalFileSystem and returns the

// FileShare elements that provide access to a file or directory

// of the FileSystem. For each FileShare, this also returns

// the file server ComputerSystems that provides local access to

// it and the path to the shared file or directory relative to the
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 121

Filesystem Profile NO_ANSI_ID
// filesystem.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// shares: An array of references to the FileShares that provide access.

// servers: An array of references to the file server ComputerSystems.

// dirpaths: An array of strings that are the filesystem-relative paths

// to the shared directory or file

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemServersSharesAndSharedPaths(

 IN REF CIM_FileSystem $fs,

 OUT REF CIM_FileShare $shares[],

 OUT string #dirpaths[],

 OUT REF CIM_ComputerSystem $servers[])

{

 REF CIM_FileShares $shares->[] = Associators($fs,

 “CIM_SharedElement”,

 “CIM_FileShare”,

 “SystemElement”,

 “SameElement”);

 #counter = 0;

 if ($shares->[] != null && $shares->[].length > 0) {

 for (#i in $shares->[]) {

 // A share must be hosted

 $servers->[#counter] = AssociatorNames($shares->[#i],

 “CIM_HostedShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 $assoc = References($shares->[#i],

 “CIM_SharedElement”,

 “CIM_FileSystem”,

 “SameElement”,

 “SystemElement”)->[0];

 $dirpaths[#counter] = $assoc.PathName;

 #counter++;

 }

 }

 return #counter;

}

8.6.8 Get the FileShares and shared File path of this FileSystem on the specified FileServer

// DESCRIPTION

// Goal: Get all the FileShare elements and filesystem-relative

// path to the shared file or directory of this LocalFileSystem

// on this file server ComputerSystem
122

NO_ANSI_ID Filesystem Profile
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously

// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemSharesAndSharedPathsOnServer

// This function takes a given LocalFileSystem and returns the

// FileShare elements that provide access to a file or directory

// of the FileSystem. For each FileShare this also returns the

// file server ComputerSystem that supports local access to it

// and the filesystem-relative path to the shared file or directory.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// shares: An array of references to the FileShares that provide access.

// dirpaths: An array of strings that are the file system-relative paths

// to the shared directory or file

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemSharesAndSharedPathsOnServer(

 IN REF CIM_FileSystem $fs,

 IN REF CIM_ComputerSystem $server,

 OUT REF CIM_FileShare $shares[],

 OUT string #dirpaths[])

{

 REF CIM_FileShares $allshares->[] = Associators($fs,

 “CIM_SharedElement”,

 “CIM_FileShare”,

 “SystemElement”,

 “SameElement”);

 #counter = 0;

 if ($allshares->[] != null && $allshares->[].length > 0) {

 for (#i in $shares->[]) {

 // A share must be hosted

 $host = AssociatorNames($allshares->[#i],

 “CIM_HostedShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 // Is this share hosted by the server?

 if ($host == $server) {

 $assoc = References($allshares->[#i],

 “CIM_SharedElement”,
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 123

Filesystem Profile NO_ANSI_ID
 “CIM_FileSystem”,

 “SameElement”,

 “SystemElement”)->[0];

 $shares[#counter] = $allshares->[#i];

 $dirpaths[#counter] = $assoc.PathName;

 #counter++;

 }

 }

 }

 return #counter;

}

EXPERIMENTAL

8.7 Registered Name and Version
Filesystem version 1.3.0

8.8 CIM Elements
Table 85 describes the CIM elements for Filesystem.

Table 85 - CIM Elements for Filesystem

Element Name Requirement Description

8.8.1 CIM_Dependency (Uses Directory
Services From)

Conditional Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is
either "Required" or "Optional". Associates a
ComputerSystem that indicates a directory
service that supports the dependent
LocalFileSystem.

8.8.2 CIM_ElementSettingData (FileSystem) Optional Associates a LocalFileSystem to its
FileSystemSetting element.

8.8.3 CIM_ElementSettingData (Local Access
Required)

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.Associates a LocalFileSystem to
LocallyAccessibleFileSystemSetting
elements, one for each file server that has
local access.

8.8.4 CIM_FileStorage Mandatory Associates a LogicalFile (or Directory) to the
LocalFileSystem that contains it. This is
provided for backward compatibility with
previous versions of SMI-S.

8.8.5 CIM_FileSystemSetting Optional This element represents the configuration
settings of a filesystem represented by a
LocalFileSystem.
124

NO_ANSI_ID Filesystem Profile
8.8.6 CIM_HostedDependency (Local Access
Required)

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a file server
ComputerSystem to the
LocallyAccessibleFileSystemSetting elements
that get scoping information from that file
server.

8.8.7 CIM_HostedFileSystem
(LocalFileSystem)

Mandatory Associates a LocalFileSystem to the
ComputerSystem that hosts it.

8.8.8 CIM_LocalFileSystem Mandatory Represents a filesystem in a Filesystem
related profile.

8.8.9 CIM_LogicalFile Mandatory In an earlier release of SMI-S, the Filesystem
related profiles made a limited set of
LogicalFiles (or Directory subclass) instances
visible (these were any file or directory that
was exported as a share. This element is
required by the profiles to maintain backward
compatibility for clients conforming to earlier
versions of SMI-S.

8.8.10 SNIA_LocalAccessAvailable Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.Associates a LocalFileSystem to a file
server ComputerSystem that can export files
or directories as shares.

8.8.11 SNIA_LocalFileSystem Optional Represents a filesystem in a Filesystem
related profile.

8.8.12
SNIA_LocallyAccessibleFileSystemSetting

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.This element represents the
configuration settings of a LocalFileSystem
that can be made locally accessible (i.e., can
have a file or directory made accessible to
operational users) from a file server
ComputerSystem. This Setting provides
further details on the functionality supported
and the parameters of that functionality when
locally accessible.

Table 85 - CIM Elements for Filesystem

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 125

Filesystem Profile NO_ANSI_ID
8.8.1 CIM_Dependency (Uses Directory Services From)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either "Required" or "Optional".

Table 86 describes class CIM_Dependency (Uses Directory Services From).

8.8.2 CIM_ElementSettingData (FileSystem)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LocalFileSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a
Filesystem. PreviousInstance is optional, but
may be supplied by an implementation of the
Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LocalFileSystem AND
SourceInstance.CIM_LocalFileSystem::Opera
tionalStatus <>
PreviousInstance.CIM_LocalFileSystem::Ope
rationalStatus

Optional CQL -Change of Status of a Filesystem.
PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

Table 86 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services
From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s)
that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other
security principal identities is supported by the antecedent
ComputerSystem.

Table 85 - CIM Elements for Filesystem

Element Name Requirement Description
126

NO_ANSI_ID Filesystem Profile
Table 87 describes class CIM_ElementSettingData (FileSystem).

8.8.3 CIM_ElementSettingData (Local Access Required)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 88 describes class CIM_ElementSettingData (Local Access Required).

8.8.4 CIM_FileStorage

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 89 describes class CIM_FileStorage.

8.8.5 CIM_FileSystemSetting

Table 87 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem.

SettingData Mandatory The settings established on the LocalFileSystem when first
created or as modified.

Table 88 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access
Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified
when first created or established later.

Table 89 - SMI Referenced Properties/Methods for CIM_FileStorage

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile.

PartComponent Mandatory The LogicalFile contained in the LocalFileSystem.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 127

Filesystem Profile NO_ANSI_ID
Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 90 describes class CIM_FileSystemSetting.

Table 90 - SMI Referenced Properties/Methods for CIM_FileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A user-friendly name for this FileSystemSetting element.

ActualFileSystemTyp
e

Mandatory This identifies the type of filesystem that this
FileSystemSetting represents.

FilenameCaseAttribu
tes

Mandatory This specifies the support provided for using upper and
lower case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin Mandatory This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

NumberOfObjectsMa
x

Mandatory This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

NumberOfObjects Mandatory This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize Mandatory This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin Mandatory This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMax Mandatory This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[].

FilenameReservedC
haracterSet

Optional This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames of a
filesystem with this setting.

DataExtentsSharing Optional This specifies whether a filesystem with this setting
supports the creation of data blocks (or storage extents)
that are shared between files.
128

NO_ANSI_ID Filesystem Profile
8.8.6 CIM_HostedDependency (Local Access Required)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 91 describes class CIM_HostedDependency (Local Access Required).

8.8.7 CIM_HostedFileSystem (LocalFileSystem)

Created By: External

CopyTarget Optional This specifies that, if possible, support should be provided
for using a filesystem created with this setting as a target of
a Copy operation.

FilenameStreamFor
mats

Optional This is an array that specifies the stream formats (e.g.,
UTF-8) supported for filenames by a filesystem with this
setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported
by a filesystem with this setting.

SupportedLockingSe
mantics

Optional This array specifies the set of file access/locking semantics
supported by a filesystem with this setting.

SupportedAuthorizati
onProtocols

Optional This array specifies the kind of file authorization protocols
supported by a filesystem with this setting.

SupportedAuthentica
tionProtocols

Optional This array specifies the kind of file authentication protocols
supported by a filesystem with this setting.

Table 91 - SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access
Required)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that provides the scope for the
LocallyAccessibleFileSystemSetting.

Dependent Mandatory The local access settings of the LocalFileSystem,
established when first created or as modified later, that is
dependent on some information provided by the file server
that is the scoping ComputerSystem.

Table 90 - SMI Referenced Properties/Methods for CIM_FileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 129

Filesystem Profile NO_ANSI_ID
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 92 describes class CIM_HostedFileSystem (LocalFileSystem).

8.8.8 CIM_LocalFileSystem

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 93 describes class CIM_LocalFileSystem.

Table 92 - SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that hosts a LocalFileSystem.

PartComponent Mandatory The LocalFileSystem that represents the hosted filesystem.

Table 93 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

CSCreationClassNa
me

Mandatory The CIM class of the hosting ComputerSystemelement.

CSName Mandatory The Name property of the hosting ComputerSystem
element.

CreationClassName Mandatory The CIM class of this LocalFileSystem element.

Name Mandatory A unique name for this LocalFileSystem element in the
context of the hosting ComputerSystem.

OperationalStatus Mandatory The current operational status of the filesystem
represented by this LocalFileSystem element.

Root Optional A path that specifies the "mount point" of the filesystem in
an unitary computer system that is both the host of the
filesystem and is the file server that makes it available.

BlockSize Optional The size of a block in bytes for certain filesystem types that
require a fixed block size when creating a filesystem.

FileSystemSize Optional The total current size of the filesystem in blocks.

AvailableSpace Optional The space available currently in the filesystem in blocks.
NOTE: This value is an approximation as it can vary
continuously when the filesystem is in use.
130

NO_ANSI_ID Filesystem Profile
8.8.9 CIM_LogicalFile

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 94 describes class CIM_LogicalFile.

ReadOnly Optional Indicates that this is a read-only filesystem that does not
allow modifications to contained files and directories.

EncryptionMethod Optional Indicates if files are encrypted by the filesystem
implementation and the method of encryption.

CompressionMethod Optional Indicates if files are compressed by the filesystem
implementation before being stored, and the methods of
compression.

CaseSensitive Mandatory Whether this filesystem is sensitive to the case of
characters in filenames.

CasePreserved Mandatory Whether this filesystem implementation preserves the case
of characters in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames by the filesystem
implementation.

MaxFileNameLength Mandatory The length of the longest filename supported by the
filesystem implementation.

FileSystemType Mandatory This is a string that matches
FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE:
This value is an approximation as it can vary continuously
when the filesystem is in use.

Table 94 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes

CSCreationClassNa
me

Mandatory Class Name of the ComputerSystem that hosts the
filesystem containing this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the
filesystem containing this file.

FSCreationClassNa
me

Mandatory Class Name of the LocalFileSystem that represents the
filesystem containing this file.

Table 93 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 131

Filesystem Profile NO_ANSI_ID
8.8.10 SNIA_LocalAccessAvailable

Created By: External
Modified By: Static
Deleted By: External
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 95 describes class SNIA_LocalAccessAvailable.

8.8.11 SNIA_LocalFileSystem

FSName Mandatory The Name property of the LocalFileSystem that represents
the filesystem containing this file.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents
the file.

Name Mandatory The Name property of the LogicalFile that represents the
file.

ElementName Mandatory The pathname from the root of the containing
LocalFileSystem to this LogicalFile. The root of the
LocalFileSystem is indicated if this is NULL or the empty
string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of
directories from the root, the separator string is specified by
the SNIA_LocalFileSystem.PathNameSeparatorString
property.

Table 95 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement Description & Notes

LocalAccessPoint Optional The name used by the file server ComputerSystem to
identify the filesystem. Sometimes referred to as a mount-
point.

For many UNIX-based systems, this will be a qualified full
pathname.

For Windows systems this could also be the drive letter
used for the LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file
server ComputerSystem.

FileServer Mandatory The ComputerSystem that will be able to export shares
from this LocalFileSystem.

Table 94 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes
132

NO_ANSI_ID Filesystem Profile
Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 96 describes class SNIA_LocalFileSystem.

8.8.12 SNIA_LocallyAccessibleFileSystemSetting

Created By: External
Modified By: External
Deleted By: External

Table 96 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes

LocalAccessDefinitio
nRequired

Mandatory This boolean property indicates whether or not this
LocalFileSystem must be made locally accessible
("mounted") from a file server ComputerSystem before it
can be shared or otherwise made available to operational
clients.

PathNameSeparator
String

Mandatory This indicates the string of characters used to separate
directory components of a canonically formatted path to a
file from the root of the filesystem. This string is expected to
be specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we
make it possible for a client to parse a pathname into the
hierarchical sequence of directories that compose it.

DirectoryServiceUsa
ge

Optional This enumeration indicates whether the filesystem
supports security principal information and therefore
requires support from a file server that uses one or more
directory services. If the filesystem requires such support,
there must be a concrete subclass of Dependency between
the LocalFileSystem element and the specified file server
ComputerSystem. The values supported by this property
are:

 "Not Used" indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

 "Optional" indicates that the filesystem may support
security principal information. If it does, it will require
support from a directory service and the Dependency
association described above must exist.

 "Required" indicates that the filesystem supports security
principal information and will require support from a
directory service. The Dependency association described
above must exist.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 133

Filesystem Profile NO_ANSI_ID
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 97 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 97 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a
LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this
LocallyAccessibleFileSystemSetting element.

InitialEnabledState Optional InitialEnabledState is an integer enumeration that indicates
the enabled/disabled states initially set for a locally
accessible filesystem (LAFS). The element functions by
passing commands onto the underlying filesystem, and so
cannot indicate transitions between requested states
because those states cannot be requested. The following
text briefly summarizes the various enabled/disabled initial
states:

 Enabled (2) indicates that the element will execute
commands, will process any queued commands, and will
queue new requests.

 Disabled (3) indicates that the element will not execute
commands and will drop any new requests.

 In Test (7) indicates that the element will be in a test state.

 Deferred (8) indicates that the element will not process any
commands but will queue new requests.

 Quiesce (9) indicates that the element is enabled but in a
restricted mode. The element's behavior is similar to the
Enabled state, but it only processes a restricted set of
commands. All other requests are queued.

OtherEnabledState Optional A string describing the element's initial enabled/disabled
state when the InitialEnabledState property is set to 1
("Other"). This property MUST be set to NULL when
InitialEnabledState is any value other than 1.

FailurePolicy Optional An enumerated value that specifies if the operation to
make a filesystem locally accessible to a scoping
ComputerSystem should be attempted one or more times
in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by
the corresponding RetriesMax property of the setting.

RetriesMax Optional An integer specifying the maximum number of attempts
that should be made by the scoping ComputerSystem to
make a LocalFileSystem locally accessible. A value of '0'
specifies an implementation-specific default.
134

NO_ANSI_ID Filesystem Profile
RequestRetryPolicy Optional An enumerated value representing the policy that is
supported by the operational file server on a request to the
operational filesystem that either failed or left the file server
hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout
happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried
repeatedly until stopped.

TransmissionRetries
Max

Optional An integer specifying the maximum number of
retransmission attempts to be made from the operational
file server to the operational filesystem when the
transmission of a request fails or makes the file server
hang. A value of '0' specifies an implementation-specific
default. This is only relevant if there is a transmission
channel between the file server and the underlying
filesystem.

RetransmissionTime
outMin

Optional An integer specifying the minimum number of milliseconds
that the operational file server must wait before assuming
that a request to the operational filesystem has failed. '0'
indicates an implementation-specific default. This is only
relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions Optional An enumerated value that specifies if a local cache is
supported by the operational file server when accessing the
underlying operational filesystem.

BuffersSupport Optional An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for
accessing the underlying operational filesystem." If
supported, other properties will establish the level of
support. If the property is NULL or the empty array,
buffering is not supported.

ReadBufferSizeMin Optional An integer specifying the minimum number of bytes that
must be allocated to each buffer used for reading. A value
of '0' specifies an implementation-specific default.

ReadBufferSizeMax Optional An integer specifying the maximum number of bytes that
may be allocated to each buffer used for reading. A value of
'0' specifies an implementation-specific default.

WriteBufferSizeMin Optional An integer specifying the minimum number of bytes that
must be allocated to each buffer used for writing. A value of
'0' specifies an implementation-specific default.

WriteBufferSizeMax Optional An integer specifying the maximum number of bytes that
may be allocated to each buffer used for writing. A value of
'0' specifies an implementation-specific default.

Table 97 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 135

Filesystem Profile NO_ANSI_ID
AttributeCaching Optional An array of enumerated values that specify whether
attribute caching is (or is not) supported by the operational
file server when accessing specific types of objects from
the underlying operational filesystem. The object type and
the support parameters are specified in the corresponding
AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

 Object types contained by a filesystem that can be
accessed locally are represented by an entry in these
arrays. The entry in the AttributeCaching array can be 'On',
'Off', or 'Unknown'. Implementation of this feature requires
support from other system components, so it is quite
possible that specifying 'On' may still not result in caching
behavior. 'Unknown' indicates that the access operation will
try to work with whatever options the operational file server
and filesystem can support. In all cases,
AttributeCachingTimeMin and AttributeCachingTimeMax
provide the minimum and maximum time for which the
attributes can be cached. When this Setting is used as a
Goal, the client may specify 'Unknown', but the Setting in
the created object should contain the supported setting,
whether 'On' or 'Off'.

AttributeCachingObje
cts

Optional An array of enumerated values that specify the attribute
caching support provided to various object types by the
operational file server when accessing the underlying
operational filesystem. These", types represent the types of
objects stored in a filesystem -- files and directories as well
as others that may be defined in the future. The
corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object. 'None'
and 'All' cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither
'None' or 'All' are specified, the caching settings for other
objects are defaulted by the implementation. If 'Rest' is
specified, the entry applies to all known object types other
than the named ones. If 'Unknown' is specified it applies to
object types not known to this application (this can happen
when foreign filesystems are made locally accessible).

AttributeCachingTime
Min

Optional An array of integers specifying, in milliseconds, the
minimum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of '0' indicates an implementation-specific default.

Table 97 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
136

NO_ANSI_ID Filesystem Profile
AttributeCachingTime
Max

Optional An array of integers specifying, in milliseconds, the
maximum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of '0' indicates an implementation-specific default.

ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy
set on the operational filesystem and supported by the
operational file server when accessing it. 'Read Only'
specifies that the access to the operational filesystem by
the operational file server is set up solely for reading.
'Read/Write' specifies that the access to the operational
filesystem by the operational file server is set up for both
reading and writing. 'Force Read/Write' specifies that
'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is
intended for use when the associated filesystem has been
made 'Read Only' by default, as might happen if it were
created to be the target of a Synchronization or Mirror
operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be
enforced on the operational filesystem by the operational
file server when accessing it. 'Enforce None' does not
enforce locks. 'Enforce Write' does not allow writes to
locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStar
t

Optional An enumerated value that specifies if local access from the
operational file server to the operational filesystem should
be enabled when the file server is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to
elements contained in the operational filesystem. The
provider is expected to surface this access using the CIM
privilege model.

Table 97 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 137

Filesystem Profile NO_ANSI_ID
STABLE

ExecutePref Optional An enumerated value that specifies if support should be
provided on the operational file server for executing
elements contained in the operational filesystem accessed
through this local access point. This may require setting up
specialized paging or execution buffers either on the
operational file server or on the operational filesystem side
(as appropriate for the implementation). Note that this does
not provide any rights to actually execute any element but
only specifies support for such execution, if permitted.

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access
by appropriately privileged System Administrative users on
the operational file server ('root' or 'superuser') to the
operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege
model.

 Support for the privileged access might require setup at
both the operational file server as well as the operational
filesystem, so there is no guarantee that the request can be
satisfied.

Table 97 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
138

NO_ANSI_ID Filesystem Manipulation Subprofile
EXPERIMENTAL

Clause 9: Filesystem Manipulation Subprofile

9.1 Description

9.1.1 Synopsis

Profile Name: Filesystem Manipulation

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.13

Central Class: FileSystemConfigurationService

Scoping Class: ComputerSystem

9.1.2 Overview

The Filesystem Manipulation Profile is a subprofile provides support for configuring and manipulating filesystems in
the context of Filesystem Profiles (currently consisting of the NAS Head and the Self Contained NAS profiles). A
number of other profiles and subprofiles make use of elements of the Filesystem profiles and will be referred to in
this specification as “Filesystem related profiles” -- these include but are not limited to the Filesystem subprofile,
File Export subprofile, File Export Manipulation subprofile, NAS Head profile, and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are described
in Annex A: (Informative) State Transitions from Storage to File Shares.

9.1.2.1 Backward Compatibility Note
This profile has seen some incompatible changes from SMI-S 1.1. It is still "Experimental". Three major changes to
the methods CreateFileSystem and ModifyFileSystem are intended to accommodate requirements from a
proposed Hosted Filesystem profile (now postponed to a future release of SMI-S) and to support the local access
("mount") related changes. First, SMI-S now allows a LocalFileSystem to be built at the same time that the
LogicalDisk(s) are built; previously, a LogicalDisk had to be built first in an independent operation; second, multiple
LogicalDisks can be specified in the method parameters and these are combined into a single LogicalDisk using
the Volume Composition subprofile -- the old methods only supported a single LogicalDisk, which is still supported
as a special case of the new method. Third, SMI-S now supports parameters that make the LocalFileSystem
immediately available locally (i.e., "mount"-ed) at a File Server-provided pathname; the previous version assumed
that this would be done in a vendor-specific default. Both these extensions in functionality are optional on new
properties specified in the FileSystemSetting and LocalFileSystem, and the SMI-S 1.1 behavior is supported by the
default values of these properties.

9.1.3 Instance Diagrams

9.1.3.1 Filesystem Creation classes and associations
Figure 13 illustrates the constructs involved with creating a LocalFileSystem for a Filesystem Profile. This
summarizes the mandatory classes and associations for this subprofile. Specific areas are discussed in later
sections.
SMI-S 1.3.0 Rev 6 SNIA Technical Position 139

Filesystem Manipulation Subprofile NO_ANSI_ID
If a Filesystem-related Profile supports the Filesystem Manipulation Subprofile, it shall have at least one instance
of the FileSystemConfigurationService. This service shall be hosted on the top level ComputerSystem of the
Filesystem-related Profile. The methods offered are CreateFileSystem, ModifyFileSystem, and DeleteFileSystem.

Figure 13 - LocalFileSystem Creation Instance Diagram

Filesystem Manipulation Subprofile

 Filesystem Subprofile

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

CreateGoal()

FileSystemConfigurationService

CreateFileSystem()
DeleteFileSystem()
ModifyFileSystem()

FileSystemSetting

See below

ElementCapabilities
Characteristics={“Default”}

FileSystemSetting

See below

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

SupportedObjectTypes[]
CreateGoalSettings()

GetRequiredStorageSize()

LocalFileSystem

StoragePool

AllocatedFromStoragePool

ElementSettingData

FileSystemSetting

...

SettingsDefineCapabilities

ComputerSystem

Dedicated=24|25
Filesystem Host

HostedFileSystem

HostedService

ElementCapabilities

FileSystemConfigurationCapabilities

ActualFileSystemTypesSupported[]
SynchronousMethods[]
AsynchronousMethods[]

InitialAvailability

ElementCapabilities

LogicalDisk

ResidesOnExtent

SharedElement

ComputerSystem

Dedicated=16
File Server

File Export Subprofile

LocalAccessAvailable
(Optional)

HostedDependency
(Conditional)

FileShare

HostedShare

ElementSettingData
(Conditional)

LocallyAccessibleFileSystemCapabilities
(Optional)

CreateGoalSettings()

SettingsDefineCapabilities

LogicalFile
(BC 1.1)

FileStorage
(BC 1.1)

ConcreteDependency
(BC 1.1)

HostedDependency
(optional)

File Storage Subprofile

ElementCapabilities
(optional)

Dependency
(Conditional)

NAS Head/SC NAS (1.2)
File Server Management (1.3)

LocallyAccessibleFileSystemSetting
(Optional)
See below

LocallyAccessibleFileSystemSetting
(Conditional)

Block Services (Read-only)
140

NO_ANSI_ID Filesystem Manipulation Subprofile
Associated to the FileSystemConfigurationService (via ElementCapabilities) shall be one instance of
FileSystemConfigurationCapabilities that describes the capabilities of the service. It identifies the methods
supported, whether the methods support Job Control or not, the types of filesystems that are supported, and
whether or not the filesystem shall be made operationally available after creation.

For each type of filesystem that can be created, there shall be one FileSystemCapabilities element that defines the
range of capabilities supported for that particular filesystem type. An ElementCapabilities association links each
FileSystemCapabilities to the FileSystemConfigurationService. One of these FileSystemCapabilities may also be
identified as a default capability (by setting “Default” as one of the entries in the array property Characteristics of its
ElementCapabilities association). This default FileSystemCapabilities element is used when the client does not
specify a goal element when requesting the CreateFileSystem method. The default FileSystemCapabilities
element implicitly indicates the default filesystem type to be used for creation.

For the convenience of clients a Filesystem Manipulation profile may populate a set of “pre-defined”
FileSystemSettings for each of the FileSystemCapabilities. These shall be associated to the
FileSystemCapabilities via the SettingsDefineCapabilities association (the association must have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and the
SettingsDefineCapabilities.ValueRole property must include "Supported" as an entry) and shall be for the same
filesystem type as the associated capabilities element (same value for the ActualFileSystemType property in both
classes).

Note: That they are pre-defined and exist at all times does not imply that these FileSystemSettings must be
made persistent by the implementation -- rather it should be possible for the implementation to
regenerate them if requested, though a simple re-generating implementation may not necessarily
scale.

The FileSystemCapabilities element supports two methods: CreateGoalSettings and GetRequiredStorageSize.
These methods are described in detail in 9.5.1, "Extrinsic Methods of the Profile", but their basic function is to
establish at least one client-approved FileSystemSettings element (as a goal) and to determine the size of the
LogicalDisk required to support the desired Filesystem.

CreateGoalSettings takes an array of embedded-instance SettingData elements as the input
TemplateGoalSettings and SupportedGoalSettings parameters and can generate an array of embedded-instance
SettingData elements as the output SupportedGoalSettings parameter. However, in this profile, SMI-S only uses a
single embedded-instance FileSystemSetting element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded-instance FileSystemSetting element as output
(SupportedGoalSettings). If a client supplies a NULL (or the empty string) FileSystemSetting as input to this
method, the returned FileSystemSetting embedded-instance shall be a default setting for the
ActualFileSystemType of the FileSystemCapabilities. If the input (the embedded-instance FileSystemSetting
element) is not NULL, the method may return a “best fit” to the requested setting. The client may iterate on this
method until it acquires a setting that suits its needs. This embedded-instance settings structure may be used
when the CreateFileSystem or ModifyFileSystem methods are invoked. The details of how iterative negotiation can
work are discussed in 9.5.1.1, "FileSystemCapabilities.CreateGoalSettings". Note that the FileSystemType
remains unchanged in all of these interactions. It is an error if the client or server changes the FileSystemType
unilaterally.

Note: It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back
mechanism is needed. This profile does not require negotiation -- an implementation may support only
a set of pre-defined correlated point settings that a client can preload and use without modification. The
implementation could also support only settings whose properties are selectable from an arithmetic
progression or from a fixed enumeration, so that the client may construct a goal setting that is
guaranteed to be supported without negotiation.

Note: That a client has obtained a goal setting supported by the implementation does not guarantee that a
create or modify request will succeed. Such a setting only specifies a supported static configuration not
that the current dynamic environment has the resources to implement a specific request.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 141

Filesystem Manipulation Subprofile NO_ANSI_ID
After obtaining a goal FileSystemSetting, the next step is to determine the LogicalDisk size required to support the
FileSystemSetting. This is done by invoking the FileSystemCapabilities.GetRequiredStorageSize method of this
subprofile. The inputs are the embedded-instance FileSystemSetting structure and an embedded-instance
StorageSetting structure that describes the quality of service the client wants for the storage (e.g., data
redundancy, package redundancy, etc.). The method returns three numbers corresponding to the StorageSetting:
the expected size, the minimum size, and a maximum usable size. The client would use these numbers in
specifying or evaluating the appropriate LogicalDisk(s) on which to create the FileSystem. The method also returns
as output the actual StorageSetting used as an EmbeddedInstance structure (assuming that these can be
substituted for the input StorageSetting).

Note: This profile recommends that GetRequiredStorageSize() be used only if a LocalFileSystem is to be
created on a single LogicalDisk. If the intent is to use more than one LogicalDisk for the
LocalFileSystem, this profile recommends using the CreateFileSystem method to make the
implementation create or select the LogicalDisks to use.

• Armed with the FileSystem goal (the embedded-instance FileSystemSetting structure) and one or more
LogicalDisks, the client can now use the CreateFileSystem method to create the filesystem. The
CreateFileSystem method creates a LocalFileSystem instance, and a new FileSystemSetting instance as well
as several necessary associations. These associations are:

• HostedFileSystem association between the LocalFileSystem and the ComputerSystem that hosts it

• ResidesOnExtent association between the Filesystem and one of the LogicalDisk(s) for the Filesystem data

Note: Even when multiple LogicalDisks are created or used for the LocalFileSystem, only one LogicalDisk will
have the ResidesOnExtent association.

• ElementSettingData to associate the Filesystem to the FileSystemSetting defined for it

CreateFileSystem allows LogicalDisks to be obtained from a number of StoragePools using an array of embedded-
instance StorageSettings. The CreateFileSystem implementation must use the capabilities of the StoragePools
(and the associated StorageConfigurationService) to create the necessary LogicalDisks. The LogicalDisks used for
this purpose are returned as output values for the InExtents parameter.

If the property FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that CreateFileSystem
method provides the optional parameters for establishing local access ("mounting") from file server
ComputerSystems, the LocalFileSystem.LocalAccessDefinitionRequired will be set to true and the
LocalFileSystem will need to be made locally accessible from the specified file server ComputerSystems. The
following elements are created:

• A LocalAccessAvailable association representing local access by a file server ComputerSystem to the
LocalFileSystem from within its namespace is created using the provided (or defaulted)
LocallyAccessibleFileSystemSetting parameter (as an EmbeddedInstance parameter). This association goes
between the File Server ComputerSystem and the LocalFileSystem; its LocalAccessPoint property specifies
the local access point (or "mount-point") in the file server ComputerSystem.

• An instance of LocallyAccessibleFileSystemSetting is optionally created and associated to:

• The LocalFileSystem via an optional ElementSettingData association.

• The file server ComputerSystem via an optional HostedDependency (ScopedSetting) association (this
represents that a LocalFileSystem could be mounted on many file server ComputerSystems with different
"mount" parameters, so these parameters are specific to the pair of LocalFileSystem and file server
ComputerSystem).

• For backward compatibility with the SMI-S 1.1 Filesystem subprofile:

• The root directory of the LocalFileSystem is represented as a LogicalFile
142

NO_ANSI_ID Filesystem Manipulation Subprofile
• A FileStorage association is created between the LogicalFile and the LocalFileSystem

The DeleteFileSystem method is straightforward -- it deletes the LocalFileSystem and the FileSystemSetting, and
the associations to those instances (HostedFileSystem, both ElementSettingData elements, ResidesOnExtent,
LocalAccessAvailable, and LocallyAccessibleFileSystemSetting). Any created LogicalFiles associated to the
LocalFileSystem via FileStorage will also be deleted as a side-effect of deleting the LocalFileSystem (so there is no
separate requirement necessary for backward compatibility to the SMI-S 1.1 Filesystem subprofile). The
implementation may delete the LogicalDisk(s), however, this is not required by this profile. If the LogicalDisk(s) are
not deleted, they become available for use in another CreateFileSystem operation.

The ModifyFileSystem method modifies an existing LocalFileSystem -- this requires a new FileSystemSetting
structure to be used as a goal. But not any FileSystemSetting structure will do -- the client must use one created
with the same FileSystemCapabilities.CreateGoalSettings method that would have been used to create the
Filesystem, or an appropriate compatible FileSystemCapabilities instance. The CreateGoalSettings method is
used to establish a new FileSystemSetting goal (as with the original Filesystem creation, it may be necessary to
iterate on the CreateGoalSettings method). Since only properties controlled by Settings can be changed by
ModifyFileSystem (i.e., the LogicalDisk(s) already created cannot be changed, though new ones can be created
and/or added), the effect of ModifyFileSystem is to change some properties of the LocalFileSystem or of the
associated FileSystemSetting.

Note: Depending on what property is being modified, it may also be necessary to invoke the
GetRequiredStorageSize method to verify that the current LogicalDisk still supports the new goals.

9.1.3.1.1 Dependency on support for Locally Accessible Filesystem Capabilities
Both CreateFileSystem and ModifyFileSystem need a LocallyAccessibleFileSystemSetting element for each file
server ComputerSystem. The client first obtains a LocallyAccessibleFileSystemCapabilities element by following
ElementCapabilities association from the FileSystemConfigurationService to a
LocallyAccessibleFileSystemCapabilities that is associated via ScopedCapabilities (HostedDependency) to the
File Server ComputerSystem.

Note: It is expected that there will only be one LocallyAccessibleFileSystemCapabilities element per file
server ComputerSystem. All the variability can be found by following SettingsDefineCapabilities to
LocallyAccessibleFileSystemSetting elements. It is a requirement that the
LocallyAccessibleFileSystemSettings that define the LocallyAccessibleFileSystemCapabilities be
associated via HostedDependency (ScopedSetting) to the same file server ComputerSystem as the
one indicated by the HostedDependency (ScopedCapabilities).

The client calls LocallyAccessibleFileSystemCapabilities.CreateGoalSettings() with the appropriate parameters.to
obtain an appropriate LocallyAccessibleFileSystemSetting element -- CreateGoalSettings can be used to negotiate
if necessary.

9.1.3.1.2 Dependency on support for Directory Services
A filesystem may support security principal identifiers associated with filesystem objects for access (typically, read/
write/execute) as well as for tracking usage (as would be needed for supporting user and/or group quotas). If the
filesystem supports such identifiers, it would requires support from a directory service for validating these identifiers
(relating them to accounts and other user-related information). Operationally, computer systems (and not
filesystems) are associated to directory services or configured for directory services. Directory service
configurations of computer systems are much more complex than needed or appropriate for filesystems. This
makes it easier to make the filesystem depend on a computer system, usually a file servier, for providing access to
directory services for resolving security principal identifiers.

A filesystem that requires support from a directory service will have the property.DirectoryServicesUsage of its
LocalFileSystem element set to ”Required”. In that case, there shall be a Dependency association between the
LocalFileSystem element and a file server ComputerSystem.element (with Dedicated=”16”). The associated file
server must be configured for access to directory services that it provides for the filesystem.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 143

Filesystem Manipulation Subprofile NO_ANSI_ID
Note: If DirectoryServicesUsage is “Optional”, a client can look for the Dependency association to determine
if the filesystem supports security principal identifiers. This is not supported in this release of the
profile.

9.1.3.1.3 Summary of this profile
This profile consists of the following classes, associations, and methods:

3) One LocallyAccessibleFileSystemCapabilities scoped to the file server ComputerSystem

4) ElementCapabilities association to the FileSystemConfigurationService

5) SettingsDefineCapabilities association to LocallyAccessibleFileSystemSetting

6) LocallyAccessibleFileSystemSetting for defining LocallyAccessibleFileSystemCapabilities

7) HostedDependency (ScopedSetting) association from the File Server ComputerSystem to LocallyAccessi-
bleFileSystemSetting

8) A HostedDependency association from the same file server ComputerSystem to the defined LocallyAccessi-
bleFileSystemCapabilities

9) LocallyAccessibleFileSystemCapabilities.CreateGoalSettings extrinsic method to create LocallyAccessible-
FileSystemSetting elements scoped to the file server ComputerSystem to use as Goals. Note that this
method is different from the method described as part of the FileSystemCapabilities element.

10) A Dependency association from the LocalFileSystem element to a file server ComputerSystem.
144

NO_ANSI_ID Filesystem Manipulation Subprofile
9.1.3.2 Finding FileSystem Configuration Services, Capabilities and Pre-defined Settings
When creating a filesystem the first step is to determine what can be created. Figure 14 illustrates an instance
diagram showing the instances that shall exist for supporting filesystem creation.

At least one FileSystemConfigurationService shall exist if the Filesystem profile has implemented the Filesystem
Manipulation Subprofile. The instance(s) of this service can be found by following the HostedService association
filtering on the target class of FileSystemConfigurationService.

Note: If no service is found from the Top Level ComputerSystem, the client should look for component
computer systems that may be hosting the service. This is not recommended, but permitted for
backward compatibility with SMI-S 1.1.

An instance of the FileSystemConfigurationCapabilities shall be associated to the FileSystemConfigurationService
via the ElementCapabilities association. A client should follow this association (filtering on the result value of
"FileSystemConfigurationCapabilities") to inspect the configuration capabilities that are supported. The client would
choose between the filesystem types specified in the array property SupportedActualFileSystemTypes.

Figure 14 - Capabilities and Settings for Filesystem Creation

File System Manipulation Subprofile Capabilities/Settings

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

CreateGoal()

FileSystemConfigurationService

CreateFileSystem()
DeleteFileSystem()
ModifyFileSystem()

FileSystemSetting

ElementCapabilities

FileSystemSetting

FileSystemCapabilities

ActualFileSystemType
SupportedProperties[]

SupportedObjectTypes[]
CreateGoalSettings()

GetRequiredStorageSizes()

StoragePool

AllocatedFromStoragePool

LogicalDisk

SettingsDefineCapabilities

ComputerSystem

HostedService

ElementCapabilities

FileSystemConfigurationCapabilities

ActualFileSystemTypesSupported[]
SynchronousMethods[]
AsynchronousMethods[]

InitialAvailability
LocalAccessOptions

ElementCapabilities

StorageSetting

ElementSettingData

LocallyAccessibleFileSystemSetting
(Conditional)

ElementSettingData
(Conditional)

LocalAccessAvailable
(Optional)

ScopedSetting
(Conditional)

ComputerSystemLocalFileSystem

LocalAccessDefinitionRequired

ResidesOnExtent

ElementSettingData

LocallyAccessibleFileSystemCapabilities
(Conditional)

CreateGoalSettings()

ElementCapabilities
(Conditional)

LocallyAccessibleFileSystemSetting
(optional)

SettingsDefineCapabilities
(Optional)

ScopedSetting
(optional)

ScopedCapabilities
(optional)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 145

Filesystem Manipulation Subprofile NO_ANSI_ID
For each entry in the SupportedActualFileSystemTypes array, there shall be one instance of
FileSystemCapabilities with the same value for the ActualFileSystemType property that shall be associated to the
FileSystemConfigurationService using the ElementCapabilities association (filtering on the result value of
FileSystemCapabilities). This FileSystemCapabilities element shall specify the supported capabilities for that
ActualFileSystemType using a collection of FileSystemSettings. These FileSystemSettings shall be associated to
the FileSystemCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined FileSystemSettings that clients could use directly if desired.
The SettingsDefineCapabilities association from the FileSystemCapabilities to the pre-defined FileSystemSettings
shall have the PropertyPolicy property be "Correlated", the ValueRole property be "Supported" and the
ValueRange property be "Point". Other pre-defined combinations of property values may be specified by
FileSystemSettings whose SettingsDefineCapabilities association has the PropertyPolicy be "Independent",
ValueRole property be "Supported" and the ValueRange array property contain "Minimums", "Maximums", or
"Increment" (see 9.5.1.1.1 for further details on the interpretation of the ValueRange property). These settings can
be used by the client to compose FileSystemSettings that are more likely to be directly usable.

9.2 Health and Fault Management Considerations
The key element of this profile is the FileSystemConfigurationService and the hosting ComputerSystem. The
operational status of the hosting ComputerSystem should possibly be part of the referring autonomous profile
(NAS Head or SC NAS), the Filesystem sub-profile or in the Multiple Computer System sub-profile.

9.2.1 OperationalStatus for FileSystemConfigurationService

9.2.2 OperationalStatus for LocalFileSystem

Table 98 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description

2 “OK” The filesystem has good status

2 “OK” 4 “Stressed” The filesystem resources are
stressed

2 “OK” 5 “Predictive Failure” The filesystem might fail
because some resource or
component is predicted to fail

2 “OK” 16 “Supporting Entity in Error” The filesystem may be OK, but
is not accessible because a
supporting entity is not
accessible.

