
Storage Management Technical Specification,
Part 3 Block Devices

Version 1.5.0, Revision 6

Abstract: This SNIA Technical Position defines an interface between WBEM-capable clients and
servers for the secure, extensible, and interoperable management of networked storage.

This document has been released and approved by the SNIA. The SNIA believes that the ideas,
methodologies and technologies described in this document accurately represent the SNIA goals
and are appropriate for widespread distribution. Suggestions for revision should be directed to
http://www.snia.org/feedback/.

SNIA Technical Position

September 14, 2011

NO_ANSI_ID
Revision History

Revision 1

Date
 18 February 2009

SCRs Incorporated and other changes
Replication Services Profile (SMI-S-150-Draft-SCR00004)
 - Added support for “Undiscovered Resources” to this profile

Group Masking and Mapping Profile (SMI-S-150-Draft-SCR00002)
 - New Profile added to SMI-S 1.5.0

Comments

Editorial notes and DRAFT material are displayed.

Revision 2

Date
 16 June 2009

SCRs Incorporated and other changes
Array Profile
 - Added Operational Power as a supported profile (CORE-SMIS-SCR00039)
 - Added Launch in Context as a supported profile (CORE-SMIS-SCR00035)

Block Services Package
 - Deleteable Volumes added (SMIS-150-Draft-SCR00013)
 - AssociatedComponentExtent, AssociatedRemainingExtent and ConcreteComponent moved to other
profiles (DRM-SMIS-SCR00183)

Block Storage Views Profile (DRM-SMIS-SCR00184)
 - Added new View Classes: MappingProtocolControllerView, StoragePoolView and ReplicaPairView
 - Added properties to VolumeView: SVPrimordial and SSStoragePoolInitialUsage
 - Added Use Cases

Disk Drive Lite (DRM-SMIS-SCR00183)
 - AssociatedComponentExtent and ConcreteComponent moved from Block Services
 - Added ExtentDiscriminator to StorageExtent changed the figures to show where it applies

Disk Sparing Subprofile (DRM-SMIS-SCR00183)
 - AssociatedComponentExtent and ConcreteComponent moved from Block Services
 - Added ExtentDiscriminator to StorageExtent

Extent Composition Subprofile (DRM-SMIS-SCR00183)
 - AssociatedComponentExtent, AssociatedRemainingExtent and ConcreteComponent moved from Block
Services
 - Added ExtentDiscriminator to StorageExtent and CompositeExtent and changed the figures to show
where they apply

Pool Management Policy Subprofile (SMIS-150-Draft-SCR00010)
 - Removed this Experimental Profile

Block Services Resource Ownership Subprofile (DRM-SMIS-SCR00180)
 - Deprecated this profile
 SMI-S 1.5.0 Revision 6 SNIA Technical Position iii

NO_ANSI_ID
Storage Virtualizer Profile
 - AssociatedComponentExtent and ConcreteComponent moved from Block Services
 (DRM-SMIS-SCR00183)
 - Added ExtentDiscriminator to StorageExtent changed the figures to show where it applies
 (DRM-SMIS-SCR00183)
 - Added Operational Power as a supported profile (CORE-SMIS-SCR00035)
 - Added Launch in Context as a supported profile (CORE-SMIS-SCR00039)

Volume Management Profile (DRM-SMIS-SCR00181)
 - Deprecated this profile

Replication Services Profile (DRM-SMIS-SCR00182)
 - Minor edits to “Undiscovered Resources”
 - Added a section on Managing CopyPriority
 - Updated the Features tables for the GetSupportedFeatures and GetSupportedGroupFeatures methods

Group Masking and Mapping Profile (SMI-S-150-Draft-SCR00002)
 - Made a number of edits to this profile
 - Promoted the Profile to Experimental

Comments

Editorial notes and DRAFT material are displayed.

Revision 3

Date
 26 October 2009

SCRs Incorporated and other changes
Array Profile (DRM-SMIS-SCR00194)
 - Added Predefined FilterCollection elements for the Array Profile
 - Promoted the supported profile entries for Launch in Context and Operational Power

Block Services Package
 - Expansion of Usage Property values (DRM-SMIS-SCR00175)
 - Updated Deleteable Volumes and Promoted them to Experimental (SMIS-150-Draft-SCR00015)
 - Added Predefined FilterCollection elements for the Block Services Package (DRM-SMIS-SCR00193)
 - Added and Promoted the ExtentDiscriminator for StorageVolumes and LogicalDisks (DRM-SMIS-
SCR00193)

Block Storage Views Profile (DRM-SMIS-SCR00184)
 - Completed work on the new Views and Promoted them to Experimental

Block Server Performance Profile (DRM-SMIS-SCR00191)
 - Added an (Experimental) CSVSequence property to BlockStatisticsManifest
 - Updated the experimental section on the model for Remote Copy

Disk Drive Lite Profile (DRM-SMIS-SCR00196)
 - Added Predefined FilterCollection elements for the Disk Drive Lite
 - Promoted the ExtentDiscriminator for Primordial Disk Drive Extents
 - Added a “Model Elements Summary” section
 - Deprecated ConcreteComponent and ProtocolControllerAccessesUnit

Extent Composition Profile (DRM-SMIS-SCR00197)
 - Added Predefined FilterCollection elements for the Extent Composition Profile
 - Promoted the ExtentDiscriminator for several Extent Composition StorageExtents
 - Updated the “Model Elements Summary” section
iv

NO_ANSI_ID
 - Deleted the Extent Conservation Section and Added a Remaining Extents section
 - Deprecated ConcreteComponent
 - Restructured and renumbered the RAID sections

Storage Virtualizer Profile (DRM-SMIS-SCR00195)
 - Added Predefined FilterCollection elements for the Storage Virtualizer
 - Promoted the ExtentDiscriminator for Imported StorageExtents
 - Promoted the supported profile entries for Launch in Context and Operational Power

Replication Services Profile
 - CreateListReplica method added (DRM-SMIS-SCR00187)
 - Promoted the Undiscovered Resources section from Draft to Experimental (DRM-SMIS-SCR00189)
 - Converted to CIM classes in CIM 2.23 (DRM-SMIS-SCR00189)
 - Reworked the Cascading section (DRM-SMIS-SCR00189)
 - Added diagrams and text for remote replication (DRM-SMIS-SCR00189)

Group Masking and Mapping (DRM-SMIS-SCR00190)
 - Converted to CIM classes in CIM 2.23
 - Added text on nested masking groups

Registry of StorageExtent Definitions (DRM-SMIS-SCR00192)
 - Added this new Informative Annex to the Block Book

Comments

Editorial notes are displayed.
DRAFT material was hidden.

Revision 4

Date
 8 April 2010

SCRs Incorporated and other changes
Array Profile (DRM-SMIS-SCR00194)
 - Added cross references to IndicationFilters in the CIM Elements table
 - Updated the Mandatory pre-defined IndicationFilters for changes in the Indication profiles

Copy Services Profile (DRM-SMIS-SCR00203)
 - Updated the version of SMI-S to 1.5, and version of CIM schema to 2.23
 - Replaced all references to SNIA classes with CIM classes
 - Replaced OwnerEntity with OwningEntity

Masking and Mapping Profile (DRM-SMIS-SCR00206)
 - Clarified conditions under which a SCSIProtocolController is deleted as part of the HidePaths
 method call

Volume Composition (DRM-SMIS-SCR00205)
 - Promoted SNIA classes to CIM Classes
 - Replaced SNIA_StorageElementCompositionService and
 SNIA_StorageElementCompositionCapabilities with CIM_StorageElementCompositionService and
 CIM_StorageElementCompositionCapabilities.
 - Changed description of the method CreateOrModifyCompositeElement to conform to the MOF
 description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position v

NO_ANSI_ID
Revision 5

Date
 4 June 2010

SCRs Incorporated and other changes
Block Services Package (SMIS-150-Errata-SCR00009)
 - Updated the predefined FilterCollection and predefined IndicationFilters as prescribed by the revisions
 to the Indication and Experimental Indication profiles

Disk Drive Lite (SMIS-150-Errata-SCR00007)
 - Added a SNIA_DiskDrive class that adds three new properties (DiskType, FormFactor and Encryption)
 - Made PortType in LogicalPort Mandatory

Disk Sparing Profile (SMIS-150-Errata-SCR00008)
 - Fixed a few typos in "StorageRedundacySet" in the Disk Sparing Subprofile diagrams
 (Figures 61, 62, 63 & 64)

Storage Virtualizer
 - Integrated Cascading classes required by the Storage Virtualizer and marked the Cascading Supported
 Profile as deprecated (SMIS-150-Errata-SCR00001)
 - Updated the predefined FilterCollection and predefined IndicationFilters as prescribed by the revisions
 to the Indication and Experimental Indication profiles (SMIS-150-Errata-SCR00001)
 - Eliminated the ambiguous and redundant LogicalPort class tables and deprecated the Indications on
 those classes (SMIS-150-Errata-SCR00002)

Comments

Editorial notes and DRAFT material are not displayed.

Revision 6

Date
 14 Sept 2011

SCRs Incorporated and other changes
Array
 (SMIS-150-Errata-SCR00020)
 - Changed the Supported Profile Table entry for Launch In Context to fix spelling and Organization
 (SMIS-150-Errata-SCR00021) - Added the SAS Target Ports to the Supported Profile Table as part
 of the Target Ports group
 (SMIS-150-Errata-SCR00028)
 - Added the SB Target Ports profile to the Supported Profiles list

Block Services Package
 (SMIS-130-Errata-SCR00053)
 - Fixed the Note in the DeleteStoragePool description that incorrectly identifies the deleted StoragePool
 as the Dependent when it should be the Antecedent.
 (SMIS-150-Errata-SCR00019)
 - Clarified zero size storage pools and storage volumes when calling GetSupportedSizes and
 GetSupportedSizeRange
 (SMIS-150-Errata-SCR00022)
 - Clarified the Size parameter on CreateOrModifyStoragePool, CreateOrModifyElementFromStoragePool,
 and CreateOrModifyElementsFromElements
 (SMIS-150-Errata-SCR00026)
 - Corrected a typographic error in the description of the Pool parameter for the
 CreateOrModifyStoragePool method.
vi

NO_ANSI_ID
 (SMIS-150-Errata-SCR00027)
 - Corrected a numerical valuemap error for the value "Storage Element From Element Creation" in
 the Create Storage Element from Elements recipe.
 (SMIS-150-Errata-SCR00030)
 - Clarified the StorageSettings created by CreateSetting
 (SMIS-150-Errata-SCR00032)
 - Added a warning comment to the Create Storage Elements From Elements recipe description header
 regarding Pools From Volumes.

Block Server Performance
 (SMIS-150-Errata-SCR00011)
 - Clarified the encoding of CSVSequence
 (SMIS-150-Errata-SCR00017)
 - Added the "N" (NULL OK) qualifier to the CSVSequence properties of the Predefined and Client
 Defined BlockStatisticsManifest class tables

Block Storage Views
 (SMIS-150-Errata-SCR00012)
 - Added property descriptions for SNIA_VolumeView, SNIA_MappingProtocolControllerView,
 SNIA_ProtocolControllerForUnitView, SNIA_ReplicaPairView and SNIA_StoragePoolView
 - Added descriptions and notes for SNIA__HostedStoragePoolView,
 SNIA_AllocatedFromStoragePoolViewView (PoolView to PoolView),
 SNIA_AllocatedFromStoragePoolViewView (VolumeView to PoolView),
 SNIA_DriveComponentViewView, SNIA_ExtentComponentView, SNIA_ProtocolControllerForUnitView,
 SNIA_ReplicaPairView and SNIA_StoragePoolView.
 - Changed the CIM_HostedStoragePoolView to SNIA_HostedStoragePoolView in the CIM Elements
 Tables
 (SMIS-150-Errata-SCR00025)
 - Fixed to eliminate BasedOnView from StorageVolumes (or LogicalDisks) to the DiskDriveView

Storage Virtualizer
 (SMIS-150-Errata-SCR00020)
 - Changed the Supported Profile Table entry for Launch In Context to fix spelling and Organization
 (SMIS-150-Errata-SCR00021)
 - Added the SAS Target Ports to the Supported Profile Table as part of the Target Ports group
 (SMIS-150-Errata-SCR00029)
 - Added the SB Target Ports and SB Initiator Ports profiles to the Supported Profiles list

Pools from Volumes (SMIS-150-Errata-SCR00022)
 - Clarified the Size parameter on CreateOrModifyStoragePool

Replication Services (SMIS-150-Errata-SCR00023)
 - Removed references to the Cascading Profile since it is now marked as deprecated.
 - Incorporated the applicable 1.6 ballot comments in the 1.5 profile.

Group Masking and Mapping (SMIS-150-Errata-SCR00013)
 - Added the ServiceAffectsElement association in diagram "Figure 148 - Masking Groups"
 - Included ServiceAffectsElement association in CIM Elements of the profile

Thin Provisioning (SMIS-150-Errata-SCR00031)
 - Elaborated on the CIM Elements for in the Thin Provisioning Profile

SMI-S Information Model Annex (SMIS-150-Errata-SCR00014)
 - Added SMI-S Information Model Annex

Comments

Editorial notes and DRAFT material are not displ
 SMI-S 1.5.0 Revision 6 SNIA Technical Position vii

NO_ANSI_ID
Suggestion for changes or modifications to this document should be sent to the SNIA Storage Management
Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/.

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration,
and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced must acknowledge the SNIA copyright on that material, and must credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

Copyright © 2003-2011 Storage Networking Industry Association.
viii

NO_ANSI_ID
INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and promoting
interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA) organization.

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2011 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of
their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed Management Task
Force (DMTF). The CIM classes that are documented have been developed and reviewed by both the SNIA and
DMTF Technical Working Groups. However, the schema is still in development and review in the DMTF Working
Groups and Technical Committee, and subject to change.

CHANGES TO THE SPECIFICATION

Each publication of this specification is uniquely identified by a three-level identifier, comprised of a version
number, a release number and an update number. The current identifier for this specification is version 1.2.0.
Future publications of this specification are subject to specific constraints on the scope of change that is
permissible from one publication to the next and the degree of interoperability and backward compatibility that
should be assumed between products designed to different publications of this standard. The SNIA has defined
three levels of change to a specification:

• Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x.x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

• Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of the
specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

• Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.x.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

This specification has been structured to convey both the formal requirements and assumptions of the SMI-S API
and its emerging implementation and deployment lifecycle. Over time, the intent is that all content in the
specification will represent a mature and stable design, be verified by extensive implementation experience, assure
consistent support for backward compatibility, and rely solely on content material that has reached a similar level of
maturity. Unless explicitly labeled with one of the subordinate maturity levels defined for this specification, content
is assumed to satisfy these requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three subordinate levels
of implementation maturity that identify important aspects of the content’s increasing maturity and stability. Each
subordinate maturity level is defined by its level of implementation experience, its stability and its reliance on other
 SMI-S 1.5.0 Revision 6 SNIA Technical Position vii

NO_ANSI_ID
emerging standards. Each subordinate maturity level is identified by a unique typographical tagging convention
that clearly distinguishes content at one maturity model from content at another level.

Experimental Maturity Level

No material is included in this specification unless its initial architecture has been completed and reviewed. Some
content included in this specification has complete and reviewed design, but lacks implementation experience and
the maturity gained through implementation experience. This content is included in order to gain wider review and
to gain implementation experience. This material is referred to as “Experimental”. It is presented here as an aid to
implementers who are interested in likely future developments within the SMI specification. The contents of an
Experimental profile may change as implementation experience is gained. There is a high likelihood that the
changed content will be included in an upcoming revision of the specification. Experimental material can advance
to a higher maturity level as soon as implementations are available. Figure 1 is a sample of the typographical
convention for Experimental content.

Implemented Maturity Level

Profiles for which initial implementations have been completed are classified as “Implemented”. This indicates that
at least two different vendors have implemented the profile, including at least one provider implementation. At this
maturity level, the underlying architecture and modeling are stable, and changes in future revisions will be limited to
the correction of deficiencies identified through additional implementation experience. Should the material become
obsolete in the future, it must be deprecated in a minor revision of the specification prior to its removal from
subsequent releases. Figure 2 is a sample of the typographical convention for Implemented content.

Stable Maturity Level

Once content at the Implemented maturity level has garnered additional implementation experience, it can be
tagged at the Stable maturity level. Material at this maturity level has been implemented by three different vendors,
including both a provider and a client. Should material that has reached this maturity level become obsolete, it may
only be deprecated as part of a minor revision to the specification. Material at this maturity level that has been
deprecated may only be removed from the specification as part of a major revision. A profile that has reached this
maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next.

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

IMPLEMENTED

Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag
viii

NO_ANSI_ID
As a result, Profiles at or above the Stable maturity level shall not rely on any content that is Experimental. Figure 3
is a sample of the typographical convention for Implemented content.

Finalized Maturity Level

Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying the
requirements for the Stable maturity level, content at the Finalized maturity level must solely depend upon or refine
material that has also reached the Finalized level. If specification content depends upon material that is not under
the control of the SNIA, and therefore not subject to its maturity level definitions, then the external content is
evaluated by the SNIA to assure that it has achieved a comparable level of completion, stability, and
implementation experience. Should material that has reached this maturity level become obsolete, it may only be
deprecated as part of a major revision to the specification. A profile that has reached this maturity level is
guaranteed to preserve backward compatibility from one minor specification revision to the next. Over time, it is
hoped that all specification content will attain this maturity level. Accordingly, there is no special typographical
convention, as there is with the other, subordinate maturity levels. Unless content in the specification is marked
with one of the typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material

Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections identified as
“Deprecated” contain material that is obsolete and not recommended for use in new development efforts. Existing
and new implementations may still use this material, but shall move to the newer approach as soon as possible.
The maturity level of the material being deprecated determines how long it will continue to appear in the
specification. Implemented content shall be retained at least until the next revision of the specialization, while
Stable and Finalized material shall be retained until the next major revision of the specification. Providers shall
implement the deprecated elements as long as it appears in the specification in order to achieve backward
compatibility. Clients may rely on deprecated elements, but are encouraged to use non-deprecated alternatives
when possible.

Deprecated sections are documented with a reference to the last published version to include the deprecated
section as normative material and to the section in the current specification with the replacement. Figure 4 contains
a sample of the typographical convention for deprecated content.

STABLE

Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

DEPRECATED

Content that has been deprecated appears here.

DEPRECATED

Figure 4 - Deprecated Tag
 SMI-S 1.5.0 Revision 6 SNIA Technical Position ix

NO_ANSI_ID
USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration.

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.
x

NO_ANSI_ID
Contents

Revision History... iii
List of Tables... xvii
List of Figures .. xxxiii
Foreword.. xxxvii
1. Scope ...1
2. Normative References..3

2.1 Approved references.. 3
2.2 References under development ... 3
2.3 Other references .. 3

3. Terms and definitions ..5
4. Array Profile ..7

4.1 Description ... 7
4.2 Health and Fault Management... 9
4.3 Cascading Considerations ... 9
4.4 Supported Subprofiles and Packages.. 9
4.5 Methods of the Profile .. 11
4.6 Client Considerations and Recipes .. 11
4.7 Registered Name and Version ... 11
4.8 CIM Elements... 11

5. Block Services Package...21
5.1 Description ... 21
5.2 Health and Fault Management Considerations.. 46
5.3 Cascading Considerations ... 46
5.4 Supported Profile, Subprofiles and Packages.. 47
5.5 Methods of this Profile.. 47
5.6 Client Considerations and Recipes .. 62
5.7 Registered Name and Version ... 90
5.8 CIM Elements... 90

6. Block Storage Views Profile ..139
6.1 Description ... 139
6.2 Health and Fault Management Consideration.. 157
6.3 Cascading Considerations ... 157
6.4 Supported Profiles, Subprofiles, and Packages... 157
6.5 Methods of the Profile .. 157
6.6 Client Considerations and Recipes .. 158
6.7 CIM Elements... 162

7. Block Server Performance Subprofile ..197
7.1 Description ... 197
7.2 Implementation... 199
7.3 Health and Fault Management Considerations.. 220
7.4 Cascading Considerations ... 220
7.5 Supported Subprofiles and Packages.. 220
7.6 Methods of the Profile .. 220
7.7 Client Considerations and Recipes .. 227
7.8 CIM Elements... 253

8. CKD Block Services Profile ...281
8.1 Description ... 281
8.2 Health and Fault Management Consideration.. 284
8.3 Cascading Considerations ... 284
8.4 Supported Profiles, Subprofiles, and Packages... 284
8.5 Methods of the Profile .. 284
8.6 Client Considerations and Recipes .. 284
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xiii

NO_ANSI_ID
8.7 Registered Name and Version ... 284
8.8 CIM Elements... 285

9. Copy Services Subprofile ..331
9.1 Description ... 331
9.2 Health and Fault Management Considerations.. 371
9.3 Cascading Considerations ... 372
9.4 Supported Subprofiles and Packages.. 373
9.5 Methods of the Profile .. 373
9.6 Client Considerations and Recipes .. 392
9.7 CIM Elements... 413

10. Disk Drive Subprofile ...435
11. Disk Drive Lite Subprofile ..437

11.1 Description ... 437
11.2 Health and Fault Management Considerations.. 439
11.3 Cascading Considerations ... 440
11.4 Supported Profiles, Subprofiles and Packages.. 440
11.5 Methods of this Profile.. 440
11.6 Registered Name and Version ... 441
11.7 CIM Elements... 441

12. Disk Sparing Subprofile ...461
12.1 Description ... 461
12.2 Health and Fault Management Considerations.. 468
12.3 Cascading Conjurations ... 468
12.4 Supported Subprofiles and Packages.. 468
12.5 Methods of the Profile .. 468
12.6 Client Considerations and Recipes .. 472
12.7 Registered Name and Version ... 473
12.8 CIM Elements... 473

13. Erasure Profile ..485
13.1 Description ... 485
13.2 Health and Fault Management Considerations.. 487
13.3 Cascading Considerations ... 487
13.4 Supported Profiles, Subprofiles, and Packages... 487
13.5 Methods of the Profile .. 487
13.6 Client Considerations and Recipes .. 488
13.7 Registered Name and Version ... 492
13.8 CIM Elements... 492

14. Extent Composition Subprofile ...497
14.1 Description ... 497
14.2 Health and Fault Management Considerations.. 513
14.3 Cascading Considerations ... 513
14.4 Supported Subprofiles and Packages.. 513
14.5 Methods of the Profile .. 514
14.6 Client Considerations and Recipes .. 514
14.7 Registered Name and Version ... 520
14.8 CIM Elements... 520

15. LUN Creation Subprofile ..533
16. Extent Mapping Subprofile ..535
17. LUN Mapping and Masking Subprofile ...537

17.1 Compatibility with SMI-S 1.0 clients. .. 537
18. Masking and Mapping Subprofile ...539

18.1 Description ... 539
18.2 Health and Fault Management Considerations.. 548
18.3 Cascading Considerations ... 548
xiv

NO_ANSI_ID
18.4 Supported Subprofiles, and Packages... 548
18.5 Methods of the Profile .. 548
18.6 Client Considerations and Recipes .. 558
18.7 Registered Name and Version ... 568
18.8 CIM Elements... 568

19. Pool Manipulation Capabilities, and Settings Subprofile ...589
20. Storage Server Asymmetry Profile ...591

20.1 Description ... 591
20.2 Health and Fault Management Consideration.. 599
20.3 Cascading Considerations ... 599
20.4 Supported Profiles, Subprofiles, and Packages... 599
20.5 Methods of the Profile .. 599
20.6 Client Considerations and Recipes .. 600
20.7 Registered Name and Version ... 602
20.8 CIM Elements... 602

21. Block Services Resource Ownership Subprofile ..615
21.1 Description ... 615
21.2 Client Considerations and Recipes .. 620

22. Storage Virtualizer Profile..623
22.1 Description ... 623
22.2 Health and Fault Management... 627
22.3 Storage Virtualizer Support for Cascading... 627
22.4 Supported Subprofiles and Packages.. 629
22.5 Methods of the Profile .. 630
22.6 Client Considerations and Recipes .. 630
22.7 Registered Name and Version ... 631
22.8 CIM Elements... 631

23. Volume Composition Profile..661
23.1 Description ... 661
23.2 Striped and Concatenated Composite Volumes .. 672
23.3 Health and Fault Management Consideration.. 673
23.4 Cascading Considerations ... 674
23.5 Supported Profiles, Subprofiles, and Packages... 674
23.6 Methods of the Profile .. 674
23.7 Client Considerations and Recipes .. 684
23.8 Registered Name and Version ... 690
23.9 CIM Elements... 690

24. Volume Management Profile..699
24.1 Description ... 699
24.2 Health and Fault Management Considerations.. 701
24.3 Cascading Considerations ... 701
24.4 Supported Subprofiles and Packages.. 701
24.5 Methods of the Profile .. 702
24.6 Client Considerations and Recipes .. 702
24.7 Registered Name and Version ... 702
24.8 CIM Elements... 702

25. Storage Element Protection SubProfile..711
25.1 Description ... 711
25.2 Health and Fault Management Consideration.. 722
25.3 Cascading Considerations ... 722
25.4 Supported Profiles, Subprofiles, and Packages... 722
25.5 Methods of the Profile .. 723
25.6 Client Considerations and Recipes .. 724
25.7 Registered Name and Version ... 728
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xv

NO_ANSI_ID
25.8 CIM Elements... 728
26. Replication Services Profile ..733

26.1 Description ... 733
26.2 Health and Fault Management Consideration.. 759
26.3 Replication Services Support for Cascading.. 759
26.4 Mapping of Copy Services and Replication Services Properties and Methods 762
26.5 Methods of the Profile .. 763
26.6 Client Considerations and Recipes .. 795
26.7 Registered Name and Version ... 795
26.8 CIM Elements... 796

27. Thin Provisioning Profile ...831
27.1 Description ... 831
27.2 Health and Fault Management Consideration.. 834
27.3 Cascading Considerations ... 834
27.4 Supported Profiles, Subprofiles, and Packages... 834
27.5 Methods of the Profile .. 834
27.6 Client Considerations and Recipes .. 835
27.7 Registered Name and Version ... 848
27.8 CIM Elements... 848

28. Pools from Volumes Profile...865
28.1 Description ... 865
28.2 Block Services Enhancements... 870
28.3 Health and Fault Management Considerations.. 871
28.4 Cascading Considerations ... 871
28.5 Supported Profiles, Subprofiles, and Packages... 871
28.6 Methods of the Profile .. 871
28.7 Client Considerations and Recipes .. 872
28.8 Registered Name and Version ... 876
28.9 CIM Elements... 876

29. Group Masking and Mapping Profile ..881
29.1 Description ... 881
29.2 Health and Fault Management Consideration.. 889
29.3 Cascading Considerations ... 889
29.4 Methods of the Profile .. 889
29.5 Client Considerations and Recipes .. 893
29.6 Registered Name and Version ... 894
29.7 CIM Elements... 894

Annex A. (Informative) SMI-S Information Model...921
Annex B. (Informative) Registry of StorageExtent Definitions ...923

B.1 ExtentDiscriminator Definitions .. 924
B.2 Association Significance of the Various Extent Definitions .. 924
B.3 Example Valid Combinations of Extent Definitions .. 927
B.4 Combinations of Extent Definitions not defined in this Release of the Standard 927
xvi

NO_ANSI_ID
List of Tables

Table 1. Supported Profiles for Array ...9

Table 2. CIM Elements for Array ..11

Table 3. SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)...13

Table 4. SMI Referenced Properties/Methods for CIM_FilterCollection (Array Predefined FilterCollection)..........................14

Table 5. SMI Referenced Properties/Methods for CIM_HostedCollection (Array to predefined FilterCollection)...................14

Table 6. SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Creation)..15

Table 7. SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Deletion) ..16

Table 8. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Array Filters) .17

Table 9. SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)17

Table 10. SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View).....18

Table 11. SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU) ..18

Table 12. SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View) ...19

Table 13. SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)19

Table 14. SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController)19

Table 15. Mapping: Supported Actions to Methods..27

Table 16. Valid Values for StorageConfigurationCapabilities associated to a Pool ...29

Table 17. SupportedStoragePoolFeatures Array ...30

Table 18. SupportedStoragePoolFeatures Array ...30

Table 19. RAID Mapping ..35

Table 20. Meaning of Usage values ...37

Table 21. Classes Required In Read-Only Implementation ...38

Table 22. Standard Messages for Block Services Package...46

Table 23. Supported Profiles for Block Services ..47

Table 24. CIM Elements for Block Services ...90

Table 25. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)...................................98

Table 26. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)99

Table 27. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Stora-
geVolume or LogicalDisk)...99

Table 28. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Storage-
Pool) ...100

Table 29. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationSer-
vice) ..100

Table 30. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to StoragePool)100

Table 31. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabilities to Storage-
ConfigurationService) ...101

Table 32. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete
StoragePool)...101

Table 33. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial
StoragePool)...102

Table 34. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming capabilities of the
StoragePool)...102

Table 35. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk) ..103

Table 36. SMI Referenced Properties/Methods for CIM_ElementSettingData...103

Table 37. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For StorageConfigurationSer-
vice) ..104

Table 38. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For StoragePool).................104

Table 39. SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Predefined FilterCollection).........105

Table 40. SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined IndicationFilters)105
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xvii

NO_ANSI_ID
Table 41. SMI Referenced Properties/Methods for CIM_HostedService ...106

Table 42. SMI Referenced Properties/Methods for CIM_HostedStoragePool ...106

Table 43. SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)..107

Table 44. SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion) ..108

Table 45. SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)...........................109

Table 46. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation) ..110

Table 47. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)...111

Table 48. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManagedSpace).....................112

Table 49. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)113

Table 50. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)....................................114

Table 51. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalStatus)115

Table 52. SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk OperationalStatus)116

Table 53. SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume OperationalStatus)117

Table 54. SMI Referenced Properties/Methods for CIM_LogicalDisk ..118

Table 55. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Filter Collection to FilterCollec-
tion)...119

Table 56. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Block Services
Filters)...119

Table 57. SMI Referenced Properties/Methods for CIM_OwningJobElement ...119

Table 58. SMI Referenced Properties/Methods for CIM_StorageCapabilities ...120

Table 59. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)122

Table 60. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)123

Table 61. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)124

Table 62. SMI Referenced Properties/Methods for CIM_StorageConfigurationService...126

Table 63. SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)...126

Table 64. SMI Referenced Properties/Methods for CIM_StoragePool (Empty) ...127

Table 65. SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...128

Table 66. SMI Referenced Properties/Methods for CIM_StorageSetting...129

Table 67. SMI Referenced Properties/Methods for CIM_StorageSettingWithHints ...131

Table 68. SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities.....................................133

Table 69. SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities133

Table 70. SMI Referenced Properties/Methods for CIM_StorageVolume..134

Table 71. SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or LogicalDisk)...........135

Table 72. SMI Referenced Properties/Methods for SNIA_StorageVolume ..136

Table 73. Related Profiles for Block Storage Views ...139

Table 74. Discovery of the Volumes on an Array ...158

Table 75. Discovery of the Disk Drives in a Primordial Pool ..158

Table 76. Discover Volumes exposed on a (Target) Port...159

Table 77. Discover (target port) redundancy for a Volume...159

Table 78. Discover Volumes exposed to a Host Port ...160

Table 79. Discover Mapping information for an array...160

Table 80. Discover the Pool topology for an array ...161

Table 81. Discover the Replica Pairs for an array ..161

Table 82. CIM Elements for Block Storage Views..162

Table 83. SMI Referenced Properties/Methods for CIM_ElementCapabilities (View Capabilities) ..169

Table 84. SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolView (StoragePoolView to StoragePool)
170

Table 85. SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolView (Volume to StoragePoolView)..171

Table 86. SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolView (VolumeView to StoragePool)..171

Table 87. SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolViewView (PoolView to PoolView)....172
xviii

NO_ANSI_ID
Table 88. SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolViewView (VolumeView to PoolView).....
172

Table 89. SMI Referenced Properties/Methods for SNIA_BaseInstance (DiskDrive) ..173

Table 90. SMI Referenced Properties/Methods for SNIA_BaseInstance (StorageSetting)..173

Table 91. SMI Referenced Properties/Methods for SNIA_BaseInstance (Volume) ...174

Table 92. SMI Referenced Properties/Methods for SNIA_BasedOnView (ExtentOnDriveExtent) ...174

Table 93. SMI Referenced Properties/Methods for SNIA_BasedOnView (VolumeOnExtent) ...175

Table 94. SMI Referenced Properties/Methods for SNIA_ConcreteComponentView..175

Table 95. SMI Referenced Properties/Methods for SNIA_ContainerView ...176

Table 96. SMI Referenced Properties/Methods for SNIA_DiskDriveView..176

Table 97. SMI Referenced Properties/Methods for SNIA_DriveComponentViewView ..178

Table 98. SMI Referenced Properties/Methods for SNIA_ElementStatisticalDataView (DiskDriveView)179

Table 99. SMI Referenced Properties/Methods for SNIA_ElementStatisticalDataView (VolumeView)179

Table 100. SMI Referenced Properties/Methods for SNIA_ExposedView ...180

Table 101. SMI Referenced Properties/Methods for SNIA_ExtentComponentView ..181

Table 102. SMI Referenced Properties/Methods for SNIA_HostedStoragePoolView..181

Table 103. SMI Referenced Properties/Methods for SNIA_MappingProtocolControllerView ..181

Table 104. SMI Referenced Properties/Methods for SNIA_MaskingMappingView..183

Table 105. SMI Referenced Properties/Methods for SNIA_ProtocolControllerForUnitView ..185

Table 106. SMI Referenced Properties/Methods for SNIA_ReplicaPairView...185

Table 107. SMI Referenced Properties/Methods for SNIA_StoragePoolView ...189

Table 108. SMI Referenced Properties/Methods for SNIA_SystemDeviceView (DiskDriveViews)..191

Table 109. SMI Referenced Properties/Methods for SNIA_SystemDeviceView (MappingProtocolControllerViews)191

Table 110. SMI Referenced Properties/Methods for SNIA_SystemDeviceView (ReplicaPairViews).......................................192

Table 111. SMI Referenced Properties/Methods for SNIA_SystemDeviceView (VolumeViews)...192

Table 112. SMI Referenced Properties/Methods for SNIA_ViewCapabilities ..192

Table 113. SMI Referenced Properties/Methods for SNIA_VolumeView...193

Table 114. Related Profiles for Block Server Performance ..197

Table 115. Summary of Element Types by Profile ...208

Table 116. Creation, Deletion and Modification Methods in Block Server Performance Subprofile...220

Table 117. Summary of Statistics Support by Element ..249

Table 118. Formulas and Calculations ...251

Table 119. Block Server Performance Subprofile Supported Capabilities Patterns...252

Table 120. CIM Elements for Block Server Performance...253

Table 121. SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Client defined collec-
tion)...257

Table 122. SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collec-
tion)...257

Table 123. SMI Referenced Properties/Methods for CIM_BlockStatisticsCapabilities...258

Table 124. SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)..259

Table 125. SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)260

Table 126. SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Client Defined)262

Table 127. SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Provider Defined)....................262

Table 128. SMI Referenced Properties/Methods for CIM_BlockStatisticsService ...263

Table 129. SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData ..265

Table 130. SMI Referenced Properties/Methods for CIM_ElementCapabilities...269

Table 131. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Back end Port Stats)269

Table 132. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Component System Stats)270

Table 133. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Disk Stats)...270

Table 134. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Extent Stats)..271
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xix

NO_ANSI_ID
Table 135. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Front end Port Stats)...............................271

Table 136. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Logical Disk Stats)272

Table 137. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Remote Copy Stats)................................272

Table 138. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Top Level System Stats)273

Table 139. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Volume Stats)..273

Table 140. SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined) ...274

Table 141. SMI Referenced Properties/Methods for CIM_HostedCollection (Default)...274

Table 142. SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)..275

Table 143. SMI Referenced Properties/Methods for CIM_HostedService ...275

Table 144. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined collection)275

Table 145. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-defined collection)276

Table 146. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collection)276

Table 147. SMI Referenced Properties/Methods for CIM_StatisticsCollection ..277

Table 148. SMI Referenced Properties/Methods for SNIA_BlockStatisticsCapabilities ...277

Table 149. SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Client Defined)278

Table 150. SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Provider Support)..................................279

Table 151. Supported Profiles for CKD Block Services..284

Table 152. CIM Elements for CKD Block Services...285

Table 153. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool).................................294

Table 154. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)294

Table 155. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Stora-
geVolume or LogicalDisk)...295

Table 156. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Storage-
Pool) ...295

Table 157. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationSer-
vice) ..295

Table 158. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to StoragePool)296

Table 159. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabilities to Storage-
ConfigurationService) ...296

Table 160. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete
StoragePool)...297

Table 161. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial
StoragePool)...297

Table 162. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming capabilities of the
StoragePool)...298

Table 163. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk) ..298

Table 164. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For StorageConfigurationSer-
vice) ..299

Table 165. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For StoragePool).................299

Table 166. SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Predefined FilterCollection).........300

Table 167. SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined IndicationFilters)301

Table 168. SMI Referenced Properties/Methods for CIM_HostedStoragePool ...301

Table 169. SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)..302

Table 170. SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion) ..303

Table 171. SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)...........................304

Table 172. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation) ..305

Table 173. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)...306

Table 174. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManagedSpace).....................307

Table 175. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)308

Table 176. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)....................................309
xx

NO_ANSI_ID
Table 177. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalStatus)310

Table 178. SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk OperationalStatus)311

Table 179. SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume OperationalStatus)312

Table 180. SMI Referenced Properties/Methods for CIM_LogicalDisk ..313

Table 181. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Filter Collection to FilterCollec-
tion)...314

Table 182. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Block Services
Filters)...315

Table 183. SMI Referenced Properties/Methods for CIM_OwningJobElement ...315

Table 184. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)316

Table 185. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)317

Table 186. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)318

Table 187. SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)...319

Table 188. SMI Referenced Properties/Methods for CIM_StoragePool (Empty) ...320

Table 189. SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...321

Table 190. SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or LogicalDisk)...........323

Table 191. SMI Referenced Properties/Methods for SNIA_StorageCapabilities..323

Table 192. SMI Referenced Properties/Methods for SNIA_StorageSetting ...325

Table 193. SMI Referenced Properties/Methods for SNIA_StorageVolume ..326

Table 194. SMI Referenced Properties/Methods for SNIA_StorageVolume ..328

Table 195. Related Profiles for Copy Services...331

Table 196. Comparing SyncTypes ...335

Table 197. Alignment of SupportedSynchronizationType and SupportedReplicationType ..335

Table 198. Alignment of SyncType/Mode and CopyType ..340

Table 199. Alignment of CopyState and SyncState ...341

Table 200. Synchronization Operation Support Requirements ..348

Table 201. SyncState Values ...350

Table 202. CopyStates Values ...351

Table 203. SyncMaintained and WhenSynced Properties ...352

Table 204. Indications ..369

Table 205. Copy Services Alert Indications..371

Table 206. Copy Services Error Responses ..372

Table 207. Extrinsic Methods of StorageConfigurationService ..374

Table 208. ModifySynchronization ...374

Table 209. CreateReplica Method..375

Table 210. TargetPool Parameter for Delta Replicas...376

Table 211. Extrinsic Methods of ReplicationService ..378

Table 212. GetAvailableTargetElements Method...383

Table 213. Extrinsic Methods of ReplicationServiceCapabilities..385

Table 214. SyncTypes..385

Table 215. Local or Remote ...386

Table 216. ReplicationTypes ..386

Table 217. Modes...386

Table 218. Features ...387

Table 219. Operations ..388

Table 220. Comparison of Similar Operations..389

Table 221. SettingsDefineState Operations ...390

Table 222. Thin Provisioning Features...391

Table 223. Components ...391

Table 224. Replica Specialization by CopyType ..393
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxi

NO_ANSI_ID
Table 225. Replica Specialization by SyncType/Mode...393

Table 226. Patterns Supported for StorageReplicationCapabilities ...400

Table 227. Space Consumption Properties..402

Table 228. Space Consumption Properties, Fixed Pattern ..402

Table 229. CIM Elements for Copy Services..413

Table 230. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and
ReplicationService)...416

Table 231. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates StorageReplicationCapabilities and
StorageConfigurationService) ..416

Table 232. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabilities to Storage-
ConfigurationService) ...416

Table 233. SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabilities to Storage-
Pool) ...417

Table 234. SMI Referenced Properties/Methods for CIM_HostedService (Replication Service) ...417

Table 235. SMI Referenced Properties/Methods for CIM_HostedService (Storage Configuration Service)............................418

Table 236. SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage ...418

Table 237. SMI Referenced Properties/Methods for CIM_ReplicationService...418

Table 238. SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities ..419

Table 239. SMI Referenced Properties/Methods for CIM_ReplicationSettingData ..421

Table 240. SMI Referenced Properties/Methods for CIM_SettingsDefineState...422

Table 241. SMI Referenced Properties/Methods for CIM_StorageCapabilities ...422

Table 242. SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities ..423

Table 243. SMI Referenced Properties/Methods for CIM_StorageConfigurationService...424

Table 244. SMI Referenced Properties/Methods for CIM_StoragePool...424

Table 245. SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities..425

Table 246. SMI Referenced Properties/Methods for CIM_StorageSetting...428

Table 247. SMI Referenced Properties/Methods for CIM_StorageSynchronized ..429

Table 248. SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between StorageExtent elements)431

Table 249. SMI Referenced Properties/Methods for CIM_SynchronizationAspect ..433

Table 250. OperationalStatus For DiskDrive ..439

Table 251. Enabled State ...440

Table 252. CIM Elements for Disk Drive Lite..441

Table 253. SMI Referenced Properties/Methods for CIM_ATAPort (Disk Drive Target ATA Port) ..444

Table 254. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint) .445

Table 255. SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)...
445

Table 256. SMI Referenced Properties/Methods for CIM_BasedOn (Bottom Level BasedOn) ...446

Table 257. SMI Referenced Properties/Methods for CIM_ConcreteComponent (Disk Extent to Primordial Pool)446

Table 258. SMI Referenced Properties/Methods for CIM_Container ...447

Table 259. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (ATA) ...447

Table 260. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (SCSI) ..447

Table 261. SMI Referenced Properties/Methods for CIM_DiskDrive ...448

Table 262. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity..449

Table 263. SMI Referenced Properties/Methods for CIM_FCPort (Disk Drive Target FC Port)...449

Table 264. SMI Referenced Properties/Methods for CIM_FilterCollection (Disk Drive Lite Predefined FilterCollection)450

Table 265. SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined IndicationFilters)450

Table 266. SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Creation)...451

Table 267. SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Deletion) ...451

Table 268. SMI Referenced Properties/Methods for CIM_MediaPresent ..452

Table 269. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Disk Drive Lite Filter Collection to FilterCollec-
xxii

NO_ANSI_ID
tion)...452

Table 270. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Disk Drive Lite Fil-
ters) ..453

Table 271. SMI Referenced Properties/Methods for CIM_PhysicalPackage ...453

Table 272. SMI Referenced Properties/Methods for CIM_ProtocolControllerAccessesUnit ..454

Table 273. SMI Referenced Properties/Methods for CIM_Realizes...454

Table 274. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..454

Table 275. SMI Referenced Properties/Methods for CIM_SASPort (Disk Drive Target SAS Port)..455

Table 276. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...455

Table 277. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint)
456

Table 278. SMI Referenced Properties/Methods for CIM_SPIPort (Disk Drive Target Parallel SCSI Port)456

Table 279. SMI Referenced Properties/Methods for CIM_SoftwareIdentity...457

Table 280. SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Disk Drive Extent)................................458

Table 281. SMI Referenced Properties/Methods for CIM_SystemDevice (Disk Drive System)...458

Table 282. SMI Referenced Properties/Methods for CIM_SystemDevice (Port System)...459

Table 283. SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)459

Table 284. SMI Referenced Properties/Methods for SNIA_DiskDrive ...459

Table 285. Supported Methods to Method Mapping ..465

Table 286. Supported Profiles for Disk Sparing ...468

Table 287. CIM Elements for Disk Sparing ..473

Table 288. SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Spare to Storage Pool)475

Table 289. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to LogicalDisk)...............................475

Table 290. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to Pool) ..476

Table 291. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to StorageVolume)476

Table 292. SMI Referenced Properties/Methods for CIM_ElementCapabilities...476

Table 293. SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to FailoverStorageExtentsCollec-
tion)...477

Table 294. SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to RedundancySet)..............477

Table 295. SMI Referenced Properties/Methods for CIM_HostedService (ComputerSystem to SpareConfigurationService) 478

Table 296. SMI Referenced Properties/Methods for CIM_IsSpare ..478

Table 297. SMI Referenced Properties/Methods for CIM_LogicalDisk ..478

Table 298. SMI Referenced Properties/Methods for CIM_MemberOfCollection..479

Table 299. SMI Referenced Properties/Methods for CIM_Spared ...480

Table 300. SMI Referenced Properties/Methods for CIM_StorageExtent (Spare)...480

Table 301. SMI Referenced Properties/Methods for CIM_StoragePool...481

Table 302. SMI Referenced Properties/Methods for CIM_StorageRedundancySet ..481

Table 303. SMI Referenced Properties/Methods for CIM_StorageVolume..482

Table 304. SMI Referenced Properties/Methods for SNIA_FailoverStorageExtentsCollection..482

Table 305. SMI Referenced Properties/Methods for SNIA_SpareConfigurationCapabilities ...483

Table 306. SMI Referenced Properties/Methods for SNIA_SpareConfigurationService..484

Table 307. Erase Method ...488

Table 308. CIM Elements for Erasure ..492

Table 309. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool..493

Table 310. SMI Referenced Properties/Methods for CIM_LogicalDisk ..493

Table 311. SMI Referenced Properties/Methods for CIM_StoragePool...493

Table 312. SMI Referenced Properties/Methods for CIM_StorageVolume..494

Table 313. SMI Referenced Properties/Methods for SNIA_ErasureCapabilities..494

Table 314. SMI Referenced Properties/Methods for SNIA_ErasureService ..495

Table 315. SMI Referenced Properties/Methods for SNIA_ErasureSetting ...495
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxiii

NO_ANSI_ID
Table 316. Supported Common RAID Levels ..504

Table 317. CIM Elements for Extent Composition..520

Table 318. SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to Concrete Pool)
522

Table 319. SMI Referenced Properties/Methods for CIM_AssociatedRemainingExtent (Pool to its remaining extents)522

Table 320. SMI Referenced Properties/Methods for CIM_BasedOn (Mid level BasedOn) ..522

Table 321. SMI Referenced Properties/Methods for CIM_BasedOn (Top level BasedOn)..523

Table 322. SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Intermediate)..................................523

Table 323. SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Component)...........................524

Table 324. SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn ..525

Table 325. SMI Referenced Properties/Methods for CIM_ConcreteComponent (Pool Component to Concrete Pool)526

Table 326. SMI Referenced Properties/Methods for CIM_ConcreteComponent (Remaining Extent to Pool)526

Table 327. SMI Referenced Properties/Methods for CIM_FilterCollection (Extent Composition Predefined FilterCollection) .527

Table 328. SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined IndicationFilters)527

Table 329. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Extent Composition Filter Collection to FilterCol-
lection) ..528

Table 330. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Extent Composi-
tion Filters)..528

Table 331. SMI Referenced Properties/Methods for CIM_StorageExtent (Intermediate) ..528

Table 332. SMI Referenced Properties/Methods for CIM_StorageExtent (Pool Component)..529

Table 333. SMI Referenced Properties/Methods for CIM_StorageExtent (Remaining) ...530

Table 334. SMI Referenced Properties/Methods for CIM_SystemDevice (Composite Extent System)...................................531

Table 335. SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)531

Table 336. SCSIProtocolController Property Description...544

Table 337. Element to Service Mapping...547

Table 338. Element to Element Name Mapping...547

Table 339. ExposePath Use Cases..549

Table 340. HidePaths Use Cases ..551

Table 341. Use Cases for ExposeDefaultLUs ...553

Table 342. Use Cases for HideDefaultLUs...555

Table 343. CIM Elements for Masking and Mapping..568

Table 344. SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..571

Table 345. SMI Referenced Properties/Methods for CIM_AuthorizedSubject ...571

Table 346. SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...572

Table 347. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerConfiguirationService
and ProtocolController)...572

Table 348. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeManagementService and
AuthorizedPrivilege) ...572

Table 349. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwareIDManagement-
Service and StorageHardwareID)...573

Table 350. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwareIDManagement-
Service and SystemSpecificCollection) ..573

Table 351. SMI Referenced Properties/Methods for CIM_ControllerConfigurationService..574

Table 352. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Control-
lerConfigurationService) ...574

Table 353. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Protocol-
Controller)...575

Table 354. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Storage-
HardwareID) ...575

Table 355. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Storage-
HardwareIDManagementService) ..575
xxiv

NO_ANSI_ID
Table 356. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to System-
SpecificCollection) ..576

Table 357. SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabili-
ties)...576

Table 358. SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSystem and StorageClient-
SettingData)..577

Table 359. SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and StorageClientSettingData)
577

Table 360. SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolController and StorageCli-
entSettingData)...577

Table 361. SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardwareID and StorageCli-
entSettingData)...578

Table 362. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..578

Table 363. SMI Referenced Properties/Methods for CIM_HostedCollection ...579

Table 364. SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and ControllerConfigu-
rationService) ...579

Table 365. SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and PrivilegeManage-
mentService) ..579

Table 366. SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and StorageHardware-
IDManagementService)..580

Table 367. SMI Referenced Properties/Methods for CIM_MemberOfCollection..580

Table 368. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService..581

Table 369. SMI Referenced Properties/Methods for CIM_ProtocolController..581

Table 370. SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit ..582

Table 371. SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities..582

Table 372. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..584

Table 373. SMI Referenced Properties/Methods for CIM_StorageClientSettingData ..584

Table 374. SMI Referenced Properties/Methods for CIM_StorageHardwareID...584

Table 375. SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService......................................585

Table 376. SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..585

Table 377. SMI Referenced Properties/Methods for SNIA_ProtocolControllerMaskingCapabilities ..586

Table 378. SMI Referenced Properties/Methods for SNIA_StorageHardwareID ...586

Table 379. SMI Referenced Properties/Methods for SNIA_StorageHardwareIDManagementService587

Table 380. CIM Elements for Storage Server Asymmetry..602

Table 381. SMI Referenced Properties/Methods for CIM_AsymmetricAccessibility ..607

Table 382. SMI Referenced Properties/Methods for CIM_ElementCapabilities (To Top-level ComputerSystem)...................607

Table 383. SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Load Group)608

Table 384. SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Port Group)608

Table 385. SMI Referenced Properties/Methods for CIM_MemberOfCollection (SATA Target Port Group)609

Table 386. SMI Referenced Properties/Methods for CIM_MemberOfCollection (SB Target Port Group)................................609

Table 387. SMI Referenced Properties/Methods for CIM_MemberOfCollection (SCSI Target Port Group)609

Table 388. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load Group aggregating
Storage Pools)..610

Table 389. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load Group aggregating
Storage Volumes)...610

Table 390. SMI Referenced Properties/Methods for CIM_MemberOfCollection (iSCSI Target Port Group)611

Table 391. SMI Referenced Properties/Methods for CIM_StorageConfigurationService...611

Table 392. SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (StorageResourceLoadGroup)..............612

Table 393. SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (Target Port Group)...............................612

Table 394. SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities...613

Table 395. Block Service Management Rights...616
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxv

NO_ANSI_ID
Table 396. Supported Profiles for Storage Virtualizer ..629

Table 397. CIM Elements for Storage Virtualizer ...631

Table 398. SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)...
636

Table 399. SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow) ..637

Table 400. SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)...638

Table 401. SMI Referenced Properties/Methods for CIM_ConcreteComponent (Imported Extents to Primordial Pool)638

Table 402. SMI Referenced Properties/Methods for CIM_Dependency (Systems) ...639

Table 403. SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Virtualizer Predefined FilterCollection)...639

Table 404. SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)640

Table 405. SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) ...640

Table 406. SMI Referenced Properties/Methods for CIM_HostedCollection (Storage Virtualizer to predefined FilterCollection)..
640

Table 407. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer LogicalPort OperationalStatus) ...
641

Table 408. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Storage Volume OperationalSta-
tus)..642

Table 409. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System Creation)...................643

Table 410. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System Deletion)644

Table 411. SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System OperationalStatus) ...645

Table 412. SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer FCPort OperationalStatus).
646

Table 413. SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer Storage Volume Operation-
alStatus) ...647

Table 414. SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer System OperationalStatus)
648

Table 415. SMI Referenced Properties/Methods for CIM_LogicalIdentity (Shadow Storage Volume)649

Table 416. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)650

Table 417. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Storage Virtual-
izer Filters)..650

Table 418. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)....................................651

Table 419. SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)651

Table 420. SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)...652

Table 421. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)..652

Table 422. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..653

Table 423. SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU) ..653

Table 424. SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)654

Table 425. SMI Referenced Properties/Methods for CIM_StorageExtent (Imported Extents) ...654

Table 426. SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow) ...655

Table 427. SMI Referenced Properties/Methods for CIM_SystemDevice (Shadow StorageVolumes)....................................656

Table 428. SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)657

Table 429. SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController)657

Table 430. SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageExtent)658

Table 431. SMI Referenced Properties/Methods for SNIA_AllocatedResources...658

Table 432. SMI Referenced Properties/Methods for SNIA_RemoteResources ...659

Table 433. CompositionCharacteristics Property ...663

Table 434. Supported Profiles for Volume Composition...674

Table 435. Method Summary ...674

Table 436. CreateOrModifyCompositeElement..676

Table 437. RemoveElementsFromElement..678

Table 438. ReturnElementToElements ..679
xxvi

NO_ANSI_ID
Table 439. GetAvailableElements ..680

Table 440. GetCompositeElements..681

Table 441. GetSupportedStripeLengths ...682

Table 442. GetSupportedStripeLengthRange ..683

Table 443. GetSupportedStripeDepths ..683

Table 444. GetSupportedStripeDepthRange..684

Table 445. CIM Elements for Volume Composition..690

Table 446. SMI Referenced Properties/Methods for CIM_CompositeExtent ...691

Table 447. SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn (Volume Composition)........................691

Table 448. SMI Referenced Properties/Methods for CIM_ElementCapabilities...692

Table 449. SMI Referenced Properties/Methods for CIM_ElementSettingData...692

Table 450. SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and the ElementCom-
positionService) ..692

Table 451. SMI Referenced Properties/Methods for CIM_StorageElementCompositionCapabilities693

Table 452. SMI Referenced Properties/Methods for CIM_StorageElementCompositionService...694

Table 453. SMI Referenced Properties/Methods for CIM_StorageSetting...695

Table 454. SMI Referenced Properties/Methods for CIM_StorageVolume..696

Table 455. Supported Profiles for Volume Management..701

Table 456. CIM Elements for Volume Management...702

Table 457. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (LogicalDisk from Pool)704

Table 458. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool).................................704

Table 459. SMI Referenced Properties/Methods for CIM_ComputerSystem...705

Table 460. SMI Referenced Properties/Methods for CIM_ElementCapabilities...705

Table 461. SMI Referenced Properties/Methods for CIM_ElementSettingData...706

Table 462. SMI Referenced Properties/Methods for CIM_HostedStoragePool ...706

Table 463. SMI Referenced Properties/Methods for CIM_LogicalDisk ..706

Table 464. SMI Referenced Properties/Methods for CIM_StorageCapabilities ...707

Table 465. SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)...708

Table 466. SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...709

Table 467. SMI Referenced Properties/Methods for CIM_StorageSetting...709

Table 468. SMI Referenced Properties/Methods for CIM_SystemDevice..710

Table 469. Properties for StorageProtectionCapabilities..712

Table 470. Properties for StorageProtectionSetting ...713

Table 471. Values for ProtectionControlled..714

Table 472. Values for Access...714

Table 473. Values for InquiryProtection ...715

Table 474. Values for DenyAsCopyTarget ...715

Table 475. Values for LUNMappingConfigurable ...715

Table 476. Values for ProtectExpirationSpecified ..715

Table 477. Values for RemainingProtectionTime ...716

Table 478. Methods of the Storage Element Protection Profile..723

Table 479. CIM Elements for Storage Element Protection...728

Table 480. SMI Referenced Properties/Methods for CIM_ElementCapabilities...729

Table 481. SMI Referenced Properties/Methods for CIM_HostedService ...730

Table 482. SMI Referenced Properties/Methods for SNIA_ElementProtectionSettingData...730

Table 483. SMI Referenced Properties/Methods for SNIA_StorageProtectionCapabilities ...730

Table 484. SMI Referenced Properties/Methods for SNIA_StorageProtectionService ..731

Table 485. SMI Referenced Properties/Methods for SNIA_StorageProtectionSetting...731

Table 486. Supported Profiles for Replication Services ...733
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxvii

NO_ANSI_ID
Table 487. Key Classes..735

Table 488. Comparing SyncTypes ...736

Table 489. CopyStates Values ...749

Table 490. Indications ..758

Table 491. Extrinsic Methods for Group Management ...763

Table 492. Extrinsic Methods for Replication Management ...763

Table 493. Extrinsic Methods for Getting Supported Capabilities ..764

Table 494. Selected CreateElementReplica optional parameters..768

Table 495. Selected CreateGroupReplica optional parameters ...770

Table 496. Selected CreateListReplica optional parameters ...773

Table 497. SyncTypes..780

Table 498. Modes...780

Table 499. Local or Remote ...781

Table 500. ReplicationTypes ..781

Table 501. Features ...782

Table 502. Group Features ..784

Table 503. Consistency ..786

Table 504. Operations ..786

Table 505. Comparison of Similar Operations..788

Table 506. SettingsDefineState Operations ...790

Table 507. Thin Provisioning Features...790

Table 508. Components ...791

Table 509. Default Consistency..791

Table 510. Group Persistency ..792

Table 511. Copy Methodologies...792

Table 512. Target Element Suppliers ...793

Table 513. ThinProvisioningPolicy ...793

Table 514. Connection Features ..794

Table 515. Copy Services and Replication Services Methods Mapping ..795

Table 516. CIM Elements for Replication Services ..796

Table 517. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...801

Table 518. SMI Referenced Properties/Methods for CIM_ElementCapabilities...801

Table 519. SMI Referenced Properties/Methods for CIM_GroupSynchronized...802

Table 520. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint)805

Table 521. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)806

Table 522. SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)806

Table 523. SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and ConnectivityCollec-
tion)...807

Table 524. SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)
807

Table 525. SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) ...807

Table 526. SMI Referenced Properties/Methods for CIM_HostedService ...808

Table 527. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)808

Table 528. SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to ConnectivityCollection)...
809

Table 529. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)....................................809

Table 530. SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection...809

Table 531. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint ...810

Table 532. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ..811

Table 533. SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage ...811
xxviii

NO_ANSI_ID
Table 534. SMI Referenced Properties/Methods for CIM_ReplicationEntity..812

Table 535. SMI Referenced Properties/Methods for CIM_ReplicationGroup...813

Table 536. SMI Referenced Properties/Methods for CIM_ReplicationSettingData ..813

Table 537. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..815

Table 538. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationService and Connectivi-
tyCollection)..816

Table 539. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationService and Replicatio-
nEntity) ...816

Table 540. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationService and Replication-
Group) ..817

Table 541. SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup and Synchroniza-
tionAspect)..817

Table 542. SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and Synchronization-
Aspect) ...817

Table 543. SMI Referenced Properties/Methods for CIM_SharedSecret...818

Table 544. SMI Referenced Properties/Methods for CIM_StorageSynchronized ..818

Table 545. SMI Referenced Properties/Methods for CIM_SynchronizationAspect ..822

Table 546. SMI Referenced Properties/Methods for SNIA_AllocatedResources...824

Table 547. SMI Referenced Properties/Methods for SNIA_RemoteResources ...824

Table 548. SMI Referenced Properties/Methods for SNIA_ReplicationService ...825

Table 549. SMI Referenced Properties/Methods for SNIA_ReplicationServiceCapabilities ..826

Table 550. CIM Elements for Thin Provisioning ...848

Table 551. SMI Referenced Properties/Methods for CIM_HostedStoragePool ...850

Table 552. SMI Referenced Properties/Methods for SNIA_LogicalDisk ..850

Table 553. SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities (Concrete)851

Table 554. SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities (Global)853

Table 555. SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities (Primordial).............................854

Table 556. SMI Referenced Properties/Methods for SNIA_StorageConfigurationService...855

Table 557. SMI Referenced Properties/Methods for SNIA_StoragePool (Concrete) ...856

Table 558. SMI Referenced Properties/Methods for SNIA_StoragePool (Empty) ...857

Table 559. SMI Referenced Properties/Methods for SNIA_StoragePool (Primordial) ...858

Table 560. SMI Referenced Properties/Methods for SNIA_StorageSetting ...859

Table 561. SMI Referenced Properties/Methods for SNIA_StorageVolume ..861

Table 562. CIM Elements for Pools from Volumes...876

Table 563. SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume from Pool)............................876

Table 564. SMI Referenced Properties/Methods for CIM_ElementCapabilities...877

Table 565. SMI Referenced Properties/Methods for CIM_SystemDevice..878

Table 566. SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities ..878

Table 567. Supported Profiles for Group Masking and Mapping Profile ..881

Table 568. Extrinsic Methods for Masking Group Management...889

Table 569. Extrinsic Methods for Masking Views Management ...889

Table 570. CIM Elements for Group Masking and Mapping Profile ...894

Table 571. SMI Referenced Properties/Methods for CIM_AssociatedDeviceMaskingGroup...898

Table 572. SMI Referenced Properties/Methods for CIM_AssociatedInitiatorMaskingGroup..898

Table 573. SMI Referenced Properties/Methods for CIM_AssociatedTargetMaskingGroup ...898

Table 574. SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..899

Table 575. SMI Referenced Properties/Methods for CIM_AuthorizedSubject ...899

Table 576. SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...900

Table 577. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerConfiguirationService
and ProtocolController)...900
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxix

NO_ANSI_ID
Table 578. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeManagementService and
AuthorizedPrivilege) ...900

Table 579. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwareIDManagement-
Service and StorageHardwareID)...901

Table 580. SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwareIDManagement-
Service and SystemSpecificCollection) ..901

Table 581. SMI Referenced Properties/Methods for CIM_DeviceMaskingGroup ..902

Table 582. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Control-
lerConfigurationService) ...902

Table 583. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Protocol-
Controller)...903

Table 584. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Storage-
HardwareID) ...903

Table 585. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to Storage-
HardwareIDManagementService) ..903

Table 586. SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapabilities to System-
SpecificCollection) ..904

Table 587. SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabili-
ties)...904

Table 588. SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSystem and StorageClient-
SettingData)..905

Table 589. SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and StorageClientSettingData)
905

Table 590. SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolController and StorageCli-
entSettingData)...905

Table 591. SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardwareID and StorageCli-
entSettingData)...906

Table 592. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..906

Table 593. SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities...907

Table 594. SMI Referenced Properties/Methods for CIM_GroupMaskingMappingService ...911

Table 595. SMI Referenced Properties/Methods for CIM_HostedCollection ...912

Table 596. SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and ControllerConfigu-
rationService) ...912

Table 597. SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and PrivilegeManage-
mentService) ..912

Table 598. SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and StorageHardware-
IDManagementService)..913

Table 599. SMI Referenced Properties/Methods for CIM_InitiatorMaskingGroup ...913

Table 600. SMI Referenced Properties/Methods for CIM_MemberOfCollection..914

Table 601. SMI Referenced Properties/Methods for CIM_PrivilegeManagementService..914

Table 602. SMI Referenced Properties/Methods for CIM_ProtocolController..915

Table 603. SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit ..915

Table 604. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..916

Table 605. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between GroupMaskingMappingService and
MaskingGroup) ...916

Table 606. SMI Referenced Properties/Methods for CIM_StorageClientSettingData ..917

Table 607. SMI Referenced Properties/Methods for CIM_StorageHardwareID...917

Table 608. SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService......................................917

Table 609. SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..918

Table 610. SMI Referenced Properties/Methods for CIM_TargetMaskingGroup...919

Table 611. SMI Referenced Properties/Methods for SNIA_ProtocolControllerMaskingCapabilities ..919

Table 612. SMI Referenced Properties/Methods for SNIA_StorageHardwareID ...920
xxx

NO_ANSI_ID
Table 613. SMI Referenced Properties/Methods for SNIA_StorageHardwareIDManagementService920

Table B.1 Registry of StorageExtent Definitions ..923

Table B.2 Example Valid Combinations of Extent Definitions ..927

Table B.3 Extent Combinations not defined in this Release of the Standard ..927
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxxi

NO_ANSI_ID
xxxii

NO_ANSI_ID
List of Figures

Figure 1. Experimental Maturity Level Tag ...x

Figure 2. Implemented Maturity Level Tag..x

Figure 3. Stable Maturity Level Tag ...xi

Figure 4. Deprecated Tag ..xi

Figure 5. Array Profile Instance Diagram... 7

Figure 6. Array Package Diagram.. 8

Figure 7. Storage Capacity State ... 21

Figure 8. StoragePool Manipulation Instance Diagram.. 23

Figure 9. Capabilities Specific to a StoragePool .. 24

Figure 10. StorageVolume Creation Instance Diagram ... 32

Figure 11. Storage Configuration ... 34

Figure 12. StorageExtent Conservation - Step 1 ... 40

Figure 13. StorageExtent Conservation - Step 2 ... 41

Figure 14. StorageExtent Conservation - Step 3 ... 42

Figure 15. Block Services Predefined FilterCollection ... 45

Figure 16. Representative Block Service Instance Diagram.. 62

Figure 17. StoragePool Creation - Initial State... 63

Figure 18. StoragePool Creation - Step 1 .. 64

Figure 19. StoragePool Creation - Step 2 .. 64

Figure 20. StoragePool Creation - Step 3 .. 65

Figure 21. StorageVolume Creation - Initial State.. 66

Figure 22. StorageVolume Creation - Step 1 ... 66

Figure 23. StorageVolume Creation - Step 2 ... 67

Figure 24. StorageVolume Creation - Step 3 ... 68

Figure 25. Class Diagram for SNIA_ View Classes ... 142

Figure 26. Block Storage View Class Capabilities ... 143

Figure 27. SNIA_VolumeView and related associations.. 144

Figure 28. SNIA_DiskDriveView and related associations... 146

Figure 29. SNIA_ExposedView Association .. 148

Figure 30. SNIA_MaskingMappingView Association ... 149

Figure 31. The SNIA_MappingProtocolControllerView .. 151

Figure 32. The SNIA_StoragePoolView... 153

Figure 33. The SNIA_ReplicaPairView .. 156

Figure 34. Block Server Performance Subprofile Summary Instance Diagram ... 200

Figure 35. Base Array Profile Block Server Performance Instance Diagram... 203

Figure 36. Base Storage Virtualizer Profile Block Server Performance Instance Diagram.................................. 205

Figure 37. Base Volume Management Profile Block Server Performance Instance Diagram 207

Figure 38. Multiple Computer System Subprofile Block Server Performance Instance Diagram 210

Figure 39. Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram........................ 211

Figure 40. Extent Composition Subprofile Block Server Performance Instance Diagram 213

Figure 41. Disk Drive Lite Subprofile Block Server Performance Instance Diagram ... 214

Figure 42. SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram.. 215
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxxiii

NO_ANSI_ID
Figure 43. Remote Mirrors Block Server Performance Instance Diagram... 216

Figure 44. Block Server Performance Manifest Collections... 218

Figure 45. Block Services Support for Count Key Data Storage.. 282

Figure 46. Copy Services Discovery .. 333

Figure 47. Local Replica .. 337

Figure 48. Multi-Level Local Replication .. 338

Figure 49. Multiple Snapshots Per Source Element .. 339

Figure 50. SettingsDefineState Association... 343

Figure 51. SynchronizationAspect Instance... 345

Figure 52. State Transitions for Mirrors and Clones .. 354

Figure 53. State Transitions for Snapshots and Migration ... 355

Figure 54. CopyState Transitions... 357

Figure 55. Sample CopyState and ProgressStatus Transitions... 363

Figure 56. Fixed Space Consumption.. 367

Figure 57. Variable Space Consumption ... 368

Figure 58. Fixed Space Consumption.. 399

Figure 59. Variable Space Consumption ... 400

Figure 60. CIM Elements in the Disk Drive Model ... 438

Figure 61. Sparing Instance Diagram .. 461

Figure 62. Variations of RS per Storage Element .. 464

Figure 63. Before Failure ... 466

Figure 64. During Failure ... 466

Figure 65. After Failure .. 467

Figure 66. Model Elements .. 487

Figure 67. Remaining Extents in Extent Composition.. 499

Figure 68. Volume Composition from General QOS Pool.. 501

Figure 69. Single QOS Pool Composition (RAID Groups) ... 502

Figure 70. SIngle QOS Pool Composition - Two Concretes .. 503

Figure 71. Concatenation Composition.. 505

Figure 72. RAID0 Composition .. 505

Figure 73. RAID1 Composition .. 506

Figure 74. RAID10 Composition .. 507

Figure 75. RAID0+1 Composition .. 508

Figure 76. RAID4, 5 Composition .. 509

Figure 77. RAID 6, 5DP, 4DP .. 510

Figure 78. RAID15 Composition .. 511

Figure 79. RAID50 Composition .. 512

Figure 80. RAID51 Composition .. 513

Figure 81. Generic System with no Configuration Service... 540

Figure 82. Generic System with ControllerConfigurationService ... 541

Figure 83. Relationship of Initiator IDs, Endpoints, and Logical Units ... 542

Figure 84. StorageClientSettingData Model... 545

Figure 85. Entire Model.. 546

Figure 86. Storage Asymmetry Class Hierarchy .. 593

Figure 87. Asymmetry with MCS.. 595

Figure 88. Ports Do Not Failover, Healthy ... 596
xxxiv

NO_ANSI_ID
Figure 89. Ports Do Not Failover, Failed Controller ... 597

Figure 90. Ports Failover, Healthy.. 598

Figure 91. Ports Failover, Failed Controller ... 599

Figure 92. Resource Ownership for Block Services... 616

Figure 93. ServiceAffectsElement Associations for ResourceOwnership.. 619

Figure 94. AuthorizedPrivilege Associations for ResourceOwnership ... 620

Figure 95. Storage Virtualizer Package Diagram... 623

Figure 96. Storage Virtualizer System Instance... 625

Figure 97. Virtualizer, Cascading and Initiator Ports.. 628

Figure 98. Volume Composition Class Mode... 662

Figure 99. Example 1 Step 1.. 665

Figure 100.Example 1 Step 2 ... 666

Figure 101.First Alternative Example - Before Composition ... 667

Figure 102.First Alternative Example - After Composition .. 668

Figure 103. Second Alternative Example - Before Composition ... 669

Figure 104.Second Alternative Example - After Composition... 670

Figure 105.Example 2 - Before Composition .. 671

Figure 106.Example 2 - After Composition ... 672

Figure 107.Striping and Concatenation .. 673

Figure 108.Volume Management Instance Diagram .. 700

Figure 109.Storage Element Protection Class Model ... 712

Figure 110.Retention Time Line.. 716

Figure 111.Protection State Transition DIagram... 717

Figure 112.Step 1 - Initial State .. 718

Figure 113.Step 2 - Volume Set to Read-only .. 719

Figure 114.Step 3 - Second Volume Set to Read-only ... 720

Figure 115.Step 4 - Volume Set to Read/Write Disabled.. 721

Figure 116.Step 5 Volume Access Changed .. 722

Figure 117.Replication Services Discovery... 735

Figure 118.Local Replica .. 737

Figure 119.Remote Replica .. 738

Figure 120.Remote Replication over two Paths.. 739

Figure 121.Expanded Remote Replica ... 740

Figure 122.An instance of ReplicationEntity ... 741

Figure 123.StorageSynchronized and ReplicationEntity... 741

Figure 124.Multi-hop Replication .. 742

Figure 125.Group Instances ... 743

Figure 126.Sequentially Consistent Example ... 744

Figure 127.Associated Groups and Elements .. 745

Figure 128.SettingsDefineState Association... 746

Figure 129.SynchronizationAspect Instance... 747

Figure 130.One-to-Many Association ... 748

Figure 131.CopyState Transitions .. 750

Figure 132.Sample CopyState and ProgressStatus Transitions... 752

Figure 133.Fixed Space Consumption.. 756

Figure 134.Variable Space Consumption ... 757
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxxv

NO_ANSI_ID
Figure 135.Instance Diagram for Access to shadow Resources .. 760

Figure 136.Instance of ServiceAccessPoint ... 760

Figure 137.Replication Services support for Cascading ... 761

Figure 138.Cascading and Replication Groups .. 762

Figure 139.Thin Provisioning .. 832

Figure 140.RAID1 Capacity after Volume Creation .. 846

Figure 141.RAID1 Capacity with Thin Volume and RAID-at-Pool Approach .. 847

Figure 142.RAID1 Capacity with Thin Volume and RAID-at-Volume Approach ... 848

Figure 143.Class Model .. 866

Figure 144.Before Pool Creation .. 867

Figure 145.After Pool Creation ... 869

Figure 146.After Pool Creation without Extent Composition... 870

Figure 147.Group Masking and Mapping Model ... 883

Figure 148.Masking Groups.. 884

Figure 149.Nested Masking Groups ... 885

Figure 150.Nested Masking Group Example .. 886

Figure 151.Example ConsistentLogicalUnitNumber set to true .. 887

Figure 152.Example ConsistentLogicalUnitNumber set to false ... 888
xxxvi

NO_ANSI_ID
Foreword

The Block Devices part of the Storage Management Technical Specification contains the profiles for devices that
serve block storage. These devices include RAID arrays, Storage Virtualizers, host volume managers, and disk
drives. This part also contains supporting profiles, such as the Block Services package.

Parts of this Standard

This standard is subdivided in the following parts:

• Storage Management Technical Specification, Overview, 1.5.0 Rev 6

• Storage Management Technical Specification, Part 1 Common Architecture, 1.5.0 Rev 6

• Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6

• Storage Management Technical Specification, Part 3 Block Devices, 1.5.0 Rev 6

• Storage Management Technical Specification, Part 4 Filesystems, 1.5.0 Rev 6

• Storage Management Technical Specification, Part 5 Fabric, 1.5.0 Rev 6

• Storage Management Technical Specification, Part 6 Host Elements, 1.5.0 Rev 6

• Storage Management Technical Specification, Part 7 Media Libraries, 1.5.0 Rev 6

Acknowledgments

The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to recognize the
significant contributions made by the following members:

Organization Represented Name of Representative
Brocade Communications Systems.. John Crandall
EMC Corporation ..George Ericson
..Mike Hadavi
..Mike Thompson
Hitachi Data Systems..Eric Hibbard
..Steve Quinn
IBM ...Krishna Harathi
Individual Contributor ..Mike Walker
Individual Contributor ..Paul von Behren
NetApp..Alan Yoder
Olocity/Individual Contributor ..Scott Baker
Pillar Data Systems...Gary Steffens
PMC-Sierra ...Steve Peters

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage Networking
Industry Association, 425 Market Street, Suite 1020, San Francisco, CA 94105, U.S.A.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position xxxvii

NO_ANSI_ID
xxxviii

NO_ANSI_ID Scope

1

2

3

4

5

6

Clause 1: Scope

This Technical Specification defines an interface for the secure, extensible, and interoperable management of a
distributed and heterogeneous storage system. This interface uses an object-oriented, XML-based, messaging-
based protocol designed to support the specific requirements of managing devices and subsystems in this storage
environment. Using this protocol, this Technical Specification describes the information available to a WBEM Client
from an SMI-S compliant CIM WBEM Server.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 1

Scope NO_ANSI_ID
2

NO_ANSI_ID Normative References

1

2

3

4

5

6

7

8

9

10

11

12

13
Clause 2: Normative References

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

2.1 Approved references

ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]

2.2 References under development

Storage Management Technical Specification, Part 1 Common Architecture, 1.5.0 Rev 6

Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

DMTF WBEM URI Mapping Specification (DSP0207) 1.0.01 (preliminary)

2.3 Other references

DMTF DSP0214:2004 CIM Operations over HTTP
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 3

Normative References NO_ANSI_ID
4

NO_ANSI_ID Terms and definitions

1

2

3

Clause 3: Terms and definitions

For the purposes of this document, the terms and definitions given in Storage Management Technical
Specification, Part 1 Common Architecture, 1.5.0 Rev 6 and the following apply.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 5

Terms and definitions NO_ANSI_ID
6

NO_ANSI_ID Array Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
STABLE

Clause 4: Array Profile

4.1 Description

The Array Profile describes RAID array systems. The RAID systems supported by this profile are standalone and
use local disks to store the data. Systems that use external storage or a combination of local and external storage
are “Storage Virtualizers”. Systems that plug into backplanes or are on mother boards should use Clause 8: Host
Hardware RAID Controller Profile in Storage Management Technical Specification, Part 6 Host Elements, 1.5.0
Rev 6.

The model consists of multiple subprofiles and packages. The main component profiles are:

• The Array Profile contains a CIM_ComputerSystems object that represents the array as a whole. It is the top
level object for the profile.

• Block Services Package is the main part of the model. It contains the StorageExtents that represent the
physical storage, StoragePools that gather together the extents and supports allocation and QoS (Quality of
Service) settings, and StorageVolmes that represent the logical devices allocated from the pools.

• Target Ports component profile model the ports (e.g., Fibre Channel or iSCSI) through which the LUNs are
made available to hosts.

Figure 5: "Array Profile Instance Diagram" is a simplified instance diagram of an array

Figure 5 - Array Profile Instance Diagram

ComputerSystem

SCSIProtocolEndpoint

SCSIProtocolController

StorageVolume

SAPAvailableForElement

ProtocolControllerForUnitSystemDevice

One of the Target ports subprofiles

Block services package

HostedAccessPoint

SCSIProtocolControllerSCSIArbitraryLogicalUnit

SystemDevice

SCSIProtoolControllerForUnit SCSIProtoolControllerForUnit
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 7

Array Profile NO_ANSI_ID

17

18

19

20

21

22

23

24

25

26

27

28

29
At the minimum, the Array Profile provides a high level read-only ‘view’ of an array. Clause 5: Block Services
Package includes the basic description of how storage is managed.

The various subprofiles indicated in Figure 6: "Array Package Diagram" cover other areas of functionality like
location, software/firmware versions, and access to the management interfaces of the array.

The base “Array” Profile only contains the CIM_ComputerSystem object representing the array. This object is
attached to the other subprofiles and packages through a set of associations.

The Block Services Package (see Clause 5: Block Services Package) supports configuration of the storage using a
QoS (Quality of Service) model. The model is further extended by the “Extent Composition Subprofile” (see Clause
14: Extent Composition Subprofile) to model the details of how the RAID sets are composed. This subprofile
supports the detailed configuration of storage by the selection of disk drives and partitions that make-up the RAID
sets.

Target Ports model the array ports that provide block data service to the host systems. These ports shall be
modeled.

Figure 6 - Array Package Diagram

Location

Extent Composition

Disk Drive
Lite

LUN Mapping & Masking Service

Copy Services

Array Profile

Multiple
Computer

System

Access Points

Software

Job Control

Block Services Package

Device Credentials

PhysicalPackage Package

 HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint

ComponentCS

BasedOn

ConcreteComponent

PhysicalElementLocation

InstalledSoftwareIdentity

OwningJobElement

Target Ports
HostedService

Block Server Performance

Initiator
Ports

Disk Sparing

Hosted
Access
Point

Replication
 Services

Thin Provisioning

Storage
Server

Asymmetry

HostedCollection

Storage
Element

Protection

Erasure

HostedCollection

HostedService
8

NO_ANSI_ID Array Profile

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
The Generic Initiator Ports Profile (see Clause 14: Generic Initiator Ports Profile) and the Disk Drive Lite Subprofile
(see Clause 11: Disk Drive Lite Subprofile) are used to model the physical disk drives and how they are attached to
the array system. This part of the model is optional.

Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6, Clause 30: Multiple Computer
System Subprofile models multiple controllers in a single array system. The model provides a way to model failover
and other redundant behavior of a multiple controller system. This subprofile is optional.

The Array Profile includes the “Copy Services” Subprofile to model and configure local and remote snapshots,
clones, mirrors, and other array based copying. The copy services will be enhanced in the future to model remote
replication. The enhancement is included as experimental in this version of SMI-S. This part of the model is
optional.

Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6 Clause 31: Physical Package
Package describes the physical layout of the array and includes product identification information.

4.2 Health and Fault Management

Health and Fault management is described in the referenced subprofiles and packages.

4.3 Cascading Considerations

Not defined in this standard.

4.4 Supported Subprofiles and Packages

Table 1 describes the supported profiles for Array.

Table 1 - Supported Profiles for Array

Profile Name Organization Version Requirement Description

Access Points SNIA 1.3.0 Optional

Block Server
Performance

SNIA 1.5.0 Optional

Cluster SNIA 1.0.2 Optional Deprecated.

Extra Capacity Set SNIA 1.0.2 Optional Deprecated.

Disk Drive SNIA 1.0.2 Optional Deprecated.

Disk Drive Lite SNIA 1.5.0 Optional

Extent Mapping SNIA 1.0.2 Optional Deprecated.

Extent Composition SNIA 1.5.0 Optional

Location SNIA 1.4.0 Optional

Software SNIA 1.4.0 Optional

Copy Services SNIA 1.5.0 Optional

Pool Manipulation
Capabilities and
Settings

SNIA 1.02 Optional Deprecated.

LUN Creation SNIA 1.0.2 Optional Deprecated.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 9

Array Profile NO_ANSI_ID
Device Credentials SNIA 1.3.0 Optional

LUN Mapping and
Masking

SNIA 1.0.2 Optional Deprecated.

Masking and
Mapping

SNIA 1.4.0 Optional

Disk Sparing SNIA 1.5.0 Optional

Block Services SNIA 1.5.0 Mandatory

CKD Block Services SNIA TBD Optional Experimental.

Indication SNIA 1.5.0 Mandatory

Experimental
Indication

SNIA 1.5.0 Optional Experimental.

Physical Package SNIA 1.5.0 Mandatory

Health SNIA 1.2.0 Mandatory

Multiple Computer
System

SNIA 1.2.0 Optional

Block Storage Views SNIA 1.5.0 Optional Experimental.

Volume Composition SNIA 1.5.0 Optional Experimental.

Job Control SNIA 1.5.0 Optional

Storage Element
Protection

SNIA 1.4.0 Optional Experimental.

Storage Server
Asymmetry

SNIA 1.4.0 Optional Experimental.

Erasure SNIA 1.2.0 Optional Experimental.

Thin Provisioning SNIA 1.5.0 Optional Experimental.

Replication Services SNIA 1.5.0 Optional Experimental.

Operational Power SNIA 1.5.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version
1.0.0

FC Target Ports SNIA 1.4.0 Support for
at least one
is mandatory.iSCSI Target Ports SNIA 1.2.0

SAS Target Ports SNIA 1.4.0

SB Target Ports SNIA 1.2.0

Table 1 - Supported Profiles for Array

Profile Name Organization Version Requirement Description
10

NO_ANSI_ID Array Profile

48

49

50

51

52

53

54

55
4.5 Methods of the Profile

None.

4.6 Client Considerations and Recipes

None.

4.7 Registered Name and Version

Array version 1.5.0 (Autonomous Profile)

4.8 CIM Elements

Table 2 describes the CIM elements for Array.

FC Initiator Ports SNIA 1.4.0

SAS Initiator Ports SNIA 1.4.0

ATA Initiator Ports SNIA 1.4.0

Backend Ports SNIA 1.0.2 Deprecated.

Table 2 - CIM Elements for Array

Element Name Requirement Description

4.8.1 CIM_ComputerSystem (Top Level
System)

Mandatory 'Top level' system that represents the whole
array. Associated to RegisteredProfile.

4.8.2 CIM_FilterCollection (Array Predefined
FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

4.8.3 CIM_HostedCollection (Array to
predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

Table 1 - Supported Profiles for Array

Profile Name Organization Version Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 11

Array Profile NO_ANSI_ID
4.8.4 CIM_IndicationFilter (Array System
Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the addition of a new array
system instance.

4.8.5 CIM_IndicationFilter (Array System
Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the removal of a new array
system instance.

4.8.6 CIM_MemberOfCollection (Predefined
Filter Collection to Array Filters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Array
predefined FilterCollection to the predefined
Filters supported by the Array.

4.8.7 CIM_ProtocolControllerForUnit
(Arbitrary LU for All LUNs View)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

4.8.8 CIM_ProtocolControllerForUnit (Storage
volumes for All LUNs View)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

4.8.9 CIM_SCSIArbitraryLogicalUnit (Arbitrary
LU)

Optional A SCSI Logical Unit that exists only for
management of the array.