3 “Degraded” The filesystem is operating in a
degraded mode. This could be
due to the health state of the
underlying storage being
degraded or in error.
146

NO_ANSI_ID Filesystem Manipulation Subprofile
6 “Error” An error has occurred causing
the filesystem to become
unavailable. Operator
intervention through SMI-S
(managing the LocalFileSystem)
to restore the filesystem may be
possible.

6 “Error” An error has occurred causing
the filesystem to become
unavailable. Automated
recovery may be in progress.

6 “Error” 7 “Non-recoverable Error” The filesystem is not functioning.
Operator intervention through
SMI-S will not fix the problem.

6 “Error” 16 “Supporting Entity in Error” The filesystem is in an error
state because a supporting
entity is not accessible.

8 “Starting” The filesystem is in process of
initialization and is not yet
available operationally.

 9 “Stopping” The filesystem is in process of
stopping, and is not available
operationally.

10 “Stopped” The filesystem cannot be
accessed operationally because
it is stopped -- if this did not
happened because of operator
intervention or happened in real-
time, the OperationalStatus
would have been “Lost
Communication” rather than
“Stopped”.

11 “In Service” The filesystem is offline in
maintenance mode, and is not
available operationally.

13 “Lost Communications” The filesystem cannot be
accessed operationally -- if this
happened because of operator
intervention it would have been
“Stopped” rather than “Lost
Communication”.

Table 98 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 147

Filesystem Manipulation Subprofile NO_ANSI_ID
9.3 Cascading Considerations
Under Consideration for a future standard.

9.4 Supported Subprofiles and Packages
Table 99 describes the supported profiles for Filesystem Manipulation.

14 “Aborted” The filesystem is stopped but in
a manner that may have left it in
an inconsistent state.

15 “Dormant” The Filesystem is offline; and
the reason for not being
accessible is unknown.

Table 99 - Supported Profiles for Filesystem Manipulation

Registered Profile Names Mandatory Version

Job Control No 1.3.0

Filesystem Yes 1.3.0

Indication Yes 1.3.0

Volume Composition No 1.3.0

Table 98 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description
148

NO_ANSI_ID Filesystem Manipulation Subprofile
9.5 Methods of the Profile

9.5.1 Extrinsic Methods of the Profile

Table 100 - Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification

Method Created Instances Deleted Instances Modified Instances

FileSystemConfigurationService
.CreateFileSystem

LocalFileSystem
LogicalFile

FileSystemSetting
ElementSettingData

FileStorage
ResidesOnExtent
HostedFileSystem

LogicalDisk(s)
StorageSetting(s)

LocalAccessAvailable(s)
LocallyAccessibleFileSystem

Setting(s)
ElementSettingData(s)

HostedDependency
LogicalFile (BC 1.1)
FileStorage (BC 1.1)

Dependency

N/A StoragePool(s)
LogicalDisk(s)

FileSystemConfigurationService
.DeleteFileSystem

LocalFileSystem
LogicalFile

FileSystemSetting
ElementSettingData

FileStorage
ResidesOnExtent
HostedFileSystem

LocalAccessAvailable(s)
LocallyAccessibleFileSystem

Setting(s)
ElementSettingData(s)

HostedDependency
Dependency

N/A

FileSystemConfigurationService
.ModifyFileSystem

(IF REQUESTED)
LogicalDisk(s)

StorageSetting(s)
LocalAccessAvailable

LocallyAccessibleFileSystem
Setting

ElementSettingData(s)
HostedDependency

(if Local Access is modified)
LocalAccessAvailable

LocallyAccessibleFileSystem
Setting

ElementSettingData(s)
HostedDependency

FileSystemSetting (if
changed)

ResidesOnExtent (if
added)

FileSystemCapabilities.CreateG
oalSettings N/A N/A N/A

LocallyAccessibleFileSysstemC
apabilities.CreateGoalSettings N/A N/A N/A

FileSystemCapabilities.GetRequ
iredStorageSize N/A N/A N/A
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 149

Filesystem Manipulation Subprofile NO_ANSI_ID
9.5.1.1 FileSystemCapabilities.CreateGoalSettings
This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
FileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this method
to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
FileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and SupportedGoalSettings
are string arrays containing embedded instances of type FileSystemSetting. As such, these settings do not exist in
the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass previously
returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation
may determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are
the same. A client may infer from the same result that the TemplateGoalSettings must be modified.

9.5.1.1.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges with respect to the filesystem or the filesystem host. During
negotiation, the client will show the current state to the user -- the SupportedGoalSettings received to date (either
the latest or some subset), the TemplateGoalSettings proposed (the most recent, but possibly more). But the
administrator needs a representation of what is available, possibly the range or sets of values that the different
setting properties can take. Some decisions are assumed to have been made already, such as the type of
Filesystem to be created and the number of LogicalDisks to use and their StorageSettings. It is possible that the
LogicalDisks for use by this Filesystem have already been designated by the user; if not, the StoragePool(s) from
which they will be created is already designated or will be selected by an independent process.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified using FileSystemSettings -- these points can be
further qualified to indicate whether these are supported (or not), and even whether they represent some ideal
point in the space -- a "minimum", or a "maximum", or an "optimal" point. Other settings can provide ranges for
properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can be
specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client considers only the canned settings that are specified exactly. The canned settings are specified by the
FileSystemSettings that are associated to the FileSystemCapabilities via SettingDefinesCapabilities associa-
tion with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"
• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"
150

NO_ANSI_ID Filesystem Manipulation Subprofile
2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the FileSystemSettings that are associated to
the FileSystemCapabilities via SettingDefinesCapabilities association with the following property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

9.5.1.1.2 Signature and Parameters of FileSystemCapabilities.CreateGoalSettings

Table 101 - Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Parameter
Name

Qualifier Type Description & Notes

TemplateGoalSe
ttings[]

IN string EmbeddedInstance ("SNIA_FileSystemSetting")

TemplateGoalSettings is a string array containing
embedded instances of class FileSystemSetting, or
a derived class. This parameter specifies the
client’s requirements and is used to locate
matching settings that the implementation can
support.

SupportedGoalS
ettings[]

INOUT string EmbeddedInstance("SNIA_FileSystemSetting")

SupportedGoalSettings is a string array containing
embedded instances of class FileSystemSetting, or
a derived class. On input, it specifies a previously
returned set of Settings that the implementation
could support. On output, it specifies a new set of
Settings that the implementation can support. If the
output set is identical to the input set, both client
and implementation may conclude that this is the
best match for the TemplateGoalSettings that is
available.
If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method must
return "Alternative Proposed".
If the output is NULL, the method must return an
“Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout",
"Alternative Proposed"
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 151

Filesystem Manipulation Subprofile NO_ANSI_ID
9.5.1.2 GetRequiredStorageSize
This extrinsic method returns the minimum, expected, and maximum size for a LogicalDisk that would support a
Filesystem specified by the input FileSystemGoal parameter. The caller may provide relevant settings of the
LogicalDisk via the ExtentSetting parameter. The minimum, maximum, and expected sizes are returned as output
parameters.

If the input FileSystemGoal is NULL, the implementation may return an error or use a default FileSystemSetting
associated with this FileSystemCapabilities element. The actual FileSystemSetting used is returned as an OUT
parameter.

If the input ExtentSetting parameter is NULL or is an empty array, the implementation may use a default
StorageSetting associated with the StorageConfigurationService hosted on the same ComputerSystem as the
FileSystemConfigurationService associated with this FileSystemCapabilities element. The actual StorageSetting
used is returned as an OUT parameter.

Note: The actual FileSystemSetting and StorageSetting used are being returned as OUT parameters. This is
a non-backward-compatible change from SMI-S 1.1.

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 101 - Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Parameter
Name

Qualifier Type Description & Notes
152

NO_ANSI_ID Filesystem Manipulation Subprofile
9.5.1.2.1 Signature and Parameters of GetRequiredStorageSize

Table 102 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter
Name

Qualifier Type Description & Notes

FileSystemGoal INOUT, EI string EmbeddedInstance ("SNIA_FileSystemSetting")

FileSystemGoal is an Embedded Instance element
of class CIM_FileSystemSetting, or a derived
class, that specifies the settings for the FileSystem
to be created.
If NULL on input, a default for this
FileSystemCapabilities is used.
On output, this returns the actual
FileSystemSetting that was used.

ExtentSetting INOUT, EI string EmbeddedInstance("CIM_StorageSetting")

ExtentSetting is an Embedded Instance element of
class CIM_StorageSetting, or a derived class, that
specifies the settings for the LogicalDisk to be used
for building this FileSystem.
If NULL on input, a default StorageSetting will be
obtained from a StorageConfigurationService
hosted on the same ComputerSystem as this
FileSystemConfigurationService.
On output, this returns the actual StorageSetting
that was used.
If the output is NULL, the method must return an
“Failed”.

ExpectedSize OUT uint64 An integer that indicates the size of the storage
extent that this FileSystem is expected to need. An
entry value of 0 indicates that there is no expected
size.

MinimumSizeAc
ceptable

OUT uint64 An integer that indicates the size of the smallest
storage extent that would support the specified
FileSystem. A value of 0 indicates that there is no
minimum size.

MaximumSizeU
sable

OUT uint64 An integer that indicates the size of the largest
storage extent that would be usable for the
specified FileSystem. A value of 0 indicates that
there is no maximum size.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout"
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 153

Filesystem Manipulation Subprofile NO_ANSI_ID
9.5.1.3 LocallyAccessibleFileSystemCapabilities.CreateGoalSettings
This extrinsic method of the LocallyAccessibleFileSystemCapabilities class validates support for a caller-proposed
LocallyAccessibleFileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the
usage of this method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings
parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
LocallyAccessibleFileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
LocallyAccessibleFileSystemSetting. As such, these settings do not exist in the implementation but are the
responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation engage in a negotiation process that may require iterative calls to this method.
To assist the implementation in tracking the progress of the negotiation, the client may pass previously returned
values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation may
determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are the
same. A client may infer from the same result that the TemplateGoalSettings must be modified.

9.5.1.3.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges to the Filesystem. During negotiation, the client will show the current
state to the user -- the SupportedGoalSettings received to date (either the latest or some subset), the
TemplateGoalSettings proposed (the most recent, but possibly more). But the administrator needs a representation
of what is available, possibly the range or sets of values that the different setting properties can take. Some
decisions are assumed to have been made already, such as whether the local access is read-only or the file server
that is going to access the Filesystem.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified supported points in the space of properties -- these
points can be further qualified to indicate whether these are supported or not, or whether they represent some ideal
point in the space -- a "minimum", or a "maximum", or an "optimal" point. Other settings can provide ranges for
properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can be
specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 102 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter
Name

Qualifier Type Description & Notes
154

NO_ANSI_ID Filesystem Manipulation Subprofile
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
LocallyAccessibleFileSystemSetting elements that are associated to the LocallyAccessibleFileSystemCapa-
bilities via SettingDefinesCapabilities association with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"

• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the LocallyAccessibleFileSystemSetting ele-
ments that are associated to the LocallyAccessibleFileSystemCapabilities via SettingDefinesCapabilities
association with the following property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

Comparing the two CreateGoalSettings extrinsic methods of this profile, the
FileSystemCapabilities.CreateGoalSettings() can be significantly more complex than
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings(). The client can choose to implement a simpler
negotiation protocol for one -- this specification does not mandate the extent to which the client must use this
protocol.

9.5.1.3.2 Signature and Parameters of CreateGoalSettings

Table 103 - Parameters for Extrinsic Method
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings

Parameter
Name

Qualifier Type Description & Notes

TemplateGoalSe
ttings[]

IN string EmbeddedInstance
("SNIA_LocallyAccessibleFileSystemSetting")

TemplateGoalSettings is a string array containing
embedded instances of class
LocallyAccessibleFileSystemSetting, or a derived
class. This parameter specifies the client’s
requirements that is used to locate matching
settings that the implementation can support.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 155

Filesystem Manipulation Subprofile NO_ANSI_ID
9.5.1.4 FileSystemConfigurationService.CreateFileSystem
This extrinsic method creates a LocalFileSystem and returns it as the value of the parameter TheElement. The
desired settings for the LocalFileSystem are specified by the Goal parameter (a string-valued EmbeddedInstance
object of class FileSystemSetting).

Filesystem vendors differ in their models for creating a filesystem. Some vendors require that the storage element
already exist; others create the storage element at the same time as the filesystem. Some vendors require a local
access point ("mount-point") that supports defining a name or pathname that allows a file server to access the
filesystem; others do not require any such object (though it could be argued that they provide a default local access

SupportedGoalS
ettings[]

INOUT string EmbeddedInstance("SNIA_LocallyAccessibleFileS
ystemSetting")

SupportedGoalSettings is a string array containing
embedded instances of class
LocallyAccessibleFileSystemSetting, or a derived
class. On input, it specifies a previously returned
set of Settings that the implementation could
support. On output, it specifies a new set of
Settings that the implementation can support. If
the output set is identical to the input set, both
client and implementation may conclude that this is
the best match for the TemplateGoalSettings that is
available.
If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method must
return \"Alternative Proposed\".
If the output is NULL, the method must return an
“Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout",
"Alternative Proposed"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 103 - Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.Create-
GoalSettings (Continued)

Parameter
Name

Qualifier Type Description & Notes
156

NO_ANSI_ID Filesystem Manipulation Subprofile
mechanism). This extrinsic method supports variant mechanisms for specifying, at create time, storage element
creation as well as local access by a file server. The FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationServices contains the property BlockStorageCreationSupport that specifies support for
create-time storage element creation; the property LocalAccessibilitySupport that specifies support for local access
by a file server at creation; the property DirectoryServerParameterSupported that specifies support for specifying a
file server that provides access to a Directory Service (if enabled separarely).

To support backward compatibility with the SMI-S 1.1 Filesystem subprofile, an instance of Directory (a derived
class of LogicalFile) is created representing the root directory of the newly created filesystem. This Directory
element is associated to the LocalFileSystem via FileStorage.

A FileSystemSetting element that represents the settings of the LocalFileSystem (either identical to the Goal or
equivalent) shall be associated via ElementSettingData to the LocalFileSystem. The implementation shall create a
new FileSystemSetting for this purpose.

The output parameter TheElement shall contain a reference to the newly created LocalFileSystem. Even if this
operation does not complete but creates a job, an implementation may return a valid reference in TheElement. If
the job fails subsequently, it is possible for this reference to become invalid.

9.5.1.4.1 Specifying Storage Underlying the Filesystem
BlockStorageCreationSupport is an array of enumerated values that specifies if:

• An enumerated value that specifies whether the extrinsic methods may use an already existing LogicalDisk --
this is either required, optional, or not allowed. If "Not Allowed", the Pools and ExtentSettings parameters must
be used to create LogicalDisk(s) for this LocalFileSystem and the InExtents parameter must be NULL. If
"Optional", either the Pools and ExtentSettings parameters or the InExtents parameter should be specified, but
not both. If "Required", on the InExtents parameter may be specified and the Pools and ExtentSettings
parameters must be NULL.

• (optional) An integer that specifies an upper limit to the number of storage elements that can be specified,
either as InExtents parameters or as Pools and ExtentSettings.

• (optional) An integer that specifies the number of distinct storage pools that the Pools parameters can specify -
- zero, if Pools is not supported or if there is no limit, and a specific number if there is a limit. In practice it is
expected that the value will be either zero or one.

• (optional) A truth value represented as ’0’ for false and ’1’ for true that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating that a default setting is to be used).

The storage used for creating the LocalFileSystem is specified by the InExtents parameter that must be an array of
LogicalDisks. If InExtents is NULL and BlockStorageCreationSupport indicates that Pools are optional or required,
the parameter Pools must specify an array of StoragePools from which storage may be allocated -- the
requirements for the LogicalDisks allocated from this Pool is specified in the ExtentSettings array parameter. The
Pools may use an associated StorageConfigurationService. The LocalFileSystem is associated to one of the
LogicalDisk(s) via the ResidesOnExtent association. The other LogicalDisks extend the distinguished LogicalDisk
(as modeled by the Volume Composition Sub-Profile).

9.5.1.4.2 Specifying Local Access to the Filesystem
LocalAccessibilitySupport is an enumeration that specifies whether the implementation requires a local access
specification, or makes it optional (thus using a vendor default), or does not require one ("local access" does not
have a meaning for the vendor).

The LocalFileSystem shall be hosted on the same ComputerSystem as the FileSystemConfigurationService.

Note: The requirement that the LocalFileSystem have the same host as the Service is too restrictive but this
method can be extended in the future with a FileSystemHost parameter (implicitly NULL in 1.2).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 157

Filesystem Manipulation Subprofile NO_ANSI_ID
If LocalAccess is supported, whether optional or required, this method supports specifying one file server
ComputerSystem (the reference parameter FileServer) that is given local access to this Filesystem. If LocalAccess
is optional, the FileServer parameter may be NULL. The local access name on the FileServer is specified in the
LocalAccessPoint string parameter -- if the implementation uses pathnames, this will be formatted as a pathname
(directory names separated by the PathNameSeparatorString). The implementation could also use a differently
formatted local access name (for instance, a simple name). The settings to be used for this are specified in the
LocalAccessSetting, an EmbeddedInstance element of class LocallyAccessibleFileSystemSetting.

Note: If a second file server ComputerSystem is to be given local access, the ModifyFileSystem method
would be used.

Corresponding to the LocalAccessPoint parameter, a LocalAccessAvailable association instance and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

• The LocalAccessAvailable association goes between the FileServer parameter and the created
LocalFileSystem (TheElement parameter).

• The LocalAccessAvailable.LocalAccessPoints property is set to the value of the LocalAccessPoint string.

• The LocallyAccessibleFileSystemSetting element has an ElementSettingData association to the
LocalFileSystem (TheElement).

• The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

If LocalAccess is supported, the FileServer parameter should not be NULL.

Note: If it is NULL, the implementation may leave the filesystem operationally inaccessible -- however, this
can be corrected by calling the ModifyFileSystem method. This is not an Error.

If LocalAccess is supported and the FileServer parameter is not NULL, the LocalAccessPoint string may be NULL
or the empty string. In this case, the LocalAccessSetting parameter should indicate the implementation-specific
default format. The default value that is used is returned as the OUT value of the LocalAccessPoint parameter. It is
an Error if the LocalAccessSetting parameter does not provide an appropriate default mechanism for constructing
a local access name.

The LocalAccessSetting parameter will return an EmbeddedInstance of the LocallyAccessibleFileSystemSetting
actually used on output.

9.5.1.4.3 Specifying access to Directory Services
DirectoryServerParameterSupported is a property that specifies whether the filesystem must have access to a file
server that provides access to directory services so that security principal information may be supported. If the
newly created filesystem must be able to resolve such information, the DirectoryServer parameter must be
specified to the CreateFileSystem method.

The DirectoryServer parameter specifies a file server ComputerSystem that is configured to access a directory
service that resolves security principal identifies (UIDs, GIDs, or SIDs) used by the filesystem. This profile does
not specify the configuration of any directory service (if there is one), any directory server, or the file server that is
specified by the DirectoryServer parameter. For operational efficiency reasons, this must be a file server since
security principal information such as usage and detection of threshold violations must happen in real-time.

If the DirectoryServer is required and is specified, an association, a concrete subclass of Dependency, shall be
surfaced between the newly created LocalFileSystem element (as Dependent) and the specified file server (as
Antecedent). The CreateFileSystem method will return a reference to this file server as the return value of the
parameter. In this case, the LocalFileSystem.DirectoryServiceUsage property shall be set to “Supported”.

Any file server that is configured with write access to a filesystem must use the same or a compatible directory
service (effectively the same) as the file server indicated by the Dependency association.
158

NO_ANSI_ID Filesystem Manipulation Subprofile
9.5.2 Signature and Parameters of CreateFileSystem.

Table 104 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the FileSystem
being created. The value shall be stored in the
'ElementName' property for the created element.
This parameter shall not be NULL or the empty
string.

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

Goal IN, OUT, EI string EmbeddedInstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the
FileSystem. If NULL or the empty string, a default
FileSystemSetting shall be specified by the
FileSystemCapabiltiies element associated to the
FileSystemConfigurationService by the
DefaultElementCapabilities association. The actual
FileSystemSetting used is returned on output.

TheElement OUT, REF CIM_LocalFil
eSystem

The newly created FileSystem.

InExtents[] IN, OUT,
REF, NULL
allowed,

CIM_Logical
Disk

The LogicalDisk(s) on which the created
FileSystem shall reside. If this is NULL, the Pools
and ExtentSettings parameters cannot be NULL
and are used to create LogicalDisk(s). The
LogicalDisk(s) actually used will be returned on
output.

Pools[] IN, REF,
NULL
allowed

CIM_Storage
Pool

An array of concrete StoragePool elements
corresponding to the ExtentSettings parameter
from which to create LogicalDisks in case the
InExtents parameter is NULL. If InExtents is not
NULL, this must be NULL.

ExtentSettings[] IN, EI, NULL
Allowed

string EmbeddedInstance ("CIM_StorageSetting")

An array of embedded StorageSetting structures
that specify the settings to use for creating
LogicalDisks if the InExtents parameter is NULL
and Pools is specified. Each LogicalDisk will be
created from the corresponding entry in Pools, so
each StorageSetting entry must be supported by
the capabilities of the corresponding Pools entry.

Sizes[] IN, OUT,
NULL
Allowed

uint64 An array of numbers that specifies the size in bytes
of the LogicalDisks to be created corresponding to
the Pools and ExtentSettings parameters. The sum
of Sizes should be at least as much as (or greater
than) the FileSystem size needed.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 159

Filesystem Manipulation Subprofile NO_ANSI_ID
FileServer IN, OUT,
REF, NULL
Allowed

ComputerSy
stem

A reference to a ComputerSystem element that will
access the created LocalFileSystem and is capable
of exporting the filesystem as a file share. The local
access point with respect to the file server is
specified by the LocalAccessPoint parameter. If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points are
supported but implementation-defaulted, the
corresponding entry in the LocalAccessPoint
parameter should be NULL or the empty string as
the LocalAccessPoint name is constructed as per
the vendor default algorithm. A
LocalAccessAvailable association is created
between the FileServer and the LocalFIleSystem.
The parameters for local access are specified by
the LocalAccessSetting parameter.

Since this Filesystem has just been created, the
LocalAccessSetting can support Write privileges. If
the LocalAccessSetting entry is NULL or the empty
string, the implementation uses a default
associated with the
LocallyAccessibleFileSystemCapabilities
associated to the FileServer.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that a local access point is
required and FileServer is NULL, no
LocalAccessAvailable associations are created
and the Filesystem may not be accessible. This
shall not cause an Error.

On output, this parameter contains a reference to
the actual FileServer that has access to the created
LocalFileSystem.

Table 104 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
160

NO_ANSI_ID Filesystem Manipulation Subprofile
LocalAccessPoi
nt

IN, OUT,
REF, NULL
Allowed

string A string to use as a pathname in the name space of
the file server ComputerSystem. The format of the
string is vendor-dependent and it should be
considered opaque from the client’s standpoint. It
could be interpreted as a hierarchical fully-qualified
name for the local access point (say in a Unix-
based operating environment), or it could be a
drive letter (as in a Windows operating
environment). A LocalAccessAvailable association
is created going between the new LocalFileSystem
and the FileServer parameter. The
LocalAccessAvailable.LocalAccessPoint property
will be set to this parameter.

The parameters for local access are specified by
the LocalAccessSetting parameter.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points are
required, then LocalAccessPoint shall not be NULL
or an empty string.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points can
be vendor-defaulted, then LocalAccessPoint can
be NULL or an empty string and the
implementation shall create a name using a
vendor-specific algorithm.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points
cannot be vendor-defaulted, then
LocalAccessPoint shall not be NULL and the
implementation shall not create a default
pathname. This is an Error.

On output, this parameter contains the actual
LocalAccessPoint used (including any name
created by vendor-default).

Table 104 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 161

Filesystem Manipulation Subprofile NO_ANSI_ID
LocalAccessSett
ing

IN, EI, OUT,
NULL
Allowed

string EmbeddedInstance
("CIM_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting
element that specifies the settings to use to
establish a local access point. This element will be
used to create a LocalAccessAvailable association
and will be cloned to create a
LocallyAccessibleFileSystemSetting element that
is scoped via HostedDependency (ScopedSetting)
to the FileServer and associated via
ElementSettingData to the LocalFileSystem.

If a LocallyAccessibleFileSystemSetting entry is
NULL or the empty string, the implementation shall
use the default provided by the
LocallyAccessibleFileSystemCapabilities element
of the FileSystemConfigurationService that is
associated to the FileServer via CIM_Dependency.
The LocalAccessSetting may specify a Write
Privilege.

The LocalAccessSetting actually used is returned
as the OUT EmbeddedInstance parameter.

Table 104 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
162

NO_ANSI_ID Filesystem Manipulation Subprofile
DirectoryServer IN, OUT,
NULL
Allowed

ComputerSy
stem

A reference to a ComputerSystem element that
has access to directory services. The newly
created filesystem can use it to support security
principal information associated with filesystem
objects, such as quotas for users and groups. This
is represented by providing a Dependency
association between the LocalFileSystem element
and the ComputerSystem indicated by this
parameter. The requirements for this parameter
are further specified by
FileSystemConfigurationCapabilities.DirectoryServ
erParameterSupported.

If DirectoryServerParameterSupported specifies
'Not Used', or 'Supported, Defaulted to FileServer',
or 'Supported, Defaulted to FileSystem host', it is
an Error if DirectoryServer is not NULL.

Otherwise, (i.e., if
DirectoryServerParameterSupported specifies
'Supported'), and if the DirectoryServer is not
NULL, the new filesystem will use the directory
services made available by the specified
DirectoryServer. If DirectoryServer is NULL, it will
be defaulted to the FileServer parameter. If the
FileServer parameter is also NULL, the
DirectoryServer will be defaulted to the host of the
newly created filesystem.

On output, this parameter contains a reference to
the actual DirectoryServer if one was established.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Table 104 - Parameters for Extrinsic Method FileSystemConfigurationService.CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 163

Filesystem Manipulation Subprofile NO_ANSI_ID
9.5.2.1 FileSystemConfigurationService.ModifyFileSystem
This extrinsic method modifies a LocalFileSystem specified by the parameter TheElement. The desired settings for
the LocalFileSystem are specified by the Goal parameter (a string-valued EmbeddedInstance object of class
FileSystemSetting).

As with CreateFileSystem, the FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationService specifies support for some of the optional behaviors of this method.
BlockStorageCreationSupport indicates whether this method only uses previously existing storage elements or if it
can create them at the same time as modifying or creating the filesystem. In addition this can specify if additional
LogicalDisks can be added to the existing set of LogicalDisks and whether the implementation limits the number of
LogicalDisks underlying a filesystem. LocalAccessibilitySupport indicates whether the implementation requires
support for local access points (or if they are optional or not required at all).

This element shall have a FileSystemSetting use ActualFileSystemType property is supported by the
FileSystemConfigurationService (as specified by the SupportedActualFileSystemTypes property of the associated
FileSystemConfigurationCapabilities). The existing LogicalDisks used by the LocalFileSystem cannot be released
by this method, but this method may add LogicalDisks. These LogicalDisks may be specified by the InExtents
parameter (if that is either required or optional) or, if InExtents is NULL (if Pools are optional or required), the set of
LogicalDisks is not changed. New LogicalDisks may also be added by specifying an array of StoragePools in the
Pools parameter and an array of StorageSettings that can be used to create them.

If the operation would result in a change in the size of a filesystem, the ResidesOnExtent association shall be used
to determine how to implement the change. If the existing or additional LogicalDisk(s) specified, or any additional
LogicalDisks created, cannot support the goal size, an appropriate error value shall be returned, and no action
shall be taken. If the operation succeeds, the ResidesOnExtent association shall reference the same LogicalDisk
as before (however, the LogicalDisk will be built upon a larger number of underlying LogicalDisks, as modeled by
the Volume Composition subprofile).

If the new Goal is different from the old FileSystemSetting element associated to the LocalFileSystem element,
then the implementation must change the setting properties of the LocalFileSystem. This may be accomplished by
modifying the old FileSystemSetting element directly, or by deleting it and then re-creating a new
FileSystemSetting element with the same InstanceId. Just like the old element, the new FileSystemSetting element
shall be associated to the LocalFileSystem element via an ElementSettingData association.

If local access is supported, whether optional or required, any change is specified by providing the FileServer
parameter (which shall be a reference to a ComputerSystem). If a FileServer is not being added to the set or
modified or removed from the set, the FileServer parameter may be NULL.

If the specified FileServer does not duplicate a ComputerSystem that has already been specified as having local
access, this method adds it to the set. The pathname is specified by the LocalAccessPoint string array parameter.
The settings to be used for these are specified in the LocalAccessSetting, an EmbeddedInstance element of class
LocallyAccessibleFileSystemSetting.

If the specified FileServer duplicates a ComputerSystem that has already been specified as having local access,
this method either modifies the local access or removes it from the set. If the LocalAccessPoint parameter is NULL
or consists of an empty string, this call removes the FileServer from the set. If the LocalAccessPoint parameter is
not NULL but specifies the current path, then this call modifies the settings of the local access -- the new settings
are specified by the LocalAccessSetting parameter. If the LocalAccessPoint parameter is not NULL but specifies a
path other than the current path, then this call modifies the pathname as well as the settings. If this filesystem is in
operational use when such a request is made, the request may have to be suspended until the filesystem can be
put into an appropriate state for making the change.

The settings to be used for adding or modifying are specified by the LocalAccessSetting parameter, an
EmbeddedInstance element of class LocallyAccessibleFileSystemSetting.

To add a local access point, a LocalAccessAvailable association and a LocallyAccessibleFileSystemSettings
element are created with the following properties and associations:
164

NO_ANSI_ID Filesystem Manipulation Subprofile
• A LocalAccessAvailable association goes between the FileServer parameter and the LocalFileSystem
(TheElement parameter).

• A LocalAccessAvailable.LocalAccessPoint property is set to the LocalAccessPoint string.

• A LocallyAccessibleFileSystemSetting element with a ElementSettingData association to the LocalFileSystem
(TheElement parameter).

• The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

Note: The WaitTime and InUseOptions parameters are supported if the
FileSystemCapabilities.SupportedProperties includes the "RequireInUseOptions" option.

Note: A client can identify all local access specifications for a filesystem by looking for the
LocalAccessAvailable association from the LocalFileSystem to a file server ComputerSystem and the
LocallyAccessibleFileSystemSetting associated to the LocalFileSystem via ElementSettingData and
the same file server ComputerSystem via HostedDependency (ScopedSetting).
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 165

Filesystem Manipulation Subprofile NO_ANSI_ID
9.5.3 Signature and Parameters of ModifyFileSystem.

Table 105 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type Description & Notes

ElementNam
e

IN, OUT string An end user relevant name for the filesystem being modified. If NULL,
the existing TheElement.ElementName property is not changed. If not
NULL, this parameter will supply a new name for the Element
parameter. The actual ElementName is returned as the output value.

Job OUT, REF CIM_Con
creteJob

Reference to the job (may be null if job completed).

Goal IN, OUT,
EI

string EmbeddedInstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the filesystem specified by the
TheElement parameter. If NULL or the empty string, the settings for
TheElement will not be changed. If not NULL, this parameter will
supply new settings that replace or are merged with the current
settings of TheElement.

TheElement IN, REF CIM_Loca
lFileSyste
m

The LocalFileSystem element to modify.

InExtents[] IN, OUT,
REF,
NULL
allowed,

CIM_Logi
calDisk

The LogicalDisk(s) used to extend the current set of LogicalDisks used
for the TheElement filesystem. If this is not NULL, the Pool and
ExtentSettings must be NULL. If both this and Pool are NULL, the
current set will not be changed. The current set of LogicalDisk(s) will
be returned as the output.

Pools[] IN, REF,
NULL
allowed

CIM_Stor
agePool

An array of concrete storage pools corresponding to the ExtentSettings
array parameter. These storage pools are used to create additional
LogicalDisks to extend the TheElement filesystem. The InExtents
parameter must be NULL and the ExtentSettings parameter must not
be NULL. Otherwise, the current set of LogicalDisks is not changed.

ExtentSetting
s[]

IN, EI,
NULL
Allowed

string EmbeddedInstance ("CIM_StorageSetting")

An array of embedded StorageSetting structures that specify the
settings to use for creating additional LogicalDisks for the TheElement
filesystem. The InExtents parameter must be NULL and Pools must be
specified. Each LogicalDisk will be created from the corresponding
Pool, so each StorageSetting entry must be supported by the
capabilities of the corresponding Pool entry.

Sizes[] IN,NULL
Allowed

uint64 An array of numbers that specifies the size in bytes of the LogicalDisks
to be created corresponding to the ExtentSettings array parameter.
166

NO_ANSI_ID Filesystem Manipulation Subprofile
FileServer IN, OUT,
REF,
NULL
Allowed

REF
Computer
System

A reference to a ComputerSystem element representing a file server.

If this parameter is NULL, no change is made to the local access
configuration. If it is not NULL, the change to the configuration consists
of the following cases:

1.) If the FileServer does not already support local access to the
TheElement, it will be added and made capable of exporting the
filesystem as file shares. The local access point is specified by the
LocalAccessPoint parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points are vendor-defaulted, the
corresponding entry in the LocalAccessPoints parameter should be
NULL or the empty string as the LocalAccessPoint name is
constructed by a vendor-default algorithm.

A LocalAccessAvailable association is created between the FileServer
and the TheElement. The parameters for local access are specified by
the LocalAccessSetting parameter, an EmbeddedInstance element of
class LocallyAccessibleFileSystemSetting.

If the LocalAccessSetting parameter is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities of the
FileSystemConfigurationService associated to the FileServer by
HostedDependency (ScopedSetting). At most one of the
LocalAccessSettings entries for all the file server ComputerSystems
that provide local access to this filesystem shall specify an element
with Write Privileges.

2) If FileServer already supports local access to the TheElement, and
the LocalAccessPoint parameter is NULL or a set of empty strings, this
will remove the FileServer from the configured set. If there are existing
operational users of the TheElement filesystem, they will need to be
informed and the implementation might have to wait to reach a
consistent state before the request can be completed.

3) If FileServer already supports local access to the TheElement, and
the LocalAccessPoint parameter is the same as the current
configuration, then this is a request to change the settings but not the
local access point. The LocalAccessSetting parameter will specify the
new setting. Depending on the precise change, the filesystem may
need to suspend operations. If there are existing operational users of
the filesystem, they will need to be informed and the implementation
might have to wait to reach a consistent state before the request can
be completed.

4) If FileServer already supports local access to the TheElement, and
the LocalAccessPoint parameter is different from the current
configuration, then this is equivalent to removing local access and then
restoring it with different settings. If there are existing operational users
of the filesystem, they will need to be informed and the implementation
might have to wait to reach a consistent state before the request can

Table 105 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 167

be completed. Note that existing operational users will not be able to
reconnect as the share name may have changed.

Filesystem Manipulation Subprofile NO_ANSI_ID
LocalAccess
Point

IN, OUT,
REF,
NULL
Allowed

string A string to use as a pathname in the name space of the file server
ComputerSystem specified by the FileServer parameter. The format of
the string is vendor-dependent and it should be considered opaque to
the client. It could be interpreted as a hierarchical fully-qualified name
for the local access point (say in a Unix-based operating environment),
or it could be a drive letter (as in a Windows operating environment). A
LocalAccessAvailable association is created going between the
TheElement and the FileServer. The
LocalAccessAvailable.LocalAccessPoint property will be set to the
value of this parameter.

The parameters for local access are specified by the
LocalAccessSetting parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points are required, then LocalAccessPoint
shall not be NULL or an empty string if this is a new FileServer that
does not have local access to TheElement. This is an Error.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points can be vendor-defaulted, then
LocalAccessPoint can be NULL or an empty string and the
implementation shall create a name using a vendor-specific algorithm.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport
specifies that local access points cannot be vendor-defaulted, and this
is a new FileServer that does not have local access to TheElement,
then LocalAccessPoint shall not be NULL and the implementation shall
not create a default pathname. This is an Error.

On output, this parameter contains the actual LocalAccessPoint used
(including any name created by vendor-default).

LocalAccess
Setting

IN, EI,
OUT,
NULL
Allowed

string EmbeddedInstance ("SNIA_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting element that
specifies the settings to use for establishing a local access point. Each
entry will be used to create or modify a LocalAccessAvailable
association and will be cloned to create a
LocallyAccessibleFileSystemSetting element that is scoped via
ScopedSetting (or HostedDependency) to the file server
ComputerSystem specified by the FileServer parameter. The clone will
be associated via ElementSettingData to the LocalFileSystem.

If this parameter is NULL or the empty string, and a new value is
needed, the implementation shall use the default provided by the
LocallyAccessibleFileSystemCapabilities associated to the FileServer
parameter. The LocalAccessSetting actually used is returned as the
OUT parameter.

Table 105 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type Description & Notes
168

NO_ANSI_ID Filesystem Manipulation Subprofile
9.5.3.1 FileSystemConfigurationService.DeleteFileSystem
This is an extrinsic method that shall delete a LocalFileSystem specified by the parameter TheElement and delete
any associated elements and associations that are no longer needed. The deleted elements include the
LogicalFile/Directory and FileStorage, if they were surfaced; the LocalAccessAvailable association, the
LocallyAccessibleFileSystemSetting element and its associations, ElementSettingData, HostedDependency
(ScopedSetting); HostedFileSystem, ResidesOnExtent, and any associations that might be orphaned by the
deletion of TheElement. The LogicalDisk(s) that TheElement used shall be released but an implementation is not
required to delete or re-allocate it.

Note: The WaitTime and InUseOptions parameters are supported if the
FileSystemCapabilities.SupportedProperties includes the "RequireInUseOptions" option.

InUseOption
s

IN uint16 An enumerated integer that specifies the action to take if the filesystem
is still in operational use when this request is made. This option is only
relevant if the FileSystem needs to be made unavailable while the
request is being executed.

WaitTime IN uint16 An integer that indicates the time in seconds to wait before performing
the request on this filesystem. The combination of InUseOptions = '4'
and WaitTime ='0' (the default) is interpreted as 'Wait (forever) until
Quiescence, then Execute Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid
Property
Value

OUT,
Indication

CIM_Erro
r

A single named property of an instance parameter (either reference or
embedded) has an invalid value

Invalid
Combination
of Values

OUT,
Indication

CIM_Erro
r

An invalid combination of named properties of an instance parameter
(either reference or embedded) has been requested.

Table 105 - Parameters for Extrinsic Method FileSystemConfigurationService.ModifyFileSystem

Parameter
Name

Qualifi
er

Type Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 169

Filesystem Manipulation Subprofile NO_ANSI_ID
9.5.4 Signature and Parameters of DeleteFileSystem.

9.5.5 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

Table 106 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter
Name

Qualifier Type Description & Notes

Job OUT, REF CIM_Concret
eJob

Reference to the job (may be null if job completed).

TheElement IN, REF CIM_LocalFil
eSystem

The filesystem element to delete.

InUseOptions IN uint16 An enumerated integer that specifies the action to
take if TheElement is still in use when this request
is made. This option is only relevant if the
filesystem needs to be made unavailable while the
request is being executed.

WaitTime IN uint16 An integer that indicates the time in seconds to wait
before performing the request on TheElement
filesystem. The combination of InUseOptions = '4'
and WaitTime ='0' (the default) is interpreted as
'Wait (forever) until Quiescence, then Execute
Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.
170

NO_ANSI_ID Filesystem Manipulation Subprofile
9.6 Client Considerations and Recipes

EXPERIMENTAL

Conventions used in the NAS recipes:

• When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is (often) used without further validation. Real code will need to be more robust.

• SMI-S uses Values and Valuemap members as equivalent. In real code, client-side magic is required to
convert the integer representation into the string form given in the MOF.

• Error returns using the CIM_Error mechanism are not explicitly handled -- the client must implement handlers
for these asynchronous returns.

• These recipes do not show the details of negotiating a setting acceptable to both client and provider.

• The recipes do not show the details of managing a Job if a method returns after setting one up.

• All the recipes show very simple examples of the operations that should be supported. Some recipes have
been simplified so that they would not even be minimally useful to a real client, but only show how more
complete functionality would be implemented.

In the Filesystem Manipulation Profile recipes, the following subroutines are used (and provided here as forward
declarations):

sub CreateGoal(

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $goalSetting,

INOUT String $supportedFileSystemSetting);

// The above subroutine uses the $fscapability.CreateGoalSettings method

// to get the single $supportedFileSystemSetting used in these recipes.

sub GetRequiredStorageSize(

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $fssgoal,

IN String $ldSetting,

OUT uint64 $expectedsize,

OUT uint64 $minsize,

OUT uint64 $maxsize);

// The above subroutine uses the $fscapability.GetRequiredStorageSize

// method to get the single output size used in these recipes.

9.6.1 Creation of a FileSystem on a Storage Extent

//

// DESCRIPTION

// Goal: Create a LocalFilesystem on a LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of the created LocalFileSystem.

// 2. The client does not negotiate to get an acceptable setting but
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 171

Filesystem Manipulation Subprofile NO_ANSI_ID
// fails if one is not found

// 3. We do not use the FSCS to create a LogicalDisk from a StoragePool

// 4. We do not set up local access to a file server at this time

//

// FUNCTION CreateFileSystem

// This function takes a given ComputerSystem and LogicalDisk and

// constructs a filesystem that satisfies the requested property values.

// INPUT Parameters:

// hostsystem: A reference to the ComputerSystem.

// disk: A reference to the LogicalDisk on which to build the

// filesystem.

// desiredsize: An integer specifying the size of filesystem to

// build in bytes

// fsname: The string name of the filesystem

// filesystemtype: An integer enumeration of the filesystem type

// to construct

// otherpropertyname: An array of property names with corresponding

// values in the otherpropertyvalue parameter.

// otherpropertyvalue: An array of property values corresponding to the

// names in the otherpropertyname parameter.

// OUTPUT Parameters:

// fs: A reference to the LocalFileSystem that is built by this

// function.

// job: A reference to a job created by the implementation if this

// function will take a long time to complete.

// RESULT:

// Failure return consists of fs=NULL and job=NULL

// NOTES

// 1. This recipe does not show how to use the LocalAccess functionality

// to “mount” the file system to a mount-point of a file server.

sub CreateFileSystem(IN REF CIM_System $hostsystem,

 IN REF CIM_LogicalDisk $disk,

 IN uint64 $desiredsize,

 IN String $fsname,

 IN String $filesystemtype,

 IN String $otherpropertyname[], // array of property names

 IN String $otherpropertyvalue[], // corresponding array of
values

 OUT REF CIM_FileSystem $fs,

 OUT REF CIM_Job $job)

{

 //

 // Get the FileSystemConfigurationService of the NAS server using

 // a HostedService association

 //

 $fsconfigurators->[] = Associators($hostsystem,

 “CIM_HostedService”,
172

NO_ANSI_ID Filesystem Manipulation Subprofile
 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $fs = NULL;

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error

 $fs = NULL;

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if (($capability.ActualFileSystemType == $filesystemtype) ||

 (($filesystemtype == NULL) && ($capability.IsDefault))) {

 if ($otherpropertyname->[] == NULL || $otherpropertyname->[].length ==
““ ||

 Contains(%capability.SupportedProperties, $otherpropertyname->[]))
{

 // This Contains function is left to the client to implement

 // found a matching capabilities element

 //

 break;

 } else {

 // Found capabilities element failed to match

 $fs = NULL;

 $job = NULL;

 return;

 }

 #j++;

 }
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 173

Filesystem Manipulation Subprofile NO_ANSI_ID
 $capability = $capabilities->[#j];

 // If $filesystemtype was NULL or empty string the default was returned

 if ($filesystemtype == NULL || $filesystemtype == ““)

 $filesystemtype = $capability.ActualFileSystemType;

 // At this point the $capability will be for $filesystemtype

 //

 // Call FileSystemCapabilities.CreateGoalSettings(nullTemplate, Goal) to

 // get a seed goal for FileSystemSetting, or just use one of the provided

 // default settings associated with the FileSystemCapabilities via

 // SettingsDefineCapabilities.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 $fssgoal = NULL;

 CreateGoal($capability, NULL, $fssgoal);

 //

 // Inspect Goal and modify properties as desired.

 //

 #i = 0;

 while ($otherpropertyname[#i]) {

 // funky syntax on left-hand side -- dot-operator on an a variable

 $fssgoal.$otherpropertyname[#i] = $otherpropertyvalue[#i];

 #i++;

 }

 //

 // Call FSCSCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to get

 // the next goal for FSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 CreateGoal($capability, $fssgoal, $fssgoal2);

 #i = 0;

 while ($otherpropertyname[#i]) {

 //

 // Note: this pseudocode doesn’t check to see if the property named
174

NO_ANSI_ID Filesystem Manipulation Subprofile
 // in $otherpropertyname[#i] is an array. This additional level

 // of horsing around is left as an exercise for the reader.

 //

 if ($fssgoal.$otherpropertyname[#i] != $otherpropertyvalue[#i] {

 { return NULL; } // give up

 }

 }

 //

 // Call FileSystemCapabilities.GetRequiredStorageSize(Goal,

 // DesiredUsableCapacity) to find out how large of a

 // LogicalDisk is needed.

 //

 // GetRequiredStorageSize returns the maximum and minimum

 // sizes that might be needed to satisfy the fssgoal2 request

 // If the LogicalDisk in use for the FileSystem cannot be grown

 // upon demand, then it might be worth growing to $minsize (which

 // would be optimistic); if there is any reason to believe that

 // the user is underestimating what they will need, then it might

 // be worth growing to $maxsize (pessimistic); in the normal case,

 // plan to grow to $expectedsize.

 //

 $ldsetting = NULL;

 $requiredsize = $capability.GetRequiredStorageSize(

 $fssgoal2,

 $ldsetting, // NULL input, returns
setting

 $expectedsize,

 $minsize,

 $maxsize);

 //

 // If a disk of the required size is already available

 // Call CreateFileSystem(Goal, LogicalDisk)

 // else

 // Create LogicalDisk (see StorageExtent recipes)

 // Call CreateFileSystem(Goal, LogicalDisk)

 //

 if ($requiredsize > $disk.BlockSize * $disk.NumberOfBlocks) {

 <CreateDisk>($requiredsize, $newdisk);

 $disk = $newdisk;

 }

 $diskArray->[0] = $disk;

 $status = $fsconfigurator.CreateFileSystem(

 $fsname,

 $job, // Job returned if necessary

 $fssgoal2, // Filesystem Setting

 $fs, // Filesystem returned
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 175

Filesystem Manipulation Subprofile NO_ANSI_ID
 $diskArray->[], // LogicalDisk to use

 NULL // No storagepools

 NULL, // No settings to create LDs

 NULL, // No size parameters

 NULL, // No File server specified for Local Access

 NULL, // No local access points provided

 NULL // No local access settings

);

 //

 // not shown:

 // 1) Managing the $job if it’s not NULL,

 // 2) Looking at the status result to figure out what to do

 // 3) Managing any CIM_Errors that get returned asynchronously.

 //

 return $fs;

}

9.6.2 Increase the size of a FileSystem

//

// DESCRIPTION

// Goal: Increase the size of a FileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// is also the host of the LocalFileSystem being modified.

// 2. The client does not negotiate to get an acceptable setting but

// fails if one is not found

// 3. Then desiredsize is greater than the current size

//

// FUNCTION CreateFileSystem

// This function takes a given LocalFileSystem and a desired

// increase in size in bytes and expands the size of the

// filesystem by at least the desired size.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// desiredsize: The desired size of the filesystem

// OUTPUT Parameters:

// job: A reference to a job created by the implementation if this

// function will take a long time to complete.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub IncreaseFileSystemSize(IN REF CIM_FileSystem $fs,

 IN REF uint64 $desiredsize,
176

NO_ANSI_ID Filesystem Manipulation Subprofile
 OUT CIM_Job $job)

{

 //

 // Get a client-side copy of the FileSystemSetting

 // associated with the CIM_FileSystem (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($settings ->[] == NULL || $settings ->[].length == 0) {

 // No FileSystemSetting found -- error

 $job = NULL;

 return;

 }

// One of the settings must be marked IsCurrent -- if not, there is an error

 #i = 0;

 $setting = NULL;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i]);

 break;

 }

 #i++;

 }

 if ($setting == NULL) {

 $job = NULL;

 return;

 }

 $fssnewgoal = $setting;

 // Note that this syntax conflicts with earlier use of funky syntax for

 // accessing properties. Also “add” method applied to an array-value

 // changes the array in-place

 $fssnewgoal.ObjectTypes->[].add(“Bytes”);

 $fssnewgoal.ObjectSizeMin->[].add($desiredsize);

 // Get the FileSystemCapabilities element from the hosting NAS Server

 //

 // a) Get the ActualFileSystemType from the FileSystemSetting

 //

 $filesystemtype = $fssnewgoal.ActualFileSystemType;

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 177

Filesystem Manipulation Subprofile NO_ANSI_ID
 // There should be exactly one.

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // via the HostedService association. There is exactly one,

 // but check that one is found.

 //

 $fsconfigurators->[] = Associators($system,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if ($capability.ActualFileSystemType == $filesystemtype)

 break;

 #j++;

 }
178

NO_ANSI_ID Filesystem Manipulation Subprofile
 if (#j == $capabilities->[].length) {

 // No Capabilities for this filesystem type was found -- error

 $job = NULL;

 return;

 } else

 $capability = $capabilities->[#j];

 //

 // Call FileSystemCapabilities.GetRequiredStorageSize(NewGoal,

 // DesiredUsableCapacity) to find out how large of a

 // LogicalDisk is needed

 //

 // Changed from: $requiredsize =
$capability.GetRequiredStorageSize($fssnewgoal,

 $ldsetting = ““;

 $requiredsize = GetRequiredStorageSize($capability,

 $fssnewgoal,

 $ldsetting, // Returns actual setting used

 $disksize,

 $diskminsize,

 $diskmaxsize);

 //

 // Get Underlying LogicalDisk using ResidesOnExtent association

 // There must be exactly one

 //

 $disk = Associators($fs,

 “CIM_ResidesOnExtent”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”)->[0];

 //

 // If disk is not large enough, increase size of underlying SE

 //

 $job = NULL;

 if ($disksize < $disk.BlockSize * $disk.NumberOfBlocks) {

 <increase size of logical disk, returning a job in $job if

 necessary -- see storage extent recipes>

 }

 //

 // The filesystem itself doesn’t need modification, so we’re done

 //

 // This is NOT correct. The ModifyFileSystem method must be called

 // with the new file system setting so that the filesystem can be

 // modified as needed.

 // It isn’t clear what the call would be -- probably specify NULL for
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 179

Filesystem Manipulation Subprofile NO_ANSI_ID
 // the InExtents parameter and the desiredsize parameter would indicate

 // that the filesystem was being resized.

 // Operationally, the appended storage space would need to be formatted

 // as inodes and their inode numbers would need to be legitimized in

 // the filesystem meta-data.

 //

 // The call would be

 // $fsconfigurator.ModifyFileSystem(

 // NULL, // Keep the old element name for the filesystem

 // $job, // return Job if created

 // $fssgoal, // Goal setting

 // $fs, // filesystem

 // NULL, // Don’t add any logicaldisks

 // NULL, // No storage pools

 // NULL, // No LogicalDisk settings

 // $disksize, // New LD size

 // NULL, // No File server for local access

 // NULL, // No Local access point name

 // NULL, // No Local access setting

 // NULL, // Default in use option

 // NULL, // Default wait time

 //);

 //

}

9.6.3 Modify a FileSystem’s Settings

//

// DESCRIPTION

// Goal: Modify the settings and other properties of a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of the LocalFileSystem to be modified.

// 2. The client does not negotiate to get an acceptable setting but

// fails if one is not found.

// 3. This recipe only shows how the number of supported objects

// of a particular type is modified. The model can be easily

// extended to other individual properties of the LocalFileSystem.

// 4. The CreateFileSystem method uses an array of property names

// and values and can be useful to show how ModifyFileSystem

// may change many propertynames in a single call at the same time.

//

// FUNCTION ModifyFileSystemObjectLimits

// This function takes a given LocalFileSystem and a specification

// of an object type (file and/or directories) to be supported

// and modifies the filesystem (increases its size) so that it

// satisfies the newly requested size.

// INPUT Parameters:
180

NO_ANSI_ID Filesystem Manipulation Subprofile
// fs: A reference to the LocalFileSystem.

// objecttype: The object type whose support is being modified

// minobjects: The minimum number of objects of the specified

// type to be supported.

// maxobjects: The maximum number of objects of the specified

// type to be supported.

// expectedobjects: The client’s expectations of the number of

// objects of the specified type to be supported.

// OUTPUT Parameters:

// objecttype: The object type whose support has being modified

// minobjects: The minimum number of objects of the specified

// type that will be supported by the implementation.

// maxobjects: The maximum number of objects of the specified

// type that will be supported by the implementation.

// expectedobjects: The implementation’s expectations of the

// number of objects of the specified type to be supported.

// job: A reference to the job implementing the ModifyFileSystem

// method, if necessary.

// RESULT:

// None

// NOTES

// 1. This recipe does not show how to specify multiple object

// types at the same time.

// 2. This recipe does not show how to change the local access

// setup (add or delete local access).

sub ModifyFileSystemObjectLimits(IN REF CIM_FileSystem $fs,

 IN OUT uint64 $objecttype,

 IN OUT uint64 $minobjects,

 IN OUT uint64 $maxobjects,

 IN OUT uint64 $expectedobjects,

 OUT REF CIM_Job $job)

{

 //

 // Get a client-side copy of the FileSystemSetting

 // associated with the CIM_FileSystem (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($settings ->[] == NULL || $settings ->[].length == 0) {

 // No FileSystemSetting found -- error

 $job = NULL;

 return;
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 181

Filesystem Manipulation Subprofile NO_ANSI_ID
 }

// One of the settings must be marked IsCurrent -- if not, there is an error

 #i = 0;

 $setting = NULL;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i]);

 break;

 }

 #i++;

 }

 if ($setting == NULL) {

 $job = NULL;

 return;

 }

 $fssnewgoal = $setting;

 // Get the FileSystemCapabilities element from the hosting NAS Server

 //

 // a) Get the ActualFileSystemType from the FileSystemSetting

 //

 $filesystemtype = $setting.ActualFileSystemType;

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // via the HostedService association. There is exactly one.

 //

 $fsconfigurators->[] = Associators($system,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $job = NULL;

 return;

 }
182

NO_ANSI_ID Filesystem Manipulation Subprofile
 $fsconfigurator = $fsconfigurators->[0];

 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if ($capability.ActualFileSystemType == $filesystemtype)

 break;

 #j++;

 }

 if (#j == $capabilities->[].length) {

 $job = NULL;

 return;

 } else

 $capability = $capabilities->[#j];

 //

 // Find the index in the object arrays that contains

 // the object type of interest

 //

 #i = 0;

 while($typ = $fssnewgoal.ObjectTypes->[#i]) {

 if ($typ == $objecttype)

 { break; }

 #i++;

 }

 //

 // if the specified type isn’t there, add it

 //

 if ($typ != $objecttype) {

 $fssnewgoal.ObjectTypes->[#i] = $objecttype;

 }
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 183

Filesystem Manipulation Subprofile NO_ANSI_ID
 //

 // modify the other params associated with the object type

 //

 $fssnewgoal.NumberOfObjectsMin->[#i] = $minobjects;

 $fssnewgoal.NumberOfObjectsMax->[#i] = $maxobjects;

 $fssnewgoal.NumberOfObjects->[#i] = $expectedobjects;

 //

 // Call FSCSCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to get the next

 // goal for FSSetting -- iterate until satisfied or give up (beware

 // infinite loops) Note: we don’t iterate here, just give up.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 CreateGoal($capability, $fssnewgoal, $fssgoal2);

 if ($fssgoal2.ActualFileSystemType != $filesystemtype) {

 $job = NULL;

 return;

 }

 // Since this may increase the size of the file system it is necessary to

 // pass in a new extent or a new logical disk or a pool that can provide

 // the storage.

 //

 // call ModifyFilesystem (management of $job and any CIM_Error not

 // shown)

 //

 $fsconfigurator.ModifyFileSystem(

 NULL, // Keep the old element name for the filesystem

 $job, // return Job if created

 $fssgoal2, // Goal setting

 $fs, // filesystem

 NULL, // Don’t add any logicaldisks

 NULL, // No storage pools

 NULL, // No LogicalDisk settings

 NULL, // No LD sizes

 NULL, // No File server for local access

 NULL, // No Local access point name

 NULL, // No Local access setting

 NULL, // Default in use option

 NULL, // Default wait time

);

 return $fs;
184

NO_ANSI_ID Filesystem Manipulation Subprofile
}

9.6.4 Delete a FileSystem and return underlying StorageExtent

//

// DESCRIPTION

// Goal: Delete a FileSystem and return underlying LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// is also the host of the created LocalFileSystem.

// 2. The filesystem is built on a single LogicalDisk

// 3. The LogicalDisk is not automatically returned to a StoragePool

// but is left allocated to the NAS Server and available for use

// by a filesystem client.

// 4. No job is needed

//

// FUNCTION DeleteFileSystem

// This function deletes a given LocalFileSystem and

// returns a reference to the LogicalDisk on which it resided

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// disk: A reference to the LogicalDisk is returned.

// RESULT:

// Success or Failure

// NOTES

// 1. This recipe does not show how to clean up any local access

// or file shares that may have been set up for accessing the

// filesystem.

// 2. To “wipe” or zero out the filesystem, the client must either

// use client-level operations over a FileSystem or FileShare

// prior to deleting the filesystem, or by vendor-specific

// operations on the LogicalDisk after deleting the filesystem.

//

sub DeleteFileSystem(IN REF CIM_FileSystem $fs, OUT REF CIM_LogicalDisk $disk)

{

 //

 // Get underlying LogicalDisk using ResidesOnExtent association

 // In SMI-S 1.2. we assume that there will be exactly one

 //

 $disks->[] = Associators($fs,

 “CIM_ResidesOnExtent”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”)->[0];

 if ($disks->[] == null || $disks->[].length == 0) {

 // No LogicalDisk found -- error
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 185

Filesystem Manipulation Subprofile NO_ANSI_ID
 $disk = NULL;

 return;

 }

 $disk = $disks->[0];

 //

 // Get the NAS Server of the FileSystem using

 // a HostedFileSystem association. There should be

 // exactly one filesystem host.

 $hosts->[] = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “Antecedent”,

 “Dependent”);

 if ($hosts->[] == null || $hosts->[].length == 0) {

 // No ComputerSystem found -- error

 $disk = NULL;

 return;

 }

 $hostsystem= $hosts->[0];

 //

 // Get the FileSystemConfigurationService of the NAS server using

 // a HostedService association

 //

 $fsconfigurators->[] = Associators($hostsystem,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $fs = NULL;

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Call DeleteFileSystem(FS) (error checking not shown)

 //

 $fsconfigurator.DeleteFileSystem($job, $fs);

 return;

}

186

NO_ANSI_ID Filesystem Manipulation Subprofile
9.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem

//

// DESCRIPTION

// GOAL: Get a LocallyAccessibleFileSystemCapabilities from a

// filesystem host that is dependent on a specific file server

// and supports the properties specified in the array

// parameter $propertynames[].

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of any LocalFileSystem that will be

// made locally accessible using a capabilities element.

//

// FUNCTION GetLocallyAccessibleFileSystemCapabilities

// This function takes a filesystem host ComputerSystem and

// gets a capabilities element for making a filesystem

// locally accessible on a file server ComputerSystem.

// INPUT Parameters:

// hostsystem: A reference to the ComputerSystem that hosts

// filesystems.

// fileserver: A reference to the file server ComputerSystem that

// provides local access to filesystems.

// propertynames: An array of property names that the capabilities

// element should support.

// OUTPUT Parameters:

// allcapabilities: An array of references to the capabilities

// for local access on the file server.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub GetLocallyAccessibleFileSystemCapabilities(

 IN REF CIM_ComputerSystem $hostsystem,

 IN REF CIM_ComputerSystem $fileserver,

 IN String $propertynames[],

 OUT REF SNIA_LocallyAccessibleFileSystemCapabilities $allcapabilities[])

{

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // $hostsystem via the HostedService association

 //

 $fsconfigurators->[] = Associators($hostsystem,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 187

Filesystem Manipulation Subprofile NO_ANSI_ID
 #i = 0;

 #k = 0; // the index for $allcapabilities.

 while ($fsconfigurator = $fsconfigurators->[#i]) {

 #i++;

 //

 // Find LocallyAccessibleFileSystemCapabilities that supports the

 // file server using ElementCapabilities association from

 // FSConfigurationService.

 // If client does not care about the file server ($fileserver = NULL),

 // return all the LocallyAccessibleFileSystemCapabilities that

 // are associated to the FileSystemConfigurationService

 // There is one and only one LocallyAccessibleFileSystemCapabilities

 // for each server+FileSystemConfigurationService pair.

 // The SupportedProperties property lists the supported setting

 // properties.

 //

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

“SNIA_LocallyAccessibleFileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 // Skip to next if empty

 if ($capabilities->[] == NULL ||$capabilities->[].length == 0) continue;

 #j = 0;

 while($capability = $capabilities->[#j]) {

 #j++;

 if (propertyname == NULL || propertyname == ““ ||

 Contains($capability.SupportedProperties, propertyname)) {

 // If the server is null then skip the next step

 if ($server != NULL) {

 $capservers[] = Associators($capability,

 “SNIA_ScopedCapability”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($capservers == NULL || $capservers->[].length != 1 ||

 $server != $capservers->[0])

 continue;

 }

 $allcapabilities->[#k] = $capability;

 #k++;

 }

 }

 }

 return;

}

188

NO_ANSI_ID Filesystem Manipulation Subprofile
9.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem

// DESCRIPTION

// GOAL: Get a LocallyAccessibleFileSystemSetting from a

// filesystem host that is dependent on a specific file server

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of any LocalFileSystem that will be

// made locally accessible using a capabilities element.

//

// FUNCTION GetLocallyAccessibleFileSystemSetting

// This function takes a filesystem host ComputerSystem and

// gets a capabilities element for making a filesystem

// locally accessible on a file server ComputerSystem.

// INPUT Parameters:

// filesystem: A reference to the LocalFileSystem that is to

// be made locally accessible from a file server.

// fileserver: A reference to the file server ComputerSystem that

// provides local access to filesystems.

// OUTPUT Parameters:

// setting: An embedded instance of a LocallyAccessibleFileSystemSetting

// that supports making the filesystem locally accessible.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub GetLocallyAccessibleFileSystemSetting(

 IN REF CIM_FileSystem $filesystem,

 IN REF CIM_ComputerSystem $fileserver,

 OUT String(“SNIA_LocallyAccessibleFileSystemSetting”) $setting)

{

 // Does this fileserver have local access to this filesystem

 // -- if not, there is no setting!

 $localaccess->[] = ReferenceNames($filesystem,

 “SNIA_LocalAccessAvailable”,

 “FileSystem”);

 if ($localaccess->[] == NULL || $localaccess->[].length == 0)

 return;

 //

 // Get all the LocallyAccessibleFileSystemSettings

 // associated with the CIM_FileSystem (via ElementSettingData

 //

 $assoc = References($filesystem,

 “CIM_ElementSettingData”,

 “ManagedElement”);
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 189

Filesystem Manipulation Subprofile NO_ANSI_ID
 if ($assoc->[] == NULL || $assoc->[].length == 0) {

 // This is an ERROR but for now we return with no results

 return;

 }

 #i = 0;

 while ($assoc->[#i] != NULL) {

 if ($assoc->[#i].IsCurrent) {

 // Is this scoped to the fileserver?

 $servers = Associators($assoc->[#i].SettingData,

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($servers->[] != NULL && $servers->[].length != 0 && $servers->[0]
== $fileserver) {

 $setting = GetInstance($assoc->[#i].SettingData);

 return;

 }

 }

 #i++;

 }

 $setting = NULL;

}

EXPERIMENTAL

9.6.7 Filesystem Manipulation Supported Capabilities Patterns

Table 107, “Filesystem Manipulation Supported Capabilities Patterns” lists the patterns that are formally recognized
by SMI-S 1.1.0 for determining capabilities of various NAS implementations:

Table 107 - Filesystem Manipulation Supported Capabilities Patterns

9.7 Registered Name and Version
Filesystem Manipulation version 1.3.0

Supported
ActualFileSystem

Types

Supported
Synchronous

Methods

Supported
Asynchronous

Methods

Initial
Availability

Any none none none

Any

CreateFileSystem,
DeleteFileSystem,
ModifyFileSystem,

CreateGoalSettings,
GetRequiredStorageSizes

none Any

Any CreateGoalSettings,
GetRequiredStorageSizes

CreateFileSystem,
DeleteFileSystem,
ModifyFileSystem

Any
190

NO_ANSI_ID Filesystem Manipulation Subprofile
9.8 CIM Elements
Table 99 describes the CIM elements for Filesystem Manipulation.

Table 108 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description

9.8.1 CIM_Dependency (Uses Directory
Services From)

Conditional Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is
either \Required\'or\'Optional\'.' Associates a
ComputerSystem that indicates a directory
service that supports the dependent
LocalFileSystem.

9.8.2 CIM_Directory (Root Directory) Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

 The root directory of a LocalFileSystem that is
always present when a FileSystem is created.
This is retained for backward compatibility
with SMI Specification 1.1.

9.8.3 CIM_ElementCapabilities (FS
Configuration Capabilities)

Mandatory In this subprofile, associates the Filesystem
Configuration Service to the Capabilities
element that represents the capabilities that it
supports.

9.8.4 CIM_ElementCapabilities (Local Access
Configuration Capabilities)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
\LocalAccessRequired,Defaulted\'or\'LocalAcc
essRequired,NotDefaulted\'.'

 In this subprofile, associates the Filesystem
Configuration Service to the Capabilities
instance that represents the capabilities for
Local Access that it supports.

9.8.5 CIM_ElementCapabilities (Non-Default) Optional In this subprofile, associates the Filesystem
Configuration Service to the
FileSystemCapabilities elements that
represent all the types of filesystems that are
not the default type of file system and can be
configured.

9.8.6 CIM_ElementSettingData (Attached to
Filesystem)

Optional Associates a FileSystemSetting element to a
LocalFileSystem. One of these association
elements is created by CreateFileSystem
when the LocalFileSystem is first created.

 The profile does not specify how other
instances of this association may be surfaced
by the implementation.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 191

Filesystem Manipulation Subprofile NO_ANSI_ID
9.8.7 CIM_ElementSettingData (Local Access
Required)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
\LocalAccessRequired,Defaulted\'or\'LocalAcc
essRequired,NotDefaulted\'.'Associates a
LocalFileSystem and the
LocallyAccessibleFileSystemSetting
elements.

9.8.8 CIM_FileStorage (Root Directory) Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Associates the root Directory to its parent
LocalFileSystem.

9.8.9 CIM_FileStorage (Shared Files and
Directories)

Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

Associates an exported Logical File or
Directory to the LocalFileSystem that contains
it.

9.8.10 CIM_HostedDependency (Attached to
File System)

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true.. Associates a Local Access
configuration setting to the file server
ComputerSystem that provides the
operational scope for its functionality.

9.8.11 CIM_HostedDependency (Predefined
Capabilities)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
\LocalAccessRequired,Defaulted\'or\'LocalAcc
essRequired,NotDefaulted\'.' Associates a
Local Access Capabilities to the File Server
that provides the operational scope for its
functionality. All of the Settings associated to
the referenced Capabilities element must be
scoped by the same File Server
ComputerSystem. This scoping allows the
CreateGoalSetting method of the Capabilities
element to know which File Server provides
the scope for any Goal element that it creates.

9.8.12 CIM_HostedDependency (Predefined
Setting)

Optional Associates a predefined
SNIA_LocallyAccessibleFileSystemSetting to
the file server ComputerSystem that provides
the operational scope for its functionality.

9.8.13 CIM_HostedFileSystem Mandatory Associates a LocalFileSystem to the
ComputerSystem that hosts it.

Table 108 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description
192

NO_ANSI_ID Filesystem Manipulation Subprofile
9.8.14 CIM_HostedService Mandatory In this subprofile, associates the Filesystem
Configuration Service to the hosting
ComputerSystem. This is expected to be the
top-level ComputerSystem of the parent
Filesystem Profile.

9.8.15 CIM_LogicalFile (Shared Files and
Directories)

Conditional Conditional requirement: Required if parent
profile is backward compatible to SMI
Specification v1.1..

A LogicalFile (or Directory subclass) that is
exported as a FileShare is also visible as a
sub-element of the LocalFileSystem.

Maybe this class should be defined only in the
File Export subprofile.

9.8.16 SNIA_ElementCapabilities (Default) Optional This entry represents the single default
FileSystemCapabilities element for the
Filesystem Configuration Service.

9.8.17 SNIA_FileSystemCapabilities Mandatory This element represents the Capabilities of
the Filesystem Configuration Service for
managing Filesystems. The Service can be
associated with multiple
FileSystemCapabilities elements, one per
ActualFileSystemType property value. For
each value that is in the array property
FileSystenConfigurationCapabilities.Supporte
dActualFileSystemTypes, there will be exactly
one corresponding FileSystemCapabilities
element with the matching
ActualFileSystemType property.

9.8.18
SNIA_FileSystemConfigurationCapabilities

Mandatory This element represents the management
Capabilities of the Filesystem Configuration
Service.

9.8.19 SNIA_FileSystemConfigurationService Mandatory The Filesystem Configuration Service
provides the methods to manipulate file
systems.

9.8.20 SNIA_FileSystemSetting (Attached to
FileSystem)

Optional This element represents the configuration
settings of a LocalFileSystem. One instance of
this class is created by the CreateFileSystem
extrinsic method when the LocalFileSystem
was created.

 This profile does not specify how other
instances of this class might be created.

Table 108 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 193

Filesystem Manipulation Subprofile NO_ANSI_ID
9.8.21 SNIA_FileSystemSetting (Predefined
FS Settings)

Optional This element represents sample configuration
settings usable for creating or modifying a
LocalFileSystem. It represents "predefined"
settings supported by the
FileSystemConfigurationService and is
associated with a FileSystemCapabilities
element by a SettingsDefineCapabilities
association. The
FileSystemSetting.ActualFileSystemType
property must specify the same value as the
associated
FileSystemCapabilities.ActualFileSystemType
property.

9.8.22 SNIA_LocalAccessAvailable Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true..Associates a LocalFileSystem to a
File Server Computer System that can export
files or directories as shares.

9.8.23 SNIA_LocalFileSystem Mandatory Represents a LocalFileSystem hosted by and
made available through a ComputerSystem
(usually the top-level ComputerSystem of a
Filesystem Profile).

9.8.24
SNIA_LocallyAccessibleFileSystemCapabilitie
s

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
\LocalAccessRequired,Defaulted\'or\'LocalAcc
essRequired,NotDefaulted\'.'The element
represents the Local Access configuration
Capabilities of the File System Configuration
Service. This class provides a
CreateGoalSettings method that will return a
SNIA_LocallyAccessibleFileSystemSetting
element as an EmbedddInstance that may be
used for making a file system locally
accessible to a file server ComputerSystem
(by the methods CreateFileSystem and
ModifyFileSystem). Since the returned
EmbeddedInstance setting element is an
instance of a ScopedSetting class, it must be
associated with a ComputerSystem via
ScopedSettingData when it is instantiated.

Table 108 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description
194

NO_ANSI_ID Filesystem Manipulation Subprofile
9.8.1 CIM_Dependency (Uses Directory Services From)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either 'Required' or 'Optional'.

9.8.25
SNIA_LocallyAccessibleFileSystemSetting

Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true..This element represents the
configuration settings of a LocalFileSystem
that has a contained file or directory that has
been made locally accessible from a file
server ComputerSystem. This Setting
provides further details on the functionality
supported and the parameters of that
functionality when locally accessible.

9.8.26 SNIA_SettingsDefineCapabilities
(Predefined FS Settings)

Optional These Setting elements provide detailed
information about the FileSystemSettings
supported by the associated
FileSystemCapabilities element.

9.8.27 SNIA_SettingsDefineCapabilities
(Predefined Local Access Settings)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either
\LocalAccessRequired,Defaulted\'or\'LocalAcc
essRequired,NotDefaulted\'.' The Setting
elements that are associated to this
Capabilities element are scoped to the File
Server ComputerSystem that provides the
operational context for local access.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA SNIA_LocalFileSystem

Mandatory CQL -Creation of a LocalFileSystem element.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
SNIA_LocalFileSystem

Mandatory Modification of a LocalFileSystem element.

Table 108 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 195

Filesystem Manipulation Subprofile NO_ANSI_ID
Table 109 describes class CIM_Dependency (Uses Directory Services From).

9.8.2 CIM_Directory (Root Directory)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem
Requirement: Required if parent profile is backward compatible to SMI Specification v1.1..

9.8.3 CIM_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 110 describes class CIM_ElementCapabilities (FS Configuration Capabilities).

9.8.4 CIM_ElementCapabilities (Local Access Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 109 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services
From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s)
that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other
security principal identities is supported by the antecedent
ComputerSystem.

Table 110 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration
Capabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Filesystem Configuration Service

Capabilities Mandatory The Filesystem Configuration Capabilities element
196

NO_ANSI_ID Filesystem Manipulation Subprofile
Table 111 describes class CIM_ElementCapabilities (Local Access Configuration Capabilities).

9.8.5 CIM_ElementCapabilities (Non-Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 112 describes class CIM_ElementCapabilities (Non-Default).

9.8.6 CIM_ElementSettingData (Attached to Filesystem)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Optional

Table 113 describes class CIM_ElementSettingData (Attached to Filesystem).

9.8.7 CIM_ElementSettingData (Local Access Required)

Table 111 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Con-
figuration Capabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Filesystem Configuration Service

Capabilities Mandatory The Filesystem Configuration Capabilities element

Table 112 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default)

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 113 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to File-
system)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem element representing a filesystem.

SettingData Mandatory The configuration of the LocalFileSystem.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 197

Filesystem Manipulation Subprofile NO_ANSI_ID
Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 114 describes class CIM_ElementSettingData (Local Access Required).

9.8.8 CIM_FileStorage (Root Directory)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem
Requirement: Required if parent profile is backward compatible to SMI Specification v1.1..

Table 115 describes class CIM_FileStorage (Root Directory).

9.8.9 CIM_FileStorage (Shared Files and Directories)

Created By: Extrinsic: CreateExportedShare or ModifyExportedShare
Modified By: Static
Deleted By: Extrinsic: DeleteExportedShare or ModifyExportedShare
Requirement: Required if parent profile is backward compatible to SMI Specification v1.1..

Table 114 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access
Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified
on creation or modification.

Table 115 - SMI Referenced Properties/Methods for CIM_FileStorage (Root Directory)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The LocalFileSystem that contains the associated root
Directory.

PartComponent Mandatory The Root Directory of the LocalFileSystem.
198

NO_ANSI_ID Filesystem Manipulation Subprofile
Table 116 describes class CIM_FileStorage (Shared Files and Directories).

9.8.10 CIM_HostedDependency (Attached to File System)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true..

Table 117 describes class CIM_HostedDependency (Attached to File System).

9.8.11 CIM_HostedDependency (Predefined Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 118 describes class CIM_HostedDependency (Predefined Capabilities).

Table 116 - SMI Referenced Properties/Methods for CIM_FileStorage (Shared Files and Directo-
ries)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile or
Directory.

PartComponent Mandatory An exported File or Directory of the LocalFileSystem.

Table 117 - SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File
System)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping File Server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

Table 118 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabil-
ities)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The SNIA_LocallyAccessibleFileSystemCapabilities that is
scoped by the file server ComputerSystem.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 199

Filesystem Manipulation Subprofile NO_ANSI_ID
9.8.12 CIM_HostedDependency (Predefined Setting)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 119 describes class CIM_HostedDependency (Predefined Setting).

9.8.13 CIM_HostedFileSystem

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

Table 120 describes class CIM_HostedFileSystem.

9.8.14 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 119 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

Table 120 - SMI Referenced Properties/Methods for CIM_HostedFileSystem

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The ComputerSystem that hosts a LocalFileSystem.

PartComponent Mandatory The hosted filesystem.
200

NO_ANSI_ID Filesystem Manipulation Subprofile
Table 121 describes class CIM_HostedService.

9.8.15 CIM_LogicalFile (Shared Files and Directories)

Created By: Extrinsic: CreateExportedShare or ModifyExportedShare
Modified By: Extrinsic: CreateExportedShare or ModifyExportedShare
Deleted By: Extrinsic: DeleteExportedShare or ModifyExportedShare
Requirement: Required if parent profile is backward compatible to SMI Specification v1.1..

Table 122 describes class CIM_LogicalFile (Shared Files and Directories).

Table 121 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory The Filesystem Configuration Service.

Antecedent Mandatory The hosting ComputerSystem.

Table 122 - SMI Referenced Properties/Methods for CIM_LogicalFile (Shared Files and Directo-
ries)

Properties Flags Requirement Description & Notes

CSCreationClassNa
me

Mandatory CIM Class Name of the ComputerSystem that hosts the
Filesystem containing this file.

CSName Mandatory Name property of the ComputerSystem that hosts the
Filesystem of this file.

FSCreationClassNa
me

Mandatory CIM Class Name of the LocalFileSystem on the
ComputerSystem that contains this file.

FSName Mandatory Name of the LocalFileSystem that contains this file.

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory The unique Name of this LogicalFile, weak with respect to a
containing Directory.

ElementName Mandatory The pathname from the root of the containing
LocalFileSystem to this LogicalFile. The root of the
LocalFileSystem is indicated if this is NULL or the empty
string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of
directories from the root, the separator string is specified by
the SNIA_LocalFileSystem.PathNameSeparatorString
property.

FileSize Optional The size of the file, in bytes.

CreationDate Optional A timestamp indicating when the file was created.

LastModified Optional A timestamp indicating when the file was last modified.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 201

Filesystem Manipulation Subprofile NO_ANSI_ID
9.8.16 SNIA_ElementCapabilities (Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 123 describes class SNIA_ElementCapabilities (Default).

9.8.17 SNIA_FileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 124 describes class SNIA_FileSystemCapabilities.

Table 123 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (Default)

Properties Flags Requirement Description & Notes

Characteristics Optional

Capabilities Mandatory

ManagedElement Mandatory

Table 124 - SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the FileSystemCapabilities
element of a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

ActualFileSystemTyp
e

Mandatory This identifies the type of filesystem that this
FileSystemCapabilities represents.

SupportedProperties Mandatory This is the list of configuration properties (of
FileSystemSetting) that are supported for specification at
creation time by this FileSystemCapabilities element.
202

NO_ANSI_ID Filesystem Manipulation Subprofile
9.8.18 SNIA_FileSystemConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 125 describes class SNIA_FileSystemConfigurationCapabilities.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of
FileSystemSettings that is a supported variant of an array
of FileSystemSettings passed in as an embedded IN
parameter. The method returns the supported
FileSystemSetting in an array of embedded OUT
parameters. This profile only supports arrays with a single
entry.

GetRequiredStorage
Size()

Optional This extrinsic method supports determining the storage
space requirements for a filesystem specified by the
combination of a FileSystemSetting and a StorageSetting.
The StorageSetting specifies the required redundancy,
multiple Logical Disk usage, and other storage mapping
considerations, while the FileSystemSetting transforms
client quality-of-service specifications to storage resource
requirements.

Table 125 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this element representing the
capabilities of a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

SupportedActualFile
SystemTypes

Mandatory The Service can be associated with multiple Capabilities
elements, one per ActualFileSystemType property value.
This property lists all of the supported
ActualFileSystemTypes. Each entry in this array must have
exactly one corresponding FileSystemCapabilities element
with that entry as the value of the ActualFileSystemType
property.

SupportedSynchrono
usMethods

N Mandatory The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
synchronously. A supported method shall be listed in this
property or in the SupportedAsynchronousMethods
property or both.

Table 124 - SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 203

Filesystem Manipulation Subprofile NO_ANSI_ID
SupportedAsynchron
ousMethods

N Mandatory The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
asynchronously. A supported method shall be listed in this
property or in the SupportedSynchronousMethods property
or both.

InitialAvailability Mandatory This property represents the state of availability of a
LocalFileSystem on initial creation using the
FileSystemConfigurationService associated with this
Capabilities element.

LocalAccessibilitySu
pport

Optional This specifies whether a LocalFileSystem created or
modified by this FileSystemConfigurationService needs to
be made locally accessible at a local access point before a
file server ComputerSystem can make it available to
operational clients or for export as a share. This is typical of
some NAS and filesystem implementations. If not specified,
the default is "Local Access Not Required".

Table 125 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes
204

NO_ANSI_ID Filesystem Manipulation Subprofile
BlockStorageCreatio
nSupport

Optional BlockStorageCreationSupport is an ordered array of
enumerated values that place a number of restrictions on
the use of parameters for CreateFileSystem and
ModifyFileSystem.

 1. The first entry is an enumerated value that specifies if an
already existing LogicalDIsk may be used -- this is either
required, optional, or not allowed. "Not Allowed" indicates
that the Pools and ExtentSettings parameters must be used
to create LogicalDisk(s) for this filesystem and the
InExtents parameter must be NULL. "Optional" indicates
that either the Pools and ExtentSettings parameters or the
InExtents parameter should be specified, but not both.
"Required" indicates that the InExtents parameter may be
specified and the Pools and ExtentSettings parameters
must be NULL.

 2. (optional) An integer that specifies an upper limit to the
number of StorageElements that can be specified, either as
InExtents parameters or as Pools and ExtentSettings.

 3. (optional) An integer that specifies the number of distinct
pools that the Pools parameters can specify -- zero, if Pools
is not supported or if there is no limit, and a specific number
if there is a limit. In practice we expect that the value will be
either zero or one.