4.8.10 CIM_SCSIProtocolController (All LUNs
View)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

4.8.11 CIM_SystemDevice (System to
SCSIArbitraryLogicalUnit)

Conditional Conditional requirement: Elements that are
mandatory if SCSIArbitraryLogicalUnit is
instantiated. This association links
SCSIArbitraryLogicalUnit to the scoping
system.

4.8.12 CIM_SystemDevice (System to
SCSIProtocolController)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented. This association links
SCSIProtocolController to the scoping
system.

Table 2 - CIM Elements for Array

Element Name Requirement Description
12

NO_ANSI_ID Array Profile

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70
4.8.1 CIM_ComputerSystem (Top Level System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile
instance shall have RegisteredName set to 'Array', RegisteredOrganization set to 'SNIA', and RegisteredVersion
set to '1.5.0'.

Table 3 describes class CIM_ComputerSystem (Top Level System).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Addition of a new array instance. See section
Storage Management Technical Specification,
Part 3 Block Devices, 1.5.0 Rev 6 4.8.4
CIM_IndicationFilter (Array System Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of an array instance. See section
Storage Management Technical Specification,
Part 3 Block Devices, 1.5.0 Rev 6 4.8.5
CIM_IndicationFilter (Array System Deletion).

Table 3 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the array. Eg IP address.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory

IdentifyingDescription
s

C Mandatory

OperationalStatus Mandatory Overall status of the array.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to
operation as a storage array.

PrimaryOwnerContac
t

M Optional Contact a details for owner.

PrimaryOwnerName M Optional Owner of the array.

Table 2 - CIM Elements for Array

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 13

Array Profile NO_ANSI_ID

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85
4.8.2 CIM_FilterCollection (Array Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. An Array
implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 4 describes class CIM_FilterCollection (Array Predefined FilterCollection).

4.8.3 CIM_HostedCollection (Array to predefined FilterCollection)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 5 describes class CIM_HostedCollection (Array to predefined FilterCollection).

4.8.4 CIM_IndicationFilter (Array System Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new array system
instance. This would represent the addition of a controller computer system to the array. This is a special case of
the CIM_IndicationFilter (pre-defined) class as defined in the Indication Profile.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 4 - SMI Referenced Properties/Methods for CIM_FilterCollection (Array Predefined Filter-
Collection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Array'.

Table 5 - SMI Referenced Properties/Methods for CIM_HostedCollection (Array to predefined Fil-
terCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Array.

Antecedent Mandatory Reference to the 'Top level' Array System.
14

NO_ANSI_ID Array Profile

86

87

88

89

90

91

92

93

94

95
Table 6 describes class CIM_IndicationFilter (Array System Creation).

4.8.5 CIM_IndicationFilter (Array System Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the removal of a new array system
instance. This would represent the removal of a controller computer system from the array. This is a special case of
the CIM_IndicationFilter (pre-defined) class as defined in the Indication Profile.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 6 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Creation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Array:SystemCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 15

Array Profile NO_ANSI_ID

96

97

98

99

100

101
Table 7 describes class CIM_IndicationFilter (Array System Deletion).

4.8.6 CIM_MemberOfCollection (Predefined Filter Collection to Array Filters)

Experimental. This associates the Array predefined FilterCollection to the predefined Filters supported by the
Array.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 7 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Array:SystemDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
16

NO_ANSI_ID Array Profile

102

103

104

105

106

107

108

109

110

111

112

113
Table 8 describes class CIM_MemberOfCollection (Predefined Filter Collection to Array Filters).

4.8.7 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 9 describes class CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View).

4.8.8 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 8 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Array Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Array predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Array.

Table 9 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for
All LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be
formatted as unseparated uppercase hexadecimal digits,
with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as
exposed through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI Arbitrary logical unit.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 17

Array Profile NO_ANSI_ID

114

115

116

117

118

119

120

121

122

123

124

125
Table 10 describes class CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View).

4.8.9 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 11 describes class CIM_SCSIArbitraryLogicalUnit (Arbitrary LU).

4.8.10 CIM_SCSIProtocolController (All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 10 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage vol-
umes for All LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be
formatted as unseparated uppercase hexadecimal digits,
with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as
exposed through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block
Services StorageVolume).

Table 11 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifer.

ElementName Mandatory User-friendly name.

Name Mandatory

OperationalStatus Mandatory
18

NO_ANSI_ID Array Profile

126

127

128

129

130

131

132

133

134

135

136

137

138
Table 12 describes class CIM_SCSIProtocolController (All LUNs View).

4.8.11 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if SCSIArbitraryLogicalUnit is instantiated.

Table 13 describes class CIM_SystemDevice (System to SCSIArbitraryLogicalUnit).

4.8.12 CIM_SystemDevice (System to SCSIProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 14 describes class CIM_SystemDevice (System to SCSIProtocolController).

Table 12 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 13 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitrary-
LogicalUnit)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 14 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocol-
Controller)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 19

Array Profile NO_ANSI_ID
STABLE
20

NO_ANSI_ID Block Services Package

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
STABLE

Clause 5: Block Services Package

5.1 Description

5.1.1 General

Many devices and applications provide their storage capacity to external devices and applications (block
consumers) through block-based I/O. This subprofile defines a standard expression of existing storage capacity,
the assignment of capacity to StoragePools, and allocation of capacity to be used by external devices or
applications.

A block is:

• The unit in which data is stored and retrieved on disk and tape devices.

• A unit of application data from a single information category that is transferred within a single sequence.

5.1.2 Storage Capacity States

Figure 7: "Storage Capacity State" illustrates the state of a block of storage.

Each block of capacity within a storage device or application has a state. StorageVolumes and LogicalDisks, the
storage elements described in this section, are distinct groupings of blocks. An unconfigured storage device or
application may not have its capacity organized into concrete StoragePools. All blocks within that unconfigured
device or application start in an unassigned state. Once a block is a member of a concrete StoragePool, storage
capacity can be assigned. Once a block is a member of a storage element, like a StorageVolume or LogicalDisk,
the storage capacity has been allocated for use by a block consumer. Once a block is visible to one or more block
consumers, that capacity is exposed.

Figure 7 - Storage Capacity State

Unassigned Assigned

Allocated Exposed

Create concrete Pool

create storage element

Make
externally
visible

Start

End
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 21

Block Services Package NO_ANSI_ID

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
5.1.3 StoragePools

5.1.3.1 General

A StoragePool is a storage element; its storage capacity has a given set of capabilities. Those ‘StorageCapabilities’
indicate the 'Quality of Service' requirements that can be applied to objects created from the StoragePool.

A StoragePool is a mandatory part of modeling disk storage systems that support the Block Services package.
However, user manipulation of StoragePools is optional and may not be supported by all disk storage systems.
This profile defines the support required to expose functions for creating and modifying StoragePools.

StoragePools are scoped relative to the ComputerSystem (indicated by the HostedStoragePool association).
Objects created from a StoragePool have the same Computer System scope.

Child objects (e.g., StorageVolumes, LogicalDisks, or StoragePools) created from a StoragePool are linked back to
the parent StoragePool using an AllocatedFromStoragePool association.

There are two properties of StoragePools that describe the size of the ‘underlying’ storage:

• TotalManagedStorage describes the total storage in the StoragePool.

• RemainingManagedStorage describes the storage currently remaining in the StoragePool.

The Usage property indicates if a storage pool is reserved for use by the array itself; or if the storage pool is
reserved for certain operations such as "Reserved for Local Replication Services".

5.1.3.2 Primordial StoragePool

A primordial StoragePool is a type of StoragePool that contains unformatted, unprepared, or unassigned capacity.
Storage capacity is drawn from the primordial StoragePool to create concrete StoragePools. A primordial
StoragePool aggregates storage capacity not assigned to a concrete StoragePool. StorageVolumes and
LogicalDisks are allocated from concrete StoragePools.

At least one primordial StoragePool shall always exists on the block storage system to represent the unallocated
storage on the storage device. The sum of TotalManagedStorage attributes for all primordial StoragePools shall be
equal to the total size of the storage of the storage system. The primordial property shall be true for primordial
StoragePools.

A primordial StoragePool can be used to determine the amount of capacity on the block storage system that is not
assigned to a concrete StoragePool.

5.1.3.3 Concrete StoragePool

A concrete StoragePool is a type of StoragePool. This concrete StoragePool is the only type of StoragePool
created or modified by behaviors described in this package. A concrete StoragePool subdivides the storage
capacity available in a block server to enable creation or modification of StorageVolumes and LogicalDisks.
Concrete StoragePools can be used to assign capacity based on such factors as QoS, cost per megabyte, or
ownership of storage. A concrete StoragePool may aggregate the capacity of one or many RAID groups or RAID
ranks. A RAID group or rank may be created when the StorageVolume or LogicalDisk is created.

5.1.4 Blocks, Metadata, and Capacity Reported

This subprofile uses the term metadata to signify the capacity drawn for the creation of stripes, data copies, and
similar items. The capacity removed for such constructs when creating storage elements, like StoragePools,
StorageVolumes, and LogicalDisks, is reported in the difference between the capacity of the parent StoragePool
and the capacity of the child storage element allocated from that parent. The TotalManagedSpace property
represents the capacity that may be used to create or expand child storage elements. The
RemainingManagedSpace property represents capacity left to create a new storage element or expand an existing
storage element. One may use this profile to calculate capacity used for metadata.
22

NO_ANSI_ID Block Services Package

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
There is likely to be a difference between a) the capacity calculated by adding up the capacity of all the disks, as
reported by the manufacturers, or by adding up the LUNs consumed by a block server, as reported by the block
server that exposes them, and b) the capacity that can be used to create other storage organizations or constructs
from this capacity, like StoragePools, StorageVolumes, and LogicalDisks. This difference in capacity can be used
for disk formatting, for example. The difference in the capacity of the primordial StoragePool and the capacity used
to produce the primordial StoragePool is not reported through this subprofile.

5.1.5 StoragePool Management Instance Diagram

Figure 8: "StoragePool Manipulation Instance Diagram" shows an instance diagram for StoragePool manipulation.

5.1.6 StoragePool, StorageVolume and LogicalDisk Manipulation

5.1.6.1 General

StorageVolumes are allocations of storage capacity that shall be exposed from a system through an external
interface. In the CIM class hierarchy, they are a subclass of a StorageExtent. In SCSI terms, they are logical units.

LogicalDisks are the manifestations of the consumption of storage capacity on a general purpose computer, i.e., a
host, as revealed by the operating system or a Volume Manager. In the CIM class hierarchy, they are also a
subclass of a StorageExtent. LogicalDisks are a mandatory part of modeling host-based StorageVolume
managers.

StorageVolumes and LogicalDisks are consumable storage capacity. These storage elements are the only
StorageExtents available to consumers of the block service and a block device.

Figure 8 - StoragePool Manipulation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

SystemDevice

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

DeleteStoragePool()

HostedService

StorageConfigurationCapabilities

ElementCapabilites

StorageSetting

ElementSettingData

StorageSettingsGeneratedFromCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

StorageSettingsAssociatedToCapabilities
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 23

Block Services Package NO_ANSI_ID

80

81

82

83

84

85

86

87

88

89

90

91
However, creation or modification of StorageVolumes or LogicalDisks from StoragePools is optional and may not
be supported by a given disk storage system. This subprofile defines the support mandatory if the storage system
exposes functions for creating StorageVolumes from StoragePools.

EXPERIMENTAL

The Usage property indicates if a volume or a logical disk is reserved for a special purpose. For example, a volume
may be reserved for use by the array itself ("Reserved by the ComputerSystem"), or a volume may have been “set
aside” for use by the Migration Services, in which case the usage property of the volume is set to " Reserved by
Migration Services".

Figure 9 illustrates a situation where there are two StoragePools present in an implementation. The top most
StoragePool supports the same capabilities as is declared for the entire implementation. The bottom most
StoragePool supports the same capabilities as expressed by a different StorageConfigurationCapabilities instance,
but with an expanded set of capabilities. For example, the implementation may generally support the creation of
StoragePools from StoragePools, but the bottom most StoragePool in the diagram does not.

EXPERIMENTAL

Figure 9 - Capabilities Specific to a StoragePool

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool
SystemDevice

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

DeleteStoragePool()

HostedService

StorageConfigurationCapabilities

Least Common Set

ElementCapabilites

StorageSetting

ElementSettingData

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ElementCapabilities

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationCapabilities

LCS plus pool spec. cap.

ElementCapabilities
24

NO_ANSI_ID Block Services Package

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128
EXPERIMENTAL

Some implementations may impose conditions on when a StorageVolume may be deleted by a user. One example
of this is that the storage device may implement a rule that StorageVolumes may only be deleted in the reverse
order of creation. Under this rule, all StorageVolumes except the last one created would be marked as not being
able to be deleted. Some conditions where a StorgeVolume can not be deleted may be related to the Usage
property value of the StorageVolume. However this is determined by the implementation.

To enable clients to know which volumes may be deleted, a new property, CanDelete, has been added to
SNIA_StorageVolume class. If SNIA_StorageVolume.CanDelete is null or set to true, then the client shall be able to
delete the volume, subject to any additional constraints that may be defined in the profiles that would otherwise
prevent the volume from being deleted. If SNIA_StorageVolume.CanDelete is set to false, then any client attempt
to delete the volume shall be denied (failed) by the implementation, even if there are no constraints on that volume.

In the context of this profile, the value of CanDelete shall be determined by the implementation and shall not be
modifiable by the client. The reason is that there are implementation-specific rules that must be followed and that
clients are not allowed to change, even outside the SMI-S.

The value of CanDelete shall be set or cleared dynamically. For example, in the Pools from Volumes case, if a
volume that is contributing capacity to a pool is actively in use, it can not be deleted; however, if the same volume
that is no longer contributing capacity to a pool can be deleted. In other words, the expectation is that the value of
CanDelete shall change dynamically.

EXPERIMENTAL

5.1.6.2 StoragePool Manipulation Methods

The StorageConfigurationService, in conjunction with the capacity grouping concept of a StoragePool, allows
SMI-S clients to configure StoragePools within block storage systems without specific knowledge about the block
storage system configuration. The service has the following StoragePool manipulation methods:

• CreateOrModifyStoragePool: Create a StoragePool with a set of capabilities defined by the input
StorageSetting, with possible sources being other StoragePool(s) or StorageExtents. Or modify a StoragePool
to increase or decrease its capacity.

• DeleteStoragePool: Delete a StoragePool and return the freed-up storage to the underlying entities.

5.1.6.3 Storage Element Manipulation Methods

The StorageConfigurationService allows SMI-S clients to configure block storage systems with StorageVolumes
(ex. LUNs) without specific knowledge about the storage system capacity. The service has the following methods
for storage element manipulation:

• CreateOrModifyElementFromStoragePool: Create StorageVolume or LogicalDisk, possibly with a specific
StorageSetting, from a source StoragePool. Also modify a StorageVolume or LogicalDisk to increase or
decrease its capacity.

• CreateOrModifyElementFromElements: Create a StorageVolume or LogicalDisk using ComponentExtents of a
parent and source StoragePool. Also alter the set of member StorageExtents of a StorageVolume or
LogicalDisk or change the consumption of an existing set of member StorageExtents.

• ReturnToStoragePool: Return an element previously created with CreateOrModifyElementFromStoragePool to
the originating StoragePool.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 25

Block Services Package NO_ANSI_ID

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166
EXPERIMENTAL

• To locate Pools, Volumes, or Logical Disks based on their current usage, use the method
StorageConfigurationService.GetElementsBasedOnUsage.

EXPERIMENTAL

5.1.6.4 Storage Capability Methods

The StorageCapabilities instances provide the ability to create and modify settings for use in StorageVolume
creation using the following methods (part of the StorageCapabilities class):

• CreateSetting: Creates a setting consistent with the StorageCapabilities, may be modified before use in
creating a StoragePool, StorageVolume, or LogicalDisk.

• GetSupportedStripeLengths and GetSupportedStripeLengthRange: Returns the possible stripe lengths for that
capability

• GetSupportedStripeDepths and GetSupportedStripeDepthRange: Returns the possible stripe depths for that
capability

• GetSupportedParityLayouts: Returns the possible parity layouts, rotated or non-rotated, for that capability.

See 5.5.3 for details on the associations from Setting to Capabilities.

5.1.6.5 Storage Element Size Retrieval

The StoragePool instances provide the ability to retrieve the possible sizes for the StorageVolume or LogicalDisk
creation or modification given a StorageSetting as a goal:

• GetSupportedSizes: Returns a list of discrete sizes, given a goal. Also can return the discontiguous capacity in
the StoragePool not yet assigned to a concrete StoragePool or allocated to a storage element.

• GetSupportedSizeRange: Returns the range of possible sizes, given a goal.

• GetAvailableExtents: Returns an array of StorageExtent references that matches a given goal and are
components of the StoragePool and are not already members of an existing consumable storage element,
child StoragePool, StorageVolume, or LogicalDisk.

5.1.7 Declaring Storage Configuration Options

If no StorageConfigurationService is present, then the implementation offers no standard configuration capability
(see section 5.1.4 "Blocks, Metadata, and Capacity Reported"). If the implementation includes an instance of
StorageConfigurationService, it shall also instantiate exactly one StorageConfigurationCapabilities instance
associated to the service, referred to as the Global StorageConfigurationCapabilities. The global
StorageConfigurationCapabilities shall identify the capabilities of the implementation unless overridden by other
provisions. For example, SMI-S does not allow creation of StorageVolumes (or LogicalDisks) from Primordial
StoragePools. So, even if the StorageConfigurationCapabilities indicates that creation of StorageVolumes are
supported, this is overridden by the SMI-S rule that StorageVolumes (or LogicalDisks) shall not be created from
Primordial Pools.

The Global StorageConfigurationCapabilities defines the overall capabilities that are supported by the
implementation. This instance of StorageConfigurationService shall represent the methods and capabilities of the
entire implementation. The Global StorageConfigurationService instance shall state what operation can be done at
some time on some set of StoragePools, even if the implementation does not permit some of these operations for
some subset of all StoragePools. For example, if create volume is allowed for some StoragePool, then the Global
instance shall advise that the create volume operation is supported.
26

NO_ANSI_ID Block Services Package

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183
EXPERIMENTAL

Each individual StoragePool may limit these capabilities using another instance of the
StorageConfigurationCapabilities associated to that StoragePool via ElementCapabilities. This instance of
StorageConfigurationCapabilities represents what configuration operations are permitted for that StoragePool. The
StoragePool specific instance of StorageConfigurationCapabilities shall not be associated to the
StorageConfigurationService also. If no StorageConfigurationCapabilities are instantiated for a StoragePool, the
client can assume that the Global StorageConfigurationCapabilities apply.

EXPERIMENTAL

Table 15 defines how the SupportedSynchronousActions and SupportedAsynchonousActions array values map to
methods in the StorageConfigurationService class. The presence of an ‘Action’ from Table 15 in the
SupportedSynchronousActions array indicates that the associated ‘SCS Method’ does not produce a Job as a
side-effect. Likewise, the presence of an ‘Action’ from Table 15 in the SupportAsynchronousActions array indicates
that the associated ‘SCS Method’ may produce a Job as a side-effect and a client may use the Job to monitor the
progress of the work being done. If an ‘Action” may be present in both arrays, the implementation may or may not
produce a Job as a side effect.

EXPERIMENTAL

When a StorageConfigurationCapabilities is associated to a StoragePool, the application of the capability is in the
context of the StoragePool to which the capabilities are associated. Table 15 also gives the specific meanings of a
supported actions in the context of the associated pool (“Pool x”).

EXPERIMENTAL

Table 15 - Mapping: Supported Actions to Methods

Action Associated to “Pool x” Meaning SCS Method

2 “Storage Pool Creation”,
4 “Storage Pool Modification”

“Pool x” may be used as the InPools
parameter of
CreateOrModifyStoragePool

CreateOrModifyStoragePool

3 “Storage Pool Deletion“ “Pool x” may be used as the Pool
parameter of DeleteStoragePool

DeleteStoragePool

5 “Storage Element Creation“,
7 “Storage Element Modification“

“Pool x” may be used as the InPool
parameter of
CreateOrModifyElementFromStorage
Pool

CreateOrModifyElementFromSto
ragePool

6 “Storage Element Return“ No meaning specified. ReturnToStoragePool
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 27

Block Services Package NO_ANSI_ID

184

185

186
The SupportedStorageElementTypes array declares what type of storage element may be created or modified by
this implementation. For example, support of the StoragePool methods (CreateOrModifyStoragePool and
DeleteStoragePool) implies support of creation or modification of storage elements of type StoragePool.

12 “Storage Element from
Element Creation“

A Storage Element may be created
from StorageExtents that are
components of "Pool x" (the
StorageExtents have a
ConcreteComponent or
AssociatedComponentExtent
association to "Pool x").

CreateOrModifyElementFromEle
ments

13 “Storage Element From
Element Modification“

"Pool x" may be used for Storage
Element modification using
CreateOrModifyElementFromElement
s. "Pool x" would be TheElement
parameter of the method call.

14 "Element Usage Modification" No meaning specified. RequestUsageChange

15 "StoragePool Usage
Modification"

“Pool x” may be used as the
TheElement parameter of
RequestUsageChange

Table 15 - Mapping: Supported Actions to Methods

Action Associated to “Pool x” Meaning SCS Method
28

NO_ANSI_ID Block Services Package

187

188

189
EXPERIMENTAL

When a StorageConfigurationCapabilities are associated to a StoragePool, the valid values of properties differ
between Concrete StoragePools and Primordial StoragePools. The valid values and their interpretation are
summarized in Table 16.

Table 16 - Valid Values for StorageConfigurationCapabilities associated to a Pool

ConfigurationCapabilities
Property

Valid Values for Primordial Pools Valid Values for Concrete Pools

SupportedStorageElementTypes none “2” (StorageVolume) or “4”
(LogicalDisk)

SupportedStoragePoolFeatures "2" (InExtents) or "3" (Single InPool)

NOTE: This is in reference to creation
of pools from the Primordial Pool.

"2" (InExtents), "3" (Single
InPool), "5" (Storage Pool QoS
Change), "6" (Storage Pool
Capacity Expansion) or "7"
(Storage Pool Capacity
Reduction)

NOTE: The first two values is in
reference to creation of pools
from the Concrete Pool. The
second three are in reference to
the associated pool (e.g.,
expansion of the pool associated
to this capabilities).

SupportedStorageElementFeatur
es

none "3" (StorageVolume Creation) or
"8" (LogicalDisk Creation)

SupportedSynchronousActions "2" (Storage Pool Creation), "12"
(Storage Element from Element
Creation) or "15" (StoragePool Usage
Modification)

"2" (Storage Pool Creation), "3"
(Storage Pool Deletion), "4"
(Storage Pool Modification), "5"
(Storage Element Creation), "12"
(Storage Element from Element
Creation), "13" (Storage Element
from Element Modification) or 15"
(StoragePool Usage Modification)

SupportedAsynchronousActions "2" (Storage Pool Creation), "12"
(Storage Element from Element
Creation) or "15" (StoragePool Usage
Modification)

"2" (Storage Pool Creation), "3"
(Storage Pool Deletion), "4"
(Storage Pool Modification), "5"
(Storage Element Creation), "12"
(Storage Element from Element
Creation), "13" (Storage Element
from Element Modification) or 15"
(StoragePool Usage Modification)

SupportedStorageElementUsage none none

ClientSettableElementUsage none none

SupportedStoragePoolUsage any any

ClientSettablePoolUsage any any
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 29

Block Services Package NO_ANSI_ID

190

191

192

193

194

195

196

197

198

199
EXPERIMENTAL

EXPERIMENTAL

The arrays SupportedStorageElementUsage and SupportedStoragePoolUsage express what usage values apply
to the storage elements types. That is, the storage element shall have one of the stated usages.

The arrays ClientSettableElementUsage and ClientSettablePoolUsage express what usage values may be
manipulated by SMI-S Clients. That is, only storage elements of the given type may have their usage change
changed.

EXPERIMENTAL

The SupportedStoragePoolFeatures array declares what StoragePool behavior is supported, as shown in Table 17.

EXPERIMENTAL

Support for 3 “Single InPools” is fully defined in this specification, but 4 “Multiple InPools” is not fully defined and is
considered experimental.

EXPERIMENTAL

The SupportedStorageElementFeatures array declares which special features the configuration methods support,
shown in Table 18.

Table 17 - SupportedStoragePoolFeatures Array

Supported StoragePool Behavior Explanation

2 “InExtents” A StoragePool may be created from
StorageExtents.

3 “Single InPools”, 4 “Multiple InPools" A StoragePool may be the source of capacity
for StoragePool creation or modification, i.e.,
concrete StoragePools may be created from
other StoragePools.

5 "StoragePool QoS Change" A new setting may be used to modify the
quality of service of a StoragePool.

6 "StoragePool Capacity Expansion" A StoragePool may be expanded

7 "StoragePool Capacity Reduction" A StoragePool may be shrunk. This operation
may be destructive

Table 18 - SupportedStoragePoolFeatures Array

Supported Special Features Explanation

3 "StorageVolume Creation", 5
"StorageVolume Modification"

The SMI-S implementation can create or
modify StorageVolumes respectively.
30

NO_ANSI_ID Block Services Package

200

201

202

203
Support for 6 “Single InPools” is fully defined in this specification, but 7 “Multiple InPools” is not fully defined and is
considered experimental.

EXPERIMENTAL

The SupportedStoragePoolFeatures array indicates which storage elements may be manipulated by SMI-S Clients
and thereby which elements can be modified in the ways expressed by these features.

8 "LogicalDisk Creation", 9 "LogicalDisk
Modification"

The SMI-S implementation can create or
modify LogicalDisks respectively.

6 "Single InPool", 7 "Multiple InPools" If a SMI-S implementation supports the
creation or modification of storage elements,
then the implementation shall support this
creation or modification of concrete
StoragePools from either a single StoragePool
only or from multiple input StoragePools.

11 "Storage Element QoS Change", 12
"Storage Element Capacity Expansion", 13
"Storage Element Capacity Reduction

The SMI-S implementation can change the
quality of service, grow the capacity of a
StorageVolume or LogicalDisk, and shrink the
capacity of a StorageVolume or LogicalDisk
respectively.

3 "StorageVolume Creation", 5
"StorageVolume Modification"

The SMI-S implementation can create or
modify StorageVolumes respectively.

Table 18 - SupportedStoragePoolFeatures Array

Supported Special Features Explanation
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 31

Block Services Package NO_ANSI_ID

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219
5.1.8 StorageVolume Creation Instance Diagram

Figure 10: "StorageVolume Creation Instance Diagram" shows an instance diagram from StorageVolume creation.

5.1.9 Backward Compatibility

This package is designed to be backward compatible with the “Pool Manipulation Capabilities, and Settings”
Subprofile and the “LUN Creation” Subprofile from SMI-S 1.0.x. These subprofiles are deprecated. The Block
Services package subsumes all the functionality from these subprofiles. However, to maintain backward
compatibility, implementations of this package produce RegisteredProfile instances for these deprecated
subprofiles as supporting SMI-S 1.0.3 with one exception. If the BlockServices implementation produces
LogicalDisks and not StorageVolumes, then advertising support for these deprecated subprofiles is discouraged. If
the implementation supports SLP and the deprecated subprofile RegisteredProfile instances are produced, then
these deprecated subprofiles shall be advertised via SLP. See Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 Clause 40:, "Server Profile".

EXPERIMENTAL

Since the Usage property on StoragePool, StorageVolume, or LogicalDisk did not exist in SMI-S 1.1 and prior
versions of SMI-S, the Usage property may be Null. A client may try to utilize a storage element that is reserved for
a restricted usage. In this case, the operation may fail because the supplied volume can not be used for this
purpose or as a target for the operation.

EXPERIMENTAL

Figure 10 - StorageVolume Creation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

AllocatedFromStoragePool

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSetting

SystemDevice

StorageConfigurationService

CreateOrModifyElementFrom StoragePool()
ReturnToStoragePool()

HostedService

StorageConfigurationCapabilities

ElementCapabilitesElementSettingData
32

NO_ANSI_ID Block Services Package

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258
IMPLEMENTED

SMI-S 1.3. added the ability for an implementation to have the configuration capabilities of a given StoragePool to
be more restrictive than what is permitted globally by that implementation. If a given StoragePool cannot support
an operation advised as permitted by the global StorageConfigurationCapabilities, then the implementation shall
advise clients that attempt the creation or modification of storage elements that there is no capacity for these
operations. In order the client that support earlier version of SMI-S are not confused, the result of
GetSupportSizes(), GetSupportSizeRange(), and GetAvailableExtents() shall report no available capacity, in the
form of no sizes reports or no extents reports, for the StoragePools for which creation or modification operations
are not permitted. Previous to SMI-S 1.3., the "In Use" return value was not explained. With SMI-S 1.3., this return
code was defined. This code is used to communicate why a storage element may not be deleted.

IMPLEMENTED

5.1.10 Capacity Management

Capacity characteristics of storage systems vary greatly in cost and performance. Storage capacity may need to be
partitioned. StoragePools provide a means to aggregate this storage according to characteristics determined by
the storage administrator or by the factory when the storage system is assembled.

A StoragePool is an aggregation of storage suitable for configuration and allocation or “provisioning”. A
StoragePool may be preformatted into a form (such as a RAID group) that makes StorageVolume creation easier.

StoragePools can be drawn from a StoragePool; the result is indicated with the AllocatedFromStoragePool
association).

A StoragePool has a set of capabilities held in the StorageCapabilities class. These capabilities reflect the
configuration parameters that are possible for elements created from this StoragePool. The StorageCapabilities
define, in terms common across all storage system implementation, which characteristics an administrator can
expect from the storage capacity. These capabilities are expressed in ranges. The storage implementation can
delineate the capabilities and define the ranges of these capabilities, as appropriate. Some implementations may
require several narrowly defined capabilities, while others may be more flexible.

The capabilities expressed by the storage system can change over time. The number of primordial StoragePools
can also change over time.

These storage capabilities are given the scope of the storage system when they are associated to the
StorageConfiguratonService or the scope of a single StoragePool when associated to same. The capabilities
expressed at the service scope are equal to the union of all primordial StoragePool capabilities. The capabilities
can also be given the scope of a concrete StoragePool.

The storage administrator has the choice of any capability expressed by the storage system. The administrator
should use this opportunity to partition the capacity. Once storage elements are drawn from the StoragePool, the
administrator can be assured that the elements produced will have the capabilities previous defined.

The model allows for automation of the allocation process. An automaton can use the capabilities properties to
search across subsystems for storage providing desired capabilities and then create StoragePools and/or storage
elements as necessary. Inventories may be made of the capacity by capabilities.

The model also provides a means by which some common characteristics of all available storage systems can be
inventoried and managed. Note that the storage system will differ in other significant ways, and these
characteristics can also be the basis for capacity pooling decisions. A sample configuration is illustrated in Figure
11: "Storage Configuration".
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 33

Block Services Package NO_ANSI_ID

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

See Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6 Clause 26: Job Control
Subprofile for details on the usage of the StorageConfigurationJob, AssociatedStorageConfigurationJob, and
OwningJobElement associations.

The definition of storage capabilities intentionally avoids vendor specific details of StorageVolume configuration
such as RAID types. Although RAID types imply performance and availability levels, these levels cannot be easily
compared between vendor implementation—particularly in comparisons with reliability of non-RAID storage (i.e.,
certain virtualization appliances). There are capabilities of reliability and availability other than data redundancy.
The StorageSetting class is provided by clients to describe the desired configuration of the allocated storage. In
general, the types of parameters exposed and controlled via the StorageCapabilities/StorageSetting classes are:

• NSPOF (No Single Point of Failure). Indicates whether the StoragePool can support storage configured with
No Single Points of Failure within the storage system. This parameter does not include the path from the
system to the host.

• Data Redundancy. Describes the number of complete copies of data maintained. Examples include RAID5
where one copy is maintained and mirroring where two or more copies are maintained.

• Package Redundancy. Describes how many physical components (packages), such as disk drives, can fail
without data loss (including a spare, but not more than a single global spare). Examples include RAID5 with a
Package Redundancy of 1, RAID6 with 2, RAID6 with 2 global (to the system) spares would be 3.

• ExtentStripeLength. Describes the number of underlying StorageExtents across which data is striped in the
common striping-based storage organizations. Also the number of 'members' or 'columns'. For non-striped
organizations (e.g., mirror or JBOD), the ExtentStripeLength shall be 1.

Storage Configuration

Figure 11 - Storage Configuration

Cluster

StorageSystem

StorageConfigurationService

ConcreteJob

StoragePool

StorageVolume

AffectedJobElement

OwningJobElement

AffectedJobElement

Describes range of
capabilities of Pools/Volumes
that can be created
with the Service

StorageCapabilities

Element
Capabilities

HostedService
34

NO_ANSI_ID Block Services Package

280

281

282

283

284

285

286

287

288

289
• UserDataStripeDepth. Describes the number of bytes forming a stripe in common striping-based storage
organizations. The stripe is defined as the size of the portion of a stripe that lies on one StorageExtent.
ExtentStripeLength times UserDataStripeDepth yields the size of one stripe of user data.

• ParityLayout. Specifies whether a parity-based storage organization is using rotated or non-rotated parity.

Package Redundancy and Data Redundancy values associated to RAID levels are indicated in Table 19.

5.1.11 Mapping of RAID levels to Data Redundancy and Package Redundancy

Table 19 reflects available definitions of RAID levels.

It is the nature of RAID technology that even though RAID levels are the same, the storage service provided could
differ, depending on the storage device implementations. Expressing the storage service level provided in end-user
terms relieves the SMI-S Client and end-user from having to know what RAID Levels mean for a particular

Table 19 - RAID Mapping

RAID Level Package
Redundancy

Data
Redundancy

StorageExte
nt

Stripe
Length

User Data
Stripe Depth

Parity
Layout

JBOD 0 1 1 NULL NULL

0 (Striping) 0 1 2 to N1

1.The character ‘N’ represents the variable for the total number of StorageExtents.

Vendor
Dependent

NULL

1 1 2 - N 1 NULL NULL

10 1 2 - N 2 to N Vendor
Dependent

NULL

0+1 1 2 - N 2 to N Vendor
Dependent

NULL

3 or 4 1 1 3 to N Vendor
Dependent

1

4DP 2 1 4 to N Vendor
Dependent

1

5 (3/5)2

2. ‘3/5’ indicate RAID5 implementations that are sometimes called RAID5.

1 1 3 to N Vendor
Dependent

2

6, 5DP3

3.‘DP’ is double parity.

2 1 3 to N Vendor
Dependent

2

15 2 2 - N 3 to N Vendor
Dependent

2

50 1 1 3 to N Vendor
Dependent

2

51 2 2 - N 3 to N Vendor
Dependent

2

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 35

Block Services Package NO_ANSI_ID

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335
implementation. Instead, RAID level defines storage provided in storage-level terms. If a single storage device
implements RAID levels that have the same package redundancy and data redundancy, the implementor should
have the SMI-S Client differentiate via StorageSettingsWithHints. Additionally, the SMI-S Provider author can
predefine StorageCapabilities that match best practice RAID Levels, including differentiation with
StorageSettingWithHints when the StorageVolume or LogicalDisk exists. In this case, the ElementName property is
used to correlate between the capability and device documentation. Alternatively, the capability may be expressed
in broader ranges for more flexible storage systems.

StorageSetting instances whose "ChangableType" property is “0”, “Fixed - Not Changeable”, (identifying the
StorageSettings which represent certain non-changeable sets of preset storage property data, describing "fixed",
or pre-defined Settings, corresponding to preset RAID levels), the Element name should contain a string value
from a comprehensive list of well-known RAID configuration names. The ElementName string value should be the
name of the RAID level, from this list, which most closely describes the storage characteristics of the
StorageSetting in question. This list of RAID level strings includes, but is not limited to: "JBOD", "RAID0", "RAID1",
"RAID0+1","RAID01E"," RAID10", RAID3", RAID4", "RAID4DP", "RAID5", "RAID3/5", "RAID5DP", "RAID6",
"RAID15", "RAID50", "RAID51". In addition, the "Description" property of the pre-defined StorageSettings should
(optionally) contain similar RAID level information in a more free-form text format, including vendor-specific and/or
value-added annotations, for example: "RAID3, with spares", or "RAID5, 7D + 1P".

5.1.12 Storage Setting Associations to Storage Capabilities

A Storage Setting instance can be associated to its parent StorageCapabilities instance through either the
StorageSettingsAssociatedToCapabilities or StorageSettingsGeneratedFromCapabilities association instances.
The nature of the associated setting is different depending on the association instance used.

A Storage Setting associated via a StorageSettingsAssociatedToCapabilities instance shall not be modifiable by
the client (ChangeableType = 0 “Fixed - Not Changeable”). These types of settings are used to define the possible
configurations of StoragePools, StorageVolumes or LogicalDisks where the number of possibilities are small
because the capabilities of the device itself are likewise limited. When an instance of a Capability class is created
as a side effect of creating a concrete StoragePool, this type of Storage Setting may also be created or an existing
Storage Setting associated to this new Capabilities instance as well. A client can use the
StorageSettingsAssociatedToCapabilities association to find the default goal for the Capabilities instance, using the
DefaultSetting property. There shall be one default per combination of a StoragePool instance, associated
StorageCapabilities instances, and associated StorageSetting instances.

A Storage Setting associated via a StorageSettingsGeneratedFromCapabilities instance may be modified by a
client (ChangeableType = 1 “Changeable - Transient” or Changeable = 2 “Changeable - Persistent”). When a
Setting is created from a Capabilities instance, it is transient (e.g., ChangeableType = 1), i.e., the Setting instance
may not remain for long. This Setting may be removed from the CIMOM after reboots or after a set period of time.
The client should create and use the Setting as soon as possible. Alternatively, some implementations will allow
the client to request that the Setting be retained. This request is made by changing the ChangeableSettingType to
3 “Changeable - Persistent”. SMI-S does not define normative behavior for the changing of the ChangeableType
property.

EXPERIMENTAL

5.1.13 The Usage Property

The intended usage of storage elements and storage pools is specified in the Usage property of these
components. For the most part, the usage of these components is 2 "Unrestricted". However, a system manager
and/or a client may decide that certain storage elements are to be set aside for a specific application. For example,
a number of volumes are created for the sole purpose of being used for Migration Services. In this case, the
volumes are created using a storage setting with the StorageElementInitialUsage of "Reserved by Migration
Services". Alternatively, a client may request an "Unrestricted" volume to be converted to "Reserved by Migration
Services" by invoking the method StorageConfigurationService.RequestUsageChange. The Provider shall honor
36

NO_ANSI_ID Block Services Package

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357
the request if the client has access to the storage element and the requested change is valid. The property
ClientSettableUsage indicates what usage values are valid for a given component.

The companion property OtherUsageDescription may be used to indicate a component’s usage that is not covered
by the usage value map. The Usage property value is this case shall be set to 1 “Other”.

The Usage and OtherUsageDescription properties are maintained by the Provider. Restricted values may already
exist for static elements that pre-exist when the Provider is discovered.

The Usage and OtherUsageDescription property values may change as a side effect of other method calls, e.g. a
StorageVolume that may have been a replica target candidate at one time, may no longer be a replica target
candidate once it is active as a replica target.

Storage elements that support the Usage property will also have a property called ClientSettableUsage. This
property indicates which usage values may be manipulated by a client using the method
StorageConfigurationService.RequestUsageChange.

Using the method StorageConfigurationService.GetElementsBasedOnUsage, clients are able to retrieve storage
elements and storage pools based on their current usage values. For example, a client can retrieve all the volumes
that are candidate to be used as a Local Replica Target. Using the same method
StorageConfigurationService.GetElementsBasedOnUsage with the criteria parameter set to 2 "Available Only",
clients are able to retrieve the available (i.e., not in use) storage elements and storage pools based on their current
usage value.

Some methods change the usage of a storage element. For example, a client supplies a volume to be used as a
target in the call to the method CreateReplica.

Table 20 describes some of the representative values of the Usage property (storage element refers to a
StorageVolume, LogicalDisk, or StoragePool):

EXPERIMENTAL

Table 20 - Meaning of Usage values

Usage Value Description

Reserved by the ComputerSystem The storage element is used by the array itself for
firmware, storage processor software, etc.

Reserved for Local Replication
Services

The storage element is designated for activities
related to the CopyServices. For example, SNAP
cache.

Local Replica Target The storage element is suitable to be used as replica
target.

Element Component The StorageVolume or LogicalDisk is now acting as a
StorageExtent. In this case, the storage element no
longer appears in the list of these element types. Use
the method GetElementsBasedOnUsage to locate
such storage elements.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 37

Block Services Package NO_ANSI_ID

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388
5.1.14 Read-Only Model Requirements

This package defines classes and behavior to express the assignment and allocation of storage capacity and the
mechanism for configuring the storage capacity. The expression of the assignment and allocation of storage
capacity through the StoragePool, StorageVolume, LogicalDisk and related associations is mandatory. An
implementation may also offer the configuration of one or more classes of storage elements. The expression of the
support for the configuration of storage is through the instantiation of the StorageConfigurationService and its
associated Global StorageConfigurationCapabilities. If an instance of the StorageConfigurationService class is not
provided, then a client can assume that no configuration operations are supported. An implementation shall not
provide an instance of the StorageConfigurationService if none of the extrinsic methods of the service are
supported.

If the implementation is only supporting read-only information about the capacity assignment and allocation but
does not offer modification of the capacity configuration, then that implementation is said be a read-only
implementation. In such a model, only classes listed in Table 21 are required. Classes not explicitly listed are not
required for read-only implementations.

5.1.15 StorageExtent Conservation

5.1.15.1 General

StorageExtent Conservation is the construct where the remaining capacity after the partial use of a StorageExtent
is itself represented as a StorageExtent, based on the antecedent StorageExtent. Note that the StorageExtent
class itself does not report the amount of capacity that is used by another StorageExtent that draws capacity from
it. In order to calculate the remaining space from a StorageExtent model without StorageExtent Conservation, the
client would have to calculate the existence of remaining capacity through finding unused ranges of blocks as
expressed by the StorageExtent’s BasedOn associations.

This notion allows a client to use those remaining StorageExtents to determine the physical components like disk
drives and network ports that are associated to this remaining space in order to pick the StorageExtent best suiting
its needs for, for example, storage network redundancy or performance history.

5.1.15.2 Requirements for the General use of StorageExtents

The general use of StorageExtents, which is optional for this subprofile, is subject to the following requirements:

• Allocating capacity from a StoragePool shall not reduce the total size of the StoragePool.

• A given StorageExtent instance shall not be a component of more than one StoragePool. However, an given
block may be accounted for in the range of blocks represented by more than one StorageExtent instance. In
other words, a given block may be associated to more than one StoragePool.

Table 21 - Classes Required In Read-Only Implementation

Required Classes Reason for Requirement

StoragePool, StorageVolume and/or
LogicalDisk, HostedStoragePool and
AllocatedFromStoragePool

Reporting of unassigned, assigned, and
allocated capacity

StorageCapabilities and ElementCapabilities Reporting of storage pool capabilities

StorageSetting and ElementSettingData used
is associated to StorageVolume and
LogicalDisk

Reporting of the capabilities of existing
StorageVolumes and LogicalDisks

SystemDevice Reporting the system to which a
StorageVolume or LogicalDisk is scoped
38

NO_ANSI_ID Block Services Package

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431
• The use of all or some of the capacity of an StorageExtent directly, by passing the reference to the
StorageExtent in a method call, or indirectly, by passing the size of the desired storage element, shall result in
the creation of new StorageExtents that are components of the new StorageVolume or LogicalDisk.

• Any remaining capacity from the StorageExtent shall be represented by a new ComponentExtent of the source
StoragePool that is based on the partitioned StorageExtent. This StorageExtent is called a remaining
StorageExtent.

1) If the Size requested is smaller than the total consumable size of the StorageExtents or StoragePools,
then these resources are partially used. In this case, the model shall reflect what capacity was used and
what capacity remains of the StorageExtents or StoragePools passed as arguments to CreateOrModi-
fyStoragePool and CreateOrModifyElementFromElements methods.

2) Once the capacity represented by a remaining StorageExtent is used to assign or allocate capacity, the
remaining StorageExtent either shrinks in size or is removed from the model. A remaining StorageExtent
shall not be molded to have other StorageExtents based on it.

• A StorageExtent that was split or partially used may be made whole by the deletion of the storage element
whose creation or modification gave rise to the partial use of the StorageExtent in the first place.

Figure 12: "StorageExtent Conservation - Step 1", Figure 13: "StorageExtent Conservation - Step 2", and Figure
14: "StorageExtent Conservation - Step 3" illustrate the use of StorageExtents to represent the partitioning of a
StorageExtent’s capacity. An implementation of this subprofile may also implement Clause 14: Extent Composition
Subprofile. Extent Conservation requires the instantiation of additional ComponentExtents that represent
remaining space. These ComponentExtents are in addition to those modeled by the Extent Composition
Subprofile. Available StorageExtents, including remaining space StorageExtents, which meet specific goal
requirements, are found using the GetAvailableExtents method of the StoragePool.

The modeling of remaining StorageExtents is not within the scope of the Extent Composition Subprofile. However,
the recipes written for Clause 14: Extent Composition Subprofile will tolerate these additional extents. The
modeling of free/unused extents is defined only in 5.1.15 StorageExtent Conservation.

Support of the GetAvailableExtents and CreateOrModifyElementFromElements methods are not required by the
Block Services package nor Clause 14: Extent Composition Subprofile. An implementation may support the
representation of StorageVolume or LogicalDisk structure through Clause 14: Extent Composition Subprofile but
not support these methods.

If an implementation supports the GetAvailableExtents and CreateOrModifyElementFromElements methods and
the Block Services Package, then it shall also implement Clause 14: Extent Composition Subprofile. See 5.5.3.
Additionally, the implementation shall implement either both methods (if it implements one of the methods) or
neither method.

The most virtualized Storage Extents are those that have no dependent storage extents that are either
StorageVolumes or LogicalDisks. There are three associations that may represent the most virtualized storage
components of a StoragePool:

• ConcreteComponent

• AssociatedComponentExtent

• AssociatedRemainingExtent.

IMPLEMENTED

If there are StorageExtents associated to a StoragePool via ConcreteComponent, these StorageExtents shall also
be associated to the same StoragePool via AssociatedComponentExtent or AssociatedRemainingExtent. The set
of instances associated to this StoragePool via ConcreteComponent shall equal the union of the sets of
StorageExtents associated to the same StoragePool via AssociatedComponentExtent and
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 39

Block Services Package NO_ANSI_ID

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460
AssociatedRemainingExtent. The subset of AssociatedRemainingExtent StorageExtents represents remaining
capacity, as defined in preceding paragraphs. These StorageExtents are remaining StorageExtents. The subset of
AssociatedComponentExtent StorageExtents represents capacity that has not yet been allocated, is allocated in
part, or is allocated in its entirety.

IMPLEMENTED

5.1.15.3 The Three Steps of StorageExtent Conservation

Figure 12: "StorageExtent Conservation - Step 1", Figure 13: "StorageExtent Conservation - Step 2", and Figure
14: "StorageExtent Conservation - Step 3" show how StorageExtents are partitioned to represent the partial usage
of the capacity in the construction of a concrete StoragePool and a concrete StorageVolume. For the purposes of
illustration all the numbers in the figures are expressed in blocks even though some of the class properties are in
blocks and others are in bytes. The solid line box around the elements in the diagram groups those classes that are
defined in Clause 14: Extent Composition Subprofile.

The initial state in Figure 12: "StorageExtent Conservation - Step 1" starts with a primordial StoragePool that is
realized by a primordial StorageExtent. This StorageExtent is part of the initial capacity of the device or added to
the device in a process defined outside of this subprofile. The process of assigning capacity to a StoragePool and
allocating capacity to a StorageVolume or LogicalDisk is defined inside of this subprofile. To simplify the diagram,
the StoragePool has only one ComponentExtent box that represents many StorageExtents. The “SUM_” prefix
indicates that the size of the StorageExtents are a summation. Both the StoragePool and StorageExtent start with
1000 blocks of storage capacity.

A concrete StoragePool is drawn from the primordial StoragePool in step 2, shown in Figure 13: "StorageExtent
Conservation - Step 2". Figure 13: "StorageExtent Conservation - Step 2" groups the instances modeled using
Clause 14: Extent Composition Subprofile with a dark box. The concrete StoragePool takes only half the capacity
of the parent StoragePool. In this particular example, the metadata required by the implementation is written to the
storage after this step. Another StorageExtent is created to represent the remaining capacity of the primordial
StoragePool that was not used in the creation of the concrete StoragePool. ConsumableBlocks remain constant
after the creation of the StorageExtent as a representation of the space actually available for use is other storage
elements that are based on the StorageExtent. The remaining space StorageExtent can be used for the creation of
other StorageVolumes or Logical Devices. If GetAvailableExtents were called on the primordial StoragePool at this
point, a reference to the remaining StorageExtent shall be returned. A reference to the original primordial
StorageExtent shall not be returned because the StorageExtent is entirely allocated.

Figure 12 - StorageExtent Conservation - Step 1

Primordial:
StoragePool

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

AssociatedComponentExtent
RemainingManagedSpace = 1000
TotalManagedSpace = 1000
40

NO_ANSI_ID Block Services Package

461

462

463

464

465

466

467

468

469

Figure 14: "StorageExtent Conservation - Step 3" shows a StorageVolume creation. Figure 14: "StorageExtent
Conservation - Step 3" groups the instances modeled using Clause 14: Extent Composition Subprofile with a dark
box. This particular implementation draws storage capacity for metadata (for its own house-keeping) during the
creation of the StorageVolume. Not shown is the case where the metadata is drawn from capacity during the
creation of the concrete StoragePool. A RAID1 stripe is written over three StorageExtents. These StorageExtents
are likely to be disk drives. Again, a remaining StorageExtent is created to represent the capacity of the parent
concrete StoragePool that is not used in the creation of the StorageVolume. A call to the concrete StoragePool’s
GetAvailableExtents method yields a reference to the remaining StorageExtent.

Figure 13 - StorageExtent Conservation - Step 2

AssociatedComponentExtent

BasedOn

AssociatedComponentExtent

BasedOn

AllocatedFromStoragePool
SpaceConsumed = 500

AssociatedRemainingExtent

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Remaining:
StorageExtent (Remaining)

BasedOn

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Concrete:
StorageExtent (Intermediate)

ConsumableBlocks = 250
NumberOfBlocks = 250

Concrete:
CompositeExtent

(Composite Pool Component)

Primordial:
StoragePool

RemainingManagedSpace = 500
TotalManagedSpace = 1000

RemainingManagedSpace = 250
TotalManagedSpace = 250

Concrete:
StoragePool

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 41

Block Services Package NO_ANSI_ID

470

471

472

473

474

475

476

477

478

In all cases, the TotalManagedSpace and RemainingSpace attributes reflect the total capacity and the capacity that
can be drawn from a StoragePool, respectively. In this figure, the metadata is drawn from the capacity in the
creation of the storage element.

• The capacity drawn by the metadata from the parent StoragePool is reflected by the sum of associated
AllocatedFromStoragePool.SpaceConsumed minus the StoragePool.TotalManagedSpace of the child
StoragePool.

• The capacity drawn by the metadata from each StorageVolume or LogicalDisk is reflected by SpaceConsumed
minus NumberOfBlocks times BlockSize.

Figure 14 - StorageExtent Conservation - Step 3

AssociatedComponentExtent

AllocatedFromStoragePool
SpaceConsumed = 30

BasedOn

BasedOn

AllocatedFromStoragePool
SpaceConsumed = 500

AssociatedRemainingExtent

AssociatedRemainingExtent

BasedOn

BasedOn

SUM_ConsumableBlocks = 220
SUM_NumberOfBlocks = 220

Remaining:
StorageExtent (Remaining)

ConsumableBlocks = 250
NumberOfBlocks = 250

Concrete:
CompositeStorageExtent

(Composite Pool Component)

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Remaining:
StorageExtent (Remaining)

Primordial:
StoragePool

RemainingManagedSpace = 500
TotalManagedSpace = 1000

BasedOn

Primordial:
StorageExtent

AssociatedComponentExtent

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Concrete:
StorageExtent (Intermediate)

NumberOfBlocks = 30

StorageVolume

ConcretePool:
StoragePooll

RemainingManagedSpace = 220
TotalManagedSpace = 250
42

NO_ANSI_ID Block Services Package

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509
5.1.16 Formulas For Calculating Capacity

These formulas define calculations that shall be valid in a conformant implementation:

• RemainingManagedSpace plus AllocatedFromStoragePool.SpaceConsumed from all of the StorageVolumes,
LogicalDisks, and StoragePools allocated from the StoragePool shall equal TotalManagedSpace.

• A parent StoragePool’s TotalManagedSpace equals RemainingManagedSpace plus the sum of all related
AllocatedFromStoragePool SpaceConsumed.

• If Clause 14: Extent Composition Subprofile is implemented:

IMPLEMENTED

1) The StoragePool’s TotalManagedSpaceshall be equal to the sum of all the AssociatedComponentExtent
StorageExtent’s BlockSize times ConsumableBlocks.

IMPLEMENTED

2) Using the BasedOn association from the StoragePool’s component StorageExtents (found using Con-
creteComponent or AssociatedComponentExtent, or AssociatedRemainingExtent), the sum of the
Dependent StorageExtent’s NumberOfBlocks shall be equal to the ConsumableBlocks of the Antecedent
StorageExtent.

IMPLEMENTED

3) The StoragePool's RemainingManagedSpace shall be equal to the sum of BlockSize times Consumable-
Blocks for the union of the following sets of StorageExtents:

a) The set of StorageExtents associated to the StoragePool via AssociatedComponentExtent where
each StorageExtent does not participate in an Antecedent relationship via one or more BasedOn
associated with either a StorageVolume or a LogicalDisk.

b) The set of StorageExtents associated to the StoragePool via AssociatedRemainingExtent.

IMPLEMENTED

5.1.17 Storage Element Manipulation

The StorageConfigurationService class contains methods to allow creation, modification and deletion of
StorageVolumes or LogicalDisks. The capabilities of a StorageConfigurationService or StoragePool to provide
storage are indicated using the StorageCapabilities class. This class allows the Service or StoragePool to advertise
its capabilities (using implementation independent attributes) and a client to set the attributes it desires.

The concept of “hints” is included. Hints allow a client to provide general requirements to the system as to how it
expects to use the storage. Hints allow a client to provide extra information to “tune” a StorageVolume or
LogicalDisk. If a client chooses to supply these hints when creating a StorageVolume or LogicalDisk, the
StorageSystem can either use the hints to determine a matching configuration or ignore them.

When creating a StorageVolume or LogicalDisk, a reference to an instance of StorageSetting is passed as a
parameter to the StorageConfigurationService.CreateOrModifyElementFromStoragePool or
CreateOrModifyElementFromElements methods. This reference provides a goal for that element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 43

Block Services Package NO_ANSI_ID

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545
The current ‘service level’ being achieved is reported via the StorageVolume or LogicalDisk class itself. For
example, data redundancy reported in the Setting associated to the storage element may be different from the data
redundancy reported in the storage element itself. This difference indicates that a copy of the data is no longer
available.

StorageVolumes or LogicalDisks are created from StoragePools via a StorageConfigurationService’s
CreateOrModifyElementFromStoragePool() method. A StorageVolume creation operation takes time, and a Client
needs to be aware that the operation is not complete until the StorageVoume.OperationalStatus is OK. A Client
may also monitor the progress of the operation using the ConcreteJob class and its properties.

The name of a StorageVolume, LogicalDisk, or StoragePool can be changed. The existence of the
EnabledLogicalElementCapabilities instance associated to the storage element indicates that the storage element
can be named. If ElementNameEditSupported is set to TRUE, then the ElementName of the associated storage
element name can be modified. The ElementNameMask property provides the regular expression that indicates
the name limits; see Table 24, “CIM Elements for Block Services” for details for this property.

This model does not help in communicating whether or not the element name can be provided in the creation or the
modification of the storage element through these StorageConfigurationService methods (if there are no existing
storage elements of a given type):

• CreateOrModifyStoragePool()

• CreateOrModifyElementFromStoragePool()

• CreateOrModifyElementFromElements()

First, there shall be a single EnabledLogicalElementCapabilities for each storage element type.

Note that the ElementType parameter of these methods requests the element to be created or modified. There
shall be a single mask for each storage element type. Each of these instances shall be associated to the
StorageConfigurationService via the ElementCapabilities association. Each of these
EnabledLogicalElementCapabilities instances may also be used to express the capabilities of storage elements.
The ElementNames of these EnabledLogicalElementCapabilities instances that define the possibility of naming
StoragePools, StorageVolumes, and LogicalDisks type shall be of the values of "StoragePool Enabled
Capabilities", "StorageVolume Enabled Capabilities", and "LogicalDisk Enabled Capabilities" respectively. If the
implementation supports the creation or modification of a given element type and the modification of the name of
the storage element, then it shall produce the aforementioned EnabledLogicalElementCapabilities instances.

If a storage element's name is modifiable through one of the aforementioned StorageConfigurationService
methods, it shall also be modifiable through instance modification. However, a storage element's name may be
modifiable through instance modification, but may not be modifiable through these service methods.

EXPERIMENTAL

By default, storage elements are created with the 2 "Unrestricted" value for their Usage property. To specify a
different value for the Usage property, set the appropriate StorageExtentInitialUsage or StoragePoolInitialUsage of
the applicable StorageSetting before creating the storage element. Subsequently, the Usage property can be
modified by calling the StorageConfigurationService.RequstUsageChange method.

EXPERIMENTAL
44

NO_ANSI_ID Block Services Package

546

547

548

549

550

551

552

553

554

555
EXPERIMENTAL

5.1.18 Block Services Predefined Indications

If the optional Experimental Indication profile is supported by an implementation, there shall be an implementation
of the SNIA_IndicationConfigurationService and its associated SNIA_IndicationConfigurationCapabilities
associated to the ComputerSystem of the referencing profile associated with the Block Services package. If the
implementation supports predefined IndicationFilters or predefined IndicationFilterCollections this shall be
indicated in the SupportedFeatures property of the SNIA_IndicationConfigurationCapabilities. If a value “3” is
present, it means the implementation supports predefined IndicationFilters. If a value of “5” is present, it means the
implementation supports predefined IndicationFilterCollections.

Figure 15 illustrates classes that shall be populated by the Block Services Package if both “3” and “5” are present
in the SupportedFeatures property.

Figure 15 - Block Services Predefined FilterCollection

(See referencing profile)

ComputerSystem

(See Experimental Indication Profile)

SNIA_IndicationConfigurationService

SupportedFeatures = “3,5”
(See Experimental Indication Profile)

SNIA_IndicationConfigurationCapabilities

HostedService

ElementCapabilities

Name = “SNIA:Block Services:StorageVolumeCreation”

IndicationFilter (Storage Volume Creation)

(See referencing profile)

FilterCollection

HostedCollection

MemberOfCollection

CollectionName = “SNIA:Block Services”

FilterCollection
(Block Services Predefined FilterCollection)

MemberOfCollection

HostedCollection
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 45

Block Services Package NO_ANSI_ID

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576
The SNIA_IndicationConfigurationService is hosted on the ComputerSystem for the referencing profile associated
to the Block Services component profile. The FilterCollection for block services is also hosted on the same
ComputerSystem. The block services FilterCollection is a member (MemberOfCollection) in the FilterCollection of
the referencing profile. The block Services FilterCollection has members which are all the predefined
IndicationFilters supported by the implementation. This shall include all Mandatory IndicationFilters of the Block
Services Package. But it should also include any IndicationFilter that has been predefined by the implementation.
This may include conditional, optional or vendor specific IndicationFilters supported by the implementation.

The block services FilterCollection shall have the CollectionName “SNIA:Block Services”. Each of the predefined
filters shall have the Name property as defined for the IndicationFilter. In Figure 15 the name of the IndicationFilter
(Storage Volume Creation) is “SNIA:Block Services:StorageVolumeCreation”. For vendor specific IndicationFilters
(not defined in this standard), the Name of the filter would be of the form ORG_ID”:Block Services:”UNIQUE_ID,
where ORGID is the designation of the vendor that is providing the implementation.

EXPERIMENTAL

5.2 Health and Fault Management Considerations

The extrinsic methods should produce Errors (instances of CIM_Error) instead of some of the failure return codes.
CIM errors include parameter errors, hardware efforts, and time-out errors. See Storage Management Technical
Specification, Part 2 Common Profiles, 1.5.0 Rev 6 Clause 25: Health Package for details.

EXPERIMENTAL

The standard messages specific to this profile are listed in Table 22. See Storage Management Technical
Specification, Part 1 Common Architecture, 1.5.0 Rev 6 Clause 8: Standard Messages for a description of standard
messages and the list of all standard messages.

EXPERIMENTAL

5.3 Cascading Considerations

Not defined in this standard.

Table 22 - Standard Messages for Block Services Package

Message ID Message Name

MP17 Invalid property combination during instance creation or
modification

DRM19 Stolen capacity

DRM20 Invalid extent passed

DRM21 Invalid deletion attempted
46

NO_ANSI_ID Block Services Package

577

578

579

580

581

582

583

584
585
586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607
5.4 Supported Profile, Subprofiles and Packages

Table 23 describes the supported profiles for Block Services.

5.5 Methods of this Profile

5.5.1 Extrinsic Methods on StorageCapabilities

5.5.1.1 CreateSetting

CreateSetting is a method in StorageCapabilities and is invoked in the context of a specific StorageCapabilities
instance.

uint32 CreateSetting(
[In] uint16 SettingType,
[Out] CIM_StorageSetting REF NewSetting)

This method on the StorageCapabilities class is used to create a StorageSetting using the StorageCapabilities as a
template. The purpose of this method is to create a StorageSetting that is associated directly with the
StorageCapabilities on which this method is invoked and has properties set in line with those StorageCapabilities.
The contract defined by the StorageCapabilities shall constrain the StorageSetting used as the Goal.

The StorageCapabilities associated with the StoragePool define what types of storage can be allocated. The client
shall determine what subset of the parent StoragePool capabilities to use, albeit a primordial StoragePool or a
concrete StoragePool. The StorageSetting provided to the StoragePool creation method defines what measure of
capabilities are desired for the following storage allocation. First, the client retrieves a StorageSetting or creates
and optionally modifies an existing StorageSetting. If no satisfactory StorageSetting exists, then the client uses this
method to create a StorageSetting.

The client has the option to have a StorageSetting generated with the default capabilities from the
StorageCapabilities. If a '2' (“Default”) is passed for the Setting Type parameter, the Max, Goal, and Min setting
attributes are set to the default values of the parent StorageCapabilities. Otherwise, with using ‘3’ (“Goal”), the new
StorageSetting attributes are set to the related attributes of the parent StorageCapabilities, e.g., Min to Min and
Max to Max. The method CreateSetting should return a unique instance of StorageSetting so that the
ModifyInstance operation by one client shall not impact another client’s instance of StorageSetting. This type of
StorageSetting, newly created or already existing, is associated to the StorageCapabilities via the
GeneratedStorageSetting association.

Only a StorageSetting created in this manner may be modified or deleted by the client. The client uses the
NewSetting parameter to set the new StorageSetting to the values desired (using ModifyInstance or SetProperties
intrinsic methods).

The implementation shall not generate a Setting whose values fall outside of the range of the parent Capabilities.

Table 23 - Supported Profiles for Block Services

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.5.0 Optional
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 47

Block Services Package NO_ANSI_ID

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642
643

644

645

646
647
648
649

650

651

652

653
The StorageSetting cannot be used to create storage that is more capable than the parent StorageCapabilities.
The ModifyInstance and SetProperties CIM Operations shall fail when the Setting has a Max value greater (or a
Min value less) than the parent StorageCapabilities.

If the storage device supports hints, then the new StorageSetting contains the default hint values for the parent
StorageCapabilities. The client can use these values as a starting point for hint modification (using intrinsic
methods).

StorageSetting instances associated with StorageVolume or LogicalDisk shall not be modified or deleted directly.

Once this type of StorageSetting is used as the Goal for the creation or modification of a StoragePool, the Goal
setting properties are copied into a new StorageCapabilities instance. The new StorageCapabilities instance is
associated to the newly created or modified StoragePool. If the StoragePool was modified, then the previous
StorageCapabilities shall be removed. The new StorageCapabilities instance, associated with the new
StoragePool, should describe the parameters used in its creation or modification.

Once this type of StorageSetting is used as the Goal for the creation or modification of a StorageVolume or
LogicalDisk, the Goal StorageSetting shall be duplicated, with the exception of the instance keys. The duplicate
Setting is associated to the newly created or modified StoragePool, StorageVolume, or LogicalDisk. The generated
Setting may be removed thereafter. The new StorageSetting instance, associated with the new storage element,
should describe the parameters used in its creation or modification.

The following set of methods (5.5.1.2, 5.5.1.3, and 5.5.1.4) can be implemented to allow a client to be more
specific about the configuration of the stripe length, stripe depth, and parity in a Setting. Thereby the client can get
specific RAID levels or quality of service characteristics.

The stripe length, stripe depth, and party extrinsic methods may be supported. These methods may be supported
in the content of one capabilities and not in another within the same implementation. Sometimes the block striping
is done as part of the creation of the concrete StoragePool, and sometimes the block striping is done as part of the
creation of a StorageVolume or LogicalDisk. There may be implementations that allow striping to be done in both
steps.

A client may use StorageSettingHints to imply desired striping (or other) characteristics are desired. The striping
and parity methods and properties may be used in combination with hints. The hints express a ranking of
preference. While the striping and parity methods and properties are much more explicit. When the hints and the
stripe and parity Settings properties are used in combination, the striping and parity properties of the Setting are
also considered hints, and the implementation may still create or modify the StoragePool or storage element using
its best effort.

This specification does not define how the ranking of hints relates to the exact nature of the StoragePool or storage
element created or the nature of their modification.

5.5.1.2 Getting Stripe Length

uint32 GetSupportedStripeLengths(
[Out] unint16 StripeLengths[])

This method is used to report discrete ExtentStripeLengths for StorageVolume, LogicalDisk, or StoragePool
creation. Some systems may support only discrete stripe lengths.

uint32 GetSupportedStripeLengthRange(
[Out] uint16 MinimumStripeLength,
[Out] uint16 MaximumStripeLength,
[Out] uint32 StripeLengthDivisor)

This method is used to report a range of possible ExtentStripeLengths for StorageVolume, LogicalDisk, or
StoragePool creation. Some systems may support only a range of sizes. This method reports the continuum of
discrete sizes between the minimum and maximum as defined by intervals of the divisor (e.g., if given a min of 10
and a max of 50, the discrete values would be 20, 30, 40, and 50).
48

NO_ANSI_ID Block Services Package

654

655

656

657

658

659

660

661

662

663
664

665

666

667
668
669
670

671

672

673

674

675

676

677

678

679

680

681

682

683

684
685

686

687

688

689

690

691

692

693

694
Either method may be supported. Return codes are:

• 0, “Method completed OK”, means success.

• 1, “Method not supported”,

• 2, “Choices not available for this Capability.” Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the stripe length
has already been set in the parent StoragePool and may not be changed.

• 3, “Use [GetSupportedStripeLengths|GetSupportStripeLengthRange] instead”. This return code tells the client
that this stripe method is not supported, but the other stripe method is supported.

5.5.1.3 Getting Stripe Depth

uint32 GetSupportedStripeDepths(
[Out] uint64 StripeDepths)

This method is used to report discrete UserDataStripeDepths for StorageVolume, LogicalDisk, and StoragePool
creation. Some systems may support only discrete depth byte sizes.

uint32 GetSupportStripeDepthRange(
[Out] uint64 MinimumStripeDepth,
[Out] uint64 MaximumStripeDepth,
[Out] uint64 StripeDepthDivisor

This method is used to report a range of possible UserDataStripeDepths for StorageVolume, LogicalDisk, or
StoragePool creation. Some systems may support only a range of sizes. The method reports the continuum of
discrete sizes between the minimum and maximum as defined by intervals of the devisor (e.g., if given a min of 10
and a max of 50, the discrete values would be 20, 30, 40, and 50).

Either method may be supported. Return codes are:

• 0, “Method completed OK”, means success.

• 1, “Method not supported”

• 2, “Choices not available for this Capability”. Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the stripe depth
has already been set in the parent StoragePool and may not be changed.

• 3, “Use [GetSupportedStripeDepths | GetSupportStripeDepthRange] instead”. This return code tells the client
that this stripe method is not supported, but the other stripe method is supported.

5.5.1.4 Getting Parity

uint32 GetSupportedParityLayouts(
[Out] ParityLayout[])

This method is used to return the type of parity, non-rotated or rotated, that the capability supports.

Return codes:

• 0, “Method completed OK” means success.

• 1, “Method not supported”

• 2. “Choice not available for this Capability.” Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the parity has
already been set in the parent StoragePool and may not be changed.

5.5.2 Intrinsic Methods on StorageSetting

The following Intrinsic write methods are supported on StorageSetting:
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 49

Block Services Package NO_ANSI_ID

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729
730
731
• DeleteInstance

• ModifyInstance

5.5.3 Extrinsic Methods on StorageConfiguration

5.5.3.1 The RAID characteristics of the new or modified StoragePool

This design supports the implementation choice of the application of RAID striping during either the creation or
modification of a StoragePool, StorageVolume, or LogicalDisk. Generally, without the implementation of Clause 14:
Extent Composition Subprofile, a client cannot determine the storage elements that are used to represent the RAID
striping without at least one StorageVolume or LogicalDisk. Even if the subprofile is supported, the client can make
this determination only after each of the supported element types are created.

Once each of the storage element types are created, the client can use the StorageExtents on which the storage
element is based to determine the RAID striping type applied. The RAID group is represented by a
CompositeStorageExtent instance.

If the ExtentStripeLength property is not supported by an implementation, this design does not provide for
interoperable behavior in the creation or modification of StoragePools, StorageVolumes, or LogicalDisks to provide
reference to member StorageExtents.

5.5.3.2 Element Naming

Several of the following methods allow a client to 1) specify a name for the storage element that is being created or
2) change the name of a storage element being modified.

If the implementation supports the naming of storage elements, then the ElementName property reports the name
assigned to the storage element. If the implementation creates a name even when the client does not specify one,
then this element contains that system defined name. If the implementation does not create a name for the storage
element when the client does not specify a name, then this property should be null. If the implementation does not
support the naming of elements and the client provides a value in the ElementName parameter of one of the
following methods that specify an ElementName parameter, then the implementation shall reject the method call.

EXPERIMENTAL

The possible ExtentStripeLengths, ExtentStripeDepths, and ParityLayouts for a given StorageCapabilities may be
fetched using these methods in that class:

• GetSupportedStripeLengths()

• GetSupportedStripeLengthRange()

• GetSupportedParityLayouts()

• GetSupportedStripeDepths()

• GetSupportedStripeDepthRange() methods

These methods are useful when the ExtentStripeLength, ExtentStripeDepth, and ParityLayout values in the given
instance of StorageCapabilities are expressed in a range, where the minimum and the maximum are not equal.

EXPERIMENTAL

5.5.3.3 CreateOrModifyStoragePool

uint32 CreateOrModifyStoragePool(
[In] string ElementName
[Out] CIM_ConcreteJob ref Job,
50

NO_ANSI_ID Block Services Package

732
733
734
735
736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769
770
771

772

773

774

775

776
[In] CIM_StorageSetting ref Goal,
[In,out] Uint64 Size,
[In] string InPools[],
[In] string InExtents[],
[Out] CIM_StoragePool ref Pool);

This method is used to create a StoragePool from either a source StoragePool or a list of StorageExtents. Any
required associations (such as HostedStoragePool) are created in addition to the instance of StoragePool. The
parameters are as follows:

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter.

• Goal: This is the Service Level that the StoragePool is expected to provide. This may be a null value in which
case a default setting is used.

• Size: As an input this shall be the desired size of the StoragePool. It may be null, in which case all passed in
capacity (as specified by InExtents and InPools) shall be used to create the pool. If it is not possible to create a
StoragePool of at least the desired size, a return code of “Size not supported” shall be returned with size set to
the nearest supported size.

• InPools[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP0200 CIM
Operations over HTTP for format) to source StoragePools.

• InExtents[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP00200 CIM
Operations over HTTP for format) to source StorageExtents. An array of source StoragePools or an array of
source StorageExtents or both can be defined. See 5.1.15.

• Pool: If the method completes without creating a Job, then the Pool parameter is the storage element that is
created. Otherwise, the Pool parameter may or may not be NULL. When the Pool parameter is NULL, then the
storage element created can be determined by using the Job model.

5.5.3.4 The CreateOrModifyStoragePool method and the primordial StoragePool

A client may pass a reference to a primordial StoragePool in order to be explicit in indicating from which primordial
StoragePool a concrete StoragePool needs to be created. If no StoragePool references are passed in the creation
of a StorageVolume or LogicalDisk, the implementation shall determine the parent StoragePool based on the Goal
and the Size.

A client may also pass a reference to a primordial StoragePool to express from what reserve to draw capacity if the
capacity needed is greater than the total capacity represented by the input StoragePools and StorageExtents. Any
capacity request, using the Size parameter, not satisfied by the referenced StoragePools and StorageExtents is
drawn from the primordial StoragePool referenced. If no primordial StoragePool reference is passed and the
capacity requested is greater than the referenced StoragePools and StorageExtents, then the method shall fail with
the “Size not supported” return code. The use of a primordial StoragePool reference in this manner is not
recommended, but the behavior is retained to maintain backward compatibility. The client should align the size
requested to what can be satisfied by the concrete StoragePools and StorageExtents referenced.

A client should pass only concrete StoragePools when creating a StoragePool from several StoragePools.

5.5.3.5 DeleteStoragePool

 uint32 DeleteStoragePool(
[Out] CIM_ConcreteJob ref Job,
[in] CIM_StoragePool ref Pool);

This method allows a client to delete a previously created StoragePool. All associations to the deleted StoragePool
are also removed as part of the action. In addition, the RemainingManagedStorage of the associated parent
primordial StoragePool will change accordingly.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 51

Block Services Package NO_ANSI_ID

777

778
779
780
781
782
783
784
785
786
787
788
789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809
810
811
812
813
814
815
816
817
818
819

820

821

822

823

824
Note: This method will be denied (“Failed”) if there are any AllocatedFromStoragePool associations where
the deleted StoragePool is the Antecedent.

5.5.3.6 CreateOrModifyElementFromStoragePool

 uint32 CreateOrModifyElementFromStoragePool (
[In,
string ElementName
 Values {“StorageVolume”, “StorageExtent”,
 “LogicalDisk”},
 ValueMap{”2”,”3”, “4”}]
Uint16 ElementType;
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In, Out] Uint64 Size,
[In] CIM_StoragePool ref InPool,
[In, Out] CIM_LogicalElement ref TheElement);

This method allows an element of a type specified by the enumeration ElementType to be created from the input
StoragePool. The parameters are:

• ElementType: This enumeration specifies what type of object to create.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 2 Common Profiles,
1.5.0 Rev 6 Clause 26: Job Control Subprofile.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a subset of the
Capabilities available from the parent StoragePool. Goal may be a null value, in which case the default Setting
for the StoragePool is used.

• Size: As an input this shall be the desired size of the element. It may be null, in which case all passed in
capacity (as specified by InPool) shall be used to create the element. If it is not possible to create an element of
at least the desired size, a return code of “Size not supported” shall be returned with size set to the nearest
supported size.

• InPool: This shall contain the reference to the source StoragePool.

• TheElement:

• As Input: If the TheElement parameter is not null, then this method shall attempt to modify the reference
element. Otherwise, this method shall attempt to create a new element.

• As Output: If the method completes without creating a Job, then the TheElement is the storage element that
is created. Otherwise, TheElement may be NULL. When the TheElement is NULL, the storage element that
is created can be determined by using the Job model.

5.5.3.7 CreateOrModifyElementFromElements

uint32 CreateOrModifyElementFromElements(
[In,
 Values {“Storage Volume”, “Storage Pool”,
 “Logical Disk”},
 ValueMap{”2”,”4”, “5”}]
unit16 ElementType,
[In, Out] CIM_ConcreteJob REF Job,
[In] CIM_ManagedElement REF Goal,
[In, Out] unit64 Size,
[In] CIM_StorageExtent REF InElements[],
[In, Out] CIM_LogicalElement REF TheElement);

The parameters are:
52

NO_ANSI_ID Block Services Package

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843
844
845

846

847

848

849

850
851
852
853
854
855
856
857
858
859

860

861

862
• ElementType: This enumeration specifies the type of object to create.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 2 Common Profiles,
1.5.0 Rev 6 Clause 26: Job Control Subprofile.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a subset of the
Capabilities available from the parent StoragePool. Goal may be a null value, in which case the default Setting
for the StoragePool is used.

• Size: As an input this shall be the desired size of the element. It may be null, in which case all passed in
capacity (as specified by InElements) shall be used to create the element. If it is not possible to create an
element of at least the desired size, a return code of “Size not supported” shall be returned with size set to the
nearest supported size.

• InElements: References to the StorageExtents to be used for the storage element creation or modification. The
referenced StorageExtents shall be ComponentExtents of a single StoragePool, a parent of new or existing
storage element. The parent StoragePool shall be a direct parent or an indirect parent, a grandparent, of the
storage element. The InElements parameter of the CreateOrModifyElementFromElements() parameter is used
to provide new StorageExtents to be used for this storage element. Therefore, the use of the parameter in the
reduction of capacity for TheElement is invalid.

• TheElement:

• As Input: If the TheElement parameter is not null, then this method shall attempt to modify the reference
element. Otherwise, this method shall attempt to create a new element.

• As Output: If the method completes without creating a Job, then the TheElement is the storage element that
is created. Otherwise, TheElement may be NULL. When the TheElement is NULL, the storage element
created can be determined by using the Job model.

5.5.3.8 ReturnToStoragePool

 uint32 ReturnToStoragePool (
[Out] CIM_ConcreteJob ref Job,
[In] CIM_LogicalElement ref TheElement);

This method allows a client to delete a previously created element such as a StorageVolume.

EXPERIMENTAL

If TheElement is a SNIA_StorageVolume and SNIA_StorageVolume.CanDelete is set to false, then
ReturnToStoragePool shall fail and shall return an error code of 6 (“In Use”) or 4 ("Failed").

EXPERIMENTAL

EXPERIMENTAL

5.5.3.9 RequestUsageChange

uint32 RequestUsageChange (
[In,
 ValueMap { "2", "3" },
 Values { "Set", "Modify \"Other\" description only"
}]
uint16 Operation,
[In] uint16 UsageValue,
[In[string OtherUsageDescription,
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 53

Block Services Package NO_ANSI_ID

863

864

865

866

867

868

869

870

871

872

873

874

875

876
877
878
879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902
[Out] CIM_ConcreteJob ref Job,
[In] CIM_LogicalElement ref TheElement);

The parameters are:

• Operation: This specification defines the usage of the 2 “Set” value for the parameters, which means to set the
Usage to one of the possible usage values. This parameter is required.

• UsageValue: The usage value possible for the type of storage element, whose reference is passed to this
method. This parameter is required.

• OtherUsageDescription: Not defined this specification. This parameter is not required.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 2 Common Profiles,
1.5.0 Rev 6 Clause 26: Job Control Subprofile.

• TheElement: This requirement parameter contains a reference to the storage element whose usage is to be
changed.

If the storage element can not be changed to the requested usage because it is invalid to do so, then the
implementation shall return an invalid parameter error.

EXPERIMENTAL

5.5.3.10 Return Values

Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”, “6”, “..”, “4096”,”4097”},

 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”,“Failed”, “Invalid Parameter”, “In Use”,
“DMTF Reserved”, “Method parameters checked - job
started”, “Size not supported”}]

Only the following return codes shall be supported:

• 0 - “Job completed with no error”
The method has completed immediately with no errors (and with no asynchronous execution required).

• 1 - “Not Supported”
This method is not supported at this time.

• 3 - “Timeout” or 4 - “Failed”
The provider has problems accessing the hardware (or other implementation-specific reasons)‘. The provider
should return a standard message communicating the nature of the value rather than returning this code.

• 5 - “Invalid Parameter”
One or more of the parameters are invalid (invalid object paths, for instance). The provider should return a
standard message, communicating which parameters are invalid and why, rather then returning this code.

• 6 - "In Use"
The storage element is used for the basis for another storage element. For example, a client request that a
StoragePool be deleted, but that StoragePool is the basis for another storage element. This return code may
also indicate that the deletion of the specified storage element is not permitted because it is being used for
another reason. This reason may be that the StoragePool on which this method is called does not permit this
action. The reason may also be that the implementation does not allow this action for proprietary reasons.

• 4096 - “Method parameters checked - job started”
The method parameters have been checked, and the method is being executed asynchronously.
54

NO_ANSI_ID Block Services Package

903

904

905

906
907
908
909
910
911
912
913
914
915
916
917
918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938
• 4097 - “Size not supported”
For a Create/Modify method, the requested size is not supported. The Size parameter and the size of the
storage element is set to the nearest supported and larger size.). Only the methods that create or modify
storage elements, other than their usage, shall return this code.

A vendor shall not extend the Value map to express vendor specific error situations not catered for by the standard
messages.

EXPERIMENTAL

5.5.3.11 GetElementsBasedOnUsage

uint GetElementsBasedOnUsage(
[In,
 ValueMap { "2", "3", "4", "5")
 Values { "StorageVolume","StorageExtent",
"StoragePool", "Logical Disk",}]
uint16 ElementType,
[In] uint16 Usage,
[In,
 ValueMap { "2", "3", "4" },
 Values { All","Available Only", "In Use Only" }]
uint16 Criterion,
[In] CIM_StoragePool ref ThePool,
[Out] CIM_ManagedSystemElement ref TheElements[]);

All input parameters are required. The parameters are:

• ElementType: This enumeration specifies the type of object to create.

• UsageValue: The usage value possible for the type of storage element as indicated by the ElementType
parameter.

• Criterion: Specifies whether to retrieve all elements - 2 “All”, available elements only - 3 “Available Only”, or the
elements that are in use - 4 “In Use Only”.

• ThePool: Limits the search for the elements that satisfy the criteria in this StoragePool only. If null, all
appropriate storage pools shall be included in the search.

• TheElements: Contains the array of references found to the storage element instances retrieved.

This method returns the following statuses:

• 0 - “Completed with No Error”:
The method has completed immediately with no errors

• 1 - “Not Supported”
This method is not supported at this time.

• 3 - “Timeout” or 4 - “Failed”
The provider has problems accessing the hardware (or other implementation-specific reasons)‘. The provider
should return a standard message communicating the nature of the value rather than returning this code.

• 5 - “Invalid Parameter”
One or more of the parameters are invalid (invalid object paths, for instance). The provider should return a
standard message, communicating which parameters are invalid and why, rather then returning this code.

EXPERIMENTAL
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 55

Block Services Package NO_ANSI_ID

939

940

941

942

943

944

945

946

947
948
949
950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974
975
976
977
978
979

980
5.5.4 Extrinsic Methods on StoragePool

5.5.4.1 General

The Extrinsic methods on StoragePool return sizes in units of bytes. These methods, each described in this
section, are:

• GetSupportedSizes

• GetSupportedSizeRange

• GetAvailableExtents

5.5.4.2 GetSupportedSizes

uint32 GetSupportedSizes(
[In] uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] uint64 Sizes[]);

The parameters are:

• ElementType: This enumeration specifies what type of object to create.

• Goal: The Service Level the element is expected to provide. The setting shall be a subset of the Capabilities
available from the parent StoragePool. Goal may be a null value, in which case the default Setting for the
StoragePool shall be used by the implementation.

• Sizes: An array containing all the possible sizes of an element in a creation or modification operation.

For a given Goal, this method returns discrete possible sizes of child elements, e.g., StoragePool, StorageVolume
or LogicalDisk, that can be created or modified using capacity from the StoragePool. If the Goal is not supplied, the
default Setting for the StoragePool shall be used by the implementation. This method is used to return the sizes of
contiguous ranges of blocks of the pool that can be used individually or in combination with other extents to create
or modify storage pool or storage elements. For example, an implementation can use this method to return the
sizes of disks, imported extents, or remaining extents that can be used in the storage assignment operation. This
method is also useful if the possible sizes do not differ by a fixed size and thus cannot be reported by the
GetSupportedSizeRange method. A summation in this case is the integer resulting from the addition any of the
elements. The summations of the possible sizes shall not be returned from this method. The implementation
should return the sizes of unassigned or remaining component extents that are appropriate for that Goal.

For example, if the returned sizes in gigabytes are {10, 15, 17, 21}, the summations include {25, 27, 31, 32, 36, 63}.
It is the responsibility of the client to calculate the summations.