 4. (optional) A boolean value, represented by '0' for false
and '1' for true, that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating
that a default setting is to be used).

Table 125 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 205

Filesystem Manipulation Subprofile NO_ANSI_ID
9.8.19 SNIA_FileSystemConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

DirectoryServerPara
meterSupported

Optional This enumeration indicates support for the DirectoryServer
parameter to the extrinsic method
FileSystemConfigurationService.CreateFileSystem(). The
options are:

 'Not Used' indicates that the filesystem does not support
security principal information associated with filesystem
objects. The LocalFileSystem will not be associated to a
DirectoryServer.

 'Supported' indicates that the filesystem supports security
principal information associated with filesystem objects.
The LocalFileSystem will be associated to a directory
server ComputerSystem. And the DirectoryServer
parameter of CreateFileSystem is required. If it is not
specified, it will be defaulted to the FileServer parameter in
the same call. If the FileServer parameter is also not
specified, the DirectoryServer parameter will be defaulted
to the host of the FileSystemConfigurationService.

 'Supported, Defaulted to FileServer' indicates that the
filesystem supports security principal information
associated with filesystem objects. The LocalFileSystem
will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of CreateFileSystem is
NOT supported, but is automatically defaulted to the
FileServer parameter of the same call. If the FileServer
parameter is not specified, the DirectoryServer parameter
will be defaulted to the host of the
FileSystemConfigurationService.

 'Supported, Defaulted to FileSystem host' indicates that
the filesystem supports security principal information
associated with filesystem objects. The LocalFileSystem
will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of CreateFileSystem is
NOT supported, but is automatically defaulted to the host of
the FileSystem created by CreateFileSystem().

Table 125 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes
206

NO_ANSI_ID Filesystem Manipulation Subprofile
Table 126 describes class SNIA_FileSystemConfigurationService.

9.8.20 SNIA_FileSystemSetting (Attached to FileSystem)

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Optional

Table 127 describes class SNIA_FileSystemSetting (Attached to FileSystem).

Table 126 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClas
sName

Mandatory The CIM Class name of the ComputerSystem hosting the
Service.

SystemName Mandatory The Name property of the ComputerSystem hosting the
Service.

CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

CreateFileSystem() Mandatory Creates a LocalFileSystem as specified by parameters and
Capabilities of the service and returns a reference to it. If
appropriate and supported, a Job may be created and a
reference to the Job will be returned.

ModifyFileSystem() Optional Modifies a LocalFileSystem indicated by a reference and
as specified by referenceparameters and Capabilities of the
service. If appropriate and supported, a Job may be
created and a reference to the Job will be returned.

DeleteFileSystem() Mandatory Deletes a LocalFileSystem indicated by reference. If
appropriate and supported, a Job may be created and a
reference to the Job will be returned.

Table 127 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to File-
System)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a FileSystemSetting element.

ElementName Mandatory A client defined user-friendly name for this
FileSystemSetting element.

ActualFileSystemTyp
e

Mandatory This identifies the type of filesystem that this
FileSystemSetting represents.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)
that are shared between files.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 207

Filesystem Manipulation Subprofile NO_ANSI_ID
CopyTarget Optional This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttribu
tes

Mandatory This specifies the support provided for using upper and
lower case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by the
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMa
x

Optional This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjects Optional This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize Optional This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[] that will be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an
object of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

FilenameStreamFor
mats

Optional This is an array that specifies the stream formats (e.g.,
UTF-8) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameLengthMax Optional This specifies the maximum length of a filename that will
be supported by the FileSystem configured by this
FileSystemSetting element.

Table 127 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to File-
System)

Properties Flags Requirement Description & Notes
208

NO_ANSI_ID Filesystem Manipulation Subprofile
9.8.21 SNIA_FileSystemSetting (Predefined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 128 describes class SNIA_FileSystemSetting (Predefined FS Settings).

FilenameReservedC
haracterSet

Optional This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames that will be
required by the FileSystem configured by this
FileSystemSetting element.

SupportedLockingSe
mantics

Optional This array specifies the set of file access/locking semantics
supported by the FileSystem configured by this
FileSystemSetting element.

SupportedAuthorizati
onProtocols

Optional This array specifies the kind of file authorization protocols
supported by the FileSystem configured by this
FileSystemSetting element.

SupportedAuthentica
tionProtocols

Optional This array specifies the set of file authentication protocols
that can be supported by the FileSystem configured by this
FileSystemSetting element.

Table 128 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Set-
tings)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A provider supplied user-friendly name for this
FileSystemSetting element.

ActualFileSystemTyp
e

Mandatory This identifies the type of filesystem that this
FileSystemSetting represents. It shall match the
corresponding property of FileSystemCapabilities.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttribu
tes

Mandatory This specifies the support provided for using upper and
lower case characters in a filename.

Table 127 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to File-
System)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 209

Filesystem Manipulation Subprofile NO_ANSI_ID
ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by a
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMa
x

Optional This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

NumberOfObjects Optional This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize Optional This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by a
LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an
object of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

FilenameStreamFor
mats

Optional This is an array that specifies the stream formats (e.g.,
UTF-8) supported for filenames by a filesystem with this
setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported
by a filesystem with this setting.

FilenameReservedC
haracterSet

Optional This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames that will be
required by a filesystem with this setting.

SupportedLockingSe
mantics

Optional This array specifies the set of file access/locking semantics
supported by a filesystem with this setting.

Table 128 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Set-
tings)

Properties Flags Requirement Description & Notes
210

NO_ANSI_ID Filesystem Manipulation Subprofile
9.8.22 SNIA_LocalAccessAvailable

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true..

Table 129 describes class SNIA_LocalAccessAvailable.

9.8.23 SNIA_LocalFileSystem

 The following properties of LocalFileSystem are defined by the MOF, but the way we model LocalFileSystem has
changed significantly. The setting/configuration properties are not supported using these properties, and so all of
these are "Not Supported". The run-time properties will be supported by a statistics/performance profile and that
has yet to be defined.

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

SupportedAuthorizati
onProtocols

Optional This array specifies the kind of file authorization protocols
supported by a filesystem with this setting.

SupportedAuthentica
tionProtocols

Optional This array specifies the kind of file authentication protocols
supported by a filesystem with this setting.

Table 129 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement Description & Notes

LocalAccessPoint Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true..The
name used by the file server to identify the file system.
Sometimes referred to as a mount-point. For many UNIX-
based systems, this will be a qualified full pathname. For
Windows systems this could also be the drive letter used
for the LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file
server ComputerSystem.

FileServer Mandatory The file server ComputerSystem that will be able to export
shares from this LocalFileSystem.

Table 128 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Set-
tings)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 211

Filesystem Manipulation Subprofile NO_ANSI_ID
Table 130 describes class SNIA_LocalFileSystem.

Table 130 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes

LocalAccessDefinitio
nRequired

Mandatory This boolean property indicates whether or not a
LocalFileSystem with this FileSystemSetting must be made
locally accessible ("mounted") from a file server
ComputerSystem before it can be shared or otherwise
made available to operational clients.

PathNameSeparator
String

Mandatory This indicates the string of characters used to separate
directory components of a canonically formatted path to a
file from the root of the filesystem. This string is expected to
be specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we
make it possible for a client to parse a pathname into the
hierarchical sequence of directories that compose it.

DirectoryServiceUsa
ge

Optional This enumeration indicates whether the filesystem
supports security principal information and therefore
requires support from a file server that uses one or more
directory services. If the filesystem requires such support,
there must be a concrete subclass of Dependency between
the LocalFileSystem element and the specified file server
ComputerSystem. The values supported by this property
are:

 'Not Used' indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

 'Optional' indicates that the filesystem may support
security principal information. If it does, it will require
support from a directory service and the Dependency
association described above must exist.

 'Required' indicates that the filesystem supports security
principal information and will require support from a
directory service. The Dependency association described
above must exist.

CSCreationClassNa
me

Mandatory The CIM class name of the hosting ComputerSystem.

CSName Mandatory The Name property of the hosting ComputerSystem.

CreationClassName Mandatory The CIM class name of the this element.

Name Mandatory A unique name for this LocalFileSystem in the context of
the hosting ComputerSystem.

EnabledState Optional Current state of enablement of the LocalFileSystem.

OtherEnabledState Optional Vendor-specific state of the LocalFileSystem indicated by
EnabledState = 1("Other").
212

NO_ANSI_ID Filesystem Manipulation Subprofile
TimeOfLastStateCha
nge

Optional A timestamp indicating when the state was last changed.

RequestedState Optional Not supported.

OperationalStatus Mandatory The current operational status of the LocalFileSystem.

Root Optional A path that specifies the "mount point" of the filesystem in
an unitary computer system that is both the host of the file
system and is the file server that makes it available.

BlockSize Mandatory The size of a block in bytes that the implementation used
as a fixed block size when creating this filesystem.

FileSystemSize Mandatory The total current size of the filesystem in blocks.

AvailableSpace Mandatory The space available currently in the filesystem in blocks.

ReadOnly Optional Indicates that this is a read-only filesystem that does not
allow modifications.

EncryptionMethod Optional Indicates if files are encrypted and the method of
encryption.

CompressionMethod Optional Indicates if files are compressed before being stored, and
the methods of compression..

CaseSensitive Optional Whether this filesystem is sensitive to the case of
characters in filenames.

CasePreserved Optional Whether this filesystem preserves the case of characters
in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames.

MaxFileNameLength Optional The length of the longest filename supported by the
implementation.

ClusterSize Optional Not supported.

FileSystemType Optional This is a string that matches
FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

 Pragmatically, this property should be ignored.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE:
This value is an approximation as it can vary continuously
when the filesystem is in use.

IsFixedSize Optional Indicates that the filesystem cannot be expanded or shrunk.

ResizeIncrement Optional The size by which to increase the size of the filesystem
when requested.

RequestStateChange
()

Optional Not supported.

Table 130 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 213

Filesystem Manipulation Subprofile NO_ANSI_ID
9.8.24 SNIA_LocallyAccessibleFileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 131 describes class SNIA_LocallyAccessibleFileSystemCapabilities.

Table 131 - SMI Referenced Properties/Methods for
SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the
SNIA_LocallyAccessibleFileSystemCapabilities associated
to a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this
SNIA_LocallyAccessibleFileSystemCapabilities element.
214

NO_ANSI_ID Filesystem Manipulation Subprofile
SupportedProperties Mandatory An array of property names of the
LocallyAccessibleFileSystemSetting that this
SNIA_LocallyAccessibleFileSystemCapabilities element
supports.

 2 'FailurePolicy'

 3 'RetriesMax'

 4 'InitialEnabledState'

 5 'RequestRetryPolicy'

 6 'TransmissionRetriesMax'

 7 'RetransmissionTimeout'

 8 'CachingOptions'

 9 'ReadBufferSize'

 10 'WriteBufferSize'

 11 'AttributeCaching'

 12 'ReadWritePolicy'

 13 'LockPolicy'

 14 'EnableOnSystemStart'

 15 'ReadWritePref'

 16 'ExecutePref'

 17 'RootAccessPref'

Table 131 - SMI Referenced Properties/Methods for
SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 215

Filesystem Manipulation Subprofile NO_ANSI_ID
9.8.25 SNIA_LocallyAccessibleFileSystemSetting

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem or ModifyFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true..

SupportedObjectsFor
AttributeCaching

Optional If AttributeCaching is supported, this specifies the array of
objects that can be set up for caching. A subset of these
entries will become the entries of the
AttributeCachingObjects property in the Setting.

 These classes represent types of objects stored in a
filesystem implementation -- files and directories as well as
others that may be defined in the future. The corresponding
Setting properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object. 'None'
and 'All' cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither
'None' or 'All' are specified, the caching settings for other
objects are defaulted by the implementation. If 'Rest' is
specified, the entry applies to all known object types other
than the named ones. If 'Unknown' is specified it applies to
object types not known to this application (this can happen
when foreign file systems are mounted.

 0 'Unknown'

 1 'None'

 2 'All'

 3 'Rest'

 4 'File'

 5 'Directory'

Table 131 - SMI Referenced Properties/Methods for
SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes
216

NO_ANSI_ID Filesystem Manipulation Subprofile
Table 132 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 132 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a
LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this
LocallyAccessibleFileSystemSetting element.

InitialEnabledState Optional InitialEnabledState is an integer enumeration that indicates
the enabled/disabled states initially set for a locally
accessible file system (LAFS). The element functions by
passing commands onto the underlying filesystem, and so
cannot indicate transitions between requested states
because those states cannot be requested. The following
text briefly summarizes the various enabled/disabled initial
states:

 'Enabled' (2) indicates that the element will execute
commands, will process any queued commands, and will
queue new requests.

 'Disabled' (3) indicates that the element will not execute
commands and will drop any new requests.

 'In Test' (7) indicates that the element will be in a test state.

 'Deferred' (8) indicates that the element will not process
any commands but will queue new requests.

 'Quiesce' (9) indicates that the element is enabled but in a
restricted mode. The element's behavior is similar to the
Enabled state, but it only processes a restricted set of
commands. All other requests are queued.

OtherEnabledState Optional A string describing the element's initial enabled/disabled
state when the InitialEnabledState property is set to 1
("Other"). This property MUST be set to NULL when
InitialEnabledState is any value other than 1.

FailurePolicy Optional An enumerated value that specifies if the operation to
make a FileSystem locally accessible to a scoping
ComputerSystem should be attempted one or more times
in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by
the corresponding RetriesMax property of the setting.

RetriesMax Optional An integer specifying the maximum number of attempts
that should be made by the scoping ComputerSystem to
make a Filesystem locally accessible. A value of "0"
specifies an implementation-specific default.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 217

Filesystem Manipulation Subprofile NO_ANSI_ID
RequestRetryPolicy Optional An enumerated value representing the policy that is
supported by the operational file server on a request to the
operational file system that either failed or left the file server
hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout
happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried
repeatedly until stopped.

TransmissionRetries
Max

Optional An integer specifying the maximum number of
retransmission attempts to be made from the operational
file server to the operational file system when the
transmission of a request fails or makes the file server
hang. A value of "0" specifies an implementation-specific
default. This is only relevant if there is a transmission
channel between the file server and the underlying file
system.

RetransmissionTime
outMin

Optional An integer specifying the minimum number of milliseconds
that the operational file server must wait before assuming
that a request to the operational file system has failed. "0"
indicates an implementation-specific default. This is only
relevant if there is a transmission channel between the
operational file server and the operational file system.

CachingOptions Optional An enumerated value that specifies if a local cache is
supported by the operational file server when accessing the
underlying operational file system.

BuffersSupport Optional An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for
accessing the underlying operational file system." If
supported, other properties will establish the level of
support. If the property is NULL or the empty array,
buffering is not supported.

ReadBufferSizeMin Optional An integer specifying the minimum number of bytes that
must be allocated to each buffer used for reading. A value
of "0" specifies an implementation-specific default.

ReadBufferSizeMax Optional An integer specifying the maximum number of bytes that
may be allocated to each buffer used for reading. A value of
"0" specifies an implementation-specific default.

WriteBufferSizeMin Optional An integer specifying the minimum number of bytes that
must be allocated to each buffer used for writing. A value of
"0" specifies an implementation-specific default.

WriteBufferSizeMax Optional An integer specifying the maximum number of bytes that
may be allocated to each buffer used for writing. A value of
"0" specifies an implementation-specific default.

Table 132 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
218

NO_ANSI_ID Filesystem Manipulation Subprofile
AttributeCaching Optional An array of enumerated values that specify whether
attribute caching is (or is not) supported by the operational
file server when accessing specific types of objects from
the underlying operational file system. The object type and
the support parameters are specified in the corresponding
AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

 Filesystem object types that can be accessed locally are
represented by an entry in these arrays. The entry in the
AttributeCaching array can be "On", "Off", or "Unknown".
Implementation of this feature requires support from other
system components, so it is quite possible that specifying
"On" may still not result in caching behavior. "Unknown"
indicates that the access operation will try to work with
whatever options the operational file server and file system
can support. In all cases, AttributeCachingTimeMin and
AttributeCachingTimeMax provide the minimum and
maximum time for which the attributes can be cached.
When this Setting is used as a Goal, the client may specify
"Unknown", but the Setting in the created object should
contain the supported setting, whether "On" or "Off".

AttributeCachingObje
cts

Optional An array of enumerated values that specify the attribute
caching support provided to various object types by the
operational file server when accessing the underlying
operational file system. These", types represent the types
of objects stored in a FileSystem -- files and directories as
well as others that may be defined in the future. The
corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object.
"None" and "All" cannot both be specified; if either one is
specified, it must be the first entry in the array and the entry
is interpreted as the default setting for all objects. If neither
"None" or "All" are specified, the caching settings for other
objects are defaulted by the implementation. If "Rest" is
specified, the entry applies to all known object types other
than the named ones. If "Unknown" is specified it applies to
object types not known to this application (this can happen
when foreign file systems are mounted.

AttributeCachingTime
Min

Optional An array of integers specifying, in milliseconds, the
minimum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of "0" indicates an implementation-specific default.

AttributeCachingTime
Max

Optional An array of integers specifying, in milliseconds, the
maximum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of "0" indicates an implementation-specific default.

Table 132 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 219

Filesystem Manipulation Subprofile NO_ANSI_ID
ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy
set on the operational file system and supported by the
operational file server when accessing it. 'Read Only'
specifies that the access to the operational file system by
the operational file server is set up solely for reading.
'Read/Write' specifies that the access to the operational file
system by the operational file server is set up for both
reading and writing. 'Force Read/Write' specifies that
'Read-Only' has been overridden by a client with write
access to the operational file system. This option is
intended for use when the associated FileSystem has been
made 'Read Only' by default, as might happen if it were
created to be the target of a Synchronization or Mirror
operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be
enforced on the operational file system by the operational
file server when accessing it. 'Enforce None' does not
enforce locks. 'Enforce Write' does not allow writes to
locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStar
t

Optional An enumerated value that specifies if local access from the
operational file server to the operational file system should
be enabled when the file server is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to
elements contained in the operational file system. The
provider is expected to surface this access using the CIM
privilege model.

Table 132 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
220

NO_ANSI_ID Filesystem Manipulation Subprofile
9.8.26 SNIA_SettingsDefineCapabilities (Predefined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 133 describes class SNIA_SettingsDefineCapabilities (Predefined FS Settings).

ExecutePref Optional An enumerated value that specifies if support should be
provided on the operational file server for executing
elements contained in the operational file system accessed
through this local access point. This may require setting up
specialized paging or execution buffers either on the
operational file server or on the operational file system side
(as appropriate for the implementation). Note that this does
not provide any rights to actually execute any element but
only specifies support for such execution, if permitted.

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access
by appropriately privileged System Administrative users on
the operational file server ("root" or "superuser") to the
operational file system and its elements. The provider is
expected to surface this access using the CIM privilege
model.

 Support for the privileged access might require setup at
both the operational file server as well as the operational
file system, so there is no guarantee that the request can
be satisfied.

Table 133 - SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Predefined
FS Settings)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory PropertyPolicy defines whether or not the non-null, non-
key properties of the associated FileSystemSetting element
are treated independently or as a correlated set.

ValueRole Mandatory ValueRole is an array that further specifies the semantics
of the non-null, non-key properties of the associated
FileSystemSetting element, such as whether they are
supported or unsupported, and if supported, whether they
are a default and/or an optimal value or an average of
some kind.

Table 132 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 221

Filesystem Manipulation Subprofile NO_ANSI_ID
9.8.27 SNIA_SettingsDefineCapabilities (Predefined Local Access Settings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 134 describes class SNIA_SettingsDefineCapabilities (Predefined Local Access Settings).

ValueRange Mandatory ValueRange is an array that further specifies the semantics
of the non-null, non-key properties of the associated
FileSystemSetting element, such as whether they are point
properties, or whether they represent maximum or
minimum values for the properties. If some properties
already have maximums and/or minimums specified by
another FileSystemSetting instance, this could specify
increments of the property value that are supported.

GroupComponent Mandatory A Filesystem Capabilities element that is defined by a
collection of Filesystem Settings.

PartComponent Mandatory A Filesystem Setting that provides a point or a partial
definition for a Filesystem Capabilities element.

Table 134 - SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Predefined
Local Access Settings)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory PropertyPolicy defines whether or not the non-null, non-
key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance are
treated independently or as a correlated set.

ValueRole Mandatory ValueRole is an array that further specifies the semantics
of the non-null, non-key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are supported or unsupported, and if
supported, whether they are a default and/or an optimal
value or an average of some kind.

Table 133 - SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Predefined
FS Settings)

Properties Flags Requirement Description & Notes
222

NO_ANSI_ID Filesystem Manipulation Subprofile
EXPERIMENTAL

ValueRange Mandatory ValueRange is an array that further specifies the semantics
of the non-null, non-key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are point properties, or whether they
represent maximum or minimum values for the properties.
If some properties already have maximums and/or
minimums specified by another
SNIA_LocallyAccessibleFileSystemSetting instance, this
could specify increments of the property value that are
supported.

GroupComponent Mandatory A Capabilities element of the filesystem that is defined by a
collection of SNIA_LocallyAccessibleFileSystemSetting
elements, each being scoped to the File Server
ComputerSystem with which it can be used.

PartComponent Mandatory A SNIA_LocallyAccessibleFileSystemSetting that provides
a point or a partial definition for a
SNIA_LocallyAccessibleFileSystemCapabilities element.

Table 134 - SMI Referenced Properties/Methods for SNIA_SettingsDefineCapabilities (Predefined
Local Access Settings)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 223

Filesystem Manipulation Subprofile NO_ANSI_ID
224

EXPERIMENTAL

Clause 10: Filesystem Performance Profile

10.1 Synopsis
Profile Name: Filesystem Performance

Version: 1.3.0

Organization: SNIA

CIM Schema Version: 2.15

Table 135 describes the related profiles for Filesystem Performance.

Note: Each of these subprofiles is mandatory if the element in question is to be metered. For example, in
order to keep statistics on exported file shares, it will be necessary for File Shares to be modeled
through the use of the File Export Subprofile.

Central Class: FileSystemStatisticsService

Scoping Class: ComputerSystem

Table 135 - Related Profiles for Filesystem Performance

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.3.0 Conditional Conditional requirement: This is
mandatory if
SNIA_FileSystemStatisticsCapabilitie
s.ElementTypesSupported = "102"
(Local Filesystem statistics support).

File Export SNIA 1.3.0 Conditional Conditional requirement: This is
mandatory if
SNIA_FileSystemStatisticsCapabilitie
s.ElementTypesSupported = "103"
(Exported File Share statistics
support).

Generic Target Ports SNIA 1.3.0 Conditional Conditional requirement: This is
mandatory if
SNIA_FileSystemStatisticsCapabilitie
s.ElementTypesSupported = "104"
(Exporting Port statistics support).
SMI-S 1.3.0 Rev 6 SNIA Technical Position 225

Filesystem Performance Profile NO_ANSI_ID
10.2 Description

10.2.1 Overview

The Filesystem Performance Subprofile defines classes and methods for managing filesystem-related
performance information. It is a subprofile for use with autonomous profiles that directly support filesystems, which
in this release of SMI-S specifically includes the NAS Head and the Self-Contained NAS profiles.

One of the key SRM disciplines for managing storage is Performance Management. In order to manage
performance, a number of processes need to be in place, including the ability to measure the performance and
saturation points of components within the storage network.

There are currently no common statistics defined that can be used to manage multiple vendor filesystem-related
entities (such as File Servers) from a performance perspective. This subprofile defines specific measurements and
methods to make common statistics available to SRM applications regarding filesystem-related entities. Examples
of such statistics include:

• The read, write and other I/O operation counts for a filesystem or a file share,

• The cumulative elapsed time required for the I/O operations to complete,

• The number of bytes transferred per unit of time.

Particular areas related to Performance Management that can make use of the statistics provided by the
Filesystem Performance Subprofile include:

• Filesystem utilization (e.g., "hot-spot" and trend analyses; tracking usage efficiency by monitoring response
times and IOPS/throughput rates; identifying over-utilization and contention that is leading to performance
degradation).

• Diagnostics and problem determination (e.g., identifying bottlenecks, "point(s) of pain", etc., especially at an
upper level within the overall "I/O operation stack").

• Tuning (e.g., determining allocation/reallocation of particular filesystems and/or file placements in the efforts to
meet overall performance goals and/or other Service Level Agreements; determining the impact of the
underlying storage and applicable network provisioning upon filesystem performance and utilization).

• Workload characterization (e.g., characterizing particular filesystem usage with possible correlation to
associated applications).

• Modeling and planning (e.g., enabling the use of empirical metrics as the input/basis for various modeling and
planning exercises related to filesystem and overall storage concerns).

Performance Measurement within the context of filesystems is the key deliverable that is the focus of this
subprofile. Of particular importance, the statistics provided by the Filesystem Performance Subprofile can help
facilitate a "top-down" approach within the areas noted above (i.e., by reflecting performance information that is
directly related to and seen by/at a "top-most" component within the overall I/O operation processing stack).

Note: Performance analysis is broader than simply filesystems and related entities such as File Servers. Complete
analysis requires performance information from hosts, fabric and the underlying storage systems. Theses are (or
will be) addressed separately as part of the appropriate profiles (e.g., the Block Server Performance Subprofile,
which includes further discussion regarding Performance Management).

The Filesystem Performance Subprofile provides statistics, which are associated with fundamental elements that
can comprise a filesystem-related entity (such as a NAS Head or a Self-Contained NAS). These elements include:

• Filesystems,

• Exported file shares,
226

NO_ANSI_ID Filesystem Performance Profile
• Network-interface ports used to export file shares.

In order to monitor and manage the aforementioned elements, it is necessary to identify performance counters for
each of these elements and to externalize an interface so that SRM applications can retrieve the counter values
when they so desire. The function of this subprofile is to support such SRM applications.

The Filesystem Performance Subprofile augments the profiles and subprofiles for those autonomous profiles within
this release of SMI-S that directly support filesystems. Instead of being an isolated subprofile, this subprofile adds
modeling constructs to existing profiles and subprofiles. Together these enhancements make up the Filesystem
Performance Subprofile (as would be registered in the Server Profile as a RegisteredSubprofile).

10.3 Implementation

10.3.1 Performance Additions Overview

Figure 15 provides an overview of the model. The shaded grey boxes show the new classes added by the
Filesystem Performance Subprofile.

Note: Not all properties defined for the statistics classes are shown within Figure 15. That is, there are additional
properties (both mandatory and optional) that are included within the statistical classes. These properties can be
found in .
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 227

Filesystem Performance Profile NO_ANSI_ID
Figure 15 shows a single instance of StatisticsCollection for the entire profile. The ComputerSystem (i.e., the "top
level" computer system depicted within the figure) is that of the autonomous profile (e.g., a NAS Head or a Self-
Contained NAS) which utilizes the Filesystem Performance Subprofile.

The StatisticsCollection is the anchor point from which all statistics being kept by the profile can be found. Statistics
are defined as a FileSystemStatisticalData class, instances of which hold the statistics for particular metered
elements (e.g., filesystems and file shares). The particular type of metered element is recorded in the instance of
FileSystemStatisticalData within the ElementType property.

Figure 15 - Filesystem Performance Subprofile Summary Instance Diagram

Filesystem Profile

Profile Registration Profile
RegisteredProfile

RegisteredName=
‘Filesystem Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

ComputerSystem

SNIA_FilesystemStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService

SNIA_FilesystemStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

ElementCapabilities

HostedCollection

SNIA_FilesystemStorageStatisticalData

InstanceID
ElementType=102

StatisticTime
TotalIOs

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

MemberOfCollection

LocalFileSystem

HostedFileSystem

ElementStatisticalData

SNIA_FilesystemStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedFilesystemStatisticsManifestCollection

MemberOfCollection

SNIA_FileSystemStatisticsManifest
SNIA_FileSystemStatisticsManifest

SNIA_FileSystemStatisticsManifest

SNIA_FilesystemStorageStatisticalData

InstanceID
ElementType=103

StatisticTime
TotalIOs

File Export Profile

FileShare

HostedShare

ElementStatisticalData

SNIA_SharedElement

SAPAvailableForElement

‘NFS’ or ‘CIFS’

ProtocolEndpoint
SNIA_FilesystemStorageStatisticalData

InstanceID
ElementType=104

StatisticTime
TotalIOs

ElementStatisticalData

SNIA_FilesystemStatisticsManifestCollection

InstanceID
ElementName

IsDefault=False

HostedAccessPoint

SNIA_FilesystemStorageStatisticsManifest

InstanceID
ElementType=102

IncludeStatisticTime
IncludeTotalIOs
IncludeReadIOs
IncludeWriteIOs

SNIA_FilesystemStorageStatisticsManifest

InstanceID
ElementType=103

IncludeStatisticTime
IncludeTotalIOs

MemberOfCollection

.

.

228

NO_ANSI_ID Filesystem Performance Profile
All of the statistics instances are related to the elements that they meter via the ElementStatisticalData association
(e.g., FileSystemStatisticalData for a File Share can be found from the File Share by traversing the
ElementStatisticalData association).

All of the statistics instances kept within the profile are associated to the one StatisticsCollection instance. Access
to all of the statistics for the profile is through the StatisticsCollection. The StatisticsCollection has a
HostedCollection association to the "top level" computer system of the profile.

Note that statistics may be kept for a number of elements within the profile, including elements within subprofiles.
The particular elements that are metered are:

• Local Filesystem. This provides a summary of all statistics for a particular filesystem (i.e., an instance of
LocalFileSystem). For example, all file read I/O operations (ReadIOs) directed to a particular filesystem. These
statistics are kept within the FileSystemStatisticalData instances, with one for each filesystem within the
system.

• Exported File Share. This provides a summary of all statistics for a particular file share that is exported (i.e.,
an instance of FileShare as described within the File Export Profile). For example, all file read I/O operations
(ReadIOs) directed to a particular file share that is exported to the network. These statistics are kept within the
FileSystemStatisticalData instances, with one for each FileShare within the system.

• Exporting Port. This provides a summary of all statistics for a particular port through which a file share being
exported can be accessed (i.e., an instance of ProtocolEndpoint through which a FileShare can be accessed
as described within the File Export Profile). For example, all file read I/O operations (ReadIOs) directed to a
particular file share exporting port. These statistics are kept within the FileSystemStatisticalData instances,
with one for each file share exporting port within the system.

Finally, Figure 15 illustrates the FileSystemStatisticsService for Bulk retrieval of all the statistics data and the
creation of manifest collections. These methods (which are provided in a manner akin to that provided by the Block
Server Performance Subprofile) will be discussed later. They are shown here for completeness. Associated with
the FileSystemStatisticsService is a FileSystemStatisticsCapabilities instance that identifies the specific capabilities
implemented by the filesystem performance statistics support. Specifically, it includes an "ElementsSupported"
property that identifies the elements for which statistics are kept; the FileSystemStatisticsCapabilities instance also
identifies the various retrieval mechanisms (e.g., Extrinsic, Association Traversal, Indications and/or Query) that
are implemented (i.e., supported) by the filesystem statistics support.

10.3.2 Summary of FileSystemStatisticsData support by Profile

Table 2 defines the Element Types (for FileSystemStatisticsData instances) that may be supported by profile.

YES means that this specification defines the element type for the profile, but actual support by any given
implementation would be implementation dependent. NO means that this specification does not specify this
element type for the profile.

Table 136 - Summary of Element Types by Profile

ElementType NAS Head Self-Contained NAS

Local Filesystem YES YES

Exported File Share YES YES

Exporting Port YES YES
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 229

Filesystem Performance Profile NO_ANSI_ID
10.3.3 Profile Registration Profile Support for the Filesystem Performance Subprofile

At the top of Figure 15 there is a dashed box that illustrates a part of the Profile Registration Profile for the
autonomous profile (e.g., a NAS Head or a Self-Contained NAS) that utilizes the Filesystem Performance
Subprofile. The part illustrated represents the particulars for the Filesystem Performance Subprofile. If
performance support has been implemented, then there shall be a RegisteredSubprofile instance for the
Filesystem Performance Subprofile.

10.3.4 Default Manifest Collection

Associated with the instances of the StatisticsCollection shall be a provider-supplied (Default)
SNIA_FileSystemManifestCollection that represents the statistics properties that are kept by the profile. The
default manifest collection is indicated by the IsDefault property (=True) of the
SNIA_FileSystemManifestCollection. For each metered object (element) of the profile implementation, the default
manifest collection will have exactly one manifest that will identify which properties are included for that metered
object. If an object is not metered, then there shall not be a manifest for that element type. If an element type (e.g.,
Local filesystem) is metered, then there shall be a manifest for that element type.

10.3.5 Client Defined Manifest Collection

Manifest collections are either provider-supplied (SNIA_FileSystemManifestCollection.IsDefault=True) for the
profile implementation or client-defined collections (SNIA_FileSystemManifestCollection.IsDefault=False). Client-
defined collections are used to indicate the specific statistics properties that the client would like to retrieve using
the GetStatisticsCollection method. For a discussion of provider-supplied manifest collections, see 10.3.4.

Client-defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client-defined manifest collection is identified by the IsDefault property of the
collection set to False. For each element type of the filesystem statistics class (e.g., Local Filesystem, Exported
File Share, etc.), a manifest can be defined that identifies which specific properties of the particular statistics class
element type are to be returned on a GetStatisticsCollection request. Each of the element types of the filesystem
statistics class may have no or one manifest in any given manifest collection. This is illustrated in Figure 15.

In Figure 15, manifest classes are defined for filesystems (LocalFileSystem) and exported file shares (FileShare).
Each property of the manifest is a Boolean that indicates whether the property is to be returned (true) or omitted
(false).

Multiple client-defined manifest collections can be defined in the profile. Consequently, different clients or different
client applications can define different manifests for different application needs. A manifest collection can
completely omit a whole set of statistics pertaining to a particular element type; for example, no ProtocolEndPoint
statistics (i.e., filesystem performance statistics associated with the element type of "Exporting Port", which
represents a port through which a File Share can be accessed from the network) are included within the client-
defined manifest collection shown in Figure 15. Since manifest collections are "client objects", they are named
(ElementName) by the client for the client's convenience. The CIM server will generate an instance ID to uniquely
identify the manifest collection in the CIM Server.

Client-defined manifest collections are created using the CreateManifestCollection method. Manifests are added or
modified using the AddOrModifyManifest method. A manifest may be removed from the manifest collection by
using the RemoveManifests method.

Note: Use of manifest collections is optional with the GetStatisticsCollection method. If NULL for the manifest
collection is passed on input, then all statistics instances are assumed (i.e., all available statistics will be
returned).

10.3.6 Capabilities Support for Filesystem Performance Subprofile

There are two dimensions to determining what is supported with a Filesystem Performance Subprofile
implementation. First, there are the RegisteredSubprofiles supported by the autonomous profile (e.g., a NAS Head
or a Self-Contained NAS Profile) that utilizes the Filesystem Performance Subprofile. In order to support statistics
230

NO_ANSI_ID Filesystem Performance Profile
for a particular class of metered element, the corresponding object shall be modeled. So, if a NAS Head (for
example) has not implemented the File Export Subprofile, then it shall not implement the FileSystemStatisticalData
for "Exported File Share" in the Filesystem Performance Subprofile (and implementation of the File Export
Subprofile does not guarantee implementation of the FileSystemStatisticalData for exported file shares).

Both of these dimensions are captured in the FileSystemStatisticsCapabilities class instance. This class instance is
not created nor modified by Clients; rather, it is populated by the provider and has three properties of interest (as
discussed within the following sections). The second dimension is techniques supported for retrieving statistics and
manipulating manifest collections.

For the methods-supported properties described below (namely, SynchronousMethodsSupported and
AsynchronousMethodsSupported), any or all of the respective values can be missing (e.g., the arrays can be
NULL). If all of the methods supported are NULL, then manifest collections are not supported and neither
GetStatisticsCollection nor Query are supported for the retrieval of statistics. This leaves enumerations or
association traversals as the only methods for retrieving the statistics.

10.3.6.1 ElementsSupported
This property within the FileSystemStatisticsCapabilities class defines a list of element types for which statistical
data is available. For this release of SMI-S, the values of interest are "Local Filesystem", "Exported File Share",
and "Exporting Port".

To be a valid implementation of the Filesystem Performance Subprofile, at least one of the values listed for
ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can be
identified.

10.3.6.2 SynchronousMethodsSupported
This property within the FileSystemStatisticsCapabilities class defines the synchronous mechanisms that are
supported for retrieving statistics and for defining and modifying filters for statistics retrieval. For this release of
SMI-S, the values of interest are "Exec Query", "Indications", "Query Collection", "GetStatisticsCollection",
"Manifest Creation", "Manifest Modification", and "Manifest Removal".

10.3.6.3 AsynchronousMethodsSupported
This property within the FileSystemStatisticsCapabilities class defines the asynchronous mechanisms that are
supported for retrieving statistics. For this release of SMI-S, this should be NULL.

10.3.6.4 ClockTickInterval
An internal clocking interval for all timer counters kept in the system implementation, measured in microseconds
(i.e., the unit of measure in the timers, measured in microseconds). Time counters are considered to be
monotonically increasing counters that contain "ticks". Each tick represents one clock tick interval.

For example, if ClockTickInterval contained a value of 32, then each time counter tick would represent 32
microseconds.

10.3.7 Health and Fault Management Consideration

Not defined in this version of the specification.

10.3.8 Cascading Considerations

Not applicable
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 231

Filesystem Performance Profile NO_ANSI_ID
10.4 Methods of the Profile

10.4.1 Extrinsic Methods of the Profile

10.4.1.1 Overview
The methods supported by this subprofile are summarized in Table 3 and detailed within the sections that follow it.

10.4.1.2 GetStatisticsCollection
This extrinsic method retrieves statistics in a well-defined bulk format. The set of statistics returned by this method
is determined by the list of element types passed into the method and the manifests for those types contained in
the supplied manifest collection. The statistics are returned through a well-defined array of strings that can be
parsed to retrieve the desired statistics as well as limited information about the elements that those metrics
describe.

GetStatisticsCollection(

[IN (false), OUT, Description(Reference to the job(shall be null in this
version of SMI-S.)]

CIM_ConcreteJob REF Job,

[IN, Description(Element types for which statistics should be returned)

ValueMap { "1", "102", "103", "104", "..", "0x8000.." },

Values { "Other", "Local Filesystem", "Exported File Share", "Exporting Port",
"DMTF Reserved", "Vendor Specific" }]

uint16 ElementTypes[],

[IN, Description ("An array of strings that specify the particular "Other"
element(s) when the ElementType property above includes
the ElementType value of 1 (i.e., "Other"). Each
string within this array identifies a separate "Other"
element and duplicate string values are NOT allowed.
This property should be set to NULL when the
ElementType property does not include the value of
1.")]

 string OtherElementTypeDescriptions[],

Table 137 - Creation, Deletion and Modification Methods in the Filesystem Performance Subpro-
file

Method Created Instances Deleted Instances Modified Instances

GetStatisticsCollection None None None

CreateManifestCollection FileSystemStatisticsManifest
Collection

AssociatedFileSystemStatisti
csManifestCollection

None None

AddOrModifyManifest FileSystemStatisticsManifest(
subclass)

MemberOfCollection

None FileSystemStatistics
Manifest(subclass)

RemoveManifest None FileSystemStatistics
Manifest(subclass)

MemberOfCollection

None
232

NO_ANSI_ID Filesystem Performance Profile
[IN, Description(The manifest collection that contains the manifests which list
the metrics that should be returned for each element
type)]

SNIA_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description("Specifies the format of the Statistics output parameter")

ValueMap { "2" } ,

Values ("CSV")]

uint16 StatisticsFormat,

[OUT, Description(The statistics for all the elements as determined by the
Elements and ManifestCollection parameters)]

string Statistics[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method
Reserved", "Method Parameters Checked - Job Started", "Element Not Supported", "Statistics Format Not
Supported", "Method Reserved", "Vendor Specific"}

Note: In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This
method should always return NULL for the Job parameter.

If the ElementTypes[] array is empty, then no data is returned. If the ElementTypes[] array is NULL, then the
ElementTypes[] parameter is ignored and all data specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is NULL, then the
default manifest collection is used. (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

Note: The ElementTypes[] and ManifestCollection parameters may identify different sets of element types.
The effect of this will be for the implementation to return statistics for the element types that are in both
lists (that is, the intersection of the two lists). This intersection could be empty. In this case, no data will
be returned.

For the current version of SMI-S, the only recognized value for StatisticsFormat is "CSV". The method may support
other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstanceIDs that may be used to correlate with
the FileSystemStatisticalData instances, a simple CSV format is sufficient and the most efficient human-readable
format for transferring bulk statistics. More specifically, the following rules constrain that format and define the
content of the String[] Statistics output parameter to the Get Statistics Collection() method:

• The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings will not exceed 64K bytes. And a single statistics record will not span Array
entries.

• There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:

• a line-feed character

• the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

• Each statistics record shall contain the InstanceID of the FileSystemStatisticalData instance, the value map
(number) of the ElementType of the metered object, and one value for each property that the relevant
FileSystemStatisticsManifest specifies as "true".
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 233

Filesystem Performance Profile NO_ANSI_ID
• Each value in a record shall be separated from the next value by a Semi-colon (";"). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record. A client reading a record it has received would ignore white-space between
values.