Any one of the returned sizes or any one of the summations of the returns shall be acceptable by the
implementation as a possible size for a supported storage assignment using the element type and goal. If the size
of unassigned or remaining storage extents is repeated in this set of storage extents, the repetition of size shall be
reflected in the sizes returned. It is necessary to duplicate sizes so that the client can calculate the summations.

If the implementation supports zero size StoragePools (a.k.a. an "empty" storage pool) or StorageVolumes, the
returned Sizes parameter will have an entry with the value of 0. For example, if the GetSupportedSizes method is
called with ElementType set to StoragePool, and an array of Sizes containing [0, 20, 22, 25]is returned, it indicates
it is possible to create a 0 size (i.e. an empty) StoragePool, as well as other StoragePool sizes – namely 20, 22,
and 25.

5.5.4.3 GetSupportedSizeRange

uint32 GetSupportedSizeRange(
[In] uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] uint64 MinimumVolumeSize,
56

NO_ANSI_ID Block Services Package

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022
[Out] uint64 MaximumVolumeSize,
[Out] uint64 VolumeSizeDivisor);

• ElementType: This enumeration specifies what type of object to create.

• Goal: The service level the element is expected to provide. The Setting shall be a subset of the Capabilities
available from the parent StoragePool. Goal may be a null value, in which case the default Setting for the
StoragePool shall be used by the implementation.

• MinimumVolumeSize: The minimum size an element can take on either as a creation or modification operation.

• MaximumVolumeSize: The maximum size an element can take on either as a creation of modification
operation

• VolumeSizeDivisor: The value used to determine sizes between MinimumVolumeSize and
MaximumVolumeSize.

This method is used to determine the possible sizes of child element, e.g., StoragePool, LogicalDisk, and
StorageVolume, that can be created or modified using capacity drawn from the StoragePool. This method is useful
when the number of possible sizes is so voluminous that reporting each discrete size would be impractical. This
method reports the continuum of discrete sizes between the minimum and maximum size as defined by intervals of
the divisor.

The range of possible values between the values reported by MinimumVolumeSize and MaximumVolumeSize
shall be defined as:

• next integer value greater than MinimumVolumeSize that is divisible by VolumeSizeDivisor

• next integer value less than MaximumVolumeSize that is divisible by VolumeSizeDivisor,

• and every integer in between these integers that is divisible by VolumeSizeDivisor.

The possible values returned from this method shall include the MinimumVolumeSize, MaximumVolumeSize, and
the range of values in between. Neither the MinimumVolumeSize nor the MaximumVolumeSize are required to be
divisible by the VolumeSizeDivisor. For example, if given a MinimumVolumeSize of 10, a MaximumVolumeSize of
50, and VolumeSizeDivisor of 10, the possible size values would be 10, 20, 30, 40, and 50.

A client can calculate the discrete sizes by calculating the ceiling of the MinimumVolumeSize or the floor
MaximumVolumeSize, then using one of these calculated values and the VolumeSizeDivisor to determine the
discrete possible values within the range.

For example, given

MinimumVolumeSize = 35 GB
MaximumVolumeSize = 225 GB
VolumeSizeDivisor = 10 GB

ceiling(35/10) = 4
floor(225/10) = 22

 the next possible size after the minimum, 35, is 4 * VolumeSizeDivisor, or 40 GB.
 the next possible size after that is 5 * VolumeSizeDivisor, or 50 GB.
 the next possible size before the maximum, 225, is 22 * VolumeSizeDivisor, or 220 GB.

sizes = {35, 40, 50, 60 ... 210, 220, 225}

Any one of the returned sizes shall be acceptable by the implementation as a possible size for a supported storage
assignment using the element type and goal. The result size of the storage assignment or allocation may be
greater than the size requested by the client. The result size should be greater than or equal to the requested size.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 57

Block Services Package NO_ANSI_ID

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042
1043

1044

1045

1046

1047

1048

1049
1050
1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066
The result size should be less than the next size greater than requested size that is divisible by the
VolumeSizeDivisor.

It is not required that there be a relationship between the sizes returned from this method and the component
extent sizes of the implementation as report by implementing the Extent Composition.

Both or either method may be supported by a storage subsystem, either as a decision made at implementation
time or as a variable that depends on the state of the StoragePool. For example, when a StoragePool is first
created allowing for possible sizes to be in 1024-byte blocks, the GetSupportedSizeRange method should be used
to report possible sizes. This example StoragePool does not relocate blocks to avoid fragmentation of the capacity.
As StorageVolumes or LogicalDisks are drawn from and returned to the StoragePool, the capacity becomes
fragmented. In this case, the GetSupportedSizes method should be used to report the non-continuous regions of
capacity that may be used for element creation. There are storage systems that can allocate the StorageVolume or
LogicalDisk only in whole disks that need not be of uniform size; such storage systems support only the
GetSupportedSizes method.

Both methods may be supported at the same time and may report different values when discontiguous and
contiguous capacity is present in the StoragePool. In this case, the GetSupportSizes method is used to report the
fragments of available capacity. The remaining contiguous capacity is reported as the largest element size
possible. The GetSupportSizeRange is used to report element sizes that may be drawn from the contiguous
capacity.

If there is no notion of continuity as being a stable state of the system, e.g., capacity is continuously and
automatically being defragmented, the GetSupportSizeRange method should be used.

If the implementation supports zero size StoragePools (a.k.a. an "empty" storage pool) or StorageVolumes, the
returned MinimumVolumeSize parameter will have the value of 0.

5.5.4.3.1 Return Values

Each method has this set of return codes:

ValueMap {"0", "1", "2"},

Values {"Method completed OK", "Method not supported", "Use <the other method
name> instead"}]

If the above methods do not complete successfully, then either the methods are not supported or the other method
should be used. The GetSupportSizes method can notify the SMI-S client that it should use the
GetSupportSizeRanges instead; the GetSupportedSizeRange method can notify the SMI-S client that it should use
the GetSupportedSizes method instead.

5.5.4.3.2 GetAvailableExtents

uint32 GetAvailableExtents(
[In] CIM_StorageSetting REF Goal,
[Out] CIM_StorageExtent REF AvailableExtents[]);

This method is used to retrieve the available StorageExtents—ComponentExtents of the StoragePool—that do not
form the basis for StorageVolumes and LogicalDisks allocated from the StoragePool. If a NULL is passed for a
Goal, then all the available ComponentExtents of the StoragePool are returned.

The StorageExtent references returned from this method refer to a subset of the StorageExtents associated to the
StoragePool via ConcreteComponent, AssociatedComponentExtent, and AssociatedRemainingExtent. The
StorageExtents referenced by the output of this method may not equal the set of Component StorageExtents
because of any of the following reasons:

• The excluded StorageExtents may not be used with the Goal.

• The excluded StorageExtents may not be used for vendor-specific reasons.

• The excluded STorageExtents may not be used because of a usage restriction.
58

NO_ANSI_ID Block Services Package

1067

1068

1069

1070
1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106
This method is designed as a companion for the CreateOrModifyElementFromElements method. A client may
fetch the StoragePool’s available ComponentExtents and attempt to call CreateOrModifyElementFromElement, or
the client may use this method and have the agent provide the available StorageExtents. However, note it is
possible that even though a StorageExtent may appear to be available from the implementation’s model, the
implementation may not allow the StorageExtent to be used for vendor specific reasons.

5.5.4.4 Return Values

Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”},

 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”, “Failed”, “Invalid Parameter”}]

• 0 - “Job completed with no error”
The method completes immediately with no errors (and with no asynchronous execution required)

• 1 - “Not Supported”
The implementation does not support the method.

• 5 - “Invalid Parameter”
One of the method parameters is incorrect (for instance invalid object paths).

• 3 - “Timeout” or 4 - “Failed”
The provider had problems accessing the hardware, or there were implementation-specific problems.

5.5.4.4.1 Storage Element Modification

Concrete StoragePools may be expanded, shrunk, or have their quality of service (QoS) changed (the Goal
parameter) by a client.

This package does not define how primordial StoragePools are modified (if they can be modified) within a particular
implementation.

The current capacity of a StoragePool is the value of the TotalManagedSpace property.

StorageVolumes and LogicalDisks may be expanded, shrunk, or have their quality of service (QoS) changed (the
Goal parameter) by a client.

The current capacity of the StorageVolume, LogicalDisk, or StorageExtent is the ConsumableBlocks times the
BlockSize.

Storage elements are StoragePools, StorageVolumes, and LogicalDisks.

Return values are:

• 5 "StoragePool QoS Change,” 6 "StoragePool Capacity Expansion,” 7 "StoragePool Capacity Reduction"

Within SupportedStoragePoolFeatures array within the StorageConfigurationCapabilities instance, indicates
the types of StoragePool modification allowed.

• 11 "Storage Element QoS Change, 12 "Storage Element Capacity Expansion", and 13 "Storage Element
Capacity Reduction"

Within the SupportedStorageElementFeatures array within the StorageConfigurationCapabilities instance,
indicates the types of StorageVolume and LogicalDisk modifications allowed.

An implementation may support one or more of these options. If the implementation supports capacity expansion
or capacity reduction options and the QoS change option, then it shall support the capacity change and the QoS
change simultaneously in the modification of a given storage element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 59

Block Services Package NO_ANSI_ID

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154
A client can determine the resultant usable capacity to which a storage element may be changed by using the
GetSupportedSizes() and GetSupportedSizeRange() methods on the parent StoragePool. These methods provide
the possible storage capacity for new storage elements and for the modification of existing storage elements given
a QoS goal. To obtain a size to use for storage element modification, the client simply select a size returned from
the GetSupportedSizes() method or a size within the range returned from GetSupportedSizeRange() method.

Generally, the attempted StoragePool modification shall be characterized as a storage capacity expansion if the
new capacity (the Size parameter) is greater than the current value of the TotalManagedSpace property of the
StoragePool to be modified. Likewise, the attempted StoragePool modification shall be characterized as a storage
capacity reduction if the desired new capacity (the Size parameter) is less than the current value of the
TotalManagedSpace property of the StoragePool to be modified.

Generally, the attempted StorageVolume or LogicalDisk modification shall be characterized as a storage capacity
expansion if the new capacity (the Size parameter) is greater than its current capacity. Likewise, the attempted
StorageVolume or LogicalDisk modification shall be characterized as a storage capacity reduction if the desired
new capacity (the Size parameter) is less than its current capacity.

A storage element may also be modified by providing the references to component StorageExtents. The list
candidate component StorageExtents shall be provided through the execution of the GetAvailableExtents() method
on the parent StoragePool. For example, the SMI-S Client determines which StorageExtents to use from the
returned list based on their performance characteristics or their relationship to network ports or primordial storage.

A StoragePool's capacity may be expandable by providing the references to existing component StorageExtents of
the StoragePool and additional references to component StorageExtents. A StoragePool's capacity may be
reducible by providing references to some, but not all, of the current component StorageExtents of the
StoragePool. If the summary of the capacity of the referenced input StorageExtents is greater than the
TotalManagedSpace of the StoragePool, then this action shall be characterized as a capacity expansion. If this
summary is less than the TotalManagedSpace of the StoragePool, then this action shall be characterized as
capacity reduction.

A StorageVolume's or LogicalDisk's capacity may be expandable by providing references to additional component
StorageExtents of the parent StoragePool. The capacity of a StorageVolume or LogicalDisk shall not be reducible
by providing references to StorageExtents.

The capacity of storage elements that have only one member StorageExtent can only be reduced by passing a
reference to the existing member and specifying a capacity, using the Size parameter, that is smaller than the
current size of the storage element.

The specified Size parameter (in bytes), along with the specification of member StorageExtents, indicates how
much of the provided StorageExtents is to be used for the storage element. The specified size represents the
desired consumable capacity of the storage element. The capacity of the StorageExtent may be equal to either the
capacity drawn in its creation from a parent StorageExtent or StoragePool or to the capacity that may be drawn
from it in the creation of a dependent storage element. No direct comparison may be made by the client between
the desired capacity and the capacity of the StorageExtents.

If the capacity desired is equal to the capacity of the storage element and the QoS is not altered, then the
implementation shall return no error and start no job.

If the capacity requested is larger than is consumable given a QoS (new or existing) from the referenced
StorageExtents or StoragePools, then that capacity shall be drawn from the parent primordial StoragePool. The
effect of passing a capacity less than the current capacity of the storage element shall be to make available or free
the capacity in the member StorageExtents to the difference between the current capacity of the storage element
and the new capacity of the storage element. The amount of capacity freed depends on the virtualization (e.g.,
RAID method) employed in the previous configuration of the storage element. An invalid parameter error shall be
produced if the capacity in bytes passed is less than the current capacity but greater than then the capacity
realizable from the StorageExtents referenced given a QoS. The size of a StorageExtent is the NumberOfBlocks
60

NO_ANSI_ID Block Services Package

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170
times the BlockSize. The capacity of the StorageExtents references can be calculated; it is the sum of the sizes of
all StorageExtents.

The number of StorageExtents desired, including existing and additional StorageExtents, for a StorageElement
minus the PackageRedundancy shall be equal to the ExtentStripeLength times the DataRedundancy specified in
the existing QoS goal. Clause 14: Extent Composition Subprofile defines how to determine the number of
primordial StorageExtents used.

The quality of service (QoS) of a storage element may be modified. Generally, a QoS change indicates a
reorganization of computing resources to meet the new requirements—either additional or fewer computing
resources are used.

If the QoS is being modified, then clients may not be able to determine if desired size of the storage element
constitutes an expansion or reduction, as specified previously. Such a modification shall be non-destructive to the
data stored.

The QoS of a StoragePool shall not be changeable if that StoragePool has children storage elements. However,
the package redundancy of parental StoragePools may be changed by changing the number of spare
StorageExtents. See Clause 12: Disk Sparing Subprofile.

In the totality of this design, a SMI-S Client may change one of the following:

• The QoS,

• The Size (capacity)

• The Size and the member StorageExtents

• Only the member StorageExtents.

A SMI-S Client may not change the QoS and the member StorageExtents. There is no mechanism for a SMI-S
Client to determine the quorum of StorageExtents for a given QoS if ExtentStripeLength is not provided.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 61

Block Services Package NO_ANSI_ID

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185
5.6 Client Considerations and Recipes

5.6.1 Representative Instance Diagram

Figure 16: "Representative Block Service Instance Diagram" shows the classes and associations needed to model
a single StoragePool with two StorageVolumes.

5.6.2 Goals and Settings

A implementation may persist the properties of the Setting as they were when the Setting was used to perform a
configuration operation. However, the implementation may also construct the Setting given the current quality of
service provided. An implementation of this package should retain the properties of the Setting as they were when
the Setting was used as a Goal. For example, a client requests a package redundancy 2, the implementation is
restarted and therefore cannot retrieve; the implementation sets this value to the current value of 1. Unless the
client maintained the state of Setting as well, it will not be able to detect the difference between the initial Setting
state and the current state for package redundancy, in the StorageVolume or LogicalDisk, for example.

If a client specifies a goal asking for no single point of failure, the implementation shall return an error if the system
is not capable of supporting that goal. However, if a client specifies that single points of failure are allowed, the
implementation may return storage that has potential single points of failure or it may return storage that has no

Figure 16 - Representative Block Service Instance Diagram

SystemDevice

Single controller

ComputerSystem

Pool owned by one controller,
redundant access through the
other

StoragePool

HostedStoragePool

AllocatedFromStoragePool

Current state of volume

StorageSetting

Element
Setting

Element
Capabilities

Optional extension to publish
'hints' from the client for
 optimization

StorageSettingWithHints

SystemDevice

HostedService

ElementCapabilities

Describes range of
capabilities of the Service

StorageCapabilities

Element
Setting

AllocatedFromStoragePool

Describes range of
capabilities of the Pool

StorageCapabilities

StorageConfigurationService

LUN

StorageVolume

StorageVolume

LUN
62

NO_ANSI_ID Block Services Package

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210
single points of failure. In other words, the system may return a storage that is more capable than what the client
has asked for.

A client may request more data redundancy and package redundancy than what is required for the particular RAID
level. An implementation may provide more of these redundancies than is required for its RAID levels. If allowed,
the client request of additional data redundancy indicates that additional copies of the data are requested. If
allowed, the client request of additional package redundancy results in additional drives, for example, being
assigned to this storage element. The redundant package may be overassigned (e.g., assigned as extra packages
for more than one storage element), or it may be dedicated. See Clause 12: Disk Sparing Subprofile for details on
modeling the sparing functionality itself. In other words, these Goal properties can be used to assign additional
copies of the data and redundancy at creation or modification time of a StoragePool, StorageVolume, or
LogicalDisk.

5.6.3 Representative StoragePool Creation Example

Figure 17: "StoragePool Creation - Initial State" shows the initial state of the block storage system, a single
primordial StoragePool that advertises its capabilities. The GetSupportedSizes() and GetSupportedSizeRange()
methods determine what sizes of StoragePools can be created from the primordial StoragePool, given a goal
StorageSetting. Alternatively, if the StoragePool is to be created from StorageExtents, GetAvailableExtents()
obtains a list of available ComponentExtents of the StoragePool that also match the Goal.

Next, (Figure 18: "StoragePool Creation - Step 1") the client uses the CreateSetting method on the
StorageCapabilities instance to create an instance of a StorageSetting. This Setting object can be altered as
desired. If the block storage system supports StorageSettingWithHints, an instance of this subclass is created
rather than the StorageSetting superclass. Alternatively, the client can use one of the predefined StorageSetting
instances. Pre-existing Settings can be located by using the StorageSettingsAssociatedToCapabilities association
for factory or pre-defined settings or by using the StorageSettingsGeneratedFromCapabilities class, where the
StorageSetting.ChangeableType = “2” (“Changeable - Persistent”); these Settings have been generated but were
modified to persist.

Figure 17 - StoragePool Creation - Initial State

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 63

Block Services Package NO_ANSI_ID

1211

1212

1213

1214

Once this generated Setting has been altered as required or, alternatively, a pre-defined Setting used, the Goal
Setting is passed as an argument to the CreateOrModifyStoragePool method in the StorageConfigurationService.
(Shown in Figure 19: "StoragePool Creation - Step 2").

Figure 18 - StoragePool Creation - Step 1

Figure 19 - StoragePool Creation - Step 2

ComputerSystem

dedicated[x]

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

FixedSetting:
StorageSetting

StorageSettingsAssociatedToCapabilities

StorageCapabilities

CreateSetting()

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool(NewSetting | FixedSetting)
CreateOrModifyElementFromElements(NewSetting | FixedSetting)

HostedService

NewSetting:
StorageSetting

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

StorageSettingGeneratedFromCapabilities

FixedSetting:
StorageSetting

StorageSettingAssociatedToCapabilities
64

NO_ANSI_ID Block Services Package

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230
Alternatively, the client can create the StoragePool by passing the Goal, the desired ComponentExtents, and a
“Pool” ElementType to CreateOrModifyElementFromElement. If a Size is passed as well, the size shall be equal to
or less than the consumable size (in blocks) of the desired ComponentExtents. The list of available StorageExtents
is best retrieved using the GetAvailableExtents() method. If the Size is less than the desired StorageExtents by less
than the smallest StorageExtent passed, then one of the StorageExtents is partitioned into used and free parts.
See 5.1.15.

The StoragePool is then created, as shown in Figure 20: "StoragePool Creation - Step 3". If the generated Setting
was used as the Goal, then this temporary StorageSetting is replaced with an equivalent object linked to the new
StoragePool with ElementCapabilities. .

5.6.4 Representative example of StorageVolume or LogicalDisk Creation

Similarly to StoragePools, a client chooses a suitable source StoragePool by referencing the StorageCapabilities
objects and using the GetSupportedSizes() and GetSupportSizeRange() methods, given a goal Setting.
Alternatively, a client can retrieve the available ComponentExtents of the StoragePool, given a goal
StorageSetting, with the GetAvailableExtents() methods. The client may create a StorageVolume or LogicalDisk by
specifying a size, source StorageExtents, or a combination, as shown in Figure 21: "StorageVolume Creation -
Initial State".

Figure 20 - StoragePool Creation - Step 3

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

NewPool:
StoragePool ElementCapabilities

NewCapability:
StorageCapabilities

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvaillableExtents()

HostedPool

AllocatedFromStoragePool
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 65

Block Services Package NO_ANSI_ID

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240
Once a suitable StoragePool is found, a StorageSetting instance can be created using the CreateSetting method
on the StorageCapabilities object. See Figure 22: "StorageVolume Creation - Step 1". If a suitable StorageSetting
already exists, it can be used instead. Pre-existing Settings can be located by using the
StorageSettingsAssociatedToCapabilities association, for factory or pre-defined settings, or by using the
StorageSettingsGeneratedFromCapabilities where the StorageSetting.ChageableType = “2” (“Changeable -
Persistent”); these Settings have been generated but were modified to persist, as illustrated in Figure 22:
"StorageVolume Creation - Step 1". Another Setting already associated to a storage element can be used as a
goal, but it shall not be modifiable.

If a new Setting is created, it is linked back to the originating StorageCapabilities object until it is used as an
argument in a StorageConfiguration method. See Figure 23: "StorageVolume Creation - Step 2". Alternatively, the

Figure 21 - StorageVolume Creation - Initial State

Figure 22 - StorageVolume Creation - Step 1

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

ElementCapabilities
StorageCapabilities

CreateSetting()

HostedService

FixedSetting:
StorageSetting

StorageCapabilities

CreateSetting()

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

ComputerSystem

dedicated[x]

HostedPool

ElementCapabilities

StorageSettingAssociatedToCapabilities
66

NO_ANSI_ID Block Services Package

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250
client can create the StorageVolume or LogicalDisk, for example, by passing the Goal, the desired
ComponentExtents, and a ElementType to CreateOrModifyElementFromElement. If a Size is passed as well, the
size shall be equal to or less than the consumable size (in blocks) of the desired ComponentExtents. The list of
available StorageExtents is best retrieved using the GetAvailableExtents() method. If the Size is less than the
desired StorageExtents by a size less than smallest StorageExtent passed, then one of the StorageExtents is
partitioned into used and free parts. See 5.1.15.

Once the StorageVolume has been created, the new or existing Setting is associated to the new storage element
using the ElementSettingData association. The new Setting and the Goal setting may not be the very same
instance. The client cannot assume that the instances are the same instance. See Figure 24: "StorageVolume
Creation - Step 3".

Figure 23 - StorageVolume Creation - Step 2

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool(NewSetting | FixedSetting)
CreateOrModifyElementFromElements(NewSetting | FixedSetting)

HostedService

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

StoragePool

HostedPool

ElementCapabilities

StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

StorageSettingsGeneratedFromCapabilities

FixedSetting:
StorageSetting

StorageSettingsAssociatedToCapabilities
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 67

Block Services Package NO_ANSI_ID

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268
5.6.5 Summarize the StoragePools in a block storage system and verify the capacity reported

// DESCRIPTION

// This recipe retrieves and validates the total, remaining and consumed storage

// pool space on a block server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the device, CIM_ComputerSystem, of interested has

// previously been identified and defined in the $BlockServer-> variable.

// Step 1. Retrieve the storage pools on the device.

$Pools[] = Associators($BlockServer->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

“GroupComponent”,

“PartComponent”,

false,

false,

{“TotalManagedSpace”, “RemainingManagedSpace”})

// Step 2. Summarize the space consumed and available in each storage pool.

Figure 24 - StorageVolume Creation - Step 3

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

GetAvailableExtents()

HostedPool

ElementCapabilities
StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

NewVolume:
StorageVolume

AllocatedFromStoragePool

ElementSettingData
68

NO_ANSI_ID Block Services Package

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309
1310
for (#i in $Pools[]) {

 #totalSpace = $Pools[#i].TotalManagedSpace

 #remainingSpace = $Pools[#i].RemainingManagedSpace

 $Pool-> = $Pools[#i].getObjectPath()

 // Step 3. Retrieve the space consumed by each element allocated from the

 // storage pool.

 $Allocs[] = References($Pool->,

 “CIM_AllocatedFromStoragePool”,

 “Antecedent”,

 false,

 false,

 {“SpaceConsumed”})

 #allocSpace = 0

 for (#j in $Allocs[]) {

#allocSpace = #allocSpace + $Allocs[#j].SpaceConsumed

 }

 if (#totalSpace != #allocSpace + #remainingSpace) {

<ERROR! Device does not correctly represent capacity>

 }

}

5.6.6 Conditional: Create StoragePool and Storage Element on Block Server (e.g., Array or Volume
Manager)

// DESCRIPTION

// The goal of this recipe is to create a storage element with the

// maximum capabilities of the block server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. The storage configuration service is supported indicating the

// storage configuration is permitted. This is the condition for the recipe.

// 2. A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 3. The settings for the new Storage Pool and Storage Volume or Logical Disk have

// following size:

// #RequestedSize = 10 * 1024 * 1024 * 1024 // 10 GB

// 4. #StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 5. #ElementType is set to the element to created

// See CreateOrModifyElementFromStoragePool.ElementType

// Function GetMostCapable

// Get the capabilities that have the maximum DataRedundancy and
PackageRedundancy
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 69

Block Services Package NO_ANSI_ID

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340
1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356
// Input:

// An array of StorageCapabilities instances associated to the StoragePool.

sub REF GetMostCapable($CapabilitiesOffered[])

{

<Sort the $CapabilitiesOffered[] so that the capability with the

 greatest DataRedundanctMax, PackageRedundancyMax, and

 NoSinglePointOfFailure in the last element in the array.

 NoSinglePointOfFailure == true is greater than

 NoSinglePointOfFailure == false

>

return $CapabilitiesOffered[$CapabilitiesOffered.length-1]

}

// Function PoolSizeAvailable

// A return value of 0 means that no size is available

sub unit64 PoolSizeAvailable($PoolToDrawFrom->,

$StorageSetting->, #RequestedSize, #RequestedElementType)

#ResultSize = 0

%InArguments[“ElementType”] = #RequestedElementType

%InArguments[“Goal”] = $StorageSetting->

#MethodReturn = InvokeMethod(

$PoolToDrawFrom->,

“GetSupportedSizes”,

%InArguments,

%OutArguments)

if(#MethodReturn == 0)

{

 // this method is supported

#SupportedSizes[] = %OutArguments[“Sizes”]

< Amend to the #SupportedSizes[] all possible combinations of

 summations of the values provided in the array >

#i = 0

#max = #SupportedSizes[].length

while(#i < #max && #RequestedSize > #ResultSize)

{

#ResultSize = #SupportedSizes[#i++]

}

if(#RequestedSize > #ResultSize)

{

// we did not find a size

#ResultSize = 0

}

}

 else if (#MethodReturn == 2)

{ // call GetSupportedSizeRange
70

NO_ANSI_ID Block Services Package

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402
#MethodReturn =

InvokeMethod(

$PooltoDrawFrom->,

“GetSupportedSizeRange”,

%InArguments,

%OutArguments)

if(#MethodReturn != 1 && #MethodReturn != 2)

{

// this method is supported

#MaximumVolumeSize = %OutArguments[“MaximumVolumeSize”]

#MinimumVolumeSize = %OutArguments[“MinimumVolumeSize”]

#VolumeSizeDivisor = %OutArguments[“VolumeSizeDivisor”]

#ResultSize = 0 // Set default case

if(#RequestedSize >= #MinimumVolumeSize &&

 #RequestedSize <= #MaximumVolumeSize)

{

// Rounding up to next Size, which is dividable by Divisor

#ResultSize = (#RequestedSize + (#VolumeSizeDivisor -

(#RequestedSize MOD #VolumeSizeDivisor)))

}

}

}

return #ResultSize

}

// MAIN

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

<ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<ERROR! Storage Configuration is not supported.>

 }
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 71

Block Services Package NO_ANSI_ID

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446
}

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0]

$ServiceCapabilities[] = Associators(

$StorageConfigurationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,

false,

null)

// There should be only one StorageConfigurationCapabilities instance

#SupportsPoolCreation = contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedSynchronousActions[]) ||

contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

#PoolCreationProducesJob = contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[])

#SupportsElementCreation1 = contains(

5, // Storage Element Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsElementCreation2 = contains(

3, // StorageElementCreation

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementCreationProducesJob = contains(

5, // Storage Element Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[])

// If a storage element can not be created and that storage element is

// neither created synchronously or asynchronously, then fail the test

if (!#SupportedElementCreation2 &&

!(#SupportedElementCreation1 || #ElementCreationProducesJob))

{

<ERROR! The StoragePool can be created, but the

StorageElement creation is not supported.>

}

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find

// all the StoragePools from which storage elements might be created.

$StoragePools[] = Associators(

$BlockServer->,
72

NO_ANSI_ID Block Services Package

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491
“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null,

null,

false,

false,

{“InstanceID”, “Primordial”})

// Step 3. For each StoragePool, follow the CIM_ElementCapabilities

// asociation to the StorageCapabilities of that pool. Compare the

// StorageCapabilities to the desired StorageSetting and find the

// best match.

$PoolToDrawFrom-> = null

for #i in $StoragePools[]

{

// See if this pool has its own StorageConfigurationCapabilities.

$PoolServiceCapabilities[] = Associators(

$StoragePools[#i]->,

ÒCIM_ElementCapabilitiesÓ,

 ÒCIM_StorageConfigurationCapabilitiesÓ,

null,

null,

false,

false,

null)

if($PoolServiceCapabilities[]-> != null) {

 #SupportsPoolCreation = contains(

 2, // Storage Pool Creation

 $PoolServiceCapabilities[0].SupportedSynchronousActions[]) ||

 contains(

 2, // Storage Pool Creation

 $PoolServiceCapabilities[0].SupportedAsynchronousActions[]))

 #PoolCreationProducesJob = contains(

 2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedAsyncronousActions[])

 #SupportsElementCreation1 = contains(

 5, // Storage Element Creation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 #SupportsElementCreation2 = contains(

 3, // StorageElementCreation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[])

 #ElementCreationProducesJob = contains(

 5, // Storage Element Creation

 $ServiceCapabilities[0].SupportedAsynchronousActions[])

if (!#SupportsPoolCreation &&

!#SupportsElementCreation2 &&
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 73

Block Services Package NO_ANSI_ID

1492

1493

1494

1495

1496

1497
1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535
 !(#SupportedElementCreation1 || #ElementCreationProducesJob))

 {

 <ERROR! The StoragePool can be created, but the

 StorageElement creation is not supported.>

 } // end of if($PoolServiceCapabilities[]-> != null)

 else {

 // Continue with global instance of
StorageConfigurationCapabilities --

 // This Pool does not have StoragePool specific capabilities

 }

// If we can not create Storage Pool, then find a ‘concrete’

// Storage Pool from which to create a Storage Element

#UsePrimordial = false

if(#SupportsPoolCreation)

{

#UsePrimordial = true

#RequestedElementType = 2 // StoragePool

}

else

{

#RequestedElementType = #ElementType

}

if ($StoragePools[#i].Primodial == #UsePrimordial)

{

$CapabilitiesOffered[] = Associators(

$StoragePools[#i].getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = &GetMostCapable($CapabilitiesOffered[])

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

// Step 4. Determine if the selected pool has enough space for

// another pool.

// If the block server supports hints, then the Storage Setting returned

// will contain default hints

// Create a setting

%InArguments[“SettingType”] = 3 // Goal

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,
74

NO_ANSI_ID Block Services Package

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561
1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572
1573

1574

1575

1576

1577

1578

1579
1580
%InArguments,

%OutArguments)

if (#ReturnValue != 0 || null)

{

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

// Determine the possible size, closest to the requested size

#PossibleSize = &PoolSizeAvailable(

$PoolToDrawFrom->,

$GeneratedStorageSetting->,

#RequestedSize

#RequestedElementType)

if(0 != #PossibleSize) // we found a size close to #RequestedSize

{ }

break;

}

else

{

// Cause failure if there are no more candidate Pools

$PoolToDrawFrom-> = NULL;

}

}

}

if ($PoolToDrawFrom-> == NULL)

{

<ERROR! Unable to find a suitable pool from which to create the storage
element >

}

// Step 5. Register for indications on configuration jobs

If(#PoolCreationProducesJob || #ElementCreationProducesJob)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 75

Block Services Package NO_ANSI_ID

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624
@{Determine if Indications already exist or have to be
created}&createIndication(#Filter2)

}

// Step 6. Create the Storage Pool

if(#SupportsPoolCreation)

{

%InArguments[“ElementName”] = NULL// we do not care what

// the name is

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

%InArguments[“InExtents”] = null

%InArguments[“Pool”] = null

%InArguments[“InPools”] = $PoolToDrawFrom->

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,

“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // Storage Pool was not created

<ERROR! Failed >

}

$PoolToDrawFrom-> = %OutArguments[“Pool”]

$PoolCreationJob-> = %OutArguments[“Job”]

if(#PoolCreationProducesJob && $PoolCreationJob-> != null)

 {

<Wait until the completion of the job

 using $PoolCreationJob-> as a filter>

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

}

$CapabilitiesOffered[] = Associators(

$PoolToDrawFrom->,

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

}

76

NO_ANSI_ID Block Services Package

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670
// Step 7. Create Storage Element.

%InArguments[“SettingType”] = 3 // “Goal”

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

if (#ReturnValue != 0)

{

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

%InArguments[“ElementName”] = NULL

%InArguments[“ElementType”] = #ElementType

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

$InArguments[“InPool”] = $PoolToDrawFrom->

%InArguments[“TheElement”] = null

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,

“CreateOrModifyElementFromStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 || #ReturnValue != 4096)

{ // Method did not succeeded or succeeded but did not create a job

<ERROR! Failed >

}

else if(#ReturnValue == 0 ||

(#ReturnValue == 4096 && %OutArguments[“TheElement”] != null)))

{

$CreatedElement-> = %OutArguments[“TheElement”]

}

else // a Job was created and TheElement is null

{

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

<Once the ‘Job’ has completed successfully, see step 5, then

 follow the AffectedJobElement association from the ‘Job’ to

 retrieve the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#StorageElementClass,
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 77

Block Services Package NO_ANSI_ID

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714
null,

null,

false,

false,

null)

// Only one storage element will be created,

 $CreatedElement-> = $CreatedElement[0].getObjectPath()

}

5.6.7 Conditional: Expand Storage Element on Block Server

// DESCRIPTION

// In this recipe, we attempt to expand a LUN on an array by 50%.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. The storage configuration service is supported indicating the

// storage configuration is permitted. This is the condition for the recipe.

// 2. A reference to the CIM_ComputerSystem that represents the array

// $BlockServer->

// 3.A reference to the particular storage element we wish to expand.

// $ElementToExpand->

// 4. It is assumed that to expand a storage element there needs to be

// enough space available in the parent StoragePool to contain

// another copy of the storage element whose size is equal to the

// new size requested. This is especially the case if we were

// modifying the settings as well as the size.

// 5. #ElementClassName is set to the class name of the storage element be

modified.

// (e.g. CIM_StorageVolume or CIM_LogicalDisk)

// 6. #ElementType is set to the storage element to modified

// See CreateOrModifyElementFromStoragePool.ElementType

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

<ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {
78

NO_ANSI_ID Block Services Package

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759
 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0]

$ServiceCapabilities[] = Associators(

$BlockServer->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,

false,

null)

// There should be only one StorageConfigurationCapabilities instance

#SupportsElementModification1 = contains(

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedSynchronousActions[]) ||

contains(

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsElementModification2 = contains(

5, // Storage Element Modification

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementModificationProducesJob = contains(

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedAsynchronousActions[])

if(!#SupportedElementModification1 || !#SupportedElementModification2)

{

<EXIT: The ability to modify an existing Storage Element must be supported

 to continue.>

}

// Step 2. Read the current size of the Storage Element.

$StorageElement = GetInstance(

$ElementToExpand->,

false,

false,

false,

{“BlockSize”, “NumberOfBlocks”})

#PreviousSize = $StorageElement.BlockSize * $StorageElement.NumberOfBlocks
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 79

Block Services Package NO_ANSI_ID

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802
1803
// Step 3. Follow the AllocatedFromStoragePool association from the

// storage element to find the pool from whence it came.

$Pools->[] = AssociatorNames(

$ElementToExpand->,

“CIM_AllocatedFromStoragePool”,

“CIM_StoragePool”,

null,

null)

// A Storage Element has only one Pool parent

$ParentPool-> = $Pools->[0]

// Step 4. Determine whether the desired space for which to expand the

// storage element exists within the pool.

$StorageSetting->[] = AssociatorNames(

$ElementToExpand->,

“CIM_ElementSettingData”,

“CIM_StorageSetting”,

null,

null)

$CurrentElementSetting-> = $StorageSetting->[0]

// Calculate the additional space needed

#SizeToExpand = 0.5 * #PreviousSize

// Calculate 150% of previous storage element size

#SizeToExpandTo = #PreviousSize + (0.5 * #PreviousSize)

#NewSizeAvailable =

@<Create Storage Pool and Storage Element on Block Server>

&PoolSizeAvailable(

$ParentPool->,

$CurrentElementSetting->,

#SizeToExpand,

#ElementType)

if (0 == #NewSizeAvailable)

{

<ERROR! Unable to proceed because the requested size is unavailable >

}

// Step 5. Register for indications on configuration jobs

If(#ElementModificationProducesJob)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter1)
80

NO_ANSI_ID Block Services Package

1804

1805

1806

1807

1808

1809
1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849
// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter2)

}

// Step 6. Modify the Storage Element

// If there is a Job produced, wait for Job completion

%InArguments[“ElementName”] = null// we do not care what the name is

%InArguments[“ElementType”] = #ElementType

%InArguments[“Goal”] = $CurrentElementSetting

%InArguments[“Size”] = #SizeToExpandTo

%InArguments[“InPool”] = $ParentPool->

%InArguments[“TheElement”] = $ElementToExpand->

#ReturnValue = InvokeMethod(

$StorageConfigurationService->

“CreateOrModifyElementFromStoragePool”

%InArguments

%OutArgument

)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // Method succeeded or validated arguments and started a job

<ERROR! Failed >

}

else if(#ReturnValue == 0)

{

$CreatedElement-> = %OutArguments[“TheElement”]

}

else // a Job was created and TheElement is null

{

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

<Once the ‘Job’ has stopped, see step 4,then follow the

 AffectedJobElement association from the ‘Job’ to retrieve

 the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#ElementClassName,

null,
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 81

Block Services Package NO_ANSI_ID

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872
1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893
null,

false,

false,

null)

// Only one Storage Element will be created,

 $CreatedElement-> = $CreatedElement[0].getObjectPath()

}

// Step 7. Check the value of the “Size” out parameter. See if it is

// equal to size expected. If so, we got what we asked for and we’re done.

#SizeExpandedTo = %OutArguments[“Size”]

if (#SizeExpandedTo == #SizeToExpandTo)

{

< indicate the storage element was successfully expanded >

}

else

{

if (#SizeExpandedTo <= #PreviousSize)

{

< indicate the storage element was not expanded >

}

else

{

< indicate the storage element was only partially expanded to
#SizeExpandedTo >

}

}

5.6.8 Conditional: Create Storage Element from Elements on Block Server

// DESCRIPTION

//

// This recipe demonstrates a use of “CreateOrModifyElementFromElements”;

// However the recipe is known to fail when an implementation also implements the
PoolsFromVolumes component profile.

//

// The goal of this recipe is to create a storage element with the maximum

// capabilities of the block server. If supported, the pool creation specifies

// the disk(s) to use as input rather than the size.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. The storage configuration service is supported indicating the

// storage configuration is permitted. This is the condition for the recipe.

// 2. A reference to a CIM_ComputerSystem Host is previously

// defined in the $Host-> variable

// 3. The references for input disks that are to be used for creating the pool

// are in $DisksForPool->[] array. All these must be associated to the

// primordial pool with CIM_ConcreteComponent association.
82

NO_ANSI_ID Block Services Package

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937
// On being transferred to a Concrete pool they will be disassociated from

// the primordial pool.

// 4. The storage element will be created using available disks in the

// concrete returned by GetAvailableExtents.

// 5. The settings for the new Storage Pool and Logical Disk are defined in

// the following variables:

// #RequestedSize = 10 * 1024 * 1024 * 1024 // 10 GB

// 6. #StorageElementClass is set to the class name of the element being

// createdlike CIM_StorageVolume or CIM_LogicalDisk.

// 7. #ElementType is set to the element to created

// 2 - StorageVolume

// 4 - LogicalDisk

// See CreateOrModifyElementFromStoragePool.ElementType

// MAIN

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($Host->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

<ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0]

$ServiceCapabilities[] = Associators($StorageConfigurationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 83

Block Services Package NO_ANSI_ID

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948
1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981
false,

null)

// There should be only one StorageConfigurationCapabilities instance

#SupportsPoolCreation = contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

|| contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

#PoolCreationProducesJob = contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[])

#SupportsElementCreation1 = contains(12, // Storage Element from Element Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsElementCreation2 = contains(3, // LogicalDiskCreation

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementCreationProducesJob = contains(12, // Storage Element from Element
Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsInExtents = contains(2, // InExtents

$ServiceCapabilities[0].SupportedStoragePoolFeatures[])

// If StorageExtent creation is not supported, the set of specific disks from

// which to allocate the StoragePool is not supported by the device.

if (!#SupportsInExtents) {

<EXIT: The StoragePool cannot be created from a specific set of disks.>

}

// If a storage element can not be created and that storage element is

// neither created synchronously or asynchronously, then fail the test

if (!#SupportedElementCreation2 &&

!(#SupportedElementCreation1 || #ElementCreationProducesJob)) {

<EXIT: The StoragePool can be created, but the

 storage element from element creation is not supported.>

}

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find

// all the StoragePools from which storage elements might be created.

$StoragePools[] = Associators($Host->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null,

null,

false,

false,

{“InstanceID”, “Primordial”})

// Step 3. For each StoragePool, follow the CIM_ElementCapabilities

// asociation to the StorageCapabilities of that pool. Compare the

// StorageCapabilities to the desired StorageSetting and find the
84

NO_ANSI_ID Block Services Package

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026
// best match.

$PoolToDrawFrom-> = null

for (#i in $StoragePools[]) {

// If we can not create Storage Pool, then find a ‘concrete’

// Storage Pool from which to create a Storage Element

#UsePrimordial = false

if (#SupportsPoolCreation) {

#UsePrimordial = true

#RequestedElementType = 2 // StoragePool

} else {

#RequestedElementType = #ElementType

}

if ($StoragePools[#i].Primodial == #UsePrimordial) {

$CapabilitiesOffered[] = Associators(

$StoragePools[#i].getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = &GetMostCapable($CapabilitiesOffered[])

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

// Step 4. Determine if the selected pool has enough space for

// another pool. If the block server supports hints, then

// the StorageSetting returned will contain default hints

// Create a setting

%InArguments[“SettingType”] = 3 // Goal

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

if (#ReturnValue != 0 || null) {

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

// Determine the possible size, closest to the requested size

#PossibleSize = &PoolSizeAvailable(

$PoolToDrawFrom->,

$GeneratedStorageSetting->,

#RequestedSize,

#RequestedElementType)

if (0 != #PossibleSize) {
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 85

Block Services Package NO_ANSI_ID

2027

2028

2029

2030

2031

2032
2033

2034

2035

2036

2037

2038

2039

2040

2041

2042
2043

2044

2045

2046

2047

2048

2049
2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070
// Located a size close to #RequestedSize

break;

} else {

// Cause failure if there are no more candidate Pools

$PoolToDrawFrom-> = NULL;

}

}

}

if ($PoolToDrawFrom-> == NULL) {

<ERROR! Unable to find a suitable pool from which to create the storage
element>

}

// Step 5. Register for indications on configuration jobs

if (#PoolCreationProducesJob || #ElementCreationProducesJob) {

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

WHERE SourceInstance ISA CIM_ConcreteJob

AND ANY SourceInstance.OperationalStatus[*] = 17

AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

WHERE SourceInstance ISA CIM_ConcreteJob

AND ANY SourceInstance.OperationalStatus[*] = 17

AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter2)

}

// Step 6. Create the Storage Pool

if (#SupportsPoolCreation) {

%InArguments[“ElementName”] = NULL// leave up to the device

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = null

%InArguments[“InExtents”] = $DisksForPool->[]

%InArguments[“Pool”] = null

$InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPools”] = $InPools->[]

#ReturnValue = InvokeMethod($StorageConfigurationService->,

“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if (#ReturnValue != 0 && #ReturnValue != 4096) {

// Storage Pool was not created

<ERROR! Failed>

}

86

NO_ANSI_ID Block Services Package

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114
$PoolToDrawFrom-> = %OutArguments[“Pool”]

$PoolCreationJob-> = %OutArguments[“Job”]

if (#PoolCreationProducesJob && $PoolCreationJob-> != null) {

<Wait until the completion of the job

 using $PoolCreationJob-> as a filter>

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully>

}

$CapabilitiesOffered[] = Associators($PoolToDrawFrom->,

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

}

// Step 7. Call GetAvailableExtents to find available extents for creating

// the storage element.

%InArguments[“Goal”] = $GeneratedStorageSetting->

#ReturnValue = InvokeMethod($PoolToDrawFrom->,

“GetAvailableExtents”,

%InArguments, %OutArguments)

if (#ReturnValue != 1) {

// Not supported

<EXIT! Method not supported, can not finish this recipe>

} else if (#ReturnValue != 0) {

// Method did not succeeded or succeeded but did not create a job

<ERROR! Failed>

}

$DisksForElement->[] = %OutArguments[“AvailableExtents”]

// Step 8. Create Storage Element

%InArguments[“SettingType”] = 3 // “Goal”

InvokeMethod($StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

if (#ReturnValue != 0) {

<ERROR! Unable to create storage setting >

}

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 87

Block Services Package NO_ANSI_ID

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159
$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

%InArguments[“ElementName”] = NULL

%InArguments[“ElementType”] = #ElementType

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

$InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPool”] = $InPools->

%InArguments[“InElements”] = $DisksForElement->[]

%InArguments[“TheElement”] = null // Create new element

#ReturnValue = InvokeMethod($StorageConfigurationService->,

“CreateOrModifyElementFromElements”,

%InArguments, %OutArguments)

if (#ReturnValue != 0 && #ReturnValue != 4096) {

// Method did not succeeded or succeeded but did not create a job

<ERROR! Failed>

} else if (#ReturnValue == 0 ||

(#ReturnValue == 4096 && %OutArguments[“TheElement”] != null))) {

$CreatedElement-> = %OutArguments[“TheElement”]

} else // a Job was created and TheElement is null {

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully>

<Once the ‘Job’ has completed, see step 5, then follow the

 AffectedJobElement association from the ‘Job’ to retrieve

 the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#StorageElementClass,

null,

null,

false,

false,

null)

// Only one LogicalDisk will be created,

$CreatedElement-> = $CreatedElements[0].getObjectPath()

}

5.6.9 Optional: Intentionally General a CIM Error

// DESCRIPTION

// Validate reporting an error/exception

// when InvokeMethod is called with an invalid parameter.

//

// This recipe intentionally supplies an invalid “ElementType”.
88

NO_ANSI_ID Block Services Package

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205
//

// This recipe attempts to optionally utilize properties of CIM_Error

// if CIM_Error is implemented.

// 1. Insert an error

// 2. Catch the exception

// 3. Report the error

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a storage setting is previously defined

// in the $StorageSetting-> variable.

// 2.A size that is possible for the creation of a storage element

// is provided in the #PossibleSize,

// 3.A reference to Pool is previous defined in the $PoolToDrawFrom-> variable

// 4.A object paths for source input Pools is previous defined in the

// $InPools variable

// 5. A reference to the StorageConfigurationService is already defined

// in the StorageConfiguratonServivce-> variable

//

%InArguments[“ElementType”] = 1000 // Invalid ElementType

%InArguments[“Goal”] = $StorageSetting->

%InArguments[“Size”] = #PossibleSize

%InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPool”] = $InPools->

%InArguments[“TheElement”] = null

try

{

 #ReturnValue = InvokeMethod(

 $StorageConfigurationService->,

 “CreateOrModifyElementFromStoragePool”,

 %InArguments, %OutArguments)

}

catch (CIM Exception $Exception) {

 // For SMI-S 1.1, optionally allow for implementation of CIM_Error.

 if($Exception.MessageID <> null) { // CIM_Error is implemented

 // For example

 if($Exception.MessageArguments[2] ==

 “CreateOrModifyElementFromStoragePool”) &&

 $Exception.MessageArguments[0] == “1” && // Second method parameter

 $Exception.MessageID = “MP5”)

 {

 <EXIT: Success -- CIM_Error is constructed properly>

 }

 else {

 <ERROR! Improperly constructed CIM_Error>

 }

 }
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 89

Block Services Package NO_ANSI_ID

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218
 else {

 <display, optional CIM_Error is not implemented>

 if($Exception.CIMStatusCode != CIM_ERR_INVALID_PARAMETER) {

 <ERROR! Improper CIM status code returned>

 }

 else {

 <EXIT: Success -- correct CIM status code reported>

 }

 }

}

if (#ReturnValue != CIM_ERR_INVALID_PARAMETER) { // 5 = Invalid parameter

 <ERROR! Invalid return value >

}

5.7 Registered Name and Version

Block Services version 1.5.0 (Component Profile)

5.8 CIM Elements

Table 24 describes the CIM elements for Block Services.

Table 24 - CIM Elements for Block Services

Element Name Requirement Description

5.8.1 CIM_AllocatedFromStoragePool (Pool
from Pool)

Mandatory AllocatedFromStoragePool.

5.8.2 CIM_AllocatedFromStoragePool
(Volume or LogicalDisk from Pool)

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory.
AllocatedFromStoragePool.

5.8.3 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageVolume or LogicalDisk)

Optional Expressed the ability for the element to be
named or have its state changed.

5.8.4 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StoragePool)

Optional Expressed the ability for the element to be
named or have its state changed.

5.8.5 CIM_ElementCapabilities
(StorageCapabilities to
StorageConfigurationService)

Optional Associates StorageCapabilities with
StorageConfigurationService. This
StorageCapabilities shall represent the
capabilities of the entire implementation.
90

NO_ANSI_ID Block Services Package
5.8.6 CIM_ElementCapabilities
(StorageCapabilities to StoragePool)

Mandatory Associates StorageCapabilities with
StoragePool. This StorageCapabilities shall
represent the capabilities of the StoragePool
to which it is associated.

5.8.7 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities
with StorageConfigurationService.

5.8.8 CIM_ElementCapabilities
(StorageConfigurationCapabilities to concrete
StoragePool)

Optional Associates StorageConfigurationCapabilities
with StoragePool.

5.8.9 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
primordial StoragePool)

Optional Associates StorageConfigurationCapabilities
with StoragePool.

5.8.10 CIM_ElementCapabilities (Used to
declare the naming capabilities of the
StoragePool)

Optional Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

5.8.11 CIM_ElementCapabilities (Used to
declare the naming capabilities of the
StorageVolume or LogicalDisk)

Optional Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

5.8.12 CIM_ElementSettingData Mandatory

5.8.13
CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Optional This class is used to express the naming and
possible requested state change possibilities
for storage elements.

5.8.14
CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Optional This class is used to express the naming and
possible requested state change possibilities
for storage pools.

5.8.15 CIM_FilterCollection (Block Services
Predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

5.8.16 CIM_HostedCollection (System to
predefined IndicationFilters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

5.8.17 CIM_HostedService Conditional Conditional requirement: Support for
StorageConfigurationService.

5.8.18 CIM_HostedStoragePool Mandatory

Table 24 - CIM Elements for Block Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 91

Block Services Package NO_ANSI_ID
5.8.19 CIM_IndicationFilter (Logical Disk
Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the addition of a new LogicalDisk
instance.

5.8.20 CIM_IndicationFilter (Logical Disk
Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the deletion of a LogicalDisk
instance.

5.8.21 CIM_IndicationFilter (Logical Disk
OperationalStatus)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of LogicalDisk instances.

5.8.22 CIM_IndicationFilter (Storage Pool
Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the addition of a new StoragePool
instance.

5.8.23 CIM_IndicationFilter (Storage Pool
Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the deletion of a StoragePool
instance.

5.8.24 CIM_IndicationFilter (Storage Pool
TotalManagedSpace)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in TotalManagedSpace
for StoragePool instances.

Table 24 - CIM Elements for Block Services

Element Name Requirement Description
92

NO_ANSI_ID Block Services Package
5.8.25 CIM_IndicationFilter (Storage Volume
Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the addition of a new
StorageVolume instance.

5.8.26 CIM_IndicationFilter (Storage Volume
Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the deletion of a StorageVolume
instance.

5.8.27 CIM_IndicationFilter (Storage Volume
OperationalStatus)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of StorageVolume instances.

5.8.28 CIM_IndicationFilter (WQL Logical Disk
OperationalStatus)

Conditional Deprecated. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' WQL version of the
CIM_IndicationFilter instance for changes in
the OperationalStatus of LogicalDisk
instances.

5.8.29 CIM_IndicationFilter (WQL Storage
Volume OperationalStatus)

Conditional Deprecated. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' WQL version of the
CIM_IndicationFilter instance for changes in
the OperationalStatus of StorageVolume
instances.

5.8.30 CIM_LogicalDisk Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. A LogicalDisk is allocated from a
concrete StoragePool.

Table 24 - CIM Elements for Block Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 93

Block Services Package NO_ANSI_ID
5.8.31 CIM_MemberOfCollection (Block
Services Filter Collection to FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Block
Services predefined FilterCollection to the
FilterCollection for the autonomous profile
(e.g., the Array FilterCollection).

5.8.32 CIM_MemberOfCollection (Predefined
Filter Collection to Block Services Filters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Block
Services predefined FilterCollection to the
predefined Filters supported by the
implementation.

5.8.33 CIM_OwningJobElement Conditional Conditional requirement: Support for Job
Control profile.

5.8.34 CIM_StorageCapabilities Mandatory

5.8.35 CIM_StorageConfigurationCapabilities
(Concrete)

Optional

5.8.36 CIM_StorageConfigurationCapabilities
(Global)

Conditional Conditional requirement: Support for
StorageConfigurationService.

5.8.37 CIM_StorageConfigurationCapabilities
(Primordial)

Optional

5.8.38 CIM_StorageConfigurationService Optional

5.8.39 CIM_StoragePool (Concrete) Mandatory The concrete StoragePool. A concrete
StoragePool shall be allocated from another
StoragePool. It shall be used for allocating
StorageVolumes and LogicalDisks as well as
other concrete StoragePools.

5.8.40 CIM_StoragePool (Empty) Optional An empty StoragePool is a special case of a
StoragePool (Concrete or Primordial) where
the StoragePool contains no capacity.

5.8.41 CIM_StoragePool (Primordial) Mandatory The primordial StoragePool. It is created by
the provider and cannot be deleted or
modified. It cannot be used to allocate any
storage element other than concrete
StoragePools.

5.8.42 CIM_StorageSetting Mandatory

5.8.43 CIM_StorageSettingWithHints Optional

Table 24 - CIM Elements for Block Services

Element Name Requirement Description
94

NO_ANSI_ID Block Services Package
5.8.44
CIM_StorageSettingsAssociatedToCapabilitie
s

Optional This class associates the StorageCapabilities
with the preset setting. Any StorageSetting
instance associated with this association shall
work, unmodified, to create a storage element.
The preset settings should not change
overtime and represent possible settings for
storage elements are set of design time rather
than runtime. All StorageSetting instances
linked with this association shall have a
ChangeableType of "0" ("Fixed - Not
Changeable").

5.8.45
CIM_StorageSettingsGeneratedFromCapabilit
ies

Conditional Conditional requirement: Support for
StorageConfigurationService. This class
associates the StorageCapabilities with the
StorageSetting generated from it via the
CreateSetting method. StorageSettings
instances generated in this manner, as
identified with this association, may be
removed from the model at any time by the
implementation if the ChangeableType of the
associated setting is set to "2" ("Changeable -
Transient"). All StorageSettings associated
with this class shall be changeable,
ChangeableType is "2" or "3". Some
implementations may permit the modification
of the ChangeableType property itself on
StorageSetting instances associated via this
class. Provided this is allowed, a client may
change the ChangeableType to "3"
("Changeable - Persistent") to have this
setting retained either after generation of the
instance or after its modification by the client.
The DefaultSetting property of the
StorageSetting instances linked with this
association is meaningless.

5.8.46 CIM_StorageVolume Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. Representation
of a virtual disk (for SCSI, a logical unit). A
StorageVolume is allocated from a concrete
StoragePool. See the "Standard Formats for
Logical Unit Names" section in the Storage
Management Technical Specification, Part 1
Common Architecture for details on how to set
Name, NameFormat, and NameNamespace
properties.

Table 24 - CIM Elements for Block Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 95

Block Services Package NO_ANSI_ID
5.8.47 CIM_SystemDevice (System to
StorageVolume or LogicalDisk)

Mandatory Associates top level system from Array,
Virtualizer, ... to StorageVolume or
LogicalDisk.

5.8.48 SNIA_StorageVolume Optional An optional extension of CIM_StorageVolume.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool. See section
Storage Management Technical Specification,
Part 3 Block Devices, 1.5.0 Rev 6 5.8.22
CIM_IndicationFilter (Storage Pool Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.23
CIM_IndicationFilter (Storage Pool Deletion).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. Creation of
StorageVolume, if the StorageVolume storage
element is implemented. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.25
CIM_IndicationFilter (Storage Volume
Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. Deletion of
StorageVolume, if the StorageVolume storage
element is implemented. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.26
CIM_IndicationFilter (Storage Volume
Deletion).

Table 24 - CIM Elements for Block Services

Element Name Requirement Description
96

NO_ANSI_ID Block Services Package
SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. Deprecated
WQL -Change of status of a Storage Volume,
if Storage Volume is implemented. See
section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.29 CIM_IndicationFilter (WQL Storage
Volume OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::Operati
onalStatus <>
PreviousInstance.CIM_StorageVolume::Oper
ationalStatus

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. CQL -Change
of status of a Storage Volume, if Storage
Volume is implemented. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.27
CIM_IndicationFilter (Storage Volume
OperationalStatus).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Creation of LogicalDisk, if the
LogicalDisk storage element is implemented.
See section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.19 CIM_IndicationFilter (Logical Disk
Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Deletion of LogicalDisk, if the
LogicalDisk storage element is implemented.
See section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.20 CIM_IndicationFilter (Logical Disk
Deletion).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Deprecated WQL -Change of
status of LogicalDisk, if LogicalDisk is
implemented. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.28
CIM_IndicationFilter (WQL Logical Disk
OperationalStatus).

Table 24 - CIM Elements for Block Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 97

Block Services Package NO_ANSI_ID

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230
5.8.1 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 25 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

5.8.2 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced from Host Hardware RAID Controller - StorageVolume is mandatory.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::Operationa
lStatus <>
PreviousInstance.CIM_LogicalDisk::Operation
alStatus

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. CQL -Change of status of
LogicalDisk, if LogicalDisk is implemented.
See section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.21 CIM_IndicationFilter (Logical Disk
OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalMana
gedSpace <>
PreviousInstance.CIM_StoragePool::TotalMan
agedSpace

Mandatory CQL -Change of TotalManagedSpace. See
section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.24 CIM_IndicationFilter (Storage Pool
TotalManagedSpace).

Table 25 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from
Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory Antecedent references the parent pool from which the
dependent pool is allocated.

Dependent Mandatory

Table 24 - CIM Elements for Block Services

Element Name Requirement Description
98

NO_ANSI_ID Block Services Package

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243
Table 26 describes class CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool).

5.8.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 27 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or
LogicalDisk).

5.8.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 26 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or
LogicalDisk from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 27 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory A Storage Volume or Logical Disk.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 99

Block Services Package NO_ANSI_ID

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256
Table 28 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool).

5.8.5 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 29 describes class CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService).

5.8.6 CIM_ElementCapabilities (StorageCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 30 describes class CIM_ElementCapabilities (StorageCapabilities to StoragePool).

Table 28 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object
(CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is
associated with a storage pool.

ManagedElement Mandatory A reference to an instance of a StoragePool.

Table 29 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities
to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 30 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities
to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
100

NO_ANSI_ID Block Services Package

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274
5.8.7 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 31 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

5.8.8 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 32 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool).

5.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 31 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigura-
tionCapabilities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 32 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigura-
tionCapabilities to concrete StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 101

Block Services Package NO_ANSI_ID

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291
Table 33 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool).

5.8.10 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying the
capability to provide an element name for storage pools.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 34 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool).

5.8.11 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or
LogicalDisk)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying the
capability to provide an element name for storage volumes or logical disks.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 33 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigura-
tionCapabilities to primordial StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 34 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the
naming capabilities of the StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object
(CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is
associated with an instance of
StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of
CIM_StorageConfigurationService.
102

NO_ANSI_ID Block Services Package

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304
Table 35 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume
or LogicalDisk).

5.8.12 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 36 describes class CIM_ElementSettingData.

5.8.13 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 35 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the
naming capabilities of the StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object
(CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StorageVolume Enabled Capabilities" or
"LogicalDisk Enabled Capacilities" that is associated with
an instance of StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of
CIM_StorageConfigurationService.

Table 36 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced
setting is a default setting for the element, or that this
information is unknown. Value shall be 0,1 or 2 (Unknown
or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced
setting is currently being used in the operation of the
element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The StorageSetting or StorageSettingWithHints that is
associated with the Storage Volume or Logical Disk.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 103

Block Services Package NO_ANSI_ID

2305

2306

2307

2308

2309

2310

2311
Table 37 describes class CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService).

5.8.14 CIM_EnabledLogicalElementCapabilities (For StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 38 describes class CIM_EnabledLogicalElementCapabilities (For StoragePool).

Table 37 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should include one of
the following three values:

StoragePool Enabled Capabilities

StorageVolume Enabled Capabilities

LogicalDisk Enabled Capacilities.

ElementNameEditSu
pported

Mandatory Denotes whether a storage element can be named.

MaxElementNameLe
n

Mandatory Specifies the maximum length in glyphs (letters) for the
name. See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content
and format for the element name. See MOF for details.

RequestedStatesSup
ported

Optional Expresses the states to which this element may be
changed using the RequestStateChange method. If this
property, it may be assumed that the state may not be
changed.

Table 38 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should be
'StoragePool Enabled Capabilities'.

ElementNameEditSu
pported

Mandatory Denotes whether a storage element can be named.
104

NO_ANSI_ID Block Services Package

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323
5.8.15 CIM_FilterCollection (Block Services Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Block Services
implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 39 describes class CIM_FilterCollection (Block Services Predefined FilterCollection).

5.8.16 CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 40 describes class CIM_HostedCollection (System to predefined IndicationFilters).

MaxElementNameLe
n

Mandatory Specifies the maximum length in glyphs (letters) for the
name. See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content
and format for the element name. See MOF for details.

RequestedStatesSup
ported

Optional Expresses the states to which this element may be
changed using the RequestStateChange method. If this
property, it may be assumed that the state may not be
changed.

Table 39 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Pre-
defined FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Block
Services'.

Table 40 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined
IndicationFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Block
Services.

Antecedent Mandatory Reference to the System of the referencing profile.

Table 38 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 105

Block Services Package NO_ANSI_ID

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340
5.8.17 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 41 describes class CIM_HostedService.

5.8.18 CIM_HostedStoragePool

Requirement: Mandatory

Table 42 describes class CIM_HostedStoragePool.

5.8.19 CIM_IndicationFilter (Logical Disk Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new LogicalDisk instance.
This would typically occur as a result of an invocation of CreateOrModifyElementFromStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 41 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting computer system.

Dependent Mandatory The storage configuration service hosted on the computer
system.

Table 42 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.
106

NO_ANSI_ID Block Services Package

2341

2342

2343

2344

2345

2346

2347

2348

2349
Table 43 describes class CIM_IndicationFilter (Logical Disk Creation).

5.8.20 CIM_IndicationFilter (Logical Disk Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a LogicalDisk instance. This
would typically occur as a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 43 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 107

Block Services Package NO_ANSI_ID

2350

2351

2352

2353

2354

2355

2356

2357

2358
Table 44 describes class CIM_IndicationFilter (Logical Disk Deletion).

5.8.21 CIM_IndicationFilter (Logical Disk OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
LogicalDisk instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 44 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
108

NO_ANSI_ID Block Services Package

2359

2360

2361

2362

2363

2364

2365

2366

2367
Table 45 describes class CIM_IndicationFilter (Logical Disk OperationalStatus).

5.8.22 CIM_IndicationFilter (Storage Pool Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StoragePool instance.
This would typically occur as a result of an invocation of CreateOrModifyStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 45 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Operational-
Status)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 109

Block Services Package NO_ANSI_ID

2368

2369

2370

2371

2372

2373

2374

2375

2376
Table 46 describes class CIM_IndicationFilter (Storage Pool Creation).

5.8.23 CIM_IndicationFilter (Storage Pool Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StoragePool instance. This
would typically occur as a result of an invocation of DeleteStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 46 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
110

NO_ANSI_ID Block Services Package

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386
Table 47 describes class CIM_IndicationFilter (Storage Pool Deletion).

5.8.24 CIM_IndicationFilter (Storage Pool TotalManagedSpace)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in TotalManagedSpace for
StoragePool instances. This would typically occur as a result of an invocation of CreateOrModifyStoragePool that
expands a StoragePool.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 47 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 111

Block Services Package NO_ANSI_ID

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396
Table 48 describes class CIM_IndicationFilter (Storage Pool TotalManagedSpace).

5.8.25 CIM_IndicationFilter (Storage Volume Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StorageVolume
instance. This would typically occur as a result of an invocation of CreateOrModifyElementFromStoragePool
method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 48 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalMan-
agedSpace)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StoragePoolTotalManagedSpace'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace <>
PreviousInstance.CIM_StoragePool::TotalManagedSpace.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
112

NO_ANSI_ID Block Services Package

2397

2398

2399

2400

2401

2402

2403
Table 49 describes class CIM_IndicationFilter (Storage Volume Creation).

5.8.26 CIM_IndicationFilter (Storage Volume Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StorageVolume instance.
This would typically occur as a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Table 49 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Cre-
ation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 113

Block Services Package NO_ANSI_ID

2404

2405

2406

2407

2408

2409

2410

2411

2412
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 50 describes class CIM_IndicationFilter (Storage Volume Deletion).

5.8.27 CIM_IndicationFilter (Storage Volume OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
StorageVolume instances.

Created By: Static

Modified By: Static

Deleted By: Static

Table 50 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
114

NO_ANSI_ID Block Services Package

2413

2414

2415

2416

2417

2418

2419

2420
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 51 describes class CIM_IndicationFilter (Storage Volume OperationalStatus).

5.8.28 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

Created By: Static

Modified By: Static

Table 51 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Opera-
tionalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 115

Block Services Package NO_ANSI_ID

2421

2422

2423

2424

2425

2426

2427

2428
Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 52 describes class CIM_IndicationFilter (WQL Logical Disk OperationalStatus).

5.8.29 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolume instances.

Created By: Static

Table 52 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk Opera-
tionalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:LogicalDiskOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
116

NO_ANSI_ID Block Services Package

2429

2430

2431

2432

2433

2434

2435
Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 53 describes class CIM_IndicationFilter (WQL Storage Volume OperationalStatus).

5.8.30 CIM_LogicalDisk

Created By: Static

Table 53 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume
OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 117

Block Services Package NO_ANSI_ID

2436

2437

2438

2439
Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 54 describes class CIM_LogicalDisk.

Table 54 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.
118

NO_ANSI_ID Block Services Package

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455
5.8.31 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)

Experimental. This associates the Block Services predefined FilterCollection to the FilterCollection for the
autonomous profile (e.g., the Array FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 55 describes class CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection).

5.8.32 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)

Experimental. This associates the Block Services predefined FilterCollection to the predefined Filters supported by
the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 56 describes class CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters).

5.8.33 CIM_OwningJobElement

Conditional on support for Job Control profile.

Requirement: Support for Job Control profile.

Table 57 describes class CIM_OwningJobElement.

Table 55 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Fil-
ter Collection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined
FilterCollection.

Member Mandatory Reference to the Block Services predefined
FilterCollection.

Table 56 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Block Services Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined
FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Block
Services implementation.

Table 57 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 119

Block Services Package NO_ANSI_ID

2456

2457

2458

2459

2460

2461
5.8.34 CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 58 describes class CIM_StorageCapabilities.

Table 58 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In
addition, the user-friendly name can be used as a index
property for a search or query. (Note: ElementName does
not have to be unique within a namespace) If the
capabilities are fixed, then this property should be used as
a means for the client application to correlate between
capabilities and device documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6
(StoragePool or StorageConfigurationService).

NoSinglePointOfFailu
re

Mandatory Indicates whether or not the associated instance supports
no single point of failure. Values are: FALSE = does not
support no single point of failure, and TRUE = supports no
single point of failure.

NoSinglePointOfFailu
reDefault

Mandatory Indicates the default value for the NoSinglePointOfFailure
property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values
are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values
are 1 to n.

DataRedundancyDef
ault

Mandatory DataRedundancyDefault describes the default number of
complete copies of data that can be maintained. Examples
would be RAID 5 where 1 copy is maintained and RAID 1
where 2 or more copies are maintained. Possible values
are 1 to n.
120

NO_ANSI_ID Block Services Package
PackageRedundancy
Min

Mandatory PackageRedundancyMin describes the minimum number
of spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancy
Max

Mandatory PackageRedundancyMax describes the maximum number
of spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancy
Default

Mandatory PackageRedundancyDefault describes the default number
of spindles or logical devices that can be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

ExtentStripeLengthD
efault

Optional Describes what the default stripe length, the number of
members or columns, a storage element will have when
created or modified using this capability. A NULL means
that the setting of stripe length is not supported at all or not
supported at this level of storage element allocation or
assignment.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a
storage element will have when created or modified using
this capability. A NULL means that the setting of the parity
is not supported at all or is not supported at this level of
storage element allocation or assignment.

UserDataStripeDepth
Default

Optional UserDataStripeDepthDefault describes what the number of
bytes forming a stripe that a storage element will have
when created or modified using this capability. A NULL
means that the setting of stripe depth is not supported at all
or not supported at this level of storage element allocation
or assignment.

CreateSetting() Conditional Conditional requirement: Support for
StorageConfigurationService. Generate a setting to use as
a goal for creating or modifying storage elements.

GetSupportedStripeL
engths()

Optional List the possible discrete stripe lengths supported at this
time of this method's execution.

GetSupportedStripeL
engthRange()

Optional List the possible stripe length ranges supported at the time
of this method's execution.

GetSupportedParityL
ayouts()

Optional List the possible parity layouts supported at the time of this
method's execution.

Table 58 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 121

Block Services Package NO_ANSI_ID

2462

2463

2464

2465

2466

2467
5.8.35 CIM_StorageConfigurationCapabilities (Concrete)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 59 describes class CIM_StorageConfigurationCapabilities (Concrete).

GetSupportedStripeD
epths()

Optional List the possible stripe depths supported at the time of this
method's execution.

GetSupportedStripeD
epthRange()

Optional List the possible stripe depth ranges supported at the time
of this method's execution.

Table 59 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Con-
crete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool
or Storage Pool QoS Change or Storage Pool Capacity
Expansion or Storage Pool Capacity Reduction).

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "4" (Storage Pool Modification),
"5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element
Modification) or "15" (StoragePool Usage Modification).

SupportedStorageEle
mentTypes

Mandatory Lists the type of storage elements that are supported by
this implementation. This version of the standard
recognizes '2' (StorageVolume) or '4' (LogicalDisk).

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "4" (Storage Pool Modification),
"5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element
Modification) or "15" (StoragePool Usage Modification).

Table 58 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
122

NO_ANSI_ID Block Services Package

2468

2469

2470

2471

2472

2473
5.8.36 CIM_StorageConfigurationCapabilities (Global)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 60 describes class CIM_StorageConfigurationCapabilities (Global).

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). Matches 3|8 (StorageVolume Creation or
LogicalDisk Creation).

SupportedStorageEle
mentUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElemen
tUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.

Table 60 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities
(Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool
or Storage Pool QoS Change or Storage Pool Capacity
Expansion or Storage Pool Capacity Reduction).

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs.

SupportedStorageEle
mentTypes

Mandatory Lists the type of storage elements that are supported by
this implementation.

Table 59 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Con-
crete)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 123

Block Services Package NO_ANSI_ID

2474

2475

2476

2477

2478

2479
5.8.37 CIM_StorageConfigurationCapabilities (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 61 describes class CIM_StorageConfigurationCapabilities (Primordial).

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs.

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). Matches 3|5|8|9|11|12|13 (StorageVolume
Creation or StorageVolume Modification or LogicalDisk
Creation or LogicalDisk Modification or Storage Element
QoS Change or Storage Element Capacity Expansion or
Storage Element Capacity Reduction).

SupportedStorageEle
mentUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElemen
tUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.

Table 61 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Pri-
mordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3 (InExtents or Single InPool).

Table 60 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities
(Global)

Properties Flags Requirement Description & Notes
124

NO_ANSI_ID Block Services Package

2480

2481

2482

2483

2484
5.8.38 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from
Element Creation) or "15" (StoragePool Usage
Modification).

SupportedStorageEle
mentTypes

Optional Lists the type of storage elements that are supported by
this implementation. This version of the standard does not
recognize any values for this property.

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from
Element Creation) or "15" (StoragePool Usage
Modification).

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). This version of the standard does not recognize
any values for this property. For Primordial pools, this shall
not contain 3 (StorageVolume Creation), 5 (StorageVolume
Modification), 8 (LogicalDisk Creation) or 9 (LogicalDisk
Modification).

SupportedStorageEle
mentUsage

Optional For Primordial StorageConfigurationCapabilities, this shall
be NULL.

ClientSettableElemen
tUsage

Optional For Primordial StorageConfigurationCapabilities, this shall
be NULL.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.

Table 61 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Pri-
mordial)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 125

Block Services Package NO_ANSI_ID

2485

2486

2487

2488

2489

2490

2491
Table 62 describes class CIM_StorageConfigurationService.

5.8.39 CIM_StoragePool (Concrete)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 63 describes class CIM_StoragePool (Concrete).

Table 62 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

CreateOrModifyStora
gePool()

Optional Create (or modify) a StoragePool. A job may be created as
well.

DeleteStoragePool() Optional Start a job to delete a StoragePool.

CreateOrModifyElem
entFromStoragePool(
)

Mandatory Create or modify a storage element. A job may be created
as well.

CreateOrModifyElem
entFromElements()

Optional Create or modify a storage element using component
StorageExtents of the Pool. A job may be created as well.

ReturnToStoragePool
()

Mandatory Release the capacity represented by this storage element
back to the Pool.

RequestUsageChang
e()

Optional Allows a client to change the Usage for the element.

GetElementsBasedO
nUsage()

Optional Allows a client to retrieve elements for a specialized Usage.

Table 63 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies
this Pool.
126

NO_ANSI_ID Block Services Package

2492

2493

2494

2495

2496

2497

2498

2499

2500
5.8.40 CIM_StoragePool (Empty)

An empty StoragePool is a special case of a StoragePool where the StoragePool contains no capacity. All
properties are supported as defined for the StoragePool (Concrete or Primordial), except that the empty
StoragePool has TotalManagedSpace=0.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Optional

Table 64 describes class CIM_StoragePool (Empty).

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService. List the discrete storage
element sizes that can be created or expanded from this
Pool.

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService. List the size ranges for
storage element that can be created or expanded from this
Pool.

GetAvailableExtents(
)

Optional List the StorageExtents from this Pool that may be used to
create or expand a storage element. The StorageExtents
may not already be in use as supporting capacity for
existing storage element.

Table 64 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and
primordial StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

Table 63 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 127

Block Services Package NO_ANSI_ID

2501

2502

2503

2504

2505

2506
5.8.41 CIM_StoragePool (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 65 describes class CIM_StoragePool (Primordial).

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManaged
Space

Mandatory

Usage Optional

OtherUsageDescripti
on

Optional

ClientSettableUsage Optional

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService.

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService.

GetAvailableExtents(
)

Optional

Table 65 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies
this Pool.

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

Table 64 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes
128

NO_ANSI_ID Block Services Package

2507

2508

2509

2510

2511

2512
5.8.42 CIM_StorageSetting

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 66 describes class CIM_StorageSetting.

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService. List the discrete storage
element sizes that can be created or expanded from this
Pool.

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService. List the size ranges for
storage element that can be created or expanded from this
Pool.

GetAvailableExtents(
)

Optional List the StorageExtents from this Pool that may be used to
create or expand a storage element. The StorageExtents
may not already be in use as supporting capacity for
existing storage element.

Table 66 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In
addition, the user-friendly name can be used as a index
property for a search of query. (Note: Name does not have
to be unique within a namespace.).

NoSinglePointOfFailu
re

Mandatory Indicates the desired value for No Single Point of Failure.
Possible values are false = single point of failure, and true =
no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of
complete copies of data to be maintained. Examples would
be RAID 5 where 1 copy is maintained and RAID 1 where 2
or more copies are maintained. Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of
complete copies of data to be maintained. Examples would
be RAID 5 where 1 copy is maintained and RAID 1 where 2
or more copies are maintained. Possible values are 1 to n.

Table 65 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 129

Block Services Package NO_ANSI_ID

2513
 5.8.43 CIM_StorageSettingWithHints

DataRedundancyGoa
l

Mandatory

PackageRedundancy
Min

Mandatory PackageRedundancyMin describes the minimum number
of spindles or logical devices to be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancy
Max

Mandatory PackageRedundancyMax describes the maximum number
of spindles or logical devices to be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancy
Goal

Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length
goal.

ExtentStripeLengthMi
n

Optional ExtentStripeLengthMin describes the minimum acceptable
stripe length.

ExtentStripeLengthM
ax

Optional ExtentStripeLengthMax describes the maximum acceptable
stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value
may be 1 or 2 (Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepth
Min

Optional UserDataStripeDepthMin describes the minimum
acceptable stripe depth.

UserDataStripeDepth
Max

Optional UserDataStripeDepthMax describes the maximum
acceptable stripe depth.

ChangeableType Mandatory This property informs a client if the setting can be modified.
It also tells the client how long this setting is expected to
remain in the model. If the implementation allows it, the
client can use the property to request that the setting's
existence be not transient.

StorageExtentInitialU
sage

Optional The Usage value to be used when creating a new storage
element.

StoragePoolInitialUsa
ge

Optional The Usage value to be used when creating a new storage
pool.

Table 66 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
130

NO_ANSI_ID Block Services Package

2514

2515

2516

2517

2518
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 67 describes class CIM_StorageSettingWithHints.

Table 67 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In
addition, the user-friendly name can be used as a index
property for a search of query. (Note: Name does not have
to be unique within a namespace.).

NoSinglePointOfFailu
re

Mandatory

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyGoa
l

Mandatory

PackageRedundancy
Min

Mandatory

PackageRedundancy
Max

Mandatory

PackageRedundancy
Goal

Mandatory

ExtentStripeLength Optional

ExtentStripeLengthMi
n

Optional

ExtentStripeLengthM
ax

Optional

ParityLayout Optional

UserDataStripeDepth Optional

UserDataStripeDepth
Min

Optional

UserDataStripeDepth
Max

Optional

StorageExtentInitialU
sage

Optional

StoragePoolInitialUsa
ge

Optional
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 131

Block Services Package NO_ANSI_ID

2519

2520

2521

2522

2523
5.8.44 CIM_StorageSettingsAssociatedToCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

DataAvailabilityHint Mandatory This hint is an indication from a client of the importance
placed on data availability. Values are 0=Don't Care to
10=Very Important.

AccessRandomness
Hint

Mandatory This hint is an indication from a client of the randomness of
accesses. Values are 0=Entirely Sequential to 10=Entirely
Random.

AccessDirectionHint Mandatory This hint is an indication from a client of the direction of
accesses. Values are 0=Entirely Read to 10=Entirely Write.

AccessSizeHint Mandatory This hint is an indication from a client of the optimal access
sizes. Several sizes can be specified. Units("Megabytes").

AccessLatencyHint Mandatory This hint is an indication from a client how important access
latency is.` Values are 0=Don't Care to 10=Very Important.

AccessBandwidthWei
ght

Mandatory This hint is an indication from a client of bandwidth
prioritization. Values are 0=Don't Care to 10=Very
Important.

StorageCostHint Mandatory This hint is an indication of the importance the client places
on the cost of storage. Values are 0=Don't Care to 10=Very
Important. A StorageVolume provider might choose to
place data on low cost or high cost drives based on this
parameter.

StorageEfficiencyHint Mandatory This hint is an indication of the importance placed on
storage efficiency by the client. Values are 0=Don't Care to
10=Very Important. A StorageVolume provider might
choose different RAID levels based on this hint.

ChangeableType Mandatory

Table 67 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes
132

NO_ANSI_ID Block Services Package

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536
Table 68 describes class CIM_StorageSettingsAssociatedToCapabilities.

5.8.45 CIM_StorageSettingsGeneratedFromCapabilities

Created By: Extrinsic: CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 69 describes class CIM_StorageSettingsGeneratedFromCapabilities.

5.8.46 CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced from Host Hardware RAID Controller - StorageVolume is mandatory.

Table 68 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities

Properties Flags Requirement Description & Notes

DefaultSetting Mandatory This boolean designates the setting that will be used if the
CreateSetting() method is called with providing the
NewSetting parameter. However, some implementations
may require that the NewSetting parameter be non null.
There may be only one default setting per the combination
of StorageCapabilities and associated StoragePool as
associated through ElementCapabilities.

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 69 - SMI Referenced Properties/Methods for
CIM_StorageSettingsGeneratedFromCapabilities

Properties Flags Requirement Description & Notes

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 133

Block Services Package NO_ANSI_ID

2537
 Table 70 describes class CIM_StorageVolume.

Table 70 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such
as SCSI or ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescription
s

Optional

NameFormat Mandatory The type of identifier in the Name property. The valid values
for StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the
NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.
134

NO_ANSI_ID Block Services Package

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549
5.8.47 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 71 describes class CIM_SystemDevice (System to StorageVolume or LogicalDisk).

5.8.48 SNIA_StorageVolume

This represents the same instance as CIM_StorageVolume, but is extended to support the CanDelete property.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Optional

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.

Table 71 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume
or LogicalDisk)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 70 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 135

Block Services Package NO_ANSI_ID

2550
 Table 72 describes class SNIA_StorageVolume.

Table 72 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ElementName Optional

Name Mandatory

OtherIdentifyingInfo Optional

IdentifyingDescription
s

Optional

NameFormat Mandatory

NameNamespace Mandatory

ExtentStatus Mandatory

OperationalStatus Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional

OtherUsageDescripti
on

Optional

ClientSettableUsage Optional

Primordial Mandatory
136

NO_ANSI_ID Block Services Package
STABLE

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted
by a client application.

Table 72 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 137

Block Services Package NO_ANSI_ID
138

NO_ANSI_ID Block Storage Views Profile

1

2

3

4

5

6

7

8

EXPERIMENTAL

Clause 6: Block Storage Views Profile

6.1 Description

6.1.1 Synopsis

Profile Name: Block Storage Views (Component Profile)

Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.23

Table 73 describes the related profiles for Block Storage Views.

Table 73 - Related Profiles for Block Storage Views

Profile Name Organization Version Requirement Description

Block Services SNIA 1.5.0 Conditional Conditional requirement: Required if
the array property
SNIA_ViewCapabilities.SupportedVie
ws contains the string "VolumeView"
(and the Block Service Package is
implemented).

Block Server
Performance

SNIA 1.5.0 Conditional

Disk Drive Lite SNIA 1.5.0 Conditional Conditional requirement: Required if
the array property
SNIA_ViewCapabilities.SupportedVie
ws contains the string
"DiskDriveView" (and the Disk Drive
Lite Profile is implemented).

Masking and
Mapping

SNIA 1.4.0 Conditional

Extent Composition SNIA 1.5.0 Conditional Conditional requirement: Required if
the array property
SNIA_ViewCapabilities.SupportedVie
ws contains the string "VolumeView"
and Extent Composition is
implemented.

Copy Services SNIA 1.5.0 Conditional Conditional requirement: Required if
the array property
SNIA_ViewCapabilities.SupportedVie
ws contains the string
"ReplicaPairlView" (and the Copy
Services Profile is implemented).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 139

Block Storage Views Profile NO_ANSI_ID

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
Central Class: SNIA_ViewCapabilities

Scoping Class: CIM_ComputerSystem

6.1.2 Overview

This Profile specifies SNIA_ View Classes for the Array, Storage Virtualizer and Volume Management Profiles.

In this release of SMI-S, SNIA_ view classes provide an optimization of retrieval of information provided by multiple
(associated) instances in a Profile. There is no support for update of SNIA_ view classes instances. Update of a
SNIA_ view class instance can only be accomplished by updating the base class instances from which the view is
derived.

6.1.2.1 Goals of SNIA_ View Classes

6.1.2.1.1 Goals that SNIA_ View Classes are intended to address are

• Get more data in one call to CIM Server.

The CIM model for arrays and Storage Virtualizers involve a lot of classes and associations. The objective is to
allow discovery of the array model using SNIA_ View Classes with a reduction in the number of association
traversals required.

• Allow providers to optimize the Request.

In many cases, the data represented by a View Class is actually kept (and returned) by a device as one entity.
When the "normalized" CIM model is traversed many calls are made to retrieve that one entity. The provider
takes the data from the one entity and carves it up for each CIM request. In many cases this involves retrieving
the same entity multiple times. The objective is to allow a Provider to return the single entity in one SMI-S
request (for data that is typically kept together by the device).

6.1.2.1.2 Additional Goals

• Do more things in one call to CIM Server.

An example would be retrieval or discovery of model information with fewer calls. However, this goal also
extends to updating the CIM model (e.g., configuration actions). The SNIA_ View Classes are NOT intended to
help in the latter case. However, SNIA_ View Classes should facilitate access to underlying classes in support
of configuration operations.

It is important to note that the SNIA_ View Classes proposal was based directly on experiences relating to the
scalability and performance of SMI-S real-world implementations. The focus is on improving performance in
large configurations (e.g. thousands of volumes and thousands of disk drives).

6.1.2.2 Specific Requirements and Objectives of View Classes

6.1.2.2.1 Pre-defined View Classes

In order to gain the desired performance advantage, it is felt that view classes would have to be pre-defined (in
SMI-S) to allow provider optimization of the requested information.

• Enable Associator Calls to View Class instances.

It should be possible to retrieve a View Class by an associators call to the class.

However, it is desired that the association should be clearly distinguished from existing associations on the
base classes.
140

NO_ANSI_ID Block Storage Views Profile

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
• Enable Associator Calls from View Class instances.

It should be possible to get related classes (e.g., base classes) from the View Class by using associator calls.

Again, the associations used should be clearly distinguished from existing associations on the base classes.

6.1.2.2.2 Specific Views requested

• Getting asset information

• Mix of StorageVolume with LUN Mapping & Masking

• Getting port information (with endpoints) or ports & volumes

• Hardware ID & StorageVolumes

• Disk drive view

• Volumes & Settings

• Extent Composition

• Privilege Hierarchy

• Hardware ID <-> StorageVolume

Most of these requests are addressed by this Profile.

• Allow View Classes to be used where real classes would

This certainly includes "read" intrinsics and as parameters of Extrinsics

However, at this time "Write" intrinsic support is deferred and use in Extrinsics (as IN or OUT parameters) is not
covered in this release of SMI-S.

6.1.2.2.3 Support Life Cycle Indications on View Classes

This requirement is being deferred for considered in a future release of SMI-S.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 141

Block Storage Views Profile NO_ANSI_ID

66

67

68

69

70

71

72

73

74

75
6.1.3 Class Diagram for SNIA View Classes

Figure 25: "Class Diagram for SNIA_ View Classes" illustrates the class diagram for SNIA_ view classes.

The SNIA_ViewCapabilities inherits from CIM_Capabilities. The SNIA_VolumeView and SNIA_DiskDriveView
classes inherit from CIM_ManagedElement. The SNIA_ association views (SNIA_ExposedView and
SNIA_MaskingMappingView) do not inherit from anything.

6.1.4 Implementation

6.1.4.1 View Class Capabilities

The implementation shall identify which view classes are implemented using a set of conditions. The model for
determining whether or not the Block Storage Views Profile is supported and which views are supported is
illustrated in Figure 26: "Block Storage View Class Capabilities".

Figure 25 - Class Diagram for SNIA_ View Classes

S N I A _ E l m e m e n t S e t t i n g D a t a V i e w

S N I A _ S y s t e m D e v i c e V i e w

C I M _ M a n a g e d E l e m e n t

S N I A _ V i e w C a p a b i l i t i e s

S N I A _ V o l u m e V i e w

S N I A _ D i s k D r i v e V i e w

S N I A _ E x p o s e d V i e w

S N I A _ M a s k i n g M a p p i n g V i e w

C I M _ C a p a b i l i t i e s

S N I A _ B a s e I n s t a n c e

C I M _ D e p e n d e n c y

S N I A _ C o n t a i n e r V i e w

S N I A _ C o n c r e t e C o m p o n e n t V i e w

S N I A _ S N I A _ B a s e d O n V i e w

S N I A _ A l l o c a t e d F r o m S t o r a g e P o o l V i e w

S N I A _ S t o r a g e P o o l V i e w

S N I A _ M a p p i n g P r o t o c o l C o n t r o l l e r V i e w

S N I A _ R e p l i c a P a i r V i e w

S N I A _ A l l o c a t e d F r o m S t o r a g e P o o l V i e w V i e w

S N I A _ P r o t o c o l C o n t r o l l e r F o r U n i t V i e w
142

NO_ANSI_ID Block Storage Views Profile

76

77

78

79

80

81

82

83

84

85

86

87

88
First a client may determine whether or not a profile implementation has implemented any view classes by looking
for a RegisteredSubprofile with a RegisteredName of “Block Storage Views”. If this RegisteredSubprofile exists
then the profile supports some number of view classes.

Next a client would be able to determine which view classes are supported by an implementation by following the
ElementConformsToProfile to the top level system and then following the ElementCapabilities from that system to
the SNIA_ViewCapabilities instance. There shall be one instance of the SNIA_ViewCapabilities class if the profile
supports the Block Storage Views Subprofile. The SNIA_ViewCapabilities instance shall have an array of strings
(SupportedViews) that identify the view classes that are supported. For example, if the SupportedViews array
includes the “VolumeView” string, then the VolumeView class shall be supported.

6.1.4.2 Storage Volume Views

6.1.4.2.1 SNIA_VolumeView and related associations

Figure 27: "SNIA_VolumeView and related associations" illustrates the SNIA_VolumeView and related
associations.

Figure 26 - Block Storage View Class Capabilities

ComputerSystem:
Top level SystemRegisteredProfile

RegisteredName =
‘Array’ | “Storage Virtualizer” | “Volume Management”

RegisteredSubprofile

RegisteredName =
“Block Storage Views” SNIA_ViewCapabilities

SupportedViews[] = “VolumeView” |
“DiskDriveView” | “ExposedView” |

“MaskingMappingView” |
“MappingProtocolControllerView” |

“StoragePoolView” |
“ReplicaPairView”

ElementConformsToProfile

ElementCapabiliities

SubprofileRequiresProfile
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 143

Block Storage Views Profile NO_ANSI_ID

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104
The SNIA_VolumeView is composed of information drawn from the following base classes:

• StorageVolume (or LogicalDisk)

• StorageSetting

• AllocatedFromStoragePool

• StoragePool

The keys for the SNIA_VolumeView are the StorageVolume and StoragePool keys from the base
CIM_StorageVolume and StoragePool instances. There will be one instance of SNIA_VolumeView for each
instance of StorageVolume if the StorageVolume is allocated from one StoragePool. If a StorageVolume is
allocated from multiple StoragePools (e.g., Composite Volumes), there will be one instance of
SNIA_StorageVolume for each StoragePool from which the StorageVolume is allocated.

The information drawn from the AllocatedFromStoragePool association is the SpaceConsumed property. The
properties from all other base classes shall be supported, but may be null.

6.1.4.2.2 Mandatory, Conditional and Optional Properties of SNIA_VolumeView

Properties that are mandatory in the mandatory base classes are mandatory in the SNIA_VolumeView class.
Properties that are Conditional in the base classes are conditional in the SNIA_VolumeView class. Properties that
are mandatory in optional (base) classes (CompositeExtent) are "conditional" in the SNIA_VolumeView. If an

Figure 27 - SNIA_VolumeView and related associations

CompositeStorageExtent

StorageVolume
(or LogicalDisk)

BasedOn

StoragePool

AllocatedFromStoragePool

BlockStorageStatisticalData

ElementSettingData

StorageSetting

SNIA_VolumeView

SVSystemCreationClassName
SVSystemName

SVCreationClassName
SVDeviceID

SVName
SVNameFormat
SVExtentStatus[]

SVOperationalStatus[]
SVBlockSize

SVNumberOfBlocks
SVConsumableBlocks

SVIsBasedOnUnderlyingRedundancy
SVNoSinglePointOfFailure

SVDataRedundancy
SVPackageRedundancy

SVDeltaReservation
SSInstanceID

SSElementName
SSNoSinglePointOfFailure
SSDataRedundancyMin
SSDataRedundancyMax
SSDataRedundancyGoal

SSPackageRedundancyMin
SSPackageRedundancyMax
SSPackageRedundancyGoal

SSChangeableType
AFSPSpaceConsumed

SPInstanceID
SPPoolID

ComputerSystem:
Top level System

SNIA_SystemDeviceView

SNIA_AllocatedFromStoragePoolView

SNIA_BasedOnView

SystemDevice

SNIA_BaseInstance

ElementStatisticalData

SNIA_ElementStatisticalDataView
144

NO_ANSI_ID Block Storage Views Profile

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134
optional base class is not supported by the Array or StorageVirtualizer implementation, these properties of those
classes shall be present, but shall be null.

Properties in the base classes that are optional in the base class are optional in the SNIA_VolumeView.

6.1.4.2.3 Associations on SNIA_VolumeView

In this release of SMI-S the SNIA_VolumeView is "read only." Access to CIM class instances on which the view is
based that can be updated (e.g., StorageVolume and StorageSetting) can be accessed from the
SNIA_VolumeView instance via the SNIA_BaseInstance association.

In addition to the SNIA_VolumeView there are four associations that support association traversal to (or from)
instances of the SNIA_VolumeView:

6.1.4.2.3.1 SNIA_SystemDeviceView

From the owning CIM_ComputerSystem a client will be able to find the SNIA_VolumeViews associated to the
ComputerSystem via the SNIA_SystemDeviceView. This will return the VolumeViews that correspond to the
StorageVolumes (or LogicalDisks) that would be found via association traversal from the ComputerSystem to the
StorageVolumes (or LogicalDisks) via CIM_SystemDevice.

6.1.4.2.3.2 SNIA_AllocatedFromStoragePoolView

From the SNIA_VolumeView instance, the client can find the CIM_StoragePool instance by following the
SNIA_AllocatedFromStoragePoolView association. Note that for one SNIA_VolumeView instance, there may be
one or more CIM_StoragePools (that is, for Composite Volumes that draw from multiple StoragePools, there would
be multiple SNIA_VolumeView instances that represent the composite volume.)

6.1.4.2.3.3 SNIA_BasedOnView

From the SNIA_VolumeView instance, the client can find the CIM_StorageExtent(s) on which the StorageVolume
(or LogicalDisk) is based by following the BasedOnView.

Similarly, from a “top level” CIM_StorageExtent instance, a client can find the SNIA_VolumeView instance(s) that
are based on that StorageExtent.

6.1.4.2.3.4 SNIA_ElementStatisticalDataView

From the SNIA_VolumeView instance, the client can find the CIM_BlockStorageStatisticalData instance for the
StorageVolume or LogicalDisk of the VolumeView by following the SNIA_ElementStatisticalDataView association.

6.1.4.3 Disk Drive Views

Figure 28: "SNIA_DiskDriveView and related associations" illustrates the DiskDriveView class and related
associations.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 145

Block Storage Views Profile NO_ANSI_ID

135

136

137

138

139
The SNIA_DiskDriveView is composed of information drawn from the following base classes:

• StorageExtent

• DiskDrive

• PhysicalPackage

• SoftwareIdentity (conditional)

Figure 28 - SNIA_DiskDriveView and related associations

Concrete
StorageExtent

Primordial=”false”

StorageExtent

Primordial=”true”

DiskDrive

PhysicalPackage

MediaPresent

Realizes

Basedon

SoftwareIdentitty
ElementSoftwareIdentity

StoragePool

ConcreteComponent

PhysicalPackage
(System)

Container

SNIA_DiskDriveView

SECreationClassName
SESystemCreationClassName

SESystemName
SEDeviceID
SEBlockSize

SENumberOfBlocks
SEConsumableBlocks

SEExtentStatus[]
SEOperationalStatus[]

DDCreationClassName
DDSystemCreationClassName

DDSystemName
DDDeviceID

DDName
DDOperationalStatus[]
DDLocationIndicator

PPCreationClassName
PPTag

PPManufacturer
PPModel

SIInstanceID
SIVersionString

SNIA_ConcreteComponentView

SNIA_BaseInstance

SNIA_BasedonView

SNIA_ContainerView

BlockStorageStatisticalData

ElementStatisticalData

ElementStatisticalDataView

ComputerSystem

SNIA_SystemDeviceView
146

NO_ANSI_ID Block Storage Views Profile

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182
The keys for the SNIA_DiskDriveView are the keys of the DiskDrive base class. There will be one instance of
SNIA_DiskDriveView for each instance of a Disk Drive (primordial).

6.1.4.3.1 Mandatory, Conditional and Optional Properties of SNIA_DiskDriveView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in mandatory
base classes are mandatory in the SNIA_DiskDriveView class. Properties that are conditional in a base class are
conditional in the SNIA_DiskDriveView class. Properties that are mandatory in optional (base) classes
(BlockStorageStatisticalData and SoftwareIdentity) are also "conditional" in the SNIA_DiskDriveView. If an optional
base class is not supported by the Array implementation, these properties of those classes shall be present but
shall be null.

Properties in the base classes that are optional in the base class are optional in the SNIA_DiskDriveView.

6.1.4.3.2 Associations on SNIA_DiskDriveView

In this release of SMI-S, the SNIA_DiskDriveView is "read only." In order to support update of information in the
SNIA_DiskDriveView instance, it would be necessary to update the class instances on which it is based. An
association SNIA_BaseInstance is provided to the CIM_DiskDrive instance.

Note: The SNIA_BaseInstance association is only provided to base instances that can be modified.

In addition to the SNIA_DiskDriveView there are 5 associations that support association traversal to (or from)
instances of the SNIA_DiskDriveView:

6.1.4.3.2.1 SNIA_ConcreteComponentView (mandatory if the DiskDriveView is implemented)

From a primordial CIM_StoragePool instance a client will be able to find the SNIA_DiskDriveViews associated to
the StoragePool via the SNIA_ConcreteComponentView. This will return the DiskDriveView instances that
correspond to the Disk Drive StorageExtents that would be found via association traversal from the StoragePool to
the StorageExtents via CIM_ConcreteComponent association.

Similarly, if the client has a SNIA_DiskDriveView instance, the client can find the primordial StoragePool to which
the drive is assigned by following the SNIA_ConcreteComponentView association from the SNIA_DiskDriveView
instance to the CIM_StoragePool instance for the StoragePool that contains the Disk Drive StorageExtent.

6.1.4.3.2.2 SNIA_ContainerView (mandatory if the DiskDriveView is implemented)

From a system chassis (or other higher level physical package) instance a client will be able to find the
SNIA_DiskDriveViews associated to the CIM_PhysicalPackage instance via the SNIA_ContainerView. This will
return the DiskDriveView instances that correspond to the Disk Drive PhysicalPackage that would be found via
association traversal from the system CIM_PhysicalPackage to the Disk Drive CIM_PhysicalPackage via
CIM_Container association.

Similarly, if the client has a SNIA_DiskDriveView instance, the client can find the higher level system
CIM_PhysicalPackage instance in which the drive resides by following the SNIA_ContainerView association from
the SNIA_DiskDriveView instance to the CIM_PhysicalPackage instance for the higher level system physical
package that contains the Disk Drive physical package.

6.1.4.3.2.3 SNIA_BasedOnView (mandatory if the DiskDriveView and Extent Composition are implemented)

From a concrete StorageExtent (e.g., CompositeExtent) instance from Extent Composition a client will be able to
find the SNIA_DiskDriveViews associated to the CIM_StorageExtent instance via the SNIA_BasedOnView. This
will return the DiskDriveView instances that correspond to the Disk Drive StorageExtent that would be found via
association traversal from a "most antecedent" concrete CIM_StorageExtent to the Disk Drive CIM_StorageExtent
via CIM_BasedOn association.

Similarly, if the client has a SNIA_DiskDriveView instance, the client can find concrete CIM_StorageExtent
instance(s) that is (are) based on the drive by following the SNIA_BasedOnView association from the
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 147

Block Storage Views Profile NO_ANSI_ID

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200
SNIA_DiskDriveView instance to the CIM_StorageExtent instance(s) for the concrete storage extent(s) that is (are)
based on the Disk Drive storage extent.

6.1.4.3.2.4 SNIA_SystemDeviceView (mandatory if the DiskDriveView is implemented)

From the owning CIM_ComputerSystem a client will be able to find the SNIA_DiskDriveViews associated to the
ComputerSystem via the SNIA_SystemDeviceView. This will return the DiskDriveViews that correspond to the
CIM_DiskDrive instances that would be found via association traversal from the ComputerSystem to the
CIM_DiskDrive instances via CIM_SystemDevice.

Similarly, if the client has a SNIA_DiskDriveView instance, the client can find the owning ComputerSystem by
following the SNIA_SystemDeviceView association from the SNIA_DiskDriveView instance to the
CIM_ComputerSystem instance for the ComputerSystem that scopes the CIM_DiskDrive instances.

6.1.4.3.2.5 SNIA_ElementStatisticalDataView

From the SNIA_DiskDriveView instance, the client can find the CIM_BlockStorageStatisticalData instance for the
Disk Drive StorageExtent of the DiskDriveView by following the SNIA_ElementStatisticalDataView association.

6.1.4.4 Masking and Mapping Views

6.1.4.4.1 The SNIA_ExposedView Association

Figure 29: "SNIA_ExposedView Association" illustrates the SNIA_ExposedView Association.

The SNIA_ExposedView association is composed of information drawn from the following base classes:

• SCSIProtocolController

Figure 29 - SNIA_ExposedView Association

ComputerSystem:
Top level System

LogicalPort

StorageVolume

SNIA_ExposedView
SPCDeviceID

PCFUDeviceNumber
PCFUDeviceAccess

SystemDevice

SystemDevice

SCSIProtocolEndPoint SCSIProtocolControllerSAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation
148

NO_ANSI_ID Block Storage Views Profile

201

202

203

204

205

206

207

208

209

210

211

212

213

214
• SAPAvailableForElement

• ProtocolControllerForUnit

The keys for the SNIA_ExposedView are the references to the LogicalDevice (a StorageVolume) and the reference
to the SCSIProtocolEndpoint. There will be one instance of SNIA_ExposedView for each unique combination of
StorageVolume and SCSIProtocolEndpoint through which the volume is exposed (in a Masking and Mapping
model).

6.1.4.4.1.1 Mandatory, Conditional and Optional Properties of SNIA_ExposedView Association

In addition to the references to StorageVolume and the SCSIProtocolEndpoint the SNIA_ExposedView association
also carries the DeviceID of the SCSIProtocolController and the DeviceNumber and DeviceAccess properties from
the ProtocolControllerForUnit association.

In this release of SMI-S, the SNIA_ExposedView is "read only." It would be used to do association traversal from
StorageVolumes to SCSIProtocolEndpoints that expose the Volumes.

6.1.4.4.2 SNIA_ MaskingMappingView Association

Figure 30: "SNIA_MaskingMappingView Association" illustrates the SNIA_MaskingMappingView Association.

Figure 30 - SNIA_MaskingMappingView Association

ComputerSystem:
Top level Array System

LogicalPort

LogicalDevice

SystemDevice

SystemDevice

SCSIProtocolEndPoint SCSIProtocolControllerSAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation

AuthorizedPrivilege

StorageHardwareID

AuthorizedSubject

AuthorizedTarget

SNIA_MaskingMappingView

SHIDStorageID
SHIDIDType
LDDeviceID

SPEPSystemCreationClassName
SPEPCreationClassName

SPEPSystemName
SPEPName
SPEPRole

APInstanceID
APPrivilegeGranted

APActivities[]
APElementName

SPCSystemCreationClassName
SPCCreationClassName

SPCSystemName
SPCDeviceID

PCFUDeviceNumber
PCFUDeviceAccess

The MaskingMapping view class is a three-way association
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 149

Block Storage Views Profile NO_ANSI_ID

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236
The SNIA_MaskingMappingView association is a three way association that is composed of information drawn
from the following base classes:

• StorageHardwareID

• AuthorizedPrivilege

• SCSIProtocolController

• SCSIProtocolEndpoint

• ProtocolControllerForUnit

• LogicalDevice

The keys for the SNIA_MaskingMappingView are the SHID reference, the SCSIProtocolEndpoint reference and
the LogicalDevice reference. There will be one instance of SNIA_MaskingMappingView for each unique
combination of Storage Hardware ID (e.g., host), LogicalDeivce (e.g., StorageVolume) and SCSIProtocolEndpoint
(e.g., LogicalPort).

6.1.4.4.2.1 Mandatory, Conditional and Optional Properties of SNIA_MaskingMappingView Association

In addition to the references to StorageHardwareID, LogicalDevice and the SCSIProtocolEndpoint the
SNIA_MaskingMappingView association also carries their properties and the AuthorizedPrivilege properties,
DeviceID of the SCSIProtocolController and the DeviceNumber and DeviceAccess properties from the
ProtocolControllerForUnit association. Also, for the convenience to clients, identifying properties from the
LogicalDevice, StorageHardwareID and SCSIProtocolEndpoint are also pulled into the MaskingMappingView. This
allows a client to enumerate the SNIA_MaskingMappingView association and get the identifiers for the endpoints in
the association.

In this release of SMI-S, the SNIA_MaskingMappingView is "read only." It would be used to do associate the
StorageHardwareIDs, StorageVolumes to SCSIProtocolEndpoints.
150

NO_ANSI_ID Block Storage Views Profile

237

238

239

240

241

242

243

244

245

246

247
EXPERIMENTAL

6.1.4.4.3 SNIA_MappingProtocolControllerView

Figure 31 illustrates the elements involved in supporting the SNIA_MappingProtocolControllerView.

The SNIA_MappingProtocolControllerView is composed of information drawn from the following base classes:

• LogicalPort

• ProtocolEndpoint

• ProtocolController

• AuthorizedPrivilege

• StorageHardwareID

The keys for the SNIA_MappingProtocolControllerView are the keys of the ProtocolEndpoint, ProtocolController
and StorageHardwareID base classes. There will be one instance of SNIA_MappingProtocolControllerView for
each unique combination of those keys.

Figure 31 - The SNIA_MappingProtocolControllerView

ComputerSystem:
Top level System

LogicalPort

LogicalDevice

SystemDevice

SystemDevice

ProtocolEndPoint ProtocolControllerSAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation

AuthorizedPrivilege

StorageHardwareID

AuthorizedSubject

AuthorizedTarget

SNIA_MappingProtocolControllerView

PCSystemCreationClassName
PCCreationClassName

PCSystemName
PCDeviceID

SHIDInstanceID
SHIDStorageID

SHIDIDType
PEPSystemCreationClassName

PEPCreationClassName
PEPSystemName

PEPName
PEPProtocolIFType

PEPOtherTypeDescription
APInstanceID

APPrivilegeGranted
APActivities[]

APElementName
LPSystemCreationClassName

LPCreationClassName
LPSystemName

LPDeviceID
LPOperationalStatus
LPUsageRestriction

LPPortType

BaseInstance

BaseInstance

ProtocolControllerForUnitView
PCFUDeviceNumber
PCFUDeviceAccess

The Mapping Protocol Controller view class is Logical Device View

BaseInstance (Optional)

SystemDeviceView
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 151

Block Storage Views Profile NO_ANSI_ID

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280
6.1.4.4.4 Mandatory, Conditional and Optional Properties of SNIA_MappingProtocolControllerView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in mandatory
base classes are mandatory in the SNIA_MappingProtocolControllerView class. Properties that are conditional in a
base class are conditional in the SNIA_MappingProtocolControllerView class.

Properties in the base classes that are optional in the base class are optional in the
SNIA_MappingProtocolControllerView.

6.1.4.4.5 Associations on SNIA_MappingProtocolControllerView

In this release of SMI-S, the SNIA_MappingProtocolControllerView is "read only." In order to support update of
information in the SNIA_MappingProtocolControllerView instance, it would be necessary to update the class
instances on which it is based. An association SNIA_BaseInstance is provided to the CIM_StorageHardwareID,
CIM_LogicalPort and CIM_ProtocolEndpoint instances.

Note: The SNIA_BaseInstance association is only provided to base instances that can be modified.

In addition to the SNIA_MappingProtocolControllerView there are 2 associations that support association traversal
to (or from) instances of the SNIA_MappingProtocolControllerView:

6.1.4.4.5.1 SNIA_ProtocolControllerForUnitView (mandatory if the MappingProtocolControllerView is
implemented)

From a MappingProtocolControllerView instance a client will be able to find the CIM_LogicalDevices associated to
the MappingProtocolControllerView (ProtocolController) via the SNIA_ProtocolControllerForUnitView. This will
return the LogicalDevice instances that correspond to the ProtocolController of the MappingProtocolControllerView
that would be found via association traversal from the ProtocolController to the LogicalDevices via
CIM_ProtocolControllerForUnit association.

6.1.4.4.5.2 SNIA_SystemDeviceView (mandatory if the MappingProtocolControllerView is implemented)

From the owning CIM_ComputerSystem a client will be able to find the SNIA_MappingProtocolControllerViews
associated to the ComputerSystem via the SNIA_SystemDeviceView. This will return the
MappingProtocolControllerViews that correspond to the CIM_ProtocolController instances that would be found via
association traversal from the ComputerSystem to the CIM_ProtocolController instances via CIM_SystemDevice.

Similarly, if the client has a SNIA_MappingProtocolControllerView instance, the client can find the owning
ComputerSystem by following the SNIA_SystemDeviceView association from the
SNIA_MappingProtocolControllerView instance to the CIM_ComputerSystem instance for the ComputerSystem
that scopes the CIM_ProtocolController instances.

6.1.4.5 Storage Pool Views

6.1.4.5.1 SNIA_StoragePoolView

Figure 32 illustrates the elements involved in supporting the SNIA_StoragePoolView.
152

NO_ANSI_ID Block Storage Views Profile

281

282

283

284

285

286

287
The SNIA_StoragePoolView is composed of information drawn from the following base classes:

• StoragePool

• StorageCapabilities

• StorageConfigurationCapabilities (Optional)

• AllocatedFromStoragePool

The keys for the SNIA_StoragePoolView are the keys of the StoragePool base class. There will be one instance of
SNIA_StoragePoolView for each instance of a StoragePool.

Figure 32 - The SNIA_StoragePoolView

StorageVolume
(or LogicalDisk)

StoragePool

AllocatedFromStoragePool

ElementCapabilities

StorageCapabilities

SNIA_VolumeViewComputerSystem:
Top level System SNIA_SystemDeviceView

SNIA_AllocatedFromStoragePoolView

SystemDevice

BaseInstance
Parent:

StoragePool

AllocatedFromStoragePool

SNIA_StoragePoolView

SPInstanceID
SPElementName

SPPoolID
SPTotalManagedSpace

SPRemainingManagedSpace
SPPrimordial
SCInstanceID

SCElementName
SCElementType

SCPackageRedundancyDefault
SCPackageRedundancyMin
SCPackageRedundancyMax
SCDataRedundancyDefault

SCDataRedundancyMin
SCDataRedundancyMax
AFSPSpaceConsumed

SCCInstanceID
SCCElementName

SNIA_StoragePoolView

SNIA_AllocatedFromStoragePoolViewView

SNIA_AllocatedFromStoragePoolViewView

BaseInstance

SNIA_AllocatedFromStoragePoolView

StorageConfigurationCapabilities

ElementCapabilities

SNIA_DiskDriveView

StorageExtent

Primordial=true

ConcreteComponent

ExtentComponentView

DriveComponentViewView

SNIA_HostedStoragePoolView

SNIA_AllocatedFromStoragePoolView
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 153

Block Storage Views Profile NO_ANSI_ID

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328
6.1.4.5.2 Mandatory, Conditional and Optional Properties of SNIA_StoragePoolView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in mandatory
base classes are mandatory in the SNIA_StoragePoolView class. Properties that are conditional in a base class
are conditional in the SNIA_StoragePoolView class. Properties that are mandatory in optional (base) classes (e.g.,
StorageConfigurationCapabilities) are "conditional" in the SNIA_StoragePoolView. If an optional base class is not
supported by the implementation, these properties of those classes shall be present but shall be null.

Properties in the base classes that are optional in the base class are optional in the SNIA_StoragePoolView.

6.1.4.5.3 Associations on SNIA_StoragePoolView

In this release of SMI-S, the SNIA_StoragePoolView is "read only." In order to support update of information in the
SNIA_StoragePoolView instance, it would be necessary to update the class instances on which it is based. An
association SNIA_BaseInstance is provided to the CIM_StoragePool instance.

Note: The SNIA_BaseInstance association is only provided to base instances that can be modified.

In addition to the SNIA_StoragePoolView there are 7 associations that support association traversal to (or from)
instances of the SNIA_StoragePoolView:

6.1.4.5.3.1 SNIA_AllocatedFromStoragePoolView (StoragePoolView to StoragePool)

This association is mandatory if the StoragePoolView is implemented.

From a SNIA_StoragePoolView instance, the client can find the parent StoragePool to which the pool is allocated
from by following the SNIA_AllocatedFromStoragePoolView association from the SNIA_StoragePoolView instance
to the CIM_StoragePool instance for the StoragePool.

Similary, if the client has a CIM_StoragePool instance a client will be able to find the SNIA_StoragePoolViews that
are allocated from the StoragePool via the SNIA_AllocatedFromStoragePoolView. This will return the
StoragePoolView instances that correspond to the StoragePools that would be found via association traversal from
the StoragePool to the StoragePool via the CIM_AllocatedFromStoragePool association.

6.1.4.5.3.2 SNIA_AllocatedFromStoragePoolView (Volume to StoragePoolView)

This association is mandatory if the StoragePoolView is implemented.

From a CIM_StorageVolume (or CIM_LogicalDisk) instance, the client can find the StoragePoolView that the
volume is allocated from by following the SNIA_AllocatedFromStoragePoolView association from the CIM class
(StorageVolume or LogicalDisk) to the appropriate SNIA_StoragePoolView instance that corresponds to the
CIM_StoragePool instance the volume is allocated from.

Similarly, if the client has a SNIA_StoragePoolView instance, the client will be able to find the
CIM_StorageVolumes (or CIM_LogicalDisks) that are allocated from that StoragePoolView by following the
SNIA_AllocatedFromStoragePoolView association.

6.1.4.5.3.3 SNIA_AllocatedFromStoragePoolViewView (VolumeView to StoragePoolView)

This association is mandatory if the StoragePoolView and the VolumeView are implemented.

From a SNIA_VolumeView instance, the client can find the StoragePoolView that the volume is allocated from by
following the SNIA_AllocatedFromStoragePoolViewView association from the SNIA_VolumeView instance to the
appropriate SNIA_StoragePoolView instance that corresponds to the CIM_StoragePool instance the volume is
allocated from.

Similarly, if the client has a SNIA_StoragePoolView instance, the client will be able to find the SNIA_VolumeViews
for volumes that are allocated from that StoragePoolView by following the
SNIA_AllocatedFromStoragePoolViewView association.
154

NO_ANSI_ID Block Storage Views Profile

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364
6.1.4.5.3.4 SNIA_AllocatedFromStoragePoolViewView (StoragePoolView to StoragePoolView)

This association is mandatory if the StoragePoolView is implemented.

From a SNIA_StoragePoolView instance, the client can find the parent StoragePoolView to which the pool is
allocated from by following the SNIA_AllocatedFromStoragePoolViewView association from the
SNIA_StoragePoolView instance to the SNIA_StoragePoolView instance for the parent StoragePool.

Similary, if the client has a SNIA_StoragePoolView instance a client will be able to find the
SNIA_StoragePoolViews that are allocated from the StoragePool via the
SNIA_AllocatedFromStoragePoolViewView. This will return the StoragePoolView instances that correspond to the
StoragePools that would be found via association traversal from the StoragePool to the StoragePool via the
CIM_AllocatedFromStoragePool association.

6.1.4.5.3.5 SNIA_HostedStoragePoolView

This is mandatory if the StoragePoolView is implemented.

From the owning CIM_ComputerSystem a client will be able to find the SNIA_StoragePoolViews associated to the
ComputerSystem via the SNIA_HostedStoragePoolView. This will return the StoragePoolViews that correspond to
the CIM_StoragePool instances that would be found via association traversal from the ComputerSystem to the
CIM_StoragePool instances via CIM_HostedStoragePool.

Similarly, if the client has a SNIA_StoragePoolView instance, the client can find the owning ComputerSystem by
following the SNIA_HostedStoragePoolView association from the SNIA_StoragePoolView instance to the
CIM_ComputerSystem instance for the ComputerSystem that scopes the CIM_StoragePool instances.

6.1.4.5.3.6 ExtentComponentView

This is mandatory if the StoragePoolView is implemented.

From a SNIA_StoragePoolView instance, the client can find the pool component CIM_StorageExtent instances for
the extents that form the pool via the SNIA_ExtentComponentView. This will return the StorageExtents that
correspond to the SNIA_StoragePoolView instances that would be found via association traversal from the
CIM_StoragePool instance to CIM_StorageExtent instances via CIM_ConcreteComponent.

Similarly, if the client has a CIM_StorageExtent instance, the client can find the SNIA_StoragePoolView by
following the SNIA_ExtentComponentView association from the CIM_StorageExtent instance to the
SNIA_StoragePoolView instance for the storage pool that has the CIM_StorageExtent as a pool component.

6.1.4.5.3.7 DriveComponentViewView

This association is mandatory if the StoragePoolView and the DiskDriveView are implemented.

From a SNIA_StoragePoolView instance, the client will be able to find the SNIA_DiskDriveViews for drives that are
components of that StoragePoolView by following the SNIA_DriveComponentViewView association.

Similarly, if the client has a DiskDriveView instance, the client can find the StoragePoolView that the drive is a
component of by following the SNIA_DriveComponentViewView association from the SNIA_DiskDriveView
instance to the appropriate SNIA_StoragePoolView instance that corresponds to the CIM_StoragePool instance
the drive is a component of.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 155

Block Storage Views Profile NO_ANSI_ID

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385
6.1.4.6 Replication Views

6.1.4.6.1 SNIA_ReplicaPairView

Figure 33 illustrates the elements involved in supporting the SNIA_ReplicaPairView.

The SNIA_ReplicaPairView is composed of information drawn from the following base classes:

• StorageVolume (or LogicalDisk) for the Target

• StorageVolume (or LogicalDisk) for the Source

• StorageSynchronized

The keys for the SNIA_ReplicaPairView are the keys of the target StorageVolume (or LogicalDisk) base class.
There will be one instance of SNIA_ReplicaPairView for each instance of a target StorageVolume (or LogicalDisk).

6.1.4.6.2 Mandatory, Conditional and Optional Properties of SNIA_ReplicaPairView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in mandatory
base classes are mandatory in the SNIA_ReplicaPairView class. Properties that are conditional in a base class are
conditional in the SNIA_ReplicaPairView class.

Properties in the base classes that are optional in the base class are optional in the SNIA_ReplicaPairView.

6.1.4.6.3 Associations on SNIA_ReplicaPairView

In this release of SMI-S, the SNIA_ReplicaPairView is "read only." In order to support update of information in the
SNIA_ReplicaPairView instance, it would be necessary to update the class instances on which it is based. An
association SNIA_BaseInstance is provided to the CIM_StorageVolume instances (both source and target).

Note: The SNIA_BaseInstance association is only provided to base instances that can be modified.

In addition to the SNIA_ReplicaPairView there is only one association that support association traversal to (or
from) instances of the SNIA_ReplicaPairView:

Figure 33 - The SNIA_ReplicaPairView

T a rg e t: S to ra g eV o lu m e
(o r L o g ica lD isk)

S N IA _ R e p lic a P a irV iew

S V S o u rc e S y s te m C rea tio n C la ss N a m e
S V S o u rce S y s te m N am e

S V S o u rc eC re a tio n C la s s N a m e
S V S o u rce D e v ic e ID

S V S o urceN a m e
S V S o u rce N a m e F orm a t
S V S o u rce E x te n tS ta tu s []

S V S o u rceO p e ra tion a lS ta tu s []
S V S o u rc eB lo ckS ize

S V S o u rce N u m b e rO fB lo cks
S V S o u rceC o n su m a b le B lo cks

S S W he n S yn ce d
S S S ync M a in ta in e d

S S C o py T yp e
S S S yn cS ta te

S S C o p yP rio r ity
S S S yn cT y pe

S S M o d e
S S P ro g re ss S ta tu s

S V T a rg e tS y s te m C rea tio n C la ss N a m e
S V T a rg e tS y s te m N a m e

S V T a rg e tC re a t io n C la s sN a m e
S V T a rg e tD e v ic e ID

S V T a rg e tN a m e
S V T arg e tN a m e F o rm a t
S V T arg e tE x te n tS ta tu s []

S V T a rg e tO p e ra tio n a lS ta tu s []
S V T a rg e tB lo ckS ize

S V T arg e tN u m b e rO fB lock s
S V T a rg e tC o n su m a b le B lo cks

C o m p u te rS ys te m :
T o p lev e l S ys te m

S N IA _ S y s tem D e v ic e V ie wS ys tem D ev ice

B a s e In s ta n ce

S o urce : S to rag e V o lum e
(o r L o g ic a lD isk)

S to ra g eS y n c h ro n ize d

B as e In s ta n c e
156

NO_ANSI_ID Block Storage Views Profile

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417
6.1.4.6.3.1 SNIA_SystemDeviceView (ReplicaPairViews)

This is mandatory if the ReplicaPairView is implemented.

From the owning CIM_ComputerSystem a client will be able to find the SNIA_ReplicaPairViews associated to the
ComputerSystem via the SNIA_SystemDeviceView. This will return the ReplicaPairView instances that correspond
to the CIM_StorageVolume (CIM_LogicalDisk) instances of target volumes that would be found via association
traversal from the ComputerSystem to the CIM_StorageVolume (or CIM_LogicalDisk) instances via
CIM_SystemDevice.

Similarly, if the client has a SNIA_ReplicaPairView instance, the client can find the owning ComputerSystem by
following the SNIA_SystemDeviceView association from the SNIA_ReplicaPairView instance to the
CIM_ComputerSystem instance for the ComputerSystem that scopes the CIM_StorageVolume (CIM_LogicalDisk)
instances.

EXPERIMENTAL

6.2 Health and Fault Management Consideration

Health and Fault Management considerations are defined in terms of the base classes (no View Classes).
However, it should be noted that OperationalStatus of view classes shall be the same as the OperationalStatus of
the underlying CIM classes on which the view classes are defined.

6.3 Cascading Considerations

Not defined in this standard.

6.4 Supported Profiles, Subprofiles, and Packages

See 6.1.1.

6.5 Methods of the Profile

6.5.1 Extrinsic Methods of the Profile

None

6.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 157

Block Storage Views Profile NO_ANSI_ID

418

419

420

421

422

423

424

425

426

427
SNIA_ View classes are modified by creating, deleting and modifying the base classes from which they are
derived. The property values of SNIA_View classes are derived from the property values of associated classes.
This profile does not specify the means to modify, create, or delete those classes. The base class instances may
be accessed from the view class instances via association traversal through the SNIA_BaseInstance association.

6.6 Client Considerations and Recipes

6.6.1 Use Cases

6.6.1.1 Discovery of the Volumes on an Array

Table 74 identifies the elements of the use case to discover the volumes on an Array.

6.6.1.2 Discovery of the Disk Drives in a Primordial Pool

Table 75 identifies the elements of the use case to discover the Disk Drives in a Primordial Pool.

Table 74 - Discovery of the Volumes on an Array

Use Case Element Description

Summary Given an Array ComputerSystem, find the volumes (and their relevant
information) on the system

Basic Course of Events 1. Find the top level system of an array (using ElementConformsToProfile)
2. Find the related Volumes (on that system, using SystemDeviceView)
3. Locate the Component ComputerSystems (using ComponentCS)
4. Find the related Volumes on each of those systems (using
SystemDeviceView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
SNIA_ViewCapabilities.SupportedViews contains “VolumeView”.

Postconditions Administrator has all Volumes, their Settings and what Pools they are
allocated from.

Table 75 - Discovery of the Disk Drives in a Primordial Pool

Use Case Element Description

Summary Given an Array Primordial Pool, find the Disk Drives (and their
information) that are its components

Basic Course of Events 1. Find the related Disk Drives (in that pool, using
ConcreteComponentView)

Alternative Paths 1a. Find all the disk drives on the system (using SystemDeviceView)

Exception Paths None
158

NO_ANSI_ID Block Storage Views Profile

428

429

430

431
6.6.1.3 Discover Volumes exposed on a (Target) Port

Table 76 identifies the elements of the use case to Discover Volumes exposed on a (Target) Port.

6.6.1.4 Discover (target port) redundancy for a Volume

Table 77 identifies the elements of the use case to discover (target port) redundancy for a Volume.

Triggers Need to build or refresh the Drive topology database for an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile
and SNIA_ViewCapabilities.SupportedViews contains “DiskDriveView”.

Postconditions Administrator has all DiskDrives and related information (scoped by the
Pool or System)

Table 76 - Discover Volumes exposed on a (Target) Port

Use Case Element Description

Summary Given an Array target port, find the volumes that are exposed through
that port

Basic Course of Events 1. Find the ProtocolEndpoint(s) associated to the Port (using DSI)2.
Find the related Volumes (on that system, using ExposedView)

Alternative Paths None

Exception Paths None

Triggers Determine Volumes accessible through a port on an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile
and SNIA_ViewCapabilities.SupportedViews contains “ExposedView”.

Postconditions Administrator has all Volumes that depend on the port for access.

Table 77 - Discover (target port) redundancy for a Volume

Use Case Element Description

Summary Given an Array volume, find the target ports through which it can be
accessed.

Basic Course of Events 1. Find the ProtocolEndpoints that support the volume (using
ExposedView)
2. Find the related target Ports (using DSI)

Alternative Paths None

Exception Paths None

Table 75 - Discovery of the Disk Drives in a Primordial Pool

Use Case Element Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 159

Block Storage Views Profile NO_ANSI_ID

432

433

434

435
6.6.1.5 Discover Volumes exposed to a Host Port

Table 78 identifies the elements of the use case to discover Volumes exposed to a Host Port.

6.6.1.6 Discover the Mapping information for an array

Table 79 identifies the elements of the use case to discover the Mapping information for an array.

Triggers Need to determine what target ports are available for accessing a
volume

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile
and SNIA_ViewCapabilities.SupportedViews contains “ExposedView”.

Postconditions Administrator has the ports through which the volume may be
accessed.

Table 78 - Discover Volumes exposed to a Host Port

Use Case Element Description

Summary Given an host port (Storage HardwareID), find the volumes that are
mapped to that host port

Basic Course of Events 1. Find the Volumes mapped to the host port (MaskingMappingView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for host access to Array
volumes

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile
and SNIA_ViewCapabilities.SupportedViews contains
“MappingMaskingView”.

Postconditions Administrator has all Volumes that are mapped to the host port.

Table 79 - Discover Mapping information for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the masking and mapping
information.

Basic Course of Events 1. Find the target ports and host ports that are connected (Using
SystemDeviceView to MappingProtocolControllerView)
2. Find the Volumes for a ProtocolController (using
ProtocolControllerForUnitView)

Alternative Paths None

Table 77 - Discover (target port) redundancy for a Volume

Use Case Element Description
160

NO_ANSI_ID Block Storage Views Profile

436

437

438

439
6.6.1.7 Discover the Pool topology for an array

Table 80 identifies the elements of the use case to discover the Pool topology for an array.

6.6.1.8 Discover the Replica Pairs for an array

Table 81 identifies the elements of the use case to discover the Replica Pairs for an array.

Exception Paths None

Triggers Need to build or refresh a topology database for masking and mapping
information for an Array.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile
and SNIA_ViewCapabilities.SupportedViews contains
“MappingProtocolControllerView”.

Postconditions Administrator has all the Masking and Mapping information.

Table 80 - Discover the Pool topology for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the Pools on the system

Basic Course of Events 1. Find the Pools and their capabilities for the system (Using
HostedPoolView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for pools in an Array.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile
and SNIA_ViewCapabilities.SupportedViews contains
“StoragePoolView”.

Postconditions Administrator has all the Pools and their capabilities information.

Table 81 - Discover the Replica Pairs for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the Replica Pairs on the system

Basic Course of Events 1. Find the volume pairs for pairs on the array (Using
SystemDeviceView to ReplicaPairView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for Replicas in an Array.

Table 79 - Discover Mapping information for an array

Use Case Element Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 161

Block Storage Views Profile NO_ANSI_ID

440

441

442

443
6.6.2 Recipes

Not supported in this version of the standard.

6.7 CIM Elements

Table 82 describes the CIM elements for Block Storage Views.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile
and SNIA_ViewCapabilities.SupportedViews contains
“ReplicaPairView”.

Postconditions Administrator has all the Replicas that are defined in the Array.

Table 82 - CIM Elements for Block Storage Views

Element Name Requirement Description

6.7.1 CIM_ElementCapabilities (View
Capabilities)

Mandatory Associates the top level ComputerSystem to
the SNIA_ViewCapabilities supported by the
implementation.

6.7.2 SNIA_AllocatedFromStoragePoolView
(StoragePoolView to StoragePool)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "StoragePoolView" (and
the Block Service Package is implemented).

This associates a SNIA_StoragePoolView
instance to a CIM_StoragePool instance. This
is required if the SNIA_StoragePoolView is
implemented.

6.7.3 SNIA_AllocatedFromStoragePoolView
(Volume to StoragePoolView)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "StoragePoolView" (and
the Block Service Package is implemented).

This associates a CIM_StorageVolume (or
CIM_LogicalDisk) instance to a
SNIA_StoragePoolView. This is required if the
SNIA_StoragePoolView is implemented.

Table 81 - Discover the Replica Pairs for an array

Use Case Element Description
162

NO_ANSI_ID Block Storage Views Profile
6.7.4 SNIA_AllocatedFromStoragePoolView
(VolumeView to StoragePool)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "VolumeView" (and the
Block Service Package is implemented).

This associates a SNIA_VolumeView instance
to a CIM_StoragePool. This is required if the
SNIA_VolumeView is implemented.

6.7.5
SNIA_AllocatedFromStoragePoolViewView
(PoolView to PoolView)

Conditional Experimental. Conditional requirement:
Required if the array property
SNIA_ViewCapabilities.SupportedViews
contains the string "StoragePoolView" (and
the Block Service Package is implemented).

This associates a SNIA_StoragePoolView
instance to its parent SNIA_StoragePoolView
instance that it is allocated from.

6.7.6
SNIA_AllocatedFromStoragePoolViewView
(VolumeView to PoolView)

Conditional Experimental. Conditional requirement:
Required if the array property
SNIA_ViewCapabilities.SupportedViews
contains the strings "StoragePoolView" and
"VolumeView" (and the Block Service
Package is implemented).

This associates a SNIA_VolumeView instance
to a SNIA_StoragePoolView instance that
volume is allocated from.

6.7.7 SNIA_BaseInstance (DiskDrive) Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "DiskDriveView" (and the
Disk Drive Lite Profile is implemented).

This associates a SNIA_DiskDriveView
instance to a base CIM_DiskDrive instance
that can be modified. This is required if the
SNIA_DiskDriveView is implemented.

6.7.8 SNIA_BaseInstance (StorageSetting) Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "VolumeView" (and the
Block Service Package is implemented).

This associates a SNIA_VolumeView class
instance to a base CIM_StorageSetting class
instance that can be modified. This is required
if the SNIA_VolumeView is implemented.

Table 82 - CIM Elements for Block Storage Views

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 163

Block Storage Views Profile NO_ANSI_ID
6.7.9 SNIA_BaseInstance (Volume) Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "VolumeView" (and the
Block Service Package is implemented).

This associates a SNIA_VolumeView instance
to a base CIM_StorageVolume (or
CIM_LogicalDisk) instance that can be
modified. This is required if the
SNIA_VolumeView is implemented.

6.7.10 SNIA_BasedOnView
(ExtentOnDriveExtent)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "DiskDriveView" and
Extent Composition is implemented.

This associates a concrete
CIM_StorageExtent instance to a
SNIA_DiskDriveView instance. This is
required if the SNIA_DiskDriveView and
ExtentComposition are implemented.

6.7.11 SNIA_BasedOnView
(VolumeOnExtent)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "VolumeView" and Extent
Composition is implemented.

This associates a SNIA_VolumeView instance
to a base CIM_StorageExtent instance on
which the volume is based. This is required if
the SNIA_VolumeView and
ExtentComposition are implemented.

6.7.12 SNIA_ConcreteComponentView Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "DiskDriveView" (and the
Disk Drive Lite Profile is implemented).

The SNIA_ConcreteComponentView
associates the SNIA_DiskDriveView instance
to the primordial StoragePool to which the disk
drive StorageExtent is assigned. This is
required if the SNIA_DiskDriveView is
implemented.

Table 82 - CIM Elements for Block Storage Views

Element Name Requirement Description
164

NO_ANSI_ID Block Storage Views Profile
6.7.13 SNIA_ContainerView Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "DiskDriveView" (and the
Disk Drive Lite Profile is implemented).

The SNIA_ContainerView associates the
SNIA_DiskDriveView instance to the higher
level physical package (e.g., System physical
package) that contains the physical package
of the disk drive. This is required if the
SNIA_DiskDriveView is implemented.

6.7.14 SNIA_DiskDriveView Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "DiskDriveView" (and the
Disk Drive Lite Profile is implemented).

The SNIA_DiskDriveView instance represents
a Disk Drive and its associated information.
This is required if
SNIA_ViewCapabilities.SupportedViews
includes "DiskDriveView".

6.7.15 SNIA_DriveComponentViewView Conditional Experimental. Conditional requirement:
Required if the array property
SNIA_ViewCapabilities.SupportedViews
contains the string "StoragePoolView" and
"DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

This associates a SNIA_StoragePoolView
instance to a SNIA_DiskDriveView instance
that is a component of the StoragePool.

6.7.16 SNIA_ElementStatisticalDataView
(DiskDriveView)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "DiskDriveView",
CIM_BlockStatisticsCapabilities.ElementType
sSupported contains "10" and Block Server
Performance is implemented.

This associates a SNIA_DiskDriveView
instance to the
CIM_BlockStorageStatisticalData instance for
the Disk Drive. This is required if the
SNIA_DiskDriveView and the Block Server
Performance Subprofile are implemented.

Table 82 - CIM Elements for Block Storage Views

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 165

Block Storage Views Profile NO_ANSI_ID
6.7.17 SNIA_ElementStatisticalDataView
(VolumeView)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "VolumeView",
CIM_BlockStatisticsCapabilities.ElementType
sSupported contains "8" and Block Server
Performance is implemented.

This associates a SNIA_VolumeView instance
to the CIM_BlockStorageStatisticalData
instance for the StorageVolume (or
LogicalDisk). This is required if the
SNIA_VolumeView and the Block Server
Performance Subprofile are implemented.

6.7.18 SNIA_ExposedView Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "ExposedView" (and the
Masking and Mapping Profile is implemented).

This view associates a Target
SCSIProtocolEndpoint and a LogicalDevice
(e.g., StorageVolume). This is required if the
SNIA_ViewCapabilities.SupportedViews
includes "ExposedView".

6.7.19 SNIA_ExtentComponentView Conditional Experimental. Conditional requirement:
Required if the array property
SNIA_ViewCapabilities.SupportedViews
contains the string "StoragePoolView" (and
the Block Service Package is implemented).

This associates a SNIA_StoragePoolView
instance to a CIM_StorageExtent instance that
is a component of the StoragePool.

6.7.20 SNIA_HostedStoragePoolView Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "StoragePoolView" (and
the Block Service Package is implemented).

This associates a SNIA_StoragePoolView
instance to the CIM_ComputerSystem
instance that hosts the underlying
StoragePool.

Table 82 - CIM Elements for Block Storage Views

Element Name Requirement Description
166

NO_ANSI_ID Block Storage Views Profile
6.7.21 SNIA_MappingProtocolControllerView Conditional Experimental. Conditional requirement:
Required if the array property
SNIA_ViewCapabilities.SupportedViews
contains the string
"MappingProtocolControllerView" (and the
Masking and Mapping Profile is implemented).

The SNIA_MappingProtocolControllerView
represents the unique pairing of Host Ports
and TargetPorts as represented by a
ProtocolController in the Masking and
Mapping profile of a block storage profile. This
is required if the
SNIA_ViewCapabilities.SupportedViews
includes "MappingProtocolControllerView".

6.7.22 SNIA_MaskingMappingView Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "MaskingMappingView"
(and the Masking and Mapping Profile is
implemented).

This three way association associates a
CIM_LogicalDevice, CIM_StorageHardwareID
and CIM_SCSIProtocolEndpoint instances to
each other and derived from the Masking and
Mapping subprofile model. This is required if
SNIA_ViewCapabilities.SupportedViews
contains "MaskingMappingView".

6.7.23 SNIA_ProtocolControllerForUnitView Conditional Experimental. Conditional requirement:
Required if the array property
SNIA_ViewCapabilities.SupportedViews
contains the string
"MappingProtocolControllerView" (and the
Masking and Mapping Profile is implemented).
Associates an instance of
MappingProtocolControllerView to a
LogicalDevice.

6.7.24 SNIA_ReplicaPairView Conditional Experimental. Conditional requirement:
Required if the array property
SNIA_ViewCapabilities.SupportedViews
contains the string "ReplicaPairlView" (and the
Copy Services Profile is implemented). A view
that combines a source and target volume and
the StorageSynchronized between them.

Table 82 - CIM Elements for Block Storage Views

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 167

Block Storage Views Profile NO_ANSI_ID
6.7.25 SNIA_StoragePoolView Conditional Experimental. Conditional requirement:
Required if the array property
SNIA_ViewCapabilities.SupportedViews
contains the string "StoragePoolView" (and
the Block Service Package is implemented).

A view that combines StoragePool information
with the StorageCapabilities and
StorageConfigurationCapabilities for the
StoragePool, as well as SpaceConsumed on
its parent pool.

6.7.26 SNIA_SystemDeviceView
(DiskDriveViews)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "DiskDriveView" (and the
Disk Drive Lite Profile is implemented).

This association links SNIA_DiskDriveView
instances to the scoping system. This is
required if the SNIA_DiskDriveView is
implemented.

6.7.27 SNIA_SystemDeviceView
(MappingProtocolControllerViews)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string
"MappingProtocolControllerView" (and the
Masking and Mapping Profile is implemented).

This association links
SNIA_MappingProtocolControllerView
instances to the scoping system. This is
required if the
SNIA_MappingProtocolControllerView is
implemented.

6.7.28 SNIA_SystemDeviceView
(ReplicaPairViews)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "ReplicaPairlView" (and the
Copy Services Profile is implemented).

This association links SNIA_ReplicaPairView
instances to the scoping system. This is
required if the SNIA_ReplicaPairView is
implemented.

Table 82 - CIM Elements for Block Storage Views

Element Name Requirement Description
168

NO_ANSI_ID Block Storage Views Profile

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463
6.7.1 CIM_ElementCapabilities (View Capabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 83 describes class CIM_ElementCapabilities (View Capabilities).

6.7.2 SNIA_AllocatedFromStoragePoolView (StoragePoolView to StoragePool)

The SNIA_AllocatedFromStoragePoolView instance is a view that is derived from the
CIM_AllocatedFromStoragePool association between two StoragePools. Note that if the StoragePoolView is
allocated from multiple StoragePools there will be multiple AllocatedFromStoragePoolView instances for the
StoragePool. The SNIA_AllocatedFromStoragePoolView is not subclassed from anything.

6.7.29 SNIA_SystemDeviceView
(VolumeViews)

Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "VolumeView" (and the
Block Service Package is implemented).

This association links SNIA_VolumeView
instances to the scoping system. This is
required if the SNIA_VolumeView is
implemented.

6.7.30 SNIA_ViewCapabilities Mandatory The SNIA_ViewCapabilities identifies the
capabilities of the implementation of view
classes.

6.7.31 SNIA_VolumeView Conditional Conditional requirement: Required if the array
property
SNIA_ViewCapabilities.SupportedViews
contains the string "VolumeView" (and the
Block Service Package is implemented).

The SNIA_VolumeView represents the
storage (LogicalDisks or StorageVolumes) of
a block storage profile. This is required if the
SNIA_ViewCapabilities.SupportedViews
includes "VolumeView".

Table 83 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (View Capabilities)

Properties Requirement Description & Notes

Capabilities Mandatory The ViewCapabilities.

ManagedElement Mandatory The top level ComputerSystem that has the ViewCapabilities.

Table 82 - CIM Elements for Block Storage Views

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 169

Block Storage Views Profile NO_ANSI_ID

464

465

466

467

468

469

470

471

472

473

474

475

476

477
Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"StoragePoolView" (and the Block Service Package is implemented).

Table 84 describes class SNIA_AllocatedFromStoragePoolView (StoragePoolView to StoragePool).

6.7.3 SNIA_AllocatedFromStoragePoolView (Volume to StoragePoolView)

The SNIA_AllocatedFromStoragePoolView instance is a view that is derived from the
CIM_AllocatedFromStoragePool association between the StorageVolume or LogicalDisk (of the
CIM_StorageVolume or CIM_LogicalDisk) and the StoragePoolView from which the StorageVolume (or
LogicalDisk) is allocated. Note that if the StorageVolume (or LogicalDisk) is allocated from multiple StoragePools
there will be multiple AllocatedFromStoragePoolView instances for the StorageVolume (or LogicalDisk). The
SNIA_AllocatedFromStoragePoolView is not subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"StoragePoolView" (and the Block Service Package is implemented).

Table 84 - SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolView (Stor-
agePoolView to StoragePool)

Properties Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePool by the
StoragePoolView. This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the
base CIM_StoragePool on the antecedent StoragePool.

Antecedent Mandatory The parent(s) StoragePool(s) from which the StoragePoolView
is allocated.

Dependent Mandatory The CIM_StorageVolume or CIM_LogicalDisk instance that is
allocated from the StoragePoolView. There is only one
CIM_StorageVolume (or CIM_LogicalDisk) instance for the
combined StorageVolume (or LogicalDisk) - StoragePool pair.
170

NO_ANSI_ID Block Storage Views Profile

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495
Table 85 describes class SNIA_AllocatedFromStoragePoolView (Volume to StoragePoolView).

6.7.4 SNIA_AllocatedFromStoragePoolView (VolumeView to StoragePool)

The SNIA_AllocatedFromStoragePoolView instance is a view that is derived from the
CIM_AllocatedFromStoragePool association between the StorageVolume or LogicalDisk (of the
SNIA_VolumeView) and the StoragePool from which the StorageVolume (or LogicalDisk is allocated. Note that if
the StorageVolume (or LogicalDisk) is allocated from multiple StoragePools there will be multiple
AllocatedFromStoragePoolView instances for the StorageVolume (or LogicalDisk). The
SNIA_AllocatedFromStoragePoolView is not subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"VolumeView" (and the Block Service Package is implemented).

Table 86 describes class SNIA_AllocatedFromStoragePoolView (VolumeView to StoragePool).

Table 85 - SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolView (Volume
to StoragePoolView)

Properties Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the
StorageVolume (or LogicalDisk). This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the
base CIM_StorageVolume on the antecedent StoragePool.

Antecedent Mandatory A StoragePoolView from which the StorageVolume (or
LogicalDisk) is allocated.

Dependent Mandatory The CIM_StorageVolume or CIM_LogicalDisk instance that is
allocated from the StoragePoolView. There is only one
CIM_StorageVolume (or CIM_LogicalDisk) instance for the
combined StorageVolume (or LogicalDisk) - StoragePool pair.

Table 86 - SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolView (Vol-
umeView to StoragePool)

Properties Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePool by the
StorageVolume (or LogicalDisk). This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the
base CIM_StorageVolume on the antecedent StoragePool.

Antecedent Mandatory A StoragePool from which the StorageVolume of the
SNIA_VolumeView is allocated.

Dependent Mandatory The SNIA_VolumeView instance that is allocated from the
StoragePool. There is only one VolumeView instance for the
combined StorageVolume (or LogicalDisk) - StoragePool pair.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 171

Block Storage Views Profile NO_ANSI_ID

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510
6.7.5 SNIA_AllocatedFromStoragePoolViewView (PoolView to PoolView)

Experimental. This SNIA_AllocatedFromStoragePoolViewView is an association between a
SNIA_StoragePoolView instances and the SNIA_StoragePoolView instance that they are allocated from. . The
SNIA_AllocatedFromStoragePoolViewView is not subclassed from anything.

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"StoragePoolView" (and the Block Service Package is implemented).

Table 87 describes class SNIA_AllocatedFromStoragePoolViewView (PoolView to PoolView).

6.7.6 SNIA_AllocatedFromStoragePoolViewView (VolumeView to PoolView)

Experimental. This SNIA_AllocatedFromStoragePoolViewView is an association between a SNIA_VolumeView
instances and the SNIA_StoragePoolView instance that the Volume is allocated from. . The
SNIA_AllocatedFromStoragePoolViewView is not subclassed from anything.

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the strings
"StoragePoolView" and "VolumeView" (and the Block Service Package is implemented).

Table 88 describes class SNIA_AllocatedFromStoragePoolViewView (VolumeView to PoolView).

6.7.7 SNIA_BaseInstance (DiskDrive)

The SNIA_BaseInstance instance is an association between a SNIA_DiskDriveView instance and a base
CIM_DiskDrive instance on which the view is based. This association is provided to accommodate update

Table 87 - SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolViewView
(PoolView to PoolView)

Properties Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the
StoragePoolView. This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the
base CIM_StoragePool on the antecedent StoragePool.

Dependent Mandatory The StoragePoolView instance that is allocated from the
parent pool.

Antecedent Mandatory The StoragePoolView instance for a parent StoragePool.

Table 88 - SMI Referenced Properties/Methods for SNIA_AllocatedFromStoragePoolViewView
(VolumeView to PoolView)

Properties Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the
VolumeView. This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the
base CIM_StorageVolume (or CIM_LogicalDisk) on the
antecedent StoragePool.

Dependent Mandatory The VolumeView instance that is allocated from the pool.

Antecedent Mandatory The StoragePoolView instance for a parent StoragePool.
172

NO_ANSI_ID Block Storage Views Profile

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532
operations on the base CIM_DiskDrive instances, since the properties cannot be updated in the view class. The
SNIA_BaseInstance is subclassed from CIM_Dependency.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 89 describes class SNIA_BaseInstance (DiskDrive).

6.7.8 SNIA_BaseInstance (StorageSetting)

The SNIA_BaseInstance instance is an association between the SNIA_VolumeView and the CIM_StorageSetting
instance for the base StorageVolume (or LogicalDisk) on which the view is based. This association is provided to
accommodate update operations on the CIM_StorageSetting instance (e.g., ModifyInstance), since the properties
cannot be updated in the view class. The SNIA_BaseInstance is subclassed from CIM_Dependency.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"VolumeView" (and the Block Service Package is implemented).

Table 90 describes class SNIA_BaseInstance (StorageSetting).

6.7.9 SNIA_BaseInstance (Volume)

The SNIA_BaseInstance instance is an association between a SNIA_VolumeView instance and a base
CIM_StorageVolume (or CIM_LogicalDisk) instance on which the view is based. This association is provided to
accommodate update operations on the base CIM_StorageVolume (or CIM_LogicalDisk) instances, since the
properties cannot be updated in the view class. The SNIA_BaseInstance is subclassed from CIM_Dependency.

Created By: External

Modified By: External

Table 89 - SMI Referenced Properties/Methods for SNIA_BaseInstance (DiskDrive)

Properties Requirement Description & Notes

Antecedent Mandatory The base CIM_DiskDrive instance on which the
SNIA_DiskDriveView instance is based.

Dependent Mandatory The SNIA_DiskDriveView instance that is based on the
CIM_DiskDrive instance.

Table 90 - SMI Referenced Properties/Methods for SNIA_BaseInstance (StorageSetting)

Properties Requirement Description & Notes

Antecedent Mandatory The base CIM_StorageSetting instance on which the
SNIA_VolumeView instance is based.

Dependent Mandatory The SNIA_VolumeView instance that is based on the
CIM_StorageSetting instance.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 173

Block Storage Views Profile NO_ANSI_ID

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551
Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"VolumeView" (and the Block Service Package is implemented).

Table 91 describes class SNIA_BaseInstance (Volume).

6.7.10 SNIA_BasedOnView (ExtentOnDriveExtent)

The SNIA_BasedOnView instance is a view that is derived from CIM_BasedOn between a concrete
CIM_StorageExtent instance and the primordial CIM_StorageExtent under it. The SNIA_BaseOnView is not
subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"DiskDriveView" and Extent Composition is implemented.

Table 92 describes class SNIA_BasedOnView (ExtentOnDriveExtent).

6.7.11 SNIA_BasedOnView (VolumeOnExtent)

The SNIA_BasedOnView instance is a view that is derived from CIM_BasedOn between the CIM_StorageVolume
instance and the first CIM_StorageExtent it is based on. The SNIA_BaseOnView is not subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Table 91 - SMI Referenced Properties/Methods for SNIA_BaseInstance (Volume)

Properties Requirement Description & Notes

Antecedent Mandatory The base CIM_StorageVolume (or CIM_LogicalDisk) instance
on which the SNIA_VolumeView instance is based.

Dependent Mandatory The SNIA_VolumeView instance that is based on the
CIM_StorageVolume (or CIM_LogicalDisk) instance.

Table 92 - SMI Referenced Properties/Methods for SNIA_BasedOnView (ExtentOnDriveExtent)

Properties Requirement Description & Notes

BOStartingAddress Optional This is derived from the BasedOn.StartingAddress.

BOEndingAddress Optional This is derived from the BasedOn.EndingAddress.

BOOrderIndex Optional When the association is used in a concatenation composition,
indicates the order in which the extents(and thus their block
ranges) are concatenated.

Antecedent Mandatory The SNIA_DiskDriveView on which a concrete StorageExtent
is based.

Dependent Mandatory The CIM_StorageExtent instance that is dependent on the
SNIA_DiskDriveView.
174

NO_ANSI_ID Block Storage Views Profile

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571
Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"VolumeView" and Extent Composition is implemented.

Table 93 describes class SNIA_BasedOnView (VolumeOnExtent).

6.7.12 SNIA_ConcreteComponentView

The SNIA_ConcreteComponentView instance is a view that is derived from the CIM_ConcreteComponent
between the base CIM_StorageExtent of the Disk Drive and its primordial CIM_StoragePool. The
SNIA_ConcreteComponentView is not subclassed from anything.

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 94 describes class SNIA_ConcreteComponentView.

6.7.13 SNIA_ContainerView

The SNIA_ContainerView instance is a view that is derived from the CIM_Container between the base
CIM_PhysicalPackage of the Disk Drive and the CIM_PhysicalPackage of the ComputerSystem. The
SNIA_ContainerView is not subclassed from anything.

Created By: External

Modified By: Static

Deleted By: External

Table 93 - SMI Referenced Properties/Methods for SNIA_BasedOnView (VolumeOnExtent)

Properties Requirement Description & Notes

BOStartingAddress Optional This is derived from the BasedOn.StartingAddress.

BOEndingAddress Optional This is derived from the BasedOn.EndingAddress.

BOOrderIndex Optional When the association is used in a concatenation composition,
indicates the order in which the extents(and thus their block
ranges) are concatenated.

Antecedent Mandatory The lower level StorageExtent on which the
SNIA_VolumeView StorageVolume is based.

Dependent Mandatory The SNIA_VolumeView instance.

Table 94 - SMI Referenced Properties/Methods for SNIA_ConcreteComponentView

Properties Requirement Description & Notes

GroupComponent Mandatory The CIM_StoragePool to which the StorageExtent of the Disk
Drive is assigned.

PartComponent Mandatory A SNIA_DiskDriveView instance that is assigned to the
StoragePool.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 175

Block Storage Views Profile NO_ANSI_ID

572

573

574

575

576

577

578

579

580

581

582
Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 95 describes class SNIA_ContainerView.

6.7.14 SNIA_DiskDriveView

The SNIA_DiskDriveView instance is a view that is derived from CIM_StorageExtent, CIM_MediaPresent,
CIM_DiskDrive, CIM_Realizes, CIM_PhysicalPackage, CIM_ElementSoftwareIdentity and CIM_SoftwareIdentity.
The SNIA_DiskDriveView is subclassed from CIM_ManagedElement.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 96 describes class SNIA_DiskDriveView.

Table 95 - SMI Referenced Properties/Methods for SNIA_ContainerView

Properties Requirement Description & Notes

GroupComponent Mandatory The CIM_PhysicalPackage for the ComputerSystem instance
that groups the CIM_PhysicalPackage of the Disk Drive.

PartComponent Mandatory A SNIA_DiskDriveView instance that includes
CIM_PhysicalPackage information for the CIM_DiskDrive.

Table 96 - SMI Referenced Properties/Methods for SNIA_DiskDriveView

Properties Requirement Description & Notes

SESystemCreationClassNam
e

Mandatory The SystemCreationClassName for the StorageExtent of the
Disk Drive as reported in the underlying primordial
StorageExtent instance for the Disk Drive.

SESystemName Mandatory The SystemName for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance
for the Disk Drive.

SECreationClassName Mandatory The CreationClassName for the StorageExtent of the Disk
Drive as reported in the underlying primordial StorageExtent
instance for the Disk Drive.

SEDeviceID Mandatory The DeviceID for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance
for the Disk Drive.

SEBlockSize Mandatory The BlockSize for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance
for the Disk Drive.

SENumberOfBlocks Mandatory The NumberOfBlocks for the StorageExtent of the Disk Drive
as reported in the underlying primordial StorageExtent
instance for the Disk Drive.
176

NO_ANSI_ID Block Storage Views Profile
SEConsumableBlocks Mandatory The ConsumableBlocks for the StorageExtent of the Disk
Drive as reported in the underlying primordial StorageExtent
instance for the Disk Drive.

SEExtentStatus Mandatory The ExtentStatus for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance
for the Disk Drive.

SEOperationalStatus Mandatory The OperationalStatus for the StorageExtent of the Disk Drive
as reported in the underlying primordial StorageExtent
instance for the Disk Drive.

DDSystemCreationClassNam
e

Mandatory The SystemCreationClassName for the Disk Drive as reported
in the underlying DiskDrive instance.

DDSystemName Mandatory The SystemName for the Disk Drive as reported in the
underlying DiskDrive instance.

DDCreationClassName Mandatory The CreationClassName for the Disk Drive as reported in the
underlying DiskDrive instance.

DDDeviceID Mandatory The DeviceID for the Disk Drive as reported in the underlying
DiskDrive instance.

DDName Mandatory The Name for the Disk Drive as reported in the underlying
DiskDrive instance.

DDOperationalStatus Mandatory The OperationalStatus for the Disk Drive as reported in the
underlying DiskDrive instance.

PPCreationClassName Mandatory The CreationClassName for the PhysicalPackage of the Disk
Drive as reported in the underlying PhysicalPackage instance
for the Disk Drive.

PPTag Mandatory The Tag for the PhysicalPackage of the Disk Drive as reported
in the underlying PhysicalPackage instance for the Disk Drive.

PPManufacturer Mandatory The Manufacturer for the PhysicalPackage of the Disk Drive as
reported in the underlying PhysicalPackage instance for the
Disk Drive.

PPModel Mandatory The Model for the PhysicalPackage of the Disk Drive as
reported in the underlying PhysicalPackage instance for the
Disk Drive.

SIInstanceID Mandatory The InstanceID for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the
Disk Drive.

SIVersionString Mandatory The VersionString for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the
Disk Drive.

DDLocationIndicator Optional The LocationIndicator for the Disk Drive as reported in the
underlying DiskDrive instance.

Table 96 - SMI Referenced Properties/Methods for SNIA_DiskDriveView

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 177

Block Storage Views Profile NO_ANSI_ID

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597
6.7.15 SNIA_DriveComponentViewView

Experimental. The SNIA_DriveComponentViewView is an association between a SNIA_StoragePoolView
instances and the SNIA_DiskDriveView instances for Disk Drives of the StoragePool. The
SNIA_DriveComponentViewView is not subclassed from anything.

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"StoragePoolView" and "DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 97 describes class SNIA_DriveComponentViewView.

6.7.16 SNIA_ElementStatisticalDataView (DiskDriveView)

The SNIA_ElementStatisticalDataView is an association between a SNIA_DiskDriveView instance and the
CIM_BlockStorageStatisticalData instance for the DiskDrive. The SNIA_BaseInstance is not subclassed from
anything.

Created By: External

PPSerialNumber Optional The SerialNumber for the PhysicalPackage of the Disk Drive
as reported in the underlying PhysicalPackage instance for the
Disk Drive.

PPPartNumber Optional The PartNumber for the PhysicalPackage of the Disk Drive as
reported in the underlying PhysicalPackage instance for the
Disk Drive.

SIManufacturer Optional The Manufacturer for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the
Disk Drive.

SIBuildNumber Optional The BuildNumber for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the
Disk Drive.

SIMajorVersion Optional The MajorVersion for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the
Disk Drive.

SIRevisionNumber Optional The RevisionNumber for the SoftwareIdentity of the Disk Drive
as reported in the underlying SoftwareIdentity instance for the
Disk Drive.

SIMinorVersion Optional The MinorVersion for the SoftwareIdentity of the Disk Drive as
reported in the underlying SoftwareIdentity instance for the
Disk Drive.

Table 97 - SMI Referenced Properties/Methods for SNIA_DriveComponentViewView

Properties Requirement Description & Notes

PartComponent Mandatory The DiskDriveView instance.

GroupComponent Mandatory The StoragePoolView instance for a primordial StoragePool.

Table 96 - SMI Referenced Properties/Methods for SNIA_DiskDriveView

Properties Requirement Description & Notes
178

NO_ANSI_ID Block Storage Views Profile

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618
Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"DiskDriveView", CIM_BlockStatisticsCapabilities.ElementTypesSupported contains "10" and Block Server
Performance is implemented.

Table 98 describes class SNIA_ElementStatisticalDataView (DiskDriveView).

6.7.17 SNIA_ElementStatisticalDataView (VolumeView)

The SNIA_ElementStatisticalDataView is an association between a SNIA_VolumeView instance and the
CIM_BlockStorageStatisticalData instance for the StorageVolume (or LogicalDisk). The SNIA_BaseInstance is not
subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"VolumeView", CIM_BlockStatisticsCapabilities.ElementTypesSupported contains "8" and Block Server
Performance is implemented.

Table 99 describes class SNIA_ElementStatisticalDataView (VolumeView).

6.7.18 SNIA_ExposedView

The SNIA_ExposedView instance is a view that is derived from CIM_SAPAvailableForElement,
CIM_SCSIProtocolController and CIM_ProtocolControllerForUnit. The SNIA_ExposedView is not subclassed from
anything.

Created By: External

Modified By: External

Deleted By: External

Table 98 - SMI Referenced Properties/Methods for SNIA_ElementStatisticalDataView (Disk-
DriveView)

Properties Requirement Description & Notes

Stats Mandatory The CIM_BlockStorageStatisticalData instance for the
DiskDrive (StorageExtent) instance.

ManagedElement Mandatory The SNIA_DiskDriveView instance that has the
CIM_BlockStorageStatisticalData instance.

Table 99 - SMI Referenced Properties/Methods for SNIA_ElementStatisticalDataView (Vol-
umeView)

Properties Requirement Description & Notes

Stats Mandatory The CIM_BlockStorageStatisticalData instance for the
StorageVolume (or LogicalDisk) instance.

ManagedElement Mandatory The SNIA_VolumeView instance that has the
CIM_BlockStorageStatisticalDatainstance.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 179

Block Storage Views Profile NO_ANSI_ID

619

620

621

622

623

624
Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"ExposedView" (and the Masking and Mapping Profile is implemented).

Table 100 describes class SNIA_ExposedView.

6.7.19 SNIA_ExtentComponentView

Experimental. The SNIA_ExtentComponentView is an association between a SNIA_StoragePoolView instances
and the CIM_StorageExtent instances for the StoragePool. The SNIA_ExtentComponentView is not subclassed
from anything.

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"StoragePoolView" (and the Block Service Package is implemented).

Table 100 - SMI Referenced Properties/Methods for SNIA_ExposedView

Properties Requirement Description & Notes

SPCSystemCreationClassNa
me

Mandatory The SystemCreationClassName for the
SCSIProtocolController used with the underlying
SCSIProtocolController instance for the SCSIProtocolEndpoint
and StorageVolume.

SPCSystemName Mandatory The SystemName for the SCSIProtocolController used with
the underlying SCSIProtocolController instance for the
SCSIProtocolEndpoint and StorageVolume.

SPCCreationClassName Mandatory The CreationClassName for the SCSIProtocolController used
with the underlying SCSIProtocolController instance for the
SCSIProtocolEndpoint and StorageVolume.

SPCDeviceID Mandatory The DeviceID for the SCSIProtocolController used with the
underlying SCSIProtocolController instance for the
SCSIProtocolEndpoint and StorageVolume.

PCFUDeviceNumber Mandatory The DeviceNumber (LUN) for the StorageVolume when
accessed through the SCSIProtocolEndpoint as reported in
the underlying ProtocolControllerForUnit instance for the
StorageVolume.

PCFUDeviceAccess Mandatory The DeviceAccess value for the StorageVolume when
accessed through the SCSIProtocolEndpoint as reported in
the underlying ProtocolControllerForUnit instance for the
StorageVolume.

ProtocolEndpoint Mandatory The Target ProtocolEndpoint through which the LogicalDevice
is exposed.

LogicalDevice Mandatory The LogicalDevice (e.g., StorageVolume) that is exposed
through the Target ProtocolEndpoint.
180

NO_ANSI_ID Block Storage Views Profile

625

626

627

628

629

630

631

632

633

634

635

636
Table 101 describes class SNIA_ExtentComponentView.

6.7.20 SNIA_HostedStoragePoolView

The SNIA_HostedStoragePoolView is an association between a SNIA_StoragePoolView instances and the
CIM_ComputerSystem instance for the StoragePool. The SNIA_HostedStoragePoolView is not subclassed from
anything.

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"StoragePoolView" (and the Block Service Package is implemented).

Table 102 describes class SNIA_HostedStoragePoolView.

6.7.21 SNIA_MappingProtocolControllerView

Experimental. The SNIA_MappingProtocolControllerView instance is a view that is derived from
CIM_ProtocolController, CIM_StorageHardwareID, CIM_AuthorizedPrivilege, CIM_ProtocolEndPoint and
CIM_LogicalPort, and their associations. The SNIA_MappingProtocolControllerView is subclassed from
CIM_ManagedElement.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

Table 103 describes class SNIA_MappingProtocolControllerView.

Table 101 - SMI Referenced Properties/Methods for SNIA_ExtentComponentView

Properties Requirement Description & Notes

PartComponent Mandatory A reference to a StorageExtent.

GroupComponent Mandatory A reference to a StoragePoolView instance that contains the
Extent.

Table 102 - SMI Referenced Properties/Methods for SNIA_HostedStoragePoolView

Properties Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool view.

Table 103 - SMI Referenced Properties/Methods for SNIA_MappingProtocolControllerView

Properties Requirement Description & Notes

PCSystemCreationClassNam
e

Mandatory The SystemCreationClassName as reported in the underlying
ProtocolController.

PCCreationClassName Mandatory The CreationClassName as reported in the underlying
ProtocolController.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 181

Block Storage Views Profile NO_ANSI_ID

637

638

639

640

641

642

643

644

645

646

647
PCSystemName Mandatory The SystemName as reported in the underlying
ProtocolController.

PCDeviceID Mandatory The DeviceID as reported in the underlying ProtocolController.

SHIDInstanceID Mandatory The InstanceID as reported in the underlying
StorageHardwareID.

SHIDStorageID Mandatory The StorageID as reported in the underlying
StorageHardwareID.

SHIDIDType Mandatory The IDType as reported in the underlying StorageHardwareID.

PEPSystemCreationClassNa
me

Mandatory The SystemCreationClassName as reported in the underlying
ProtocolEndpoint.

PEPCreationClassName Mandatory The CreationClassName as reported in the underlying
ProtocolEndpoint.

PEPSystemName Mandatory The SystemName as reported in the underlying
ProtocolEndpoint.

PEPName Mandatory The Name as reported in the underlying ProtocolEndpoint.

PEPProtocolIFType Mandatory The ProtocolIFType as reported in the underlying
ProtocolEndpoint.

PEPOtherTypeDescription Mandatory The OtherTypeDescription as reported in the underlying
ProtocolEndpoint.

PEPRole Mandatory The Role as reported in the underlying ProtocolEndpoint.

PEPConnectionType Mandatory The ConnectionType as reported in the underlying
ProtocolEndpoint.

APInstanceID Mandatory The InstanceID as reported in the underlying
AuthorizedPrivilege.

APPrivilegeGranted Mandatory The PrivilegeGranted as reported in the underlying
AuthorizedPrivilege.

APActivities[] Mandatory The Activities[] as reported in the underlying
AuthorizedPrivilege.

APElementName Optional The ElementName as reported in the underlying
AuthorizedPrivilege.

LPSystemCreationClassNam
e

Mandatory The SystemCreationClassName as reported in the underlying
LogicalPort. This may be NULL if the underlying LogicalPort is
an Ethernet Port.

LPCreationClassName Mandatory The CreationClassName as reported in the underlying
LogicalPort. This may be NULL if the underlying LogicalPort is
an Ethernet Port.

LPSystemName Mandatory The SystemName as reported in the underlying LogicalPort.
This may be NULL if the underlying LogicalPort is an Ethernet
Port.

Table 103 - SMI Referenced Properties/Methods for SNIA_MappingProtocolControllerView

Properties Requirement Description & Notes
182

NO_ANSI_ID Block Storage Views Profile

648

649

650

651

652
6.7.22 SNIA_MaskingMappingView

The SNIA_MaskingMappingView instance is a view that is derived from CIM_StorageHardwareID,
CIM_AuthorizedSubject, CIM_AuthorizedPrivilege, CIM_AuthorizedTarget, CIM_SCSIProtocolController,
CIM_SAPAvailableForElement, CIM_SCSIProtocolEndpoint, CIM_ProtocolControllerForUnit and
CIM_LogicalDevice. The SNIA_MaskingMappingView is not subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"MaskingMappingView" (and the Masking and Mapping Profile is implemented).

Table 104 describes class SNIA_MaskingMappingView.

LPDeviceID Mandatory The DeviceID as reported in the underlying LogicalPort. This
may be NULL if the underlying LogicalPort is an Ethernet Port.

LPOperationalStatus Mandatory The OperationalStatus as reported in the underlying
LogicalPort. This may be NULL if the underlying LogicalPort is
an Ethernet Port.

LPUsageRestriction Mandatory The UsageRestriction as reported in the underlying
LogicalPort. This may be NULL if the underlying LogicalPort is
an Ethernet Port.

LPPortType Mandatory The PortType as reported in the underlying LogicalPort. This
may be NULL if the underlying LogicalPort is an Ethernet Port.

Table 104 - SMI Referenced Properties/Methods for SNIA_MaskingMappingView

Properties Requirement Description & Notes

SHIDStorageID Mandatory The StorageID from the referenced CIM_StorageHardwareID
instance.

SHIDIDType Mandatory The IDType from the referenced CIM_StorageHardwareID
instance.

LDDeviceID Mandatory The DeviceID from the referenced CIM_LogicalDevice
instance.

SPEPSystemCreationClassN
ame

Mandatory The SystemCreationClassName from the referenced
CIM_SCSIProtocolEndpoint instance.

SPEPCreationClassName Mandatory The CreationClassName from the referenced
CIM_SCSIProtocolEndpoint instance.

SPEPSystemName Mandatory The SystemName from the referenced
CIM_SCSIProtocolEndpoint instance.

SPEPName Mandatory The Name from the referenced CIM_SCSIProtocolEndpoint
instance.

Table 103 - SMI Referenced Properties/Methods for SNIA_MappingProtocolControllerView

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 183

Block Storage Views Profile NO_ANSI_ID

653

654

655

656

657
6.7.23 SNIA_ProtocolControllerForUnitView

Experimental. The SNIA_ProtocolControllerForUnitView instance is a view that associates a
MappingProtocolControllerView and a LogicalDevice. It is derived from the underlying ProtocolControllerForUnit
association between the underlying ProtocolController and the LogicalDevice. Note that if the LogicalDevice is
associated to multiple ProtocolControllers the DeviceNumber (LU Number) may differ for each
MappingProtocolControllerView instance.

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

SPEPRole Mandatory The Role from the referenced CIM_SCSIProtocolEndpoint
instance.

APInstanceID Mandatory The InstanceID of the CIM_AuthorizedPrivilege instance.

APPrivilegeGranted Mandatory The PrivilegeGranted of the CIM_AuthorizedPrivilege
instance.

APActivities Mandatory The Activities array of the CIM_AuthorizedPrivilege instance.

APElementName Optional The ElementName of the CIM_AuthorizedPrivilege instance.

SPCSystemCreationClassNa
me

Mandatory The SystemCreationClassName of the
CIM_SCSIProtocolController instance.