• The InstanceID value is an opaque string that shall correspond to the InstanceID property from
FileSystemStatisticalData instance.

• For the convenience of client software that needs to be able to correlate InstanceIDs between different
GetStatisticsCollection method invocations, the InstanceID for FileSystemStatisticalData instance shall be
unique across all instances of the FileSystemStatisticalData class. It is not sufficient that InstanceID is
unique across subclasses of FileSystemStatisticalData.

• The ElementType value shall be a decimal string representation of the Element Type number (e.g., "102" for
Local Filesystem). The StatisticTime shall be a string representation of DateTime. All other values shall be
decimal string representations of their statistical values.

• Null values shall be included in records for which a statistic is returned (specified by the manifest or by a lack of
manifest for a particular element type) but there is no meaningful value available for the statistic. A NULL
statistic is represented by placing a semi-colon (;) in the record without a value at the position where the value
would have otherwise been included. A record in which the last statistic has a NULL value shall end in a semi-
colon (;).

• The first three values in a record shall be the InstanceID, ElementType and StatisticTime values from the
FileSystemStatisticalData instance. The remaining values shall be returned in the order in which they are
defined by the MOF for the FileSystemStatisticsManifest class or subclass the record describes.

As an additional convention, a provider should return all the records for a particular element type in consecutive
String elements, and the order of the element types should be the same as the order in which the element types
were specified in the input parameter to GetStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 local filesystems and 5 exported file
shares, assuming that 6 statistics were specified in the FileSystemStatisticsManifest instance for both local
filesystems and exported file shares. The sixth statistic is unavailable for local filesystems, and the fourth statistic is
unavailable for exported file shares:

<METHODRESPONSE NAME="GetStatisticsCollection">

<RETURNVALUE PARAMTYPE="uint32">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="Statistics" PARAMTYPE="string">

<VALUE.ARRAY>

<VALUE>

LOCALFILESYSTEMSTATS1;102;20060811133015.0000010-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS2;102;20060811133015.0000020-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS3;102;20060811133015.0000030-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS4;102;20060811133015.0000040-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS5;102;20060811133015.0000050-
300;11111;22222;33333;44444;55555;
234

NO_ANSI_ID Filesystem Performance Profile
</VALUE>

<VALUE>

EXPORTFILESHARESTATS1;103;20060811133015.0000100-
300;11111;22222;33333;;55555;66666

EXPORTFILESHARESTATS2;103;20060811133015.0000110-
300;11111;22222;33333;;55555;66666

EXPORTFILESHARESTATS3;103;20060811133015.0000120-
300;11111;22222;33333;;55555;66666

EXPORTFILESHARESTATS4;103;20060811133015.0000130-
300;11111;22222;33333;;55555;66666

EXPORTFILESHARESTATS5;103;20060811133015.0000140-
300;11111;22222;33333;;55555;66666

</VALUE>

</VALUE.ARRAY>

</PARAMVALUE>

</METHODRESPONSE>

10.4.1.3 CreateManifestCollection
This extrinsic method creates a new manifest collection whose members serve as a filter for metrics retrieved
through the GetStatisticsCollection method.

CreateManifestCollection(

[IN, Description(The collection of statistics that will be filtered using the new
manifest collection)]

CIM_StatisticsCollection REF Statistics,

[IN, Description(Client-defined name for the new manifest collection)

string ElementName,

[OUT, Description(Reference to the new manifest collection)]

SNIA_FileSystemManifestCollection REF ManifestCollection);

Error returns are:

{ "Ok", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Vendor Specific" }

10.4.1.4 AddOrModifyManifest
This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A client
supplies a manifest collection within which the new manifest collection will be placed or an existing manifest will be
modified, the element type of the statistics that the manifest will filter, and a list of statistics that should be returned
for that element type using the GetStatisticsCollection method.

AddOrModifyManifest(

[IN, Description(Manifest collection that the manifest is or should be a member
of)]

SNIA_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(The element type whose statistics the manifest will filter)

ValueMap { "1", "102", "103", "104", "..", "0x8000.." },

Values { "Other", "Local Filesystem", "Exported File Share", "Exporting Port",
"DMTF Reserved", "Vendor Specific" }]

uint16 ElementType,
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 235

Filesystem Performance Profile NO_ANSI_ID
 [IN, Description ("A string describing the type of element when the ElementType
property above is set to 1 (i.e., "Other"). This
property should be set to NULL when the ElementType
property is any value other than 1.")]

 string OtherElementTypeDescription,

[IN, Description(The client-defined string that identifies the manifest created or
modified by this method)

string ElementName,

[IN, Description(The statistics that will be included by the manifest filter; that
is, the statistics that will be supplied through the
GetStatisticsCollection method)

string StatisticsList[],

 [OUT, Description(The Manifest that is created or modified on the successful
execution of this method)]

SNIA_FileSystemManifest REF Manifest);

Error returns are:

{ "Success", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Element Not Supported", "Metric not
supported", "ElementType Parameter Missing", "Method
Reserved", "Vendor Specific" }

If the StatisticsList[] array is empty, then only InstanceID and ElementType will be returned when the manifest is
referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is assumed (i.e., all
supported properties will be included).

Note: This would be the FileSystemStatisticsManifest from the default manifest collection.

10.4.1.5 RemoveManifests
This is an extrinsic method that removes manifests from the manifest collection.

RemoveManifests(

[IN, Description(Manifest collection from which the manifests will be removed)]

SNIA_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(List of manifests to be removed from the manifest collection)

SNIA_FileSystemStatisticsManifest REF Manifest[]);

Error returns are:

{ "Success", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid
Parameter", "Method Reserved", "Manifest not found",
"Method Reserved", "Vendor Specific" }

10.4.2 Intrinsic Methods of this Profile

Note: Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection,
FileSystemStatisticalData, MemberOfCollection or ElementStatisticalData.

10.4.2.1 DeleteInstance (of a FileSystemStatisticsManifestCollection)
This will delete the FileSystemStatisticsManifestCollection where IsDefault=False, the
AssociatedFileSystemStatisticsManifestCollection association to the StatisticsCollection and all manifests collected
236

NO_ANSI_ID Filesystem Performance Profile
by the manifest collection (and the MemberOfCollection associations to the
FileSystemStatisticsManifestCollection).

10.4.2.2 Association Traversal
One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the individual
Statistics following the MemberOfCollection association. This shall be supported by all implementations of the
Filesystem Performance Subprofile and would be available to clients if the provider does not support the EXEC
QUERY or GetStatisticsCollection approaches.

10.5 Use Cases

10.5.1 Summary of Statistics Support by Element

Not all statistics properties are kept for all elements. Table 4 illustrates the statistics properties that are kept for
each of the metered elements.

The legend is:

R - Required

O - Optional

N - Not specified

Table 138 - Summary of Statistics Support by Element

Statistic Property Local
Filesystem

Exported File
Share

Exporting
Port

Other

StatisticTime R R R R

TotalIOs R R R R

TotalBytesTransferred R R R N

ReadIOs R R N N

WriteIOs R R N N

OtherIOs R R N N

MetadataReadIOs O O N N

MetadataWriteIOs O O N N

TotalIOTimeCounter O O O N

TotalIdleTimeCounter O O O N

ReadIOTimeCounter O O N N

BytesRead O O N N

WriteIOTimeCounter O O N N

BytesWritten O O N N

MetadataBytesRead O O N N

MetadataBytesWritten O O N N
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 237

Filesystem Performance Profile NO_ANSI_ID
A complete list of definitions of the metered elements as defined by the ElementType property of
FileSystemStatisticalData is below:

• ElementType = 1 (Other) - This is used by the provider to specify a filesystem-related metered element other
than one explicitly declared (e.g., "Local Filesystem" below) within the list of element types supported by the
Filesystem Performance Subprofile in this release of SMI-S. If the ElementType is "Other", then information
describing the metered element should be provided in the "OtherElementTypeDescription" string property.

• ElementType = 102 (Local Filesystem) - This is a filesystem that would be a LocalFileSystem in the Filesystem
Profile. It is a target for I/O operations that would include file I/O operations for storing and retrieving the
contents of a file maintained by the filesystem, I/O operations directed to directories maintained by the
filesystem, and other I/O operations performed to manage the filesystem and its contents.

• ElementType = 103 (Exported File Share) - This is a FileShare in the File Export Subprofile; it is a file share
that is exported to a network.

• ElementType = 104 (Exporting Port) - This is a port through which a file share being exported can be
accessed. It is a ProtocolEndPoint through which a FileShare can be accessed as described within the File
Export Profile.

10.5.2 Formulas and Calculations

Table 4 identifies the set of statistics that are recommended for various elements associated with filesystems. Once
collected, these metrics can be further enhanced through the definition of formulas and calculations that create
additional "derived" statistics.

TTable 139 defines a set of such derived statistics as pertain to a calculated time interval. These calculated
statistics are by no means the only possible derivations but serve as examples of commonly requested statistics.

10.5.3 Filesystem Performance Supported Capabilities Patterns

The Filesystem Performance Subprofile in this release of SMI-S formally recognizes the Capabilities patterns
summarized in Table 5.

Table 139 - Formulas and Calculations - Calculated Statistics for a Time Interval

New statistic Formula

TimeInterval delta StatisticTime

I/O rate delta TotalIOs / TimeInterval

I/O average response time delta TotalIOTimeCounter / delta TotalIOs

Read average response time delta ReadIOTimeCounter / delta ReadIOs

Write average response time delta WriteIOTimeCounter / delta WriteIOs

Average Read Size delta BytesRead / delta ReadIOs

Average Write Size delta BytesWritten / delta WriteIOs

% Read 100 * (delta ReadIOs / delta TotalIOs)

% Write 100 * (delta WriteIOs / delta TotalIOs)
238

NO_ANSI_ID Filesystem Performance Profile
An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or neither. But if
the implementation supports GetStatisticsCollection, it shall support Synchronous execution.

If manifest collections are supported, then ALL three methods shall be supported (creation, modification and
removal).

10.5.4 Client Considerations and Recipes

Not defined in this version of the specification.

Table 140 - Filesystem Performance Subprofile Supported Capabilities Patterns

Element
Supported

SynchronousMethods
Supported

AsynchronousMethods
Supported

Any (at least one) NULL NULL

Any (at least one) Neither GetStatisticsCollection
nor Exec Query

NULL

Any (at least one) GetStatisticsCollection NULL

Any (at least one) Any NULL

Any (at least one) Exec Query NULL

Any (at least one) GetStatisticsCollection, Exec
Query

NULL

Any (at least one) "Manifest Creation", "Manifest
Modification", and "Manifest
Removal”

NULL

Any (at least one) "Indications", "Query Collection” NULL
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 239

Filesystem Performance Profile NO_ANSI_ID
10.6 CIM Elements
Table 135 describes the CIM elements for Filesystem Performance.

Table 141 - CIM Elements for Filesystem Performance

Element Name Requirement Description

10.6.1 CIM_ElementCapabilities Mandatory This associates the
FileSystemStatisticsCapabilities to the
FileSystemStatisticsService.

10.6.2 CIM_ElementStatisticalData (Exported
File Share Stats)

Conditional Conditional requirement: This is mandatory if
SNIA_FileSystemStatisticsCapabilities.Eleme
ntTypesSupported = "103" (Exported File
Share statistics support).

This associates a FileSystemStatisticalData
instance to the exported File Share for which
the statistics are collected.

10.6.3 CIM_ElementStatisticalData (Exporting
Port Stats)

Conditional Conditional requirement: This is mandatory if
SNIA_FileSystemStatisticsCapabilities.Eleme
ntTypesSupported = "104" (Exporting Port
statistics support).

This associates a FileSystemStatisticalData
instance to the exporting Port for which the
statistics are collected.

10.6.4 CIM_ElementStatisticalData (Local
Filesystem Stats)

Conditional Conditional requirement: This is mandatory if
SNIA_FileSystemStatisticsCapabilities.Eleme
ntTypesSupported = "102" (Local Filesystem
statistics support).

This associates a FileSystemStatisticalData
instance to the local Filesystem for which the
statistics are collected.

10.6.5 CIM_ElementStatisticalData (OTHER
Element Type Stats)

Conditional Conditional requirement: This is mandatory if
SNIA_FileSystemStatisticsCapabilities.Eleme
ntTypesSupported = "1" (OTHER element
type statistics support).

This associates a FileSystemStatisticalData
instance to a provider-specified other element
for which the statistics are collected.

10.6.6 CIM_HostedCollection (Client Defined) Conditional Conditional requirement: Clients can create
manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported or Clients can
create manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Async
hronousMethodsSupported.This would
associate a client defined
FileSystemStatisticsManifestCollection to the
top level system for the profile (e.g., a NAS
Head).
240

NO_ANSI_ID Filesystem Performance Profile
10.6.7 CIM_HostedCollection (Default) Mandatory This would associate a default
FileSystemStatisticsManifestCollection to the
top level system for the profile (e.g., a NAS
Head).

10.6.8 CIM_HostedCollection (Provider
Supplied)

Mandatory This would associate the StatisticsCollection
to the top level system for the profile (e.g.,
NAS Head).

10.6.9 CIM_HostedService Mandatory This associates the
FileSystemStatisticsService to the
ComputerSystem that hosts it.

10.6.10 CIM_MemberOfCollection (Member
of client defined collection)

Conditional Conditional requirement: Clients can modify
manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported.This would
associate Manifests to client-defined manifest
collections.

10.6.11 CIM_MemberOfCollection (Member of
predefined collection)

Mandatory This would associate predefined Manifests to
the default manifest collection.

10.6.12 CIM_MemberOfCollection (Member
of statistics collection)

Mandatory This would associate all filesystem statistics
instances to the StatisticsCollection.

10.6.13 CIM_StatisticsCollection Mandatory This would be a collection point for all
filesystem statistics that are kept for metered
elements of a system that provides filesystem
support (such as a NAS Head or a Self-
Contained NAS).

10.6.14
SNIA_AssociatedFileSystemStatisticsManifes
tCollection (Client defined collection)

Conditional Conditional requirement: Clients can create
manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported.This is an
association between the StatisticsCollection
and a client defined manifest collection.

10.6.15
SNIA_AssociatedFileSystemStatisticsManifes
tCollection (Provider defined collection)

Mandatory This is an association between the
StatisticsCollection and a provider supplied
(predefined) manifest collection that defines
the filesystem statistics properties supported
by the profile implementation.

10.6.16 SNIA_FileSystemStatisticalData Mandatory The SNIA_FileSystemStatisticalData class
defines the filesystem statistics properties that
may be kept for a metered element of a
system that provides filesystem support (such
as a NAS Head or a Self-Contained NAS).
Examples of such metered elements include
LocalFileSystem (Local Filesystem) and
FileShare (Exported File Share).

Table 141 - CIM Elements for Filesystem Performance

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 241

Filesystem Performance Profile NO_ANSI_ID
10.6.1 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,
SNIA_FileSystemStatisticsService) and their Capabilities (e.g., SNIA_FileSystemStatisticsCapabilities). Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of
the CIM_ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities
describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the
ManagedElement shall exist and provides the context for the Capabilities.

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

10.6.17
SNIA_FileSystemStatisticsCapabilities

Mandatory This defines the statistics capabilities
supported by the implementation of the profile.

10.6.18 SNIA_FileSystemStatisticsManifest
(Client Defined)

Conditional Conditional requirement: Clients can modify
manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported.An instance of this
class defines the filesystem statistics
properties of interest to the client for one
element type.

10.6.19 SNIA_FileSystemStatisticsManifest
(Provider Support)

Mandatory An instance of this class defines the
filesystem statistics properties supported by
the profile implementation for one element
type.

10.6.20
SNIA_FileSystemStatisticsManifestCollection
(Client Defined)

Conditional Conditional requirement: Clients can create
manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported.An instance of this
class defines one client defined collection of
filesystem statistics manifests (one manifest
for each element type).

10.6.21
SNIA_FileSystemStatisticsManifestCollection
(Provider Defined)

Mandatory An instance of this class defines the
predefined collection of default filesystem
statistics manifests (one manifest for each
element type).

10.6.22 SNIA_FileSystemStatisticsService Mandatory This is a Service that provides (optional)
services of bulk statistics retrieval and
manifest set manipulation methods.

Table 141 - CIM Elements for Filesystem Performance

Element Name Requirement Description
242

NO_ANSI_ID Filesystem Performance Profile
Table 142 describes class CIM_ElementCapabilities.

10.6.2 CIM_ElementStatisticalData (Exported File Share Stats)

CIM_ElementStatisticalData is an association that relates an exported File Share to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics. ElementStatisticalData
describes the existence requirements and context for the FileSystemStatistics, relative to a specific File Share that
is being exported.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is mandatory if SNIA_FileSystemStatisticsCapabilities.ElementTypesSupported = "103"
(Exported File Share statistics support).

Table 143 describes class CIM_ElementStatisticalData (Exported File Share Stats).

10.6.3 CIM_ElementStatisticalData (Exporting Port Stats)

CIM_ElementStatisticalData is an association that relates an exporting Port to its statistics. This exporting Port is a
ProtoEndPoint through which a file share that is being exported can be accessed. Note that the cardinality of the
ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics. ElementStatisticalData
describes the existence requirements and context for the FileSystemStatistics, relative to a specific exporting Port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is mandatory if SNIA_FileSystemStatisticsCapabilities.ElementTypesSupported = "104"
(Exporting Port statistics support).

Table 142 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Requirement Description & Notes

ManagedElement Mandatory The managed element (FileSystemStatisticsService)

Capabilities Mandatory The Capabilities instance associated with the
FileSystemStatisticsService.

Table 143 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File
Share Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to an exported FileShare for which the Statistics
apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the
statistics for the exported FileShare.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 243

Filesystem Performance Profile NO_ANSI_ID
Table 144 describes class CIM_ElementStatisticalData (Exporting Port Stats).

10.6.4 CIM_ElementStatisticalData (Local Filesystem Stats)

CIM_ElementStatisticalData is an association that relates a local filesystem to its statistics. Note that the cardinality
of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics. ElementStatisticalData
describes the existence requirements and context for the FileSystemStatistics, relative to a specific local
Filesystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is mandatory if SNIA_FileSystemStatisticsCapabilities.ElementTypesSupported = "102" (Local
Filesystem statistics support).

Table 145 describes class CIM_ElementStatisticalData (Local Filesystem Stats).

10.6.5 CIM_ElementStatisticalData (OTHER Element Type Stats)

CIM_ElementStatisticalData is an association that relates a provider-specified other element to its statistics. This
other element is a filesystem-related managed element whose type is not explicitly declared within the list of
ElementTypesSupported values defined within SNIA_FileSystemStatisticsCapabilities. Information describing the
metered element in this case should also be provided in the
SNIA_FileSystemStatisticalData.OtherElementTypeDescription property for the referenced instance of the
FileSystemStatistics. Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality
mandates the instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to the specific metered element.

CIM_ElementStatisticalData is not subclassed from anything.

Table 144 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port
Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a ProtocolEndPoint port for which the Statistics
apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the
statistics for the exporting Port.

Table 145 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesys-
tem Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a LocalFileSystem for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the
statistics for the local Filesystem.
244

NO_ANSI_ID Filesystem Performance Profile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is mandatory if SNIA_FileSystemStatisticsCapabilities.ElementTypesSupported = "1" (OTHER
element type statistics support).

Table 146 describes class CIM_ElementStatisticalData (OTHER Element Type Stats).

10.6.6 CIM_HostedCollection (Client Defined)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Filesystem Performance Subprofile, it is used to associate a client-defined
FileSystemStatisticsManifestCollections to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or Clients can create manifests as
identified by SNIA_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported.

Table 147 describes class CIM_HostedCollection (Client Defined).

10.6.7 CIM_HostedCollection (Default)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Filesystem Performance Subprofile, it is used to associate the default (provider-defined)
FileSystemStatisticsManifestCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Table 146 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element
Type Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to the provider-specified managed element for
which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the
statistics for the provider-specified managed element.

Table 147 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)

Properties Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory A client defined FileSystemStatisticsManifestCollection.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 245

Filesystem Performance Profile NO_ANSI_ID
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 148 describes class CIM_HostedCollection (Default).

10.6.8 CIM_HostedCollection (Provider Supplied)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Filesystem Performance Subprofile, it is used to associate the StatisticsCollection to the top
level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 149 describes class CIM_HostedCollection (Provider Supplied).

10.6.9 CIM_HostedService

CIM_HostedService is an association between a Service (SNIA_FileSystemStatisticsService) and the System
(ComputerSystem) on which the functionality resides. Services are weak with respect to their hosting System.
Heuristic: A Service is hosted on the System where the Filesystems or SoftwareFeatures that implement the
Service are located.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 148 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)

Properties Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The provider defined FileSystemStatisticsManifestCollection.

Table 149 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)

Properties Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The StatisticsCollection.
246

NO_ANSI_ID Filesystem Performance Profile
Table 150 describes class CIM_HostedService.

10.6.10 CIM_MemberOfCollection (Member of client defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in a client-defined manifest collection.

Created By: Extrinsic: AddOrModifyManifest
Modified By: Static
Deleted By: Extrinsic: RemoveManifests
Requirement: Clients can modify manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 151 describes class CIM_MemberOfCollection (Member of client defined collection).

10.6.11 CIM_MemberOfCollection (Member of predefined collection)

This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 152 describes class CIM_MemberOfCollection (Member of predefined collection).

10.6.12 CIM_MemberOfCollection (Member of statistics collection)

This use of MemberOfCollection is to collect all FileSystemStorageStatisticalData instances (in the
StatisticsCollection). Each association is created as a side effect of the metered object getting created.

Table 150 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Service hosted on the System.

Table 151 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client
defined collection)

Properties Requirement Description & Notes

Collection Mandatory A client defined manifest collection

Member Mandatory The individual Manifest Instance that is part of the set.

Table 152 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-
defined collection)

Properties Requirement Description & Notes

Collection Mandatory The provider defined default manifest collection

Member Mandatory The individual Manifest Instance that is part of the set.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 247

Filesystem Performance Profile NO_ANSI_ID
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 153 describes class CIM_MemberOfCollection (Member of statistics collection).

10.6.13 CIM_StatisticsCollection

The CIM_StatisticsCollection collects all filesystem statistics kept by the profile. There is one instance of the
CIM_StatisticsCollection class and all individual metered element statistics can be accessed by using association
traversal (using MemberOfCollection) from the StatisticsCollection.

CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 154 describes class CIM_StatisticsCollection.

Table 153 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statis-
tics collection)

Properties Requirement Description & Notes

Collection Mandatory The collection of all filesystem statistics data instances

Member Mandatory The individual filesystem statistics data Instance that is part of
the set.

Table 154 - SMI Referenced Properties/Methods for CIM_StatisticsCollection

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SampleInterval Mandatory Minimum recommended polling/sampling interval for a system
that provides filesystem support (e.g., NAS Head or Self-
Contained NAS). It is set by the provider and cannot be
modified.

TimeLastSampled Mandatory Time statistics table by object was last updated (Time Stamp in
SMI 2.2 specification format)

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile
248

NO_ANSI_ID Filesystem Performance Profile
10.6.14 SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

The SNIA_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
SNIA_FileSystemStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies. Client
defined manifest collections identify the Manifests (statistic properties) for retrieval of filesystem statistics.

SNIA_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.

There will be one instance of the SNIA_AssociatedFileSystemStatisticsManifestCollection class, for each client
defined manifest collection that has been created.

Created By: Extrinsic: CreateManifestCollection
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 155 describes class SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection).

10.6.15 SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

The SNIA_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
SNIA_FileSystemStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies. The
default manifest collection defines the SNIA_FileSystemStatisticalData properties that are supported by the profile
implementation.

SNIA_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.

One instance of the SNIA_AssociatedFileSystemStatisticsManifestCollection shall exist for the default manifest
collection if the Filesystem Performance Subprofile is implemented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 155 - SMI Referenced Properties/Methods for
SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

Properties Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection
applies

ManifestCollection Mandatory A client defined manifest collection.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 249

Filesystem Performance Profile NO_ANSI_ID
Table 156 describes class SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection).

10.6.16 SNIA_FileSystemStatisticalData

SNIA_FileSystemStorageStatisticalData is subclassed from CIM_StatisticalData.

Instances of this class will exist for each of the metered elements if the "ElementTypesSupported" property of the
SNIA_FileSystemStatisticsCapabilities indicates that the metered element is supported. For example, if "Local
Filesystem" is identified in the "ElementTypesSupported" property, then this indicates support for metering of the
local filesystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 157 describes class SNIA_FileSystemStatisticalData.

Table 156 - SMI Referenced Properties/Methods for
SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

Properties Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection
applies

ManifestCollection Mandatory The default manifest collection.

Table 157 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData

Properties Requirement Description & Notes

InstanceID Mandatory The InstanceID for a FileSystemStatisticalData instance shall
be unique across all instances of the FileSystemStatisticalData
class.

StatisticTime Mandatory The time that the most recent measurement was taken,
relative to the object (managed element) where the statistics
were collected. (Time stamp in CIM 2.2 specification format).

ElementType Mandatory Defines the role that the metered element (object) played for
which this statistics record was collected. This value is
required AND the current version of SMI-S specifies the
following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}

OtherElementTypeDescriptio
n

Mandatory A string describing the type of element when the ElementType
property of this class (or any of its subclasses) is set to 1 (i.e.,
"Other"). This property should be set to NULL when the
ElementType property is any value other than 1.

TotalIOs Mandatory The cumulative count of file I/O operations for the object,
including metadata I/O operations.
250

NO_ANSI_ID Filesystem Performance Profile
TotalBytesTransferred Conditional Conditional requirement: This property is required if the
ElementType is 102, 103, or 104. The cumulative count of
bytes transferred for all of the file I/O operations as defined in
"TotalIOs" above.

Note: This is not specified for the "Other" ElementType.

ReadIOs Conditional Conditional requirement: This property is required if the
ElementType is 102 or 103.The cumulative count of file I/O
operations that were directed to the object and that performed
a transfer of data from the file contents.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

WriteIOs Conditional Conditional requirement: This property is required if the
ElementType is 102 or 103. The cumulative count of file I/O
operations that were directed to the object and that performed
a transfer of data to the file contents.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

OtherIOs Conditional Conditional requirement: This property is required if the
ElementType is 102 or 103. The cumulative count of file I/O
operations that were directed to the object and that did not
perform a transfer of data either to or from the file contents.
This count excludes metadata I/ O operations (both read and
write). File "open", "close", and "lock" I/O operations are
examples of an "OtherIO" I/O operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataReadIOs Optional The cumulative count of file I/O operations that were directed
to the object and that performed a read transfer of metadata.
"Get Attributes" and "Read Directory" I/O operations are
examples of a Metadata read I/O operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataWriteIOs Optional The cumulative count of file I/O operations that were directed
to the object and that performed a write transfer of metadata.
"Set Attributes" I/O operations are an example of a Metadata
write I/O operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

Table 157 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 251

Filesystem Performance Profile NO_ANSI_ID
TotalIOTimeCounter Optional The cumulative elapsed I/O operation time (number of
ClockTickIntervals) for all file I/O operations as defined in
"TotalIOs" above. The I/O operation response time is added to
this counter at the completion of each measured I/O operation
using ClockTickInterval units. The TotalIOTimeCounter value
can be divided by the total number of I/O operations (TotalIOs)
to obtain an I/O operation average response time.

Note: This is not specified for the "Other" ElementType.

TotalIdleTimeCounter Optional The cumulative elapsed idle time using ClockTickInterval
units. That is, the cumulative number of ClockTickIntervals for
all idle time within the object, with "idle time" being that time
during which no I/O operations were being processed by the
object.

Note: This is not specified for the "Other" ElementType.

ReadIOTimeCounter Optional The cumulative elapsed I/O operation time for all Read I/O
operations (that is, the cumulative elapsed time for all Read I/O
operations as defined in "ReadIOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

BytesRead Optional The cumulative count of bytes read (that is, the cumulative
count of bytes transferred by all Read I/O operations as
defined in "ReadIOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

WriteIOTimeCounter Optional The cumulative elapsed I/O operation time for all Write I/O
operations (that is, the cumulative elapsed time for all Write I/O
operations as defined in "WriteIOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

BytesWritten Optional The cumulative count of bytes written (that is, the cumulative
count of bytes transferred by all Write I/O operations as
defined in "WriteIOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataBytesRead Optional The cumulative count of metadata bytes read (that is, the
cumulative count of bytes transferred by all Metadata read I/O
operations as defined in "MetadataReadIOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

Table 157 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData

Properties Requirement Description & Notes
252

NO_ANSI_ID Filesystem Performance Profile
10.6.17 SNIA_FileSystemStatisticsCapabilities

An instance of the SNIA_FileSystemStatisticsCapabilities class defines the specific support provided with the
filesystem statistics implementation. Note: There would be zero or one instance of this class in a profile. There
would be none if the profile did not support the Filesystem Performance Subprofile. There would be exactly one
instance if the profile did support the Filesystem Performance Subprofile.

SNIA_FileSystemStatisticsCapabilities class is subclassed from CIM_Capabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 158 describes class SNIA_FileSystemStatisticsCapabilities.

MetadataBytesWritten Optional The cumulative count of metadata bytes written (that is, the
cumulative count of bytes transferred by all Metadata write I/O
operations as defined in "MetadataWriteIOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile

ElementName Optional Not Specified in this version of the Profile

SampleInterval Optional Not Specified in this version of the Profile

StartStatisticTime Optional Not Specified in this version of the Profile

ResetSelectedStats() Optional Not Specified in this version of the Profile

Table 158 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsCapabilities

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

ElementTypesSupported Mandatory ValueMap { "1", "102", "103", "104" },

Values {"Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}

SynchronousMethodsSupport
ed

Mandatory This property is mandatory, but the array may be empty.

ValueMap { "2", "3", "4", "5", "6", "7", "8"},

Values {"Exec Query", "Indications", "QueryCollection",
"GetStatisticsCollection", "Manifest Creation", "Manifest
Modification", "Manifest Removal" }

Table 157 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 253

Filesystem Performance Profile NO_ANSI_ID
10.6.18 SNIA_FileSystemStatisticsManifest (Client Defined)

The SNIA_FileSystemStatisticsManifest class is a Concrete class that defines the
SNIA_FileSystemStorageStatisticalData properties that should be returned on a GetStatisticsCollection request.

SNIA_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.

In order for a client defined instance of the SNIA_FileSystemStatisticsManifest class to exist, all of the manifest
collection manipulation functions shall be identified in the "SynchronousMethodsSupported" property of the
SNIA_FileSystemStatisticsCapabilities (FileSystemStatisticsCapabilities.SynchronousMethodsSupported = "6")
instance, AND a client must have created at least ONE instance of SNIA_FileSystemStatisticsManifestCollection.

Created By: Extrinsic: AddOrModifyManifest
Modified By: Extrinsic: AddOrModifyManifest
Deleted By: Extrinsic: RemoveManifests
Requirement: Clients can modify manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 159 describes class SNIA_FileSystemStatisticsManifest (Client Defined).

AsynchronousMethodsSuppo
rted

Optional Not supported in current version of SMI-S.

ClockTickInterval Mandatory An internal clocking interval for all timers in the subsystem,
measured in microseconds (Unit of measure in the timers,
measured in microseconds).

Time counters are monotonically increasing counters that
contain "ticks". Each tick represents one ClockTickInterval. If
ClockTickInterval contained a value of 32 then each time
counter tick would represent 32 microseconds.

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile

CreateGoalSettings() Optional Not Specified in this version of the Profile

Table 159 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Client
Defined)

Properties Requirement Description & Notes

ElementName Mandatory A Client defined string that identifies the manifest.

InstanceID Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstanceID opaquely and uniquely
identifies an instance of this class.

Table 158 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsCapabilities

Properties Requirement Description & Notes
254

NO_ANSI_ID Filesystem Performance Profile
10.6.19 SNIA_FileSystemStatisticsManifest (Provider Support)

The SNIA_FileSystemStatisticsManifest class is a Concrete class that defines the SNIA_FileSystemStatisticalData
properties that are supported by the Provider. These Manifests are established by the Provider for the default
manifest collection.

SNIA_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}

OtherElementTypeDescriptio
n

Mandatory A string describing the type of element when the ElementType
property of this class (or any of its subclasses) is set to 1 (i.e.,
"Other"). This property should be set to NULL when the
ElementType property is any value other than 1.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeTotalBytesTransferred Mandatory

IncludeReadIOs Mandatory

IncludeWriteIOs Mandatory

IncludeOtherIOs Mandatory

IncludeMetadataReadIOs Mandatory

IncludeMetadataWriteIOs Mandatory

IncludeTotalIOTimeCounter Mandatory

IncludeTotalIdleTimeCounter Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeBytesRead Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeBytesWritten Mandatory

IncludeMetadataBytesRead Mandatory

IncludeMetadataBytesWritten Mandatory

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile

IncludeStartStatisticTime Optional Not Specified in this version of the Profile

Table 159 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Client
Defined)

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 255

Filesystem Performance Profile NO_ANSI_ID
At least one Provider supplied instance of the SNIA_FileSystemStatisticsManifest class shall exist, if the
Filesystem Performance Subprofile is supported.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 160 describes class SNIA_FileSystemStatisticsManifest (Provider Support).

Table 160 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Provider
Support)

Properties Requirement Description & Notes

ElementName Mandatory A Provider defined string that identifies the manifest in the
context of the Default Manifest Collection.

InstanceID Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstanceID opaquely and uniquely
identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}

OtherElementTypeDescriptio
n

Mandatory A string describing the type of element when the ElementType
property of this class (or any of its subclasses) is set to 1 (i.e.,
"Other"). This property should be set to NULL when the
ElementType property is any value other than 1.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeTotalBytesTransferred Mandatory

IncludeReadIOs Mandatory

IncludeWriteIOs Mandatory

IncludeOtherIOs Mandatory

IncludeMetadataReadIOs Mandatory

IncludeMetadataWriteIOs Mandatory

IncludeTotalIOTimeCounter Mandatory

IncludeTotalIdleTimeCounter Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeBytesRead Mandatory

IncludeWriteIOTimeCounter Mandatory
256

NO_ANSI_ID Filesystem Performance Profile
10.6.20 SNIA_FileSystemStatisticsManifestCollection (Client Defined)

An instance of a client defined SNIA_FileSystemStatisticsManifestCollection defines the set of Manifests to be
used in the retrieval of Filesystem statistics by the GetStatisticsCollection method.

SNIA_FileSystemStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

In order for a client defined instance of the SNIA_FileSystemStatisticsManifestCollection class to exist, then all the
manifest collection manipulation functions shall be identified in the "SynchronousMethodsSupported" property of
the SNIA_FileSystemStatisticsCapabilities instance and a client must have created a Manifest Collection..

Created By: Extrinsic: CreateManifestCollection
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 161 describes class SNIA_FileSystemStatisticsManifestCollection (Client Defined).

IncludeBytesWritten Mandatory

IncludeMetadataBytesRead Mandatory

IncludeMetadataBytesWritten Mandatory

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile

IncludeStartStatisticTime Optional Not Specified in this version of the Profile

Table 161 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection
(Client Defined)

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A client defined user-friendly name for the manifest collection.
It is set during creation of the Manifest Collection through the
ElementName parameter of the CreateManifestCollection
method.

IsDefault Mandatory Denotes whether or not this manifest collection is a provider
defined default manifest collection. For the client defined
manifest collections this is set to "false".

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile

Table 160 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Provider
Support)

Properties Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 257

Filesystem Performance Profile NO_ANSI_ID
10.6.21 SNIA_FileSystemStatisticsManifestCollection (Provider Defined)

An instance of a default SNIA_FileSystemStatisticsManifestCollection defines the set of Manifests that define the
properties supported for each ElementType supported for the implementation. It can also be used by clients in
retrieval of Filesystem statistics by the GetStatisticsCollection method.

SNIA_FileSystemStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

At least ONE SNIA_FileSystemStatisticsManifestCollection shall exist if the Filesystem Performance Subprofile is
implemented. This would be the default manifest collection that defines the properties supported by the
implementation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 162 describes class SNIA_FileSystemStatisticsManifestCollection (Provider Defined).

10.6.22 SNIA_FileSystemStatisticsService

The SNIA_FileSystemStatisticsService class provides methods for statistics retrieval and Manifest Collection
manipulation.

The SNIA_FileSystemStatisticsService class is subclassed from CIM_Service.

There shall be an instance of the SNIA_FileSystemStatisticsService, if the Filesystem Performance Subprofile is
implemented. It is not necessary to support any methods of the service, but the service shall be populated.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the SNIA_FileSystemStatisticsCapabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 162 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection
(Provider Defined)

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For the default manifest collection, this should be set to
"DEFAULT".

IsDefault Mandatory Denotes whether or not this manifest collection is a provider
defined default manifest collection. For the default manifest
collection this is set to "true".

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile
258

NO_ANSI_ID Filesystem Performance Profile
Table 163 describes class SNIA_FileSystemStatisticsService.

Table 163 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsService

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Caption Optional Not Specified in this version of the Profile

Description Optional Not Specified in this version of the Profile

ElementName Optional Not Specified in this version of the Profile

OperationalStatus Optional Not Specified in this version of the Profile

StatusDescriptions Optional Not Specified in this version of the Profile

InstallDate Optional Not Specified in this version of the Profile

HealthState Optional Not Specified in this version of the Profile

TimeOfLastStateChange Optional Not Specified in this version of the Profile

OtherEnabledState Optional Not Specified in this version of the Profile

EnabledDefault Optional Not Specified in this version of the Profile

RequestedState Optional Not Specified in this version of the Profile

EnabledState Optional Not Specified in this version of the Profile

Started Optional Not Specified in this version of the Profile

PrimaryOwnerName Optional Not Specified in this version of the Profile

PrimaryOwnerContact Optional Not Specified in this version of the Profile

GetStatisticsCollection() SynchGSC|A
synchGSC

Support for this method is conditional on
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsS
upported or
SNIA_FileSystemStatisticsCapabilities.AsynchronousMethods
Supported containing '5' (GetStatisticsCollection). This method
retrieves all statistics kept for the profile as directed by a
manifest collection.

CreateManifestCollection() SynchMC|As
ynchMC

Support for this method is conditional on
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsS
upported or
SNIA_FileSystemStatisticsCapabilities.AsynchronousMethods
Supported containing '6' (Manifest Creation). This method is
used to create client defined manifest collections.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 259

Filesystem Performance Profile NO_ANSI_ID
EXPERIMENTAL

AddOrModifyManifest() SynchMM|As
ynchMM

Support for this method is conditional on
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsS
upported or
SNIA_FileSystemStatisticsCapabilities.AsynchronousMethods
Supported containing '7' (Manifest Modification). This method
is used to add or modify filesystem statistics manifests in a
client defined manifest collection.

RemoveManifests() SynchRM|As
ynchRM

Support for this method is conditional on
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsS
upported or
SNIA_FileSystemStatisticsCapabilities.AsynchronousMethods
Supported containing '8' (Manifest Removal). This method is
used to remove a filesystem statistics manifest from a client
defined manifest collection.

RequestStateChange() Optional Not Specified in this version of the Profile

StopService() Optional Not Specified in this version of the Profile

StartService() Optional Not Specified in this version of the Profile

Table 163 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsService

Properties Requirement Description & Notes
260

NO_ANSI_ID Filesystem Quotas Profile
EXPERIMENTAL

Clause 11: Filesystem Quotas Profile

• Profile Name: Filesystem

• Version: 1.2.0

• Organization: SNIA

• CIM schema version: 2.13

• Central Class: LocalFileSystem

• Scoping Class: ComputerSystem

11.1 Description
The Filesystem Quotas Profile is intended to provide management of quotas on the use of filesystem resources--
raw space and inodes especially--by the common filesystem principals. User, group and tree quotas are modeled.
Trees means directories (rooted directory hierarchy structures) within filesystems. Some systems allow quotas
only on directories that have some special distinguishing feature, others allow them on arbitrary directories.

Quota systems work by keeping statistics-in real time-on the space used by each monitored principal/container pair
e.g. a user and her home share. They then trigger events when filesystem writes cause the space used by the
principal to exceed some threshold. There are four common varieties of quota thresholds:

1. Hard. Hitting a hard quota threshold causes subsequent writes by the principal to the affected container to
fail. In POSIX, the error returned to the client is ENOSPC (no space). An indication is also thrown.

2. Soft. A soft threshold causes the system to issue a warning. Systems variously issue warnings via CLI,
SNMP traps, pop-up windows at the user station, audit log entries, email and other proprietary methods. This
profile provides required indications for this purpose.

3. Soft, with grace period. This type of quota is really a refinement of soft quotas. It functions like a soft quota
until the grace period expires, at which point it begins behaving like a hard quota.

4. Monitoring. When a monitoring quota is in effect, there are no thresholds, and no warnings are issued. This
type of quota is useful because the underlying system keeps track of the relevant usage statistics in real time
for all quotas. A monitoring quota permits an administrator to simply issue a command to print a quota report
instead of having to do a complete filesystem scan to get the usage information of interest.