SPCCreationClassName Mandatory The CreationClassName of the CIM_SCSIProtocolController
instance.

SPCSystemName Mandatory The SystemName of the CIM_SCSIProtocolController
instance.

SPCDeviceID Mandatory The DeviceID of the CIM_SCSIProtocolController instance.

PCFUDeviceNumber Mandatory The DeviceNumber (LUN) of the
CIM_ProtocolControllerForUnit association instance.

PCFUDeviceAccess Mandatory The DeviceAccess value of the CIM_ProtocolControllerForUnit
association instance.

StorageHardwareID Mandatory The CIM_StorageHardwareID instance that is associated to
the CIM_LogicalDevice and CIM_ProtocolEndpoint instances.

LogicalDevice Mandatory The CIM_LogicalDevice instance that is associated to the
CIM_StorageHardwareID and CIM_ProtocolEndpoint
instances.

ProtocolEndpoint Mandatory The CIM_ProtocolEndpoint instance that is associated to the
CIM_StorageHardwareID and CIM_LogicalDevice instances.

Table 104 - SMI Referenced Properties/Methods for SNIA_MaskingMappingView

Properties Requirement Description & Notes
184

NO_ANSI_ID Block Storage Views Profile
Table 105 describes class SNIA_ProtocolControllerForUnitView.

6.7.24 SNIA_ReplicaPairView

Experimental. The SNIA_ReplicaView instance is a view that is derived from a source and target
CIM_StorageVolume (or CIM_LogicalDisk) and a CIM_StorageSynchronized association between them.

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"ReplicaPairlView" (and the Copy Services Profile is implemented).

Table 106 describes class SNIA_ReplicaPairView.

Table 105 - SMI Referenced Properties/Methods for SNIA_ProtocolControllerForUnitView

Properties Requirement Description & Notes

PCFUDeviceNumber Mandatory The DeviceNumber as reported in the underlying
ProtocolControllerForUnit.

PCFUDeviceAccess Mandatory The DeviceAccess as reported in the underlying
ProtocolControllerForUnit.

ManagedElement Mandatory The MappingProtocolControllerView Instance.

LogicalDevice Mandatory The Storage Volume.

Table 106 - SMI Referenced Properties/Methods for SNIA_ReplicaPairView

Properties Requirement Description & Notes

SVSourceSystemCreationCla
ssName

Mandatory The SystemCreationClassName as reported in the underlying
source StorageVolume (or LogicalDisk).

SVSourceSystemName Mandatory The SystemName as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceCreationClassNam
e

Mandatory The CreationClassName as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceDeviceID Mandatory An opaque identifier of the underlying source StorageVolume
(or LogicalDisk).

SVSourceName Mandatory The identifier for the underlying source StorageVolume (or
LogicalDisk).

SVSourceNameFormat Mandatory The format of the identifier for the underlying source
StorageVolume (or LogicalDisk).

SVSourceNameNamespace Mandatory The NameNamespace for the StorageVolume as reported in
the underlying source StorageVolume instance.

SVSourceExtentStatus Mandatory The ExtentStatus as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceOperationalStatus Mandatory The OperationalStatus as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceBlockSize Mandatory The BlockSize as reported in the underlying source
StorageVolume (or LogicalDisk).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 185

Block Storage Views Profile NO_ANSI_ID
SVSourceNumberOfBlocks Mandatory The number of blocks that make up the volume as reported in
the underlying source StorageVolume (or LogicalDisk).

SVSourceConsumableBlocks Mandatory The number of usable blocks in the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourcePrimordial Mandatory This shall be Primordial='false'.

SVSourceIsBasedOnUnderlyi
ngRedundancy

Mandatory Whether or not redundancy is supported for the volume as
reported in the underlying source StorageVolume (or
LogicalDisk).

SVSourceNoSinglePointOfFa
ilure

Mandatory Whether or not NoSinglePointOfFailure is supported for the
volume as reported in the underlying source StorageVolume
(or LogicalDisk).

SVSourceDataRedundancy Mandatory The DataRedundancy supported by the volume as reported in
the underlying source StorageVolume (or LogicalDisk).

SVSourcePackageRedundan
cy

Mandatory The PackageRedundancy supported by the volume as
reported in the underlying source StorageVolume (or
LogicalDisk).

SVSourceDeltaReservation Mandatory The DeltaReservation supported by the volume as reported in
the underlying source StorageVolume (or LogicalDisk).

SVSourceExtentDiscriminator Mandatory Experimental. The ExtentDiscriminator as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourceOtherIdentifyingInf
o

Optional Other identifiers for the StorageVolume (or LogicalDisk) as
reported in the underlying source StorageVolume (or
LogicalDisk).

SVSourceIdentifyingDescripti
ons

Optional The description of the other identifiers for the StorageVolume
(or LogicalDisk) as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceElementName Optional The user friendly name for the underlying source
StorageVolume (or LogicalDisk).

SVSourceUsage Optional The Usage supported by the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourceOtherUsageDescri
ption

Optional The OtherUsageDescription supported by the volume as
reported in the underlying source StorageVolume (or
LogicalDisk).

SVSourceClientSettableUsag
e

Optional The ClientSettableUsage supported by the volume as reported
in the underlying source StorageVolume (or LogicalDisk).

SSWhenSynced Mandatory The WhenSynced as reported in the underlying
StorageSynchronized association between the source and
target StorageVolumes (or LogicalDisks).

SSSyncMaintained Mandatory The SyncMaintained as reported in the underlying
StorageSynchronized association between the source and
target StorageVolumes (or LogicalDisks).

Table 106 - SMI Referenced Properties/Methods for SNIA_ReplicaPairView

Properties Requirement Description & Notes
186

NO_ANSI_ID Block Storage Views Profile

658

659

660

661

662
SSCopyType Mandatory The CopyType as reported in the underlying
StorageSynchronized association between the source and
target StorageVolumes (or LogicalDisks).

SSSyncState Mandatory The SyncState as reported in the underlying
StorageSynchronized association between the source and
target StorageVolumes (or LogicalDisks).

SSCopyPriority Mandatory The CopyPriority as reported in the underlying
StorageSynchronized association between the source and
target StorageVolumes (or LogicalDisks).

SSSyncType Mandatory The SyncType as reported in the underlying
StorageSynchronized association between the source and
target StorageVolumes (or LogicalDisks).

SSMode Mandatory The Mode as reported in the underlying StorageSynchronized
association between the source and target StorageVolumes
(or LogicalDisks).

SSProgressStatus Mandatory The ProgressStatus as reported in the underlying
StorageSynchronized association between the source and
target StorageVolumes (or LogicalDisks).

SVTargetSystemCreationCla
ssName

Mandatory The SystemCreationClassName as reported in the underlying
target StorageVolume (or LogicalDisk).

SVTargetSystemName Mandatory The SystemName as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetCreationClassName Mandatory The CreationClassName as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetDeviceID Mandatory An opaque identifier of the underlying target StorageVolume
(or LogicalDisk).

SVTargetName Mandatory The identifier for the underlying target StorageVolume (or
LogicalDisk).

SVTargetNameFormat Mandatory The format of the identifier for the underlying target
StorageVolume (or LogicalDisk).

SVTargetNameNamespace Mandatory The NameNamespace for the StorageVolume as reported in
the underlying target StorageVolume instance.

SVTargetExtentStatus Mandatory The ExtentStatus as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetOperationalStatus Mandatory The OperationalStatus as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetBlockSize Mandatory The BlockSize as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetNumberOfBlocks Mandatory The number of blocks that make up the volume as reported in
the underlying target StorageVolume (or LogicalDisk).

Table 106 - SMI Referenced Properties/Methods for SNIA_ReplicaPairView

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 187

Block Storage Views Profile NO_ANSI_ID

663

664

665

666
6.7.25 SNIA_StoragePoolView

Experimental. The SNIA_StoragePoolView is a view that is derived from CIM_StoragePool,
CIM_StorageCapabilities, CIM_StorageConfigurationCapabilities, as well as the SpaceConsumed data from the
CIM_AllocatedFromStoragePool (to its parent pool).

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"StoragePoolView" (and the Block Service Package is implemented).

SVTargetConsumableBlocks Mandatory The number of usable blocks in the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetPrimordial Mandatory This shall be Primordial='false'.

SVTargetIsBasedOnUnderlyi
ngRedundancy

Mandatory Whether or not redundancy is supported for the volume as
reported in the underlying target StorageVolume (or
LogicalDisk).

SVTargetNoSinglePointOfFail
ure

Mandatory Whether or not NoSinglePointOfFailure is supported for the
volume as reported in the underlying target StorageVolume (or
LogicalDisk).

SVTargetDataRedundancy Mandatory The DataRedundancy supported by the volume as reported in
the underlying target StorageVolume (or LogicalDisk).

SVTargetPackageRedundanc
y

Mandatory The PackageRedundancy supported by the volume as
reported in the underlying target StorageVolume (or
LogicalDisk).

SVTargetDeltaReservation Mandatory The DeltaReservation supported by the volume as reported in
the underlying target StorageVolume (or LogicalDisk).

SVTargetExtentDiscriminator Mandatory Experimental. The ExtentDiscriminator as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetOtherIdentifyingInfo Optional Other identifiers for the StorageVolume (or LogicalDisk) as
reported in the underlying target StorageVolume (or
LogicalDisk).

SVTargetIdentifyingDescriptio
ns

Optional The description of the other identifiers for the StorageVolume
(or LogicalDisk) as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetElementName Optional The user friendly name for the underlying target
StorageVolume (or LogicalDisk).

SVTargetUsage Optional The Usage supported by the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetOtherUsageDescript
ion

Optional The OtherUsageDescription supported by the volume as
reported in the underlying target StorageVolume (or
LogicalDisk).

SVTargetClientSettableUsag
e

Optional The ClientSettableUsage supported by the volume as reported
in the underlying target StorageVolume (or LogicalDisk).

Table 106 - SMI Referenced Properties/Methods for SNIA_ReplicaPairView

Properties Requirement Description & Notes
188

NO_ANSI_ID Block Storage Views Profile

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682
Table 107 describes class SNIA_StoragePoolView.

Table 107 - SMI Referenced Properties/Methods for SNIA_StoragePoolView

Properties Requirement Description & Notes

SPInstanceID Mandatory The InstanceID as reported in the underlying StoragePool.

SPElementName Optional The ElementName as reported in the underlying StoragePool.

SPPoolID Mandatory The PoolID as reported in the underlying StoragePool.

SPRemainingManagedSpace Mandatory The RemainingManagedSpace as reported in the underlying
StoragePool.

SPTotalManagedSpace Mandatory The TotalManagedSpace as reported in the underlying
StoragePool.

SPPrimordial Mandatory The Primordial property as reported in the underlying
StoragePool.

SPUsage Optional The Usage property as reported in the underlying StoragePool.

SPOtherUsageDescription Optional The OtherUsageDescription as reported in the underlying
StoragePool.

SPClientSettableUsage Optional The ClientSettableUsage as reported in the underlying
StoragePool.

SCInstanceID Mandatory The InstanceID as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCElementName Mandatory The ElementName as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCElementType Mandatory The ElementType as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCNoSinglePointOfFailure Mandatory The NoSinglePointOfFailure as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCNoSinglePointOfFailureDe
fault

Mandatory The NoSinglePointOfFailureDefault as reported in the
underlying StorageCapabilities associated to the StoragePool.

SCPackageRedundancyDefa
ult

Mandatory The PackageRedundancyDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCPackageRedundancyMin Mandatory The PackageRedundancyMin as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCPackageRedundancyMax Mandatory The PackageRedundancyMax as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCDataRedundancyDefault Mandatory The DataRedundancyDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCDataRedundancyMin Mandatory The DataRedundancyMin as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCDataRedundancyMax Mandatory The DataRedundancyMax as reported in the underlying
StorageCapabilities associated to the StoragePool.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 189

Block Storage Views Profile NO_ANSI_ID

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698
SCExtentStripeLengthDefault Optional The ExtentStripeLengthDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCParityLayoutDefault Optional The ParityLayoutDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCUserDataStripeDepthDefa
ult

Optional The UserDataStripeDepthDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

AFSPSpaceConsumed Mandatory The SpaceConsumed as reported in the underlying
AllocatedFromStoragePool to this pool's parent pool.

SCCInstanceID Mandatory The InstanceID as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the
StoragePool.

SCCElementName Mandatory The ElementName as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the
StoragePool.

SCCSupportedStoragePoolF
eatures

Mandatory The SupportedStoragePoolFeatures as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCSupportedStorageEleme
ntTypes

Mandatory The SupportedStorageElementTypes as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCSupportedStorageEleme
ntFeatures

Mandatory The SupportedStorageElementFeatures as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCSupportedSynchronous
Actions

Optional The SupportedSynchronousActions as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCSupportedAsynchronous
Actions

Optional The SupportedAsynchronousActions as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCSupportedStorageEleme
ntUsage

Optional The SupportedStorageElementUsage as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCClientSettableElementU
sage

Optional The ClientSettableElementUsage as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the
StoragePool.

SCCSupportedStoragePoolU
sage

Optional The SupportedStoragePoolUsage as reported in the
underlying StorageConfigurationCapabilities (if any)
associated to the StoragePool.

SCCClientSettablePoolUsag
e

Optional The ClientSettablePoolUsage as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the
StoragePool.

Table 107 - SMI Referenced Properties/Methods for SNIA_StoragePoolView

Properties Requirement Description & Notes
190

NO_ANSI_ID Block Storage Views Profile

699

700

701

702

703

704

705

706

707

708
6.7.26 SNIA_SystemDeviceView (DiskDriveViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 108 describes class SNIA_SystemDeviceView (DiskDriveViews).

6.7.27 SNIA_SystemDeviceView (MappingProtocolControllerViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

Table 109 describes class SNIA_SystemDeviceView (MappingProtocolControllerViews).

6.7.28 SNIA_SystemDeviceView (ReplicaPairViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"ReplicaPairlView" (and the Copy Services Profile is implemented).

Table 108 - SMI Referenced Properties/Methods for SNIA_SystemDeviceView (DiskDriveViews)

Properties Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this DiskDriveView
instance.

PartComponent Mandatory The SNIA_DiskDriveView instance that is a device on the
computer system.

Table 109 - SMI Referenced Properties/Methods for SNIA_SystemDeviceView (MappingProtocol-
ControllerViews)

Properties Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this
MappingProtocolControllerView instance.

PartComponent Mandatory The SNIA_MappingProtocolControllerView instance that is a
device on the computer system.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 191

Block Storage Views Profile NO_ANSI_ID
Table 110 describes class SNIA_SystemDeviceView (ReplicaPairViews).

6.7.29 SNIA_SystemDeviceView (VolumeViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"VolumeView" (and the Block Service Package is implemented).

Table 111 describes class SNIA_SystemDeviceView (VolumeViews).

6.7.30 SNIA_ViewCapabilities

The SNIA_ViewCapabilities instance defines the capabilities of an implementation support for SNIA_ view classes.
The SNIA_ViewCapabilities is subclassed from CIM_Capabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 112 describes class SNIA_ViewCapabilities.

Table 110 - SMI Referenced Properties/Methods for SNIA_SystemDeviceView (ReplicaPairViews)

Properties Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this ReplicaPairView
instance.

PartComponent Mandatory The SNIA_ReplicaPairView instance that is a device on the
computer system.

Table 111 - SMI Referenced Properties/Methods for SNIA_SystemDeviceView (VolumeViews)

Properties Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this VolumeView instance.

PartComponent Mandatory The SNIA_VolumeView instance that is a device on the
computer system.

Table 112 - SMI Referenced Properties/Methods for SNIA_ViewCapabilities

Properties Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the view class capability of an
implementation.
192

NO_ANSI_ID Block Storage Views Profile
6.7.31 SNIA_VolumeView

The SNIA_VolumeView instance is a view that is derived from CIM_StorageVolume, CIM_ElementSettingData,
CIM_StorageSetting, CIM_AllocatedFromStoragePool and CIM_StoragePool. The SNIA_VolumeView is
subclassed from CIM_ManagedElement.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property SNIA_ViewCapabilities.SupportedViews contains the string
"VolumeView" (and the Block Service Package is implemented).

Table 113 describes class SNIA_VolumeView.

ElementName Optional A provider supplied user-Friendly Name for this
SNIA_ViewCapabilities element.

SupportedViews Mandatory This array of strings lists the view classes that are supported
by the implementation. Valid string values are "VolumeView" |
"DiskDriveView" | "ExposedView" |
"MaskingMappingView"|"MappingProtocolControllerView" |
"StoragePoolView" |"ReplicaPairView" .

Table 113 - SMI Referenced Properties/Methods for SNIA_VolumeView

Properties Requirement Description & Notes

SVSystemCreationClassNam
e

Mandatory The SystemCreationClassName for the underlying
StorageVolume (or LogicalDisk).

SVSystemName Mandatory The SystemName for the underlying StorageVolume (or
LogicalDisk).

SVCreationClassName Mandatory The CreationClassName for the underlying StorageVolume (or
LogicalDisk).

SVDeviceID Mandatory An opaque identifier of the underlying StorageVolume (or
LogicalDisk).

SVName Mandatory The identifier for the underlying StorageVolume (or
LogicalDisk).

SVNameFormat Mandatory The format of the identifier for the underlying StorageVolume
(or LogicalDisk).

SVNameNamespace Mandatory The NameNamespace for the StorageVolume as reported in
the underlying StorageVolume instance.

SVExtentStatus Mandatory The ExtentStatus as reported in the underlying StorageVolume
(or LogicalDisk).

SVOperationalStatus Mandatory The OperationalStatus as reported in the underlying
StorageVolume (or LogicalDisk).

Table 112 - SMI Referenced Properties/Methods for SNIA_ViewCapabilities

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 193

Block Storage Views Profile NO_ANSI_ID
SVBlockSize Mandatory

SVNumberOfBlocks Mandatory The number of blocks that make up the volume as reported in
the underlying StorageVolume (or LogicalDisk).

SVConsumableBlocks Mandatory The number of usable blocks in the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVIsBasedOnUnderlyingRed
undancy

Mandatory Whether or not redundancy is supported for the volume as
reported in the underlying StorageVolume (or LogicalDisk).

SVNoSinglePointOfFailure Mandatory Whether or not NoSinglePointOfFailure is supported for the
volume as reported in the underlying StorageVolume (or
LogicalDisk).

SVDataRedundancy Mandatory The DataRedundancy supported by the volume as reported in
the underlying StorageVolume (or LogicalDisk).

SVPackageRedundancy Mandatory The PackageRedundancy supported by the volume as
reported in the underlying StorageVolume (or LogicalDisk).

SVDeltaReservation Mandatory The DeltaReservation supported by the volume as reported in
the underlying StorageVolume (or LogicalDisk).

SVPrimordial Mandatory

SVExtentDiscriminator Mandatory Experimental.

SSInstanceID Mandatory The InstanceID of the StorageSetting for the volume as
reported in its underlying StorageSetting.

SSElementName Mandatory The ElementName of the StorageSetting for the volume as
reported in its underlying StorageSetting.

SSNoSinglePointOfFailure Mandatory Whether or not NoSinglePointOfFailure was requested in the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSDataRedundancyMin Mandatory The DataRedundancyMin value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSDataRedundancyMax Mandatory The DataRedundancyMax value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSDataRedundancyGoal Mandatory The DataRedundancyGoal supported by the StorageSetting
for the volume as reported in its underlying StorageSetting.

SSPackageRedundancyMin Mandatory The PackageRedundancyMin value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSPackageRedundancyMax Mandatory The PackageRedundancyMax value supported by the
StorageSetting for the volume as reported in the underlying
StorageSetting.

Table 113 - SMI Referenced Properties/Methods for SNIA_VolumeView

Properties Requirement Description & Notes
194

NO_ANSI_ID Block Storage Views Profile
SSPackageRedundancyGoal Mandatory The PackageRedundancyGoal supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSChangeableType Mandatory The ChangeableType defined for the StorageSetting for the
volume as reported in the underlying StorageSetting.

AFSPSpaceConsumed Mandatory The SpaceConsumed from the StoragePool by the volume as
reported in its underlying AllocatedFromStoragePool
association to the StoragePool.

SPInstanceID Mandatory The InstanceID of the StoragePool for the volume as reported
in the underlying StoragePool.

SPPoolID Mandatory The PoolID of the StoragePool for the volume as reported in
the underlying StoragePool.

SVOtherIdentifyingInfo Optional Other identifiers for the StorageVolume (or LogicalDisk) as
reported in the underlying StorageVolume (or LogicalDisk).

SVIdentifyingDescriptions Optional The description of the other identifiers for the StorageVolume
(or LogicalDisk) as reported in the underlying StorageVolume
(or LogicalDisk).

SVElementName Optional The user friendly name for the underlying StorageVolume (or
LogicalDisk).

SVUsage Optional The Usage supported by the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVOtherUsageDescription Optional The OtherUsageDescription supported by the volume as
reported in the underlying StorageVolume (or LogicalDisk).

SVClientSettableUsage Optional The ClientSettableUsage supported by the volume as reported
in the underlying StorageVolume (or LogicalDisk).

SSExtentStripeLength Optional The ExtentStripeLength value supported by the StorageSetting
for the volume as reported in its underlying StorageSetting.

SSExtentStripeLengthMin Optional The ExtentStripeLengthMin value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSExtentStripeLengthMax Optional The ExtentStripeLengthMax supported by the StorageSetting
for the volume as reported in its underlying StorageSetting.

SSParityLayout Optional The ParityLayout defined by the StorageSetting for the volume
as reported in its underlying StorageSetting.

SSUserDataStripeDepth Optional The UserDataStripeDepth value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSUserDataStripeDepthMin Optional The UserDataStripeDepthMin value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

Table 113 - SMI Referenced Properties/Methods for SNIA_VolumeView

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 195

Block Storage Views Profile NO_ANSI_ID
EXPERIMENTAL

SSUserDataStripeDepthMax Optional The UserDataStripeDepthMax value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSStorageExtentInitialUsage Optional The StorageExtentInitialUsage value supported by the
StorageSetting for the volume as reported in its underlying
StorageSetting.

SSStoragePoolInitialUsage Optional

Table 113 - SMI Referenced Properties/Methods for SNIA_VolumeView

Properties Requirement Description & Notes
196

NO_ANSI_ID Block Server Performance Subprofile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
STABLE

Clause 7: Block Server Performance Subprofile

7.1 Description

7.1.1 Synopsis

Profile Name: Block Server Performance (Component Profile)

Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.11.0

Table 114 describes the related profiles for Block Server Performance.

Note: Each of these subprofiles is mandatory if the element in question is to be metered. For example, in
order to keep statistics on Disk Drives, it will be necessary for Disk Drives to be modeled.

Central Class: BlockStatisticsService

Scoping Class: ComputerSystem

7.1.2 Overview

The Block Server Performance Subprofile defines classes and methods for managing performance information in
block servers (e.g., Arrays, Storage Virtualizers and Volume Management). Not all of the objects for which statistics
are defined apply to all these profiles. For example, Storage Virtualizers don’t have Disk Drives and Volume

Table 114 - Related Profiles for Block Server Performance

Profile Name Organization Version Requirement Description

Multiple Computer
System

SNIA 1.2.0 Optional

Extent Composition SNIA 1.5.0 Optional

SPI Target Ports SNIA 1.4.0 Optional

FC Target Ports SNIA 1.4.0 Optional

iSCSI Target Ports SNIA 1.2.0 Optional

DA Target Ports SNIA 1.4.0 Optional

SPI Initiator Ports SNIA 1.4.0 Optional

FC Initiator Ports SNIA 1.4.0 Optional

iSCSI Initiator Ports SNIA 1.2.0 Optional

Disk Drive Lite SNIA 1.5.0 Optional

Replication Services SNIA 1.5.0 Optional Experimental.
SMI-S 1.5.0 Revision 6 SNIA Technical Position 197

Block Server Performance Subprofile NO_ANSI_ID

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54
Management Profiles don’t have Ports. In these cases, the profile would not support the statistics for the object that
does not apply to it.

Note: Performance analysis is broader than just Arrays, Storage Virtualizers and Volume Managers.
Complete analysis requires performance information from hosts and fabric. These are (or will be)
addressed separately as part of the appropriate profiles.

One of the key SRM disciplines for managing block servers (e.g., arrays) is Performance Management. Currently,
there are no common statistics defined that can be used to manage multiple vendor arrays from a performance
perspective. Some of the key tasks commonly performed in the discipline of Performance Management are:

• Performance Capacity Planning,

• Performance Problem Isolation,

• Peak Window Analysis,

• Block server Workload Analysis,

• Block server Performance Tuning.

In order to manage performance, a number of processes need to be in place:

• Ability to measure the performance and saturation points of components within the storage network. This
subprofile describes the first increment of measurement, that of the storage system. Examples of this include:

• Read and Write I/O counts for a LUN or a disk,

• Number of blocks transferred per unit time,

• Cache hit ratios.

Both specific measurements and methods to make these measurements available to SRM applications will be part
of this subprofile.

• Ability to understand the relationship of facilities within the storage network and their relationship to the actual
application: This is provided by mapping functions which are described in this specification. Mapping functions
are listed within the specification today. As new objects (like cache which is currently not defined) and new
relationships between objects are defined, these parts of this specification will have to be upgraded.

• Ability to understand the status and configuration of the storage network components: There is some level of
this information within the SMI specification today, and there are expected future improvements to this area
that will be in future releases. Examples of this include:

• Cache status on or off for read or write cache,

• How much Cache is installed,

• Storage Volume (LUN) status, normal or degraded,

• Cache configuration parameters,

• LUN status,

• Error counts on a port.

Methods to be able to tune the configuration of a storage network component. This would include setting RAID
levels, setting stripe widths, setting cache tunable parameters, etc. This is an area for future development. Given
that there is a wide diversity of storage architectures, this may be an area where SMI provides a framework and
vendors supply the custom extensions required for their systems.
198

NO_ANSI_ID Block Server Performance Subprofile

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
Performance Management is optimized when all four components are in place. Performance Measurement is the
key deliverable that is the focus of this subprofile.

Block storage devices usually have one or more of the following elements:

• Block Server (top level ComputerSystem),

• I/O Ports (e.g., FCPorts),

• Front-end Ports,

• Back-end Ports,

Note: Port Statistics in block servers need to be coordinated with Port statistics in the Fabric Profile by
applications. A mapping between fabric statistics and block server statistics is identified in 7.7.7.

• Individual Controllers (ComponentCS),

• Front-end controller(s) (ComponentCS),

• Back-end controller(s) (ComponentCS),

• Exported Elements (e.g., Volumes or Logical Disks),

• Imported Elements (e.g., Extents with ConcreteComponent association to Pools),

• Disk Drives.

In order to monitor and manage these components, it is necessary to identify performance counters for each of the
above elements in the block server and externalize an interface to obtain these counters at some SRM-determined
periodicity. An SRM product will also need to be able to associate these counters to the appropriate block server
elements as defined in the appropriate SMI-S profiles in order to complete the full picture of the performance
analysis (e.g., what disks are part of this LUN and what other LUNs have portions on this disk).

The function of this subprofile is to support the aforementioned SRM applications.

The Block Server Performance Subprofile augments the profiles and subprofiles for Arrays, Storage Virtualizers
and Volume Management Profiles. Instead of being an isolated subprofile, it adds modeling constructs to existing
profiles and subprofiles. Together these enhancements make up the Block Server Performance Subprofile (as
would be registered in the Server Profile as a RegisteredSubprofile).

7.2 Implementation

7.2.1 Performance Additions Overview

Figure 34: "Block Server Performance Subprofile Summary Instance Diagram" provides an overview of the model
(independent of profiles and subprofiles). The new classes added by the Block Server Performance Subprofile are
the shaded grey boxes.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 199

Block Server Performance Subprofile NO_ANSI_ID
Figure 34 - Block Server Performance Subprofile Summary Instance Diagram

Server Profile

ComputerSystem

FCPort

StorageVolume

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=6

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

ReadHitIOs
WriteIOs

WriteHitIOs

ElementStatisticalData

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

MemberOfCollection

MemberOfCollection

HostedCollection

ComputerSystem ComputerSystem

ComponentCS

StorageExtent:
RAID Rank

StoragePool

AllocatedFromStoragePool

ConcreteComponent
BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

ElementType=5

BlockStorageStatisticalData

ElementType=3

ElementStatisticalData

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

StorageExtent

ElementStatisticalData

DiskDrive

MediaPresent

BasedOn

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService
BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredProfile

RegisteredName=
 ‘Block Server Performance’

RegisteredSubprofile
SubprofileRequiresProfile

ElementConformsToProfile
200

NO_ANSI_ID Block Server Performance Subprofile

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127
Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

What Figure 34 shows is a single instance of StatisticsCollection for the entire profile. This is the anchor point from
which all statistics being kept by the profile can be found. Block statistics are defined as a
BlockStorageStatisticalData class, instances of which hold the statistics for particular elements (e.g.,
StorageVolumes, ComputerSystems, Ports, Extents and Disk Drives). The type of element is recorded in the
instance of BlockStorageStatisticalData in the ElementType property.

All the statistics instances are related to the elements they meter via the ElementStatisticalData association (e.g.,
BlockStorageStatisticalData for a StorageVolume can be found from the Volume by traversing the
ElementStatisticalData association).

All the statistics instances kept in the profile are associated to the one StatisticsCollection instance. Access to all
the statistics for the profile is through the StatisticsCollection. The StatisticsCollection has a HostedCollection
association to the “top level” computer system of the profile.

Note that statistics may be kept for a number of elements in the profile, including elements in subprofiles. The
elements that are metered are:

The top level ComputerSystem – This provides a summary of all statistics for the whole profile (e.g., ReadIOs
are all read IOs handled by the array, storage virtualizer or volume manager).

Component ComputerSystems – This provides a summary of all statistics that derive from a particular processor
in the system cluster (e.g., all ReadIOs handled by a particular processor). These statistics are kept in
BlockStorageStatisticalData instances (one for each component computer system).

Port – This provides a summary of all the statistics that derive from a particular Port on the Array or Storage
Virtualizer (e.g., all ReadIOs that go through the particular port). These statistics are kept in
BlockStorageStatisticalData instances (one for each Port in the system).

Note: This element does not apply to the Volume Management Profile. Volume managers do not have front-end
ports. The back-end ports for volume managers are HBAs. Statistics for volume manager back end ports would be
kept by the HBAs.

StorageVolume – (or LogicalDisk). This provides a summary of statistics for a particular StorageVolume (or
LogicalDisk). For example, all the ReadIOs to the particular StorageVolume (or LogicalDisk). These statistics are
kept in BlockStorageStatisticalData instances (one for each StorageVolume or LogicalDisk in the system).

StorageExtent – This provides a summary of statistics that derive from access to a particular StorageExtent. Note:
StorageExtent support is ONLY PROVIDED for extents with a ConcreteComponent association to a concrete
StoragePool. That is, this is not offered for intermediate extents. These statistics are kept in
BlockStorageStatisticalData instances (one for each Extent that is modeled in the system).

SCSI Arbitrary Logical Units – This provides summary of statistics that derive from access to LUNs that are not
StorageVolumes (e.g., controller commands).

Remote Replica Groups – This provides summary of statistics that derive from access remote replica volumes.

Finally, Figure 35: "Base Array Profile Block Server Performance Instance Diagram" illustrates the
BlockStatisticsService for Bulk retrieval of all the statistics data and creation of manifest collections. These
methods will be discussed later. They are shown here for completeness. Associated with the BlockStatisticsService
is a BlockStatisticsCapabilities instance that identifies the specific capabilities implemented by the performance
support. Specifically, it includes an “ElementsSupported” property that identifies the elements for which statistics
are kept and the various retrieval mechanisms that are implemented (e.g., Extrinsic, Association Traversal,
Indications and/or Query).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 201

Block Server Performance Subprofile NO_ANSI_ID

128

129

130

131

132

133

134

135

136

137

138
EXPERIMENTAL

The BlockStatisticsCapabilities also includes a SupportedFeatures property for identifying specific features of the
implementation.

EXPERIMENTAL

7.2.2 Performance Additions to base Array Profile

Figure 35: "Base Array Profile Block Server Performance Instance Diagram" illustrates the class instances that
would be supported if an Array only implemented the base Array Profile and the Block Server Performance
Subprofile. Only the StatisticsCollection, the BlockStorageStatisticalData instance for the top level computer
system, BlockStorageStatisticalData instances for front end ports and BlockStorageStatisticalData instances for
Storage Volumes would be supported.

Only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The actual elements for
which the statistics would be kept would be reported in the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.
202

NO_ANSI_ID Block Server Performance Subprofile
Figure 35 - Base Array Profile Block Server Performance Instance Diagram

Server Profile

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool

SystemDevice

HostedStoragePool

SystemDevice

ElementStatisticalData

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2
StatisticTime

TotalIOs
KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=6
StatisticTime

TotalIOs
KBytesTransferred

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
ReadHitIOs
WriteIOs

WriteHitIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName=’Array’

RegisteredProfile

RegisteredName=
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

DeviceSAPImplementation

SCSIProtocolEndpoint

SAPAvailableForElement

BlockStatisticsManifest
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 203

Block Server Performance Subprofile NO_ANSI_ID

139

140

141

142

143

144

145

146

147

148

149

150
Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

7.2.3 Performance Additions to base Storage Virtualizer Profile

Figure 36: "Base Storage Virtualizer Profile Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if a Storage Virtualizer only implemented the base Storage Virtualizer Profile
and the Block Server Performance Subprofile. Only the StatisticsCollection, the BlockStorageStatisticalData
instance for the top level computer system, BlockStorageStatisticalData instances for front-end and back-end
ports, BlockStorageStatisticalData instances for Storage Volumes and BlockStorageStatisticalData for
StorageExtents would be supported.

Only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The actual elements for
which the statistics would be kept would be reported in the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.
204

NO_ANSI_ID Block Server Performance Subprofile

Figure 36 - Base Storage Virtualizer Profile Block Server Performance Instance Diagram

Server Profile

Dedicated[*]=’Storage Virtualizer’

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool

HostedStoragePool

ElementStatisticalData

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2
StatisticTime

TotalIOs
KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=6
StatisticTime

TotalIOs
KBytesTransferred

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
ReadHitIOs
WriteIOs

WriteHitIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName=’Storage Virtualizer’

RegisteredProfile

RegisteredName=
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

DeviceSAPImplementation

SCSIProtocolEndpoint

SAPAvailableForElement

SystemDevice

LogicalPort

StorageExtent

ConcreteComponent

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=7
StatisticTime

TotalIOs

BlockStorageStatisticalData

InstanceID
ElementType=9
StatisticTime

TotalIOs
KBytesTransferred

ElementStatisticalData

SystemDevice

BlockStatisticsManifest
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 205

Block Server Performance Subprofile NO_ANSI_ID

151

152

153

154

155

156

157

158
Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

7.2.4 Performance Additions to base Volume Management Profile

Figure 37: "Base Volume Management Profile Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if the volume manager only implemented the base Volume Management Profile
and the Block Server Performance Subprofile. Only the StatisticsCollection, the BlockStorageStatisticalData
instance for the top level computer system, BlockStorageStatisticalData instances for LogicalDisks (lower extents)
and BlockStorageStatisticalData instances for LogicalDisks (exported Logical Disks) would be supported.
206

NO_ANSI_ID Block Server Performance Subprofile

159
 .

Figure 37 - Base Volume Management Profile Block Server Performance Instance Diagram

Server Profile

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool

HostedStoragePool

SystemDevice

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2
StatisticTime

TotalIOs
KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=8
StatisticTime

TotalIOs
KBytesTransferred

ReadIOs
ReadHitIOs
WriteIOs

WriteHitIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName=’Volume Management'

RegisteredProfile

RegisteredName=
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

LogicalDisk

ConcreteComponent

BlockStorageStatisticalData

InstanceID
ElementType=9
StatisticTime

TotalIOs
KBytesTransferred

ElementStatisticalData
BasedOn

BasedOn

SystemDevice

BlockStatisticsManifest
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 207

Block Server Performance Subprofile NO_ANSI_ID

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182
Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

7.2.5 Summary of BlockStorageStatisticsData support by Profile

Table 115 defines the Element Types (for BlockStorageStatisticalData instances) that may be supported by profile.

YES means that this specification defines the element type for the profile. Actual support by any given
implementation would be implementation dependent. But the specification covers defining the element type for the
profile. NO means that this specification does not specify this element type for the profile.

7.2.6 Server Profile Support for the Block Server Performance Subprofile

At the top of Figure 35: "Base Array Profile Block Server Performance Instance Diagram" is a dashed box that
illustrates a part of the Server Profile for the Array. A similar dashed box appears for Storage Virtualizer and
Volume Management Profiles. The part illustrated is the particulars for the Block Server Performance Subprofile. If
performance support has been implemented, then there shall be a RegisteredSubprofile instance for the Block
Server Performance Subprofile.

7.2.7 Default Manifest Collection

Associated with the instance of the StatisticsCollection shall be a provider supplied (Default)
CIM_BlockStatisticsManifestCollection that represents the statistics properties that are kept by the profile. The
default manifest collection is indicated by the IsDefault property (=True) of the
CIM_BlockStatisticsManifestCollection. For each metered object of the profile implementation the default manifest
collection will have exactly one manifest that will identify which properties are included for that metered object. If a
an object is not metered, then there shall not be a manifest for that element type. If an element type (e.g.,
StorageVolume) is metered, then there shall be a manifest for that element type.

EXPERIMENTAL

Each default manifest in the default manifest collection identifies the statistics properties included by default by the
implementation. The CSVSequence property of the manifest shall identify the default sequence in which the

Table 115 - Summary of Element Types by Profile

ElementType Array Storage Virtualizer Volume Management

Computer System YES YES YES

Front-end Computer System YES YES YES

Peer Computer System YES YES YES

Back-end Computer System YES YES YES

Front-end Port YES YES NO

Back-end Port YES YES NO

Volume YES YES YES

Extent YES YES YES

Disk Drive YES YES NO

Arbitrary LUs YES YES NO

Remote Replica Group YES YES YES
208

NO_ANSI_ID Block Server Performance Subprofile

183

184

185

186

187

188

189

190

191

192

193
implementation will return statistics properties within each record for the ElementType on a GetStatisticsCollection
request. For each property included in the manifest by the value “true” there should be an entry in the
CSVSequence array identifying the BlockStrorageStatisticalData property by name. The first three values of
CSVSequence shall be "InstanceID", "ElementType" and "StatisticsTime" to allow correlation of the Manifest with
the CSV record based on the ElementType.

EXPERIMENTAL

7.2.8 Performance Additions applied to Multiple Computer Systems

Figure 38: "Multiple Computer System Subprofile Block Server Performance Instance Diagram" illustrates the
class instances that would be supported if an Array, Storage Virtualizer or Volume Management Profile also
implemented the Multiple Computer System Subprofile (and the Block Server Performance Subprofile). In this
case, additional BlockStorageStatisticalData instances would exist for the component computer systems, as well
as the top level computer system.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Front-end Computer
System”, “Back-end Computer System” and/or “Peer Computer System”.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 209

Block Server Performance Subprofile NO_ANSI_ID

194

195

196

197

198
Note: Support for both the Multiple Computer System Subprofile and the Block Server Performance
Subprofile does not imply support for statistics at the Component Computer System level. This support
is ONLY implied by the “ElementsSupported” property of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

Figure 38 - Multiple Computer System Subprofile Block Server Performance Instance Diagram

ComputerSystem
(Front-end)

ComputerSystem
Top level System

ComputerSystem
(Back-end)

ComponentCSComponentCS

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=3

StatisticTime
TotalIOs
ReadIOs

ReadHitIOs
WriteIOs

WriteHitIOs

BlockStorageStatisticalData

InstanceID
ElementType=5

StatisticTime
TotalIOs

MemberOfCollection

ElementStatisticalData

ElementStatisticalData

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled
210

NO_ANSI_ID Block Server Performance Subprofile

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213
7.2.9 Performance Additions to Backend Ports

Figure 39: "Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram" illustrates the
class instances that would be supported if an Array also implemented the Fibre Channel Initiator Port Subprofile
(and the Block Server Performance Subprofile). In this case, additional BlockStorageStatisticalData instances
would exist for the back-end ports, as well as the front-end ports.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Back-end Ports”.

Note: Support for both the Fibre Channel Initiator Port Subprofile and the Block Server Performance
Subprofile DOES not imply support for statistics at the Back-end Port level. This support is ONLY
implied by the “ElementsSupported” property of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

EXPERIMENTAL

In some systems a port may be either a front-end or backend port. In this standard such ports would have a
property that indicates that they serve both roles (UsageRestriction=’4’). When a port has a UsageRestriction=’4’,
then that port may have two BlockStorageStatisticalData records; one for the front-end port role and one for the
backend port role. However, it will only have one record if only one of the port ElementTypes (6 or 7) is supported

Figure 39 - Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram

StorageExtent

ComputerSystem

FCPort

UsageRestriction =
‘Back-end only’

StorageExtent

SCSIProtocolEndpointFCPort

UsageRestriction =
‘Back-end only’

DeviceSAPImplementation

SCSIInitiatorTargetLogicalUnitPath

StorageExtent

SCSIInitiatorTargetLogicalUnitPath
SCSIInitiatorTargetLogicalUnitPath

SystemDevice

ElementStatisticalData

BlockStorageStatisticalData

ElementType=7

MemberOfCollection

ElementStatisticalData

BlockStorageStatisticalData

ElementStatisticalData

HostedCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=7

StatisticTime
TotalIOs

SCSIProtocolEndpoint

DeviceSAPImplementation
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 211

Block Server Performance Subprofile NO_ANSI_ID

214

215

216

217

218

219

220

221

222

223

224

225

226
by the implementation. That is, if BlockStatisticsCapabilities.ElementTypes contains 6, but not 7, then the
BlockStorageStatisticalData shall contain statistics for the front-end port role. If
BlockStatisticsCapabilities.ElementTypes contains both 6 and 7, then there shall be two
BlockStorageStatisticalData instances (one for the front-end port role and one for the backend port role).

EXPERIMENTAL

7.2.10 Performance Additions to Extent Composition

Figure 40: "Extent Composition Subprofile Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if an Array also implemented the Extent Composition Subprofile (and the Block
Server Performance Subprofile). In this case, BlockStorageStatisticalData instances would exist for the Extents
that are modeled.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Extents”.

Note: The Storage Virtualizer and Volume Management Profiles would use the “Extents” statistics for Storage
Volumes (or LogicalDisks) that are imported instead of Disk extent statistics (since they do not have
disk drives). Also note that an Array may model both “Extents” and “Disks” extents.
212

NO_ANSI_ID Block Server Performance Subprofile

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241
Note: Support for both the Extent Composition Subprofile and the Block Server Performance Subprofile
DOES not imply support for statistics at the Extent level. This support is ONLY implied by the
“ElementsSupported” property of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

Note: The low level extents represent Disk Drive Extents and they would not be part of the Storage Virtualizer
or Volume Management Profiles.

7.2.11 Performance Additions to Disk Drives

Figure 41: "Disk Drive Lite Subprofile Block Server Performance Instance Diagram" illustrates the class instances
that would be supported if an Array also implemented the Disk Drive Lite (or Disk Drive) Subprofile (and the Block
Server Performance Subprofile). In this case, BlockStorageStatisticalData instances would exist for each of the
Disk Drives in the Array.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Disks”.

Note: The Volume Management Profiles would NEVER show the “Disks” statistics. Also note that an Array or
Storage Virtualizer may model both “Extents” and “Disks”. Note: Support for both the Disk Drive Lite

Figure 40 - Extent Composition Subprofile Block Server Performance Instance Diagram

StorageVolume

CompositeStorageExtent

BasedOn

StoragePool

AllocatedFromStoragePool

ConcreteComponent

ElementStatisticalData

BlockStorageStatisticalData

ElementType=8

MemberOfCollectionElementStatisticalData

StatisticsCollection

InstanceID
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

StorageExtent StorageExtent StorageExtent

CompositeExtentBasedOn
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 213

Block Server Performance Subprofile NO_ANSI_ID

242

243

244

245

246
Subprofile and the Block Server Performance Subprofile DOES not imply support for statistics at the
Disk Drive level. This support is ONLY implied by the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

Figure 41 - Disk Drive Lite Subprofile Block Server Performance Instance Diagram

StorageVolume or
StorageExtent

StorageExtent DiskDrive

PhysicalPackage

MediaPresent*

Realizes

*

Basedon

SoftwareIdentitty
DeviceSoftwareIdentity

StoragePool

ConcreteComponent

PhysicalPackage
(System)

Container

ElementStatisticalData

MemberOfCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
214

NO_ANSI_ID Block Server Performance Subprofile

247

248

249

250

251

252

253

254

255

256

257
7.2.12 Performance Additions to SCSIArbitraryLogicalUnits (Controller LUNs)

Figure 42: "SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram" illustrates the class instances
that would be supported if an Array (or Storage Virtualizer) has Controller LUNs (e.g., SCSIArbitraryLogicalUnits).
In this case, BlockStorageStatisticalData instances would exist for each of the Controller LUNs (LogicalDevices or
SCSIArbitraryLogicalUnits) supported by the Array (or Storage Virtualizer).

Note: There is no ElementStatisticalData association to any element. This is because the Controller LUNs are
not actually part of the Array or Storage Virtualizer Profiles. But the statistics may still be collected in
and kept in BlockStorageStatisticalData instances with ElementType=11.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Arbitrary LUs”.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

Figure 42 - SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram

ComputerSystem

MemberOfCollection

HostedCollection StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=11

StatisticTime
TotalIOs

KBytesTransferred
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 215

Block Server Performance Subprofile NO_ANSI_ID

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272
EXPERIMENTAL

7.2.13 Performance Additions for Remote Mirrors

Figure 43: "Remote Mirrors Block Server Performance Instance Diagram" illustrates the class instances that would
be supported if an Array also implemented the Remote Mirroring of the Replication Services Profile (and the Block
Server Performance Subprofile). In this case, BlockStorageStatisticalData instances would exist for non-volume
(e.g., meta data) IO requests. In this case, the BlockStorageStatisticalData instance is associated with the
ConnectivityCollection instance that represents the connection to the remote system. Note: Statistics attributed to
the ConnectivityCollection are control IOs between the mirroring arrays. Statistics that actually move data to the
remote mirror are attributed to the targeted StorageVolume (or logical disk).

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Remote Replica
Group”.

Note: Support for both the Replication Services Profile and the Block Server Performance Profile DOES not
imply support for statistics at the Remote Replica Group level. This support is ONLY implied by the
“ElementsSupported” property of the BlockStatisticsCapabilities instance.

Note: The properties listed for the statistics classes are the mandatory properties. Optional Properties are not
listed in order to save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

EXPERIMENTAL

Figure 43 - Remote Mirrors Block Server Performance Instance Diagram

ComputerSystem

(See referencing profile)

ConnectivityCollection

ConnectivityStatus: Up,
Down, Unknown

(See Replication Services)

ProtocolEndpoint

ProtocolIFType: TCP, HTTP,
Fibre Channel, Other

(See Replication Services)

ElementStatisticalData

HostedCollection
StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=12

StatisticTime
TotalIOs

KBytesTransferred

HostedCollection

MemberOfCollection

HostedAccessPoint

HostedCollection

MemberOfCollection
216

NO_ANSI_ID Block Server Performance Subprofile

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290
7.2.14 Client Defined Manifest Collections

Manifest collections are either provider supplied (CIM_BlockStatisticsManifestCollection.IsDefault=True) for the
profile implementation or client defined collections (CIM_BlockStatisticsManifestCollection.IsDefault=False) that
indicate what statistics properties the client would like to retrieve using the GetStatisticsCollection method. For a
discussion of provider supplied manifest collections, see 7.2.7.

Client defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client defined manifest collection is identified by the IsDefault property of the
collection is set to False. For each block statistics class (e.g., Computer System, Volume, Disk, etc.) a manifest can
be defined which identifies which properties of the particular statistics class are to be returned on a
GetStatisticsCollection request. Each of the classes of block statistic may have 0 or 1 manifest in any given
manifest collection.

EXPERIMENTAL

In addition to identifying which properties the client wants returned, the client may define the sequence in which the
properties are to be returned with the CSVSequence property of the manifest. Support for this function is
conditional on BlockStatisticsCapabilities.SupportedFeatures including the value ‘3’ (Client Defined Sequence). If
the client does not set this property or sets it improperly, the implementation shall set the value of CSVSequence to
NULL. If the SupportedFeatures does not include the value ‘3’ the implementation will set the CSVSequence to
NULL (implying the default sequence will be used).

EXPERIMENTAL

This is illustrated in Figure 44: "Block Server Performance Manifest Collections".
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 217

Block Server Performance Subprofile NO_ANSI_ID

291

292
In this figure, manifest classes are defined for Volumes (StorageVolumes or LogicalDisks) and Disk Drives. Each
property of the manifest is a Boolean that indicates whether the property is to be returned (true) or omitted (false).

Figure 44 - Block Server Performance Manifest Collections

BlockStorageStatisticalData

InstanceID
StatisticTime

TotalIOs
KBytesTransferred

IOTime
MaintOp
ReadIOs

StorageVolume

ElementStatisticalData

BlockStatisticsManifestCollection

InstanceID
ElementName

IsDefault=False

BlockStatisticsManifest

ElementType=8
StatisticTimeInclude

TotalIOsInclude
KBytesTransferredInclude

ReadIOsInclude
ReadHitIOsInclude

WriteIOsInclude
WriteHitIOsInclude

CSVSequence[]

StatisticsCollection

InstanceID
ElementName

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

ReadHitIOs
WriteIOs

WriteHitIOs

StorageExtent

ElementStatisticalData

BasedOn

BlockStatisticsManifest

ElementType=10
StatisticTimeInclude

TotalIOsInclude
KBytesTransferredInclude

ReadIOsInclude
CSVSequence[]

ComputerSystem

HostedCollectionBlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported []
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

Server Profile
RegisteredProfile

RegisteredName=
 ‘Block Server Performance’

RegisteredSubprofile
SubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifest
MemberOfCollection

MemberOfCollection
218

NO_ANSI_ID Block Server Performance Subprofile

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329
Multiple client defined manifest collections can be defined in the profile. So different clients or different client
applications can define different manifests for different application needs. A manifest collection can completely omit
a whole class of statistics (e.g., no ComputerSystem statistics are shown in Figure 44: "Block Server Performance
Manifest Collections"). Since manifest collections are “client objects”, they are named (ElementName) by the client
for the client’s convenience. The CIM server will generate an instance ID to uniquely identify the manifest collection
in the CIM Server.

Client defined manifest collections are created using the CreateManifestCollection method. Manifests are added or
modified using the AddOrModifyManifest method. A manifest may be removed from the manifest collection using
the RemoveManifest method.

Note: Use of manifest collections is optional with the GetStatisticsCollection method. If NULL for the manifest
collection is passed on input, then all statistics instances are assumed.

7.2.15 Capabilities Support for Block Server Performance Subprofile

There are two dimensions to determining what is supported with a Block Server Performance Subprofile
implementation. First, there are the RegisteredSubprofiles supported by the Block server (Array, Storage Virtualizer
or Volume Management Profile). In order to support statistics for a particular class of metered element, the
corresponding object shall be modeled. So, if an Array has not implemented the Disk Drive Lite (or Disk Drive)
Subprofile, then it shall not implement the BlockStorageStatisticalData for Disk Drives in the Block Server
Performance Subprofile (and implementation of the Disk Drive Lite or Disk Drive Subprofile does not guarantee
implementation of the BlockStorageStatisticalData for disk drives).

Both of these dimensions are captured in the BlockStatisticsCapabilities class instance. This is populated by the
provider (not created or modified by Clients). The second dimension is techniques supported for retrieving statistics
and manipulating manifest collections.

7.2.15.1 ElementsSupported

The values of interest are “Computer System”, “Front-end Computer System”, “Peer Computer System”, “Back-
end Computer System”, “Front-end Port”, “Back-end Port”, “Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs”,
“Remote Replica Group”

7.2.15.2 SynchronousMethodsSupported

The values of interest are ”Exec Query”, “Indications”, “Query Collection”, “GetStatisticsCollection”, “Manifest
Creation”, “Manifest Modification”, and “Manifest Removal”

7.2.15.3 AsynchronousMethodsSupported

For the current version of the standard this should be NULL.

EXPERIMENTAL

7.2.15.4 SupportedFeatures

The values of interest are “none” and “Client Defined Sequence”.

EXPERIMENTAL

7.2.15.5 ClockTickInterval

An internal clocking interval for all timer counters kept in the subsystem, measured in microseconds (Unit of
measure in the timers, measured in microseconds). Time counters are monotonically increasing counters that
contain 'ticks'. Each tick represents one ClockTickInterval.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 219

Block Server Performance Subprofile NO_ANSI_ID

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351
To be a valid implementation of the Block Server Performance Subprofile, at least one of the values listed for
ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can be
identified.

For the methods supported properties any or all of these values can be missing (e.g., the arrays can be NULL). If
all the methods supported are NULL, this means that manifest collections are not supported and neither
GetStatisticsCollection nor Query are supported for retrieval of statistics. This leaves enumerations or association
traversals as the only methods for retrieving the statistics.

7.3 Health and Fault Management Considerations

Not defined in this standard.

7.4 Cascading Considerations

Not applicable.

7.5 Supported Subprofiles and Packages

See section 7.1.1 for the list of supported profiles and packages.

7.6 Methods of the Profile

7.6.1 Extrinsic Methods of the Profile

7.6.1.1 Overview

The methods supported by this subprofile are summarized in Table 116, and detailed in the sections that follow it.

7.6.1.2 GetStatisticsCollection

This method retrieves statistics in a well-defined bulk format. The set of statistics returned by this list is determined
by the list of element types passed in to the method and the manifests for those types contained in the supplied
manifest collection. The statistics are returned through a well-defined array of strings that can be parsed to retrieve
the desired statistics as well as limited information about the elements that those metrics describe.

Table 116 - Creation, Deletion and Modification Methods in Block Server Performance Subprofile

Method Created Instances Deleted Instances Modified Instances

GetStatisticsCollection None None None

CreateManifestCollection BlockStatisticsManifes
tCollection

AssociatedBlockStatis
ticsManifestCollection

None None

AddOrModifyManifest BlockStatisticsManifes
t (subclass)

MemberOfCollection

None BlockStatisticsManifes
t (subclass)

RemoveManifest None BlockStatisticsManifes
t (subclass)

MemberOfCollection

None
220

NO_ANSI_ID Block Server Performance Subprofile

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386
GetStatisticsCollection(

 [IN (false), OUT, Description(Reference to the job (shall be null in the current version of SMI-S).)]

 CIM_ConcreteJob REF Job,

 [IN, Description(Element types for which statistics should be returned.)

ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "..", "32768..65535" },

 Values { "Unknown", "Reserved", “Computer System”, “Front-end Computer System”,

"Peer Computer System”, « Back-end Computer System” “Front-end Port”, “Back-end Port”,

“Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs” , “Remote Replica Group”,

"DMTF Reserved", "Vendor Specific" }]

 uint16 ElementTypes[],

 [IN, Description(The manifest collection that contains the manifests that list the metrics that

should be returned for each element type.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description("Specifies the format of the Statistics output parameter.")

ValueMap { "2" },

 Values ("CSV")]

 Uint16 StatisticsFormat,

 [OUT, Description(The statistics for all the elements as determined by the Elements and

 ManifestCollection parameters.)]

 string Statistics[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method
Reserved", "Method Parameters Checked - Job Started", "Element Not Supported", “Statistics Format Not
Supported”, "Method Reserved", "Vendor Specific"}

Note: In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This
method should always return NULL for the Job parameter.

If the ElementTypes[] array is empty, then no data is returned. If the ElementTypes[] array is NULL, then all data
specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is NULL, then the
default manifest collection is used (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

Note: The ElementTypes[] and ManifestCollection parameters may identify different sets of element types.
The effect of this will be for the implementation to return statistics for the element types that are in both
lists (that is, the intersection of the two lists). This intersection could be empty. In this case, no data will
be returned.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 221

Block Server Performance Subprofile NO_ANSI_ID

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426
For the current version of SMI-S, the only recognized value for StatisticsFormat is “CSV”. The method may support
other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstanceIDs that may be used to correlate with
the BlockStorageStatisticalData instances, a simple CSV format is sufficient and the most efficient human-readable
format for transferring bulk statistics. More specifically, the following rules constrain that format and define the
content of the String[] Statistics output parameter to the GetStatisticsCollection() method:

• The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings will not exceed 64K bytes. A single statistics record will not span Array entries.

• There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:

• a line-feed character

• the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

• Each statistics record shall contain the InstanceID of the BlockStorageStatisticalData instance, the value map
(number) of the ElementType of the metered object and one value for each property that the relevant
BlockStatisticsManifest specifies as “true”.

• Each value in a record shall be separated from the next value by a Semi-colon (“;”). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record. A client reading a record it has received would ignore white-space between
values.

• The InstanceID value is an opaque string that shall correspond to the InstanceID property from
BlockStorageStatisticalData instance.

• For the convenience of client software, that need to be able to correlate InstanceIDs between different
GetStatisticsCollection method invocations, the InstanceID for BlockStorageStatisticalData instance shall be
unique across all instances of the BlockStorageStatisticalData class. It is not sufficient that InstanceID is
unique across subclasses of BlockStorageStatisticalData.

• The ElementType value shall be a decimal string representation of the Element Type number (e.g., “8” for
StorageVolume). The StatisticTime shall be a string representation of DateTime. All other values shall be
decimal string representations of their statistical values.

• NULL values shall be included in records for which a statistic is returned (specified by the manifest or by a lack
of manifest for a particular element type) but there is no meaningful value available for the statistic. A NULL
statistic is represented by placing a semi-colon (“;”) in the record without a value in the position the value would
have otherwise been included. A record in which the last statistic has a NULL value shall end in a semi-colon
(“;”).

DEPRECATED

• The first three values in a record shall be the InstanceID, ElementType and StatisticTime values from the
BlockStorageStatisticalData instance. The remaining values shall be returned in the order in which they are
defined by the MOF for the BlockStatisticsManifest class or subclass the record describes.

DEPRECATED
222

NO_ANSI_ID Block Server Performance Subprofile

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467
EXPERIMENTAL

• Use of the MOF for defining the sequence of statistics in a record has proven to be an unreliable means of
defining the sequence of statistics in each record. If the CSVSequence is non-NULL, then the sequence of
statistics will be defined by the sequence of entries in the CSVSequence array. The first three values in the
CSVSequence shall be "InstanceID", "ElementType" and "StatisticTime". All other elements of the
CSVSequence array may be in the order defined by the creator of the Manifest. If the CSVSequence is NULL
in the Default (provider) Manifest, then the rule in the previous bullet still applies.

EXPERIMENTAL

As an additional convention, a provider should return all the records for a particular element type in consecutive
String elements, and the order of the element types should be the same as the order in which the element types
were specified in the input parameter to GetStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 Volumes and 5 disks, assuming that
6 statistics were specified in the BlockStatisticsManifest instance for both disks and volumes. The sixth statistic is
unavailable for volumes, and the fourth statistic is unavailable for disks:

<METHODRESPONSE NAME="GetStatisticsCollection">

<RETURNVALUE PARAMTYPE="uint32">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="Statistics" PARAMTYPE="string">

<VALUE.ARRAY>

<VALUE>

STORAGEVOLUMESTATS1;7;20040811133015.0000010-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS2;7;20040811133015.0000020-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS3;7;20040811133015.0000030-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS4;7;20040811133015.0000040-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS5;7;20040811133015.0000050-300;11111;22222;33333;44444;55555;

</VALUE>

<VALUE>

DISKSTATS1;9;20040811133015.0000100-300;11111;22222;33333;;55555;66666

DISKSTATS2;9;20040811133015.0000110-300;11111;22222;33333;;55555;66666

DISKSTATS3;9;20040811133015.0000120-300;11111;22222;33333;;55555;66666

DISKSTATS4;9;20040811133015.0000130-300;11111;22222;33333;;55555;66666

DISKSTATS5;9;20040811133015.0000140-300;11111;22222;33333;;55555;66666

</VALUE>

</VALUE.ARRAY>

</PARAMVALUE>

</METHODRESPONSE>

7.6.1.3 CreateManifestCollection

Creates a new manifest collection whose members serve as a filter for metrics retrieved through the
GetStatisticsCollection method.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 223

Block Server Performance Subprofile NO_ANSI_ID

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501
CreateManifestCollection(

 [IN, Description(The collection of statistics that will be filtered using the new

manifest collection.)]

 CIM_StatisticsCollection REF Statistics,

 [IN, Description(Client-defined name for the new manifest collection)]

 string ElementName,

 [OUT, Description(Reference to the new manifest collection.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection);

Error returns are:

{ "Ok", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method Reserved", "Vendor
Specific" }

7.6.1.4 AddOrModifyManifest

This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A client
supplies a manifest collection in which the new manifest collection will be placed or an existing manifest will be
modified, the element type of the statistics that the manifest will filter, and a list of statistics that should be returned
for that element type using the GetStatisticsCollection method.

AddOrModifyManifest(

 [IN, Description(Manifest collection that the manifest is or should be a member of.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description(The element type whose statistics the manifest will filter.)

ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "..", "32768..65535" },

 Values { "Unknown", "Reserved", “Computer System”, “Front-end Computer System”,

"Peer Computer System”, « Back-end Computer System” “Front-end Port”, “Back-end Port”,

“Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs” , “Remote Replica Group”,

"DMTF Reserved", "Vendor Specific" }]

 uint16 ElementType,

 [IN, Description(The client-defined string that identifies the manifest created or modified by this
method.)]

 string ElementName,

 [IN, Description(The statistics that will be supplied through the GetStatisticsCollection method.)]

 string StatisticsList[],

 [OUT, Description(The Manifest that is created or modified on successful execution of the
method.)]

 CIM_BlockStatisticsManifest REF Manifest);
224

NO_ANSI_ID Block Server Performance Subprofile

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531
Error returns are:

{ “Success”, "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method Reserved", "Element
Not Supported", "Metric not supported", "ElementType Parameter Missing", "Method Reserved", "Vendor Specific"
}

If the StatisticsList[] array is empty, then only InstanceID and ElementType will be returned when the manifest is
referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is assumed

Note: This would be the BlockStatisticsManifest from the default manifest collection.

EXPERIMENTAL

The sequence of properties identified in StatisticsList[] shall be used to fill in the CSVSequence array in the
manifest if BlockStatisticsCapabilities.SupportedFeatures includes the value ‘3’ (Client Defined Sequence).
Otherwise the CSVSequence array will be set to NULL.

EXPERIMENTAL

7.6.1.5 RemoveManifest

This is an extrinsic method that removes manifests from a manifest collection.

RemoveManifest(

 [IN, Description(Manifest collection from which the manifests will be removed.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description(List of manifests to be removed from the manifest collection.)]

 CIM_BlockStatisticsManifest REF Manifests[]);

Error returns are:

{ “Success”, "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method
Reserved", "Manifest not found", "Method Reserved", "Vendor Specific" }

7.6.2 Intrinsic Methods of the Profile

Note: Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection,
BlockStorageStatisticalData, MemberOfCollection or ElementStatisticalData.

7.6.2.1 DeleteInstance (of a CIM_BlockStatisticsManifestCollection)

This will delete the CIM_BlockStatisticsManifestCollection where IsDefault=False, the
CIM_AssociatedBlockStatisticsManifestCollection association to the StatisticsCollection and all manifests collected
by the manifest collection (and the MemberOfCollection associations to the
CIM_BlockStatisticsManifestCollection).

7.6.2.2 Association Traversal

One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the individual
Statistics following the MemberOfCollection association. This shall be supported by all implementations of the
Block Server Performance Subprofile and would be available to clients if the provider does not support EXEC
QUERY or GetStatisticsCollection approaches.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 225

Block Server Performance Subprofile NO_ANSI_ID

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564
565

566

567

568

569

570

571

572

573
EXPERIMENTAL

7.6.2.3 CreateInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly
IndicationFilters)

CreateInstance would be required to establish subscriptions and ListenerDestinations for retrieval of statistics via
indications. Depending on the support in the profile, it may also be required to create the IndicationFilter.

7.6.2.4 DeleteInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly
IndicationFilters)

DeleteInstance would be required to delete subscriptions and ListenerDestinations that were defined for retrieval of
statistics via indications. Depending on the support in the profile, it may also be required to delete the
IndicationFilter.

7.6.2.5 ModifyInstance (of an IndicationFilter)

ModifyInstance may also be supported for modifying IndicationFilters, assuming the profile supports client defined
filters. It would not be supported for “pre-defined” filters.

7.6.2.6 EXEC QUERY

This is one of the ways of retrieving statistics.

7.6.2.7 GetInstance on QueryStatisticalCollection

This is yet another means of retrieving statistics. In this technique an instance of the QueryStatisticalCollection
class is created that defines a Query for statistics and the format in which the query results are to be represented.
The key properties of the QueryStatisticalCollection class are:

• Query - This is a query string that defines the statistics to be populated in the QueryStatisticalCollection
instance.

• QueryLanguage - This defines the query language that is used in the query. For the current version of SMI-S,
only CQL should be encoded.

• SelectedEncoding - This defines the encoding of the data that is to be populated in the
QueryStatisticalCollection instance. For the current version of SMI-S, this should be CSV (for Comma
Separated Values).

• SelectedNames - This is the list of statistics property names to be retrieved. These correspond to the Select
List of the Query. The encoding of these names is as defined by the SelectedEncoding (for the current version
of SMI-S, this would be CSV).

• SelectedTypes - This is the list of data types for the columns of the query result. Each data type specified
corresponds to a column in the SelectedValues property.

• SelectedValues - This is a table of values that correspond to the query results (for the query specified in the
Query property). The data types of the column of values are defined by SelectedTypes. The name of each
column in the table is defined by SelectedNames. The values are encoded as defined by SelectedEncoding
(i.e., CSV for the current version of SMI-S).

An example CQL query would be:

SELECT Stats.*

FROM CIM_BlockStorageStatisticalData Stats, CIM_QueryStatisticsCollection
QSC,

 CIM_MemberOfCollection MoC

 WHERE ObjectPath(QSC) = ObjectPath(SELF)
226

NO_ANSI_ID Block Server Performance Subprofile

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613
 AND ObjectPath(QSC) = MoC.Collection

 AND ObjectPath(Stats) = MoC.Member

 AND CurrentDateTime() >=

 Stats.StatisticTime + Stats.SampleInterval

A client would define a QueryStatisticalCollection instance as means of specifying what the client wants. This
would be done with the CreateInstance intrinsic method. The client would delete such an instance using the
DeleteInstance method. If the client wishes to change the query, the client would use the ModifyInstance intrinsic
method.

Retrieving the data would be done via the GetInstance intrinsic. This would retrieve the QueryStatisticalCollection
instance, which includes the table of comma separated values which are the statistics.

EXPERIMENTAL

7.7 Client Considerations and Recipes

7.7.1 Bulk Performance Statistics Gathering

// DESCRIPTION

//

// This recipe describes how to determine what elements are metered, what

// retrieval methods are supported and what statistics are kept for each

// metered element in Arrays, Storage Virtualizers or Volume Managers that

// support the Block Server Performance Subprofile and how to retrieve the

// statistical data.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

// 1. The names of the top-level ComputerSystem instances for Array, Storage

// Virtualizer, or Volume Manager implementations supporting the Block Server

// Performance Subprofile have previously been discovered via SLP and are known

// as $StorageSystems->[].

//

// Function GetNumStatsIncluded

//

// This function counts of the number of metrics that should be included in a

// statistics record built using the supplied BlockManifest instance.

//

sub GetNumStatsIncluded($BlockManifest) {

 #numIncluded = 0

 if ($BlockManifest.IncludeStatisticTime)

#numIncluded++

 if ($BlockManifest.IncludeTotalIOs)

#numIncluded++

 if ($BlockManifest.IncludeKBytesTransferred)

#numIncluded++
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 227

Block Server Performance Subprofile NO_ANSI_ID

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657
 if ($BlockManifest.IncludeIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeReadIOs)

#numIncluded++

 if ($BlockManifest.IncludeReadHitIOs)

#numIncluded++

 if ($BlockManifest.IncludeReadIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeReadHitIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeKBytesRead)

#numIncluded++

 if ($BlockManifest.IncludeWriteIOs)

#numIncluded++

 if ($BlockManifest.IncludeWriteHitIOs)

#numIncluded++

 if ($BlockManifest.IncludeWriteIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeWriteHitIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeKBytesWritten)

#numIncluded++

 if ($BlockManifest.IncludeIdleTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeMaintOp)

#numIncluded++

 if ($BlockManifest.IncludeMaintTimeCounter)

#numIncluded++

 return #numIncluded

}

// Function ValidateRecords

//

// This function validates the records of a set of statistics supplied in the

// Bulk Statistics Format defined in the Block Server Performance Subprofile.

// Every statistics record should contain an InstanceID, ElementType and the

// number of statistics indicated by the BlockManifest. This functional

// verifies that a non-empty InstanceID was specified and that the format of

// metrics populated is appropriate for the data type defined each supported

// metric. It also checks if the metrics are null, which could occur if a

// client included a metric in the BlockManifest used by the

// GetStatisticsCollection function that cannot be populated.

sub ValidateRecords(#BulkStatistics[],

$BlockManifests[],

$BSSDs[]) {

 for (#i in #BulkStatistics[]) {
228

NO_ANSI_ID Block Server Performance Subprofile

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701
// The function split() below parses the content of an element in

// #BulkStatistics[] into multiple sub-strings based on occurrences

// of carriage return. (i.e. “\n”)

#Records[] = #BulkStatistics[#i].split(“\n”)

for (#j in #Records[]) {

 // The function split() below further parses the content of an

 // element in #Records[] into multiple sub-strings based on

 // occurrences of semi-colon. The resulting elements contain (in

 // order) the InstanceID and ElementType properties followed by the

 // metrics supported.

 #RecordElements[] = #Records[#j].split(“;”)

 // Each element MUST contain at least InstanceID and ElementType.

 if (#RecordElements[].length < 2) {

<ERROR! Statistics Record does not contain InstanceID and/or

ElementType>

 }

 // The InstanceID in the record MUST match the InstanceID of a BSSD.

 $StatsData = null

 for (#k in $BSSDs[]) {

if ($BSSDs[#k]->InstanceID == #RecordElements[0]) {

 $StatsData = $BSSDs[#k]

 break

}

 }

 if ($StatsData == null) {

<ERROR! Statistics instance could not be found for record>

 }

 // The function Integer() below is used to convert a string

 // representation of an integer to an int value.

 #elementType = Integer(#RecordElements[1])

 if (#elementType != $StatsData.ElementType) {

<ERROR! ElementTypes for statistics record and instance do not

match>

 }

 // Get the BlockManifest that describes this record. If none exists

 // then the record does not contain a valid ElementType.

 $BlockManifest = &GetBlockManifestByType($BlockManifests[],

 #elementType)

 if ($BlockManifest == null) {

<ERROR! ElementType in Statistics Record not recognized>

 }
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 229

Block Server Performance Subprofile NO_ANSI_ID

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742
 // There MUST be two elements in the record (i.e. InstanceID and

 // ElementType) in addition to one element for each supported

 // metric.

 if (#RecordElements.length !=

 &GetNumStatsIncluded($BlockManifest) + 2) {

<ERROR! Statistics record does not contain the expected number

of metrics>

 }

 // All default manifests MUST contain StatisticTime

 if (!$BlockManifest.IncludeStatisticTime) {

<ERROR! Default manifest does not specify required property

value IncludeStatisticTime=true>

 }

 // The function Datetime() below is used to convert a string

 // representation of a DateTime value into a DateTime object

 #statisticTime = Datetime(#RecordElements[2])

 // Copy instance for local modification

 $Manifest = $BlockManifest

 // Validate the metrics in each record

 #CurrentProperty = 0

 #CurrentPropertyName = “Unknown”

 #k = 3

 while (#k < #RecordElements[].length) {

// The remaining record elements should be integral values

// Parse the next element in the record and save the relevant

// property from the BSSD instance (and its name for inclusion

// in error codes)

if ($Manifest.IncludeTotalIOs) {

 #CurrentProperty = $StatsData.TotalIOs

 #CurrentPropertyName = “TotalIOs”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeTotalIOs = false

} else if ($Manifest.IncludeKBytesTransferred) {

 #CurrentProperty = $StatsData.KBytesTransferred

 #CurrentPropertyName = “KBytesTransferred”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeKBytesTransferred = false

} else if ($Manifest.IncludeIOTimeCounter) {

 #CurrentProperty = $StatsData.IOTimeCounter

 #CurrentPropertyName = “IOTimeCounter”

 // Avoid double-checking for inclusion of this metric
230

NO_ANSI_ID Block Server Performance Subprofile

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784
 $Manifest.IncludeIOTimeCounter = false

} else if ($Manifest.IncludeReadIOs) {

 #CurrentProperty = $StatsData.ReadIOs

 #CurrentPropertyName = “ReadIOs”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeReadIOs = false

} else if ($Manifest.IncludeReadHitIOs) {

 #CurrentProperty = $StatsData.ReadHitIOs

 #CurrentPropertyName = “ReadHitIOs”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeReadHitIOs = false

} else if ($Manifest.IncludeReadIOTimeCounter) {

 #CurrentProperty = $StatsData.ReadIOTimeCounter

 #CurrentPropertyName = “ReadIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeReadIOTimeCounter = false

} else if ($Manifest.IncludeReadHitIOTimeCounter) {

#CurrentProperty = $StatsData.ReadHitIOTimeCounter

#CurrentPropertyName = “ReadHitIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeReadHitIOTimeCounter = false

} else if ($Manifest.IncludeKBytesRead) {

#CurrentProperty = $StatsData.KBytesRead

#CurrentPropertyName = “KBytesRead”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeKBytesRead = false

} else if ($Manifest.IncludeWriteIOs) {

#CurrentProperty = $StatsData.WriteIOs

#CurrentPropertyName = “WriteIOs”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteIOs = false

} else if ($Manifest.IncludeWriteHitIOs) {

#CurrentProperty = $StatsData.WriteHitIOs

#CurrentPropertyName = “WriteHitIOs”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteHitIOs = false

} else if ($Manifest.IncludeWriteIOTimeCounter) {

#CurrentProperty = $StatsData.WriteIOTimeCounter

#CurrentPropertyName = “WriteIOTimeCounter”
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 231

Block Server Performance Subprofile NO_ANSI_ID

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826
// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteIOTimeCounter = false

} else if ($Manifest.IncludeWriteHitIOTimeCounter) {

#CurrentProperty = $StatsData.WriteHitIOTimeCounter

#CurrentPropertyName = “WriteHitIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteHitIOTimeCounter = false

} else if ($Manifest.IncludeKBytesWritten) {

#CurrentProperty = $StatsData.KBytesWritten

#CurrentPropertyName = “KBytesWritten”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeKBytesWritten = false

} else if ($Manifest.IncludeIdleTimeCounter) {

#CurrentProperty = $StatsData.IdleTimeCounter

#CurrentPropertyName = “IdleTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeIdleTimeCounter = false

} else if ($Manifest.IncludeMaintOp) {

#CurrentProperty = $StatsData.MaintOp

#CurrentPropertyName = “MaintOp”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeMaintOp = false

} else if ($Manifest.IncludeMaintTimeCounter) {

#CurrentProperty = $StatsData.MaintTimeCounter

#CurrentPropertyName = “MaintTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeMaintTimeCounter = false

}

if (#CurrentPropertyName != “Unknown”) {

 #CurrentElement = Integer(#RecordElements[#k])

 if (#statisticTime == $BlockStats.StatisticTime) {

 // record and instance property should be equal

 if (#CurrentElement != #CurrentProperty) {

 <ERROR! Record Element inconsistent with BSSD

 property #CurrentPropertyName>

 }

 } else if (#statisticTime > $BlockStats.StatisticTime) {

 // record should be >= instance property

 if (#CurrentElement < #CurrentProperty) {

 <ERROR! Record Element inconsistent with BSSD property

 #CurrentPropertyName. The counter may have
232

NO_ANSI_ID Block Server Performance Subprofile

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868
 rolled back to 0>

 }

 } else {

 // record should be <= instance property

 if (#CurrentElement > #CurrentProperty) {

 <ERROR! Record Element inconsistent with BSSD property

 #CurrentPropertyName. The counter may have

 rolled back to 0>

 }

 }

}

k++

 } // while (#k < #RecordElements[].length)...

} // for (#j in #Records[])

 } // for (#i in #BulkStatistics[])

}

// This function takes a container of BlockManifest instances and locates the

// instance that represents the specified element type. Null is returned if

// the specified instance cannot be located in the container.

sub CIMInstance GetBlockManifestByType($BlockManifests[], #elementType) {

 for (#i in $BlockManifests[]) {

if ($BlockManifests[#i].ElementType == #elementType) {

 return $BlockManifests[#i]

}

 }

 return null

}

// MAIN

//

// 1. Loop through the top-level ComputerSystems and retrieve the

// hosted BlockStatisticsService.

for (#i in $StorageSystems->[]) {

 // Step 1. Retrieve the hosted BlockStatisticsService.

 $StorageSystem-> = $StorageSystems->[#i]

 $StatServices->[] = AssociatorNames($StorageSystem->,

 “CIM_HostedService”,

 “CIM_BlockStatisticsService”,

 “Antecedent”,

 “Dependent”)

 // There should be one and only one BlockStatisticsService.

 $StatService-> = $StatServices->[0]
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 233

Block Server Performance Subprofile NO_ANSI_ID

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914
 // Step 2. Retrieve the capabilities describing the BlockStatisticService.

 $StatCapabilities[] = Associators($StatService->,

 “CIM_ElementCapabilities”,

 “CIM_BlockStatisticsCapabilities”,

 “ManagedElement”,

 “Capabilities”,

 false,

 false,

 {“ElementTypesSupported”, “SynchronousMethodsSupported”})

 // There should be one and only one BlockStatisticsCapabilities.

 $Capabilities = $StatCapabilities[0]

 #SynchCollectionRetrieval = contains(4, // “GetStatisticsCollection”

 $Capabilities.SynchronousMethodsSupported)

 // Step 3. Locate the StatisticsCollection

 $StatCollections->[] = AssociatorNames($StorageSystem->,

 “CIM_HostedCollection”,

 “CIM_StatisticsCollection”,

 “Antecedent”,

 “Dependent”)

 // There should be one and only one StatisticsCollection.

 $StatCollection-> = $StatCollections->[0]

 // Step 4. Locate the default ManifestCollection

 $ManifestCollections[] = Associators($StatCollection->,

 “CIM_AssociatedBlockStatisticsManifestCollection”,

 “CIM_BlockStatisticsManifestCollection”,

 “Statistics”,

 “ManifestCollection”,

 false,

 false,

 {“IsDefault”})

 $DefaultManifestCollection = null

 for (#j in $ManifestCollections[]) {

if ($ManifestCollections[#j].IsDefault) {

 $DefaultManifestCollection = $ManifestCollections[#j]

 break

}

 }

 if ($DefaultManifestCollection == null) {

<ERROR! A default ManifestCollection MUST exist>

 }

 // Step 5. Locate the default BlockManifests which identify what statistical

 // data is supported for each element type. (e.g. disk, volume, etc.)

 #PropList = {“InstanceID”, “ElementName”, “ElementType”,

 “IncludeStatisticTime”, “IncludeTotalIOs”,

 “IncludeKBytesTransferred”, “IncludeIOTimeCounter”,

 “IncludeReadIOs”, “IncludeReadHitIOs”, “IncludeReadIOTimeCounter”,
234

NO_ANSI_ID Block Server Performance Subprofile

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958
 “IncludeReadHitIOTimeCounter”, “IncludeKBytesRead”,

 “IncludeWriteIOs”, “IncludeWriteHitIOs”,

 “IncludeWriteIOTimeCounter”, “IncludeWriteHitIOTimeCounter”,

 “IncludeKBytesWritten”, “IncludeIdleTimeCounter”, “IncludeMaintOp”,

 “IncludeMaintTimeCounter”}

 $DefaultBlockManifests[] = Associators(

 $DefaultManifestCollection.getObjectPath(),

 “CIM_MemberOfCollection”,

 “CIM_BlockStatisticsManifest”,

 “Collection”,

 “Member”,

 false,

 false,

 #PropList)

 // There MUST be one default Block Manifest for each element type supported.

 if ($Capabilities.ElementTypesSupported[].length

 != $DefaultBlockManifest[].length) {

<ERROR! Required default BlockManifests do not exist>

 }

 // Step 6. Traverse from the StatisticsCollection to the

 // BlockStorageStatisticalData. If SyncCollectionRetrieval is supported,

 // then this is necessary for validation of the Manifest data retrieved

 // through the GetStatisticsCollection method. If it is not supported,

 // then these instances must be used to retrieve the statistics directly.

 $BlockStats[] = Associators($StatCollection->,

 “CIM_MemberOfCollection”,

 “CIM_BlockStorageStatisticalData”,

 “Collection”,

 “Member”,

 false,

 false,

 #PropList)

 if (#SynchCollectionRetrieval) {

// Step 7a. Retrieve the data specified by the default

// ManifestCollection in bulk.

%InArguments[“ElementTypes”] = $Capabilities.ElementTypesSupported[]

%InArguments[“ManifestCollection”] =

$DefaultManifestCollection.getObjectPath()

%InArguments[“StatisticsFormat”] = 2// “CSV”

#MethodReturn = InvokeMethod($StatService->,

“GetStatisticsCollection”,

%InArguments,

%OutArguments)

if (#MethodReturn == 0) {
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 235

Block Server Performance Subprofile NO_ANSI_ID

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999
 #Statistics[] = %OutArguments[“Statistics”]

 // Step 8. Parse the bulk statistical data retrieved to validate

 // the values (at least as much as is feasible)

 &ValidateRecords(#Statistics[], $DefaultBlockManifests[],

 $BlockStats[])

} else {

 <ERROR! Bulk statistical data retrieval failed>

}

 } else {

// Step 7b. Since bulk statistics retrieval is not supported, the

// statistical data must be retrieved directly.

for (#j in $BlockStats[]) {

 $BlockStat = $BlockStats[#j]

 $BlockManifest = GetBlockManifestByType($DefaultBlockManifests[],

 $BlockStat.ElementType)

 if ($BlockManifest == null) {

<ERROR! The required default BlockManifest does not exist for

this element type>

 }

 // Determine the supported statistical properties specified by

 // $BlockManifest, and retrieve the corresponding property values

 // for this element type from $BlockStat.

}

 }

}

EXPERIMENTAL

7.7.2 Building an Object Map of Metered Elements

// DESCRIPTION

//

// This recipe describes how to build a record of all metered object instances

// and a topology of how the instances are related. (e.g. volume mapping to

// disk drives, ports used to access volumes, etc.)

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

// 1. The name of a top-level ComputerSystem instance for an Array, Storage

// Virtualizer, or Volume Manager implementation supporting the Block Server

// Performance Subprofile has previously been discovered via SLP and is known

// as $StorageSystem->.

// 2. The element types that support performance statistics are known as

// #ElementTypes[] whose content is populated from the property value of

// CIM_BlockStatisticsCapabilities.ElementTypesSupported.

// 3. The performance statistics properties supported for each element type are

// know as #<ElementType>DataPropList[]. (e.g. #VolumeDataPropList[],
236

NO_ANSI_ID Block Server Performance Subprofile

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041
// #DiskDataPropList[], etc.) The content of the property lists is determine

// from the default instance of CIM_BlockStatisticsManifest for each element type.

// 4. The required properties for each element type are know as

// #<ElementType>PropList[]. (e.g. #VolumePropList[], #DiskDataPropList[], etc.)

// Function GetAssociatedStats

//

// This function retrieves the instance data of BlockStorageStatisticalData

// associated to the specified metered object. If there is no instance data

// associated, null is returned.

//

sub CIMInstance[] GetAssociatedStats(CIMObjectPath $MeteredObject->,

string[] #PropList) {

 $StatData[] = Associators($MeteredObject->,

“CIM_ElementStatisticalData”,

“CIM_BlockStorageStatisticalData”,

“ManagedElement”,

“Stats”,

false,

false,

#PropList)

 return $StatData[]

}

// This function retrieves the performance statistics of a CompositeExtent

// then recursively traverses the hierarchy beneath it.

sub void traverseComposition(REF $Composite->) {

 // Retrieve the performance statistics of the Composite Extent.

 $CompositeExtentStatData[] = &GetAssociatedStats($Composite->,

 #ExtentDataPropList[])

 // There may not be BlockStorageStatisticalData for each and every level

 // of Composite Extents.

 if ($CompositeExtentStatData[] != null) {

$CompositeExtentStats = $CompositeExtentStatData[0]

 }

 // Retrieve the associations in which this Composite Extent is the

 // Dependent reference. The association instances retrieved should be

 // either BasedOn or CompositeExtentBasedOn.

 $Associations[] = References($Composite->,

 “CIM_BasedOn”,

 “Dependent”,

 false,

 false,

 NULL)
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 237

Block Server Performance Subprofile NO_ANSI_ID

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083
 // There must be one or more associations involving the Composite Extent

 // as the Antecedent reference.

 if ($Associations[] == null || $Associations[].length == 0) {

<EXIT! Required associations not found>

 }

 // Determine which association class was discovered.

 #AssocClass = “CIM_BasedOn”

 if ($Associations[0] ISA CIM_CompositeExtentBasedOn) {

#AssocClass = “CIM_CompositeExtentBasedOn”

 }

 // Retrieve the underlying Extents.

 $TargetExtents->[] = AssociatorNames($Composite->,

 #AssocClass,

 NULL,

 “Dependent”,

 “Antecedent”)

 // Examine the QOS of the current level’s Composite Extent

 $CompositeExtent = GetInstance($Composite->,

 false,

 false,

 false,

 {“IsConcatenated”, “ExtentStripeLength”})

 // For each underlying extent at this level, traverse the sub-tree it is

 // the sub-root of. If the extent is a CompositeExtent, then this is part

 // of a complex RAID level; recursively invoke the Composition Algorithm.

 // Otherwise it is just a regular StorageExtent and thus must be decomposed

 // from it’s Antecedent, so invoke the recursive Decomposition Algorithm.

 for (#i in $TargetExtents->[]) {

if ($TargetExtents->[#i] ISA CIM_CompositeExtent) {

 &traverseComposition($TargetExtents->[#i++])

 } else {

 &traverseDecomposition($TargetExtents->[#i++])

}

 }

}

// This function recursively traverses the hierarchy below a non-Composite

// StorageExtent.

sub void traverseDecomposition(REF $StartingExtent->) {

 // The Starting Extent is allocated partially or in full from the

 // Antecedent Extent, so a single BasedOn is expected.

 $TargetExtents[] = Associators($StartingExtent->,
238

NO_ANSI_ID Block Server Performance Subprofile

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128
 “CIM_BasedOn”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”,

 false,

 false,

 {“Primordial”})

 // Since the Starting Extent is allocated from the Antecedent, there must

 // be only one Antecedent.

 if ($TargetExtents[] == null || $TargetExtents[].length != 1) {

<ERROR! Extent allocated from multiple Antecedents>

 }

 $TargetExtent = $TargetExtents[0]

 if ($TargetExtent ISA CIM_CompositeExtent) {

// This is a Composite Extent representing a RAID Level. Since we

// encountered the Composite in a decomposition, it is the “top”

// extent in a pool and the Dependent/Antecedent relationship falls

// into one of the following scenarios:

//

// o The Starting Extent is a StorageVolume that is one-to-one with

// the Target Composite Extent.

//

// o The Starting Extent is a StorageVolume partially allocated from

// the Target Composite Extent, where the Composite is one-to-one

// with the Storage Pool which is a RAID Group.

//

// o The Starting Extent is a ComponentExtent of a Child Concrete

// pool and is partially allocated from the Target Composite Extent

// where the Composite is one-to-one with the parent RAID Group pool.

//

// Call the (recursive) function to analyze the sub-hierarchy

// composed by the Target Extent.

//

&traverseComposition($TargetExtent.getObjectPath())

 } else {

// Check here to see if we have reached the leaves of the hierarchy

if ($TargetExtent.Primordial == true) {

 // Recursion ends with each Primordial Extent.

 return

} else {

 // Since the Dependent was a regular StorageExtent, and not

 // Primordial, it must be decomposed from an Antecedent, so invoke

 // ourselves recursively.

 &traverseDecomposition($TargetExtent.getObjectPath())

}

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 239

Block Server Performance Subprofile NO_ANSI_ID

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170
 }

}

// This function locates the logical devices on the specified ComputerSystem

// and retrieves the supported statistical information. Note that the

// ComputerSystem specified may be a top-level, peer, front-end or back-end

// system.

sub void discoverSupportedDeviceStats(REF $System->) {

 // Retrieve all ports on the system.

 $Ports[] = Associators($System.getObjectPath(),

 “CIM_SystemDevice”,

 “CIM_LogicalPort”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #PortPropList[])

 if ($Ports[] != null && $Ports[].length > 0) {

// Determine if performance statistics are supported for any type of

// port.

#SupportsPortStats = contains(6, #ElementTypes[]) // “Front-end Port”

|| contains(7, #ElementTypes[])// “Back-end Port”

for (#j in $Ports[]) {

 if (#SupportsPortStats) {

// Retrieve the performance statistics of the system’s port.

$PortStatData[] = &GetAssociatedStats(

$Ports[#j].getObjectPath(),

#PortDataPropList[])

// NOTE: Performance statistics may not be supported for

// this particular type of port. (i.e. Front-end vs. Back-end)

if ($PortStatData[] != null && $PortStatData[].length > 0) {

 // There should be one and only one

 // BlockStorageStatisticalData.

 $PortStats[#j] = $PortStatData[0]

 // Determine the type of this port.

 #PortType[#j] = $PortStats.ElementType

}

 }

}

 }

 // Retrieve all volumes on the system.

 $Volumes[] = Associators($System.getObjectPath(),
240

NO_ANSI_ID Block Server Performance Subprofile

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212
 “CIM_SystemDevice”,

 “CIM_StorageVolume”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #VolumePropList[])

 if ($Volumes[] != null && $Volumes[].length > 0) {

// Determine if performance statistics are supported for volume.

#SupportsVolumeStats = contains(8, #ElementTypes[])// “Volume”

for (#k in $Volumes[]) {

 if (#SupportsVolumeStats) {

// Retrieve the performance statistics of the volumes

$VolumeStatData[] = &GetAssociatedStats(

$Volumes[#k].getObjectPath(),

#VolumeDataPropList[])

// There should be one and only one BlockStorageStatisticalData.

$VolumeStats = $VolumeStatData[0]

 }

 // Retrieve the protocol controllers through which the volume is

 // visible.

 $ProtocolControllers[] = Associators($Volumes[#k].getObjectPath(),

 “CIM_ProtocolControllerForUnit”,

 “CIM_SCSIProtocolController”,

 “Dependent”,

 “Antecedent”,

 false,

 false,

 #ProtocolControllerPropList[])

 if ($ProtocolControllers[] != null

&& $ProtocolControllers[].length > 0) {

for (#l in ($ProtocolControllers[]) {

 // Retrieve the protocol controller’s endpoint.

 $ProtocolEndpoints[] = Associators(

 $ProtocolControllers[#l].getObjectPath(),

 “CIM_SAPAvailableForElement”,

 “CIM_SCSIProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”,

 false,

 false,

 #ProtocolControllerPropList[])

 if ($ProtocolEndpoints[] != null) {
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 241

Block Server Performance Subprofile NO_ANSI_ID

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254
 for (#pe in (#ProtocolEndpoints[]) {

// There should be one and only one ProtocolEndpoint

$ProtocolEndpoint = $ProtocolEndpoints[#pe]

// Retrieve the ports that access this ProtocolEndpoint.

$AccessingPorts[] = Associators(

$ProtocolEndpoint.getObjectPath(),

“CIM_DeviceSAPImplementation”,

“CIM_LogicalPort”,

“Dependent”,

“Antecedent”,

false,

false,

#PortPropList[])

 }

}

 }

 // Determine if performance statistics are supported for Extents.

 #SupportsExtentStats = contains(9, #ElementTypes[])// “Extent”

 // NOTE: StorageExtents are investigated ONLY if performance

 // statistics are supported for “Extent” and/or “Disk Drive”.

 // Performance statistics support for “composite” StorageExtents

 // is indicated by the “Extent” capability. Performance statistics

 // support for “primordial” StorageExtents is indicated by the

 // “Disk Drive” capability.

 //

 // StorageExtents may not be present if the Extent Composition

 // Subprofile is not supported.

 if (#SupportsExtentStats) {

// Retrieve the StorageExtents that comprise the StorageVolume.

$ComponentExtents[] = Associators(

$Volumes[#k].getObjectPath(),

“CIM_BasedOn”,

“CIM_StorageExtent”,

“Dependent”,

“Antecedent”,

false,

false,

#ExtentPropList)

// Retrieve the performance statistics of the composite

// Storage Extent(s).

if ($ComponentExtents[] != null

&& $ComponentExtents[].length > 0) {
242

NO_ANSI_ID Block Server Performance Subprofile

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297
 &traverseComposition($ComponentExtents[0].getObjectPath())

}

 }

 // Determine if performance statistics are supported for Disk Drive.

 #SupportsDiskStats = contains(10, #ElementTypes[])// “Disk Drive”

 if (#SupportsDiskStats) {

// Retrieve the primordial StorageExtents to which the disk

// performance statistics will be associated.

$DiskExtents[] = &findPrimordials(

$Volumes[#k].getObjectPath())

if ($DiskExtents[] == null || $DiskExtents[].length == 0) {

 <ERROR! Required primordial StorageExtents not found>

}

for (#m in $DiskExtents[]) {

 $DiskExtentStatData[] = &GetAssociatedStats(

 $DisExtents[#m].getObjectPath(),

 #DiskDataPropList[])

 // There should be one and only one

 // BlockStorageStatisticalData.

 $DiskExtentStats = $DiskExtentStatData[0]

}

 }

}

 }

}

// MAIN

//

// Step 1. Retrieve the performance statistics for the top-level system.

if (contains(2,// “Computer System”

#ElementTypes[]) {

 $TopSystemStatData[] = &GetAssociatedStats($StorageSystem->,

 #TopSystemDataPropList[])

 // There should be one and only one BlockStorageStatisticalData.

 $TopSystemStats = $TopSystemStatData[0]

}

// Step 2. Discover the logical devices on the top-level system and their

// related performance statistics

&discoverSupportedDeviceStats($StorageSystem->)

// Step 3. Retrieve the component systems in a multiple system device.

// NOTE: Traversing ComponentCS from the top-level system to its component

// systems will retrieve ALL component systems. In the case of a device that

// supports 2-tier redundancy, the relationship between the component systems
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 243

Block Server Performance Subprofile NO_ANSI_ID

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339
// (i.e. first redundancy tier) to the sub-component systems would be determined

// by investigating the ConcreteIdentity and MemberOfCollection relationships

// to a RedundancySet. See the Multiple Computer System Subprofile for more

// detail.

$ComponentSystems[] = Associators($StorageSystem->,

“CIM_ComponentCS”,

“CIM_ComputerSystem”,

“GroupComponent”,

“PartComponent”,

false,

false,

#ComponentSystemPropList[])

if ($ComponentSystems[] != null && $ComponentSystems[].length > 0) {

 // Step 4. Determine if performance statistics are supported for any type

 // of component system.

 #SupportsComponentSystemStats =

 contains(3, #ElementTypes[])// “Front-end Computer System”

 || contains(4, #ElementTypes[])// “Peer Computer System”

 || contains(5, #ElementTypes[])// “Back-end Computer System”

 for (#i in $ComponentSystems[]) {

$ComponentSystemPath = $ComponentSystems[#i].getObjectPath()

if (#SupportsComponentSystemStats) {

 // Step 5. Retrieve the performance statistics of the component

 // system.

 $ComponentSystemStatData[] = &GetAssociatedStats(

 $ComponentSystemPath,

 #ComponentSystemDataPropList[])

 // NOTE: Performance statistics may not be supported for this

 // particular type of component system. (i.e. Front-end vs.

 // Back-end vs. Peer Computer Systems)

 if ($ComponentSystemStatData[] != null

 && $ComponentSystemStatData[].length > 0) {

// There should be one and only one BlockStorageStatisticalData.

$ComponentSystemStats[#i] = $ComponentSystemStatData[0]

// Step 6. Determine the type of this component system.

#ComponentSystemType[#i] = $ComponentSystemStats.ElementType

 }

// Step 7. Discover the Topology of the component computer systems by

// finding the RedundancySet that each of the ComponentSystems belong

// to (if any), and the ComputerSystem that has a concrete identity

// relationship with that RedundancySet. The computer system that is

// one tier above the current component system is stored in an array

// of ParentComputerSystems, with each entry corresponding to the
244

NO_ANSI_ID Block Server Performance Subprofile

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381
// component system at the same index in the ComponentSystems array.

$RedundancySets->[] = AssociatorNames($ComponentSystemPath->,

“CIM_MemberOfCollection”,

“CIM_RedundancySet”,

“Member”,

“Collection”)

if(RedundancySets->[] != null && $RedundancySets->[].length > 0)

{

if($RedundancySets->[].length > 1)

{

<ERROR! Component System belongs to more than one Redundancy

Set>

}

$AggregateSystems->[] = AssociatorNames($RedundancySets->[0],

“CIM_ConcreteIdentity”,

“CIM_ComputerSystem”,

“SameElement”,

“SystemElement”)

if($AggregateSystems->[] == null ||

$AggregateSystems->[].length != 1)

{

<ERROR! Could not find Concrete Computer System for Redundancy

Set>

}

$ParentComputerSystems->[#i] = $AggregateSystems->[0]

}

}

// Step 8. Discover the logical devices on the component system and

// their related performance statistics

&discoverSupportedDeviceStats($ComponentSystemPath->)

 }

}

EXPERIMENTAL

7.7.3 Retrieving Statistics for a Specific Volume

// DESCRIPTION

//

// This recipe describes how to retrieve the supported performance statistics

// for a specific set of StorageVolumes.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

// 1. The name of a top-level ComputerSystem instance for an Array, Storage

// Virtualizer, or Volume Manager implementation supporting the Block Server
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 245

Block Server Performance Subprofile NO_ANSI_ID

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424
// Performance Subprofile has previously been discovered via SLP and is known

// as $StorageSystem->.

// 2. A specific set of StorageVolumes is known as $StorageVolume->[].

//

// MAIN

//

// Step 1. Retrieve the hosted BlockStatisticsService.

$StatServices->[] = AssociatorNames($StorageSystem->,

 “CIM_HostedService”,

 “CIM_BlockStatisticsService”,

 “Antecedent”,

 “Dependent”)

// There should be one and only one BlockStatisticsService.

$StatService-> = $StatServices->[0]

// Step 2. Retrieve the capabilities describing the BlockStatisticService.

$StatCapabilities[] = Associators($StatService->,

 “CIM_ElementCapabilities”,

 “CIM_BlockStatisticsCapabilities”,

 “ManagedElement”,

 “Capabilities”,

 false,

 false,

 {“ElementTypesSupported”})

// There should be one and only one BlockStatisticsCapabilities.

$Capabilities = $StatCapabilities[0]

if !contains(8,// “Volume”

 $Capabilities.ElementTypesSupported) {

 <EXIT! StorageVolume performance statistics not supported>

}

// Step 3. Locate the default ManifestCollection

$ManifestCollections[] = Associators($StatCollection->,

 “CIM_AssociatedBlockStatisticsManifestCollection”,

 “CIM_BlockStatisticsManifestCollection”,

 “Statistics”,

 “ManifestCollection”,

 false,

 false,

 {“IsDefault”})

$DefaultManifestCollection = null

for #i in $ManifestCollections[] {

 if ($ManifestCollections[#i].IsDefault) {

$DefaultManifestCollection = $ManifestCollections[#i]

break
246

NO_ANSI_ID Block Server Performance Subprofile

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469
 }

}

if ($DefaultManifestCollection == null) {

 <ERROR! A default ManifestCollection MUST exist>

}

// Step 4. Locate the default BlockManifest which identifies the statistical

// data supported for StorageVolumes.

$VolumeManifest = null

string[] #PropList = {“ElementType”, “IncludeStatisticTime”, “IncludeTotalIOs”,

“IncludeKBytesTransferred”, “IncludeIOTimeCounter”, “IncludeReadIOs”,

“IncludeReadHitIOs”, “IncludeReadIOTimeCounter”,

“IncludeReadHitIOTimeCounter”, “IncludeKBytesRead”, “IncludeWriteIOs”,

“IncludeWriteHitIOs”, “IncludeWriteIOTimeCounter”,

“IncludeWriteHitIOTimeCounter”, “IncludeKBytesWritten”,

“IncludeIdleTimeCounter”, “IncludeMaintOp”, “IncludeMaintTimeCounter”}

$DefaultBlockManifests[] = Associators(

 $DefaultManifestCollection.getObjectPath(),

 “CIM_MemberOfCollection”,

 “CIM_BlockStatisticsManifest”,

 “Collection”,

 “Member”,

 false,

 false,

 #PropList)

for #i in $DefaultBlockManifests[] {

 if ($DefaultBlockManifests[#i].ElementType == 8) {

$VolumeManifest = $DefaultBlockManifests[#i]

break

 }

}

if ($VolumeManifest == null) {

 <ERROR! Required default BlockManifest for StorageVolume not found>

}

// Step 5. Retrieve the performance statistics for each specified StorageVolume.

for (#i in $StorageVolume->[]) {

 $VolumeStatData[] = Associators($StorageVolume->[#i],

 “CIM_ElementStatisticalData”,

 “CIM_BlockStorageStatisticalData”,

 “ManagedElement”,

 “Stats”,

 false,

 false,

 null)

 // There should be one and only one BlockStorageStatisticalData.

 if ($VolumeStatData[] == null || $VolumeStatData[].length != 1) {
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 247

Block Server Performance Subprofile NO_ANSI_ID

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516
<ERROR! The required staticistics were not found>

 }

 $VolumeStats = $VolumeStatData[0]

 // Step 6. Extract the performance statistics supported by the

 // StorageVolume.

 if ($VolumeManifest.IncludeStatisticTime) {

#StatisticTime = VolumeStats.StatisticTime

 } else {

<ERROR! StatisticTime is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeTotalIOs) {

#TotalIOs = VolumeStats.TotalIOs

 } else {

<ERROR! TotalIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeKBytesTransferred) {

#KBytesTransferred = VolumeStats.KBytesTransferred

 } else {

<ERROR! KBytesTransferred is a required property for Volumes and

 should be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeIOTimeCounter) {

#IOTimeCounter = VolumeStats.IOTimeCounter

 }

 if ($VolumeManifest.IncludeReadIOs) {

#ReadIOs = VolumeStats.ReadIOs

 } else {

<ERROR! ReadIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeReadHitIOs) {

#ReadHitIOs = VolumeStats.ReadHitIOs

 } else {

<ERROR! ReadHitIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeReadIOTimeCounter) {

#ReadIOTimeCounter = VolumeStats.ReadIOTimeCounter

 }

 if ($VolumeManifest.IncludeReadHitIOTimeCounter) {

#ReadHitIOTimeCounter = VolumeStats.ReadHitIOTimeCounter

 }

 if ($VolumeManifest.IncludeKBytesRead) {

#KBytesRead = VolumeStats.KBytesRead
248

NO_ANSI_ID Block Server Performance Subprofile

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539
 }

 if ($VolumeManifest.IncludeWriteIOs) {

#WriteIOs = VolumeStats.WriteIOs

 } else {

<ERROR! WriteIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeWriteHitIOs) {

#WriteHitIOs = VolumeStats.WriteHitIOs

 } else {

<ERROR! WriteHitIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeWriteIOTimeCounter) {

#WriteIOTimeCounter = VolumeStats.WriteIOTimeCounter

 }

 if ($VolumeManifest.IncludeWriteHitIOTimeCounter) {

#WriteHitIOTimeCounter = VolumeStats.WriteHitIOTimeCounter

 }

 if ($VolumeManifest.IncludeKBytesWritten) {

#KBytesWritten = VolumeStats.KBytesWritten

 }

 if ($VolumeManifest.IncludeIdleTimeCounter) {

#IdleTimeCounter = VolumeStats.IdleTimeCounter

 }

}

7.7.4 Summary of Statistics Support by Element

Not all statistics properties are kept for all elements. Table 117 illustrates the statistics properties that are kept for
each of the metered elements.

Table 117 - Summary of Statistics Support by Element

Statistic Property Top Level
Computer

System

Component
Computer

System
(Front-end)

Component
Computer

System
(Peer)

Component
Computer

System
(Back-end)

Front-
end Port

Back-
end Port

Volume
(LogicalDisk)

Composite
Extent

Disk

StatisticTime R R R R R R R R R

TotalIOs R R R R R R R R R

KBytes
Transferred

R O O O R O R R R

IOTimeCounter O O O O O O O N O

ReadIOs O R R N N N R N R

ReadHitIOs O R R N N N R N N

ReadIOTimeCounter O O O N N N O N O
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 249

Block Server Performance Subprofile NO_ANSI_ID

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570
The legend is:

R – Required

O – Optional

N – Not specified

Notice that there is a difference between the “front-end” port and “back-end” port elements. There is a difference
between the top level computer system (i.e., the Array, Storage Virtualizer or Volume Management Profile) and the
component computer systems. Furthermore, there can be variations in the component computer systems. This is
based on how component computer systems are configured. In some cases, these computer systems are “front-
end” and “back-end” controllers. In other subsystems, they are “peer” controllers.

Note: Controller LUNs (SCSIArbitraryLogicalUnits) and RemoteReplicaGroup are not shown in Table 117:
Summary of Block Statistics Support by Element. They only require StatisticTime, TotalIOs and
KBytesTransferred. All other properties are not SPECIFIED.

A complete list of definitions of the metered elements as defined by the ElementType property of
BlockStorageStatisticalData follows:

• ElementType = 2 (Computer System) - These are statistics for the whole Array (virtualizer or volume manager).

• ElementType = 3 (Front-end Computer System) - This is the Computer System (controller) that provides the
support for receiving the IO from host systems. The Front-end function acts as an target of IO.

• ElementType = 4 (Peer Computer System) - This is a Computer System that acts as both a front-end and back-
end Computer System.

• ElementType = 5 (Back-end Computer System) - This is the Computer System (controller) that provides the
support for driving the IO to the back-end storage (disk drives or external volumes). The back-end function acts
as an initiator of IO.

• ElementType = 6 (Front-end Port) - A port in a disk array that connects the disk array (or Storage Virtualizer) to
hosts using the storage. The Front End port is usually connected to either the Peer Computer System
(controller) or to the Front-end Computer System (controller) in some Disk Arrays or Storage Virtualizers.

ReadHitIO
TimeCounter

O O O N N N O N N

KBytesRead O O O O N N O N O

WriteIOs O R R N N N R N O

WriteHitIOs O R R N N N R N N

WriteIOTimeCounter O O O N N N O N O

WriteHitIO
TimeCounter

O O O N N N O N N

KBytesWritten O O O O N N O N O

IdleTimeCounter N N N O O N O O O

MaintOp N N N N N N N O O

MaintTime-
Counter

N N N N N N N O O

Statistic Property Top Level
Computer

System

Component
Computer

System
(Front-end)

Component
Computer

System
(Peer)

Component
Computer

System
(Back-end)

Front-
end Port

Back-
end Port

Volume
(LogicalDisk)

Composite
Extent

Disk
250

NO_ANSI_ID Block Server Performance Subprofile

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586
• ElementType = 7 (Back-end Port) - A port that can be inside the disk array housing that connects to the disk
drives. This is connected to either the Peer Computer system (controller) or to the Back-end Computer System
(controller) in some Disk Arrays or Storage Virtualizers.

• ElementType = 8 (Volume) - This is a Logical Unit that is the target of data IOs for storing or retrieving data.
This would be a StorageVolume for Arrays or Storage Virtualizers. It would be a LogicalDisk for Volume
Management Profiles.

• ElementType = 9 (Extent) - This is an intermediate Storage Extent. That is, it is not a Volume and it is not a
Disk Drive. An example of the use of an Extent would be a RAID rank that creates a logical storage extent from
multiple disk drives. In the case of Storage Virtualizers, this is used to represent the volumes that are imported
from Arrays.

• ElementType = 10 (Disk Drive) - This is a disk drive.

• ElementType = 11 (Arbitrary LUs) - This is a Logical Unit that is the target of “control” IO functions. The Logical
Unit does not contain data, but supports invocation of control functions in an Array or Storage Virtualizer.

• ElementType = 12 (Remote Replica Group) - Replication requires a local disk array and a remote disk array (in
some “safe” location). The remote replica group is a group of disk drives in the remote disk array used to
replicated defined data from the local disk array.

7.7.5 Formulas and Calculations

Table 117 identifies the set of statistics that are recommended for the various storage components in the array.
These metrics, once collected, can be further enhanced through the definition of formulas and calculations that
create additional ‘derived’ statistics.

Table 118 defines a set of such derived statistics. They are by no means the only possible derivations but serve as
examples of the most commonly asked for statistics.

Table 118 - Formulas and Calculations

Calculated Statistics

New statistic Formula

TimeInterval delta StatisticTime

% utilization 100 * (delta StatisticTime - delta IdleTime)/ delta StatisticTime

I/O rate delta TotalIOs / delta StatisticTime

I/O response time delta IOTime / delta TotalIOs

Queue depth delta I/O rate * delta I/O response time

Service Time utilization / I/O rate

Wait Time Response Time - Service Time

Average Read Size delta KBytesRead / delta ReadIOs

Average Write Size delta KBytesWritten / delta WriteIOs

% Read 100 * (delta ReadIOs / delta TotalIOs)

% Write 100 * (delta WriteIOs / delta TotalIOs)

% Hit 100 * ((delta ReadHitIOs + delta WriteHitIOs) / delta TotalIOs)
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 251

Block Server Performance Subprofile NO_ANSI_ID

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598
7.7.6 Block Server Performance Supported Capabilities Patterns

The Capabilities patterns summarized in Table 119 are formally recognized by the Block Server Performance
Subprofile of the current version of SMI-S

An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or neither. But if
the implementation supports GetStatisticsCollection, it will shall support Synchronous execution.

If manifest collections are supported, then ALL three methods shall be supported (Creation, modification and
removal).

7.7.7 Correlation of Block Storage Statistics and Fabric Statistics

A client will see statistics for Block Storage which describe statistical information relative to block access. This
subprofile defines those statistics. But a client may also see statistics relative to networking activity (e.g., Port
statistics). This section describes which metrics can be correlated between block storage statistics and port
statistics.

Table 119 - Block Server Performance Subprofile Supported Capabilities Patterns

ElementSupported SynchronousMethods
Supported

AsynchronousMethods
Supported

Any (at least one) NULL NULL

Any (at least one) Neither GettatisticsCollection nor Exec Query NULL

Any (at least one) GetStatisticsCollection NULL

Any (at least one) Any NULL

Any (at least one) Exec Query NULL

Any (at least one) GetStatisticsCollection, Query NULL

Any (at least one) Exec Query NULL

Any (at least one) “Manifest Creation”, “Manifest Modification”, and
“Manifest Removal”

NULL

Any (at least one) “Indications”, “Query Collection” NULL
252

NO_ANSI_ID Block Server Performance Subprofile

1599

1600
7.8 CIM Elements

Table 120 describes the CIM elements for Block Server Performance.

Table 120 - CIM Elements for Block Server Performance

Element Name Requirement Description

7.8.1
CIM_AssociatedBlockStatisticsManifestCollec
tion (Client defined collection)

Conditional Conditional requirement: Clients can create
manifests as identified by
CIM_BlockStatisticsCapabilities.Synchronous
MethodsSupported. This is an association
between the StatisticsCollection and a client
defined manifest collection.

7.8.2
CIM_AssociatedBlockStatisticsManifestCollec
tion (Provider defined collection)

Mandatory This is an association between the
StatisticsCollection and a provider supplied
(pre-defined) manifest collection that defines
the statistics properties supported by the
profile implementation.

7.8.3 CIM_BlockStatisticsCapabilities Mandatory This defines the statistics capabilities
supported by the implementation of the profile.

7.8.4 CIM_BlockStatisticsManifest (Client
Defined)

Conditional Conditional requirement: Clients can modify
manifests as identified by
CIM_BlockStatisticsCapabilities.Synchronous
MethodsSupported. An instance of this class
defines the statistics properties of interest to
the client for one element type.

7.8.5 CIM_BlockStatisticsManifest (Provider
Support)

Mandatory An instance of this class defines the statistics
properties supported by the profile
implementation for one element type.

7.8.6 CIM_BlockStatisticsManifestCollection
(Client Defined)

Conditional Conditional requirement: Clients can create
manifests as identified by
CIM_BlockStatisticsCapabilities.Synchronous
MethodsSupported. An instance of this class
defines one client defined collection of block
statistics manifests (one manifest for each
element type).

7.8.7 CIM_BlockStatisticsManifestCollection
(Provider Defined)

Mandatory An instance of this class defines the
predefined collection of default block statistics
manifests (one manifest for each element
type).

7.8.8 CIM_BlockStatisticsService Mandatory This is a Service that provides (optional)
services of bulk statistics retrieval and
manifest set manipulation methods.

7.8.9 CIM_BlockStorageStatisticalData Mandatory This is a Subclass of CIM_StatisticalData for
Block servers. It would be instantiated as
specific block statistics for particular
components.

7.8.10 CIM_ElementCapabilities Mandatory This associates the BlockStatisticsCapabilities
to the BlockStatisticsService.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 253

Block Server Performance Subprofile NO_ANSI_ID
7.8.11 CIM_ElementStatisticalData (Back end
Port Stats)

Conditional Conditional requirement: Back end port
statistics support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "7".

This associates a BlockStorageStatisticalData
instance to the back end port for which the
statistics are collected.

7.8.12 CIM_ElementStatisticalData
(Component System Stats)

Conditional Conditional requirement: Component Systems
statistics support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "3", "4" or "5".

This associates a BlockStorageStatisticalData
instance to the component ComputerSystem
for which the statistics are collected.

7.8.13 CIM_ElementStatisticalData (Disk
Stats)

Conditional Conditional requirement: Disk Drive statistics
support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "10".

This associates a BlockStorageStatisticalData
instance to the StorageExtent (Disk Drive) for
which the statistics are collected.

7.8.14 CIM_ElementStatisticalData (Extent
Stats)

Conditional Conditional requirement: Extent statistics
support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "9".

This associates a BlockStorageStatisticalData
instance to the StorageExtent (composite
extent) for which the statistics are collected.

7.8.15 CIM_ElementStatisticalData (Front end
Port Stats)

Conditional Conditional requirement: Front-end port
statistics support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "6".

This associates a BlockStorageStatisticalData
instance to the target port for which the
statistics are collected.

7.8.16 CIM_ElementStatisticalData (Logical
Disk Stats)

Conditional Conditional requirement: Volume statistics
support in Volume Management Profiles. This
is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "8", and the parent profile
supports Logical Disks.

This associates a BlockStorageStatisticalData
instance to the volume for which the statistics
are collected.

Table 120 - CIM Elements for Block Server Performance

Element Name Requirement Description
254

NO_ANSI_ID Block Server Performance Subprofile
7.8.17 CIM_ElementStatisticalData (Remote
Copy Stats)

Conditional Conditional requirement: Remote Copy
statistics support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "12".

This associates a BlockStorageStatisticalData
instance to the remote copy service network
for which the statistics are collected.

7.8.18 CIM_ElementStatisticalData (Top Level
System Stats)

Conditional Conditional requirement: Top level system
statistics support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "2".

This associates a BlockStorageStatisticalData
instance to the Top Level ComputerSystem for
which the statistics are collected.

7.8.19 CIM_ElementStatisticalData (Volume
Stats)

Conditional Conditional requirement: Volume statistics
support or Referenced from Array -
StorageVolume is mandatory or Referenced
from Storage Virtualizer - StorageVolume is
mandatory. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementType
sSupported = "8", and the parent profile
supports Storage Volumes.

This associates a BlockStorageStatisticalData
instance to the volume for which the statistics
are collected.

7.8.20 CIM_HostedCollection (Client Defined) Conditional Conditional requirement: Clients can create
manifests as identified by
CIM_BlockStatisticsCapabilities.Synchronous
MethodsSupported or Clients can create
manifests as identified by
CIM_BlockStatisticsCapabilities.Asynchronou
sMethodsSupported. This would associate a
client defined
BlockStatisticsManifestCollection to the top
level system for the profile (e.g., array).

7.8.21 CIM_HostedCollection (Default) Mandatory This would associate a default
BlockStatisticsManifestCollection to the top
level system for the profile (e.g., array).

7.8.22 CIM_HostedCollection (Provider
Supplied)

Mandatory This would associate the StatisticsCollection
to the top level system for the profile (e.g.,
array).

7.8.23 CIM_HostedService Mandatory This associates the BlockStatisticsService to
the ComputerSystem that hosts it.

Table 120 - CIM Elements for Block Server Performance

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 255

Block Server Performance Subprofile NO_ANSI_ID

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612
7.8.1 CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection)

The CIM_AssociatedBlockStatisticsManifestCollection associates an instance of a
CIM_BlockStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies. Client defined
manifest collections identify the Manifests (properties) for retrieval of block statistics.

CIM_AssociatedBlockStatisticsManifestCollection is not subclassed from anything.

There will be one instance of the CIM_AssociatedBlockStatisticsManifestCollection class, for each client defined
manifest collection that has been created.

Created By: Extrinsic: CreateManifestCollection

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

7.8.24 CIM_MemberOfCollection (Member of
client defined collection)

Conditional Conditional requirement: Clients can modify
manifests as identified by
CIM_BlockStatisticsCapabilities.Synchronous
MethodsSupported. This would associate
Manifests to client defined manifest
collections.

7.8.25 CIM_MemberOfCollection (Member of
pre-defined collection)

Mandatory This would associate pre-defined Manifests to
default manifest collection.

7.8.26 CIM_MemberOfCollection (Member of
statistics collection)

Mandatory This would associate all block statistics
instances to the StatisticsCollection.

7.8.27 CIM_StatisticsCollection Mandatory This would be a collection point for all
Statistics that are kept for a Block Server.

7.8.28 SNIA_BlockStatisticsCapabilities Optional Experimental. This is a subclass of
CIM_BlockStatisticsCapabilities that adds the
SupportedFeatures property.

7.8.29 SNIA_BlockStatisticsManifest (Client
Defined)

Optional Experimental. This is a subclass of
CIM_BlockStatisticsManifest that adds the
CSVSequence property.

7.8.30 SNIA_BlockStatisticsManifest (Provider
Support)

Optional Experimental. This is a subclass of
CIM_BlockStatisticsManifest that adds the
CSVSequence property.

Table 120 - CIM Elements for Block Server Performance

Element Name Requirement Description
256

NO_ANSI_ID Block Server Performance Subprofile

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636
Table 121 describes class CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection).

7.8.2 CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection)

The CIM_AssociatedBlockStatisticsManifestCollection associates an instance of a
CIM_BlockStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies. The default
manifest collection defines the CIM_BlockStorageStatisticalData properties that are supported by the profile
implementation.

CIM_AssociatedBlockStatisticsManifestCollection is not subclassed from anything.

One instance of the CIM_AssociatedBlockStatisticsManifestCollection shall exist for the default manifest collection
if the Block Server Performance Subprofile is implemented.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 122 describes class CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection).

7.8.3 CIM_BlockStatisticsCapabilities

An instance of the CIM_BlockStatisticsCapabilities class defines the specific support provided with the block
statistics implementation. Note: There would be zero or one instance of this class in a profile. There would be none
if the profile did not support the Block Server Performance Subprofile. There would be exactly one instance if the
profile did support the Block Server Performance Subprofile.

CIM_BlockStatisticsCapabilities class is subclassed from CIM_Capabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 121 - SMI Referenced Properties/Methods for
CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection)

Properties Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection
applies.

ManifestCollection Mandatory A client defined manifest collection.

Table 122 - SMI Referenced Properties/Methods for
CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection)

Properties Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection
applies.

ManifestCollection Mandatory The default manifest collection.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 257

Block Server Performance Subprofile NO_ANSI_ID

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650
Table 123 describes class CIM_BlockStatisticsCapabilities.

7.8.4 CIM_BlockStatisticsManifest (Client Defined)

The CIM_BlockStatisticsManifest class is Concrete class that defines the CIM_BlockStorageStatisticalData
properties that should be returned on a GetStatisticsCollection request.

CIM_BlockStatisticsManifest is subclassed from CIM_ManagedElement.

In order for a client defined instance of the CIM_BlockStatisticsManifest class to exist, the all the manifest collection
manipulation functions shall be identified in the "SynchronousMethodsSupported" property of the
CIM_BlockStatisticsCapabilities (BlockStatisticsCapabilities.SynchronousMethodsSupported = "6") instance, AND
a client must have created at least ONE instance of CIM_BlockStatisticsManifestCollection.

Created By: Extrinsic: AddOrModifyManifest

Modified By: Extrinsic: AddOrModifyManifest

Deleted By: Extrinsic: RemoveManifest

Requirement: Clients can modify manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 123 - SMI Referenced Properties/Methods for CIM_BlockStatisticsCapabilities

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

ElementTypesSupported Mandatory ValueMap { "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12" },

Values {"Computer System", "Front-end Computer System",
"Peer Computer System", "Back-end Computer System",
"Front-end Port", "Back-endPort", "Volume", "Extent", "Disk
Drive", "Arbitrary LUs" , "Remote Replica Group"}.

SynchronousMethodsSupport
ed

Mandatory This property is mandatory, but the array may be empty.

ValueMap { "2", "3", "4", "5", "6", "7", "8"},

Values {"Exec Query", "Indications", "QueryCollection",
"GetStatisticsCollection", "Manifest Creation", "Manifest
Modification", "Manifest Removal" }.

AsynchronousMethodsSuppo
rted

Optional Not supported in current version of SMI-S.

ClockTickInterval Mandatory An internal clocking interval for all timers in the subsystem,
measured in microseconds (Unit of measure in the timers,
measured in microseconds).

Time counters are monotonically increasing counters that
contain "ticks". Each tick represents one ClockTickInterval. If
ClockTickInterval contained a value of 32 then each time
counter tick would represent 32 microseconds.

Caption Optional Not Specified in this version of the Profile.

Description Optional Not Specified in this version of the Profile.

CreateGoalSettings() Optional Not Specified in this version of the Profile.
258

NO_ANSI_ID Block Server Performance Subprofile

1651
 Table 124 describes class CIM_BlockStatisticsManifest (Client Defined).

Table 124 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)

Properties Requirement Description & Notes

ElementName Mandatory A Client defined string that identifies the manifest.

InstanceID Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstanceID opaquely and uniquely
identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:

ValueMap {"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}

Values { "Computer System", "Front-end Computer System",
"Peer Computer System", "Back-endComputer System",
"Front-end Port", "Back-end Port", "Volume", "Extent", "Disk
Drive", "Arbitrary LUs" , "Remote Replica Group"}.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeReadHitIOTimeCount
er

Mandatory

IncludeKBytesRead Mandatory

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeWriteHitIOTimeCount
er

Mandatory

IncludeKBytesWritten Mandatory

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

Caption Optional Not Specified in this version of the Profile.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 259

Block Server Performance Subprofile NO_ANSI_ID

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663
7.8.5 CIM_BlockStatisticsManifest (Provider Support)

The CIM_BlockStatisticsManifest class is Concrete class that defines the CIM_BlockStorageStatisticalData
properties that supported by the Provider. These Manifests are established by the Provider for the default manifest
collection.

CIM_BlockStatisticsManifest is subclassed from CIM_ManagedElement.

At least one Provider supplied instance of the CIM_BlockStatisticsManifest class shall exist, if the Block Server
Performance Subprofile is supported.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 125 describes class CIM_BlockStatisticsManifest (Provider Support).

Description Optional Not Specified in this version of the Profile.

IncludeStartStatisticTime Optional Not Specified in this version of the Profile.

Table 125 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Sup-
port)

Properties Requirement Description & Notes

ElementName Mandatory A Provider defined string that identifies the manifest in the
context of the Default Manifest Collection.

InstanceID Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstanceID opaquely and uniquely
identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:

ValueMap {"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}

Values { "Computer System", "Front-end Computer System",
"Peer Computer System", "Back-endComputer System",
"Front-end Port", "Back-end Port", "Volume", "Extent", "Disk
Drive", "Arbitrary LUs" , "Remote Replica Group"}.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

Table 124 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)

Properties Requirement Description & Notes
260

NO_ANSI_ID Block Server Performance Subprofile

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675
7.8.6 CIM_BlockStatisticsManifestCollection (Client Defined)

An instance of a client defined CIM_BlockStatisticsManifestCollection defines the set of Manifests to be used in
retrieval of Block statistics by the GetStatisticsCollection method.

CIM_BlockStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

In order for a client defined instance of the CIM_BlockStatisticsManifestCollection class to exist, then all the
manifest collection manipulation functions shall be identified in the "SynchronousMethodsSupported" property of
the CIM_BlockStatisticsCapabilities instance and a client must have created a Manifest Collection..

Created By: Extrinsic: CreateManifestCollection

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

IncludeReadIOTimeCounter Mandatory

IncludeReadHitIOTimeCount
er

Mandatory

IncludeKBytesRead Mandatory

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeWriteHitIOTimeCount
er

Mandatory

IncludeKBytesWritten Mandatory

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

Caption Optional Not Specified in this version of the Profile.

Description Optional Not Specified in this version of the Profile.

IncludeStartStatisticTime Optional Not Specified in this version of the Profile.

Table 125 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Sup-
port)

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 261

Block Server Performance Subprofile NO_ANSI_ID

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689
Table 126 describes class CIM_BlockStatisticsManifestCollection (Client Defined).

7.8.7 CIM_BlockStatisticsManifestCollection (Provider Defined)

An instance of a default CIM_BlockStatisticsManifestCollection defines the set of Manifests that define the
properties supported for each ElementType supported for the implementation. It can also be used by clients in
retrieval of Block statistics by the GetStatisticsCollection method.

CIM_BlockStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

At least ONE CIM_BlockStatisticsManifestCollection shall exist if the Block Server Performance Subprofile is
implemented. This would be the default manifest collection that defines the properties supported by the
implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 127 describes class CIM_BlockStatisticsManifestCollection (Provider Defined).

Table 126 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Cli-
ent Defined)

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A client defined user-friendly name for the manifest collection.
It is set during creation of the Manifest Collection through the
ElementName parameter of the CreateManifestCollection
method.

IsDefault Mandatory Denotes whether or not this manifest collection is a provider
defined default manifest collection. For the client defined
manifest collections this is set to "false".

Caption Optional Not Specified in this version of the Profile.

Description Optional Not Specified in this version of the Profile.

Table 127 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Pro-
vider Defined)

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For the default manifest collection, this should be set to
"DEFAULT".

IsDefault Mandatory Denotes whether or not this manifest collection is a provider
defined default manifest collection. For the default manifest
collection this is set to "true".

Caption Optional Not Specified in this version of the Profile.

Description Optional Not Specified in this version of the Profile.
262

NO_ANSI_ID Block Server Performance Subprofile

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702
7.8.8 CIM_BlockStatisticsService

The CIM_BlockStatisticsService class provides methods for statistics retrieval and Manifest Collection
manipulation.

The CIM_BlockStatisticsService class is subclassed from CIM_Service.

There shall be an instance of the CIM_BlockStatisticsService, if the Block Server Performance Subprofile is
implemented. It is not necessary to support any methods of the service, but the service shall be populated.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the CIM_BlockStatisticsCapabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 128 describes class CIM_BlockStatisticsService.

Table 128 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Properties Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Caption Optional Not Specified in this version of the Profile.

Description Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

OperationalStatus Optional Not Specified in this version of the Profile.

StatusDescriptions Optional Not Specified in this version of the Profile.

InstallDate Optional Not Specified in this version of the Profile.

HealthState Optional Not Specified in this version of the Profile.

TimeOfLastStateChange Optional Not Specified in this version of the Profile.

OtherEnabledState Optional Not Specified in this version of the Profile.

EnabledDefault Optional Not Specified in this version of the Profile.

RequestedState Optional Not Specified in this version of the Profile.

EnabledState Optional Not Specified in this version of the Profile.

Started Optional Not Specified in this version of the Profile.

PrimaryOwnerName Optional Not Specified in this version of the Profile.

PrimaryOwnerContact Optional Not Specified in this version of the Profile.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 263

Block Server Performance Subprofile NO_ANSI_ID
GetStatisticsCollection() Conditional Conditional requirement: Clients can get statistics collections
using the GetStatisticsCollection as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupport
ed or Clients can get statistics collections using the
GetStatisticsCollection as identified by
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSuppor
ted. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupport
ed or
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSuppor
ted containing '5' (GetStatisticsCollection). This method
retrieves all statistics kept for the profile as directed by a
manifest collection.

CreateManifestCollection() Conditional Conditional requirement: Clients can create manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupport
ed or Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSuppor
ted. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupport
ed or
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSuppor
ted containing '6' (Manifest Creation). This method is used to
create client defined manifest collections.

AddOrModifyManifest() Conditional Conditional requirement: Clients can modify manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupport
ed or Clients can modify manifests as identified by
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSuppor
ted. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupport
ed or
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSuppor
ted containing '7' (Manifest Modification). This method is used
to add or modify block statistics manifests in a client defined
manifest collection.

RemoveManifests() Conditional Conditional requirement: Clients can remove manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupport
ed or Clients can remove manifests as identified by
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSuppor
ted. Support for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupport
ed or
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSuppor
ted containing '8' (Manifest Removal). This method is used to
remove a block statistics manifest from a client defined
manifest collection.

RequestStateChange() Optional Not Specified in this version of the Profile.

Table 128 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Properties Requirement Description & Notes
264

NO_ANSI_ID Block Server Performance Subprofile

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715
7.8.9 CIM_BlockStorageStatisticalData

The CIM_BlockStorageStatisticalData class defines the block statistics properties that may be kept for an metered
element of the block storage entity (such as a ComputerSystem, StorageVolume, Port or Disk Drive).

CIM_BlockStorageStatisticalData is subclassed from CIM_StatisticalData.

Instances of this class will exist for each of the metered elements if the 'ElementTypesSupported' property of the
CIM_BlockStatisticsCapabilities indicates that the metered element is supported. For example, 'Computer System'
is identified in the 'ElementTypesSupported' property, then this indicates support for metering of the Top level
computer system or 'Component Computer System'.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 129 describes class CIM_BlockStorageStatisticalData.

StopService() Optional Not Specified in this version of the Profile.

StartService() Optional Not Specified in this version of the Profile.

Table 129 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Requirement Description & Notes

InstanceID Mandatory The InstanceID for BlockStorageStatisticalData instance shall
be unique across all instances of the
BlockStorageStatisticalData class.

StatisticTime Mandatory Time statistics table by object was last updated (Time Stamp in
CIM 2.2 specification format).

ElementType Mandatory This value is required AND current version of SMI-S specifies
the following values:

ValueMap {"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}

Values { "Computer System", "Front-end Computer System",
"Peer Computer System", "Back-end Computer System",
"Front-end Port", "Back-end Port", "Volume", "Extent", "Disk
Drive", "Arbitrary LUs" , "Remote Replica Group"}.

TotalIOs Mandatory The cumulative count of I/Os for the object.

KBytesTransferred Conditional Conditional requirement: This property is required if the
ElementType is 2, 6, 8, 9, 10, 11 or 12. The cumulative count
of data transferred in KBytes (1024bytes = 1KByte).

Note: This is mandatory for the Top level computer system,
Front-end Ports, Volumes, Extents, Disk Drives, ArbitraryLUs
and Remote Replica Groups, but is optional for the component
computer systems and Back-end Ports.

Table 128 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 265

Block Server Performance Subprofile NO_ANSI_ID
IOTimeCounter Optional The cumulative elapsed I/O time(number of Clock Tick
Intervals) for all cumulative I/Os as defined in "Total I/Os"
above. I/O response time is added to this counter at the
completion of each measured I/O using ClockTickInterval
units. This value can be divided by number of IOs to obtain an
average response time.

Note: This is not SPECIFIED for CompositeExtents,
ArbitraryLUs or Remote Replica Groups..

ReadIOs Conditional Conditional requirement: This property is required if the
ElementType is 3, 4, 8 or 10. The cumulative count of all
reads.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems, Volumes and Disk Drives, but it is optional
for the Top level computer system.

Note: This is not specified for Ports, CompositeExtents, "Back-
end" component computer systems, ArbitraryLUs or Remote
Replica Groups..

ReadHitIOs Conditional Conditional requirement: This property is required if the
ElementType is 3, 4 or 8. The cumulative count of all read
cache hits (Reads from Cache).

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems, and Volumes, but it is optional for the Top
level computer system.

Note: This is not specified for "Back-end" component computer
systems, Ports, CompositeExtents, DiskDrives, ArbitraryLUs
or Remote Replica Groups.

ReadIOTimeCounter Optional The cumulative elapsed time for all Read I/Os) for all
cumulative Read I/Os.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system,
Volumes and Disk Drives.

Note: This is not specified for "Back-end" component computer
systems, Ports, CompositeExtents, ArbitraryLUs or Remote
Replica Groups.

ReadHitIOTimeCounter Optional The cumulative elapsed time for all Read I/Os read from cache
for all cumulative Read I/Os.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system and
Volumes.

Note: This is not specified for "Back-end" component computer
systems, Ports, CompositeExtents, DiskDrives, ArbitraryLUs
or Remote Replica Groups.

Table 129 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Requirement Description & Notes
266

NO_ANSI_ID Block Server Performance Subprofile
KBytesRead Optional The cumulative count of data read in KBytes (1024bytes =
1KByte).

Note: This is optional for all ComputerSystems, Volumes, and
Disk Drives.

Note: This is not specified for Ports, CompositeExtents,
ArbitraryLUs or Remote Replica Groups..

WriteIOs Conditional Conditional requirement: This property is required if the
ElementType is 3, 4 or 8. The cumulative count of all writes.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems and Volumes, but it is optional for the Top
level computer system and Disk Drives.

Note: This is not specified for "Back-end" component computer
systems, Ports, CompositeExtents, ArbitraryLUs or Remote
Replica Groups.

WriteHitIOs Conditional Conditional requirement: This property is required if the
ElementType is 3, 4 or 8. The cumulative count of Write Cache
Hits (Writes that went directly to Cache without blocking).

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems and Volumes, but it is optional for the Top
level computer system.

Note: This is not specified for "Back-end" component computer
systems, Ports, CompositeExtents, DiskDrives, ArbitraryLUs
or Remote Replica Groups.

WriteIOTimeCounter Optional The cumulative elapsed time for all Write I/Os for all
cumulative Writes.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system and
Volumes and Disks Drives.

Note: This is not specified for "Back-end" component computer
systems, Ports, CompositeExtents, ArbitraryLUs or Remote
Replica Groups.

WriteHitIOTimeCounter Optional The cumulative elapsed time for all Write I/Os written to cache
for all cumulative Write I/Os.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system and
Volumes.

Note: This is not specified for "Back-end" component computer
systems, Ports, CompositeExtents, DiskDrives, ArbitraryLUs
or Remote Replica Groups.

Table 129 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 267

Block Server Performance Subprofile NO_ANSI_ID

1716

1717

1718

1719

1720
7.8.10 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,CIM_BlockStatisticsService)
and their Capabilities (e.g., CIM_BlockStatisticsCapabilities). Note that the cardinality of the ManagedElement
reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementCapabilities association
for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context

KBytesWritten Optional The cumulative count of data written in KBytes (1024bytes =
1KByte).

Note: This is optional for all ComputerSystems, Volumes and
Disk Drives.

Note: This is not specified for Ports, CompositeExtents,
ArbitraryLUs or Remote Replica Groups.

IdleTimeCounter Optional The cumulative elapsed idle time using ClockTickInterval units
(Cumulative Number of Time Units for all idle time in the array).

Note: This is optional for "Back-end" component
ComputerSystems, Front end Ports, Volumes, Extents and
Disk Drives.

Note: This is not specified for back-end Ports, Top level
computer system, "Front-end" and "Peer" component
computer systems, ArbitraryLUs or Remote Replica Groups.

MaintOp Optional The cumulative count of all disk maintenance operations
(SCSI commands such as: Verify, skip-mask, XOR read, XOR
write-read, etc.) This is needed to understand the load on the
disks that may interfere with normal read and write operations.

Note: This is optional for Extents and Disk Drives.

Note: This is not specified for ComputerSystems, Ports,
Volumes, ArbitraryLUs or Remote Replica Groups.

MaintTimeCounter Optional The cumulative elapsed disk maintenance time. maintenance
response time is added to this counter at the completion of
each measured maintenance operation using
ClockTickInterval units.

Note: This is optional for Extents and Disk Drives.

Note: This is not specified for ComputerSystems, Ports,
Volumes, ArbitraryLUs or Remote Replica Groups.

Caption Optional Not Specified in this version of the Profile.

Description Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

StartStatisticTime Optional Not Specified in this version of the Profile.

ResetSelectedStats() Optional Not Specified in this version of the Profile.

Table 129 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Requirement Description & Notes
268

NO_ANSI_ID Block Server Performance Subprofile

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745
for the referenced instance of ManagedElement. Specifically, the ManagedElement shall exist and provides the
context for the Capabilities.

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 130 describes class CIM_ElementCapabilities.

7.8.11 CIM_ElementStatisticalData (Back end Port Stats)

CIM_ElementStatisticalData is an association that relates a back end port to its statistics. Note that the cardinality
of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of BlockStatistics. ElementStatisticalData
describes the existence requirements and context for the BlockStatistics, relative to a specific back end port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Back end port statistics support.

Table 131 describes class CIM_ElementStatisticalData (Back end Port Stats).

7.8.12 CIM_ElementStatisticalData (Component System Stats)

CIM_ElementStatisticalData is an association that relates a component ComputerSystem to its statistics. Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of
the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics. ElementStatisticalData
describes the existence requirements and context for the BlockStatistics, relative to a specific component
ComputerSystem.

Table 130 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Requirement Description & Notes

ManagedElement Mandatory The managed element (BlockStatisticsService).

Capabilities Mandatory The Capabilities instance associated with the
BlockStatisticsService.

Table 131 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Back end Port
Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a back end port for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the Port.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 269

Block Server Performance Subprofile NO_ANSI_ID

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769
CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Component Systems statistics support.

Table 132 describes class CIM_ElementStatisticalData (Component System Stats).

7.8.13 CIM_ElementStatisticalData (Disk Stats)

CIM_ElementStatisticalData is an association that relates a StorageExtent (Disk Drive) to its statistics. Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of
the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics. ElementStatisticalData
describes the existence requirements and context for the BlockStatistics, relative to a specific StorageExtent of a
Disk Drive.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Disk Drive statistics support.

Table 133 describes class CIM_ElementStatisticalData (Disk Stats).

7.8.14 CIM_ElementStatisticalData (Extent Stats)

CIM_ElementStatisticalData is an association that relates a StorageExtent (CompositeExtent) to its statistics. Note
that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation
of the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics.
ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative to a
specific StorageExtent.

Table 132 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Component Sys-
tem Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a component ComputerSystem for which the
Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the ComputerSystem.

Table 133 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Disk Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a Disk Drive StorageExtent for which the
Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the Disk Drive.
270

NO_ANSI_ID Block Server Performance Subprofile

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794
CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Extent statistics support.

Table 134 describes class CIM_ElementStatisticalData (Extent Stats).

7.8.15 CIM_ElementStatisticalData (Front end Port Stats)

CIM_ElementStatisticalData is an association that relates a target port to its statistics. Note that the cardinality of
the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of BlockStatistics. ElementStatisticalData
describes the existence requirements and context for the BlockStatistics, relative to a specific target port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Front-end port statistics support.

Table 135 describes class CIM_ElementStatisticalData (Front end Port Stats).

7.8.16 CIM_ElementStatisticalData (Logical Disk Stats)

CIM_ElementStatisticalData is an association that relates a LogicalDisk to its statistics. Note that the cardinality of
the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of BlockStatistics. ElementStatisticalData
describes the existence requirements and context for the BlockStatistics, relative to a specific logical disk.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Table 134 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Extent Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a StorageExtent for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the StorageExtent.

Table 135 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Front end Port
Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a target port for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the Port.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 271

Block Server Performance Subprofile NO_ANSI_ID

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818
Deleted By: Static

Requirement: Volume statistics support in Volume Management Profiles.

Table 136 describes class CIM_ElementStatisticalData (Logical Disk Stats).

7.8.17 CIM_ElementStatisticalData (Remote Copy Stats)

CIM_ElementStatisticalData is an association that relates a Network to its statistics. Note that the cardinality of the
ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of BlockStatistics. ElementStatisticalData
describes the existence requirements and context for the BlockStatistics, relative to a specific Network.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Remote Copy statistics support.

Table 137 describes class CIM_ElementStatisticalData (Remote Copy Stats).

7.8.18 CIM_ElementStatisticalData (Top Level System Stats)

CIM_ElementStatisticalData is an association that relates a top level ComputerSystem to its statistics. Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of
the CIM_ElementStatisticalData association for the referenced instance of BlockStatistics. ElementStatisticalData
describes the existence requirements and context for the BlockStatistics, relative to a specific ComputerSystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Top level system statistics support.

Table 136 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Logical Disk
Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a LogicalDisk for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the LogicalDisk.

Table 137 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Remote Copy
Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a Network (remote replication group) for which
the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the Network.
272

NO_ANSI_ID Block Server Performance Subprofile

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843
Table 138 describes class CIM_ElementStatisticalData (Top Level System Stats).

7.8.19 CIM_ElementStatisticalData (Volume Stats)

CIM_ElementStatisticalData is an association that relates a StorageVolume to its statistics. Note that the cardinality
of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of BlockStatistics. ElementStatisticalData
describes the existence requirements and context for the BlockStatistics, relative to a specific volume.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Volume statistics support or Referenced from Array - StorageVolume is mandatory or Referenced
from Storage Virtualizer - StorageVolume is mandatory.

Table 139 describes class CIM_ElementStatisticalData (Volume Stats).

7.8.20 CIM_HostedCollection (Client Defined)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Block Server Performance Subprofile, it is used to associate a client defined
BlockStatisticsManifestCollections to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported or Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.AsynchronousMethodsSupported.

Table 138 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Top Level Sys-
tem Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to the top level ComputerSystem for which the
Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the ComputerSystem.

Table 139 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Volume Stats)

Properties Requirement Description & Notes

ManagedElement Mandatory A reference to a StorageVolume for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the
statistics for the StorageVolume.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 273

Block Server Performance Subprofile NO_ANSI_ID

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865
Table 140 describes class CIM_HostedCollection (Client Defined).

7.8.21 CIM_HostedCollection (Default)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Block Server Performance Subprofile, it is used to associate the default
BlockStatisticsManifestCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 141 describes class CIM_HostedCollection (Default).

7.8.22 CIM_HostedCollection (Provider Supplied)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Block Server Performance Subprofile, it is used to associate the StatisticsCollection to the top
level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 140 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)

Properties Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory A client defined BlockStatisticsManifestCollection.

Table 141 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)

Properties Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The provider defined BlockStatisticsManifestCollection.
274

NO_ANSI_ID Block Server Performance Subprofile

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885
Table 142 describes class CIM_HostedCollection (Provider Supplied).

7.8.23 CIM_HostedService

CIM_HostedService is an association between a Service (CIM_BlockStatisticsService) and the System
(ComputerSystem) on which the functionality resides. Services are weak with respect to their hosting System.
Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the
Service are located.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 143 describes class CIM_HostedService.

7.8.24 CIM_MemberOfCollection (Member of client defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in a client defined manifest collection.

Created By: Extrinsic: AddOrModifyManifest

Modified By: Static

Deleted By: Extrinsic: RemoveManifest

Requirement: Clients can modify manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 144 describes class CIM_MemberOfCollection (Member of client defined collection).

Table 142 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)

Properties Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The StatisticsCollection.

Table 143 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Service hosted on the System.

Table 144 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client
defined collection)

Properties Requirement Description & Notes

Collection Mandatory A client defined manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 275

Block Server Performance Subprofile NO_ANSI_ID

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909
7.8.25 CIM_MemberOfCollection (Member of pre-defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 145 describes class CIM_MemberOfCollection (Member of pre-defined collection).

7.8.26 CIM_MemberOfCollection (Member of statistics collection)

This use of MemberOfCollection is to collect all BlockStorageStatisticalData instances (in the StatisticsCollection).
Each association is created as a side effect of the metered object getting created.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 146 describes class CIM_MemberOfCollection (Member of statistics collection).

7.8.27 CIM_StatisticsCollection

The CIM_StatisticsCollection collects all block statistics kept by the profile. There is one instance of the
CIM_StatisticsCollection class and all individual element statistics can be accessed by using association
traversal(using MemberOfCollection) from the StatisticsCollection.

CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 145 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-
defined collection)

Properties Requirement Description & Notes

Collection Mandatory The provider defined default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.

Table 146 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statis-
tics collection)

Properties Requirement Description & Notes

Collection Mandatory The default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.
276

NO_ANSI_ID Block Server Performance Subprofile

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920
Table 147 describes class CIM_StatisticsCollection.

7.8.28 SNIA_BlockStatisticsCapabilities

Experimental. This is a subclass of CIM_BlockStatisticsCapabilities that adds the SupportedFeatures property.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 148 describes class SNIA_BlockStatisticsCapabilities.

7.8.29 SNIA_BlockStatisticsManifest (Client Defined)

Experimental. This is a subclass of CIM_BlockStatisticsManifest that adds the CSVSequence property.

Created By: Extrinsic: AddOrModifyManifest

Table 147 - SMI Referenced Properties/Methods for CIM_StatisticsCollection

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SampleInterval Mandatory Minimum recommended polling interval for an array, storage
virtualizer system or volume manager. It is set by the provider
and cannot be modified.

TimeLastSampled Mandatory Time statistics table by object was last updated (Time Stamp in
SMI 2.2 specification format).

Caption Optional Not Specified in this version of the Profile.

Description Optional Not Specified in this version of the Profile.

Table 148 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsCapabilities

Properties Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

ElementTypesSupported Mandatory

SynchronousMethodsSupport
ed

Mandatory

AsynchronousMethodsSuppo
rted

Optional

ClockTickInterval Mandatory

SupportedFeatures Optional This is an array identifying features supported by the
implementation. The valid values are '2' (none) or '3' (Client
Defined Sequence).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 277

Block Server Performance Subprofile NO_ANSI_ID

1921

1922

1923

1924
Modified By: Extrinsic: AddOrModifyManifest

Deleted By: Extrinsic: RemoveManifest

Requirement: Optional

Table 149 describes class SNIA_BlockStatisticsManifest (Client Defined).

Table 149 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Client
Defined)

Properties Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

ElementType Mandatory

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeReadHitIOTimeCount
er

Mandatory

IncludeKBytesRead Mandatory

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeWriteHitIOTimeCount
er

Mandatory

IncludeKBytesWritten Mandatory

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory
278

NO_ANSI_ID Block Server Performance Subprofile

1925

1926

1927

1928

1929

1930

1931
7.8.30 SNIA_BlockStatisticsManifest (Provider Support)

Experimental. This is a subclass of CIM_BlockStatisticsManifest that adds the CSVSequence property.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 150 describes class SNIA_BlockStatisticsManifest (Provider Support).

IncludeMaintTimeCounter Mandatory

CSVSequence Mandatory An array of strings that define a sequence of
BlockStorageStatisticalData property names. The sequence is
the sequence that data is to be returned on a
GetStatisticsCollection request using this manifest. The first
three elements of this array should be "InstanceID",
"ElementType" and "StatisticsTime" to allow applications to
match the ElementType of the Manifest with the
BlockStorageStatisticalData CSV record. For
BlockStatisticsManifest (Client Defined) this shall be the
sequence desired by the client.

Table 150 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Provider Sup-
port)

Properties Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

ElementType Mandatory

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeReadHitIOTimeCount
er

Mandatory

IncludeKBytesRead Mandatory

Table 149 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Client
Defined)

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 279

Block Server Performance Subprofile NO_ANSI_ID
STABLE

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeWriteHitIOTimeCount
er

Mandatory

IncludeKBytesWritten Mandatory

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

CSVSequence Mandatory An array of strings that define a sequence of
BlockStorageStatisticalData property names. The sequence is
the sequence that data is to be returned on a
GetStatisticsCollection request using this manifest. The first
three elements of this array shall be "InstanceID",
"ElementType" and "StatisticsTime" to allow applications to
match the ElementType of the Manifest with the
BlockStorageStatisticalData CSV record. For
BlockStatisticsManifest (Provider Support) this shall be the
default sequence provided by the provider.

Table 150 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Provider Sup-
port)

Properties Requirement Description & Notes
280

NO_ANSI_ID CKD Block Services Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
EXPERIMENTAL

Clause 8: CKD Block Services Profile

8.1 Description

8.1.1 Synopsis

Profile Name: CKD Block Services

Version: 1.2.0

Organization: SNIA

CIM schema version: 2.15

Central Class: CIM_StoragePool

Scoping Class: CIM_System

8.1.2 Overview

The CKD Block Services Profile models CKD (Count Key Data) storage of a block server storage system. CKD
storage is storage that is formatted to support Count and Key fields to support mainframe access. CKD storage is
at the StorageVolume level (which means the StorageVolume is access using single byte FC protocols) or at the
StoragePool level (that is, a StoragePool may be dedicated to holding CKD StorageVolumes).

The CKD Block Services Profile is a component profile (subprofile) that provides a way for storage profiles to
model mainframe storage. With this support a client will be able to distinguish non-CKD storage that is provided for
non-CKD access from CKD storage that is provided for mainframe access. This is an important distinction for
management, since storage that is available to one (e.g., SCSI access) is typically not usable by the other (e.g.,
mainframe access), although there are some devices that do support sharing a volume across CKD and non-CKD
hosts. Similarly, management functions for other functions of block servers (e.g., masking and mapping) are
somewhat different for CKD storage than non-CKD storage. So, it is important for management applications to be
aware of the distinctions.

The CKD Block Services requires and specializes the Block Services Package. That is, the functions of the Block
Services Package apply for CKD storage as well as non-CKD storage. The CKD Block Services Profile extends the
model for CKD storage.

8.1.3 Implementation

8.1.3.1 Block Services Support for CKD Storage

Some profile implementations may support Extended Count Key Data formatted storage. This support is provided
using existing classes, but adds some new properties as illustrated in Figure 45: "Block Services Support for
Count Key Data Storage".
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 281

CKD Block Services Profile NO_ANSI_ID

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
CKD storage may apply to StoragePools (via StorageCapabilities), StorageVolumes or LogicalDisks. CKD storage
is indicated by the DataOrganization property in StorageVolume and LogicalDisk classes. For SMI-S the values of
this property shall be “4” for CKD Volumes (or LogicalDisks). The capability of a StoragePool to support either (or
both) non-CKD or CKD volumes is indicated by the SupportedDataOrganizations[] property of StorageCapabilities
associated to the StoragePool.

DataOrganization can be specified on StorageSetting to indicate that an CKD Volume is desired on either of the
Volume creation methods. If this property is left as null, it will be set according to the StoragePool that is being
used. If the StoragePool supports both non-CKD and CKD storage, then the default will be to create a non-CKD
volume (or LogicalDisk) for backward compatibility. This property exists in StorageVolume, LogicalDisk, and
StorageSetting classes.

An additional difference between non-CKD and CKD Volumes are the NameFormats supported. For CKD
Volumes, the volumes follow a Node Element Descriptor (NED) format. For non-CKD volumes there are a variety
of formats that may be supported.

Certain instrumentation supports the use of a volume for both CKD and non-CKD hosts. These volumes are called
Intermediate volumes in this specification. A StorageVolume can be classified as non-CKD, CKD, or both. The
StorageVolume.DataOrganization property indicates the data format of the volume, while the new StorageVolume
ExtentType property indicates the type of host access allowed (CKD, non-CKD, both). Since this volume is shared
across CKD and non-CKD hosts, it has a different name for each host. The Name property is used by Intermediate
volumes for non-CKD hosts to provide for backwards compatibility, and the OtherIdentifyingInfo[] and
IdentifyingDescriptions[] holds the CKD name and format information.

There is also a CUImage property on both the SNIA_StorageVolume and the SNIA_StorageSetting. In the SB
architecture and CKD access the CKD Volume has a “home” ProtocolController (in a Masking and Mapping
sense). This property is covered in more detail in (need a Masking and Mapping reference here). But an CKD
Volume cannot exist without an associated CUImage (ProtocolController). This is accommodated by the CUImage
property on StorageSetting. That is, on creation of an CKD Volume the CUImage parameter is passed as part of
the StorageSetting for the Volume being created. The CUImage in the SNIA_StorageSetting is the CUImage
requested and the CUImage in the SNIA_StorageVolume is the CUImage assigned. CUImage is not supported for
LogicalDisks.

Figure 45 - Block Services Support for Count Key Data Storage

S N I A _ S t o r a g e V o lu m e

N a m e
N a m e F o r m a t = ” 1 2 "

D a t a O r g a n i z a t i o n = ” C K D ”
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v i c e
E x t e n t T y p e = ” 4 "

S t o r a g e P o o l

A l l o c a t e d F r o m S t o r a g e P o o l

E l e m e n t S e t t i n g D a t a

S N I A _ S t o r a g e S e t t i n g

D a t a O r g a n i z a t i o n = ” C K D ”
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v i c e
E x t e n t T y p e = ” 4 "

C o m p u t e r S y s t e m :

S y s t e m D e v i c e

S N I A _ S t o r a g e C a p a b i l i t i e s

S u p p o r t e d D a t a O r g a n i z a t i o n s [] =
a n y t h i n g | “ C K D ”

S u p p o r t e d E x t e n t T y p e s []

E le m e n t C a p a b i l i t i e s

 L o g i c a lD i s k

N a m e
N a m e F o r m a t < “ 1 2 ”

D a t a O r g a n i z a t i o n = N U L L

E le m e n t S e t t i n g D a t a

S t o r a g e S e t t i n g

D a t a O r g a n i z a t i o n = N U L L

S y s t e m D e v i c e
S N I A _ S t o r a g e V o lu m e
(i n t e r m e d ia t e V o lu m e)

N a m e
N a m e F o r m a t < “ 1 2 ”

D a t a O r g a n i z a t i o n = ” C K D ”
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v i c e
E x t e n t T y p e = ” 3 "

O t h e r I d e n t i f y i n g I n f o = N E D

S y s t e m D e v i c e

S N I A _ S t o r a g e S e t t i n g

D a t a O r g a n i z a t i o n = ” C K D ”
C U I m a g e

S u b s y s t e m I D
E m u l a t e d D e v i c e
E x t e n t T y p e = ” 3 "

E le m e n t S e t t i n g D a t a

A l l o c a t e d F r o m S t o r a g e P o o l
282

NO_ANSI_ID CKD Block Services Profile

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103
A host can see more than 16 CU images by changing the SSID associated with the image. For example, there can
be two CU images with the same image number but with different SSIDs. Thus, the same CU image numbers can
be in use multiple times within the array and the host as long as each image has a unique SubsystemID. The
second CU image with the same number is known as a “split."

Mainframe systems use the SubsystemID to locate physical disk controllers, and all devices in the CU image shall
have the same SubsystemID. If the CU image that is specified does not exist yet, the SubsystemID of the first
device is used as the SubsystemID of the CU image. If the CU image already exists and contains other devices
(and thus a SubsystemID), the SubsystemIDs of the newly mapped devices are changed to match the existing
SubsystemID of the CU image.

8.1.3.2 Use Cases for CKD Storage

8.1.3.2.1 Summarize Pools and Capacities by SupportedDataOrganizations

Primordial StoragePools may be capable of supporting non-CKD, CKD or both non-CKD and CKD storage. This
can be determined by inspecting the SupportedDataOrganizations property of the StorageCapabilities of the
primordial StoragePool. If the property is NULL or not “4”, then the pool only supports non-CKD storage and all
concrete StoragePools allocated from this Primordial StoragePool shall only support non-CKD storage. Similarly, if
the property only identifies “4” (Count Key Data), then the pool only supports CKD storage and all concrete
StoragePools allocated from this primordial StoragePool shall only support CKD storage.

If the StorageCapabilities.SupportedDataOrganizations property for primordial StoragePool identifies both “4”
(Count Key Data) and something else (including NULL), then the storage allocated from the pool can be either non-
CKD or CKD storage. It will be necessary to follow the AllocatedFromStoragePool association to the concrete
StoragePools above the primordial StoragePool. As the client moves up the AllocatedFromStoragePool
association, it would keep track of the SpaceConsumed value in the AllocatedFromStoragePool. If all concrete
StoragePools are also capable of both non-CKD and CKD storage, then the primordial capacity of the storage is
considered capable of supporting both non-CKD and CKD Volumes (or LogicalDisks).

If, however, the client reaches a concrete StoragePool that is only capable of supporting non-CKD or CKD storage,
then the SpaceConsumed value by that StoragePool would be considered either non-CKD or CKD. It may be
necessary to “pro-rate” the SpaceConsumed value to determine the actual primordial storage that has been
allocated to non-CKD or CKD.

8.1.3.2.2 Find the Capacity of CKD Capable Storage

Building on the previous use case, a client would determine the capacity of primordial StoragePools that are only
CKD capable (that is, StorageCapabilities.SupportedDataOrganization = “4” and only “4”. This capacity is
dedicated to CKD storage.

Next the client would consider primordial StoragePools that are capable of both non-CKD and CKD storage. The
client would inspect the concrete StoragePools that are allocated from those primordial StoragePools. If any are
identified as CKD only, the SpaceConsumed property on the AllocatedFromStoragePool will indicate the primordial
storage that is dedicated to CKD.

If the concrete StoragePool just above the primordial StoragePool is also capable of supporting non-CKD or CKD
storage, divide the SpaceConsumed value by the TotalManagedSpace value of the concrete StoragePool and save
this “multiplier”.

The client would continue executing the previous step until it finds a concrete StoragePool that only supports non-
CKD storage. At this point, the client would multiply all the multipliers it has saved away to derive the amount of
primordial space that has been dedicated to non-CKD storage. This value would be subtracted from the
TotalManagedSpace value of the primordial StoragePool to determine the primordial capacity available for CKD
storage. The client would execute this logic on all upper level concrete StoragePools that are identified as non-
CKD only to get the remaining primordial capacity available for CKD storage.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 283

CKD Block Services Profile NO_ANSI_ID

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122
8.1.3.2.3 Create an CKD Volume

To create an CKD Volume (or LogicalDisk) a client would create a StorageSetting (or select a SettingAssociated to
Capabilities) with DataOrganization set to “4” and the CUImage set to a valid CUImage value.

With the appropriate CKD Volume Setting the client would issue either CreateOrModifyElementFromStoragePool
or CreateOrModifyElementFromElements.

8.2 Health and Fault Management Consideration

No change for CKD.

8.3 Cascading Considerations

No change for CKD.

8.4 Supported Profiles, Subprofiles, and Packages

Table 151 describes the supported profiles for CKD Block Services.

8.5 Methods of the Profile

All methods of the Block Services Package should work for CKD storage (subject to restrictions of particular profile
implementations).

8.6 Client Considerations and Recipes

No change for CKD.

8.7 Registered Name and Version

CKD Block Services version 1.3.0 (Component Profile)

Specializes SNIA Block Services version 1.5.0

Table 151 - Supported Profiles for CKD Block Services

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.5.0 Optional

Block Services SNIA 1.5.0 Mandatory
284

NO_ANSI_ID CKD Block Services Profile

123

124
8.8 CIM Elements

Table 152 describes the CIM elements for CKD Block Services.

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description

8.8.1 CIM_AllocatedFromStoragePool Mandatory The CIM_AllocatedFromStoragePool
associates a Storage Element (Volume,
LogicalDisk or StoragePool) to its parent
StoragePool. There are no enhancements for
CKD.

8.8.2 CIM_AllocatedFromStoragePool (Pool
from Pool)

Mandatory AllocatedFromStoragePool.

8.8.3 CIM_AllocatedFromStoragePool
(Volume or LogicalDisk from Pool)

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory.
AllocatedFromStoragePool.

8.8.4 CIM_ElementCapabilities Mandatory The CIM_ElementCapabilities associates a
StoragePool or StorageConfigurationService
to its Capabilities (StorageCapabilities and
StorageConfigurationCapabilities). There are
no enhancements for CKD.

8.8.5 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageVolume or LogicalDisk)

Optional Expressed the ability for the element to be
named or have its state changed.

8.8.6 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StoragePool)

Optional Expressed the ability for the element to be
named or have its state changed.

8.8.7 CIM_ElementCapabilities
(StorageCapabilities to
StorageConfigurationService)

Optional Associates StorageCapabilities with
StorageConfigurationService. This
StorageCapabilities shall represent the
capabilities of the entire implementation.

8.8.8 CIM_ElementCapabilities
(StorageCapabilities to StoragePool)

Mandatory Associates StorageCapabilities with
StoragePool. This StorageCapabilities shall
represent the capabilities of the StoragePool
to which it is associated.

8.8.9 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities
with StorageConfigurationService.

8.8.10 CIM_ElementCapabilities
(StorageConfigurationCapabilities to concrete
StoragePool)

Optional Associates StorageConfigurationCapabilities
with StoragePool.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 285

CKD Block Services Profile NO_ANSI_ID
8.8.11 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
primordial StoragePool)

Optional Associates StorageConfigurationCapabilities
with StoragePool.

8.8.12 CIM_ElementCapabilities (Used to
declare the naming capabilities of the
StoragePool)

Optional Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

8.8.13 CIM_ElementCapabilities (Used to
declare the naming capabilities of the
StorageVolume or LogicalDisk)

Optional Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

8.8.14 CIM_ElementSettingData Mandatory The CIM_ElementSettingData associates a
StorageVolume (or LogicalDisk) to its
StorageSetting. There are no enhancements
for CKD.

8.8.15
CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Optional This class is used to express the naming and
possible requested state change possibilities
for storage elements.

8.8.16
CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Optional This class is used to express the naming and
possible requested state change possibilities
for storage pools.

8.8.17 CIM_FilterCollection (Block Services
Predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

8.8.18 CIM_HostedCollection (System to
predefined IndicationFilters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

8.8.19 CIM_HostedService Optional This associates the
StorageConfigurationService to its scoping
system. This is unchanged for CKD storage.

8.8.20 CIM_HostedStoragePool Mandatory

8.8.21 CIM_IndicationFilter (Logical Disk
Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the addition of a new LogicalDisk
instance.

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description
286

NO_ANSI_ID CKD Block Services Profile
8.8.22 CIM_IndicationFilter (Logical Disk
Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the deletion of a LogicalDisk
instance.

8.8.23 CIM_IndicationFilter (Logical Disk
OperationalStatus)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of LogicalDisk instances.

8.8.24 CIM_IndicationFilter (Storage Pool
Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the addition of a new StoragePool
instance.

8.8.25 CIM_IndicationFilter (Storage Pool
Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the deletion of a StoragePool
instance.

8.8.26 CIM_IndicationFilter (Storage Pool
TotalManagedSpace)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in TotalManagedSpace
for StoragePool instances.

8.8.27 CIM_IndicationFilter (Storage Volume
Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the addition of a new
StorageVolume instance.

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 287

CKD Block Services Profile NO_ANSI_ID
8.8.28 CIM_IndicationFilter (Storage Volume
Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the deletion of a StorageVolume
instance.

8.8.29 CIM_IndicationFilter (Storage Volume
OperationalStatus)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of StorageVolume instances.

8.8.30 CIM_IndicationFilter (WQL Logical Disk
OperationalStatus)

Conditional Deprecated. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' WQL version of the
CIM_IndicationFilter instance for changes in
the OperationalStatus of LogicalDisk
instances.

8.8.31 CIM_IndicationFilter (WQL Storage
Volume OperationalStatus)

Conditional Deprecated. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' WQL version of the
CIM_IndicationFilter instance for changes in
the OperationalStatus of StorageVolume
instances.

8.8.32 CIM_LogicalDisk Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. A LogicalDisk is allocated from a
concrete StoragePool. This is required if the
parent profile supports LogicalDisks.

8.8.33 CIM_MemberOfCollection (Block
Services Filter Collection to FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Block
Services predefined FilterCollection to the
FilterCollection for the autonomous profile
(e.g., the Array FilterCollection).

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description
288

NO_ANSI_ID CKD Block Services Profile
8.8.34 CIM_MemberOfCollection (Predefined
Filter Collection to Block Services Filters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Block
Services predefined FilterCollection to the
predefined Filters supported by the
implementation.

8.8.35 CIM_OwningJobElement Conditional Conditional requirement: Support for Job
Control profile.

8.8.36 CIM_StorageConfigurationCapabilities Optional These Capabilities define the capabilities
provided by the
CIM_StorageConfigurationService.

8.8.37 CIM_StorageConfigurationCapabilities
(Concrete)

Optional

8.8.38 CIM_StorageConfigurationCapabilities
(Global)

Conditional Conditional requirement: Support for
StorageConfigurationService.

8.8.39 CIM_StorageConfigurationCapabilities
(Primordial)

Optional

8.8.40 CIM_StorageConfigurationService Optional This service provides method for volume and
pool manipulation. There are no
enhancements for CKD storage.

8.8.41 CIM_StoragePool Mandatory Primordial and Concrete Pools. These are
unchanged for CKD storage.

8.8.42 CIM_StoragePool (Concrete) Mandatory The concrete StoragePool. A concrete
StoragePool shall be allocated from another
StoragePool. It shall be used for allocating
StorageVolumes and LogicalDisks as well as
other concrete StoragePools.

8.8.43 CIM_StoragePool (Empty) Optional An empty StoragePool is a special case of a
StoragePool (Concrete or Primordial) where
the StoragePool contains no capacity.

8.8.44 CIM_StoragePool (Primordial) Mandatory The primordial StoragePool. It is created by
the provider and cannot be deleted or
modified. It cannot be used to allocate any
storage element other than concrete
StoragePools.

8.8.45 CIM_StorageSettingWithHints Optional These are hints that can be added to
StorageSetting. There are no enhancements
for CKD.

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 289

CKD Block Services Profile NO_ANSI_ID
8.8.46
CIM_StorageSettingsAssociatedToCapabilitie
s

Optional This class associates the StorageCapabilities
with the pre-defined setting. There are no
enhancements for CKD.

8.8.47
CIM_StorageSettingsGeneratedFromCapabilit
ies

Optional This class associates the StorageCapabilities
with the StorageSetting generated from it via
the CreateSetting method. There are no
enhancements for CKD.

8.8.48 CIM_SystemDevice (System to
StorageVolume or LogicalDisk)

Mandatory Associates top level system from Array,
Virtualizer, ... to StorageVolume or
LogicalDisk.

8.8.49 SNIA_StorageCapabilities Mandatory These Capabilities define the capabilities
provided by a CIM_StoragePool. This includes
the capability to support SCSI and/or CKD
storage.

8.8.50 SNIA_StorageSetting Mandatory The SNIA_StorageSettings define the settings
for a given StorageVolume (or LogicalDisk).
This includes the Setting for whether or not
the volume is SCSI or CKD.

8.8.51 SNIA_StorageVolume Conditional Conditional requirement: Referenced from
either Array or Storage Virtualizer -
StorageVolume is mandatory. A logical unit
representing a virtual disk. A StorageVolume
is allocated from a concrete StoragePool. The
StorageVolume is enhanced for CKD.

8.8.52 SNIA_StorageVolume Optional An optional extension of CIM_StorageVolume.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool. See section
Storage Management Technical Specification,
Part 3 Block Devices, 1.5.0 Rev 6 5.8.22
CIM_IndicationFilter (Storage Pool Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.23
CIM_IndicationFilter (Storage Pool Deletion).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. Creation of
StorageVolume, if the StorageVolume storage
element is implemented. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.25
CIM_IndicationFilter (Storage Volume
Creation).

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description
290

NO_ANSI_ID CKD Block Services Profile
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. Deletion of
StorageVolume, if the StorageVolume storage
element is implemented. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.26
CIM_IndicationFilter (Storage Volume
Deletion).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. Deprecated
WQL -Change of status of a Storage Volume,
if Storage Volume is implemented. See
section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.29 CIM_IndicationFilter (WQL Storage
Volume OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::Operati
onalStatus <>
PreviousInstance.CIM_StorageVolume::Oper
ationalStatus

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller -
StorageVolume is mandatory. CQL -Change
of status of a Storage Volume, if Storage
Volume is implemented. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.27
CIM_IndicationFilter (Storage Volume
OperationalStatus).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Creation of LogicalDisk, if the
LogicalDisk storage element is implemented.
See section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.19 CIM_IndicationFilter (Logical Disk
Creation).

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 291

CKD Block Services Profile NO_ANSI_ID

125

126

127

128
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Deletion of LogicalDisk, if the
LogicalDisk storage element is implemented.
See section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.20 CIM_IndicationFilter (Logical Disk
Deletion).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Deprecated WQL -Change of
status of LogicalDisk, if LogicalDisk is
implemented. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 5.8.28
CIM_IndicationFilter (WQL Logical Disk
OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::Operationa
lStatus <>
PreviousInstance.CIM_LogicalDisk::Operation
alStatus

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. CQL -Change of status of
LogicalDisk, if LogicalDisk is implemented.
See section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.21 CIM_IndicationFilter (Logical Disk
OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalMana
gedSpace <>
PreviousInstance.CIM_StoragePool::TotalMan
agedSpace

Mandatory CQL -Change of TotalManagedSpace. See
section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 5.8.24 CIM_IndicationFilter (Storage Pool
TotalManagedSpace).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from
either Array or Storage Virtualizer -
StorageVolume is mandatory. Creation of
StorageVolume, if the StorageVolume storage
element is implemented.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from
either Array or Storage Virtualizer -
StorageVolume is mandatory. Deletion of
StorageVolume, if the StorageVolume storage
element is implemented.