In general, it is not possible to have a quota system that meets the above semantics without some level of access
to the data path. More loosely coupled systems may need to relax the semantics of the hard limit, for example, and
may not actually trigger an event until a file is closed, for example. This profile allows these semantic variations.

Some systems allow "default" quotas for users, groups and/or trees. A default user quota, by way of example, is
used for every user of the system who does not have a quota entry specific to them.

11.1.1 Tree Quotas

Tree quotas are quotas on directory trees with an identifiable root. Mounts and symlinks are not followed. In other
words, a directory which contains nothing but mount points and symbolic links may satisfy a very small quota, even
though the amount of data addressable by entries in the container is large.

Hard links are another matter. The policy is system-dependent, but a common behavior is that if a file or directory is
hard-linked in two separate trees with separate tree quotas, the space used is charged against both quotas.

Pure tree quotas apply no matter which principal does the writing. There are some caveats however.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 261

Filesystem Quotas Profile NO_ANSI_ID
• Root on some systems is not constrained by quotas.
• An entity with sufficient privilege may not be constrained by quotas on some systems (e.g. a Windows user

with BackupOperator privilege).
Some systems may support tree quotas only on directories with certain special characteristics. Directories may be
constrained to being top-level, for example. This profile does not specify a means for determining whether a given
directory may have a tree quota set on it.

11.1.2 User Quotas

User quotas are limits on how much space a principal with a given User ID can use. They may be either global or
restricted by namespace tree, as well as by filesystem.

11.1.3 Group Quotas

Group quotas set limits on how much all the members of a group with a given Group ID can use in the aggregate.
They are not, therefore, quotas which apply to each member of a group. This follows Unix usage. Group quotas
only work on systems which have the concept of a primary group id (PGID), as the system needs to know which
group to charge writes against. As NTFS does not have the concept of a primary group, it does not do group
quotas. (Note: There is a primary group field that can be discovered on a file in NTFS. This is for POSIX support,
however, and does not always contain anything meaningful)

Group quotas may be global or applicable to a given namespace tree and/or filesystem.

11.1.4 Container Boundaries

Quotas may be system-wide, or scoped to an individual filesystem. Not all systems support both of these, however,
so provision is made for both. The SupportedPrincipalTypes array in the FSQuotaCapabilities class distinguishes
between User, Group, Tree, User-Tree and Group-Tree quotas as follows:

• User Quotas and Group quotas are described in 11.1.2 and 11.1.3.
• A Tree Quota is a limit on the storage (or other limit such as number of inodes) used by a directory tree. This

quota is not specific to a user or a group but applies to all users and groups creating files and directories
within the tree.

• A User-Tree quota is a limit on the storage used by a user within a directory tree and is applied in parallel with
the Tree Quota (both must be satisfied).

• A Group-Tree quota is a limit on the aggregate storage used by a group of users within a directory tree and is
applied in parallel with the Tree Quota (both must be satisfied).

If a Tree is configured with a Tree Quota as well as User-Tree and Group-Tree quotas, they must all be satisfied.

11.1.5 Quota types

Quotas are usually limits on disk space. Some systems, however, also support limits on the number of files and/or
directories.

11.1.6 Class design considerations

11.1.6.1 New Classes
This profile uses several new classes—FSDomainIdentity, FSQuotaCapabilities, FSQuotaReportRecord,
FSQuotaConfigEntry, FSQuotaManagementService, and FSQuotaIndication

11.1.6.1.1 FSDomainIdentity
Due to the in-band nature of quota tracking, the identifier of the principal being managed needs to be small and
easily optimized. Traditional systems use Unix UIDs and GIDs, which are 32-bit quantities, or SIDs which are short
strings. To tie these into CIM, this new class is specified. Each instance contains a string with the UID, GID or SID,
respectively, in it, and enums for the type of domain and principal.
262

NO_ANSI_ID Filesystem Quotas Profile
11.1.6.1.2 FSQuotaCapabilities
This Capabilities subclass lists the properties in a FSQuotaConfigEntry that are supported by the underlying
system. The client shall not attempt to set any properties which are not listed as supported in the instance of this
class associated to the service. It shall instead always populate unsupported properties with null.

There shall exist exactly one instance of this class per FSQuotaManagementService instance.

11.1.6.1.3 FSQuotaReportRecord
When running a quota report, the underlying system generally issues a text file, each line or group of lines
representing the status of a filesystem principal with respect to one quota configuration entry. There may be
hundreds of thousands of these records, and they are not keyed, meaning that there is no way to go back and fetch
any given one of them. Therefore FSQuotaReportRecord is derived from a new proposed abstract root class called
ReportRecord, which carries the Indication qualifier. Note that this qualifier does not mean that these classes are
subclasses of CIM_Indication. It's used because it's the only way, currently, to construct a class in CIM which does
not require a key.

11.1.6.1.4 FSQuotaConfigEntry
An FSQuotaConfigEntry instance represents a single quota entry supported by the system. For example, one
FSFQuotaConfigEntry instance may specify that on filesystem “foo,” in directory “/bar,” the user “joe” is restricted to
1GB of space, and should receive a warning at 0.97GB.

A quota entry has been defined as a complex of several classes and associations. If implementation experience
turns up performance considerations related to this, this design may need to be revisited.

Many systems do not support any method of identifying individual FSQuotaConfigEntry instances, as they simply
represent lines in a text file, and the underlying system may not care about duplicates or conflicts. However,
FSQuotaConfigEntry instances need to be modified; this corresponds to editing the corresponding line in the file.
Therefore, if the underlying system does not expose a key, one may be created by composing the PrincipalID
property, a unique reference to the FileSystem or ComputerSystem to which the entry applies (from the association
FSQuotaAppliesToElement), the TreeName property (if a tree quota), the measured quantity type (the
ResourceType property), the quota type (QuotaType property), and its default status (the Default property). An
implementation may expose the algorithm used to compose the key so that the client may decompose it, but this is
not required by this version of the profile. Upon creation of a new quota instance, clients shall verify that no quota
with the same key already exists. Upon modification of an instance, clients shall modify all instances whose keys
match that instance key.

• PrincipalID: This indicates a user by the user’s UID or SID, or a group by the group’s GID or SID, or it can be
the empty string. It is interpreted in the context of a directory service specified for the file server
ComputerSystem that is associated to the FileSystem by a Dependency association.

• InstanceID. This property is a unique identifier for this FSQuotaConfigEntry. This property shall be unique in
the presence of multiple instances of ComputerSystem and FileSystem, and multiple properties of QuotaType,
Default, ResourceType and PrincipalID. It may be constructible by the client, but this profile does not specify
this format.

11.1.6.1.5 FSQuotaManagementService
The FSQuotaManagementService provides the interface to the underlying system for most operations which are
overtly related to quotas. There shall be at most one instance of a FSQuotaManagementService for each
underlying ComputerSystem.

11.1.6.1.6 FSQuotaIndication
The FSQuotaIndication class provides information about threshold crossing events, meaning that a quota has just
been exceeded.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 263

Filesystem Quotas Profile NO_ANSI_ID
11.1.7 Instance Diagram

Figure 16 shows the Filesystem Quotas instance diagram.

11.2 Health and Fault Management Considerations
None currently applicable.

11.3 Supported Profiles, Subprofiles, and Packages
The Filesystem and Indications Profiles are required by this profile.

Table 164 describes the supported profiles for FileSystem Quotas.

Figure 16 - Filesystem Quotas Instance Diagram

Table 164 - Supported Profiles for FileSystem Quotas

Registered Profile Names Mandatory Version

Filesystem Yes 1.3.0

Indication Yes 1.3.0

Job No 1.3.0

System

FSQuotaManagementService

HostedService

ElementCapabilities

FSQuotaAppliesToElement

FSQuotaAppliesToPrincipal

IdentityContext

FSQuotaReportRecord

FSQuotaCapabilities LogicalFile
-(directory)

FSQuotaConfigEntry

FSQuotaDomainIdentity

ManagedElement

FSQuotaAppliesToTree
264

NO_ANSI_ID Filesystem Quotas Profile
11.4 Methods of the Profile
All profile methods are contained in the FSQuotaManagementService.

11.4.1 FindQuotaEntries

uint32 FindQuotaEntries(

IN string IdentityId,

IN ManagedElement REF Element,

IN string Tree,

IN uint16 QuotaType,

OUT EmbeddedInstance("SNIA_FSQuotaConfigEntry")string QuotaEntries[],

Given a combination of inputs, FindQuotaEntries() searches the quota entry database on the managed device for
quota entries that match, and returns a list. On systems that support it, long-running queries may return a job.

Possible quota entries are:

1) IdentityId

IdentityId is an optional string that can specify the UID, GID, or SID or can specify a pattern. The following rules
apply to IdentityId:

a) If IdentityId is NULL or the empty string, no identity-based quotas should be returned.

b) If IdentityID is NULL, default quotas will be returned.

c) If IdentityId is “*”, this matches all identity-based quotas entries.

d) IdentityId may also be a specific ID, or the prefix of an ID followed by "*". Standard prefix string matching
is used to determine which entries match in this case.

2) Element

Element is an optional reference to a ManagedElement (declared as CIM_ManagedElement REF Element). The
following rules apply to Element:

a) When a ComputerSystem is passed for Element, the returned entries may be default or other entries for
both the ComputerSystem and its contained FileSystems.

b) When a FileSystem is passed in for Element, only entries pertaining to that FileSystem shall be returned.
This may include default entries applicable to that FileSystem.

c) If NULL is passed in for Element, the FSQuotaManagementService assumes that the ComputerSystem it
is hosted on is the Element.

Element is an optional reference to a ComputerSystem or a LocalFileSystem, but is declared as a reference to a
ManagedElement, which is the only common parent class.

3) Tree

Tree is an optional string that identifies a tree (or trees) contained within a filesystem. The following rules apply to
Tree:

a) A null or empty string indicates that no tree quota entries should be returned.

b) A “*” tree parameter matches all tree quota entries defined within the filesystem(s) indicated by Element,
if any.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 265

Filesystem Quotas Profile NO_ANSI_ID
c) If Tree contains a path, it matches that path only. On some systems, this may result in multiple matches,
one for the same-named tree in each of several filesystems.

d) Prefix string matching may be used for the Tree parameter. E.g. the path "/x/y/*" will match tree quotas on
both "/x/y/m" and "/x/y/p".

4) QuotaType

QuotaType is an enumerated optional parameter that describes what type of quota entries should be returned. The
following rules apply to QuotaType:

a) NULL or Unknown matches any entry (i.e., it is a wildcard).

b) If Tree is specified, then entries which are pure tree quotas (not user-tree or group-tree) match.

c) If User-Tree or Group-Tree is specified, then only user-tree or group-tree quotas match.

11.4.2 DeleteQuotaEntry

uint32 DeleteQuotaEntry(IN string EntryID);

This routine deletes a given quota entry from the managed device’s quota entry database. Recall that the
ManagedElement’s name is specified as part of a QuotaEntry’s InstanceID, above. A CIMOM managing multiple
devices may use that to find which device to address when deleting the actual entry.

11.4.3 ModifyQuotaEntry

uint32 ModifyQuotaEntry(

IN string EntryId,

IN EmbeddedInstance("SNIA_FSQuotaConfigEntry") string QuotaEntry,

OUT CIM_Job REF Job;

);

Given the InstanceID of an existing quota entry, ModifyQuotaEntry() replaces it with a new entry specified as an
EmbeddedInstance.

11.4.4 AddQuotaEntry

uint32 AddQuotaEntry(

IN EmbeddedInstance("SNIA_FSQuotaConfigEntry") string QuotaEntry,

OUT CIM_Job REF Job;

);

This routine adds a new quota entry to the quota entry database on the appropriate managed element.

The ConflictingEntriesUsage property in FSQuotaCapabilities (see 11.7) will govern what happens if an entry
already exists with the same combination of PrincipalID, ManagedElement, TreeName, ResourceType,
QuotaType, and Default.

11.4.5 GetQuotaReport

uint32 GetQuotaReport(

IN CIM_ManagedElement REF Element,

IN string Tree,

IN string User,

IN EmbeddedInstance("FSQuotaDomainIdentity") string Group,

IN, OUT string Cursor,
266

NO_ANSI_ID Filesystem Quotas Profile
IN, OUT uint64 NQuotas,

OUT CIM_Job REF Job,

OUT EmbeddedInstance("SNIA_FSQuotaReportRecord") string ReportRecs[];

);

This routine gets a quota report from a managed element. As there may be millions of records in this report, a
chunking mechanism is provided so that the client does not become overwhelmed by the quantity of data furnished
by the server.

The initial call to GetQuotaReport shall pass in NULL as a Cursor. Subsequent calls shall pass back the cursor
exactly as received from the server, without modification, as an indication of where to continue the report from.

Clients which do not wish to use the chunking mechanism may pass a number such as 263 - 1 in NQuotas.

On many systems, the initial phase of preparing a quota report may take some time. A job is returned in this case.

11.4.6 EnableQuotas

uint32 EnableQuotas(

IN Boolean OnOff,

IN CIM_ManagedElement element,

OUT CIM_Job REF Job

);

This routine turns quota management on or off on a given managed element. This routine shall always be
supported when the element is a CIM_ComputerSystem. On systems that support it, the ManagedElement may
alternatively be a filesystem. If an attempt is made to change the state on an unsupported ManagedElement, the
routine shall return an appropriate error (“Operation unsupported for individual MEs of this type”).

11.4.7 InitializeQuotas

uint32 InitializeQuotas(

 IN CIM_ComputerSystem REF Server,

 OUT CIM_Job REF Job);

Some systems require an explicit initialization step before quotas may be used. If this step takes some time, a job
shall be returned. Systems which do not require this step shall return “Success”.

11.5 Client Considerations and sample code
Because quota management capabilities vary so widely from device to device, clients must be prepared to receive
"unsupported" errors. These can be kept to a minimum by inspecting the QuotaCapabilities of the managed device.
See the QuotaGetCapabilities routine in 11.5.1.

There are five fundamental operations on quotas:

1. Initialize the quota management system
2. Turn quota tracking on or off
3. Add or modify a quota table entry
4. Read the quota table
5. Get a report on quota usage for one or all entries in the quota table

The QuotaManagementService class contains extrinsics for all of these things, so each task reduces to getting the
service instance and invoking the desired method.

The following example code is advisory, not normative.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 267

Filesystem Quotas Profile NO_ANSI_ID
EXPERIMENTAL

11.5.1 Common subroutines

In the Filesystem Quotas sample routines, the following subroutines are used (and declared inline here):

sub CIM_QuotaManagementService QuotaGetQMService(

IN REF CIM_System system);

{

services = Associators(system,

"CIM_HostedService",

"CIM_QuotaManagementService",

"Antecedent",

"Dependent",

false, false, NULL);

return services[0];

}

sub CIM_QuotaCapabilities QuotaGetCapabilities(

IN REF CIM_System system)

{

service = QuotaGetQMService(system);

caps = Associators(service,

"CIM_ElementCapabilities",

"CIM_QuotaCapabilities",

"CIM_ManagedElement",

"ManagedElement",

"Capabilities",

false, false, NULL);

return caps[0];

}

sub boolean QuotaSupportsPrincipalType(

IN REF CIM_System system,

IN uint16 type)

{

capabilities = QuotaGetCapabilities(system);

for(i = 0; capabilities.SupportedPrincipalTypes[i] != NULL; ++) {

if (capabilities.SupportedPrincipalTypes[i] == type) {

return TRUE;

}

}

268

NO_ANSI_ID Filesystem Quotas Profile
return FALSE;

}

All of the following routines may return errors indicating that the supplied managed element is not supported. In
most cases this will be because the operation (e.g. initializing quotas) is a system-wide operation, and cannot be
done on a per-filesystem basis.

EXPERIMENTAL

EXPERIMENTAL

11.5.2 Initialize quotas

sub uint_16 InitializeQuotas(

IN REF CIM_System system)

{

qms = QuotaGetQMService(system);

result = qms->InitializeQuotas(system, job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

}

EXPERIMENTAL

EXPERIMENTAL

11.5.3 Enable or disable quota tracking

//

// enable or disable quotas

//

// See the mof for the EnableQuotas extrinsic for possible

// return values

//

sub uint16 EnableQuotas(IN REF CIM_System system,

 IN REF CIM_ManagedElement me,

 IN boolean onoff)

{

qms = QuotaGetQMService(system);

result = qms->EnableQuotas(onoff, me, job);

//

// See the Job Control profile for information on
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 269

Filesystem Quotas Profile NO_ANSI_ID
// handling the job if one is returned.

//

return result;

}

EXPERIMENTAL

EXPERIMENTAL

11.5.4 Add a quota entry

sub uint16 AddQuotaEntry(IN REF CIM_System system,

IN REF CIM_ManagedElement me,

IN String tree,

IN REF CIM_DomainIdentity principal,

IN uint64 hardlimit,

IN uint64 softlimit,

IN uint64 graceperiod,

IN boolean active,

IN string restype,

IN uint16 quotatype,

IN REF logicalfile,

IN REF me,

IN boolean default)

{

service = QuotaGetQMService(system);

entry = CreateInstance(“SNIA_FSQuotaConfigEntry”);

entry->HardLimit = hardlimit;

entry->SoftLimit = softlimit;

entry->SoftLimitGracePeriod = graceperiod;

entry->Active = active;

switch (restype) {

case “Bytes”: entry->ResourceType = 2;

case “Files”: entry->ResourceType = 3;

case “Directories”: entry->ResourceType = 4;

case “Files+Directories”: entry->ResourceType = 5;

case “Inodes”: entry->ResourceType = 6;

default: entry->ResourceType = 0;

 }

switch (quotatype) {

case “User”: entry->QuotaType = 2;

case “Group”: entry->QuotaType = 3;

case “Tree”: entry->QuotaType = 4;

default: entry->QuotaType = 0;

}

if (principal != NULL) {

entry->PrincipalID = principal->PrincipalID;

else
270

NO_ANSI_ID Filesystem Quotas Profile
entry->PrincipalID = NULL;

if (logicalfile != NULL) {

entry->TreeName = logicalfile->Name;

else

entry->TreeName = NULL;

entry->ManagedElement = me;

entry->Default = default;

entry->InstanceID = NULL;

result = service->AddQuotaEntry(entry, job);

//

// analyse error, if there is one: the above code

// cannot return ‘1’ or ‘3’, so only ‘2’ is left.

// And that means there’s already an identical

// entry, so declare victory and move on.

//

return result; // could return 0, if you prefer

}

EXPERIMENTAL

EXPERIMENTAL

11.5.5 Delete a quota entry

//

// See the mof for the DeleteQuotaEntry extrinsic for possible

// return values

//

sub uint16 DeleteQuotaEntry(IN REF CIM_System system,

 IN string entryid,

 OUT REF CIM_Job job)

{

service = QuotaGetQMService(system);

result = service->DeleteQuotaEntry(entryid);

return result;

}

EXPERIMENTAL

EXPERIMENTAL

11.5.6 Modify a quota entry

//
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 271

Filesystem Quotas Profile NO_ANSI_ID
// There are many ways to modify a quota entry. Here are

// a couple examples

//

sub uint16 ModifyQuotaHardLimit(IN REF CIM_System system,

IN string entryid,

IN uint64 newlimit)

{

service = QuotaGetQMService(system);

entry = GetInstance(entryid);

entry->HardLimit = newlimit;

result = service->ModifyQuotaEntry(entryid, entry, job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

sub uint16 SpecificUserToDefault(IN REF CIM_System system,

IN string uid)

{

//

// change Alice’s quota to be the default for

// all users

//

service = QuotaGetQMService(system);

//

// Need to search through all the quota entry instances

// for the given uid.

//

qes[] = EnumerateInstances(“SNIA_FSQuotaConfigEntry”,

true, false, false, false, “PrincipalID”);

foreach qe (qes[]) {

if (qe->PrincipalID == uid) {

qe->PrincipalID = NULL);

qe->Default = true;

return 0;

}

}

return 1; // not found

}

EXPERIMENTAL
272

NO_ANSI_ID Filesystem Quotas Profile
EXPERIMENTAL

11.5.7 Read the quota entries

//

// Warning: on some systems, this may return 10’s of

// thousands of entries

//

sub FSQuotaConfigEntry[] ReadQuotaEntries(IN REF CIM_System system)

{

service = QuotaGetQMService(system);

service->FindQuotaEntries(NULL, system, NULL, NULL, NULL,

qes[], job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return qes[];

}

EXPERIMENTAL

EXPERIMENTAL

11.5.8 Get a report on quota usage

sub FSQuotaReportRecord[] GetQuotaReport(IN REF CIM_System system)

{

cursor = NULL;

service = QuotaGetQMService(system);

nrecs = 1000;

r = service->GetQuotaReport(system, NULL, NULL, NULL,

cursor, nrecs, job, recs[]);

<manage job>;

<do something with recs>;

while (r != “No more data”) {

r = service->GetQuotaReport(system, NULL, NULL, NULL,

cursor, nrecs, job, recs[]);

<manage job>;

<do something with recs>;

}

}

}

EXPERIMENTAL
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 273

Filesystem Quotas Profile NO_ANSI_ID
11.6 Registered Name and Version
FileSystem Quotas version 1.3.0

11.7 CIM Elements
Table 164 describes the CIM elements for FileSystem Quotas.

11.7.1 SNIA_FSDomainIdentity

Table 165 - CIM Elements for FileSystem Quotas

Element Name Requirement Description

11.7.1 SNIA_FSDomainIdentity Mandatory A small class containing the unique ID of a
user or group in a Unix or Windows domain

11.7.2 SNIA_FSQuotaAppliesToElement Mandatory An association between a quota config entry
and a managed element

11.7.3 SNIA_FSQuotaAppliesToPrincipal Mandatory An association between a quota config entry
and a Filesystem principal entity

11.7.4 SNIA_FSQuotaAppliesToTree Mandatory An association between a quota config entry
and a directory

11.7.5 SNIA_FSQuotaCapabilities Mandatory The supported targets, quota types, resource
types and behaviors of the
FSQuotaManagementService associated to
this class instance.

11.7.6 SNIA_FSQuotaConfigEntry Mandatory A single quota entry in the configuration
database.

11.7.7 SNIA_FSQuotaIndication Optional An indication specially referring to quota
events. Note that the threshold and current
value are passed in the parent class, in
ThresholdValue and ObservedValue

11.7.8 SNIA_FSQuotaManagementService Mandatory Quota Management Service class.

11.7.9 SNIA_FSQuotaReportRecord Mandatory A class representing a single line in a quota
report generated by a call to the
QuotaReport() extrinsic of the
FSQuotaManagementService

11.7.10 SNIA_ReportRecord Mandatory An abstract keyless class proposed as the
root of a tree of report record classes

SELECT * FROM SNIA_FSQuotaIndication
WHERE WhichLimit = 2

Mandatory Hard quota threshold crossed

SELECT * FROM SNIA_FSQuotaIndication
WHERE WhichLimit = 3

Mandatory Soft quota threshold crossed
274

NO_ANSI_ID Filesystem Quotas Profile
Created By: CreateInstance_or_Static_or_External
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 166 describes class SNIA_FSDomainIdentity.

11.7.2 SNIA_FSQuotaAppliesToElement

Created By: CreateInstance
Modified By: Extrinsic_or_External
Deleted By: DeleteInstance
Requirement: Mandatory

Table 167 describes class SNIA_FSQuotaAppliesToElement.

11.7.3 SNIA_FSQuotaAppliesToPrincipal

Created By: CreateInstance
Modified By: Extrinsic_or_External
Deleted By: DeleteInstance
Requirement: Mandatory

Table 166 - SMI Referenced Properties/Methods for SNIA_FSDomainIdentity

Properties Flags Requirement Description & Notes

PrincipalID Mandatory The unique ID of a principal. This may be a UID, GID or a
SID.

DomainType Mandatory The type of domain the Principal belongs to. Possible
values are "Unknown", "Other", "Unix", and "Active
Directory".

PrincipalType Mandatory The type of Principal represented by this identity instance.
Possible values are "Unknown", "Other", "User" and
"Group"

Table 167 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement

Properties Flags Requirement Description & Notes

Antecedent Mandatory The managed element

Dependent Mandatory The quota config entry
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 275

Filesystem Quotas Profile NO_ANSI_ID
Table 168 describes class SNIA_FSQuotaAppliesToPrincipal.

11.7.4 SNIA_FSQuotaAppliesToTree

Created By: CreateInstance
Modified By: Extrinsic_or_External
Deleted By: DeleteInstance
Requirement: Mandatory

Table 169 describes class SNIA_FSQuotaAppliesToTree.

11.7.5 SNIA_FSQuotaCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 170 describes class SNIA_FSQuotaCapabilities.

Table 168 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal

Properties Flags Requirement Description & Notes

Antecedent Mandatory The filesystem principal

Dependent Mandatory The quota config entry

Table 169 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree

Properties Flags Requirement Description & Notes

Antecedent Mandatory The filesystem directory tree

Dependent Mandatory The quota config entry

Table 170 - SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the capabilities instance.

ElementName Mandatory A user-friendly name for the instance in the format
SystemName:ManagedElementName:Capabilities.

SupportedTargetType
s

Mandatory The target types supported by the Service. Possible values
are "ComputerSystem" and "FileSystem"

SupportedPrincipalTy
pes

Mandatory An array of the types of Principal supported by the Service.
Possible values are "User", "Group", "User-tree", "Group-
tree" and "Tree".
276

NO_ANSI_ID Filesystem Quotas Profile
11.7.6 SNIA_FSQuotaConfigEntry

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 171 describes class SNIA_FSQuotaConfigEntry.

ConflictingEntriesUsa
ge

Mandatory The behavior of the system when it encounters quota
entries with duplicate keys

SupportedResourceT
ypes

Mandatory An array of resource types that may have quotas placed on
them by this Service. Possible values are"Unknown",
"Other", "Bytes", "Files", "Directories", "Files+Directories",
"Inodes" and "Blocks"

DefaultSupported Mandatory An array that indicates which resource types may have
default quotas set upon them by this Service. Possible
values are the same as for SupportedResourceTypes

IsActiveSettingPerEn
trySupported

Mandatory Indicates whether quotas may be made active or inactive
per entry

IsMonitoredSettingPe
rEntrySupported

Mandatory Indicates whether quota monitoring may be turned on or off
per entry

IsGracePeriodSuppo
rted

Mandatory Indicates whether a grace period may be set on a quota. If
it can, then crossing over a soft threshold for more then the
period of time specified in the grace period effectively
converts the soft threshold to a hard limit, cutting off further
allocation of the resource.

Table 171 - SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the entry.

HardLimit Mandatory The hard limit for this quota

SoftLimit Mandatory The soft limit for this quota

SoftLimitGracePeriod Optional Length of the grace period, if any exists.

Active Optional Whether or not this quota is to be actively monitored. If
NULL, the system does not support activation of individual
quotas.

Monitor Mandatory Whether or not this is a monitor-only quota. If this is TRUE,
no enforcement of any kind is done.

Table 170 - SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 277

Filesystem Quotas Profile NO_ANSI_ID
11.7.7 SNIA_FSQuotaIndication

Created By: External
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 172 describes class SNIA_FSQuotaIndication.

11.7.8 SNIA_FSQuotaManagementService

ResourceType Mandatory The type of resource being managed

QuotaType Mandatory The type of quota to create (user, group, etc.)

TreeName Mandatory Path of the tree over which this quota is applicable, if any.

PrincipalID Mandatory The user or group being constrained by this quota, if any.

FileSystem Mandatory A The name of the FileSystem, if any, over which this quota
is monitored.

Default Mandatory Whether or not this is a default quota.

Table 172 - SMI Referenced Properties/Methods for SNIA_FSQuotaIndication

Properties Flags Requirement Description & Notes

IdentityID Mandatory The InstanceID of the FSDomainIdentity involved in
causing the event. If there is none, NULL shall be passed in
this property.

EntryID Mandatory The InstanceID of the FSQuotaConfigEntry involved in
causing the event..

Path Mandatory The complete path of the tree involved in causing the event.
If there is none, NULL shall be passed in this property.

WhichLimit Mandatory Either "hard" or "soft"

ResourceType Mandatory "Bytes", "Files", "Directories","Files+Directories" or "Inodes"

QuotaType Mandatory Either "user", "group" or "tree".

Limit Mandatory The limit set by the quota entry

AmountUsed Optional Amount of resource actually used at the time the indication
was generated.

FileSystem Mandatory The Name of the FileSystem in which the event occurred.

Table 171 - SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry

Properties Flags Requirement Description & Notes
278

NO_ANSI_ID Filesystem Quotas Profile
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 173 describes class SNIA_FSQuotaManagementService.

11.7.9 SNIA_FSQuotaReportRecord

Created By: Extrinsic
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 174 describes class SNIA_FSQuotaReportRecord.

Table 173 - SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

FindQuotaEntries() Mandatory Retrieve one or more quota entries based on a set of input
criteria.

DeleteQuotaEntry() Mandatory Delete a specified quota entry

ModifyQuotaEntry() Mandatory Modify a specified quota entry

AddQuotaEntry() Mandatory Add a new quota entry.

GetQuotaReport() Mandatory Obtain a report on usage against the quota entries on a
system.

EnableQuotas() Mandatory Turn quota monitoring on or off.

InitializeQuotas() Mandatory Initialize the quota reporting system.

Table 174 - SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties Flags Requirement Description & Notes

HardLimit Optional The hard threshold associated with this quota report record,
if any

SoftLimit Optional The soft threshold associated with this quota report record,
if any
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 279

Filesystem Quotas Profile NO_ANSI_ID
11.7.10 SNIA_ReportRecord

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

EXPERIMENTAL

SoftLimitGracePeriod Optional The grace period associated with the soft limit associated
with this report record, if any

Active Optional Whether the quota associated with this report record is
being actively enforced. If not, this indicates the quota is
being used for tracking purposes only.

Monitored Optional Whether or not thresholds on this quota are being
monitored. If a system reports quotas that aren't being
monitored, this value may be false.

ResourceType Mandatory The type of resource whose use is counted in this quota
report record

QuotaType Mandatory The type of Principal to which this quota applies. Possible
values are "Unknown", "Other", "User", "Group" and "Tree".

AmountUsed Mandatory The amount of resource used by the combination of
Principal, Resource type, Tree, and ManagedElement
specified in the quota configuration entry that generated
this quota report record (and reported in other fields in the
record).

TreeName Optional The URI of the filesystem tree upon which the quota was
set, if any

PrincipalID Optional The FSDomainIdentity for the Principal associated with this
quota report record, if any

FileSystem Optional The name of the filesystem over which the quota entry that
generated the report record was placed, if any

Table 174 - SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties Flags Requirement Description & Notes
280

NO_ANSI_ID NAS Head Profile
STABLE

Clause 12: NAS Head Profile

12.1 Description

12.1.1 Synopsis

Profile Name: NAS Head

Version: 1.3.0

Organization: SNIA

CIM schema version: 2.15

Central Class: ComputerSystem

Scoping Class: ComputerSystem

12.1.2 Overview

The NAS Head Profile exports File elements (contained in a FileSystem) as FileShares. The storage for the
FileSystem is obtained from external SAN storage, for example, a Storage Array that exports Storage Volumes as
LUNs. The storage array may also provide storage to other hosts or devices (or other NAS Heads), and the storage
on the array might be visible to other external management tools, and may be actively managed independently.

This profile models the necessary Filesystem and NAS concepts and defines how the connections to the
underlying storage is managed. A NAS Head looks like a "host system" on a SAN and gains access to the storage
through zoning (see the Fabric Book) and LUN provisioning and masking and mapping functions in the arrays it is
using (see the Storage Management Technical Specification, Part 3 Block Devices, 1.3.0 Rev 6).

The NAS Head Profile reuses a significant portion of Clause 23: Storage Virtualizer Profile in Storage Management
Technical Specification, Part 3 Block Devices, 1.3.0 Rev 6.

The NAS Head Profile and its subprofiles and packages are illustrated in Figure 17.
SMI-S 1.3.0 Rev 6 SNIA Technical Position 281

NAS Head Profile NO_ANSI_ID
.

12.1.3 Implementation

12.1.3.1 Summary Instance Diagram
Figure 18 illustrates all the classes that are mandatory for the NAS Head Profile. Later diagrams will review specific
sections of this diagram.

Figure 17 - NAS Head Profiles and Subprofiles

Location

NAS Head

Multiple
ComputerSystem

Access Points

Software

Job Control

Block
Services
Package

Device Credentials

PhysicalPackage Package

 HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint

ConcreteIdentity

ComponentCS

PhysicalElementLocation

InstalledSoftwareIdentity

FileExport
Manipulation

SystemDevice

Initiator Ports

Filesystem
Manipulation

OwningJobElement

Cascading

CascadingDependency

Extent
Composition

ConcreteComponent

FileSystem

HostedFileSystem

FSQuota

File Storage

File Export
HostedShare

Indications
282

NO_ANSI_ID NAS Head Profile
Figure 18 - NAS Head Instance

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

SNIA_LocalFileSystem

HostedFileSystem
ResidesOnExtent

(Conditional)

LogicalFile
(Directory)

FileShare
NFS or CIFS

ConcreteDependency
(For Backward Compatibility)

FileStorage
(For Backward Compatibility)

ProtocolEndPoint

ProtocolIFType = 4200 | 4201
('NFS" or "CIFS") NetworkPort

SAPAvailableForElement

FileSystemSetting
(Optional)ElementSettingData

(Optional)

SNIA_ExportedFileShareSettingElementSettingData

HostedShare

ConcreteComponent
(Optional)

StorageExtent
(Optional)

SCSIProtocolController FCPort
UsageRestriction =

‘Back-end only’

ProtocolControllerForEndpoint

StorageExtent
(Optional)

Initiator Ports Subprofile (Optional)

SystemDevice

SystemDevice
(Optional)

Initiator
ProtocolEndpoint

DeviceSAPImplementation

Block Services Package

SystemDevice

DeviceSAPImplementation

FileSystem
Profile

File Export
Profile

File Storage
Profile

SNIA_SharedElement

SNIA_LocallyAccessibleFileSystemSetting
(Conditional)

ElementSettingData
(Conditional)

HostedDependency
(Conditional)

SNIA_LocalAccessAvailable
(Conditional)

Target
ProtocolEndpoint

InitiatorTarget
LogicalUnitPath

NAS Network Ports
Profile

Virtual File Server
ComputerSystem

(Optional) HostedShare

HostedAccessPoint

HostedDependency
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 283

NAS Head Profile NO_ANSI_ID
The NAS Head Profile closely parallels the Storage Virtualizer Profile in how it models storage. Imported storage
may be assigned to a StoragePool (the StorageExtent with a ConcreteComponent to the primordial storage pool)
and some are available for possible assignment to a primordial StoragePool (Extents without a
ConcreteComponent to a storage pool). Storage is assigned to StoragePools and LogicalDisks are allocated from
those storage pools for the purpose of holding local filesystems of the NAS.

As with the Storage Virtualizer Profile, the NAS Head StoragePools have StorageCapabilities associated to the
StoragePools via ElementCapabilities. Similarly, LogicalDisks that are allocated from those StoragePools have
StorageSettings, which are associated to the LogicalDisk via ElementSettingData. StoragePools are hosted by a
ComputerSystem that represents the NAS “top level” system, and the StorageExtents have a SystemDevice
association to the “top level” ComputerSystem.

Note: As with Self-Contained NAS, the StoragePools may be hosted by a component ComputerSystem if the
Profile has implemented the Multiple Computer System Subprofile.

As with the Storage Virtualizer Profile, the “top level” ComputerSystem of the NAS Head does not (and typically
isn’t) a real ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are
scoped.

A NAS Head may implement "Virtual File Servers" in addition to, or instead of, implementing File Servers in the Top
Level ComputerSystem or one of the Multiple Computer System ComputerSystems. A Virtual File Server shall
have a HostedDependency to either the top level NAS ComputerSystem or one of the Multiple Computer System
ComputerSystems. NOTE: A Virtual File Server shall not have a ComponentCS association to the top level NAS
ComputerSystem.

As with the Storage Virtualizer Profile, the NAS Head draws its storage from an open SAN. That is, the actual disk
storage is addressable independent of the NAS Head. However, unlike the Storage Virtualizer, modeling of the
imported storage is optional in the NAS Head. The NAS head may model the Initiator ports and the StorageExtents
that it acquires from the SAN. The NAS Head may support at least one of the Initiator Ports Subprofiles (the
dashed box at the bottom of Figure 18) to effect the support for backend ports. The NAS Head includes the Block
Services Package to effect the logical storage management (the dashed box just above the Initiator Ports dashed
box in Figure 18).

Everything above the LogicalDisk is specific to NAS (and does not appear in the Storage Virtualizer Profile).
LocalFileSystems are created on the LogicalDisks, LogicalFiles within those LocalFileSystems are shared
(FileShare) through ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed boxes are from the required packages and subprofiles (as
indicated by the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It represents a
relationship between a FileShare and a Directory.

In the NAS Head a LocalFileSystem shall map to a LogicalDisk using the ResidesOnExtent association.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base NAS Head profile, the classes and associations shown in Figure 18 are automatically populated based
on how the NAS Head is configured. Client modification of the configuration (including configuring storage, creating
extents, local filesystems and file shares) are functions found in subprofiles of the NAS Head Profile.
284

NO_ANSI_ID NAS Head Profile
12.1.3.2 NAS Storage Model
Figure 19 illustrates the classes mandatory for modeling of storage for the NAS Head Profile.

The NAS Head Profile uses most of the classes and associations used by the Storage Virtualizer Profile (including
those in the Block Services Package). In doing this, it leverages many of the subprofiles that are available for
Storage Virtualizer Profiles. The classes and associations shown in Figure 19 are the minimum mandatory for read
only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled, including the
HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the StoragePool. In addition,
for NAS Heads, which get their storage from a SAN, the StorageExtents that compose the primordial StoragePools
may also be modeled with ConcreteComponent associations to the StoragePool to which they belong and they
would be primordial.

In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk shall
have an AllocatedFromStoragePool association to the StoragePool from which it is allocated. The LogicalDisk shall
have an ElementSettingData association to the settings that were used when the LogicalDisk was created.

For manipulation of Storage, see Clause 5: Block Services Package of Storage Management Technical
Specification, Part 3 Block Devices, 1.3.0 Rev 6. LogicalDisks are the ElementType that is supported for storage
allocation functions (e.g., CreateOrModifyElementFromStoragePool and ReturnToStoragePool), but the Block
Services methods for managing LogicalDisks are optional for the NAS Head Profile. The NAS Head Profile also
supports (optionally) the Pool manipulation functions (e.g., CreateOrModifyStoragePool and DeleteStoragePool) of
the Block Services Package.

Figure 19 - NAS Storage Instance

Block Services Package

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingDataHostedStoragePool

StorageExtent
(Optional)

SystemDevice

StorageExtent
(Optional)

ConcreteComponent
(Optional)

SystemDevice
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 285

NAS Head Profile NO_ANSI_ID
12.1.3.3 NAS Head Use of Filesystem Profile (Mandatory)
The NAS Head Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the NAS Head,
implementation of the Filesystem Profile is mandatory. See Clause 8: Filesystem Profile for details on this
modeling.

12.1.3.4 NAS Head Use of File Storage Profile (Mandatory)
The NAS Head Profile uses the File Storage Profile for modeling of its file storage constructs. For the NAS Head,
implementation of the Filesystem Profile is mandatory. See Clause 7: File Storage Profile for details on the file
storage modeling.

12.1.3.5 NAS Head Use of File Export Profile (Mandatory)
The NAS Head Profile uses the File Export Profile for modeling of its file export constructs. For the NAS Head,
implementation of the File Export Profile is mandatory. See Clause 4: File Export Profile for details on this
modeling.

12.1.3.6 NAS Head Support for Front-end Network Ports
Figure 20 illustrates the classes for modeling of front end NetworkPorts for the NAS Head Profile.

The ProtocolEndpoint for NFS or CIFS shall be present and shall be associated to a ComputerSystem via a
HostedAccessPoint association. It shall also be associated to a NetworkPort via the DeviceSAPImplementation.
The NetworkPort shall be modeled and shall have an SystemDevice association to a ComputerSystem. The
ComputerSystem in the diagram may be the top level system for the NAS Head or any of its component computer
systems. The ComputerSystem that hosts the NFS or CIFS ProtocolEndpont need not be the same
ComputerSystem associated to the NetworkPort via its SystemDevice association.