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description
292

NO_ANSI_ID CKD Block Services Profile

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146
8.8.1 CIM_AllocatedFromStoragePool

This class is unchanged from the Block Services Package.

Requirement: Mandatory

8.8.2 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from
either Array or Storage Virtualizer -
StorageVolume is mandatory. Deprecated
WQL -Change of status of a Storage Volume,
if Storage Volume is implemented.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::Operati
onalStatus <>
PreviousInstance.CIM_StorageVolume::Oper
ationalStatus

Conditional Conditional requirement: Referenced from
either Array or Storage Virtualizer -
StorageVolume is mandatory. CQL -Change
of status of a Storage Volume, if Storage
Volume is implemented.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Creation of LogicalDisk, if the
LogicalDisk storage element is implemented.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Deletion of LogicalDisk, if the
LogicalDisk storage element is implemented.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Deprecated WQL -Change of
status of LogicalDisk, if LogicalDisk is
implemented.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::Operationa
lStatus <>
PreviousInstance.CIM_LogicalDisk::Operation
alStatus

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. CQL -Change of status of
LogicalDisk, if LogicalDisk is implemented.

Table 152 - CIM Elements for CKD Block Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 293

CKD Block Services Profile NO_ANSI_ID

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161
Table 153 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

8.8.3 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage Virtualizer -
StorageVolume is mandatory or Referenced from Host Hardware RAID Controller - StorageVolume is mandatory.

Table 154 describes class CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool).

8.8.4 CIM_ElementCapabilities

This class is unchanged from the Block Services Package.

Requirement: Mandatory

8.8.5 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 153 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from
Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory Antecedent references the parent pool from which the
dependent pool is allocated.

Dependent Mandatory

Table 154 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or
LogicalDisk from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory
294

NO_ANSI_ID CKD Block Services Profile

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176
Table 155 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or
LogicalDisk).

8.8.6 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 156 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool).

8.8.7 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 157 describes class CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService).

Table 155 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory A Storage Volume or Logical Disk.

Table 156 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object
(CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is
associated with a storage pool.

ManagedElement Mandatory A reference to an instance of a StoragePool.

Table 157 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabili-
ties to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 295

CKD Block Services Profile NO_ANSI_ID

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194
8.8.8 CIM_ElementCapabilities (StorageCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 158 describes class CIM_ElementCapabilities (StorageCapabilities to StoragePool).

8.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 159 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

8.8.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 158 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabili-
ties to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 159 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigura-
tionCapabilities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
296

NO_ANSI_ID CKD Block Services Profile

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210
Table 160 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool).

8.8.11 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 161 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool).

8.8.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying the
capability to provide an element name for storage pools.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 160 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigura-
tionCapabilities to concrete StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 161 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigura-
tionCapabilities to primordial StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 297

CKD Block Services Profile NO_ANSI_ID

211

212

213

214

215

216

217

218

219

220
Table 162 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool).

8.8.13 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or
LogicalDisk)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying the
capability to provide an element name for storage volumes or logical disks.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 163 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk).

8.8.14 CIM_ElementSettingData

This class is unchanged from the Block Services Package.

Requirement: Mandatory

8.8.15 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)

Created By: Static

Table 162 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the
naming capabilities of the StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object
(CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is
associated with an instance of
StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of
CIM_StorageConfigurationService.

Table 163 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the
naming capabilities of the StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object
(CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StorageVolume Enabled Capabilities" or
"LogicalDisk Enabled Capacilities" that is associated with
an instance of StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of
CIM_StorageConfigurationService.
298

NO_ANSI_ID CKD Block Services Profile

221

222

223

224

225

226

227

228

229

230

231
Modified By: Static

Deleted By: Static

Requirement: Optional

Table 164 describes class CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService).

8.8.16 CIM_EnabledLogicalElementCapabilities (For StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 165 describes class CIM_EnabledLogicalElementCapabilities (For StoragePool).

Table 164 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should include one of
the following three values:

StoragePool Enabled Capabilities

StorageVolume Enabled Capabilities

LogicalDisk Enabled Capacilities.

ElementNameEditSu
pported

Mandatory Denotes whether a storage element can be named.

MaxElementNameLe
n

Mandatory Specifies the maximum length in glyphs (letters) for the
name. See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content
and format for the element name. See MOF for details.

RequestedStatesSup
ported

Optional Expresses the states to which this element may be
changed using the RequestStateChange method. If this
property, it may be assumed that the state may not be
changed.

Table 165 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should be
'StoragePool Enabled Capabilities'.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 299

CKD Block Services Profile NO_ANSI_ID

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247
8.8.17 CIM_FilterCollection (Block Services Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Block Services
implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 166 describes class CIM_FilterCollection (Block Services Predefined FilterCollection).

8.8.18 CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

ElementNameEditSu
pported

Mandatory Denotes whether a storage element can be named.

MaxElementNameLe
n

Mandatory Specifies the maximum length in glyphs (letters) for the
name. See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content
and format for the element name. See MOF for details.

RequestedStatesSup
ported

Optional Expresses the states to which this element may be
changed using the RequestStateChange method. If this
property, it may be assumed that the state may not be
changed.

Table 166 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Pre-
defined FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Block
Services'.

Table 165 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Properties Flags Requirement Description & Notes
300

NO_ANSI_ID CKD Block Services Profile

248

249

250

251

252

253

254

255

256
Table 167 describes class CIM_HostedCollection (System to predefined IndicationFilters).

8.8.19 CIM_HostedService

This class is unchanged from the Block Services Package.

Requirement: Optional

8.8.20 CIM_HostedStoragePool

Requirement: Mandatory

Table 168 describes class CIM_HostedStoragePool.

8.8.21 CIM_IndicationFilter (Logical Disk Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new LogicalDisk instance.
This would typically occur as a result of an invocation of CreateOrModifyElementFromStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 167 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined
IndicationFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Block
Services.

Antecedent Mandatory Reference to the System of the referencing profile.

Table 168 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 301

CKD Block Services Profile NO_ANSI_ID

257

258

259

260

261

262

263

264

265

266

267

268
Table 169 describes class CIM_IndicationFilter (Logical Disk Creation).

8.8.22 CIM_IndicationFilter (Logical Disk Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a LogicalDisk instance. This
would typically occur as a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 169 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
302

NO_ANSI_ID CKD Block Services Profile

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283
Table 170 describes class CIM_IndicationFilter (Logical Disk Deletion).

8.8.23 CIM_IndicationFilter (Logical Disk OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
LogicalDisk instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 170 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 303

CKD Block Services Profile NO_ANSI_ID

284

285

286

287

288

289

290

291

292

293
Table 171 describes class CIM_IndicationFilter (Logical Disk OperationalStatus).

8.8.24 CIM_IndicationFilter (Storage Pool Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StoragePool instance.
This would typically occur as a result of an invocation of CreateOrModifyStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 171 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Operation-
alStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
304

NO_ANSI_ID CKD Block Services Profile

294

295

296

297

298

299

300

301

302

303
Table 172 describes class CIM_IndicationFilter (Storage Pool Creation).

8.8.25 CIM_IndicationFilter (Storage Pool Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StoragePool instance. This
would typically occur as a result of an invocation of DeleteStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 172 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 305

CKD Block Services Profile NO_ANSI_ID

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320
Table 173 describes class CIM_IndicationFilter (Storage Pool Deletion).

8.8.26 CIM_IndicationFilter (Storage Pool TotalManagedSpace)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in TotalManagedSpace for
StoragePool instances. This would typically occur as a result of an invocation of CreateOrModifyStoragePool that
expands a StoragePool.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 173 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
306

NO_ANSI_ID CKD Block Services Profile

321

322

323

324

325

326

327

328

329

330

331

332

333

334
Table 174 describes class CIM_IndicationFilter (Storage Pool TotalManagedSpace).

8.8.27 CIM_IndicationFilter (Storage Volume Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StorageVolume
instance. This would typically occur as a result of an invocation of CreateOrModifyElementFromStoragePool
method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 174 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalMan-
agedSpace)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StoragePoolTotalManagedSpace'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace <>
PreviousInstance.CIM_StoragePool::TotalManagedSpace.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 307

CKD Block Services Profile NO_ANSI_ID

335

336

337
Table 175 describes class CIM_IndicationFilter (Storage Volume Creation).

8.8.28 CIM_IndicationFilter (Storage Volume Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StorageVolume instance.
This would typically occur as a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Table 175 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Cre-
ation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
308

NO_ANSI_ID CKD Block Services Profile

338

339

340

341

342

343

344

345

346

347

348

349

350
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 176 describes class CIM_IndicationFilter (Storage Volume Deletion).

8.8.29 CIM_IndicationFilter (Storage Volume OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
StorageVolume instances.

Created By: Static

Modified By: Static

Table 176 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Dele-
tion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 309

CKD Block Services Profile NO_ANSI_ID

351

352

353

354

355

356

357

358

359

360

361
Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 177 describes class CIM_IndicationFilter (Storage Volume OperationalStatus).

8.8.30 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

Created By: Static

Table 177 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Opera-
tionalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
310

NO_ANSI_ID CKD Block Services Profile

362

363

364

365

366

367
Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 178 describes class CIM_IndicationFilter (WQL Logical Disk OperationalStatus).

8.8.31 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolume instances.

Table 178 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk Oper-
ationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:LogicalDiskOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 311

CKD Block Services Profile NO_ANSI_ID

368

369

370

371

372

373
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 179 describes class CIM_IndicationFilter (WQL Storage Volume OperationalStatus).

8.8.32 CIM_LogicalDisk

LogicalDisks could be formatted as CKD disks. The Properties that are different from what is specified in the Block
Services Package have descriptive text. Properties that are unchanged from the Block Services Package are

Table 179 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume
OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
312

NO_ANSI_ID CKD Block Services Profile

374

375

376

377

378

379

380

381
omitted from the table. EDITORIAL NOTE: Although there is no immediate need for a LogicalDisk to be CKD, this
is likely to show up in SMI-S sometime. DataOrganization is defined on the StorageExtent, so I think it makes
sense to show it as a property of LogicalDisk. The class definition specializes the CIM_LogicalDisk definition in the
Block Services profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in
the left most column.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 180 describes class CIM_LogicalDisk.

Table 180 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize
(overridden)

Mandatory The BlockSize would report the number of bytes in a
cylinder.

NumberOfBlocks
(overridden)

Mandatory The number of blocks would be the number of cylinders.

ConsumableBlocks
(overridden)

Mandatory The number of usable cylinders.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 313

CKD Block Services Profile NO_ANSI_ID

382

383

384

385

386

387

388
8.8.33 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)

Experimental. This associates the Block Services predefined FilterCollection to the FilterCollection for the
autonomous profile (e.g., the Array FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 181 describes class CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection).

8.8.34 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)

Experimental. This associates the Block Services predefined FilterCollection to the predefined Filters supported by
the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.

DataOrganization
(added)

Mandatory Supported value for SMI-S is "4" (Count Key Data). Values
that are not "4" are for non-CKD LogicalDisks. CKD
LogicalDisks use "4".

Table 181 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Fil-
ter Collection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined
FilterCollection.

Member Mandatory Reference to the Block Services predefined
FilterCollection.

Table 180 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
314

NO_ANSI_ID CKD Block Services Profile

389

390

391

392

393

394

395

396

397

398

399

400

401

402
Table 182 describes class CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters).

8.8.35 CIM_OwningJobElement

Conditional on support for Job Control profile.

Requirement: Support for Job Control profile.

Table 183 describes class CIM_OwningJobElement.

8.8.36 CIM_StorageConfigurationCapabilities

The Properties that are different from what is specified in the Block Services Package have descriptive text.
Properties that are unchanged from the Block Services Package are omitted from the tables.

Created By: Static

Requirement: Optional

8.8.37 CIM_StorageConfigurationCapabilities (Concrete)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 182 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Block Services Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined
FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Block
Services implementation.

Table 183 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 315

CKD Block Services Profile NO_ANSI_ID

403

404

405

406

407

408

409

410

411
Table 184 describes class CIM_StorageConfigurationCapabilities (Concrete).

8.8.38 CIM_StorageConfigurationCapabilities (Global)

Table 184 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Con-
crete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool
or Storage Pool QoS Change or Storage Pool Capacity
Expansion or Storage Pool Capacity Reduction).

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "4" (Storage Pool Modification),
"5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element
Modification) or "15" (StoragePool Usage Modification).

SupportedStorageEle
mentTypes

Mandatory Lists the type of storage elements that are supported by
this implementation. This version of the standard
recognizes '2' (StorageVolume) or '4' (LogicalDisk).

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "4" (Storage Pool Modification),
"5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element
Modification) or "15" (StoragePool Usage Modification).

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). Matches 3|8 (StorageVolume Creation or
LogicalDisk Creation).

SupportedStorageEle
mentUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElemen
tUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.
316

NO_ANSI_ID CKD Block Services Profile

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 185 describes class CIM_StorageConfigurationCapabilities (Global).

8.8.39 CIM_StorageConfigurationCapabilities (Primordial)

Table 185 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities
(Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool
or Storage Pool QoS Change or Storage Pool Capacity
Expansion or Storage Pool Capacity Reduction).

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs.

SupportedStorageEle
mentTypes

Mandatory Lists the type of storage elements that are supported by
this implementation.

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs.

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). Matches 3|5|8|9|11|12|13 (StorageVolume
Creation or StorageVolume Modification or LogicalDisk
Creation or LogicalDisk Modification or Storage Element
QoS Change or Storage Element Capacity Expansion or
Storage Element Capacity Reduction).

SupportedStorageEle
mentUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElemen
tUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 317

CKD Block Services Profile NO_ANSI_ID
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 186 describes class CIM_StorageConfigurationCapabilities (Primordial).

Table 186 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Pri-
mordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3 (InExtents or Single InPool).

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from
Element Creation) or "15" (StoragePool Usage
Modification).

SupportedStorageEle
mentTypes

Optional Lists the type of storage elements that are supported by
this implementation. This version of the standard does not
recognize any values for this property.

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from
Element Creation) or "15" (StoragePool Usage
Modification).

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). This version of the standard does not recognize
any values for this property. For Primordial pools, this shall
not contain 3 (StorageVolume Creation), 5 (StorageVolume
Modification), 8 (LogicalDisk Creation) or 9 (LogicalDisk
Modification).

SupportedStorageEle
mentUsage

Optional For Primordial StorageConfigurationCapabilities, this shall
be NULL.

ClientSettableElemen
tUsage

Optional For Primordial StorageConfigurationCapabilities, this shall
be NULL.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.
318

NO_ANSI_ID CKD Block Services Profile

433

434

435

436

437

438

439

440

441

442

443
8.8.40 CIM_StorageConfigurationService

This class is unchanged from the Block Services Package. The changes are in the StorageCapabilities and
StorageSettings associated with these methods.

Created By: Static

Requirement: Optional

8.8.41 CIM_StoragePool

This class is unchanged from the Block Services Package. Changes for StoragePools are in the
StorageCapabilities associated to the StoragePools.

Requirement: Mandatory

8.8.42 CIM_StoragePool (Concrete)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 187 describes class CIM_StoragePool (Concrete).

Table 187 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies
this Pool.

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService. List the discrete storage
element sizes that can be created or expanded from this
Pool.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 319

CKD Block Services Profile NO_ANSI_ID

444

445

446

447

448
8.8.43 CIM_StoragePool (Empty)

An empty StoragePool is a special case of a StoragePool where the StoragePool contains no capacity. All
properties are supported as defined for the StoragePool (Concrete or Primordial), except that the empty
StoragePool has TotalManagedSpace=0.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Optional

Table 188 describes class CIM_StoragePool (Empty).

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService. List the size ranges for
storage element that can be created or expanded from this
Pool.

GetAvailableExtents(
)

Optional List the StorageExtents from this Pool that may be used to
create or expand a storage element. The StorageExtents
may not already be in use as supporting capacity for
existing storage element.

Table 188 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and
primordial StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManaged
Space

Mandatory

Usage Optional

OtherUsageDescripti
on

Optional

ClientSettableUsage Optional

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService.

Table 187 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes
320

NO_ANSI_ID CKD Block Services Profile

449

450

451

452

453

454

455
8.8.44 CIM_StoragePool (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 189 describes class CIM_StoragePool (Primordial).

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService.

GetAvailableExtents(
)

Optional

Table 189 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies
this Pool.

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService. List the discrete storage
element sizes that can be created or expanded from this
Pool.

Table 188 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 321

CKD Block Services Profile NO_ANSI_ID

456

457

458

459

460

461
8.8.45 CIM_StorageSettingWithHints

This class is unchanged from the Block Services Package.

Requirement: Optional

8.8.46 CIM_StorageSettingsAssociatedToCapabilities

This class is unchanged from the Block Services Package.

Requirement: Optional

8.8.47 CIM_StorageSettingsGeneratedFromCapabilities

This class is unchanged from the Block Services Package.

Created By: Extrinsic: CreateSetting

Modified By: ModifyInstance

Deleted By: DeleteInstance

Requirement: Optional

8.8.48 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService. List the size ranges for
storage element that can be created or expanded from this
Pool.

GetAvailableExtents(
)

Optional List the StorageExtents from this Pool that may be used to
create or expand a storage element. The StorageExtents
may not already be in use as supporting capacity for
existing storage element.

Table 189 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes
322

NO_ANSI_ID CKD Block Services Profile

462
Table 190 describes class CIM_SystemDevice (System to StorageVolume or LogicalDisk).

8.8.49 SNIA_StorageCapabilities

The SNIA_StorageCapabilities is subclassed from CIM_StorageCapabilities to add the
SupportedDataOrganizations property. The Properties that are different from what is specified in the Block
Services Package have descriptive text. NOTE: SCSI can be coded as NULL or any value other than "4". The
class definition specializes the CIM_StorageCapabilities definition in the Block Services profile. Properties or
methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 191 describes class SNIA_StorageCapabilities.

Table 190 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVol-
ume or LogicalDisk)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 191 - SMI Referenced Properties/Methods for SNIA_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID
(overridden)

Mandatory

ElementName
(overridden)

Mandatory

ElementType
(overridden)

Mandatory

NoSinglePointOfFailu
re (overridden)

Mandatory

NoSinglePointOfFailu
reDefault
(overridden)

Mandatory

DataRedundancyMin
(overridden)

Mandatory

DataRedundancyMax
(overridden)

Mandatory

DataRedundancyDef
ault (overridden)

Mandatory

PackageRedundancy
Min (overridden)

Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 323

CKD Block Services Profile NO_ANSI_ID
8.8.50 SNIA_StorageSetting

The SNIA_StorageSetting is subclassed from CIM_StorageSetting and is enhanced to add the DataOrganization,
CUImage, SubsystemID and EmulatedDevice properties. The Properties that are different from what is specified in
the Block Services Package have descriptive text. The class definition specializes the CIM_StorageSetting
definition in the Block Services profile. Properties or methods not inherited are marked accordingly as '(overridden)'
or '(added)' in the left most column.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

PackageRedundancy
Max (overridden)

Mandatory

PackageRedundancy
Default (overridden)

Mandatory

ExtentStripeLengthD
efault (overridden)

Optional

ParityLayoutDefault
(overridden)

Optional

UserDataStripeDepth
Default (overridden)

Optional

SupportedDataOrgan
izations (added)

Mandatory Supported values for SMI-S are "4" (Count Key Data) and
anything else (including NULL) for non-CKD volumes. CKD
Volumes use "4".

SupportedExtentTyp
es (added)

Mandatory Supported values for SMI-S are "2" ("Open"), "3"
("Intermediate") and "4" ("Mainframe"). CKD access is
supported for either "3" or "4". Open systems access is
supported for either "2" or "3".

CreateSetting()
(overridden)

Mandatory

GetSupportedStripeL
engths() (overridden)

Optional

GetSupportedStripeL
engthRange()
(overridden)

Optional

GetSupportedParityL
ayouts() (overridden)

Optional

GetSupportedStripeD
epths() (overridden)

Optional

GetSupportedStripeD
epthRange()
(overridden)

Optional

Table 191 - SMI Referenced Properties/Methods for SNIA_StorageCapabilities

Properties Flags Requirement Description & Notes
324

NO_ANSI_ID CKD Block Services Profile
Requirement: Mandatory

Table 192 describes class SNIA_StorageSetting.

Table 192 - SMI Referenced Properties/Methods for SNIA_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID
(overridden)

Mandatory

ElementName
(overridden)

Mandatory

NoSinglePointOfFailu
re (overridden)

Mandatory

DataRedundancyMin
(overridden)

Mandatory

DataRedundancyMax
(overridden)

Mandatory

DataRedundancyGoa
l (overridden)

Mandatory

PackageRedundancy
Min (overridden)

Mandatory

PackageRedundancy
Max (overridden)

Mandatory

PackageRedundancy
Goal (overridden)

Mandatory

ExtentStripeLength
(overridden)

Optional

ExtentStripeLengthMi
n (overridden)

Optional

ExtentStripeLengthM
ax (overridden)

Optional

ParityLayout
(overridden)

Optional

UserDataStripeDepth
(overridden)

Optional

UserDataStripeDepth
Min (overridden)

Optional

UserDataStripeDepth
Max (overridden)

Optional

ChangeableType
(overridden)

Mandatory

StorageExtentInitialU
sage

Optional The Usage value to be used when creating a new storage
element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 325

CKD Block Services Profile NO_ANSI_ID
8.8.51 SNIA_StorageVolume

The SNIA_StorageVolume is subclassed from CIM_StorageVolume and enhances that class to add the
DataOrganization, CUImage, SubsystemID and EmulatedDevice properties. Other properties have some unique
CKD considerations. The StorageVolume is listed as optional. The Properties that are different from what is
specified in the Block Services Package have descriptive text. The class definition specializes the
CIM_StorageVolume definition in the Block Services profile. Properties or methods not inherited are marked
accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from either Array or Storage Virtualizer - StorageVolume is mandatory.

Table 193 describes class SNIA_StorageVolume.

StoragePoolInitialUsa
ge

Optional The Usage value to be used when creating a new storage
pool.

DataOrganization
(added)

Mandatory Supported value for CKD Volumes in SMI-S is "4" (Count
Key Data). For non-CKD Volumes the property is either
NULL or any value other than "4".

ExtentType (added) Mandatory This property specifies extent type for host access.
("1"(=Other), "2"(=Open), "3"(Intermediate),
"4"(=Mainframe)).

CUImage (added) Optional This property is the Node Element Descriptor of the Control
Unit Image (this property is required for CKD
StorageVolumes). It is not required for LogicalDisks.

SubsystemID
(added)

Optional This property is the Subsystem ID if the array or virtualizer
supports Subsystem IDs. If they are supported they would
be required on volume creation.

EmulatedDevice
(added)

Optional This string property specifies the specific device (e.g., 3380
or 3390) that is emulated by the volume.

Table 193 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName (overridden)

Mandatory

SystemName
(overridden)

Mandatory

CreationClassName
(overridden)

Mandatory

DeviceID
(overridden)

Mandatory

Table 192 - SMI Referenced Properties/Methods for SNIA_StorageSetting

Properties Flags Requirement Description & Notes
326

NO_ANSI_ID CKD Block Services Profile
ElementName
(overridden)

Optional

Name (overridden) CD Mandatory An Identifier for this volume.

OtherIdentifyingInfo
(overridden)

CD Optional

IdentifyingDescription
s (overridden)

Optional

NameFormat
(overridden)

Mandatory Format for Name property. For CKD Volumes, this shall be
set to "12" (NED).

NameNamespace Mandatory The namespace that defines uniqueness for the
NameFormat.

ExtentStatus
(overridden)

Mandatory

OperationalStatus
(overridden)

Mandatory

BlockSize
(overridden)

Mandatory The BlockSize would report the number of bytes in a
cylinder.

NumberOfBlocks
(overridden)

Mandatory The number of blocks would be the number of cylinders.

ConsumableBlocks
(overridden)

Mandatory The number of usable cylinders.

IsBasedOnUnderlyin
gRedundancy
(overridden)

Mandatory

NoSinglePointOfFailu
re (overridden)

Mandatory

DataRedundancy
(overridden)

Mandatory

PackageRedundancy
(overridden)

Mandatory

DeltaReservation
(overridden)

Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Primordial Mandatory Shall be false.

Table 193 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 327

CKD Block Services Profile NO_ANSI_ID
8.8.52 SNIA_StorageVolume

This represents the same instance as CIM_StorageVolume, but is extended to support the CanDelete property.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Optional

Table 194 describes class SNIA_StorageVolume.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.

DataOrganization
(added)

Mandatory Supported value for CKD Storage Volumes in SMI-S is "4"
(Count Key Data). For non-CKD volumes the property is
either NULL or any value other than "4".

ExtentType (added) Mandatory This property specifies extent type for host access.
("1"(=Other), "2"(=Open), "3"(Intermediate),
"4"(=Mainframe)).

CUImage (added) Mandatory This property is the Node Element Descriptor of the Control
Unit Image (this property is required for CKD Volumes).

SubsystemID
(added)

Optional This property is the Subsystem ID if the array or virtualizer
supports Subsystem IDs. If they are supported they would
be required on volume creation.

EmulatedDevice
(added)

Optional This string property specifies the specific device (e.g., 3380
or 3390) that is emulated by the volume.

Table 194 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ElementName Optional

Name Mandatory

OtherIdentifyingInfo Optional

IdentifyingDescription
s

Optional

NameFormat Mandatory

Table 193 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes
328

NO_ANSI_ID CKD Block Services Profile
EXPERIMENTAL

NameNamespace Mandatory

ExtentStatus Mandatory

OperationalStatus Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional

OtherUsageDescripti
on

Optional

ClientSettableUsage Optional

Primordial Mandatory

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted
by a client application.

Table 194 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 329

CKD Block Services Profile NO_ANSI_ID
330

NO_ANSI_ID Copy Services Subprofile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
STABLE

Clause 9: Copy Services Subprofile

9.1 Description

9.1.1 Synopsis

Profile Name: Copy Services (Component Profile)

Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.23

Table 195 describes the related profiles for Copy Services.

Central Class: N/A

Scoping Class: ComputerSystem

9.1.2 Overview

The Copy Services Subprofile is an optional subprofile for the Array, Virtualization and Volume Manager Profiles.

The subprofile defines a management interface for local mirror management, local snapshot management and
clone management.

The subprofile specification uses terminology consistent with the SNIA dictionary of storage networking except for
the term clone. A clone is a fully copied replica the same size as the source element created with the intent of
becoming an independent element.

Two types of synchronization views are supported. A replica may be synchronized to the current view of the source
element or may be synchronized to a point-in-time view. Snapshots and clones always represent a point-in-time
view of the source element. A mirror can represent either a current view or a point-in-time view as indicated by the
synchronization state property of the association. A provider maintains a stateful view of a source element as long
as the source and replica association is maintained. The synchronization view is modeled with a
StorageSynchronized association. A client can determine the type and state of the synchronized view by inspecting
properties of the association instance.

EXPERIMENTAL

Two copy operation modes are supported -- synchronous and asynchronous. In the synchronous mode, the write
operations to the source elements are reflected to the target elements before signalling the host that a write

Table 195 - Related Profiles for Copy Services

Profile Name Organization Version Requirement Description

Block Services SNIA 1.5.0 Mandatory

Job Control SNIA 1.5.0 Optional
SMI-S 1.5.0 Revision 6 SNIA Technical Position 331

Copy Services Subprofile NO_ANSI_ID

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
operation is complete. In the asynchronous mode, the host is signaled as soon as the write operations to the
source elements are complete; however, the writes to the target elements may take place at a later time.

EXPERIMENTAL

The subprofile supports two types of storage elements. Replicas can be instances of StorageVolume or
LogicalDisk. The source and replica elements shall be the same element type. All of the instance diagrams that
follow show StorageVolume replicas but apply equally to LogicalDisk replicas.

A copy service for storage elements deploys some type of copy engine. Copy techniques for storage elements
include full background copy, copy-on-write and copy-on-read. Most aspects of copy engines are opaque to clients.
A provider may allow the client to manage the copy engine for background copy operations. This optional capability
is discussed in 9.6.9.

EXPERIMENTAL

The subprofile includes a variable space consumption model that a provider may use for delta replica elements.
Most storage elements receive a fixed allocation of space when the element is created and the consumed space is
a contiguous block set. Delta replicas may not receive any space allocation when created and, subsequently,
consume space one block at a time as the associated source element is updated. The resulting block set for a
delta replica is typically scattered throughout a container element such as a storage pool.

Replication Services supports “copying” thinly provisioned elements. Unlike fully provisioned elements, a thinly
provisioned element has fewer actual allocated storage blocks than the advertised capacity of the element.

The Replication Service generally relies on the implementation’s copy engine to perform the actual copy
operations. However, the profile can expose the “copy methodology” if that information is available.

EXPERIMENTAL
332

NO_ANSI_ID Copy Services Subprofile

45

46

47

48

49
9.1.3 Copy Services Discovery

The extrinsic methods invoked to create and manage replicas are defined in the StorageConfigurationService class
shown in Figure 46.

EXPERIMENTAL

The single instance of the class ReplicationService and its methods provide the mechanism for creating and
managing replicas.

Figure 46 - Copy Services Discovery

ElementCapabilities

ComputerSystem

// Array

StorageConfigurationService

(Methods Deprecated)

HostedService

StorageConfigurationCapabilities

SupportedAsynchronousActions
SupportedSynchronousActions
SupportedStorageElementTypes
SupportedCopyTypes
InitialReplicationState

ElementCapabilities

ReplicationServiceCapabilities

SupportedReplicationTypes
SupportedStorageObjects
SupportedAsynchronousActions
SupportedSynchronousActions

Copy Services Instance

ReplicationService

HostedService

ElementCapabilities

StorageReplicationCapabilities

SupportedSynchronizationType
SupportedAsynchronousActions
SupportedSynchronousActions
InitialReplicationState
SupportedModifyOperations
ReplicaHostAccessibility
HostAccessibleState
LocalMirrorSnapshotSupported
MaximumReplicasPerSource
MaximumLocalReplicationDepth
InitialSynchronizationDefault
ReplicationPriorityDefault
LowSpaceWarningThresholdDefault
DeltaReplicaPoolAccess
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 333

Copy Services Subprofile NO_ANSI_ID

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
Replication Services relies on the Block Services Package for storage pool manipulations and capacity related
indications.

EXPERIMENTAL

9.1.4 Copy Services Capabilities

The Copy Services Subprofile enables a provider to deploy all of the modeled replication capabilities in a single
service instance. For example, one service instance may support local mirrors and delta snapshots. A client
discovers and analyzes each of these capabilities as shown in Figure 46: "Copy Services Discovery".

EXPERIMENTAL

The StorageConfigurationService methods for performing copy functions are being deprecated, but the
StorageConfigurationCapabilities and ReplicationServiceCapabilities are not being deprecated. The newer
methods for performing copy functions are in the ReplicationService, which has its own Capabilities class. Both the
StorageConfigurationCapabilities and the ReplicationServiceCapabilities would be associated to the
StorageConfigurationService. This section discusses both sets of capabilities and how they relate.

EXPERIMENTAL

9.1.4.1 Replication Policy

A provider exposes an instance of StorageReplicationCapabilities for each replication capabilities supported. The
CopyType property as defined in CIM_StorageSynchronized describes the replication policies supported by the
subprofile.

Async: Create and maintain an asynchronous mirror copy of the source.

Sync: Create and maintain a synchronous mirror copy of the source. Writes done to the source element
are reflected to the mirror before signalling the host that the write is complete. Used to maintain a copy
requiring guaranteed consistency during a recovery operation.

UnSyncAssoc: Creates an unsynchronized copy associated to the source element. This type of copy is
called a “snapshot” and represents a point-in-time image of the source element. Separate instances of
StorageReplicationCapabilities may be defined for full size snapshots and delta snapshots corresponding
to this CopyType value.

UnSyncUnAssoc: Creates an unsynchronized clone of the source element and does not maintain the
source association after completing the copy operation.

EXPERIMENTAL

In addition, an implementation may specify SyncTypes to describe the replication policy supported by the profile.
The following SyncTypes are defined:

Mirror: Creates and maintains a synchronized mirror copy of the source. Writes done to the source element
are reflected to the target element. The target element remains dependent on the source element.

Snapshot: Creates a point-in-time, virtual image of the source element. The target element remains
dependent on the source element. Snapshots are commonly known as delta replicas and contain
incrementally changed data as well as the pointers to the unchanged source element data.

Clone: Creates a point-in-time, independent, copy of the source element.
334

NO_ANSI_ID Copy Services Subprofile

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
Synchronized replication indicates that updates to a source element are reflected to the target element. The mode
determines whether the target element is updated immediately, in the case of synchronous mode, or some time
later, in the case of asynchronous mode.

Table 196 compares the SyncTypes and the relationships between the source and target elements. It is a quick
reference for the clients to determine the appropriate SyncType for the intended target results.

With respect to "Relation of Target to Source," Dependent indicates the target element must remain associated
with the source element; Independent indicates the target element can exist without the source element.

9.1.4.2 Modes

The mode controls when the write operations are performed. The following modes are defined:

Synchronous: The writer waits until the write operations are committed to both the source and target
elements; or to both the source element and a target related entity, such as pointer tables.

Asynchronous: The writer waits until the write operations are committed to the source elements only. In this
mode, there can be a delay before the write operations are committed to the target elements.

9.1.4.3 Alignment of SupportedSynchronizationType and SupportedReplicationType

The values for SupportedSynchronizationType (in StorageReplicationCapabilities) and SupportedReplicationType
(in ReplicationServiceCapabilities) should be aligned with each other. Table 197 the alignment of these properties.

Table 196 - Comparing SyncTypes

SyncType Relation of
Target to
Source

Updates to
Source

Reflected to
Target

Target
is Point-In-

Time
Copy

Target is
self-

contained

Target is
Virtual copy
of Source

Target’s space
consumption

Mirror Dependent Yes No Yes-after Split/
Detach

No Same as source

Snapshot Dependent No Yes No Yes Much less than
source

Clone Independent No Yes Yes No Same as source

Table 197 - Alignment of SupportedSynchronizationType and SupportedReplicationType

Supported
ReplicationType

Supported
Synchronization

Type

Notes

Synchronous
Mirror Local

Sync If an implementation supports the “Sync“
SupportedSynchronizationType, then it should report that it
supports a “Synchronous Mirror Local”
SupportedReplicationType

Asynchronous
Mirror Local

Async If an implementation supports the “Async“
SupportedSynchronizationType, then it should report that it
supports a “Asynchronous Mirror Local”
SupportedReplicationType
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 335

Copy Services Subprofile NO_ANSI_ID

99

100

101

102

103

104

105

106

107

108

109
EXPERIMENTAL

9.1.4.4 Other Capabilities

The StorageReplicationCapabilities class defines informational properties with un-modifiable values that guide a
client using the various capabilities of the service. For example:

• Instance 1 defines the capability to create local mirrors. SupportedSynchronizationType is set to a value of
“Sync” and the AttachReplica method is the only method supported for mirror creation. The
InitialReplicationState is “Synchronized”.

• Instance 2 defines the capability to create snapshots. SupportedSynchronizationType is set to a value of
“UnSyncAssoc - Delta” and the CreateReplica method is the only method supported for snapshot creation. The
InitialReplicationState is “Idle”.

Further details concerning discovery and the use of capability properties are included in 9.6 "Client Considerations
and Recipes".

Synchronous
Snapshot Local

UnsyncAssoc - Full If an implementation supports the “UnsyncAssoc - Full“
SupportedSynchronizationType, then it may report that it
supports a “Synchronous Snapshot Local”
SupportedReplicationType.

UnsyncAssoc -
Delta

If an implementation supports the “UnsyncAssoc - Delta“
SupportedSynchronizationType, then it may report that it
supports a “Synchronous Snapshot Local”
SupportedReplicationType

Asynchronous
Snapshot Local

UnsyncAssoc - Full If an implementation supports the “UnsyncAssoc - Full“
SupportedSynchronizationType, then it may report that it
supports a “Asynchronous Snapshot Local”
SupportedReplicationType

UnsyncAssoc -
Delta

If an implementation supports the “UnsyncAssoc - Delta“
SupportedSynchronizationType, then it may report that it
supports a “Asynchronous Snapshot Local”
SupportedReplicationType

Synchronous
Clone Local

UnsyncUnassoc

If an implementation supports the “UnsyncUnassoc“
SupportedSynchronizationType, then it may report that it
supports a “Synchronous Clone Local”
SupportedReplicationType

Asynchronous
Clone Local

If an implementation supports the “UnsyncUnassoc“
SupportedSynchronizationType, then it may report that it
supports a “Asynchronous Clone Local”
SupportedReplicationType

Table 197 - Alignment of SupportedSynchronizationType and SupportedReplicationType

Supported
ReplicationType

Supported
Synchronization

Type

Notes
336

NO_ANSI_ID Copy Services Subprofile

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124
9.1.5 Replication modeling

Figure 47: "Local Replica" shows the basic model of a local replica.

A local replica is created by invoking either the CreateReplica or the AttachReplica extrinsic methods.
CreateReplica creates a new storage element in a storage pool. AttachReplica transforms an existing, independent
storage element into a replica. The new replica is the same element type as the source element. Several
associations are implicitly created for all replica elements. A StorageSynchronized association shall be created if
the new replica remains associated with its source element. A SystemDevice association shall be created or shall
already exist. An AllocatedFromStoragePool association shall be created or shall already exist. An
ElementSettingData association with an instance of StorageSetting is created or shall already exist for the replica
element. An optional BasedOn association may exist if AttachReplica is invoked to transform an existing element
into an associated replica.

EXPERIMENTAL

The CreateReplica method allows a client to delegate the selection of a target element location and settings to the
invoked provider. The client selects a source element for the replication operation and may optionally choose to
supply a storage pool location and storage settings or to let the provider make the choices. The AttachReplica
method allows a client to completely manage the source/target replication pairing. The client creates a new target

Figure 47 - Local Replica

StorageVolume

// source

StorageVolume

// target
StorageSynchronized

ElementSettingData

AllocatedFromStoragePool

SystemDevice

BasedOn
(or sub-class)

ComputerSystem

// array
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 337

Copy Services Subprofile NO_ANSI_ID

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142
element or selects an existing element to be used as the target. Once the target element is prepared, the client
invokes the AttachReplica method and the provider pairs the source and target elements selected by the client. All
providers shall support at least one of these two methods.

EXPERIMENTAL

9.1.5.1 Multiple Replicas

The subprofile supports both multiple replicas per associated source element and multi-level replication. Properties
in StorageReplicationCapabilities allow the provider to indicate the maximum number of replicas for one source
element and the maximum depth for multi-level replication. Figure 48: "Multi-Level Local Replication" show the
basic model for local multi-level replication.

EXPERIMENTAL

If an implementation supports multi-hop replication, the supported features (obtained via the
GetSupportedFeatures method) will indicate “Multi-hop element replication”. Furthermore, the implementation may
need to know that the client is planning to add additional hops in subsequent operations. In this case, the
replication capabilities would indicate “Multi-hop requires advance notice”. In response to this capability, the client
in creating the first replica, must set the property ReplicationSettingData.Multihop appropriately; see 9.7 "CIM
Elements" for details on Multihop specification. The capabilities method GetSupportedMaximum indicates the
maximum number of hops supported by the implementation.

EXPERIMENTAL

9.1.5.2 Snapshots

Snapshots are created using CopyType “UnSyncAssoc” when either the CreateReplica or AttachReplica extrinsic
method is invoked. Snapshots may be created as full replicas or delta replicas. A provider supporting delta replicas

Figure 48 - Multi-Level Local Replication

StorageVolume

// level 1 source

StorageVolume

// mirror replica
// level 2 source

StorageSynchronized

Local multi-level replication

StorageVolume

// mirror replica
// level 3 source

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized
338

NO_ANSI_ID Copy Services Subprofile

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158
may enable several optional capabilities used with the variable space consumption model described in 9.6 "Client
Considerations and Recipes". A client uses these capabilities to ensure sufficient but not excessive availability of
space for groups of delta replicas. Action can be taken by a client to prevent failure of delta replica elements
caused by lack of consumable space.

Figure 49: "Multiple Snapshots Per Source Element" shows the basic model of snapshots created as delta
replicas.

9.1.6 Associations

Copy Services utilizes associations.

9.1.6.1 StorageSynchronized Association

This association relates the individual source and target elements. The association’s property SyncState indicates
the current state of the association. Some possible values of SyncState are Initialized or Synchronized.

In addition to the SyncState, there are a number of other properties on the StorageSynchronized Association.
These include:

• WhenSynced: This is the date/time of the creation of a point in time copy.

• SyncMaintained: This indicates whether synchronization is maintained.

• CopyType: This defines the type of (copy) association between source and target.

Figure 49 - Multiple Snapshots Per Source Element

AllocatedFromStoragePool

StoragePool

// Pool for delta replicas

StorageVolume

// source

Multiple delta snapshots per source element

StorageVolume

// snapshot

StorageVolume

// snapshot

StorageVolume

// snapshot

ReplicaPoolForStorage

StorageSynchronized
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 339

Copy Services Subprofile NO_ANSI_ID

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174
• ReplicaType: This is an informational property describing the type of replication.

EXPERIMENTAL

• CopyPriority: Priority of copy engine I/O relative to host I/O.

In addition, there are a number of other properties that are being added to the StorageSynchronized Association.
These include:

• WhenEstablished: Specifies when the association was established.

• WhenActivated: Specifies when the association was activated.

• WhenSuspended: Specifies when the association was suspended.

• SyncType: Type of association between source and target elements.

• Mode: Specifies when target elements are updated.

• RequestedCopyState: Indicates the last requested or desired state for the association.

• CopyState: indicates the current state of the association.

• ProgressStatus: Status of association between source and target groups.

• PercentSynced: Specifies the percent of the work completed to reach synchronization.

9.1.6.1.1 Alignment of StorageSynchronized Properties

The SyncType and mode properties and the CopyType property are related and their values should be aligned as
shown in Table 198.

Table 198 - Alignment of SyncType/Mode and CopyType

SyncType /
Mode

CopyType Notes

Mirror /
Asynchronous

Async If an implementation reports SyncType=”Mirror” and
Mode=”Asynchronous”, then it should report
CopyType=”Async”.

Mirror /
Synchronous

Sync If an implementation reports SyncType=”Mirror” and
Mode=”Synchronous”, then it should report CopyType=”Sync”.

Snapshot /
Synchronous

UnsyncAssoc If an implementation reports SyncType=”Snapshot” and
Mode=”Synchronous” or Mode=”Asynchronous”, then it should
report CopyType=”UnsyncAssoc”.

Snapshot /
Asynchronous

Clone /
Synchronous

UnsyncUnAssoc If an implementation reports SyncType=”Clone” and
Mode=”Synchronous” or Mode=”Asynchronous”, then it should
report CopyType=”UnsyncUnAssoc”.

Clone /
Asynchronous
340

NO_ANSI_ID Copy Services Subprofile

175

176
The CopyState and ProgressStatus and SyncState properties are related and their values should be aligned as
shown in Table 199:

Table 199 - Alignment of CopyState and SyncState

CopyState /
ProgressStatus

SyncState Notes

Initialized /
Completed

Initialized If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report
SyncState=”Initialized”.

Initialized /
Preparing

Prepare In
Progress

If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Preparing”, then it should report
SyncState=”Prepare In Progress”.

Prepared /
Completed

Prepared If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Completed”, then it should report
SyncState=”Prepared”.

Unsynchronized /
Synchronizing

ResyncInProgress If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Synchronizing”, then it should report
SyncState=”ResyncInProgress”.

Synchronized /
Completed

Synchronized or
Frozen

If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Completed”, then it should report
SyncState=”Synchronized” or SyncState=”Frozen”.

Initialized /
Completed

PrepareInProgress If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report
SyncState=”PrepareInProgress”.

Prepared /
Completed

Prepared If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Completed”, then it should report
SyncState=”Prepared”.

Prepared /
Synchronizing

ResyncInProgress If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Synchronizing”, then it should report
SyncState=”ResyncInProgress”.

Unsynchronized /
Suspending

Quiesce In
Progress

If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Suspending”, then it should report
SyncState=”Quiesce In Progress”.

Unsynchronized /
Dormant

Quiesce In
Progress

If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Dormant”, then it should report
SyncState=”Quiesce In Progress”.

Synchronized /
Completed

Synchronized For mirrors, if an implementation reports
CopyState=”Synchronized” and ProgressStatus=”Completed”,
then it should report SyncState=”Synchronized”.

Synchronized /
Completed

Idle For snapshots, if an implementation reports
CopyState=”Synchronized” and ProgressStatus=”Completed”,
then it should report SyncState=”Idle”.

Synchronized /
Suspending

Quiesce In
Progress

If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Suspending”, then it should report
SyncState=”Quiesce In Progress”.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 341

Copy Services Subprofile NO_ANSI_ID
Synchronized /
Fracturing

Fracture In
Progress

If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Fracturing”, then it should report
SyncState=”Fracture In Progress”.

Synchronized /
Splitting

Fracture In
Progress

If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Splitting”, then it should report
SyncState=”Fracture In Progress”.

Synchronized /
Failing Over

RestoreInProgress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Failing Over”, then it should report
SyncState=”RestoreInProgress”.

Synchronized /
Dormant

Quiesce In
Progress

If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Dormant”, then it should report
SyncState=”Quiesce In Progress”.

Synchronized /
Initializing

Initialized If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Initializing”, then it should report
SyncState=”Initialized”.

Fractured /
Completed

Fractured If an implementation reports CopyState=”Fractured” and
ProgressStatus=”Completed”, then it should report
SyncState=”Fractured”.

Fractured /
Resyncing

ResyncInProgress If an implementation reports CopyState=”Fractured” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Split / Completed Fractured If an implementation reports CopyState=”Split” and
ProgressStatus=”Completed”, then it should report
SyncState=”Fractured”.

Split / Resyncing ResyncInProgress If an implementation reports CopyState=”Split” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Suspended /
Completed

Quiesced If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report
SyncState=”Quiesced”.

Suspended /
Resyncing

ResyncInProgress If an implementation reports CopyState=”Suspended” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Broken /
Not Applicable

Broken If an implementation reports CopyState=”Broken” and
ProgressStatus=”Not Applicable”, then it should report
SyncState=”Broken”.

Inactive /
Completed

Quiesced For mirrors, if an implementation reports CopyState=”Inactive”
and ProgressStatus=”Completed”, then it should report
SyncState=”Quiesced”.

Inactive /
Completed

Idle For snapshots, if an implementation reports
CopyState=”Inactive” and ProgressStatus=”Completed”, then it
should report SyncState=”Idle”.

Table 199 - Alignment of CopyState and SyncState

CopyState /
ProgressStatus

SyncState Notes
342

NO_ANSI_ID Copy Services Subprofile

177

178

179

180

181

182

183

184

185
9.1.6.2 SettingsDefineState Association

The SettingsDefineState associates an element (e.g., a StorageVolume) to a SynchronizationAspect. An instance
of SynchronizationAspect includes properties for the date and time of the point-in-time copy and a reference to the
source element (see Figure 50). The association is particularly useful for Clones (targets) and Snapshots (source)
that do not have a StorageSynchronized association to another storage element. In the case of Clones, the
StorageSynchronized association is removed (generally, following the provider’s restart) after the copy operation
completes. As for Snapshots, it is possible to create a point-in-time snapshot copy of an element, or a group of
elements, without having a target element (using the method CreateSynchronizationAspect). In this mode, the
target elements are added at a later time (using the method ModifySettingsDefineState).

Inactive /
Resyncing

ResyncInProgress If an implementation reports CopyState=”Inactive” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Aborted /
Completed

Quiesced For mirrors, if an implementation reports CopyState=”Aborted”
and ProgressStatus=”Completed”, then it should report
SyncState=”Quiesced”.

Aborted /
Completed

Idle For snapshots, if an implementation reports
CopyState=”Aborted” and ProgressStatus=”Completed”, then it
should report SyncState=”Idle”.

Failedover /
Completed

Fractured For mirrors, if an implementation reports
CopyState=”Failedover” and ProgressStatus=”Completed”,
then it should report SyncState=”Fractured”.

Failedover /
Completed

Frozen For snapshots, if an implementation reports
CopyState=”Failedover” and ProgressStatus=”Completed”,
then it should report SyncState=”Frozen”.

Synchronized /
Failing back

RestoreInProgress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Failing back”, then it should report
SyncState=”RestoreInProgress”.

Skewed /
Completed

Initialized If an implementation reports CopyState=”Skewed” and
ProgressStatus=”Completed”, then it should report
SyncState=”Initialized”.

Skewed /
Resyncing

ResyncInProgress If an implementation reports CopyState=”Skewed” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Figure 50 - SettingsDefineState Association

Table 199 - Alignment of CopyState and SyncState

CopyState /
ProgressStatus

SyncState Notes

StorageVolume

Source or Target Element

SynchronizationAspect

datetime WhenPointInTime
REF SourceElementSettingsDefineState
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 343

Copy Services Subprofile NO_ANSI_ID

186

187

188

189

190

191

192

193
SettingsDefineState may also be applied to Mirror targets; as such, the property
SynchronizationAspect.WhenPointInTime would have the date and time of when the mirror relationship was
fractured (or split).

In all cases, the SettingsDefineState association may not persist across the provider’s restarts. Furthermore, an
instance of a SynchronizationAspect shall be removed if the SourceElement is deleted.

Figure 51 is an instance diagram for a clone target element and its associated SynchronizationAspect instance.
Once the clone target element becomes synchronized, the StorageSynchronized association is removed and the
property SynchronizationAspect.SyncState has a value of “Operation Completed.”
344

NO_ANSI_ID Copy Services Subprofile

194

195

196
EXPERIMENTAL

9.1.7 Durable Names and Correlatable IDs of the Profile

This is not applicable to local copy services. Normal Block Services Correlatable IDs apply for volumes (or logical
disks) managed by Copy Services.

Figure 51 - SynchronizationAspect Instance

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

StorageSynchronized

Before

SynchronizationAspect

// SyncStatus: Operation In Progress
// WhenPointInTime
// SourceElement ObjectPath

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

After

SynchronizationAspect

// SyncStatus: Operation Completed
// WhenPointInTime
// SourceElement ObjectPath

Once synchronization is reached, StorageSynchronized association is removed.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 345

Copy Services Subprofile NO_ANSI_ID

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227
9.1.8 Accessibility to Created Elements

DEPRECATED

9.1.8.1 Using StorageConfigurationService Methods

The subprofile recommends that method providers for replica creation methods make all replica elements and
associations accessible when the method response is returned to the client. This includes the case when the
provider returns “job started” to the client. This allows the client to immediately monitor and manage the replica,
new associations to the replica and new associated elements.

If the provider returns “job completed”, all new elements and associations shall be accessible. If “job started” is
returned, new elements may not be immediately accessible. There are two cases the provider should consider:

Case 1: a new element and new associations are created (CreateReplica).

If the provider returns a reference to the new element as a method output parameter, all new associations shall
also be accessible and AffectedJobElement shall now reference the new element for the returned job reference.
No instance creation indications need to be generated. If the provider does not return a reference to the new
element, an instance creation indication shall be generated when the new element is accessible. When the job
completes successfully, AffectedJobElement shall reference the new element. The new element and all new
associations shall be accessible when the instance creation indication is generated or the job completes
successfully, whichever occurs first. Instance creation indications are not generated for new associations.

Case 2: a new association is created for an existing element (AttachReplica).

If the provider returns “job started”, AffectedJobElement already references the existing element and the client may
attempt to access the new StorageSynchronized association. If the new association is not accessible, an instance
creation indication for StorageSynchronized shall be generated when the association is accessible. The new
association shall be accessible when the instance creation indication is generated or the job completes
successfully, whichever occurs first.

For both cases, at the time an element or association is accessible to the client, all manageable element and
association properties have valid values.

DEPRECATED

EXPERIMENTAL

9.1.8.2 Using ReplicationService Methods

Not defined in this version of the standard.

EXPERIMENTAL

9.1.9 Completion of Long Operations

DEPRECATED

9.1.9.1 Using StorageConfigurationService Methods

The subprofile supports three ways of indicating the completion of long running operations when a replica element
is created or modified. This does not apply to a detach operation.

Option 1:
346

NO_ANSI_ID Copy Services Subprofile

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
1) Provider returns “job completed” status.

2) SyncState value set to “… In Progress”.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady state.

Option 2:

1) Provider returns “job started” status and REF to replica element.

2) SyncState value set to “… In Progress”.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady state.

4) Instance modification when ConcreteJob ends.

Option 3:

1) Provider returns “job started” status but no REF to replica element.

2) Instance creation indication for StorageSynchronized when element is available. May indicate “… In Prog-
ress” state or final state.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady state.

4) Instance modification when ConcreteJob ends.

Options 2 and 3 based on job control allow a provider to indicate “percent complete” for long operations and report
job failure information with an instance of Error.

Any option may be selected for un-associated replicas if the provider creates a temporary instance of
StorageSynchronized that is implicitly deleted when the replica is finished. If a temporary instance is not created,
then only options 2 and 3 may be selected and steps 2 and 3 are bypassed.

The ModifySynchronization detach operation and the ReturnToStoragePool method cause element and
association deletion. There are two ways to indicate completion of long delete operations.

Option 1:

Provider returns “job completed”. All affected elements and associations are no longer accessible. No instance
deletion indications should be generated.

Option 2:

1) Provider returns “job started” status. Client assumes elements and associations are no longer accessible.

2) An instance deletion indication is generated for StorageSynchronized for a detach operation or for a replica
element for a ReturnToStoragePool invocation. The element is successfully deleted when either job comple-
tion occurs or the instance deletion indication is generated, whichever occurs first.

DEPRECATED
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 347

Copy Services Subprofile NO_ANSI_ID

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277
EXPERIMENTAL

9.1.9.2 Using ReplicationService Methods

There are two ways of indicating the completion of long running operations when a replica element is created or
modified:

Option 1: Generally, the long running operations are performed under the control of a job. The client can monitor
the progress of the job by polling the job’s status and percent complete, or by subscribing to job related indications.

Option 2: Subscribe to receive to indications when the CopyState of StorageSynchronized changes.

Clients may utilize both options simultaneously. To avoid receiving many indications, it is recommended for the
clients to utilize indication queries that are constrained by the object path of the appropriate replication association.

If replication operation was specified with a WaitForCopyState parameter, the job “waits” until at least the
CopyState is reached, at which point the job considers the operation complete. However, depending on the
specified WaitForCopyState, the copy engine may continue until a steady state is achieved. For example, in the
Figure 54, Inactive and Synchronized states are considered steady states; whereas Initialized and Unsynchronized
are transient states.

EXPERIMENTAL

9.1.10 State Management For Associated Replicas

Both mirror and snapshot replicas maintain stateful associations with source elements. The SyncState property of
a StorageSynchronized association identifies the state. All providers shall support the deprecated
ModifySynchronization extrinsic method that allows a client to manage the synchronization state of an associated
replica unless a provider only allows unassociated replicas. All of the modify operations supported by the subprofile
are classified as mandatory, optional or not supported by type of replica. Mirror replicas are the only type of replica
created for CopyType values “Sync” and “Async”. Snapshot replicas are the only type of replica created for
CopyType value “UnSyncAssoc”. Table 200 shows the classification.

Table 200 - Synchronization Operation Support Requirements

ModifySynchronization Operation Mirror Replicas Snapshot Replicas

Detach Mandatory Optional

Resync Mandatory Mandatory

Fracture Mandatory Not supported

Quiesce Optional Optional

Unquiesce Optional Not supported

Prepare Optional Optional

Unprepare Optional Optional

Restore Optional Optional

Start Copy Not supported Optional

Stop Copy Not Supported Optional
348

NO_ANSI_ID Copy Services Subprofile

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307
All instances of StorageReplicationCapabilities shall indicate all mandatory operations plus all supported optional
operations in the value list assigned to the SupportedModifyOperations[] property. Undeployed optional operations
should be implemented as a stubbed “no operation” to ensure backward compatibility with earlier versions of the
subprofile. Modify operations perform the following actions:

Resync: Causes a fractured mirror replica to change from a point-in-time (PIT) view to a synchronized mirror
replica representing the current view of the source element. The provider can execute a full or incremental copy as
needed to realize a synchronized state. Causes a snapshot to be restarted as a new PIT image with a new value
assigned to WhenSynced. May release all space previously consumed by the snapshot.

Fracture: Splits a synchronized mirror replica from its source element, changing the replica from a current view of
the source element to a PIT view.

Restore: Copies a fractured mirror or a snapshot to the source element. At the completion of the restore operation,
the source and replica represent the same PIT view. The Restore operation for each supported CopyType can be
implemented as an incremental restore or a full restore based on the capabilities of the provider.

Detach: Removes the association between the source and replica elements. The StorageSynchronized
association is deleted. If the replica is still a valid PIT image, the provider sets OperationalStatus to “OK”. If not a
valid image but the storage element can be reused, the provider sets OperationalStatus to “Error”. A Detach
operation does not delete the replica element. A client should invoke ReturnToStoragePool if the element is to be
deleted following the Detach operation.

 Start Copy: Starts a background copy operation for a snapshot replica. At the completion of the copy operation,
the snapshot enters “Frozen” state.

Stop Copy: Stops a background copy operation for a snapshot replica. The snapshot state changes from “Copy In
Progress” to “Idle”.

Quiesce/Unquiesce: This operation has optional, vendor-specific behavior for mirror replicas that is opaque to
clients. The Quiesce operation stops the copy engine for snapshots and the snapshot no longer consumes space.
A snapshot is no longer a valid PIT image if the source element is updated after the snapshot enters “Quiesced”
state.

Prepare/Unprepare: This operation has optional, vendor-specific behavior for all replica types that may also
depend on the entry state. A prepare operation typically starts a copy engine if entered from “Initialized” state.

Reset To Sync: Changes the CopyType value of a mirror replica from “Async” to “Sync”.

Reset To Async: Changes the CopyType value of a mirror replica from “Sync” to “Async”.

Reset To Sync Optional Not supported

Reset To Async Optional Not supported

Table 200 - Synchronization Operation Support Requirements (Continued)

ModifySynchronization Operation Mirror Replicas Snapshot Replicas
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 349

Copy Services Subprofile NO_ANSI_ID

308

309

310

311

312

313

314

315

316

317

318

319
This information is summarized in Table 201.

EXPERIMENTAL

In addition, an implementation may maintain CopyState and ProgressStatus for a StorageSynchronized
relationship.

The CopyState property of the StorageSynchronized association identifies the state, while the ProgressStatus
property of the same association indicates the “status” of the copy operation to reach the requested CopyState,
which is indicated in the property RequestedSyncState. For example, CopyState might have a value of
“UnSynchronized”, while ProgressStatus might have a value of “Synchronizing”, also known as “sync-in-progress”.
In all cases, when creating a replica element, the desired SyncState is Synchronized, which indicates the replica
element has the same data as the source element. The RequestedSyncState property will contain “Not Applicable”
once the requested SyncState is achieved.

Use the method ReplicationServiceCapabilities.GetSupportedCopyStates to determine the possible CopyStates.
The CopyStates have been normalized in such a way that they may apply to all SyncTypes.

Table 201 - SyncState Values

Synchronization
State

(SyncState value)

Mirror Replicas Snapshot
Replicas

Required ModifySynchronization
Operations For Optional States

Initialized Optional Optional Prepare

Prepare In Progress Optional Optional

Prepared Optional Optional Unprepare

Resync In Progress Mandatory Mandatory

Synchronized Mandatory Not specified

Idle Not specified Mandatory

Quiesce In Progress Optional Optional Quiesce

Quiesced Optional Optional Quiesce

Fracture In Progress Mandatory Not specified

Fractured Mandatory Not specified

Copy In Progress Not specified Optional Start Copy

Frozen Not specified Mandatory

Restore In Progress Optional Optional Restore

Broken Optional Optional
350

NO_ANSI_ID Copy Services Subprofile

320

321

322

323

324

325

326
Table 202 describes the supported CopyStates.

EXPERIMENTAL

9.1.11 Reporting Time of Synchronization

All providers shall have access to a time service that allows the provider to assign a date/time value to the
WhenSynced property of StorageSynchronized at the time a replica becomes a valid PIT view of its source
element. The WhenSynced value for mirror replicas shall be non-null for the “Fractured” and “Restore In Progress”
synchronization states. The WhenSynced value for snapshot replicas shall be non-null for any synchronization
state allowing host access to the replica.

Table 202 - CopyStates Values

CopyState value Description

Initialized The source and target elements are associated. The copy engine has not started -
- no dataflow.

Prepared Initialization is completed, the copy engine has started, however, the data flow has
not started.

Synchronized The “copy operation” is complete. The target element is an “exact replica” of the
source element.

Unsynchronized Not all the source element data has been “copied” to the target element.

Fractured The target element was abruptly split from its source element
-- consistency is not guaranteed.

Split The target element was gracefully (or systematically) split from its source element
-- consistency is guaranteed.

Suspended Data flow between the source and target elements has stopped. Writes to source
element are held until the association is Resumed.

Broken Replica is not a valid view of the source element. OperationalStatus of replica may
indicate an Error condition. This state generally indicates an error condition such
as broken connection.

Aborted The copy operation is aborted with the Abort operation. Use the Resync Replica
operation to restart the copy operation.

Failedover Reads and writes to/from the target element. Source element is not “reachable”.

Inactive Copy engine has stopped, writes to source element will not be sent to target
element.

Skewed The target has been modified and is no longer synchronized with the source
element or the point-in-time view.

Mixed Applies to the SyncState of GroupSynchronized. It indicates the
StorageSynchronized associations of the elements in the groups have different
SyncState values.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 351

Copy Services Subprofile NO_ANSI_ID

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347
9.1.12 State Transition Rules

A provider shall enforce state transition rules for associated replicas. If a client initiates a ModifySynchronization
operation that causes a state transition violation, the provider returns an error response of “Invalid State
Transition”. The provider shall allow a client to bypass certain transitions related to operations not supported by the
provider. For example, a snapshot transition from “Idle” to “Resync In Progress” is allowed if the provider does not
support Quiesce and Prepare operations.

Synchronization states have the following behavior:

Initialized: A source element and replica element are associated and all implicitly created associations are
accessible. The copy engine has not started.

Synchronized: A mirror replica is fully copied and represents the current view of the source element.

Idle: A snapshot is accessible but not copied and represents a PIT view of the source element. A copy engine is
actively executing copy-on-write operations.

Fractured: A mirror element is split from its source element and is now a PIT view.

Frozen: A snapshot is accessible and fully copied and represents a PIT view of the source element. The copy
engine is stopped.

Broken: A replica is not a valid view of the source element and OperationalStatus of the replica element may have
a value of “Error” if a repair action is necessary. The provider may allow access to a replica in this state if indicated
in HostAccesibleState[] of StorageReplicationCapabilities. The subprofile currently does not specify how to recover
from “Broken” state. A ModifySynchronization Detach operation may be invoked to a replica in this state.

Values of the SyncMaintained and WhenSynced properties in a StorageSynchronized association are maintained
as shown in the Table 203. The table does not apply to CopyType “UnSyncUnAssoc”.

Table 203 - SyncMaintained and WhenSynced Properties

Synchronization
State

SyncMaintained WhenSynced

Sync/Async UnSyncAssoc Sync/Async UnSyncAssoc

Initialized True or False True or False Null Date/Time frozen

Prepare In Progress True or False True or False Null Date/Time frozen

Prepared True or False True or False Null Date/Time frozen

Resync In Progress True or False True or False Null Date/Time frozen

Synchronized True Not specified Null or

D/T copy done

Null

Idle Not specified True or False Null Date/Time frozen

Quiesce In Progress True or False False Null or

D/T copy done

Null

Quiesced True or False False Null or

D/T copy done

Null
352

NO_ANSI_ID Copy Services Subprofile

348

349

350

351

352

353
SyncMaintained “True” means that a copy engine is actively copying updated blocks from the source element to
the target element. “False” means either the copy engine is stopped or copying the target to the source during
“Restore In Progress” state. WhenSynced can contain two forms of a Date/Time value. A non-null value indicates
either the date/time a frozen image is created or the date/time that the source element is completely copied to the
target mirror element. The Fracture, Resync and Restore operations for ModifySynchronization may cause the
WhenSynced value to change.

Fracture In Progress True or False Not specified Null or

D/T copy done

Null

Fractured False Not specified Date/Time frozen Null

Copy In Progress Not specified True or False Null Date/Time frozen

Frozen Not specified False Null Date/Time frozen

Restore In Progress False False Date/Time frozen Date/Time frozen

Broken False False Null Null

Table 203 - SyncMaintained and WhenSynced Properties

Synchronization
State

SyncMaintained WhenSynced
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 353

Copy Services Subprofile NO_ANSI_ID

354

355
9.1.13 State Transitions

Figure 52: "State Transitions for Mirrors and Clones" shows state transitions for mirrors and clones:

Figure 52 - State Transitions for Mirrors and Clones

Prepared

Synchronized

Initialized

Prepare
in

Progress

Resync
in

Progress

Quiesce in
Progress

Quiesced

Prepare

Resync

Unprepare

Prepare

Fractured

Restore
in

Progress

Restore

Fracture in
Progress

Fracture

Unquiesce

Quiesce
354

NO_ANSI_ID Copy Services Subprofile

356

357

358

359
Figure 53: "State Transitions for Snapshots and Migration" shows state transitions for snapshots:

The preceding state diagrams for mirrors and snapshots use the following conventions:

• The state diagram is entered when any of the three replica creation methods is invoked. Exit occurs when a
ModifySynchronization Detach operation is invoked.

Figure 53 - State Transitions for Snapshots and Migration

P re p a re d

Id le

In itia lize d

F ro ze n

P re p a re
in

P ro g re ss

R e syn c
in

P ro g re ss

C o p y
in

P ro g re ss

R e s to re
in

P ro g re ss

Q u ie sce in
P ro g re ss

Q u ie sce d

P re p a re

R e sy n c

R e s to re

R e s to re

Q u ie sce

S ta rt C o p y

Q u ie sce

U n p re p a re

P re p a re

S to p
C o p y
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 355

Copy Services Subprofile NO_ANSI_ID

360

361

362

363

364

365

366

367

368

369

370

371
• A transition from a steady state to an in progress state is shown by a solid arrow line and is initiated by a
ModifySynchronization operation other than Detach.

• An automatic transition from an in progress state to a steady state is shown by a dashed arrow line.

• Automatic exit occurs from an in progress state when cloning and migration operations have completed.

EXPERIMENTAL

Figure 54 shows the CopyState transitions. The dashed arrow lines represent automatic transitions. They transition
unconditionally when the target element is ready to move to the next state. The solid arrow lines represent the
transitions as the result of a requested operation (using, for example, ModifyReplicaSynchronization). The label of
the solid arrow line indicates the requested operation.

The “create” methods normally start with the Initialized state. However, it is possible to use the WaitForCopyState
parameter of the create method to force the CopyState to the Inactive or Prepared state after the initialization is
complete. In this case, CopyState will remain in Inactive or Prepared state until such time a Modify method is used
to Activate the synchronization.
356

NO_ANSI_ID Copy Services Subprofile
Figure 54 - CopyState Transitions

Exit

Initialized

Unsynchronized

Fractured

Synchronized

Fracture

Inactive

Suspended

Suspend

Suspend

Activate

Resume

Split

Split

Failedover

Failover

Resync

Detach

Detach

ReturnToResourcePool

Deactivate

Entry

Exit

Deactivate

Exit

Detach

Resync

Failback

Create*Replica may
specify WaitForCopyState

= Inactive or Prepared
Note: Dashed arrow lines represent triggerless transition. They fire

unconditionally when target element is ready to move to the next state.

General flow: Initialized, Unsynchronized, Synchronized.

(Synchronized
Clone Target
Dissolves
Relationship)

Exit

Dissolve

Prepared

Activate

unprepare

SkewedResync
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 357

Copy Services Subprofile NO_ANSI_ID

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417
9.1.13.1 Alignment of State Transitions

Both SyncState and the combination of CopyState and ProgressStatus should be reported and the values need to
be aligned. Table 199 addresses the basic alignment. This section provides more detail on the state transitions and
how they would be coded for both SyncState and CopyState.

• CopyState=”Initialized”, ProgressStatus=”Completed” (SyncState=“PrepareInProgress”)
If the InitialReplicationState=”Initialized”, then this state will exist. When the Initial state can be Initialized, this is
the state of a StorageSynchronized after it is created (or Unprepared). The association exists, but nothing is
going on (WhenSynced=NULL). With ModifyReplicaSynchronization an Initialized association is automatically
Prepared.
Note that it is also possible to get to the Initialized state by doing a ModifyReplicaSynchronization Unprepare
operation. This puts the association back in the Initialized state (which is then automatically progressed to the
next state).
From the Initialized state, the no ModifyReplicaSynchronization operations are supported.

• CopyState=”Prepared”, ProgressStatus=”Completed” (SyncState=”Prepared”)
If the InitialReplicationState=”Prepared” or an Initialized association has been successfully Prepared, then this
state will exist. The association exists, but nothing is going on (WhenSynced=NULL), but it is enabled for a
Resync operation.
From the “Prepared” state there are only operation supported is Activate. This is represented by:

• CopyState=”Prepared” and ProgressStatus=”Synchronizing” (SyncState=”ResyncInProgress”)

• CopyState=”Unsynchronized”, ProgressStatus=”Synchronizing” (SyncState=”ResyncInProgress”)
This CopyState is equivalent to a SyncState of “ResyncInProgress”. From the “Synchronized” state the only
operations supported are Suspend and Deactivate. How this gets reported as SyncState depends on how the
CopyState was achieved.

• With Suspend: When a client uses ModifyReplicaSynchronization with an Operation of “Suspend” the
association changes to CopyState=”Unsynchronized” with ProgressStatus=”Suspending”. The SyncState
should be set to “QuiesceInProgress”.

• With Deactivate: When a client uses ModifyReplicaSynchronization with an Operation of “Deactivate” the
association changes to CopyState=”Unsynchronized” with ProgressStatus=”Dormant”. The SyncState
should be set to “QuiesceInProgress”.

• CopyState=”Synchronized”, ProgressStatus=”Completed” (SyncState=”Synchronized“ or “Idle”)
The CopyState of “Synchronized” is an automatic transition from the Unsynchronized state. For mirrors, then
an implementation should report SyncState=”Synchronized”. For snapshots, the implementation should report
SyncState=”Idle”. From the “Synchronized” state the operations supported are: Suspend, Fracture, Split,
Failover, Deactivate, Unprepare and Dissolve.

• With Suspend: When a client uses ModifyReplicaSynchronization with an Operation of “Suspend” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Suspending”. The SyncState
should be set to “QuiesceInProgress”.

• With Fracture: When a client uses ModifyReplicaSynchronization with an Operation of “Fracture” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Fracturing”. The SyncState should
be set to “Fracture In Progress”.

• With Split: When a client uses ModifyReplicaSynchronization with an Operation of “Split” the association
changes to CopyState=”Synchronized” with ProgressStatus=”Splitting”. The SyncState should be set to
“Fracture In Progress”.

• With Failover: When a client uses ModifyReplicaSynchronization with an Operation of “Failover” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Failing over”. The SyncState
should be set to “Restore In Progress”.
358

NO_ANSI_ID Copy Services Subprofile

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461
• With Deactivate: When a client uses ModifyReplicaSynchronization with an Operation of “Deactivate” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Dormant”. The SyncState should
be set to “QuiesceInProgress”.

• With Unprepare: When a client uses ModifyReplicaSynchronization with an Operation of “Unprepare” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Initializing”. The SyncState should
be set to “Initialized”.

• With Dissolve: The StorageSynchronized is deleted.

• CopyState=”Fractured”, ProgressStatus=”Completed” (SyncState=”Fractured“)
This CopyState is equivalent to a SyncState of “Fractured”. From the “Fractured” state the only operations
supported are: Resync and Detach.

• With Detach: The StorageSynchronized is deleted.

• With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Fractured” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Split”, ProgressStatus=”Completed” (SyncState=”Fractured“)
This CopyState is equivalent to a SyncState of “Fractured”. From the “Split” state the only operations supported
are: Resync and Detach.

• With Detach: The StorageSynchronized is deleted.

• With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Split” with ProgressStatus=”Resyncing”. The SyncState should be set to
“ResyncInProgress”.

• CopyState=”Suspended”, ProgressStatus=”Completed” (SyncState=”Quiesced“)
This CopyState is equivalent to a SyncState of “Quiesced”. From the “Suspended” state the only operation
supported is: Resume.

• With Resume: When a client uses ModifyReplicaSynchronization with an Operation of “Resume” the
association changes to CopyState=”Suspended” with ProgressStatus=”Resyncing”. The SyncState should
be set to “ResyncInProgress”.

• CopyState=”Broken”, ProgressStatus=”Not Applicable” (SyncState=”Broken“)
This CopyState is equivalent to a SyncState of “Broken”. From the “Broken” state the only operation supported
is Activate. Repair work must be done. When this is done, the association is put in the “Inactive” state.

• With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Inactive” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Aborted”, ProgressStatus=”Completed” (SyncState=”Idle“ for snapshots and “Quiesced” for
mirrors)
This CopyState is equivalent to a SyncState of “Idle” for snapshots and “Quiesced” for mirrors. From the
“Aborted” state the only operation supported is Activate.

• With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Aborted” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Failedover”, ProgressStatus=”Completed” (SyncState=”Frozen“ for snapshots and ”Fractured“ for
mirrors)
This CopyState is equivalent to a SyncState of “Frozen” for snapshots and “Fractured” for mirrors. From the
“Failedover” state the only operations supported are: Failback and Detach.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 359

Copy Services Subprofile NO_ANSI_ID

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504
• With Failback: When a client uses ModifyReplicaSynchronization with an Operation of “Failback” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Failing back”. The SyncState
should be set to “Restore In Progress”.

• With Detach: The association is deleted.

• CopyState=”Inactive”, ProgressStatus=”Completed” (SyncState=”Idle“ for snapshots and “Quiesced” for
mirrors)
This CopyState is equivalent to a SyncState of “Idle” for snapshots and “Quiesced” for mirrors. From the
“Inactive” state the only operation supported is: Activate.

• With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Inactive” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Skewed”, ProgressStatus=”Completed” (SyncState=”Initialized“)
This CopyState is equivalent to a SyncState of “Initialized”. That is, the association exists, but nothing else can
be said about it. From the “Skewed” state the only operation supported is: Resync.

• With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Skewed” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”. NOTE: With ModifyReplicaSynchronization, Prepare is automatic.

• CopyState=”Mixed”, ProgressStatus=”Completed”
The mixed state only applies to group operations and should never show up on single source-target pairs.

Using the deprecated method ModifySynchronization, the SyncStates that are effected also need to be reported in
the CopyState and ProgressStatus properties. This is summarized by the following bullets:

• SyncState=”Initialized” (CopyState=”Initialized”, ProgressStatus=”Completed”)
This state would only exist if InitialReplicationState=”Initialized” or an ModifySynchronization Unprepare
operation is issued. The only ModifySynchronization operation supported is Prepare.

• With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the association
changes to SyncState=”PrepareInProgress”. This should be reported as CopyState=”Initialized” with
ProgressStatus=”Preparing”.

• SyncState=”Prepared” (CopyState=”Prepared”, ProgressStatus=”Completed”)
The only ModifySynchronization operations supported are Resync or Unprepare.

• With Resync: When a client uses ModifySynchronization with an Operation of “Resync” the association
changes to SyncState=”ResyncInProgress”. This should be reported as CopyState=”Prepared” with
ProgressStatus=”Synchronizing”.

• With Unprepare: When a client uses ModifySynchronization with an Operation of “Unprepare” the
association changes to SyncState=”Initialized”. This should be reported as CopyState=”Initialized” with
ProgressStatus=”Completed”.

• SyncState=”Synchronized” (CopyState=”Synchronized”, ProgressStatus=”Completed”)
This state only applies to mirrors. The only ModifySynchronization operation supported is Quiesce.

• With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the association
changes to SyncState=”QuiesceInProgress”. This should be reported as CopyState=”Synchronized” with
ProgressStatus=”Dormant”.

• SyncState=”Quiesced” (CopyState=”Suspended”, ProgressStatus=”Completed”)
The only ModifySynchronization operations supported are Fracture and Unquiesce for mirrors and Prepare for
snapshots.
360

NO_ANSI_ID Copy Services Subprofile

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547
• With Fracture: When a client uses ModifySynchronization with an Operation of “Fracture” the association
changes to SyncState=”FractureInProgress”. This should be reported as CopyState=”Suspended” with
ProgressStatus=”Fracturing”.

• With Unquiesce: When a client uses ModifySynchronization with an Operation of “Unquiesce” the
association changes to SyncState=”ResyncInProgress”. This should be reported as CopyState=”Suspended”
with ProgressStatus=”Resyncing”.

• With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the association
changes to SyncState=”PrepareInProgress”. This should be reported as CopyState=”Suspended” with
ProgressStatus=”Preparing”.

• SyncState=”Restore In Progress” (CopyState=”Synchronized”, ProgressStatus=”Failing over”)

• SyncState=”Idle” (CopyState=”Inactive”, ProgressStatus=”Completed”)
This state only applies to snapshots. The only ModifySynchronization operations supported are Quiesce, Start
Copy and Restore.

• With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the association
changes to SyncState=”QuiesceInProgress”. This should be reported as CopyState=”Inactive” with
ProgressStatus=”Dormant”.

• With Start Copy: When a client uses ModifySynchronization with an Operation of “Start Copy” the
association changes to SyncState=”Copy In Progress”. This should be reported as CopyState=”Inactive” with
ProgressStatus=”Synchronizing”. NOTE: This is a background copy.

• With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the association
changes to SyncState=”Restore In Progress”. This should be reported as CopyState=”Inactive” with
ProgressStatus=”Failing over”.

• SyncState=”Broken” (CopyState=”Broken”, ProgressStatus=”Completed”)
A broken association needs to be repaired. After the relationship is repaired, the association goes into its
InitialReplicationState.

• SyncState=”Fractured” (CopyState=”Fractured”, ProgressStatus=”Completed”)
This state only applies to mirrors. The only ModifySynchronization operations supported are Prepare and
Restore.

• With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the association
changes to SyncState=”PrepareInProgress”. This should be reported as CopyState=”Fractured” with
ProgressStatus=”Preparing”.

• With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the association
changes to SyncState=”Restore In Progress”. This should be reported as CopyState=”Fractured” with
ProgressStatus=”Failing over”.

• SyncState=”Frozen” (CopyState=”Synchronized”, ProgressStatus=”Completed”)
This state only applies to snapshots. The only ModifySynchronization operations supported are Quiesce and
Restore.

• With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the association
changes to SyncState=”QuiesceInProgress”. This should be reported as CopyState=”Synchronized” with
ProgressStatus=”Dormant”.

• With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the association
changes to SyncState=”Restore In Progress”. This should be reported as CopyState=”Synchronized” with
ProgressStatus=”Failing over”.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 361

Copy Services Subprofile NO_ANSI_ID

548

549

550

551

552

553

554

555
9.1.13.2 Synchronized SyncState

Synchronized state for the Mirror and Clone SyncTypes indicates all data has been copied from the source element
to the target element. For the Snapshot SyncType, because the target element is a virtual point-in-time view of the
source element, the Synchronized CopyState indicates all the metadata (pointers) for the snapshot have been
created. Synchronization for the snapshots is achieved relatively quickly.

Figure 55 shows a sampling of the CopyState transitions and the corresponding ProgressStatus changes. In a
steady state condition, for example, the CopyState has a value of “Synchronized”, and at the same time the
ProgressStatus has a value of “Completed”.
362

NO_ANSI_ID Copy Services Subprofile

556

557

558

559

560
9.1.14 Accessibility to Associations and Elements

There are two cases that should be considered:

Case 1: The method completes successfully without returning a job. The created replication association
(StorageSynchronized for Mirror and Snapshot copy types) and the newly created target element shall be
accessible. The StorageSynchronized association between source and target elements for the Clone copy type

Figure 55 - Sample CopyState and ProgressStatus Transitions

 Resyncing

 Completed

 Initializing

 Detaching

 Fracturing

 Synchronizing

 Completed

 Completed

Legend:

ProgressStatus

Initialized

Unsynchronized

Synchronized

Fractured

Fracture

Resync

Entry

ExitCopyState

Detach

Automatic
Transition

Operation
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 363

Copy Services Subprofile NO_ANSI_ID

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588
may not be accessible after synchronization is achieved; however, there will be a SettingsDefineState association
(if supported) between the newly copied target element and a SynchronizationAspect instance.

Case 2: The method returns the status of “Job Started”. The AffectedJobElement association associates the
concrete job to the target element, unless there is no target element such as CreateSynchronizationAspect or
when the target element is deleted (ReturnToStoragePool). In this case, the AffectedJobElement points to the
source element. To ensure the replication association is accessible, the CopyState of the association has to have
at least reached the Initialized state. To guarantee accessibility to associations and elements, specify the
WaitForCopyState when issuing the method CreateElementReplica.

EXPERIMENTAL

9.1.15 Host Access Restrictions

The Copy Services Subprofile does not provide any services for managing access to replicas. However, replication
services often restrict access to replicas for the following reasons:

1) Replicas have the same volume signature as their source element. Exposing both the source and replica
to the same host may cause problems with a duplicate volume signature.

2) Delta replicas created by embedded software elements such as a volume manager may be unavailable
for export to a secondary host.

The subprofile uses two properties in StorageReplicationCapabilities to indicate host access restrictions:

1) ReplicaHostAccessibility

2) HostAccessibleState[]

A provider may set values for these two properties indicating any host access restrictions imposed on replicas.
These restrictions apply to all replicas created with the same CopyType value. Access control for a specific replica
by a specific host is normally managed using services described in Clause 18: Masking and Mapping Subprofile.

EXPERIMENTAL

Generally, exposing both the source and replica to the same host may cause problems due to a duplicate volume
signature. At a minimum, the signature of a replica must be changed before the replica is exposed to the same host
as the source element.

Managing host access to source and target elements can be managed by using services described in Clause 18:
Masking and Mapping Subprofile.

The method ReplicationServiceCapabilities.GetSupportedCopyStates for each CopyState additionally returns
information as to whether a replica is host accessible (boolean) for the given CopyState.

EXPERIMENTAL
364

NO_ANSI_ID Copy Services Subprofile

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623
EXPERIMENTAL

9.1.16 Settings, Specialized Elements and Pools for Replicas

A copy services provider shall support StorageSetting with the additional properties defined to manage replica
elements and replication operations. These properties are listed in the definition of StorageSetting in this
subprofile. This definition extends the basic list of required StorageSetting properties listed in the Block Services
Package. The CreateSetting method should return a REF to a StorageSetting instance with all of the replication
properties initialized to values consistent with the capabilities indicated in StorageReplicationCapabilities. Many
replication properties allow an initial value of “not applicable” if the provider does not use the property. The provider
sets the value lists for the SupportedStorageElementUsage[] and SupportedStoragePoolUsage[] properties in
StorageConfigurationCapabilities to indicate which values of StorageSetting.StorageExtentInitialUsage and
StorageSetting.StoragePoolInitialUsage are supported by the provider.

A provider may require specialized pools to contain delta replicas, specialized elements as replica targets and
specialized elements as concrete components for delta replica pools. The provider may require the client to
manage creation of these specialized elements – this is explained in detail in 9.6 "Client Considerations and
Recipes". Alternatively, the provider may automatically create specialized pools and elements and make them
available for discovery by clients. In either case, the StorageExtentInitialUsage and StoragePoolInitialUsage
properties in StorageSetting shall be supported by the provider as part of the goal parameter for pool/element
creation methods.

Elements and pools specialized for Copy Services are located using the GetElementsBasedOnUsage method
described in Clause 5: Block Services Package.

When StorageExtentInitialUsage or StoragePoolInitialUsage is set in the goal parameter for an element or pool
creation method, the value acts as an additional parameter indicating a specialized element. The provider ensures
that the required element type is created and the Usage property value is set in the new replica element or pool.
Certain types of specialized replica elements can be provided by changing existing elements using the
RequestUsageChange method. The ClientSettableElementUsage[] value list indicates the allowable modifications
for a storage element and the ClientSettablePoolUsage[] value list indicates the allowable modifications for a
storage pool.