The modeling of the TCPProtocolEndpoint, IPProtocolEndpoint and the LANEndpoint are optional. The
associations from (to) those classes are conditional on the existence of the classes. Like the NFS or CIFS

Figure 20 - NAS Head Support for Front-end Network Ports

Com puterSystem

ProtocolEndPoint

ProtocolIFType = 4200 | 4201
('NFS" or "CIFS")

NetworkPort

HostedAccessPoint

SystemDevice

DeviceSAPImplementation

IPProtocolEndPoint
(Optional)

ProtocolIFType = 4096|4097|4098

LANEndpoint
(Optional)

ProtocolIFType = 1|6|9|15

BindsTo
(Conditional)

BindsToLANEndpoint
(Conditional)

DeviceSAPIm plementation
(Conditional)

HostedAccessPoint
(Conditional)

HostedAccessPoint
(Conditional)

TCPProtocolEndPoint
(Optional)

ProtocolIFType = 4111

BindsTo
(Conditional)
286

NO_ANSI_ID NAS Head Profile
ProtocolEndpoint, the TCPProtocolEndpoint, IPProtocolEndpoint and LANEndpoint shall have HostedAccessPoint
associations to some ComputerSystem. Typically, this would be the same ComputerSystem that hosts the
NetworkPort. However this is not a requirement.

EXPERIMENTAL

12.1.3.7 NAS Head Support of Cascading
Figure 21 illustrates the NAS Head support for cascading. Support for the Cascading Subprofile is optional (and
the Cascading Subprofile is experimental). It is provided here to illustrate stitching between the NAS Head and
Array or Storage Virtualizer Profiles.

Figure 21 - NAS Head Cascading Support Instance

 Cascading Subprofile

Block Services Package

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingDataHostedStoragePool

ComputerSystem
(Virtual)

StorageExtent

SystemDevice

StorageExtent

ConcreteComponent

StorageVolume
(Virtual)

StorageVolume
(Virtual)

RemoteResources

Dependency

RemoteServiceAccessPoint

SAPAvailableForElement

SystemDevice

AllocatedResources

MemberOfCollection

MemberOfCollection

LogicalIdentity
LogicalIdentity

SystemDevice
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 287

NAS Head Profile NO_ANSI_ID
The lower dashed box in the figure illustrates the classes and associations of the Cascading Subprofile. The
dashed classes are virtual instances (copies cached from the Array or Storage Virtualizer Profile). The other
classes of the Cascading Subprofile represent NAS Head usage of those classes. For example, the collection
AllocatedResources collects all the Array volumes that are used in StoragePools of the NAS Head. The
RemoteResources collection collects all volumes that the NAS Head has discovered (whether used or not).

Note: Imported Storage Extents are modeled in the NAS Head for both the allocated resources and the
remote resources. StorageExtents for allocated resources would have a ConcreteComponent to a
Primordial StoragePool, but StorageExtents that are not members of the AllocatedResources would not
have the ConcreteComponent association to any StoragePool.

The RemoteServiceAccessPoint is the URL of the management interface that the NAS Head uses for managing
the Array or Storage Virtualizer Profiles.

EXPERIMENTAL

12.2 Health and Fault Management Considerations
The NAS Head supports state information (e.g., OperationalStatus) on the following elements of the model:

• Network Ports (See 12.2.1)

• Back-end Ports (See 17.3.3 Health and Fault Management Considerations in Storage Management Technical
Specification, Part 2 Common Profiles, 1.3.0 Rev 6)

• ComputerSystems (See 25.1.5 Computer System Operational Status in Storage Management Technical
Specification, Part 2 Common Profiles, 1.3.0 Rev 6)

• FileShares that are exported (See 4.2.1)

• LocalFileSystems (See 8.2.1)

• ProtocolEndpoints (See 12.2.2)

12.2.1 OperationalStatus for Network Ports

Table 175 - NetworkPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
288

NO_ANSI_ID NAS Head Profile
12.2.2 OperationalStatus for ProtocolEndpoints

EXPERIMENTAL

12.3 Cascading Considerations
The NAS Head is a cascading Profile, but the Cascading Subprofile is Experimental in this release of SMI-S; see
Clause 24: Cascading Subprofile in Storage Management Technical Specification, Part 2 Common Profiles, 1.3.0
Rev 6. As such, the Cascading Subprofile is defined as an optional subprofile. A NAS Head may cascade storage.
The cascading considerations for this are discussed in the following sections.

12.3.1 Cascading Resources for the NAS Head Profile

By definition, a NAS Head gets its storage from the network. As such, there is a cascading relationship between
the NAS Head Profile and the Profiles (e.g., Array Profiles) that provide the storage for the NAS Head. Figure 21
illustrates the constructs to be used to model this cascading relationship.

• The NAS Head Cascaded Resources are Primordial StorageExtents (used to populate Primordial
StoragePools)

• The NAS Head obtains the storage for these from Array or Storage Virtualizer Profiles

• Each Primordial StorageExtent maps (via LogicalIdentity) to a StorageVolume (from the Array or Storage
Virtualizer Profile).

12.3.2 Ownership Privileges Asserted by NAS Heads

In support of the Cascading NAS Heads may assert ownership over the StorageVolumes that they import. If the
Array or Storage Virtualizer implementation supports Ownership, NAS Heads would assert ownership using the
following Privilege:

• Activity - Execute

• ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

• FormatQualifier - Method

12.3.3 NAS Head Limitations on use of the Cascading Subprofile

The NAS Head support for Cascading places the following limitations and restrictions on the Cascading Subprofile:

• The AllocationService is not supported. - Allocation is done as a side effect of assigning the extents to the
Primordial pool.

Table 176 - ProtocolEndpoint OperationalStatus

OperationalStatus Description

OK ProtocolEndpoint is online

Error ProtocolEndpoint has a failure

Stopped ProtocolEndpoint is disabled

Unknown
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 289

NAS Head Profile NO_ANSI_ID
• CascadingDependency - The CascadingDependency may exist, even when there are no resources that are
imported. This signifies that the NAS Head has discovered the Array or Virtualizer, but has no access to any of
their volumes.

EXPERIMENTAL

12.4 Supported Subprofiles and Packages
Table 177 describes the supported profiles for NAS Head.

Table 177 - Supported Profiles for NAS Head

Registered Profile Names Mandatory Version

Indication Yes 1.3.0

Filesystem Yes 1.3.0

File Storage Yes 1.3.0

File Export Yes 1.3.0

Cascading No 1.3.0

Access Points No 1.3.0

Multiple Computer System No 1.2.0

Software No 1.3.0

Location No 1.3.0

Extent Composition No 1.2.0

Filesystem Manipulation No 1.3.0

File Export Manipulation No 1.3.0

File Server Manipulation No 1.3.0

Filesystem Performance No 1.3.0

FileSystem Quotas No 1.3.0

Job Control No 1.3.0

SPI Initiator Ports No 1.2.0

FC Initiator Ports No 1.3.0

Device Credentials No 1.3.0

Physical Package Yes 1.3.0

Block Services Yes 1.3.0

Health Yes 1.2.0
290

NO_ANSI_ID NAS Head Profile
12.5 Methods of the Profile

12.5.1 Extrinsic Methods of the Profile

None.

12.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

Manipulation functions are supported in subprofiles of the profile.

12.6 Client Considerations and Recipes
Not defined in this version of the specification.

12.7 Registered Name and Version
NAS Head version 1.3.0
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 291

NAS Head Profile NO_ANSI_ID
12.8 CIM Elements
Table 178 describes the CIM elements for NAS Head.

Table 178 - CIM Elements for NAS Head

Element Name Requirement Description

12.8.1 CIM_BindsTo (CIFS or NFS) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists.Associates a
CIFS or NFS ProtocolEndpoint to an
underlying TCPProtocolEndpoint. This is used
in the NAS Head to support the TCP/IP
Network protocol stack.

12.8.2 CIM_BindsTo (TCP) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists.Associates a
TCPProtocolEndpoint to an underlying
IPProtocolEndpoint. This is used in the NAS
Head to support the TCP/IP Network protocol
stack.

12.8.3 CIM_BindsToLANEndpoint Conditional Conditional requirement: This is required if a
LANEndpoint exists.Associates an
IPProtocolEndpoint to an underlying
LANEndpoint in the NAS Head (to support the
TCP/IP Network protocol stack).

12.8.4 CIM_ComputerSystem (Top Level) Mandatory This declares that at least one computer
system entry will pre-exist. The Name
property should be the Unique identifier for the
NAS Head.

12.8.5 CIM_ComputerSystem (Virtual File
Server)

Optional This represents a Virtual File Server, if one
exists.

12.8.6 CIM_ConcreteComponent Optional Represents the association between a
Primordial StoragePool and the underlying
StorageExtents that compose it.

12.8.7 CIM_DeviceSAPImplementation (CIFS
or NFS to NetworkPort)

Mandatory (CIFS or NFS to NetworkPort) Represents the
association between a CIFS or NFS
ProtocolEndpoint and the NetworkPort that it
supports.

12.8.8 CIM_DeviceSAPImplementation
(LANEndpoint to NetworkPort)

Conditional Conditional requirement: This is required if a
LANEndpoint exists.Associates a logical front
end Port (a NetworkPort) to the LANEndpoint
that uses that device to connect to a LAN.

12.8.9 CIM_HostedAccessPoint (CIFS or
NFS)

Mandatory (CIFS or NFS) Represents the association
between a CIFS or NFS front end
ProtocolEndpoint and the Computer System
that hosts it.
292

NO_ANSI_ID NAS Head Profile
12.8.10 CIM_HostedAccessPoint (IP) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists.Represents the
association between a front end
IPProtocolEndpoint and the Computer System
that hosts it.

12.8.11 CIM_HostedAccessPoint (LAN) Conditional Conditional requirement: This is required if a
LANEndpoint exists.Represents the
association between a front end LANEndpoint
and the Computer System that hosts it.

12.8.12 CIM_HostedAccessPoint (TCP) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists.Represents the
association between a front end
TCPProtocolEndpoint and the Computer
System that hosts it.

12.8.13 CIM_HostedDependency Optional Associates a Virtual File Server to the
Computer System hosting it. This is required if
a Virtual File Server exists.

12.8.14 CIM_IPProtocolEndpoint Optional Represents the front-end ProtocolEndpoint
used to support the IP protocol services.

12.8.15 CIM_LANEndpoint Optional Represents the front-end ProtocolEndpoint
used to support a Local Area Network and its
services.

12.8.16 CIM_LogicalDisk (LD for FS) Mandatory Represents the single Storage Extent on
which the NAS Head will build a
LocalFileSystem.

12.8.17 CIM_NetworkPort Mandatory Represents the front end logical port that
supports access to a local area network.

12.8.18 CIM_ProtocolEndpoint (CIFS or NFS) Mandatory (CIFS or NFS) Represents the front-end
ProtocolEndpoint used to support NFS and
CIFS services.

12.8.19 CIM_StorageExtent (Primordial
Imported Extent)

Optional This StorageExtent represents the LUNs
(StorageVolumes) imported from a storage
device to the NAS Head.

12.8.20 CIM_SystemDevice (Logical Disks) Mandatory This association links all LogicalDisks to the
scoping system.

12.8.21 CIM_SystemDevice (Network Ports) Mandatory This association links all NetworkPorts to the
scoping system. This is used to represent
both front end and back end ports.

12.8.22 CIM_SystemDevice (Storage Extents) Conditional Conditional requirement: This is required if
primordial StorageExtents exist.This
association links all StorageExtents to the
scoping system.

Table 178 - CIM Elements for NAS Head

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 293

NAS Head Profile NO_ANSI_ID
12.8.23 CIM_TCPProtocolEndpoint Optional Represents the front-end ProtocolEndpoint
used to support TCP services.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus

Optional CQL -Change of Status of a NAS
ComputerSystem (controller).

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a NAS
ComputerSystem (controller).

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity="SNIA" and
MessageID="FSM001"

Optional CQL -This is a bellwether indication of a
change of Status of a NAS ComputerSystem
(controller) and related classes (LogicalDisks,
Services, ProtocolEndpoints, StoragePools,
FileShares and FileSystems).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NetworkPort AND
SourceInstance.CIM_NetworkPort::Operation
alStatus <>
PreviousInstance.CIM_NetworkPort::Operatio
nalStatus

Optional CQL -Change of Status of a Port.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NetworkPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a Port.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity="SNIA" and
MessageID="FSM002"

Optional CQL -This is a bellwether indication of a
change of Status of a Port and related classes
(ProtocolEndpoints and FileShares).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolEndpoint AND
SourceInstance.CIM_ProtocolEndpoint::Oper
ationalStatus <>
PreviousInstance.CIM_ProtocolEndpoint::Ope
rationalStatus

Mandatory Deprecated WQL -Change of Status of a
ProtocolEndpoint

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolEndpoint AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional CQL -Change of Status of a ProtocolEndpoint

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

Table 178 - CIM Elements for NAS Head

Element Name Requirement Description
294

NO_ANSI_ID NAS Head Profile
12.8.1 CIM_BindsTo (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a TCPProtocolEndpoint exists.

Table 179 describes class CIM_BindsTo (CIFS or NFS).

12.8.2 CIM_BindsTo (TCP)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if an IPProtocolEndpoint exists.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of status of a
LogicalDisk.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::Operationa
lStatus <>
PreviousInstance.CIM_LogicalDisk::Operation
alStatus

Optional CQL -Change of status of a LogicalDisk.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity="SNIA" and
MessageID="FSM003"

Optional CQL -This is a bellwether indication of a
change of status of a LogicalDisk.

Table 179 - SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpoint that uses a lower level
ProtocolEndpoint for connectivity.

Antecedent Mandatory The TCPProtocolEndpoint that supports a CIFS or NFS
ProtocolEndpoint.

Table 178 - CIM Elements for NAS Head

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 295

NAS Head Profile NO_ANSI_ID
Table 180 describes class CIM_BindsTo (TCP).

12.8.3 CIM_BindsToLANEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 181 describes class CIM_BindsToLANEndpoint.

12.8.4 CIM_ComputerSystem (Top Level)

Created By: Static
Modified By: External
Deleted By: Static
Requirement: Mandatory

Table 182 describes class CIM_ComputerSystem (Top Level).

Table 180 - SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint
for connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a
TCPProtocolEndpoint.

Table 181 - SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.

Dependent Mandatory An IPProtocolEndpoint.

Antecedent Mandatory A LANEndpoint.

Table 182 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory The actual class of this object, e.g.,
Vendor_NASComputerSystem.

ElementName Mandatory User friendly name

Name Mandatory Unique identifier for the NAS Head in a format specified by
NameFormat. For example, IP address or Vendor/Model/
SerialNo.
296

NO_ANSI_ID NAS Head Profile
12.8.5 CIM_ComputerSystem (Virtual File Server)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

OperationalStatus Mandatory Overall status of the NAS Head

NameFormat Mandatory Format for Name property.

PrimaryOwnerContac
t

M Optional Owner of the NAS Head

PrimaryOwnerName M Optional Contact details for owner

Dedicated Mandatory This shall be a NAS Head (24).

OtherIdentifyingInfo C Mandatory An array of know identifiers for the NAS Head.

IdentifyingDescription
s

C Mandatory An array of descriptions of the OtherIdentifyingInfo. Some
of the descriptions would be "Ipv4 Address", "Ipv6 Address"
or "Fully Qualified Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc
riptions

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Table 182 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 297

NAS Head Profile NO_ANSI_ID
Table 183 describes class CIM_ComputerSystem (Virtual File Server).

12.8.6 CIM_ConcreteComponent

Created By: External

Table 183 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement Description & Notes

Dedicated Mandatory A Virtual File Server is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the NAS Head's Virtual File Servers
(Eg Vendor/Model/SerialNo+FS+Number).

OperationalStatus Mandatory Overall status of the Virtual File Server.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc
riptions

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

PrimaryOwnerContac
t

N Optional Not Specified in this version of the Profile.

PrimaryOwnerName N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.
298

NO_ANSI_ID NAS Head Profile
Modified By: Static
Deleted By: External
Requirement: Optional

Table 184 describes class CIM_ConcreteComponent.

12.8.7 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 185 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

12.8.8 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 184 - SMI Referenced Properties/Methods for CIM_ConcreteComponent

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool that is built from the
StorageExtent.

PartComponent Mandatory A StorageExtent that is part of a Primordial StoragePool.

Table 185 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS
to NetworkPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpont that supports on the NetworkPort.
These include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The NetworkPort supported by the Access Point.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 299

NAS Head Profile NO_ANSI_ID
Table 186 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

12.8.9 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 187 describes class CIM_HostedAccessPoint (CIFS or NFS).

12.8.10 CIM_HostedAccessPoint (IP)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if an IPProtocolEndpoint exists.

Table 188 describes class CIM_HostedAccessPoint (IP).

Table 186 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEnd-
point to NetworkPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory A LANEndpoint that depends on a NetworkPort for
connecting to its LAN segment.

Antecedent Mandatory The Logical network adapter device that connects to a
LAN.

Table 187 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the file server. These
include ProtocolEndpoints for NFS or CIFS.

Antecedent Mandatory The Computer System hosting this Access Point. In the
context of the NAS Head, these are always file servers
(Dedicated=16).

Table 188 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The IPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.
300

NO_ANSI_ID NAS Head Profile
12.8.11 CIM_HostedAccessPoint (LAN)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 189 describes class CIM_HostedAccessPoint (LAN).

12.8.12 CIM_HostedAccessPoint (TCP)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a TCPProtocolEndpoint exists.

Table 190 describes class CIM_HostedAccessPoint (TCP).

12.8.13 CIM_HostedDependency

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 189 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement Description & Notes

Dependent Mandatory The LANEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 190 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 301

NAS Head Profile NO_ANSI_ID
Table 191 describes class CIM_HostedDependency.

12.8.14 CIM_IPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 192 describes class CIM_IPProtocolEndpoint.

Table 191 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem.

Antecedent Mandatory The hosting ComputerSystem.

Table 192 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be the IP protocol endpoints supported by the
NAS Head.

ProtocolIFType Mandatory 4096="IP v4", 4097="IP v6", and 4098 is both. (Note that
1="Other" is not supported)

IPv4Address Conditional Conditional requirement: This is required if ProtocolIFType
= 4096 or 4098.An IP v4 address in the format "A.B.C.D".

IPv6Address Conditional Conditional requirement: This is required if ProtocolIFType
= 4097 or 4098.An IP v6 address.
302

NO_ANSI_ID NAS Head Profile
12.8.15 CIM_LANEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 193 describes class CIM_LANEndpoint.

SubnetMask Conditional Conditional requirement: This is required if ProtocolIFType
= 4096 or 4098.An IP v4 subnet mask in the format
"A.B.C.D".

PrefixLength Conditional Conditional requirement: This is required if ProtocolIFType
= 4097 or 4098.For an IPv6 address.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

AddressOrigin N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 193 - SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

Table 192 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 303

NAS Head Profile NO_ANSI_ID
12.8.16 CIM_LogicalDisk (LD for FS)

Created By: Extrinsic_or_External

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be the LAN protocol endpoints supported by the
NAS Head.

ProtocolIFType Mandatory LAN endpoints supported are: 1="Other",6="Ethernet
CSMA/CD", 9="ISO 802.5 Token Ring", 15="FDDI".

OtherTypeDescriptio
n

Optional If the LAN endpoint is a vendor-extension specified by
"Other" and a description.

LANID N Optional A unique id for the LAN segment to which this device is
connected. The value will be NULL if the LAN is not
connected.

MACAddress Mandatory Primary Unicast address for this LAN device.

AliasAddresses Mandatory Other unicast addresses supported by this device.

GroupAddresses Mandatory Multicast addresses supported by this device.

MaxDataSize Mandatory The max size of packet supported by this LAN device.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 193 - SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes
304

NO_ANSI_ID NAS Head Profile
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 194 describes class CIM_LogicalDisk (LD for FS).

Table 194 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory CIM Class of the NAS Head Computer System that is the
host of this LogicalDisk.

SystemName Mandatory Name of the NAS Head Computer System that hosts this
LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DeviceID Mandatory Opaque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for
LogicalDisks in a NAS Head.

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17).

Primordial Mandatory This represents a Concrete Logical Disk that is not
primordial.

Name Mandatory Identifier for a local LogicalDisk that will be used for a
filesystem; since this logical disk will be referenced by a
client, it must have a unique name. We cannot constrain
the format here, but the OS-specific format described in the
Block Services specification is not appropriate, so "Other"
is used.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the
NAS Head. This shall be coded as "1" ("other").

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 305

NAS Head Profile NO_ANSI_ID
12.8.17 CIM_NetworkPort

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 195 describes class CIM_NetworkPort.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

SequentialAccess N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespa
ce

N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 195 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides
a network port.

OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Network Port.

SystemName Mandatory The name of the Computer System hosting the Network
Port.

CreationClassName Mandatory The CIM Class name of the Network Port.

Table 194 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement Description & Notes
306

NO_ANSI_ID NAS Head Profile
DeviceID Mandatory A unique ID for the device (in the context of the hosting
System).

Speed Optional

MaxSpeed Optional

RequestedSpeed Optional

UsageRestriction Optional

PortType Optional

PortNumber Optional A unique number for the adapter in the context of the
hosting System.

PermanentAddress C Mandatory The hard-coded address of this port.

NetworkAddresses Mandatory An array of network addresses for this port.

LinkTechnology Optional 1="Other", 2="Ethernet", 3="IB", 4="FC", 5="FDDI",
6="ATM", 7="Token Ring", 8="Frame Relay", 9="Infrared",
10="BlueTooth", 11="Wireless LAN. The link technology
supported by this adapter.

OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by
this adapter.

FullDuplex Optional

AutoSense Optional

SupportedMaximumT
ransmissionUnit

Optional

ActiveMaximumTrans
missionUnit

Optional

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

Name N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Table 195 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 307

NAS Head Profile NO_ANSI_ID
12.8.18 CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 196 describes class CIM_ProtocolEndpoint (CIFS or NFS).

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

OtherPortType N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 196 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints
supported by the NAS Head.

Table 195 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
308

NO_ANSI_ID NAS Head Profile
12.8.19 CIM_StorageExtent (Primordial Imported Extent)

Created By: Static_or_External
Modified By: External
Deleted By: External
Requirement: Optional

Table 197 describes class CIM_StorageExtent (Primordial Imported Extent).

ProtocolIFType Mandatory This represents either NFS=4200 or CIFS=4201. Other
protocol types are specified in subclasses of
ProtocolEndpoint.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 197 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported
Extent)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CreationClassName for the scoping system.

SystemName Mandatory The System Name of the scoping system

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass.

DeviceID Mandatory An ID that uniquely names the StorageExtent in the NAS
Head.

BlockSize Mandatory The size (in bytes) of blocks.

Table 196 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 309

NAS Head Profile NO_ANSI_ID
NumberOfBlocks Mandatory The number of Blocks from the imported StorageVolume.

ExtentStatus Mandatory This shall contain ‚Äò16‚Äô (Imported).

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

Name Mandatory DEPRECATED: Identifier for a remote LUN on a storage
array; possibly, the array ID plus LUN Node WWN.

Primordial Mandatory The StorageExtent imported from an Array is considered
primordial in the NAS Head.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

ConsumableBlocks N Optional Not Specified in this version of the Profile.

IsBasedOnUnderlyin
gRedundancy

N Optional Not Specified in this version of the Profile.

SequentialAccess N Optional Not Specified in this version of the Profile.

Table 197 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported
Extent)

Properties Flags Requirement Description & Notes
310

NO_ANSI_ID NAS Head Profile
12.8.20 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 198 describes class CIM_SystemDevice (Logical Disks).

12.8.21 CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

NoSinglePointOfFailu
re

N Optional Not Specified in this version of the Profile.

DataRedundancy N Optional Not Specified in this version of the Profile.

PackageRedundancy N Optional Not Specified in this version of the Profile.

DeltaReservation N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespa
ce

N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 198 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The LogicalDisk that is a part of a computer system.

Table 197 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported
Extent)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 311

NAS Head Profile NO_ANSI_ID
Table 199 describes class CIM_SystemDevice (Network Ports).

12.8.22 CIM_SystemDevice (Storage Extents)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: This is required if primordial StorageExtents exist.

Table 200 describes class CIM_SystemDevice (Storage Extents).

12.8.23 CIM_TCPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 201 describes class CIM_TCPProtocolEndpoint.

Table 199 - SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The NetworkPort that is a part of a computer system.

Table 200 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The primordial StorageExtent that is imported to a
computer system in the NAS Head.

Table 201 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.
312

NO_ANSI_ID NAS Head Profile
STABLE

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be the TCP protocol endpoints supported by the
NAS Head.

ProtocolIFType Mandatory 4111="TCP". Note that no other protocol type is supported
by this endpoint.

PortNumber Mandatory The number of the TCP Port that this element represents.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 201 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 313

NAS Head Profile NO_ANSI_ID
314

NO_ANSI_ID Self-Contained NAS Profile
STABLE

Clause 13: Self-Contained NAS Profile

13.1 Description

13.1.1 Synopsis

Profile Name: Self-Contained NAS

Version: 1.3.0

Organization: SNIA

CIM schema version: 2.15

Central Class: ComputerSystem

Scoping Class: ComputerSystem

13.1.2 Overview

The Self-contained NAS profile exports File elements (contained in a filesystem) as FileShares. The storage for the
filesystem is obtained from captive storage. In the simplest case, this could be a set of directly connected disks, but
it could also be a captive storage array that is not shared with any other hosts or devices (though it could be visible
to external management tools and even actively managed independently).

This profile models the necessary filesystem and NAS concepts and defines how the connections to the underlying
storage is managed. The details of how a directly attached set of disks is used by the Self-contained NAS profile
is covered as part of the Disk Drive or Disk Drive Lite subprofile. The details of how an underlying Storage Array
might export storage to the SC NAS is not covered in this profile but is covered by Clause 4: Array Profile in
Storage Management Technical Specification, Part 3 Block Devices, 1.3.0 Rev 6.

The Self-contained NAS profile reuses a significant portion of Clause 4: Array Profile in Storage Management
Technical Specification, Part 3 Block Devices, 1.3.0 Rev 6.
SMI-S 1.3.0 Rev 6 SNIA Technical Position 315

Self-Contained NAS Profile NO_ANSI_ID
The Self-Contained NAS Profile and its subprofiles and packages are illustrated in Figure 22.

13.1.3 Implementation

Figure 22 - Self-Contained NAS Profile and Subprofiles

Location

Disk Drive
Lite

Initiator Ports

Self-Contained NAS

Multiple
Computer System

Access Points

Software

Job Control

Block Services
Package

Device Credentials

PhysicalPackage Package

 HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint

ConcreteIdentity

ComponentCS

Container

PhysicalElementLocation

InstalledSoftwareIdentity

SystemDevice

FileExportManipulation

OwningJobElement

Filesystem
Manipulation OwningJobElement

Indications

Extent
Composition

ConcreteComponent

BasedOn

FS Quota

FileSystem

HostedFileSystem

File Storage

File Export
HostedShare
316

NO_ANSI_ID Self-Contained NAS Profile
13.1.3.1 Summary Instance Diagram
Figure 23 illustrates all the classes that are mandatory for the Self-contained NAS Profile. Later diagrams will
review specific sections of this diagram.

Figure 23 - Self-Contained NAS Instance

Block Services Package
ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

SNIA_LocalFileSystem

HostedFileSystem
ResidesOnExtent

(Conditional)

LogicalFile
(Directory)

(Conditional)

FileShare
NFS or CIFS

ConcreteDependency
(Optional)

FileStorage
(Conditional)

ProtocolEndPoint

ProtocolIFType= 4200 | 4201
('NFS" or "CIFS")

NetworkPort

SAPAvailableForElement

FileSystemSetting
(Optional)ElementSettingData

(Optional)

SNIA_ExportedFileShareSettingElementSettingData

HostedShare

HostedAccessPoint
SystemDevice

SystemDevice

DeviceSAPImplementation

FileSystem
Profile

File Export
Profile

File Storage
Profile

SNIA_SharedElement

SNIA_LocallyAccessibleFileSystemSetting
(Conditional)

HostedDependency
(Conditional)

ElementSettingData
(Conditional)

SNIA_LocalAccessAvailable
(Conditional)

Virtual File Server
ComputerSystem

(Optional) HostedShare

HostedAccessPoint

HostedDependency

NAS Network Port Profile
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 317

Self-Contained NAS Profile NO_ANSI_ID
The Self-Contained NAS Profile closely parallels the Array Profile in how it models storage. Storage is assigned to
StoragePools and LogicalDisks are allocated from those storage pools for the purpose of holding local filesystems
of the NAS.

As with the Array profile, the Self-contained NAS StoragePools have StorageCapabilities associated to the
StoragePools via ElementCapabilities. Similarly, LogicalDisks have StorageSettings, which are associated to the
LogicalDisk via ElementSettingData. StoragePools are hosted by a ComputerSystem that represents the NAS “top
level” system, and the LogicalDisks have a SystemDevice association to the “top level” ComputerSystem.

Note: As with Arrays, the StoragePools may be hosted by a component ComputerSystem if the profile has
implemented the Multiple Computer System Subprofile.

As with Arrays, the “top level” ComputerSystem of the Self-Contained NAS does not (and typically isn’t) a real
ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are scoped.

A may implement "Virtual File Servers" in addition to, or instead of, implementing File Servers in the Top Level
ComputerSystem or one of the Multiple Computer System ComputerSystems. A Virtual File Server shall have a
HostedDependency to either the top level NAS ComputerSystem or one of the Multiple Computer System
ComputerSystems. NOTE: A Virtual File Server shall not have a ComponentCS association to the top level NAS
ComputerSystem.

Everything above the LogicalDisk is specific to NAS (and does not appear in the Array Profile). LocalFileSystems
are created on the LogicalDisks, LogicialFiles within those LocalFileSystems are shared (FileShare) through
ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed boxes are from the required packages and subprofiles (as
indicated by the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It represents a
relationship between a FileShare and a Directory.

In the Self-contained NAS a LocalFileSystem shall map to a LogicalDisk using the ResidesOnExtent association.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base Self-Contained NAS profile, the classes and associations shown in Figure 23 are automatically
populated based on how the Self-Contained NAS is configured. Client modification of the configuration (including
configuring storage, creating extents, local filesystems and file shares) are functions found in subprofiles of the
profile.

EXPERIMENTAL

13.1.3.2 Combination Profile Considerations
Some devices combine the function of an array with the function of a Self-contained NAS. There are a number of
approaches that may be used to model such a device. One way is to present two seemly independent profiles in
the SAN (e.g., Array and SC NAS). In this case, there may be duplication of instances. These duplicates would be
recognized by clients via correlated ids.

Another approach would be to use one, shared top level ComputerSystem that reflects both the SC NAS and the
Array in its ComputerSystem.Dedicated property. In this case, care must be taken to ensure the sharing of
instances between the profiles do not conflict with their respective profile definitions.
318

NO_ANSI_ID Self-Contained NAS Profile
For more information on the rules for combination profiles, see section B.5 of Annex B: (Normative) Compliance
with the SNIA SMI Specification in Storage Management Technical Specification, Part 1 Common Architecture,
1.3.0 Rev 6.

EXPERIMENTAL

13.1.3.3 NAS Storage Model
Figure 24 illustrates the classes mandatory for modeling of storage for the Self-Contained NAS Profile.

The Self-Contained NAS Profile uses most of the classes and associations defined in the Array Profile (including
those in the Block Services Package). In doing this, it leverages many of the subprofiles that are available for Array
Profiles. The classes and associations shown in Figure 24 are the minimum mandatory classes and associations
of the Block Services Package for read only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled, including the
HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the StoragePool. In addition,
in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk shall have an
AllocatedFromStoragePool association to the StoragePool from which it is allocated. And the LogicalDisk shall
have an ElementSettingData association to the settings that were used when the LogicalDisk was created.

Note: At this level, the model for storage is the same for both the Self-contained NAS Profile and the NAS
Head Profile. In the case of the Self-contained NAS, storage for the StoragePools is drawn from Disk
Drives. Modeling of Disk Drives is Optional (See Clause 11: Disk Drive Lite Subprofile of Storage
Management Technical Specification, Part 3 Block Devices, 1.3.0 Rev 6).

For manipulation of Storage, see Clause 5: Block Services Package in the Storage Management Technical
Specification, Part 3 Block Devices, 1.3.0 Rev 6. For Self-Contained NAS, LogicalDisks are the ElementType that
is supported for storage allocation functions (e.g., CreateOrModifyElementFromStoragePool and
ReturnToStoragePool), but the Block Services methods for managing LogicalDisks are optional for the Self-

Figure 24 - NAS Storage Instance

Block Services Package

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

StorageCapabilities

StorageSetting

ElementCapabilities

ElementSettingData

HostedStoragePool

SystemDevice
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 319

Self-Contained NAS Profile NO_ANSI_ID
Contained NAS Profile. The Self-Contained NAS Profile also supports (optionally) the Pool manipulation functions
(e.g., CreateOrModifyStoragePool and DeleteStoragePool) of the Block Services Package.

13.1.3.4 Self-Contained NAS Use of Filesystem Profile (Mandatory)
The Self-Contained NAS Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the Self-
Contained NAS, implementation of the Filesystem Profile is mandatory. See Clause 8: Filesystem Profile for details
on this modeling.

13.1.3.5 Self-Contained NAS Use of File Storage Profile (Mandatory)
The Self-Contained NAS Profile uses the File Storage Profile for modeling of its file storage constructs. For the
Self-Contained NAS, implementation of the File Storage Profile is mandatory. See Clause 7: File Storage Profile for
details on the file storage modeling.

13.1.3.6 Self-Contained NAS Use of File Export Profile (Mandatory)
The Self-Contained NAS Profile uses the File Export Profile for modeling of its file export constructs. For the Self-
Contained NAS, implementation of the File Export Profile is mandatory. See Clause 4: File Export Profile for details
on this modeling.

13.1.3.7 Self-Contained NAS Support for Front-end Network Ports
Figure 25 illustrates the classes for modeling of front end NetworkPorts for the Self-contained NAS Profile.

Figure 25 - Self-contained NAS Support for Front-end Network Ports

ComputerSystem

ProtocolEndPoint

ProtocolIFType = 4200 | 4201
('NFS" or "CIFS")

NetworkPort

HostedAccessPoint

SystemDevice

DeviceSAPImplementation

IPProtocolEndPoint
(Optional)

ProtocolIFType = 4096|4097|4098

LANEndpoint
(Optional)

ProtocolIFType = 1|6|9|15

BindsTo
(Conditional)

BindsToLANEndpoint
(Conditional)

DeviceSAPImplementation
(Conditional)

HostedAccessPoint
(Conditional)

HostedAccessPoint
(Conditional)

TCPProtocolEndPoint
(Optional)

ProtocolIFType = 4111

BindsTo
(Conditional)
320

NO_ANSI_ID Self-Contained NAS Profile
The ProtocolEndpoint for NFS or CIFS shall be present and shall be associated to a ComputerSystem via a
HostedAccessPoint association. It shall also be associated to a NetworkPort via the DeviceSAPImplementation.
The NetworkPort shall be modeled and shall have an SystemDevice association to a ComputerSystem. The
ComputerSystem in the diagram may be the top level system for the self-contained NAS or any of its component
computer systems. The ComputerSystem that hosts the NFS or CIFS ProtocolEndpont need not be the same
ComputerSystem associated to the NetworkPort via its SystemDevice association.

The modeling of the TCPProtocolEndpoint, IPProtocolEndpoint and the LANEndpoint are optional. The
associations from (to) those classes are conditional on the existence of the classes. Like the NFS or CIFS
ProtocolEndpoint, the TCPProtocolEndpoint, IPProtocolEndpoint and LANEndpoint shall have HostedAccessPoint
associations to some ComputerSystem. Typically, this would be the same ComputerSystem that hosts the
NetworkPort. However this is not a requirement.

13.2 Health and Fault Management Considerations
Self-Contained NAS supports state information (e.g., OperationalStatus) on the following elements of the model:

• Network Ports (See 13.2.1 OperationalStatus for Network Ports)

• Back-end Ports (See 17.3.3 Health and Fault Management Considerations ofStorage Management Technical
Specification, Part 2 Common Profiles, 1.3.0 Rev 6)

• ComputerSystems (See 25.1.5 Computer System Operational Status of Storage Management Technical
Specification, Part 2 Common Profiles, 1.3.0 Rev 6)

• FileShares that are exported (See 4.2.1 OperationalStatus for FileShares)

• LocalFileSystems (See 8.2.1 OperationalStatus for Filesystems)

• ProtocolEndpoints (See 13.2.2 OperationalStatus for ProtocolEndpoints)

• DiskDrive (See 11.2 Health and Fault Management Considerations of Storage Management Technical
Specification, Part 3 Block Devices, 1.3.0 Rev 6)
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 321

Self-Contained NAS Profile NO_ANSI_ID
13.2.1 OperationalStatus for Network Ports

13.2.2 OperationalStatus for ProtocolEndpoints

13.3 Cascading Considerations
Not Applicable.

13.4 Supported Subprofiles and Packages
Table 204 describes the supported profiles for Self-contained NAS System.

Table 202 - NetworkPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 203 - ProtocolEndpoint OperationalStatus

OperationalStatus Description

OK ProtocolEndpoint is online

Error ProtocolEndpoint has a failure

Stopped ProtocolEndpoint is disabled

Unknown

Table 204 - Supported Profiles for Self-contained NAS System

Registered Profile Names Mandatory Version

Indication Yes 1.3.0

Filesystem Yes 1.3.0

File Storage Yes 1.3.0

File Export Yes 1.3.0

Access Points No 1.3.0

Multiple Computer System No 1.2.0

Software No 1.3.0

Location No 1.3.0
322

NO_ANSI_ID Self-Contained NAS Profile
13.5 Methods of the Profile

13.5.1 Extrinsic Methods of the Profile

None.

13.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

Extent Composition No 1.2.0

Filesystem Manipulation No 1.3.0

File Export Manipulation No 1.3.0

File Server Manipulation No 1.3.0

Filesystem Performance No 1.3.0

FileSystem Quotas No 1.3.0

Job Control No 1.3.0

Disk Drive Lite No 1.3.0

SPI Initiator Ports No 1.2.0

FC Initiator Ports No 1.3.0

iSCSI Initiator Ports No 1.2.0

Device Credentials No 1.3.0

Physical Package Yes 1.3.0

Block Services Yes 1.3.0

Health Yes 1.2.0

Table 204 - Supported Profiles for Self-contained NAS System

Registered Profile Names Mandatory Version
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 323

Self-Contained NAS Profile NO_ANSI_ID
Manipulation functions are supported in subprofiles of the profile.

13.6 Client Considerations and Recipes
Not defined in this version of the specification.

13.7 Registered Name and Version
Self-contained NAS System version 1.3.0

13.8 CIM Elements
Table 205 describes the CIM elements for Self-contained NAS System.

Table 205 - CIM Elements for Self-contained NAS System

Element Name Requirement Description

13.8.1 CIM_BindsTo (CIFS or NFS) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists.Associates a
CIFS or NFS ProtocolEndpoint to an
underlying TCPProtocolEndpoint. This is used
in the Self-contained NAS System to support
the TCP/IP Network protocol stack.

13.8.2 CIM_BindsTo (TCP) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists.Associates a
TCPProtocolEndpoint to an underlying
IPProtocolEndpoint. This is used in the Self-
contained NAS System to support the TCP/IP
Network protocol stack.

13.8.3 CIM_BindsToLANEndpoint Conditional Conditional requirement: This is required if a
LANEndpoint exists.Associates an
IPProtocolEndpoint to an underlying
LANEndpoint in the Self-contained NAS
System (to support the TCP/IP Network
protocol stack).

13.8.4 CIM_ComputerSystem (Top Level) Mandatory This declares that at least one computer
system entry will pre-exist. The Name
property should be the Unique identifier for the
Self-contained NAS System.

13.8.5 CIM_ComputerSystem (Virtual File
Server)

Optional This represents a Virtual File Server, if one
exists.

13.8.6 CIM_DeviceSAPImplementation (CIFS
or NFS to NetworkPort)

Mandatory (CIFS or NFS to NetworkPort) Represents the
association between a CIFS or NFS
ProtocolEndpoint and the NetworkPort that it
supports.
324

NO_ANSI_ID Self-Contained NAS Profile
13.8.7 CIM_DeviceSAPImplementation
(LANEndpoint to NetworkPort)

Conditional Conditional requirement: This is required if a
LANEndpoint exists.Associates a logical front
end Port (a NetworkPort) to the LANEndpoint
that uses that device to connect to a LAN.

13.8.8 CIM_HostedAccessPoint (CIFS or
NFS)

Mandatory (CIFS or NFS) Represents the association
between a front end ProtocolEndpoint and the
Computer System that hosts it.

13.8.9 CIM_HostedAccessPoint (IP) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists.Represents the
association between a front end
IPProtocolEndpoint and the Computer System
that hosts it.

13.8.10 CIM_HostedAccessPoint (LAN) Conditional Conditional requirement: This is required if a
LANEndpoint exists.Represents the
association between a front end LANEndpoint
and the Computer System that hosts it.

13.8.11 CIM_HostedAccessPoint (TCP) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists.Represents the
association between a front end
TCPProtocolEndpoint and the Computer
System that hosts it.

13.8.12 CIM_HostedDependency Optional Associates a Virtual File Server to the
Computer System hosting it. This is required if
a Virtual File Server exists.

13.8.13 CIM_IPProtocolEndpoint Optional Represents the front-end ProtocolEndpoint
used to support the IP protocol services.

13.8.14 CIM_LANEndpoint Optional Represents the front-end ProtocolEndpoint
used to support a Local Area Network and its
services.

13.8.15 CIM_LogicalDisk (Disk for FS) Mandatory Represents LogicalDisks used for building
LocalFileSystems.

13.8.16 CIM_NetworkPort Mandatory Represents the front end logical port that
supports access to a local area network.

13.8.17 CIM_ProtocolEndpoint (CIFS or NFS) Mandatory (CIFS or NFS) Represents the front-end
ProtocolEndpoint used to support NFS and
CIFS services.

13.8.18 CIM_SystemDevice (Logical Disks) Mandatory This association links all LogicalDisks to the
scoping system.

13.8.19 CIM_SystemDevice (Network Ports) Mandatory This association links all NetworkPorts to the
scoping system.

13.8.20 CIM_TCPProtocolEndpoint Optional Represents the front-end ProtocolEndpoint
used to support TCP services.

Table 205 - CIM Elements for Self-contained NAS System

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 325

Self-Contained NAS Profile NO_ANSI_ID
SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus

Optional CQL -Change of Status of a NAS
ComputerSystem (controller).

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a NAS
ComputerSystem (controller).

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NetworkPort AND
SourceInstance.CIM_NetworkPort::Operation
alStatus <>
PreviousInstance.CIM_NetworkPort::Operatio
nalStatus

Optional CQL -Change of Status of a Port.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NetworkPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a Port.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolEndpoint AND
SourceInstance.CIM_ProtocolEndpoint::Oper
ationalStatus <>
PreviousInstance.CIM_ProtocolEndpoint::Ope
rationalStatus

Optional CQL -Change of Status of a ProtocolEndpoint

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolEndpoint AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a
ProtocolEndpoint

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of status of a
LogicalDisk.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

Table 205 - CIM Elements for Self-contained NAS System

Element Name Requirement Description
326

NO_ANSI_ID Self-Contained NAS Profile
13.8.1 CIM_BindsTo (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a TCPProtocolEndpoint exists.

Table 206 describes class CIM_BindsTo (CIFS or NFS).

13.8.2 CIM_BindsTo (TCP)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if an IPProtocolEndpoint exists.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::Operationa
lStatus <>
PreviousInstance.CIM_LogicalDisk::Operation
alStatus

Optional CQL -Change of status of a LogicalDisk.

PreviousInstance is optional, but may be
supplied by an implementation of the Profile.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity="SNIA" and
MessageID="FSM003"

Optional CQL -This is a bellwether indication of a
change of status of a LogicalDisk.

Table 206 - SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpoint that uses a lower level
ProtocolEndpoint for connectivity.

Antecedent Mandatory The TCPProtocolEndpoint that supports a CIFS or NFS
ProtocolEndpoint.

Table 205 - CIM Elements for Self-contained NAS System

Element Name Requirement Description
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 327

Self-Contained NAS Profile NO_ANSI_ID
Table 207 describes class CIM_BindsTo (TCP).

13.8.3 CIM_BindsToLANEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 208 describes class CIM_BindsToLANEndpoint.

13.8.4 CIM_ComputerSystem (Top Level)

Created By: Static
Modified By: External
Deleted By: Static
Requirement: Mandatory

Table 209 describes class CIM_ComputerSystem (Top Level).

Table 207 - SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint
for connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a
TCPProtocolEndpoint.

Table 208 - SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.

Dependent Mandatory A IPProtocolEndpoint.

Antecedent Mandatory A LANEndpoint.

Table 209 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory The actual class of this object, e.g.,
Vendor_NASComputerSystem.

ElementName Mandatory User-friendly name

Name Mandatory Unique identifier for the Self-contained NAS System in a
format specified by NameFormat. For example, IP address
or Vendor/Model/SerialNo.
328

NO_ANSI_ID Self-Contained NAS Profile
13.8.5 CIM_ComputerSystem (Virtual File Server)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

OperationalStatus Mandatory Overall status of the Self-contained NAS System

NameFormat Mandatory Format for Name property.

PrimaryOwnerContac
t

M Optional Owner of the Self-contained NAS System

PrimaryOwnerName M Optional Contact details for owner

Dedicated Mandatory This shall indicate that this computer system is dedicated to
operation as a Self-contained NAS (25).

OtherIdentifyingInfo C Mandatory An array of know identifiers for the Self-contained NAS.

IdentifyingDescription
s

C Mandatory An array of descriptions of the OtherIdentifyingInfo. Some
of the descriptions would be "Ipv4 Address", "Ipv6 Address"
or "Fully Qualified Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc
riptions

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Table 209 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 329

Self-Contained NAS Profile NO_ANSI_ID
Table 210 describes class CIM_ComputerSystem (Virtual File Server).

13.8.6 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Table 210 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement Description & Notes

Dedicated Mandatory A Virtual File Server is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the Self-contained NAS System's
Virtual File Servers (Eg Vendor/Model/
SerialNo+FS+Number).

OperationalStatus Mandatory Overall status of the Virtual File Server.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc
riptions

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

PrimaryOwnerContac
t

N Optional Not Specified in this version of the Profile.

PrimaryOwnerName N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.
330

NO_ANSI_ID Self-Contained NAS Profile
Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 211 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

13.8.7 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 212 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

13.8.8 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 211 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS
to NetworkPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpoint that supports on the NetworkPort.
These include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The NetworkPort supported by the Access Point.

Table 212 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEnd-
point to NetworkPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory A LANEndpoint that depends on a NetworkPort for
connecting to its LAN segment.

Antecedent Mandatory The Logical network adapter device that connects to a
LAN.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 331

Self-Contained NAS Profile NO_ANSI_ID
Table 213 describes class CIM_HostedAccessPoint (CIFS or NFS).

13.8.9 CIM_HostedAccessPoint (IP)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if an IPProtocolEndpoint exists.

Table 214 describes class CIM_HostedAccessPoint (IP).

13.8.10 CIM_HostedAccessPoint (LAN)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 215 describes class CIM_HostedAccessPoint (LAN).

13.8.11 CIM_HostedAccessPoint (TCP)

Table 213 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the FileServer. These
include ProtocolEndpoints for NFS and CIFS.

Antecedent Mandatory The Computer System hosting this Access Point. In the
context of the Self-contained NAS System, these are alway
FileServers (Dedicated=16).

Table 214 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The IPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 215 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement Description & Notes

Dependent Mandatory The LANEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.
332

NO_ANSI_ID Self-Contained NAS Profile
Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a TCPProtocolEndpoint exists.

Table 216 describes class CIM_HostedAccessPoint (TCP).

13.8.12 CIM_HostedDependency

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 217 describes class CIM_HostedDependency.

13.8.13 CIM_IPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 218 describes class CIM_IPProtocolEndpoint.

Table 216 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 217 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem.

Antecedent Mandatory The hosting ComputerSystem.

Table 218 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
IP Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the IP Protocol
Endpoint.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 333

Self-Contained NAS Profile NO_ANSI_ID
13.8.14 CIM_LANEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

CreationClassName Mandatory The CIM Class name of the IP Protocol Endpoint.

Name Mandatory The unique name of the IP Protocol Endpoint.

NameFormat Mandatory The Format of the Name of the IP Protocol Endpoint.

ProtocolIFType Mandatory 4096="IP v4", 4097="IP v6", and 4098 is both. (Note that
1="Other" is not supported.)

IPv4Address Conditional Conditional requirement: This is required if ProtocolIFType
= 4096 or 4098.An IP v4 address in the format "A.B.C.D".

IPv6Address Conditional Conditional requirement: This is required if ProtocolIFType
= 4097 or 4098.An IP v6 address.

SubnetMask Conditional Conditional requirement: This is required if ProtocolIFType
= 4096 or 4098.An IP v4 subnet mask in the format
"A.B.C.D".

PrefixLength Conditional Conditional requirement: This is required if ProtocolIFType
= 4097 or 4098.For an IPv6 address.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

AddressOrigin N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 218 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes
334

NO_ANSI_ID Self-Contained NAS Profile
Table 219 describes class CIM_LANEndpoint.

13.8.15 CIM_LogicalDisk (Disk for FS)

Created By: Extrinsic_or_External

Table 219 - SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
LAN Endpoint.

SystemName Mandatory The name of the Computer System hosting the LAN
Endpoint.

CreationClassName Mandatory The CIM Class name of the LAN Endpoint.

Name Mandatory The unique name of the LAN Endpoint.

NameFormat Mandatory The Format of the Name for the LAN Endpoint.

ProtocolIFType Mandatory LAN endpoints supported are: 1="Other",6="Ethernet
CSMA/CD", 9="ISO 802.5 Token Ring", 15="FDDI".

OtherTypeDescriptio
n

Optional If the LAN endpoint is a vendor-extension specified by
"Other" and a description.

LANID Optional A unique id for the LAN segment that this device is
connected to. Will be NULL if the LAN is not connected.

MACAddress Mandatory Primary Unicast address for this LAN device.

AliasAddresses Mandatory Other unicast addresses supported by this device.

GroupAddresses Mandatory Multicast addresses supported by this device.

MaxDataSize Mandatory The max size of packet supported by this LAN device. (If
there were a Network subprofile, this would not be exposed
in a Self-contained NAS System Profile).

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 335

Self-Contained NAS Profile NO_ANSI_ID
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 220 describes class CIM_LogicalDisk (Disk for FS).

Table 220 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory CIM Class of the Self-contained NAS System Computer
System that is the host of this LogicalDisk.

SystemName Mandatory Name of the Self-contained NAS System Computer System
that hosts this LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DeviceID Mandatory Opaque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for
LogicalDisks in a Self-contained NAS System.

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17).

Primordial Mandatory This represents a Concrete Logical Disk that is not
primordial.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the
Self-contained NAS System. This should be coded as "1"
("other").

Name Mandatory Identifier for a local LogicalDisk that will be used for a
filesystem; since this storage extent will be referenced by a
client, it needs to have a unique name. We cannot
constrain the format here, but the OS-specific format
described in the Block Services specification is not
appropriate, so "Other" is used.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.
336

NO_ANSI_ID Self-Contained NAS Profile
13.8.16 CIM_NetworkPort

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 221 describes class CIM_NetworkPort.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

SequentialAccess N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespa
ce

N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 221 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides
a network port.

OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Network Port.

SystemName Mandatory The name of the Computer System hosting the Network
Port.

CreationClassName Mandatory The CIM Class name of the Network Port.

Table 220 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 337

Self-Contained NAS Profile NO_ANSI_ID
DeviceID Mandatory A unique ID for the device (in the context of the hosting
System).

Speed Optional

MaxSpeed Optional

RequestedSpeed Optional

UsageRestriction Optional

PortType Optional

PortNumber Optional A unique number for the adapter in the context of the
hosting System).

PermanentAddress Mandatory The hard-coded address of this port.

NetworkAddresses Optional An array of network addresses for this port.

LinkTechnology Optional 1="Other", 2="Ethernet", 3="IB", 4="FC", 5="FDDI",
6="ATM", 7="Token Ring", 8="Frame Relay", 9="Infrared",
10="BlueTooth", 11="Wireless LAN. The link technology
supported by this adapter.

OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by
this adapter.

FullDuplex Optional

AutoSense Optional

SupportedMaximumT
ransmissionUnit

Optional

ActiveMaximumTrans
missionUnit

Optional

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

Name N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Table 221 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
338

NO_ANSI_ID Self-Contained NAS Profile
13.8.17 CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 222 describes class CIM_ProtocolEndpoint (CIFS or NFS).

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription
s

N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

OtherPortType N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 222 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha
nge

Optional

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints
supported by the Self-contained NAS System.

Table 221 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 339

Self-Contained NAS Profile NO_ANSI_ID
13.8.18 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 223 describes class CIM_SystemDevice (Logical Disks).

13.8.19 CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

ProtocolIFType Mandatory This represents either NFS=4200 or CIFS=4201. Other
protocol types are specified in subclasses of
ProtocolEndpoint.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 223 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The LogicalDisk that is a part of a computer system.

Table 222 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes
340

NO_ANSI_ID Self-Contained NAS Profile
Table 224 describes class CIM_SystemDevice (Network Ports).

13.8.20 CIM_TCPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 225 describes class CIM_TCPProtocolEndpoint.

Table 224 - SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The NetworkPort that is a part of a computer system.

Table 225 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
TCP Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the TCP
Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the TCP Protocol Endpoint.

Name Mandatory The unique name of the TCP Protocol Endpoint.

NameFormat Mandatory The Format of the Name of the TCP Protocol Endpoint.

ProtocolIFType Mandatory 4111="TCP". (Note that no other protocol type is supported
by this endpoint.)

PortNumber Mandatory The number of the TCP Port that this element represents.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio
n

N Optional Not Specified in this version of the Profile.

BroadcastResetSupp
orted

N Optional Not Specified in this version of the Profile.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 341

Self-Contained NAS Profile NO_ANSI_ID
STABLE

RequestStateChange
()

Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 225 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes
342

NO_ANSI_ID Annex A: (Informative) State Transitions from Storage to File Shares
Annex A: (Informative) State Transitions from Storage to File Shares

A filesystem is an abstract class that abstractly describes a hierarchical structuring of data into “files” contained
within a tree of “directories” with a single “root” directory. A LocalFileSystem is a concrete class derived from
FileSystem that implements it using one or more storage elements in which the storage element(s) has been
structured to contain information about multiple files organized into directories as well as the content of these files.
This internal organization of a LocalFileSystem, viz., what parts represent the components of files, what parts
constitute directories, what the names of these files and directories are, how they are organized into a hierarchy,
even the representation of the path to a file from the root directory through a sequence of sub-directories etc., is
called “metadata” and is stored persistently inside the storage element(s). In addition to metadata, the internal
organization contains information about ownership of files and directories, rights of users or other entities to access
files and directories, and other attributes of files and directories. This information is sometimes included in
metadata, but sometimes referred to independently as “attribute” information and is also stored persistently within
the storage element(s). Finally, the contents of files are also stored persistently in the storage element(s).

In filesystem-related profiles, the collection of storage elements used by a LocalFileSystem is called a
LogicalDisk(s). There are multiple formats (both open and proprietary) for structuring a LogicalDisk into a
LocalFileSystem—how the metadata, attributes, and content are stored and so on—that are referred to as the
“type” of the LocalFileSystem. The information about the type of the LocalFileSystem (and possibly variant
versions of the type) is also persistently stored in the LogicalDisk. The type of the LocalFileSystem in this and
related profiles is represented as the “FileSystemType”.

Note: The Volume Composition SubProfile describes how multiple LogicalDisks can be merged into a single
one. It is assumed that if more than one storage element is used, they are composed into a single
LogicalDisk using the Volume Composition profile (see Clause 24: Volume Composition Profile) or
other profile that similarly merges multiple storage elements into a single LogicalDisk.

A LocalFileSystem is not an autonomous entity but is a hosted component of a larger system, usually a
ComputerSystem. This is represented using the HostedFileSystem association between a ComputerSystem and
the LocalFileSystem. Since the LogicalDisk is a SystemDevice of a ComputerSystem, it is frequently the case that
the LocalFileSystem will be hosted by the same ComputerSystem, but this is not required. It is generally the case
that a LocalFileSystem will have an independent internal name that may be used to refer to it but it is not necessary
that the name be constructed independently of the name of the LogicalDisk or the name of the hosting
ComputerSystem. Some systems require that this internal name be globally unique, but others rely on the
uniqueness of the LogicalDisk’s name or on other identifiers. In SMI-S, it is a requirement that a LocalFileSystem
have a unique Name property relative to the hosting ComputerSystem (Name being one of the key properties of
the FileSystem class).

The process by which an element of storage is finally made available as a FileShare is represented by Figure A.1.
The process begins with an unused LogicalDisk that is owned by, or has been allocated to, the ComputerSystem
for this purpose. The operation "Create a Filesystem", converts an unused LogicalDisk to a LocalFileSystem—
Figure A.1 shows the name and the ComputerSystem that has a HostedFileSystem association to the
LocalFileSystem. The other details of the LocalFileSystem are skipped.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 343

NO_ANSI_ID
Even after a LogicalDisk has been internally organized into a LocalFileSystem, it may not be usable by an
operational user. That’s because the operational user needs a durable name (for referring to the LocalFileSystem)
that is persistently supported by the implementation. There are multiple ways in which this problem has been
solved. Since the LocalFileSystem must be hosted by a ComputerSystem and the LocalFileSystem has a unique
name, a Uniform Resource Indicator (URI) can be constructed that is relative to the hosting ComputerSystem.
However, an operational user needs to use an access path relative to the ComputerSystem that serves files to
them (i.e., relative to a File Server), and this may differ from the hosting ComputerSystem.

Traditionally (i.e., before URIs), a LocalFileSystem was assigned a name in a hierarchical name space maintained
by the File Server ComputerSystem. This assignment was called “mounting to” the name and the name was called
the “mount-point” of the filesystem. For historical and other reasons, the hierarchical name space most commonly
used for the purpose was based on the “root filesystem” of the File Server. This allowed a naming convention using
“file path names” for objects in the namespace that could be extended uniformly to the meta-data and content of

Figure A.1 - State Transitions From LogicalDisk to FileShare

LogicalDisk

Name: /dev/sd01

Create a file system

LocalAccessAvailable

FileServer: REF “FileServer1”
FileSystem: REF LFS:“/dev/fs1”
LocalAccessPoint: “/etc/mnt1”

FileShare

ASSOC(HostedShare): REF “FileServer1”
ASSOC(SharedElement): REF: “/dev/fs1”
PathName: “/users/kamesh”
Name: ”HOMEDIR”

Export a file share

LocalFileSystem

ASSOC(ResidesOnExtent): REF LD: /dev/sd01
Name: /dev/fs1
ASSOC(HostedFileSystem) REF CS: ”FileSystem Host”
LocalAccessDefinitionRequired: true|false
PathNameSeparatorString: “/”

Make file system locally accessible
If LocalAccessDefinitionRequired: true

Export a file share
If LocalAccessDefinitionRequired: false

.

344

NO_ANSI_ID Annex A: (Informative) State Transitions from Storage to File Shares
the mounted filesystem (and would be represented in the SMI Specification as a property of a Capabilities
element).

If the hosting ComputerSystem and the File Server ComputerSystem are the same, or can be referenced using a
single identifier (for instance in a clustered computer system), or only one File Server can access a
LocalFileSystem, it is possible to make the Name of the LocalFileSystem be the same as the mount-point. In that
case, the act of “mounting to” the name is accomplished by default when the LocalFileSystem is created. But this
does not work for implementations that allow a LocalFileSystem hosted by one ComputerSystem to be assigned
differently named mount-points on multiple File Server ComputerSystems. The problem increases in complexity
when a File Server can have multiple network identities (through a multiplicity of IP addresses and multiple fully-
qualified domain names that map to each IP address).

Traditionally, Unix-based uni-processor systems have not made the Name of the LocalFileSystem the same as the
mount-point. But many specialized systems follow such a policy, so whether mounting is not managed explicitly
(because it is automatically specified by the name of the LocalFileSystem) or must be managed explicitly is a
feature of an implementation.

In addition to specifying a mount-point for a LocalFileSystem, a File Server would also assign system resources
needed for working with the LocalFileSystem. These include read and write buffers of appropriate capacity,
restrictions on reading or writing (needed for systems that allow multiple mounts of a LocalFileSystem), and other
implementation-dependent resources. The specification of these resources are explicitly manageable by some
implementations and defaulted by others.

The terms “mount” and “mount-point” are also traditionally used for assigning a remote element (such as a shared
file) a name in the local name space of a ComputerSystem. These terms by themselves appeared to be too generic
for use in this specification, so the terms used are “make locally accessible” for “mount” and “local access point” for
“mount-point”. The resources to be allocated for mounting are specified by “local access settings”.

In SMI-S, a “locally accessible filesystem” is represented by providing an association, LocalAccessAvailable, from
the File Server to the LocalFileSystem. In addition to the key reference properties, this association provides the
LocalAccessPoint string array property that specifies the “local access point”. Referring back to Figure A.1, the
"Make a Filesystem Locally Accessible" operation creates the LocalAccessAvailable association between the File
Server and the LocalFileSystem. This operation is supported in the Filesystem Manipulation Subprofile by
providing appropriate parameters to the CreateFileSystem and ModifyFileSystem extrinsic methods. The
LocalFileSystem element is not modified, but a new association is created. The LocalAccessPoint property
provides the access point (shown in the standard Unix format as “/etc/mnt1”).

Note: The intent behind implementing "Make a Filesystem Locally Accessible" with CreateFileSystem and
ModifyFileSystem methods is that it is preferable not to distinguish between implementations that
implement a separate “Make Locally Accessible” function from those that do not.

The vendor implements this operation by providing the necessary parameters to the create and modify methods;
this has the benefit that the operation does not have to be exposed separately to the management client. However
all implementations that support multiple File Servers with independent names to access filesystems must support
LocalAccessAvailable as that is the only place where a file-server-specific name for the LocalFileSystem is
specified (by the LocalAccessPoint property). A vendor that provides accessibility by default might have a
FileSystem.Name property that also functions as a path name from each file server (in one sample
implementation), so it is likely that LocalAccessAvailable.LocalAccessPoint would be the same as the
LocalFileSystem.Name property. The property LocalFileSystem.LocalAccessDefinitionRequired is required to
indicate that this feature is used and that the client must examine that property to understand how a vendor
implements this model.

The creation of a file share and its behavior are detailed in the related File Export and File Export Manipulation
subprofiles. Figure A.1 shows the "Export a file share" operation that creates a FileShare and an SharedElement
association. The FileShare provides a name “HOMEDIR” and is hosted by the File Server. The SharedElement
association links to the LocalFileSystem and also provides the pathname “/users/kamesh” to the specific user’s
home directory.
 SMI-S 1.3.0 Rev 6 SNIA Technical Position 345

NO_ANSI_ID
Note: Once a LocalFileSystem has been made locally accessible via a File Server, the File Server can share
its contents with remote operational users. The contents of such a filesystem can be shared all the way
from the root directory at the top of the hierarchy, or the contents of sub-tree below some contained
internal directory may be shared, or a specific file contained in the filesystem may be shared. When a
directory (root or otherwise) is shared, all files and sub-directories of that directory are automatically
also shared recursively. The semantics of sharing an individual file or directory are ultimately controlled
by the implementation of the filesystem, so sharing cannot violate the access rules specified internally
to the filesystem. In addition to specifying the object (file or directory) to be shared, the File Server may
specify the protocol to use for sharing and a correlatable name by which remote users can refer to the
shared object—the protocol, the unique server id, and the share name can be used to construct a URI
for the shared object. The base URI can be extended to construct a reference URI for files or
subdirectories within the shared object.

In SMI-S, there is a FileShare element created to represent the externally accessible share. This
element is associated via SharedElement to the LocalFileSystem. The FileShare element will provide
the PathName string property that specifies the shared object (the contained file or directory name).
346

	Revision History
	List of Tables
	List of Figures
	Foreword
	Clause 1: Scope
	Clause 2: Normative References
	2.1 General
	2.2 Approved references
	2.3 References under development
	2.4 Other references

	Clause 3: Terms and definitions
	3.1 General
	3.2 Definitions

	Clause 4: File Export Profile
	4.1 Description
	4.1.1 Synopsis
	4.1.2 Overview
	4.1.3 Implementation

	4.2 Health and Fault Management Consideration
	4.2.1 OperationalStatus for FileShares

	4.3 Cascading Considerations
	4.4 Supported Profiles, Subprofiles, and Packages
	4.5 Methods of the Profile
	4.5.1 Extrinsic Methods of the Profile
	4.5.2 Intrinsic Methods of the Profile

	4.6 Client Considerations and Recipes
	4.6.1 List Existing FileShares on the system

	4.7 Registered Name and Version
	4.8 CIM Elements
	4.8.1 CIM_ConcreteDependency
	4.8.2 CIM_ElementSettingData (FileShare)
	4.8.3 CIM_ExportedFileShareSetting (Setting)
	4.8.4 CIM_FileShare (Exported File Share)
	4.8.5 CIM_HostedShare
	4.8.6 CIM_SAPAvailableForElement
	4.8.7 CIM_SharedElement

	Clause 5: File Export Manipulation Subprofile
	5.1 Description
	5.1.1 Synopsis
	5.1.2 Overview
	5.1.3 Instance Diagrams

	5.2 Health and Fault Management Considerations
	5.2.1 OperationalStatus for FileExportService
	5.2.2 OperationalStatus for File Server ComputerSystem

	5.3 Cascading Considerations
	5.4 Supported Subprofiles and Packages
	5.5 Methods of the Profile
	5.5.1 Extrinsic Methods of the Profile
	5.5.2 Signature and Parameters of ModifyExportedShare
	5.5.3 Signature and Parameters of ReleaseExportedShare
	5.5.4 Intrinsic Methods of the Profile

	5.6 Client Considerations and Recipes
	5.6.1 Creation of a FileShare for Export
	5.6.2 Modification of an Exported FileShare
	5.6.3 Removal of an Exported FileShare
	5.6.4 File Export Manipulation Supported Capabilities Patterns

	5.7 Registered Name and Version
	5.8 CIM Elements
	5.8.1 CIM_ConcreteDependency
	5.8.2 CIM_ElementCapabilities (FES Configuration)
	5.8.3 CIM_ElementSettingData (FileShare Setting)
	5.8.4 CIM_FileStorage (Subelement)
	5.8.5 CIM_HostedService
	5.8.6 CIM_LogicalFile (Subelement)
	5.8.7 CIM_SAPAvailableForElement
	5.8.8 CIM_ServiceAffectsElement
	5.8.9 SNIA_ElementCapabilities (FES Capabilities)
	5.8.10 SNIA_ExportedFileShareCapabilities (FES Capabilities)
	5.8.11 SNIA_ExportedFileShareSetting (FileShare Setting)
	5.8.12 SNIA_ExportedFileShareSetting (Pre-defined)
	5.8.13 SNIA_FileExportCapabilities (FES Configuration)
	5.8.14 SNIA_FileExportService
	5.8.15 SNIA_FileShare (Exported File Share)
	5.8.16 SNIA_HostedShare
	5.8.17 SNIA_SettingsDefineCapabilities (Pre-defined)
	5.8.18 SNIA_SharedElement

	Clause 6: File Server Manipulation Subprofile
	6.1 Synopsis
	6.2 Description
	6.2.1 Overview
	6.2.2 Instance Diagrams
	6.2.3 Health and Fault Management Consideration
	6.2.4 Cascading Considerations

	6.3 Supported Profiles, Subprofiles, and Packages
	6.4 Methods of the Profile
	6.4.1 Extrinsic Methods of the Profile

	6.5 Client Considerations and Recipes
	6.6 Registered Name and Version
	6.7 CIM Elements
	6.7.1 CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)
	6.7.2 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)
	6.7.3 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)
	6.7.4 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)
	6.7.5 CIM_ConcreteComponent (FileServerSettings to NISSettingData)
	6.7.6 CIM_DNSSettingData
	6.7.7 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)
	6.7.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapabilities)
	6.7.9 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)
	6.7.10 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
	6.7.11 CIM_HostedDependency
	6.7.12 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)
	6.7.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)
	6.7.14 CIM_NetworkVLAN
	6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData)
	6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData)
	6.7.17 CIM_SettingsDefineCapabilities (FileServerSettings)
	6.7.18 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)
	6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData)
	6.7.20 CIM_SettingsDefineCapabilities (NISSettingData)
	6.7.21 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)
	6.7.22 SNIA_CIFSSettingData
	6.7.23 SNIA_FileServerCapabilities
	6.7.24 SNIA_FileServerConfigurationCapabilities
	6.7.25 SNIA_FileServerConfigurationService
	6.7.26 SNIA_FileServerSettings
	6.7.27 SNIA_IPInterfaceSettingData
	6.7.28 SNIA_NFSSettingData
	6.7.29 SNIA_NISSettingData

	Clause 7: File Storage Profile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Overview
	7.1.3 Implementation

	7.2 Health and Fault Management Consideration
	7.3 Cascading Considerations
	7.3.1 Cascaded Resources
	7.3.2 Ownership Privileges
	7.3.3 Limitations on Cascading Subprofile

	7.4 Supported Profiles, Subprofiles, and Packages
	7.5 Methods of the Profile
	7.5.1 Extrinsic Methods of the Profile
	7.5.2 Intrinsic Methods of the Profile

	7.6 Client Considerations and Recipes
	7.7 Registered Name and Version
	7.8 CIM Elements
	7.8.1 CIM_ResidesOnExtent

	Clause 8: Filesystem Profile
	8.1 Description
	8.1.1 Synopsis
	8.1.2 Instance Diagrams

	8.2 Health and Fault Management Consideration
	8.2.1 OperationalStatus for Filesystems

	8.3 Cascading Considerations
	8.4 Supported Profiles, Subprofiles, and Packages
	8.5 Methods of the Profile
	8.5.1 Extrinsic Methods of the Profile
	8.5.2 Intrinsic Methods of the Profile

	8.6 Client Considerations: Use Cases
	8.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile
	8.6.2 Get FileSystemSettings for a FileSystem
	8.6.3 Get the ComputerSystem that hosts a FileSystem
	8.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem
	8.6.5 Get the Access Path to this FileSystem on the specified File Server
	8.6.6 Get the Local Access Settings for this FileSystem on the specified File Server
	8.6.7 Get the FileShares and shared File path of this FileSystem on all File Servers
	8.6.8 Get the FileShares and shared File path of this FileSystem on the specified FileServer

	8.7 Registered Name and Version
	8.8 CIM Elements
	8.8.1 CIM_Dependency (Uses Directory Services From)
	8.8.2 CIM_ElementSettingData (FileSystem)
	8.8.3 CIM_ElementSettingData (Local Access Required)
	8.8.4 CIM_FileStorage
	8.8.5 CIM_FileSystemSetting
	8.8.6 CIM_HostedDependency (Local Access Required)
	8.8.7 CIM_HostedFileSystem (LocalFileSystem)
	8.8.8 CIM_LocalFileSystem
	8.8.9 CIM_LogicalFile
	8.8.10 SNIA_LocalAccessAvailable
	8.8.11 SNIA_LocalFileSystem
	8.8.12 SNIA_LocallyAccessibleFileSystemSetting

	Clause 9: Filesystem Manipulation Subprofile
	9.1 Description
	9.1.1 Synopsis
	9.1.2 Overview
	9.1.3 Instance Diagrams

	9.2 Health and Fault Management Considerations
	9.2.1 OperationalStatus for FileSystemConfigurationService
	9.2.2 OperationalStatus for LocalFileSystem

	9.3 Cascading Considerations
	9.4 Supported Subprofiles and Packages
	9.5 Methods of the Profile
	9.5.1 Extrinsic Methods of the Profile
	9.5.2 Signature and Parameters of CreateFileSystem.
	9.5.3 Signature and Parameters of ModifyFileSystem.
	9.5.4 Signature and Parameters of DeleteFileSystem.
	9.5.5 Intrinsic Methods of the Profile

	9.6 Client Considerations and Recipes
	9.6.1 Creation of a FileSystem on a Storage Extent
	9.6.2 Increase the size of a FileSystem
	9.6.3 Modify a FileSystem’s Settings
	9.6.4 Delete a FileSystem and return underlying StorageExtent
	9.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem
	9.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem
	9.6.7 Filesystem Manipulation Supported Capabilities Patterns

	9.7 Registered Name and Version
	9.8 CIM Elements
	9.8.1 CIM_Dependency (Uses Directory Services From)
	9.8.2 CIM_Directory (Root Directory)
	9.8.3 CIM_ElementCapabilities (FS Configuration Capabilities)
	9.8.4 CIM_ElementCapabilities (Local Access Configuration Capabilities)
	9.8.5 CIM_ElementCapabilities (Non-Default)
	9.8.6 CIM_ElementSettingData (Attached to Filesystem)
	9.8.7 CIM_ElementSettingData (Local Access Required)
	9.8.8 CIM_FileStorage (Root Directory)
	9.8.9 CIM_FileStorage (Shared Files and Directories)
	9.8.10 CIM_HostedDependency (Attached to File System)
	9.8.11 CIM_HostedDependency (Predefined Capabilities)
	9.8.12 CIM_HostedDependency (Predefined Setting)
	9.8.13 CIM_HostedFileSystem
	9.8.14 CIM_HostedService
	9.8.15 CIM_LogicalFile (Shared Files and Directories)
	9.8.16 SNIA_ElementCapabilities (Default)
	9.8.17 SNIA_FileSystemCapabilities
	9.8.18 SNIA_FileSystemConfigurationCapabilities
	9.8.19 SNIA_FileSystemConfigurationService
	9.8.20 SNIA_FileSystemSetting (Attached to FileSystem)
	9.8.21 SNIA_FileSystemSetting (Predefined FS Settings)
	9.8.22 SNIA_LocalAccessAvailable
	9.8.23 SNIA_LocalFileSystem
	9.8.24 SNIA_LocallyAccessibleFileSystemCapabilities
	9.8.25 SNIA_LocallyAccessibleFileSystemSetting
	9.8.26 SNIA_SettingsDefineCapabilities (Predefined FS Settings)
	9.8.27 SNIA_SettingsDefineCapabilities (Predefined Local Access Settings)

	Clause 10: Filesystem Performance Profile
	10.1 Synopsis
	10.2 Description
	10.2.1 Overview

	10.3 Implementation
	10.3.1 Performance Additions Overview
	10.3.2 Summary of FileSystemStatisticsData support by Profile
	10.3.3 Profile Registration Profile Support for the Filesystem Performance Subprofile
	10.3.4 Default Manifest Collection
	10.3.5 Client Defined Manifest Collection
	10.3.6 Capabilities Support for Filesystem Performance Subprofile
	10.3.7 Health and Fault Management Consideration
	10.3.8 Cascading Considerations

	10.4 Methods of the Profile
	10.4.1 Extrinsic Methods of the Profile
	10.4.2 Intrinsic Methods of this Profile

	10.5 Use Cases
	10.5.1 Summary of Statistics Support by Element
	10.5.2 Formulas and Calculations
	10.5.3 Filesystem Performance Supported Capabilities Patterns
	10.5.4 Client Considerations and Recipes

	10.6 CIM Elements
	10.6.1 CIM_ElementCapabilities
	10.6.2 CIM_ElementStatisticalData (Exported File Share Stats)
	10.6.3 CIM_ElementStatisticalData (Exporting Port Stats)
	10.6.4 CIM_ElementStatisticalData (Local Filesystem Stats)
	10.6.5 CIM_ElementStatisticalData (OTHER Element Type Stats)
	10.6.6 CIM_HostedCollection (Client Defined)
	10.6.7 CIM_HostedCollection (Default)
	10.6.8 CIM_HostedCollection (Provider Supplied)
	10.6.9 CIM_HostedService
	10.6.10 CIM_MemberOfCollection (Member of client defined collection)
	10.6.11 CIM_MemberOfCollection (Member of predefined collection)
	10.6.12 CIM_MemberOfCollection (Member of statistics collection)
	10.6.13 CIM_StatisticsCollection
	10.6.14 SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)
	10.6.15 SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)
	10.6.16 SNIA_FileSystemStatisticalData
	10.6.17 SNIA_FileSystemStatisticsCapabilities
	10.6.18 SNIA_FileSystemStatisticsManifest (Client Defined)
	10.6.19 SNIA_FileSystemStatisticsManifest (Provider Support)
	10.6.20 SNIA_FileSystemStatisticsManifestCollection (Client Defined)
	10.6.21 SNIA_FileSystemStatisticsManifestCollection (Provider Defined)
	10.6.22 SNIA_FileSystemStatisticsService

	Clause 11: Filesystem Quotas Profile
	11.1 Description
	11.1.1 Tree Quotas
	11.1.2 User Quotas
	11.1.3 Group Quotas
	11.1.4 Container Boundaries
	11.1.5 Quota types
	11.1.6 Class design considerations
	11.1.7 Instance Diagram

	11.2 Health and Fault Management Considerations
	11.3 Supported Profiles, Subprofiles, and Packages
	11.4 Methods of the Profile
	11.4.1 FindQuotaEntries
	11.4.2 DeleteQuotaEntry
	11.4.3 ModifyQuotaEntry
	11.4.4 AddQuotaEntry
	11.4.5 GetQuotaReport
	11.4.6 EnableQuotas
	11.4.7 InitializeQuotas

	11.5 Client Considerations and sample code
	11.5.1 Common subroutines
	11.5.2 Initialize quotas
	11.5.3 Enable or disable quota tracking
	11.5.4 Add a quota entry
	11.5.5 Delete a quota entry
	11.5.6 Modify a quota entry
	11.5.7 Read the quota entries
	11.5.8 Get a report on quota usage

	11.6 Registered Name and Version
	11.7 CIM Elements
	11.7.1 SNIA_FSDomainIdentity
	11.7.2 SNIA_FSQuotaAppliesToElement
	11.7.3 SNIA_FSQuotaAppliesToPrincipal
	11.7.4 SNIA_FSQuotaAppliesToTree
	11.7.5 SNIA_FSQuotaCapabilities
	11.7.6 SNIA_FSQuotaConfigEntry
	11.7.7 SNIA_FSQuotaIndication
	11.7.8 SNIA_FSQuotaManagementService
	11.7.9 SNIA_FSQuotaReportRecord
	11.7.10 SNIA_ReportRecord

	Clause 12: NAS Head Profile
	12.1 Description
	12.1.1 Synopsis
	12.1.2 Overview
	12.1.3 Implementation

	12.2 Health and Fault Management Considerations
	12.2.1 OperationalStatus for Network Ports
	12.2.2 OperationalStatus for ProtocolEndpoints

	12.3 Cascading Considerations
	12.3.1 Cascading Resources for the NAS Head Profile
	12.3.2 Ownership Privileges Asserted by NAS Heads
	12.3.3 NAS Head Limitations on use of the Cascading Subprofile

	12.4 Supported Subprofiles and Packages
	12.5 Methods of the Profile
	12.5.1 Extrinsic Methods of the Profile
	12.5.2 Intrinsic Methods of the Profile

	12.6 Client Considerations and Recipes
	12.7 Registered Name and Version
	12.8 CIM Elements
	12.8.1 CIM_BindsTo (CIFS or NFS)
	12.8.2 CIM_BindsTo (TCP)
	12.8.3 CIM_BindsToLANEndpoint
	12.8.4 CIM_ComputerSystem (Top Level)
	12.8.5 CIM_ComputerSystem (Virtual File Server)
	12.8.6 CIM_ConcreteComponent
	12.8.7 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	12.8.8 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	12.8.9 CIM_HostedAccessPoint (CIFS or NFS)
	12.8.10 CIM_HostedAccessPoint (IP)
	12.8.11 CIM_HostedAccessPoint (LAN)
	12.8.12 CIM_HostedAccessPoint (TCP)
	12.8.13 CIM_HostedDependency
	12.8.14 CIM_IPProtocolEndpoint
	12.8.15 CIM_LANEndpoint
	12.8.16 CIM_LogicalDisk (LD for FS)
	12.8.17 CIM_NetworkPort
	12.8.18 CIM_ProtocolEndpoint (CIFS or NFS)
	12.8.19 CIM_StorageExtent (Primordial Imported Extent)
	12.8.20 CIM_SystemDevice (Logical Disks)
	12.8.21 CIM_SystemDevice (Network Ports)
	12.8.22 CIM_SystemDevice (Storage Extents)
	12.8.23 CIM_TCPProtocolEndpoint

	Clause 13: Self-Contained NAS Profile
	13.1 Description
	13.1.1 Synopsis
	13.1.2 Overview
	13.1.3 Implementation

	13.2 Health and Fault Management Considerations
	13.2.1 OperationalStatus for Network Ports
	13.2.2 OperationalStatus for ProtocolEndpoints

	13.3 Cascading Considerations
	13.4 Supported Subprofiles and Packages
	13.5 Methods of the Profile
	13.5.1 Extrinsic Methods of the Profile
	13.5.2 Intrinsic Methods of the Profile

	13.6 Client Considerations and Recipes
	13.7 Registered Name and Version
	13.8 CIM Elements
	13.8.1 CIM_BindsTo (CIFS or NFS)
	13.8.2 CIM_BindsTo (TCP)
	13.8.3 CIM_BindsToLANEndpoint
	13.8.4 CIM_ComputerSystem (Top Level)
	13.8.5 CIM_ComputerSystem (Virtual File Server)
	13.8.6 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	13.8.7 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	13.8.8 CIM_HostedAccessPoint (CIFS or NFS)
	13.8.9 CIM_HostedAccessPoint (IP)
	13.8.10 CIM_HostedAccessPoint (LAN)
	13.8.11 CIM_HostedAccessPoint (TCP)
	13.8.12 CIM_HostedDependency
	13.8.13 CIM_IPProtocolEndpoint
	13.8.14 CIM_LANEndpoint
	13.8.15 CIM_LogicalDisk (Disk for FS)
	13.8.16 CIM_NetworkPort
	13.8.17 CIM_ProtocolEndpoint (CIFS or NFS)
	13.8.18 CIM_SystemDevice (Logical Disks)
	13.8.19 CIM_SystemDevice (Network Ports)
	13.8.20 CIM_TCPProtocolEndpoint

	Annex A: (Informative) State Transitions from Storage to File Shares

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