EXPERIMENTAL

9.1.17 Backward Compatibility

A copy services provider can maintain backward compatibility with a 1.0 copy services client. The following
conditions are necessary for backward compatibility:

1) The instance of StorageConfigurationCapabilities should set replication capability property values in the
same way indicated for a 1.0 copy services provider. A newer copy services client should ignore these prop-
erties and use StorageReplicationCapabilities instead.

EXPERIMENTAL

2) The provider should treat AttachReplica as an alias for CreateElementReplica.

EXPERIMENTAL

3) The provider should treat StorageSynchronized.SyncState values “Synchronized” and “Idle” as equivalent for
CopyType “UnSyncAssoc”.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 365

Copy Services Subprofile NO_ANSI_ID

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663
9.1.18 Mutually Exclusive Capabilities

Both StorageReplicationCapabilities and StorageConfigurationCapabilities contain the
SupportedSynchronousActions[] and SupportedAsynchronousActions[] properties. The provider shall not include
the value corresponding to an action in both properties. An action can run synchronously or asynchronously but not
both. An action indicated in one of the StorageConfigurationCapabilities properties shall also be indicated in a
corresponding instance of StorageReplicationCapabilities.

EXPERIMENTAL

9.1.19 Deleting the Target Elements

Mirror, Clone, and Snapshot target elements that are no longer in a synchronization association are deleted using
the StorageConfigurationService.ReturnToStoragePool method. However, the Snapshot target elements that are in
a synchronization association are deleted using the ReplicationService.ModifyReplicaSynchronization (or
ModifySynchronization) method with the “Return To ResourcePool” operation parameter, which also removes the
synchronization association.

9.1.20 Using StorageSettings for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this class are
used as the goal parameter for the methods of this profile. The extrinsic method
CIM_StorageCapabilities.CreateSetting is used to create a setting and the intrinsic method ModifyInstance is used
to adjust the properties of a created StorageSetting. See Clause 5: "Block Services Package" for the details of
creating and modifying a storage setting.

9.1.21 Finding and Creating Target Elements

The extrinsic method ReplicationService.GetAvailableTargetElements is used to locate the available target
elements for a given source and copy type. The implementation may also support creating target elements if the
appropriate target elements are not supplied and/or are not available. The implementation may require the client to
create specialized elements to be used as a target of a copy operation. The specialized elements have a specific
values in their Usage property. Certain types of specialized elements can be provided by changing the Usage
property of existing elements. Refer to Clause 5: "Block Services Package" for creating (specialized) elements and
modifying the Usage value of existing elements.

Refer to 9.5.2.4.9 "GetDefaultReplicationSettingData" and 9.5.2.4.4 "GetSupportedFeatures" to determine if the
implementation automatically creates target elements, and if specialized elements are required for the desired
SyncType.

9.1.22 Using StoragePools for Replicas

Replicas are allocated from storage pools. The implementation may require specialized storage pools to contain
delta replicas (changed tracks of snapshots) or the “write intent log” files. The specialized storage pools have a
specific value in their Usage property, for example, “Reserved as a Delta Replica Container“, “Reserved for Local
Replication Services“, or “Reserved for Remote Replication Services”.

9.1.22.1 Delta Replica StoragePools

Depending on the implementation, the Snapshot targets may require a fixed space consumption or variable space
consumption. Refer to 9.5.2.4.4 "GetSupportedFeatures" to determine if specialized storage pool are required.

There are three types of delta replica pool access:

• “Any” - specialized storage pools are not required for delta replicas. The implementation creates delta replicas
based on the fixed space consumption model and the client can select any storage pool as a container.
366

NO_ANSI_ID Copy Services Subprofile

664

665

666

667

668

669

670

671

672

673

674

675
• “Shared” - a single shared storage pool is the container for all delta replicas. This type of storage pool is always
preexisting and may be located with the GetElementBasedOnUsage method. The client may need to add
space to this type of storage pool.

• “Exclusive” - each source element requires an exclusive, special storage pool for associated delta replicas. If
the storage pool already exists, it is associated to the source element with a ReplicaPoolForStorage
association. If the storage pool does not exist, the client creates the storage pool.

“Multiple” - “multiple specialized, exclusive pools may exist or may be created.“

Figure 56 and Figure 57 show the fixed and variable space consumption for the Snapshot targets, respectively. If
the implementation supports fixed space consumption, the DeltaReservation properties are set by the client to the
appropriate values for a new snapshot. The values are set in the associated StorageSetting element to be passed
as a goal parameter to the CreateElementReplica method (or CreateSynchronizationAspect method). For variable
space consumption, there are no special properties to set by the client.

Figure 56 - Fixed Space Consumption

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

SyncType = “Snapshot”
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 367

Copy Services Subprofile NO_ANSI_ID

676

677

678

679

680

681

682

683

684

685

686

687
9.1.23 Thinly Provisioned Elements

Replication Services supports “copying” thinly provisioned elements. Depending on the underlying implementation,
it is possible to copy a thinly provisioned source element to a thinly provisioned target element or alternatively to a
fully provisioned target element. Other combinations may be advertised in the capabilities.

If an implementation supports more than one combination of source and target provisioning, clients may use the
ReplicationSettingData parameter of the CreateElementReplica to request a specific combination.

Refer to the capabilities for the allowable combinations supported by the implementation. See 9.5.2.4.7, 9.7.16,
and 9.5.2.4.9.

9.1.24 Indication Events

Depending on the implementation, the Copy Services Profile generates a number of different alert and life cycle
indications, shown in Table 204. Clients decide what indications they wish to receive by subscribing to the
appropriate indications.

Figure 57 - Variable Space Consumption

StorageSynchronized

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M

StoragePool

// container element
// delta replica pool
TotalManagedSpace = S
RemainingManagedSpace = variable
LowSpaceWarningThreshold = T2
Usage =
 “Reserved as a Delta Replica Container”

AllocatedFromStoragePool

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M

SpaceConsumed = variable

SyncType = “Snapshot”

ReplicaPoolForStorage
368

NO_ANSI_ID Copy Services Subprofile

688

689

690

691

692

693

694

695

696

697

698

699

700
EXPERIMENTAL

9.1.24.1 InstCreation on StorageSynchronized

This indication is triggered by any event that causes a StorageSynchronized association to be created. This
includes use of methods such as CreateElementReplica. But it may also be triggered by other (external) events.

This indication is required of any conforming implementation of Copy Services.

9.1.24.2 InstDeletion on StorageSynchronized

This indication is triggered by any event that causes a StorageSynchronized association to be deleted. This
includes use of methods such as ModifyReplicaSynchronization with the “Detach” operation. But it may also be
triggered by other (external) events.

This indication is required of any conforming implementation of Copy Services.

DEPRECATED

9.1.24.3 InstModification on SyncState

This indication is triggered by any event that causes a SyncState change in any StorageSynchronized association.
This includes use of methods such as ModifyReplicaSynchronization. But it may also be triggered by other
(external) events.

Table 204 - Indications

Indication Source Of

CIM_InstCreation • New Job Creation

• New Target Element Creation

• New StorageSynchronized Association Creation

CIM_InstDeletion • Job Deletion

• Target Element Deletion (e.g. Snapshot)

• StorageSynchronized Association Deletion

CIM_InstModification • Job Progress and Status Changes

• Source and Target Elements Status Changes

• SyncState Changes

• ProgressStatus Changes

CIM_AlertIndication • StoragePool space consumption Alerts (especially by Snapshot targets).

• Error conditions, such as:

• StorageSynchronized State set to Broken.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 369

Copy Services Subprofile NO_ANSI_ID

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730
This indication is required of any conforming implementation of Copy Services.

This Indication is being deprecated in favor of the “qualified” InstModification on Copy State (see 9.1.24.4).

DEPRECATED

EXPERIMENTAL

9.1.24.4 Qualified InstDeletion on StorageSynchronized

This indication is triggered by any event that causes a specific client defined StorageSynchronized association to
be deleted. This includes use of methods such as ModifyReplicaSynchronization with the “Detach” operation. But it
may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.5 Qualified InstModification on CopyState

This indication is triggered by any event that causes a CopyState change in a specific client defined
StorageSynchronized association. This includes use of methods such as ModifyReplicaSynchronization. But it may
also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.6 Qualified InstModification on ProgressStatus

This indication is triggered by any event that causes a ProgressStatus change in a specific client defined
StorageSynchronized association. This includes use of methods such as ModifyReplicaSynchronization. But it may
also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.7 InstModification on ProgressStatus

This indication is triggered by any event that causes a ProgressStatus change in any StorageSynchronized
association. This includes use of methods such as ModifyReplicaSynchronization. But it may also be triggered by
other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.8 AlertIndication on StorageSynchronized

This indication is triggered by any event that causes a CopyState change to “broken” in any StorageSynchronized
association. This is typically triggered by an external event.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.9 AlertIndication on StoragePool

This indication is triggered by any event that causes the remaining space in any StoragePool to dip below its
warning threshold. This could be triggered by any one of a number of events.

This indication may be supported by any conforming implementation of Copy Services.
370

NO_ANSI_ID Copy Services Subprofile

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753
EXPERIMENTAL

9.2 Health and Fault Management Considerations

9.2.1 Health Indications

Certain capabilities of the subprofile use alert, instance modification and instance deletion indications for health
and fault management. In general, instance modification indications when the OperationalStatus values of a replica
element change may indicate a fault. Instance modification indications when StorageSynchronized.SyncState
automatically changes from any other value to “Broken” indicates a fault. If delta replica pools are supported with
warning thresholds, alert indications may be generated by the provider when remaining space in a pool falls below
a warning threshold or is completely consumed. The information in the alert indications is described in Table 205,
“Copy Services Alert Indications”.

EXPERIMENTAL

The Copy Services Subprofile generates alert indications, shown in Table 205, that allow monitoring of dynamic
space consumption by delta replica elements. All of the alert indications indicate an AlertType value of “Device
Alert” and an OwingEntity value of “SNIA”. Alerts are generated for CIM_StoragePool elements to indicate that
remaining consumable space is below a warning threshold percentage of total space or that all space in the pool
has been consumed. The LowSpaceWarningThreshold, TotalManagedSpace and RemainingManagedSpace
properties can be analyzed to determine an appropriate response.

EXPERIMENTAL

EXPERIMENTAL

The profile uses indications to report health and fault management. In general, instance modification indications
are sent when changes in OperationalStatus and HealthState values of the following instances indicate a fault
condition:

• Source and Replica elements

In response to a fault indication, clients can follow the RelatedElementCausingError association between the
instance reporting the error and the faulted component.

The profile also generates alert indications when the CopyState of a replication association transitions to the
Broken state.

Table 205 - Copy Services Alert Indications

AlertingManaged
Element

PerceivedSeverity ProbableCause ProbableCauseDescription

Storage pool Minor (4) Threshold
Crossed
(52)

Pool at low space warning threshold:
 RemainingManagedSpace/
 TotalManagedSpace

Storage pool Major (5) Out of Memory
(33)

No remaining space in storage pool
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 371

Copy Services Subprofile NO_ANSI_ID

754

755

756

757

758

759

760

761

762

763
The profile generates alert indications that allow monitoring of storage pool consumption by the replica elements.

EXPERIMENTAL

9.2.2 Replication Error Messages

DEPRECATED

9.2.2.1 Storage Configuration Service Method Messages

The Copy Services Subprofile returns the error responses listed in Table 206 for the extrinsic methods supported
by the subprofile. The subprofile uses MessageID values defined in the common error registry and the storage
error registry.

DEPRECATED

EXPERIMENTAL

9.2.2.2 Replication Service Method Messages

Not defined in this version of the standard.

EXPERIMENTAL

9.3 Cascading Considerations

Not defined in this standard.

Table 206 - Copy Services Error Responses

MessageID Message Name

MP2 Operation Not Supported

MP3 Property Not Found

MP5 Parameter Error

MP11 Too Busy To Respond

MP17 Invalid Property Combination During Instance Modification

DRM20 Invalid Extent Passed

DRM24 Invalid State Transition

DRM25 Invalid SAP For Method

DRM26 Resource Not Available

DRM27 Resource Limit Exceeded
372

NO_ANSI_ID Copy Services Subprofile

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794
9.4 Supported Subprofiles and Packages

See 9.1.1 "Synopsis".

The Block Services Subprofile is a mandatory prerequisite for the Copy Services Subprofile. Clients require
methods and recipes from block services for the following purposes:

• Identify replica target candidates

• Identify extents and pools to be used as replica containers

• Create and delete replica container elements

• Create and delete replica target elements

• Create generated setting objects with additional properties required by the copy services subprofile.

Many classes and methods defined in Block Services are used in Copy Services without extensions or additional
properties. In this case, the classes and methods are not redefined in Copy Services.

The Job Control Subprofile is required if any of the copy services extrinsic methods run asynchronously with
created job elements.

Copy services defines instance indications and alert indications using required and optional properties described in
Clause 42: Indication Profile.

9.5 Methods of the Profile

9.5.1 Intrinsic Methods of the Profile

The subprofile requires the provider to support the CreateInstance, GetInstance, ModifyInstance and
DeleteInstance intrinsic methods for certain optional capabilities of the subprofile.

9.5.2 Extrinsic Methods of the Profile

EXPERIMENTAL

9.5.2.1 Block Services Package

The profile is dependent on other extrinsic methods provided by the Block Services Package for storage pool and
storage element manipulations.

EXPERIMENTAL

DEPRECATED

9.5.2.2 StorageConfigurationService Methods

The Copy Services Subprofile is dependent on many of the extrinsic methods provided by block services. The
ReturnToStoragePool extrinsic method defined by block services is used to delete a replica element.
ReturnToStoragePool may receive an MP3 (property not found) error response for replica elements that are
implicitly deleted by a ModifySynchronization Detach operation.

All of the subprofile methods return one of three status codes or return an error response. The supported status
codes are:

• 0: Job completed with no error
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 373

Copy Services Subprofile NO_ANSI_ID

795

796

797

798

799

800

801

802

803

804
• 1: Method not supported

• 0x1000: Job started

Table 207 summarizes the extrinsic methods for replica creation and management in the
StorageConfigurationService.

9.5.2.2.1 ModifySynchronization Method

Table 208 lists and describes the ModifySynchronization Method.

“Detach” operation deletes the StorageSynchronized association. An instance deletion indication is generated for
this operation.

All ModifySynchronization operations are described in 9.1.8 Accessibility to Created Elements. If “job completed” is
returned and the replica association indicates an “… in progress” SyncState value, an instance modification

Table 207 - Extrinsic Methods of StorageConfigurationService

Method Described in

ModifySynchronization() Table 208, “ModifySynchronization”

CreateReplica() Table 209, “CreateReplica Method”

AttachReplica() Not documented

Table 208 - ModifySynchronization

Method: ModifySynchronization

Errors: DRM24, MP2, DRM25

Parameters:

Qualifiers Name Type Description/Values

IN, REQ Operation uint16 Type of operation to modify the
replica:

2: Detach
3: Fracture
4: Resync
5: Restore
6: Prepare
7: Unprepare
8: Quiesce
9: Unquiesce
10: Reset to Sync
11: Reset to Async
12: Start Copy
13: Stop Copy

OUT Job ConcreteJob REF Returned if job started.

IN, REQ Synchronizatio
n

StorageSynchronized REF Association to replica that is
modified
374

NO_ANSI_ID Copy Services Subprofile

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823
indication should follow when the replica enters its final, expected state. If “job started” is returned, the replica
association indicates an “… in progress” SyncState value. In this case, two instance modification indications may
follow. One should indicate the final SyncState value of the replica association when the job completes with no
error. The other should indicate job completion for the instance of ConcreteJob.

StorageReplicationCapabilities.SupportedModifyOperations[] allows a client to verify that a specific operation is
supported by a provider.

9.5.2.2.2 CreateReplica Method

.Table 209 describes the CreateReplica Method.

Method notes:

• Creates a storage element of the same type as the source element.

• Creates a StorageSynchronized association”.

• Creates a SystemDevice association.

• Creates an AllocatedFromStoragePool association.

• Creates a StorageSetting instance with an ElementSettingData association.

• May create a BasedOn association.

• May create a ReplicaPoolForStorage association.

• All CopyType values may be supported.

If TargetPool is not supplied by the client, the provider response is implementation specific. For all operations not
using specialized delta replica pools, the behavior of the client follows these rules:

Table 209 - CreateReplica Method

Method: CreateReplica

Errors: DRM26, DRM27, DRM25, MP5

Parameters:

Qualifiers Name Type Description/Values

IN ElementName string Client-assigned, friendly name

OUT Job ConcreteJob REF

IN, REQ SourceElement LogicalElement REF

OUT TargetElement LogicalElement REF

IN TargetSettingGoal StorageSetting REF

IN TargetPool StoragePool REF

IN, REQ CopyType uint16 Copy type created:

2: Async
3: Sync
4: UnSyncAssoc
5: UnSyncUnAssoc
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 375

Copy Services Subprofile NO_ANSI_ID

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841
842

843

844

845

846

847

848
849

850

851
852

853

854
1) Provider may return MP5 message indicating that TargetPool is an invalid parameter. In this case, the client
should select a pool and retry the operation.

2) The provider will select a pool and proceed with the operation.

If the TargetPool is supplied, the provider uses the requested pool except for the next special case. For CopyType
“UnSyncAssoc” creating a delta replica and DeltaReplicaPoolAccess values of “Shared” or “Exclusive” are
indicated by the provider, TargetPool should be managed by the client as shown in Table 210

If TargetSettingGoal is not supplied by the client, the provider generates a default StorageSetting element for the
replica. If TargetSettingGoal is supplied by the client, the provider will return an MP5 error message if the goal is
incompatible with the corresponding target pool. If “job started' is returned, a Target Element reference may or may
not be returned by the provider. 9.1.8 Accessibility to Created Elements explains when a reference to the new
replica element is available to the client.

9.5.2.2.3 AttachReplica

This method creates a StorageSynchronized relationship between two (existing) storage volumes. Once the
association is created the SyncState is set to “initialized”, “Prepared” or “Synchronized” as defined in the
StorageConfigurationCapabilities associated with the StorageConfigurationService. There is no ConcreteJob
created or returned on this method call (since the only action effected is the creation of the association).

AttachReplica():

[In, Description (“A end user relevant name for the element being created. If NULL,
then a system supplied

default name can be used. The value will be stored in the

'ElementName' property for the created element”)]

string ElementName,

[In, Required, Description(“The source storage object.”)]

CIM_LogicalElement REF SourceElement,

[In, Required, Description(“Reference to the target storage element (i.e., the
replica).”)]

CIM_LogicalElement REF TargetElement,

[In, Required, Description(“CopyType describes the type of copy that will be made.
Values are:

Async: Create and maintain an asynchronous copy of the source.

Sync: Create and maintain a synchronized copy of the source.

Table 210 - TargetPool Parameter for Delta Replicas

DeltaReplicaPoolAccessvalue TargetPool supplied TargetPool not supplied

Shared Error with an MP5 message. The
specialized pool pre-exists and is always
supplied by the provider.

Always the correct client
action. The provider locates
the specialized pool.

Exclusive If the method invocation is creating the
first delta replica for the specified source
element, TargetPool is supplied by the
client. The pool is used by the provider
and a ReplicaPoolForStorage
association is created as a side effect. If
delta replicas already exist for the
source element, an error with an MP5
message will be returned.

If the specified source
element has a
ReplicaPoolForStorage
association, the provider uses
this pool as the container for
a new delta replica. If this
association does not exist, an
error with an MP5 message is
returned.
376

NO_ANSI_ID Copy Services Subprofile

855
856

857

858

859
860

861

862
863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891
UnSyncAssoc: Create an unsynchronized copy and maintain an association to the
source.

UnSyncUnAssoc: Create unassociated copy of the source element.”),

ValueMap {“2”, “3”, “4”, “5”, “.”, “0x8000..”},

Values {“Async”, “Sync”, “UnSyncAssoc”, “UnSyncUnAssoc”, “DMTF Reserved”, “Vendor
Specific”}]

Uint16 CopyType

[Out, IN(false), Description(“Reference to the job (may be null if job
completed).”)]

CIM_ConcreteJob REF Job,

7.3.3.8.8 Client Considerations

9.5.2.2.4 Additional Notes on StorageConfigurationService Methods

CreateReplica shall be provided if local replicas are supported. Replica target elements are deleted using the
ReturnToStoragePool method in block services. All associations and associated setting elements are automatically
deleted at the same time the element is deleted.

TargetElement candidates cannot have an existing SyncedElement role to a StorageSynchronized association.
The provider returns a DRM26 error message if the candidate is already in use as a replica target element. Source
elements may generally be associated with multiple replica targets. The provider may return a DRM26 error in
some cases if an element cannot serve as a replica source. The provider may return a DRM27 error if the client
attempts to create replication targets exceeding the provider specified limits.

If the method returns “job completed”, the new StorageSynchronized association is accessible to the client. If the
method returns “job started”, the association may not be accessible. In this case, an instance creation indication
should be generated by the provider when the association is accessible.

If the provider supports replica modification, a Goal parameter may be passed by the client to change the value of
modifiable setting properties. The provider may ignore properties not relevant to replication operations. The
properties that may be supplied by the client include UseReplicationBuffer, InitialSynchronization and
ReplicationPriority.

DEPRECATED

EXPERIMENTAL

9.5.2.3 ReplicationService Methods

The ReplicationService has a number of extrinsic methods for replication management.

All of the ReplicationService extrinsic methods return one of the following status codes. Depending on the error
condition, a method may return additional error codes and/or throw an appropriate exception to indicate the error
encountered.

0: (Job) Completed with no error

1: Method not supported

4: Failed

5: Invalid Parameter

4096: Method Parameters Checked - Job Started
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 377

Copy Services Subprofile NO_ANSI_ID

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919
For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 211 summarizes the extrinsic methods for replica creation and management in the ReplicationService.

9.5.2.3.1 CreateElementReplica

 uint32 ReplicationService.CreateElementReplica(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) a new storage object which is a replica of the
specified source storage object (SourceElement). The parameters are as follows:

• ElementName: A end user relevant name for the element being created. If NULL, then a system supplied
name is used. The value will be stored in the 'ElementName' property for the created element.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously.

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• TargetElement:

• As an input, refers to a target element to use. If a target element is not supplied, the implementation may
locate or create a suitable target element. See 9.5.2.4.9.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

Table 211 - Extrinsic Methods of ReplicationService

Method Described in

CreateElementReplica Section 9.5.2.3.1

CreateSynchronizationAspect Section 9.5.2.3.2

ModifyReplicaSynchronization Section 9.5.2.3.3

ModifyListSynchronization Section 9.5.2.3.4

ModifySettingsDefineState Section 9.5.2.3.5

GetAvailableTargetElements Section 9.5.2.3.6

GetReplicationRelationships Section 9.5.2.3.7
378

NO_ANSI_ID Copy Services Subprofile

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960
• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be NULL if job is completed).

• Synchronization: Refers to the created association between the source and the target element. If a job is
created, this parameter may be NULL, unless the association is actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be NULL.

• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be NULL.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached. For example,
CopyState of Initialized means associations have been established, but there is no data flow. CopyState of
Synchronized indicates the replica is an exact copy of the source element. CopyState of UnSynchronized
means copy operation is in progress (see Table 202, “CopyStates Values,” for the CopyStates).

Method Notes:

• Creates a storage element of the same type as the source element.

• Creates a StorageSynchronized association.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target element.

• May create BasedOn and ReplicaPoolForStorage associations.

9.5.2.3.2 CreateSynchronizationAspect

 uint32 ReplicationService.CreateSynchronizationAspect(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElement,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SettingsDefineState REF SettingsState);

This method allows a client to create (or start a job to create) new instances of SynchronizationAspect that are
associated to the source element via the SettingsDefineState associations. This representation may be of a form of
pointers or a series of checkpoints that keep track of the source element data for the created point-in-time.

This method does not include a target element, however, a target element can be added subsequently using the
ModifySettingsDefineState method.

The method creates individual associations between the source elements and the instances of
SynchronizationAspect.

The parameters are as follows:
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 379

Copy Services Subprofile NO_ANSI_ID

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997
• ElementName: A end user relevant name. If NULL, then a system supplied default name can be used. The
value will be stored in the ElementName property of the created SynchronizationAspect.

• SyncType: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Mode: See 9.5.2.3.1: CreateElementReplica’s parameters.

• SourceGroup: This should be null for ungrouped copies.

• SourceElement: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Consistency: This should be null for ungrouped copies.

• ReplicationSettingData: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Job: See 9.5.2.3.1: CreateElementReplica’s parameters.

• SettingsState: Refers to the created association between the source element or group and the instance of the
SynchronizationAspect. If a job is created, this parameter may be NULL, unless the association is actually
formed.

Method Notes:

• May create an instance of SynchronizationAspect if an appropriate one does not exist already.

• May create ReplicaPoolForStorage associations.

9.5.2.3.3 ModifyReplicaSynchronization

 uint32 ReplicationService.ModifyReplicaSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

[IN] CIM_StorageSynchronized REF SyncPair[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

[OUT] CIM_SettingsDefineState REF SettingsState,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the synchronization association between two storage
objects. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: The reference to the replication association describing the elements relationship that is to be
modified.

• ReplicationSettingData: See 9.5.2.3.1: CreateElementReplica’s parameters.

• SyncPair[]: For operations on ungrouped elements, this parameter should be NULL.

• Job: See 9.5.2.3.1: CreateElementReplica’s parameters.

• SettingsState: Reference to the association between the source element and an instance of
SynchronizationAspect. This parameters applies to operations such as Dissolve, which dissolves the
380

NO_ANSI_ID Copy Services Subprofile

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039
Synchronized relationship, but causes the SettingsDefineState association to be created. Depending on the
implementation, Deactivate may also return a SettingsState.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See 9.5.2.3.1: CreateElementReplica’s parameters.

9.5.2.3.4 ModifyListSynchronization

uint32 ReplicationService.ModifyListSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) a list of synchronization associations between two
storage objects. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: An array of references to the replication association describing the elements relationship that
is to be modified. All elements of the this array shall of the same concrete class, i.e., StorageSynchronized, and
shall have the same SyncType, the same Mode, and the Operation must be valid for the ReplicationType --
SyncType, Mode.

• ReplicationSettingData: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Job: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See 9.5.2.3.1: CreateElementReplica’s parameters. All the supplied synchronization
associations must reach at least the specified CopyState before the method returns.

9.5.2.3.5 ModifySettingsDefineState

 uint32 ReplicationService.ModifySettingsDefineState(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SettingsDefineState REF SettingsState,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 381

Copy Services Subprofile NO_ANSI_ID

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071
This method allows a client to modify (or start a job to modify) the SettingsDefineState association between the
storage objects and SynchronizationAspect. The modification could range from introducing the target elements,
which creates new StorageSynchronized associations, to dissolving the SettingsDefineState associations all
together.

With the Copy To Target operation, the supplied SettingsState is deleted since an “active” Synchronization is
created to associate the source and the target elements.

The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the related associations, for
example, Copy To Target, which initiates the copy operation from the point-in-time view to the supplied targets.

• SettingsState: Refers to the associations between the source elements and the SynchronizationAspect
instances.

• TargetElement: If TargetElement is supplied, TargetGroup and TargetCount shall be NULL.

• As an input, if the point-in-time has only one source element, this parameter supplies the target element.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetGroup: For ungrouped elements, this shall be NULL.

• Synchronization: The reference to the replication association describing the element relationship.

• ReplicationSettingData: See CreateElementReplica’s parameters (9.5.2.3.1).

• Job: See CreateElementReplica’s parameters (9.5.2.3.1).

• TargetSettingGoal: See CreateElementReplica’s parameters (9.5.2.3.1).

• TargetPool: See CreateElementReplica’s parameters (9.5.2.3.1).

• WaitForCopyState: See CreateElementReplica’s parameters (9.5.2.3.1).

9.5.2.3.6 GetAvailableTargetElements Method

Since the rules for determining potential target volumes for a copy operation are not always straightforward, due to
vendor-specific conditions, e.g. RAID level, the number of extents which consist of the StorageVolume, the type of
storage array, and so on, it can be difficult for the client to know which volumes can be used as copy targets for a
given source volume. This makes it difficult for the user to create a copy pair with the AttachReplica because he
must know which volumes can be used for target volume for a particular source volume, otherwise the request may
fail. The GetAvailableTargetElements method can be used to identify the potential target volumes for a copy
operation. GetAvailableTargetElements method takes the source volume and list of candidate pools and returns
the list of candidate target volumes for that source volume.
382

NO_ANSI_ID Copy Services Subprofile

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090
.Table 212 describes the GetAvailableTargetElements Method.

 uint32 ReplicationService.GetAvailableTargetElements(

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, Required] uint16 CopyType,

 [IN, Required] uint16 Mode,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [IN] CIM_ComputerSystem REF Systems[],

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPools[],

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_LogicalElement REF Candidates[]);

This method allows a client to get (or start a job to get) all of the candidate target elements for the supplied source
element. If a job is started, once the job completes, examine the AffectedJobElement associations for candidate
targets. The parameters are as follows:

• SourceElement: The source storage object which may be a StorageVolume or storage object.

Table 212 - GetAvailableTargetElements Method

Method: GetAvailableTargetElements

Errors: DRM25, DRM27, MP5, MP11

Parameters:

Qualifiers Name Type Description/Values

IN, REQ SourceElement LogicalElement REF The original source volume for
the pair

IN TargetPool[] StoragePool REF The arrays of the pools to
search for target volumes. The
method finds candidate target
volumes from the available
volumes in the specified
TargetPools.

This does include volumes
with a Usage property value of
reserved for copy target.

IN, REQ CopyType uint16 Copy type:

2: Async

3: Sync

4: UnSyncAssoc

5: UnSyncUnAssoc

6: Migrate

OUT Candidates[] LogicalElement REF The list of candidate target
volumes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 383

Copy Services Subprofile NO_ANSI_ID

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128
• CopyType: See CreateElementReplica’s parameters (9.5.2.3.1).

• Mode: See CreateElementReplica’s parameters (9.5.2.3.1).

• ReplicationSettingData: See CreateElementReplica’s parameters (9.5.2.3.1). The parameter is useful for
requesting a specific combination of thinly and fully provisioned elements.

• Systems[]: For local copies this parameter should be NULL.

• TargetSettingGoal: Desired target StorageSetting. If NULL, settings of the source elements shall be used.

• TargetPools[]: The storage pools for the target elements. If NULL, all storage pools are examined.

• Job: See CreateElementReplica’s parameters (9.5.2.3.1).

• Candidates[]: The list of the candidate target elements found.

9.5.2.3.7 GetReplicationRelationships

 uint32 ReplicationService.GetReplicationRelationships(

 [IN] uint16 Type,

 [IN] uint16 CopyType,

 [IN] uint16 Mode,

 [IN] uint16 SyncState,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationships known to the
processing replication service. If a job is started, once the job completes, examine the AffectedJobElement
associations for the synchronization relationships. The parameters are as follows:

• Type: The type of synchronization relationships, for example, StorageSynchronized. If this parameter is not
supplied, all such relationships are retrieved.

• SyncType: See CreateElementReplica’s parameters (9.5.2.3.1). If this parameter is not supplied, all
SyncTypes are retrieved.

• Mode: See CreateElementReplica’s parameters (9.5.2.3.1). If this parameter is not supplied, all Modes are
retrieved.

• CopyState: Only retrieve synchronization relationships that currently this CopyState (see Table 202,
“CopyStates Values,”). If this parameter is not supplied, relationships are retrieved regardless of their current
CopyState.

• Job: See CreateElementReplica’s parameters (9.5.2.3.1).

• Synchronizations[]: An array of elements found.

9.5.2.4 ReplicationServiceCapabilities Methods

There are a number of extrinsic methods in the ReplicationServiceCapabilities that advertise the implemented
replication services capabilities.

All of the Profile extrinsic methods return one of the following status codes. Depending on the error condition, a
method may return additional error codes and/or throw an appropriate exception to indicate the error encountered.

0: (Job) Completed with no error

1: Method not supported

4: Failed
384

NO_ANSI_ID Copy Services Subprofile

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140
5: Invalid Parameter

4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 213 summarizes the extrinsic methods for replica creation and management in the ReplicationService.

9.5.2.4.1 ConvertSyncTypeToReplicationType

uint32 ReplicationServiceCapabilities.ConvertSyncTypeToReplicationType(

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 LocalOrRemote,

 [OUT] uint16 SupportedReplicationTypes);

The majority of the methods in this class accept ReplicationType which represents a combination of SyncType,
Mode, and Local/Remote. This method accepts the supplied information and returns the corresponding
ReplicationType, which can be passed to other methods to get the additional capabilities.

Table 214, Table 215, Table 216, and Table 217 show the values for the CovertSyncTypeToReplicationType
parameters. These values also appear in the value maps in the appropriate MOF files.

Table 213 - Extrinsic Methods of ReplicationServiceCapabilities

Method Described in

ConvertSyncTypeToReplicationType Section 9.5.2.4.1

ConvertReplicationTypeToSyncType Section 9.5.2.4.2

GetSupportedCopyStates Section 9.5.2.4.3

GetSupportedFeatures Section 9.5.2.4.4

GetSupportedOperations Section 9.5.2.4.5

GetSupportedSettingsDefineStateOperations Section 9.5.2.4.6

GetSupportedThinProvisioningFeatures Section 9.5.2.4.7

GetSupportedMaximum Section 9.5.2.4.8

GetDefaultReplicationSettingData Section 9.5.2.4.9

GetSupportedReplicationSettingData Section 9.5.2.4.10

Table 214 - SyncTypes

SyncType Value

Mirror 6

Snapshot 7

Clone 8
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 385

Copy Services Subprofile NO_ANSI_ID

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155
9.5.2.4.2 ConvertReplicationTypeToSyncType

 uint32 ReplicationServiceCapabilities.ConvertReplicationTypeToSyncType(

 [IN] uint16 ReplicationType,

 [OUT] uint16 CopyType,

 [OUT] uint16 Mode,

 [OUT] uint16 LocalOrRemote);

This method does the opposite of the method ConvertSyncTypeToReplicationType. This method translates
ReplicationType to the corresponding SyncType, Mode, and Local/Remote.

Table 215 - Modes

Mode Value

Synchronous 2

Asynchronous 3

Table 216 - Local or Remote

LocalOrRemote Value

Local 2

Remote 3

Table 217 - ReplicationTypes

SupportedReplicationType Value

Synchronous Mirror Local 2

Asynchronous Mirror Local 3

Synchronous Mirror Remote 4

Asynchronous Mirror Remote 5

Synchronous Snapshot Local 6

Asynchronous Snapshot Local 7

Synchronous Snapshot Remote 8

Asynchronous Snapshot Remote 9

Synchronous Clone Local 10

Asynchronous Clone Local 11

Synchronous Clone Remote 12

Asynchronous Clone Remote 13
386

NO_ANSI_ID Copy Services Subprofile

1156

1157

1158

1159

1160
9.5.2.4.3 GetSupportedCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[],

 [OUT] boolean HostAccessible[]);

For a given ReplicationType, this method returns the supported CopyStates (Table 202) and a parallel array to
indicate whether for a given CopyState the target element is host accessible or not (true or false).

9.5.2.4.4 GetSupportedFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 Features[]);

For a given ReplicationType, this method returns the supported features listed in Table 218.

Table 218 - Features

Feature Description

“Replication Groups” Elements in a replication group are supported in a
replication operation.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the
service can manage.

"Service suspends source I/O when necessary" Provider is able to suspend I/O to source elements
before splitting the target elements. Otherwise, the
client needs to quiesce the application before issuing
the split command.

"Targets allocated from Any storage pool" Specialized storage pools are not required for the
target elements, as long as the pool is not reserved for
special activities.

"Targets allocated from Shared storage pool" Targets are allocated from storage pools reserved for
Copy Services.

"Targets allocated from Exclusive storage pool" Targets are allocated from exclusive storage pools.

"Targets allocated from Multiple storage pools" Targets are allocated from multiple specialized,
exclusive pools.

“Targets require reserved elements” The target elements must have a specific Usage
value. For example, reserved for "Local Replica
Target" (mirror), reserved for "Delta Replica Target"
(Snapshot)., etc.

"Target is associated to SynchronizationAspect” The target element is associated to
SynchronizationAspect via SettingsDefineState.
SynchronizationAspect contains the point-in-time
timestamp and the source element reference used to
copy to the target element.

"Source is associated to SynchronizationAspect” The source element is associated to
SynchronizationAspect via the SettingsDefineState
association. SynchronizationAspect contains the
point-in-time information of the source data.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 387

Copy Services Subprofile NO_ANSI_ID

1161

1162

1163

1164

1165

1166

1167
9.5.2.4.5 GetSupportedOperations

 uint32 GetSupportedOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported Operations on a StorageSynchronized association
that can be supplied to the ModifyReplicaSynchronization method, as shown in Table 219.

Refer to Figure 54, “CopyState Transitions” for additional information.

"Error recovery from Broken state Automatic", For example, if the connection between the source
and target elements is broken (CopyState = Broken),
once the connection is restored, the copy operation
continues automatically. If the error recovery is not
automatic, it requires manual intervention to restart the
copy operation. Use ModifyReplicaSynchronization,
with Operation set to Resume.

Table 219 - Operations

Operation Description Special Consideration

“Abort” Abort the copy operation if it is possible.

"Activate Consistency" Enable consistency.

“Activate” Activate an inactive StorageSynchronized
association.

"AddSyncPair" Add source and target elements of a
StorageSynchronized association to the
source and target replication groups. The
SyncType of the associations must be the
same.

"Deactivate Consistency" Disable consistency.

“Deactivate” Stop the copy engine. Writes to source
element are allowed.

Snapshot: Writes to target element
after point-in-time is created are
lost (pointers removed).

"Detach" Remove the association between the source
and target elements. Detach does not delete
the target element.

“Dissolve” Dissolve the synchronization association
between two storage objects, however, the
target element continues to exist.

Snapshot: This operation also
creates a SettingsDefineState
association between the source
element and an instance of
SynchronizationAspect if the
ReplicationType supports it.

Table 218 - Features

Feature Description
388

NO_ANSI_ID Copy Services Subprofile

1168
Table 220 compares the action of similar Operations.

"Failover" Enable the read and write operations from the
host to the target element. This operation
useful for situations when the source element
is unavailable.

"Failback" Switch the read/write activities from the host
back to source element. Update source
element from target element with writes to
target during the failover period.

"Fracture" Separate the target element from the source
element.

"Resync Replica" Resynchronize a fractured target element.

"Restore from Replica" Copy a fractured target element to the source
element.

"Resume" Continue the copy operation of a suspended
(or Broken) relationship.

To continue from the Broken state,
the problem should be corrected
first before requesting to resume.

"Reset To Sync" Change Mode to Synchronous.

"Reset To Async" Change Mode to Asynchronous.

“Return To StoragePool” Delete a Snapshot target.

"Reverse Roles" Switch the source and the target elements’
roles.

"Split" Separate the source and the target elements
in a consistent manner.

"Suspend" Stop the copy engine in such a way that it can
be resumed.

Table 220 - Comparison of Similar Operations

Operations Description

Activate versus Resume Activate: Activates a StorageSynchronizes
association that has a CopyState of “Inactive.”

Resume: Resumes a StorageSynchronized
association that has a CopyState of
“Suspended”.

Table 219 - Operations

Operation Description Special Consideration
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 389

Copy Services Subprofile NO_ANSI_ID

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181
9.5.2.4.6 GetSupportedSettingsDefineStateOperations

uint32 ReplicationServiceCapabilities.GetSupportedSettingsDefineStateOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported operations on a SettingsDefineState association
that can be supplied to the ModifySettingsDefineState method, shown in Table 221.

Deactivate versus Suspend Deactivate: Stops the copy engine. In the case
of Snapshots, all writes to target element are
deleted (pointers to changed data are
removed). While inactive, writes to source
element will not be committed to target
element once activated.

Suspend: Stops the copy engine. All writes to
target element are preserved. Once resumed,
pending writes to target element are
committed.

Fracture versus Split Fracture: Source and target elements are
separated “abruptly.”

Split: Source and target elements are
separated in an orderly fashion. Consistency
of target elements is maintained.

Detach versus Dissolve Detach: The association between the source
and target element must be first Fractured/
Split before it can be Detached.

Dissolve: The association can have a
CopyState of Synchronized. Additionally,
Dissolve can create a SettingsDefineState
association based on GetSupportedFeatures
(see 9.5.2.4.4) Capabilities.

Table 221 - SettingsDefineState Operations

SettingsDefineState
Operation

Description Special Consideration

"Activate Consistency" Enable consistency

"Deactivate Consistency" Disable consistency

"Delete" Remove the SettingsDefineState association.
Instance of SynchronizationAspect may also be
deleted if it is not shared with other elements.

"Copy To Target" Introduces the target elements and forms the
necessary associations between the source and
the target elements (i.e., StorageSynchronized).

Table 220 - Comparison of Similar Operations

Operations Description
390

NO_ANSI_ID Copy Services Subprofile

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193
9.5.2.4.7 GetSupportedThinProvisioningFeatures

uint32 ReplicationServiceCapabilities.GetSupportedThinProvisioningFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedThinProvisioningFeatures[]);

For a given ReplicationType this method returns the supported features related to thin provisioning.

A client can request a specific thin provisioning policy in the ReplicationSettingData parameter of the appropriate
method call.

9.5.2.4.8 GetSupportedMaximum

 uint32 ReplicationServiceCapabilities.GetSupportedMaximum(

 [IN] uint16 ReplicationType,

 [IN] uint16 Component,

 [OUT] uint64 MaxValue);

This method accepts a ReplicationType and a component, it then returns a static numeric value representing the
maximum number of the specified component that the service supports. A value of 0 indicates unlimited
components of the given type. In all cases the maximum value is bounded by the availability of resources on the
computer system. If the information is not known, the method returns 7 which indicates "Information is not
available".

Effectively, this method informs clients of the edge conditions.

Table 223 shows the list of components that can be specified.

Table 222 - Thin Provisioning Features

Feature Description

"Thin provisioning is not supported" The replication service does not distinguish between
thinly and fully provisioned elements. The service treats
all elements as fully provisioned elements.

"Zeros written in unused allocated blocks of target" Applies to copying from a thinly provisioned element to
a fully provisioned element. The implementation needs
to allocate “real” storage blocks on the target side for
the corresponding blocks of the source element that are
unused.

"Unused allocated blocks of target are not initialized" Applies to copying from a thinly provisioned element to
a fully provisioned element. The implementation needs
to allocate “real” storage blocks on the target side for
the corresponding blocks of the source element that are
unused.

Table 223 - Components

Component Description

"Number of target elements per source element" Maximum number of target elements per source element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 391

Copy Services Subprofile NO_ANSI_ID

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218
9.5.2.4.9 GetDefaultReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetDefaultReplicationSettingData(

 [IN] uint16 ReplicationType,

 [OUT, EmbeddedObject]

 string DefaultInstance);

This method for a given ReplicationType returns the default ReplicationSettingData as an instance.

9.5.2.4.10 GetSupportedReplicationSettingData

Not defined in this version of the standard.

EXPERIMENTAL

9.6 Client Considerations and Recipes

9.6.1 Discovery of Copy support and Capabilities

A single instance of a Copy Services provider may support mirrors, snapshots and clones. A client follows these
steps to fully discover and understand all capabilities of the provider:

• Locate the hosted instance of StorageConfigurationService.

• Enumerate and get all of the informational capability objects associated with StorageConfigurationService

Block services shall be supported by the provider. The Copy Services Subprofile shall be registered by the
provider. The provider shall host one instance of StorageConfigurationService.

The properties of StorageConfigurationCapabilities and StorageReplicationCapabilities indicate precisely how the
provider supports each copy service feature. The client should find one instance of StorageReplicationCapabilities

"Number of total source elements" Maximum number of total source elements supported by
the service.

"Number of total target elements" Maximum number of total target elements supported by
the source.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the
service can manage.

Table 223 - Components

Component Description
392

NO_ANSI_ID Copy Services Subprofile

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240
for each SupportedSynchronizationType value supported by the provider. StorageReplicationCapabilities can be
specialized as shown in Table 224.

Each instance shows the client:

• Replica type supported (full or delta)

• Methods supported and ModifySynchronization operations supported

• Any restrictions on host access to replicas

• Upper limits such as maximum replicas for one source element

• Specialized features by CopyType

Most of the properties in StorageReplicationCapabilities are optional. The client first analyzes
SupportedSynchronousActions[], SupportedAsynchronousActions[], SupportedModifyOperations[] and
SupportedSpecializedElements[]. Support for the remaining optional properties is conditional on the values
indicated for these properties.

EXPERIMENTAL

If the CIM_ReplicationService has been implemented, another set of methods and capabilities will also exist -- the
CIM_ReplicationServiceCapabilities. The client should find one instance of ReplicationServiceCapabilities for each
instance of hosted ReplicationService. ReplicationServiceCapabilities can be specialized as shown in Table 225.

An instance of ReplicationServiceCapabilities shows the client:

Table 224 - Replica Specialization by CopyType

SupportedSynchronizationT
ype value

CopyType value Specialization

Async (2) Async (2) Asynchronous local mirror replication

Sync (3) Sync (3) Synchronous local mirror replication

UnSyncAssoc-Full (4) UnSyncAssoc (4) Full snapshots

UnSyncAssoc-Delta (5) UnSyncAssoc (4) Delta snapshots

UnSyncUnAssoc (6) UnSyncUnAssoc (5) Clone replication

Table 225 - Replica Specialization by SyncType/Mode

SupportedReplicationType
value

SyncType/Mode value Specialization

Synchronous Mirror Local (2) Mirror (6) / Synchronous (2) Synchronous mirror

Asynchronous Mirror Local (3) Mirror (6) / Asynchronous (3) Asynchronous mirror

Synchronous Snapshot Local (6) Snapshot (7) / Synchronous (2) Synchronous Snapshot

Asynchronous Snapshot Local (7) Snapshot (7) / Asynchronous (3) Asynchronous Snapshot

Synchronous Clone Local (10) Clone (8) / Synchronous (2) Synchronous Clone

Asynchronous Clone Local (11) Clone (8) / Asynchronous (3) Asynchronous Clone
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 393

Copy Services Subprofile NO_ANSI_ID

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279
• Methods supported and ModifyReplicaSynchronization operations supported, and

• Storage Objects (e.g., Volumes or LogicalDisks) supported

The client first analyzes SupportedSynchronousActions[], SupportedAsynchronousActions[] and
SupportedStorageObjects[]. Other features can be determined from the GetSupportedFeatures method of the
class.

EXPERIMENTAL

EXPERIMENTAL

9.6.2 Creating and Managing Replicas

In general, creating and managing replicas involves the following steps:

• Decide on the SyncType of replica (Mirror, Snapshot, Clone) and Mode (Synchronous, Asynchronous). See
9.1.4.1.

• Locate the hosted instance of ReplicationService. See 9.1.3.

• Locate the instance of ReplicationServiceCapabilities. Utilize its properties and methods to determine the
applicable capabilities offered by the implementation for the desired ReplicationType (includes SyncType and
Mode). See 9.1.4.

• Use the method ReplicationService.GetAvailableTargetElements to locate appropriate target elements.
Depending on the implementation, it is also possible to allow the service to locate target elements. See
9.5.2.3.6.

• Verify StoragePools have sufficient free capacity for the target elements. See 9.1.22.

• Invoke the appropriate extrinsic method of the ReplicationService to create a replica. See 9.5.2.3.1.

• Monitor the copy operation’s progress by examining the replication associations properties, or subscribe to the
appropriate indications -- including storage pool low space alert indications. See 9.1.6 and 9.1.24.

• Invoke the method ReplicationService.ModifyReplicaSynchronization to modify a replica. For example, “split” a
replica from its source element. See 9.5.2.3.3.

EXPERIMENTAL

9.6.3 Using StorageSetting for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this class are
used as goal parameters for many of the methods used by the subprofile. These instances are serially reusable for
a short sequence of operations ending with creation of a pool or an element. The client should follow these steps:

1) Invoke CreateSetting with SettingType value “Goal” for a selected storage pool.

2) Set values for all of the properties used to create and manage replicas. These properties are listed in the def-
inition of StorageSetting in this subprofile. Property values can be changed by the ModifyInstance intrinsic
method. The SupportedStorageElementUsage[] and SupportedStoragePoolUsage[] properties in Storage-
ConfigurationCapabilities indicates which values of StorageExtentInitialUsage and StoragePoolInitialUsage
are supported. Other replication properties may have been returned to the client with an initial value of “not
applicable”. The client should not modify the value of any property with a value of “not applicable”.
394

NO_ANSI_ID Copy Services Subprofile

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316
3) The generated setting may initially be used one or more times as a goal parameter for the GetSupported-
Sizes and GetSupportedSizeRange methods. The setting may then be used once as a goal parameter for a
pool or element creation method.

4) When the client no longer needs the generated setting instance, invoke the DeleteInstance intrinsic method.

9.6.4 Finding and Creating Target Elements

If a provider supports the AttachReplica method, the client finds or creates target elements eligible to become
replicas. A provider may restrict replica targets to a specialized set of elements if element usage restrictions are
supported as indicated in StorageConfigurationCapabilities. The client should follow these steps:

Case1: If the instrumentation does not support GetAvailableTargetElements method.

1) Determine the required size of the target element. Use the size of the source element unless a delta replica is
created. If a delta replica is created, the size may be smaller than the associated source element.

2) Create a goal setting instance. Set StorageExtentInitialUsage to the correct value for the type of specialized
element needed by the client. Set other replication setting property values as desired. Refer to 9.6.8 Creating
and Managing Snapshots for guidelines on using delta reservation properties. Use this goal instance in all the
remaining steps.

3) Search for existing StorageVolume instances that can be used as replica targets. A client can invoke the
GetElementsBasedOnUsage method to locate available targets from existing elements. The client is respon-
sible for screening the candidates for the required size and settings values. The search is always initiated on
the system that will host the target element.

4) If no candidates exist, follow block services client considerations and recipes to create a new element as the
replica target. Target elements may be created in pools or from element types that a provider supports as a
component. As in step 2, set StorageExtentInitialUsage and all of the other replication setting properties to
the required values before creating a new element. If a virtual element is created in a special delta replica
pool (described in subsequent sections), the Size parameter value should be omitted when the element is
created.

EXPERIMENTAL

Case2: If the instrumentation supports GetAvailableTargetElements method.

1) Select the original volume.

2) Get the copy target candidates by using GetAvailableTargetElements.

3) Select one of the candidates.

4) Create pair by CreateElementReplica.

EXPERIMENTAL

EXPERIMENTAL

9.6.5 Creating and Managing Pools for Delta Replicas

A provider may require specialized pools as containers for delta replicas. Such a pool only contains delta replicas
based on the variable space consumption model explained below. The client should inspect the values of
StorageReplicationCapabilities.DeltaReplicaPoolAccess. Values are:
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 395

Copy Services Subprofile NO_ANSI_ID

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358
• “Any” – Specialized pools not required for delta replicas. The provider creates delta replicas based on the
fixed space consumption model and the client can select any pool as a container.

• “Shared” – a single shared pool is the container for all delta replicas. This type of pool is always preexisting
and may be located with the GetElementBasedOnUsage method. The client may need to add space to this
type of pool.

• “Exclusive” – each source element requires an exclusive, special pool for associated delta replicas. If the
pool already exists, it is associated to the source element with a ReplicaPoolForStorage association. If the
pool does not exist, the client creates the pool.

Delta replica pools are commonly created from or extended with component elements supplied by the InExtents[]
parameter of the CreateOrModifyStoragePool method. The provider consumes all of the space in the supplied
elements for this type of pool. All of the supplied elements should come from a single pool. Preexisting component
elements may be located using the GetElementsBasedOnUsage method with the Usage parameter set to
“Element Component”. New component elements may be created using a goal parameter with
StorageExtentInitialUsage set to “Element Component”. The component element type shall be a type supported by
the provider as indicated in SupportedStorageElementTypes[].

A client may increase the size of a preexisting shared pool by adding component elements. A common practice
would be to use multiple small elements of equal size. Selected component elements are passed to the
CreateOrModifyStoragePool method using the InExtents[] parameter. The new elements are combined with any
existing elements to increase the pool size.

A client may create new exclusive pools or increase the size of an existing exclusive pool. A new exclusive pool is
commonly created by supplying one component element that supplies the required pool size. Later, the exclusive
pool size is increased by supplying a Size parameter value indicating the required new size of the pool. The
provider determines how to increase the size. An exclusive delta replica pool is automatically associated to a
source element by the provider. A ReplicaPoolForStorage association to the source element is created during the
first CreateReplica operation that refers to the pool.

If warning threshold alerts are supported, the client may invoke ModifyInstance to modify the value of
StoragePool.LowSpaceWarningThreshold. The pool size can be increased following a low space alert indication.

If the provider requires a shared pool and only supports “Replica Attachment” as the method for creating delta
snapshots, then the shared pool shall be provisioned with virtual devices to be used as target elements. The client
should ensure that enough virtual devices exist to create the expected maximum number of delta replicas. Some
number of virtual devices may preexist. If the client creates virtual devices, create a goal element for each virtual
device with StorageExtentInitialUsage set to “Delta Replica Target” and omit the Size parameter when invoking the
element creation method. This type of virtual device always has an initial SpaceConsumed value of zero and does
not have a StorageSynchronized association until AttachOrModifyReplica is subsequently invoked by the client.

Capacity management for a delta replica pool adheres to the capacity relationship formula specified in Block
Services, Extent Mapping and Extent Conservation. The standard capacity relationship is:

TotalManagedSpace = RemainingManagedSpace + SUM(SpaceConsumed)

where SpaceConsumed is a sum for all elements created in the pool. RemainingManagedSpace and
SpaceConsumed properties may have volatile values for a delta replica pool and the elements in the pool. The
provider shall maintain values for these properties that satisfy the formula. However, a client may receive stale
values when instance properties are retrieved in multiple operations. The stale values may result in an unequal
comparison when the capacity management relationship is checked. A client should not expect to determine
exactly how much space is consumed by a delta replica in a shared or exclusive pool. If a snapshot service
provider allows multiple snapshots to share a consumed block, only one snapshot will count the block in its
SpaceConsumed value. The most important capacity management role for the client is to correctly size the delta
replica pool. The sizing should be based on the maximum number of snapshots retained in the pool and the
expected space consumption per snapshot.
396

NO_ANSI_ID Copy Services Subprofile

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403
If the provider supports low space warning threshold alerts, the client should subscribe to these alert indications.
The client should maintain adequate pool capacity by either increasing the pool size or deleting the oldest
snapshots when an alert is received.

Extent mapping and extent conservation are not supported for elements created in a specialized delta replica pool.

EXPERIMENTAL

9.6.6 Creating and Managing Mirrors

A mirror replica is the same size as the associated source element and is fully copied from the source element. A
provider may allow the mirror element to be a larger size than the source element. A full background copy is
normally initiated by the provider when a mirror replica is created. If the provider defers the background copy, the
client may need to initiate the copy at a later time.

 A provider normally runs a copy engine that maintains a mirror as the current image of the associated source
element. The copy engine may operate in either synchronous or asynchronous mode. If the client requests
CopyType “Sync” when the replica is created, the copy engine runs in synchronous mode and any write I/O
operation to the source does not receive ending status until the write operation is also completed for the mirror. If
the client requests CopyType “Async”, the copy engine runs in asynchronous mode and write I/O operations
receive ending status when the operation completes for the source element.

A mirror may be changed from a current image of the source element to a point-in-time image using a fracture
operation. A mirror in the “Fractured” state is called a split mirror. A mirror can also be converted to an independent
storage element by a “Detach” operation following a fracture operation. The detached mirror is equivalent to a
clone element created with a CopyType “UnSyncUnAssoc” request (discussed below).

A local mirror target element is hosted on the same system as the source element. An operation to create a mirror
includes the following steps:

Step 1: search the target host using the GetElementsBasedOnUsage method with the Usage parameter value set
to “Local Replica Target”. The client can search the entire host or selected pools on the host. The client interfaces
to the host system for the source element if a local mirror is created. The client shall provide a replica size value for
the screening operation. Normally, this is the same size value as the source element. Select a candidate volume
based on best fit or some other appropriate filter. Proceed to step 3 if a candidate is selected from existing
elements.

Step 2: select a pool for creation of a new target element. For the pool being screened, access the associated
StorageCapabilities instance and invoke CreateSetting to generate a modifiable setting object that is used as a
goal parameter for one or more method invocations. Set StorageExtentInitialUsage to either “Local Replica Target”.
Invoke GetSupportedSizes or GetSupportedSizeRange and screen the pool based on the target element size. If
the pool does not support the required size, proceed to the next candidate pool. If a candidate pool is found and
CreateReplica will be used to create the new mirror, proceed to step 3. Otherwise, the client may follow operations
described in Clause 5: Block Services Package to create a new replica target candidate. Note: a client may elect to
bypass screening and require a user to manually select a candidate pool or target element.

Step 3: invoke AttachReplica or CreateReplica to create a new mirror replica. If the provider returns “job
completed” status, the client can immediately access the StorageSynchronized association instance for the new
replica. If the provider returns “job started” status, the client may need to wait for accessibility to the
StorageSynchronized association as described in 9.1.10 State Management For Associated Replicas. The client
may need to initiate additional operations to bring the new replica to the required synchronization state. If the
provider supports an InitialReplicationState of “Initialized”, the copy engine has not started a background copy
operation and the client may invoke ModifySynchronization requesting a “Prepare” or “Resync” operation as
needed.

The ModifySynchronization method can be invoked to manage existing mirrors. The subprofile supports the
following operations:
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 397

Copy Services Subprofile NO_ANSI_ID

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443
1) Mirrors can be split from their associated source element using a “Fracture” operation. A split mirror is a
point-in-time image of the source element. The split mirror can be used as a source for a backup operation or
can be treated as a temporary clone. A split mirror can be changed back to a current image of the source ele-
ment using a “Resync” operation.

2) Mirrors can be converted to independent storage elements by a sequence of operations including “Fracture”
and “Detach”.

3) The source element can be restored from a mirror by invoking a “Restore” operation. This should normally
follow a client action that blocks host I/O to both the source element and all associated replica elements until
the restore operation is completed.

4) A provider may support “ResetToSync” and “ResetToAsync” operations if availability and performance QoS
policies change over time. Invoke “ResetToSync” when availability QoS changes to a higher priority than per-
formance QoS. Invoke “ResetToAsync” when the reverse relationship occurs.

9.6.7 Creating a Clone and Redirected Restore Operations

A clone is a full size, fully copied local replica that becomes an independent storage element as soon as the
background copy operation is completed. A clone is usually created by invoking the AttachReplica or
CreateReplica methods with the CopyType parameter set to a value of “UnSyncUnAssoc”. Alternatively, a clone
may be created by detaching a split mirror or a frozen snapshot.

The provider shall automatically initiate a background copy operation when CopyType “UnSyncUnAssoc” is
requested by a client. If the provider deploys the method as an asynchronous operation, then the provider may
elect to create a temporary StorageSynchronized association that allows the client to manage copy priority for the
background copy operation. This temporary association should only indicate a SyncState value of “Resync in
progress” and the provider shall automatically delete the association when the background copy operation is
completed. The client can modify the value of CopyPriority while the copy operation is in progress. The temporary
association cannot be used for any other purpose and the client shall never invoke ModifySynchronization against
this type of association.

A provider may allow a frozen snapshot to be treated as a clone. The client observes that a replica previously
created with CopyType “UnSyncAssoc” has a SyncState value of “Frozen”. If the provider supports the
ModifySynchronization Start Copy operation, this operation may be invoked to bring the replica from idle state to
frozen state. The provider may allow copy priority to be managed as described in 9.6.9 "Managing Background
Copy".

The clone is a point-in-time image of the source element. The client shall supply any needed date/time value for
the point-in-time because a guaranteed WhenSynced property value is not available for a clone created by a
CopyType “UnSyncUnAssoc” operation. A provider may create a clone as either a synchronous or asynchronous
operation. When the operation is completed, the client assumes the clone is ready to manage as an independent
element if the OperationalStatus property indicates a value of “OK”.

The Restore operation for the ModifySynchronization method only allows restoration to the source element
associated with a replica. If a provider supports multi-level replication, a variation of clone creation may be used to
restore a replica to a redirected location. Invoke a replica creation method supported by the provider passing a
replica element as the source parameter and also indicate CopyType “UnSyncUnAssoc”. The target may be a new
element or an existing independent element.

EXPERIMENTAL

9.6.8 Creating and Managing Snapshots

Snapshot replicas are point-in-time images created with CopyType value “UnSyncAssoc”. Snapshots can be
created as full size replicas of a source element or as delta replicas of a source element. Snapshots usually have
lower space consumption and lower copy engine overhead than either split mirrors or clones used as point-in-time
398

NO_ANSI_ID Copy Services Subprofile

1444

1445

1446

1447

1448

1449
images. Snapshots are only supported as local replicas hosted on the same storage system as the associated
source element. A provider defines only one instance of StorageReplicationCapabilities for managing snapshots.
This instance indicates one of two values for SupportedSynchronizationType:

• Full size: SupportedSynchronizationType = “UnSyncAssoc-Full”

• Delta: SupportedSynchronizationType = “UnSyncAssoc-Delta”

Snapshot providers may deploy either a fixed space consumption model or a variable space consumption model
for snapshot replicas. A full size replica always uses a fixed space consumption model. A delta replica may use
either a fixed or a variable model. Replica elements based on the variable model shall be created in special pools
for delta replicas. A provider indicates support for special pools by including the value “Reserved as a Delta
Replica Container” in StorageConfigurationCapabilities.SupportedStoragePoolUsage[]. The replica
AllocatedFromStoragePool.SpaceConsumed property has a constant value for the fixed model and a volatile,
increasing value for the variable model. The RemainingManagedSpace property for the corresponding pool has a
volatile, decreasing value if the pool contains replicas based on the variable model. Figure 58: "Fixed Space
Consumption" and Figure 59: "Variable Space Consumption" show the fixed and variable space consumption
models for delta snapshots:

For full size snapshots, NumberOfBlocks and BlockSize indicate the actual size of the target element which is as
large or larger than the source element. For delta snapshots, NumberOfBlocks and BlockSize have the same
values as the associated source element. Delta reservation properties are only used for snapshots created by the
CreateReplica method using fixed space consumption.

Figure 58 - Fixed Space Consumption

StorageVolume

// delta replica
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool (required)

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

CopyType = “UnSyncAssoc”
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 399

Copy Services Subprofile NO_ANSI_ID

1450

1451

1452
The instances of StorageReplicationCapabilities for “UnSyncAssoc-Delta” and “UnSyncAssoc-Full” may use the
patterns detailed in Table 226.

The steps required to create a snapshot vary for each pattern. There are a number of common steps.

Figure 59 - Variable Space Consumption

Table 226 - Patterns Supported for StorageReplicationCapabilities

SupportedSynchroniza
tionType

Supported…Actions[n] DeltaReplicaPoolAcce
ss

Space Consumption

UnSyncAssoc-Delta “Replica Attachment” Any pool or extent Fixed

UnSyncAssoc-Delta “Replica Creation” Any pool or extent Fixed

UnSyncAssoc-Delta “Replica Attachment” Shared or Exclusive Variable

UnSyncAssoc-Delta “Replica Creation” Shared or Exclusive Variable

UnSyncAssoc-Full “Replica Attachment” n/a Fixed

UnSyncAssoc-Full “Replica Creation” n/a Fixed

S to ra g e S y n c h ro n iz e d

S to ra g e V o lu m e

/ / d e lta re p l ic a
N u m b e rO fB lo c k s = N
B lo c k S iz e = M

S to ra g e P o o l

/ / c o n ta in e r e le m e n t
/ / d e lta re p lic a p o o l
T o ta lM a n a g e d S p a c e = S
R e m a in in g M a n a g e d S p a c e = v a r ia b le
L o w S p a c e W a rn in g T h re s h o ld = T 2
U s a g e =
 “R e s e rv e d a s a D e lta R e p lic a C o n ta in e r ”

A l lo c a te d F ro m S to ra g e P o o l

S to ra g e V o lu m e

/ / s o u rc e e le m e n t
N u m b e rO fB lo c k s = N
B lo c k S iz e = M

S p a c e C o n s u m e d = v a r ia b le

C o p y T y p e = “U n S y n c A s s o c ”

R e p l ic a P o o lF o rS to ra g e
(o p t io n a l)
400

NO_ANSI_ID Copy Services Subprofile

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498
Step 1 the provider may limit the maximum number of replicas per source element. Verify that the limit is not
exceeded when a new replica is created. The provider may restrict snapshots to independent source elements. If
the source element is a replica, verify that the provider allows snapshots of local replicas.

Step 2: locate a candidate pool eligible to contain a new snapshot. This is a special pool if the
DeltaReplicaPoolAccess value is “Shared” or “Exclusive”. A shared, special pool is a preexisting element supplied
by the provider. The special pool may be populated with virtual devices that do not consume space until the
AttachReplica method is invoked at a later time. An exclusive, special pool is created the first time a new delta
replica is created for a source element that currently has no associated delta replicas. The operation for locating or
creating a special pool for delta replicas is described in 9.6.5 Creating and Managing Pools for Delta Replicas. If
snapshots can be created in any pool, enumerate all existing pool instances and begin screening the pools for
eligibility. If snapshots are created by the AttachReplica method, all existing storage elements in each candidate
pool should be screened for eligibility in a subsequent step.

Step 3: For the special pool or for the pool being screened, access the associated StorageCapabilities instance
and invoke CreateSetting to generate a modifiable setting object to be used as a goal parameter for one or more
method invocations. Set StorageExtentInitialUsage to either “Local Replica Target” for a full snapshot or “Delta
Replica Target” for a delta snapshot.

If the operation will use CreateReplica to create a delta snapshot using fixed space consumption, the
DeltaReservationMin, DeltaReservationGoal and DeltaReservationMax properties are set by the client to
appropriate values for a new delta replica. The values are set in the unassociated StorageSetting element to be
passed as a goal parameter to an extrinsic method. The client cannot modify the values of delta reservation
properties in a StorageSetting element associated to an existing storage element. The values set by the client
satisfy the relationship:

DeltaReservationMin <= DeltaReservationGoal <= DeltaReservationMax

as constrained by the provider. The client cannot decrease the value of DeltaReservationMin and cannot increase
the value of DeltaReservationMax returned by the provider. If the provider supports a fixed space consumption
model, the client estimates the fixed size of the delta replica as a percentage of the source element size and the
provider determines the actual size when the element is created.

Step 4: Skip this step if CreateReplica is used to create a delta replica with variable space consumption. For all
other cases, screen the candidate pool or the storage elements contained in the pool. If AttachReplica is used to
create a delta replica with variable space consumption, search the special delta replica pool for a virtual storage
element not in use as a replica target. For all fixed space consumption cases, the client calculates a replica size
value for the screening operation. Use the source element size if a full snapshot replica is created. Use the
DeltaReplicaMax percentage times the source element size if a delta snapshot replica is created. The generated
setting created in step 3 is used as the goal parameter for the screening methods. Search existing volumes for
replica target candidates as described in 9.6.4 Finding and Creating Target Elements if AttachReplica is used as
the method to create the replica. Select a returned volume based on best fit or some other appropriate filter. Invoke
GetSupportedSizes or GetSupportedSizeRange and verify that the replica size is supported by the candidate pool
if CreateReplica is used. Proceed to step 5 if an eligible candidate element is found. Otherwise, proceed to the next
candidate pool. If no candidates are located from existing pools, the client may follow recipes in block services to
create a new candidate pool or element. Omit the Size parameter whenever a virtual replica element is created.
Note: a client may elect to bypass screening and require a user to manually select a candidate pool or target
element.

Step 5: invoke AttachReplica or CreateReplica to create a new snapshot. The setting property values from the goal
parameter apply to the new replica. The provider determines which setting property values from the goal parameter
are copied to an existing setting instance when AttachReplica is invoked. If a delta replica is created, the
NumberOfBlocks and BlockSize values of the source element are assigned to the target.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 401

Copy Services Subprofile NO_ANSI_ID

1499

1500

1501

1502
The properties listed in Table 227 are used to monitor and manage space consumption for delta replicas using a
variable space consumption pattern.

The properties listed in Table 228 are used to monitor and manage space consumption for delta replicas using a
fixed space consumption pattern.

Table 227 - Space Consumption Properties

Delta Replica Property – Variable Space Consumption Value Modifiab
le

StorageExtent.NumberOfBlocks: valid for all elements. Same value as associated
source element.

constant no

StorageExtent.BlockSize: valid for all elements. Same value as associated source
element.

constant no

StoragePool.RemainingManagedSpace: valid for all pools. Value decreases by
BlockSize each time replica consumes a block in the pool.

volatile no

StoragePool.TotalManagedSpace: valid for all pools. constant no

StoragePool.LowSpaceWarningThreshold: valid for special delta replica pools if
provider supports pool warning thresholds. Value 0 to 100.

constant yes

AllocatedFromStoragePool.SpaceConsumed: valid for all elements. Value
increases by BlockSize each time replica consumes a block in the pool.

volatile no

Table 228 - Space Consumption Properties, Fixed Pattern

Delta Replica Property – FixedSpace Consumption Value Modifiab
le

StorageExtent.NumberOfBlocks: valid for all elements. Same value as associated
source element.

constant no

StorageExtent.BlockSize: valid for all elements. Same value as associated source
element.

constant no

StorageExtent.DeltaReservation: valid for target elements. Value set by
CreateReplica method providers for delta replicas.

constant no

StoragePool.RemainingManagedSpace: valid for all pools. Value decreases by
fixed element size when element is created.

constant no

StoragePool.TotalManagedSpace: valid for all pools. constant no

AllocatedFromStoragePool.SpaceConsumed: valid for all elements. Value set to
fixed element size when element is created.

constant no

StorageSetting.DeltaReservationMin: Value is % of source element size that is
minimum fixed size. Used only with CreateReplica method for delta replicas.

constant yes (goal)

StorageSetting.DeltaReservationMax: Value is % of source element size that is
maximum fixed size. Used only with CreateReplica method for delta replicas.

constant yes (goal)

StorageSetting.DeltaReservationGoal: Value is % of source element size that is the
client goal for the fixed size. Used only with CreateReplica method for delta
replicas.

constant yes (goal)
402

NO_ANSI_ID Copy Services Subprofile

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548
Two of the above properties have volatile values automatically changed by the provider when a delta replica uses a
variable space consumption model. SpaceConsumed increases and RemainingManagedSpace decreases as the
associated source element is updated. When a delta replica consumes an additional block, SpaceConsumed
increases by the value of BlockSize and RemainingManagedSpace decreases by the value of BlockSize. If the
replica uses a fixed space consumption model, the values of these two properties are constant and change only
when an extrinsic method is invoked to create or modify the replica element. The value of SpaceConsumed at the
instant the delta replica is created is zero if no space is reserved or greater than zero if space is reserved. The
value of RemainingManagedSpace is decreased by the value of SpaceConsumed at the instant the replica is
created.

The ModifySynchronization method can be invoked to manage existing snapshots. The subprofile supports the
following operations:

1) A snapshot can be reused by invoking a “Resync” operation. This releases all of the space consumed by a
snapshot using the variable space consumption model. The WhenSynced property in StorageSynchronized
is reset to a new date/time value.

2) A “Detach” operation releases all of the space consumed by a snapshot using the variable space consump-
tion model. The detached target element can be reused for another purpose or deleted by invoking the
ReturnToStoragePool method. If the snapshot was not previously detached, invocation of ReturnToStorage-
Pool deletes the StorageSynchronized association.

3) Snapshot space consumption can be stopped by invoking a “Quiesce” operation. If the associated source
element is updated while the snapshot is in “Quiesced” state it is no longer a valid point-in-time image.

4) The source element can be restored from a snapshot by invoking a “Restore” operation. This may follow a cli-
ent action that blocks host I/O to both the source element and all associated snapshot elements until the
restore operation is completed.

9.6.9 Managing Background Copy

Background copy is a full copy operation that copies all blocks from a source element to a replica element. An
initial background copy is normally started by a provider when a mirror or a clone is created. Initial background
copy is not normally started when a snapshot is created. A provider may allow a client to initiate a deferred
background copy. Management of background copy is an optional provider capability indicated to a client for each
supported CopyType value using properties in StorageReplicationCapabilities. Deferred background copy for
snapshots is supported if SupportedModifyOperations[] includes “Start Copy” and “Stop Copy”. Deferred
background copy for mirrors is supported if InitialSynchronizationDefault has a value other than “Not Managed” or
“Not Applicable”. Copy priority can be managed for any CopyType if ReplicationPriorityDefault has a value other
than “Not Managed” or “Not Applicable”.

A ModifySynchronization Operation value of “Start Copy” or “Stop Copy” may be invoked for snapshots. A “Start
Copy” operation causes a snapshot to transition from “Idle” state to “Copy In Progress” state to “Frozen” state. A
“Stop Copy” operation causes a snapshot to transition from “Copy In Progress” state to “Idle” state.

If initial background copy is not initiated when a mirror is created, a subsequent sequence of
ModifySynchronization operations that may include Prepare and Resync should start a background copy
operation.

The InitialSynchronization property in the goal parameter may be set to indicate whether or not an initial
background copy operation is initiated at the time a replica is created. The ReplicationPriority property in the goal
parameter may be set to override the default copy I/O rate priority.

A client may invoke ModifyInstance to modify the value of CopyPriority for a StorageSynchronized association.
This allows a client to manage the copy I/O rate and the priority of peer I/O operations relative to host I/O
operations. CopyPriority may be modified before or during a background copy operation. Standard CopyPriority
values are:
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 403

Copy Services Subprofile NO_ANSI_ID

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584
• Low – peer I/O is lower priority than host I/O

• Medium – peer I/O is the same priority as host I/O

• High – peer I/O is higher priority than host I/O

EXPERIMENTAL

EXPERIMENTAL

By default, replication service performs the copy operations in the background. In other words, the methods such
as CreateElementReplica, start the copy operation (or start a job) and return while the copy operation is in
progress. To perform a copy operation in the foreground, the method may specify the WaitForCopyState of
Synchronized, in which case the call will not return until the copy operation is complete.

Alternatively, the methods CreateElementReplica may specify the WaitForCopyState of Inactive if the
ReplicationType supports it. In this case, the copy operation is not started until the inactive synchronization is
activated (using the ModifyReplicaSynchronization or ModifyListSynchronization methods).

EXPERIMENTAL

9.6.10 Recipes

The recipes show how the extrinsic methods of the subprofile may be used. The ModifySynchronization method is
the only mandatory method of the subprofile. Instances of StorageReplicationCapabilities indicate to the client
which of the optional extrinsic methods are supported by a provider. If the provider supports an extrinsic method,
the corresponding recipe shows required behavior.

9.6.11 Replica Modification

This recipe shows how to use the mandatory ModifySynchronization method.

// NAME: Replica Modification

// FILE: CopyServicesSP_ModSync

//

// DESCRIPTION: The synchronization state of an associated replica target

// is modified by invocation of the ModifySynchronization extrinsic

// method. The client verifies that the requested operation is supported

// by the provider before the method is invoked. The client does not proceed

// if an invalid state transition is attempted.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $StgSync is a reference to a StorageSynchronized association to be

// modified. #Operation is the ModifySynchronization operation to be

// executed. If the operation completes successfully, the $StgSync

// instance is refreshed to get the current SyncState and WhenSynced

// values.

//

// Locate the instance of StorageConfigurationService to be used for

// method invocation. Locate the instance of StorageReplicationCapabilities
404

NO_ANSI_ID Copy Services Subprofile

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626
// to be used for validity checking.

//

$SourceVol = GetInstance (

 $StgSync.SystemElement,

 false, false, false,

 {“SystemName”, “Usage”})

$TargetVol = GetInstance (

 $StgSync.SyncedElement,

 false, false, false,

 {“SystemName”, “Usage”})

$Host = Associators (

 $SourceVol->,

 “CIM_SystemDevice”,

 “CIM_ComputerSystem”,

 null, null, false, false, null)

$SCS = Associators (

 $Host->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null, null, false, false, null)

$L[] = Associators (

 $SCS->,

 “CIM_ElementCapabilities”,

 “CIM_StorageReplicationCapabilities”,

 null, null, false, false, null)

// Map StorageSynchronized.CopyType to

// StorageReplicationCapabilities.SupportedSynchronizationType.

#CT_to_SST_map = {2, 4, 6, 8, 9}

#CT = $StgSync.CopyType

#SST = #CT_to_SST_map[#CT] // 1st mapping step

if ($TargetVol.Usage == 12) {#SST++} // 2nd step -- delta snapshot

if ($TargetVol.SystemName != $SourceVol.SystemName) {#SST++}

 // 3rd step -- remote mirror

// finished with mapping

for #i in $L[]

{ // find the correct instance of StorageReplicationCapabilities

 if ($L[#i].SupportedSynchronizationType == #SST)

 {

 $SRC = $L[#i]

 break

 }

}

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 405

Copy Services Subprofile NO_ANSI_ID

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670
//

// Verify that the requested operation is supported by the provider.

//

if (!contains(#Operation, $SRC.SupportedModifyOperations[]))

{

<error: requested ModifySynchronization operation unsupported>

}

//

// Verify that StorageSynchronized.SyncState is in a valid state for

// entry to the state diagram for the requested operation. A client

// should construct a valid transition table for each provider. The

// following tables are based on state transition diagrams in the Copy

// Services subprofile specification. The tables are indexed by #Operation.

// Values in the table are:

// 0: Invalid value, will not match

// 1: Operation can start from any steady state

// 2-15: specific prerequsite SyncState values

// Most operations can start from one or two steady states.

//

#Detach = 2 // Detach operation can start from any state

// Cannot start other operations from “in progress” states

#InProgress[] = {3, 5, 7, 8, 10, 15}

#StartState_Mirror1 = {0, 0, 0, 9, 4, 13, 2, 4, 6, 9, 1, 1, 0, 0}

#StartState_Mirror2 = {0, 0, 0, 9, 4, 13, 13, 4, 6, 9, 1, 1, 0, 0}

#StartState_Snapshot1 = {0, 0, 0, 0, 4, 11, 2, 4, 11 ,0, 0, 0, 11, 15}

#StartState_Snapshot2 = {0, 0, 0, 0, 4, 14, 9, 4, 14 ,0, 0, 0, 11, 15}

#SS = $StgSync.SyncState

if (#Operation != #Detach) // Detach can start from any state

{

 if (contains(#SS, #InProgress[]))

 {

 <error: invalid state transition attempted>

 }

 if (#CT == 4) // Check snapshot state transitions

 {

 if ((#SS != #StartState_Snapshot1[#Operation]) &&

 (#SS != #StartState_Snapshot2[#Operation]))

 {

 <error: invalid state transition attempted>

 }

 } else // Check mirror state transitions

 {

 if ((#SS != #StartState_Mirror1[#Operation]) &&

 (#SS != #StartState_Mirror2[#Operation]) &&
406

NO_ANSI_ID Copy Services Subprofile

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716
 (#StartState_Mirror1[#Operation] != 1))

 {

 <error: invalid state transition attempted>

 }

 }

}

//

// Passed all validation checks. Invoke ModifySyncronization.

%InArguments[“Synchronization”] = $StgSync->

%InArgument[“Operation”] = #Operation

#r = InvokeMethod(

$SCS->,

“ModifySynchronization”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: modify failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if ($Job.JobState != 7) // is it “Completed”?

{

<error: modify job failed, stop and examine CIM_Error>

}

}

if (#Operation != #Detach)

// if not “detach” get a fresh copy of StorageSynchronized

{

$StgSync = GetInstance(

$StgSync->,

false, false, false,

{“WhenSynced”, “SyncState”})

if (contains($StgSync.SyncState, #InProgress)) // In a transition?

{ // This is an optional wait for an instance mod indication

 // showing a steady state.

<wait for instance mod indication for $StgSync.SyncState>

$StgSync = GetInstance(// refresh to show steady state

$StgSync->,

false, false, false,

{“WhenSynced”, “SyncState”})
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 407

Copy Services Subprofile NO_ANSI_ID

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759
}

}

// Recipe complete -- $StgSync is now the StorageSynchronized association

// instance showing the final SyncState for the modify operation unless

// the operation was “detach”. If the operation is detach, the

// StorageSynchronized association was deleted.

9.6.12 Replica Creation Or Attachment

This recipe shows how to use the CreateReplica and the AttachOrModifyReplica methods.

// NAME: Replica Creation Or Attachment

// FILE: CopyServicesSP_CreateOrAttach

//

// DESCRIPTION: Create a new replica target element or attach an

// existing element eligible to be used as a replica target. The client

// performs a sequence of validation steps to ensure that the operation will

// succeed using the selected input elements.

// The recipe supports both the CreateReplica and the AttachOrModifyReplica

// extrinsic methods.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $SourceElement is the replication source and must be supplied.

// $TargetElement is an optional element selected as the replication target.

// If $TargetElement is supplied, the “attach” method will be invoked.

// If not, the “create” method will be invoked.

// $SCC is the instance of CIM_StorageConfigurationCapabilities

// controlling the recipe.

// $SRC is the instance of CIM_StorageReplicationCapabilities

// controlling the recipe.

// $SCS is the instance of CIM_StorageConfigurationService controlling

// the recipe.

// $TargetPool is an optional pool where a new replica is created.

// $TargetPool is not supplied if $TargetElement is supplied.

// $Goal is an optional instance of StorageSetting to be used as a goal

// parameter for a replica created in $TargetPool.

// $Pipe is an optional instance of ReplicationPipe that may be supplied

// for remote replication operations.

//

// Map StorageReplicationCapabilities.SupportedSynchronizationType value to the

// corresponding StorageSynchronized.CopyType value.

#SST_to_CT_map[] = {0, 0, 2, 2, 3, 3, 4, 4, 5, 6}

#SST = $SRC.SupportedSynchronizationType

#CT = #SST_to_CT_map[#SST]

// Create or Attach?
408

NO_ANSI_ID Copy Services Subprofile

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804
if ($TargetElement == null)

{ // Use CreateReplica

 if ((!contains(2, $SRC.SupportedAsynchronousActions[]) &&

 (!contains(2, $SRC.SupportedSynchronousActions[]))

 (

 <error: replica creation not supported>

 }

 #attach = false

} else

(

 if ((!contains(4, $SRC.SupportedAsynchronousActions[]) &&

 (!contains(4, $SRC.SupportedSynchronousActions[]))

 (

 <error: replica attachment not supported>

 }

 #attach = true

}

// Tables for checking $TargetElement.Usage value

#AllUsage[] = {2, 8, 9, 10, 11, 12}

#RemoteUsage[] = {2, 9, 11}

#LocalUsage[] = {2, 8, 10}

#DeltaSnapshotUsage = 12

// Table for checking $TargetPool.Usage value

#PoolUsage[] = {0, 0, 6, 7, 6, 7, 6, 4, 6, 5}

if (#attach)

{ // validation checks for replica attachment

 $Refs[] = ReferenceNames(

 $TargetVol.getObjectPath(),

 “CIM_StorageSynchronized”,

 null)

 if ($Refs[].size() != 0) // element already a replica source or target

 {

 <error: invalid replication target element.

 }

 if ((#SST != 6) && (#SST != 7)) // Check size unless creating a snapshot

 {

 #SourceSize = $SourceElement.NumberOfBlocks * $SourceElement.BlockSize

 #TargetSize = $TargetElement.NumberOfBlocks * $TargetElement.BlockSize

 if (#TargetSize < #SourceSize)

 (

 <error: replication target element has insufficient size>

 }

 }

 if ((#SST != 3) && (#SST != 5))

 (// remote replication -- source and target must have different hosts
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 409

Copy Services Subprofile NO_ANSI_ID

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851
 if ($SourceVol.SystemName == $TargetVol.SystemName)

 {

 <error: target must be located on a remote host>

 }

 } else

 { // local replication -- source and target must have the same host

 if ($SourceVol.SystemName != $TargetVol.SystemName)

 {

 <error: target and source must be located on the same host>

 }

 }

 #Usage = $TargetElement.Usage

 if ((contains(#Usage, #AllUsage[]) && (#Usage != 2))

 { // continue unless Usage is “Unrestricted”

 if (#SST == 7) // Delta snapshot

 {

 if (#Usage != #SnapshotUsage)

 {

 <error: invalid usage restriction for target element>

 }

 } else

 {

 if ((#SST == 3) || (#SST == 5) // remote replica

 {

 if (!contains(#Usage, #RemoteUsage[]))

 {

 <error: invalid usage restriction for target element>

 }

 } else

 { // all local replica types except delta snapshots

 if (!contains(#Usage, #LocalUsage[]))

 {

 <error: invalid usage restriction for target element>

 }

 }

 }

 }

 if ($Pipe != null)

 {

 if ($Pipe.AggregationBehavior != 4)

 {

 <error: not a top-level replication pipe>

 }

 }

} else

{ // validation checks for replica creation

 if ($TargetPool != null)
410

NO_ANSI_ID Copy Services Subprofile

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897
 {

 #Usage = $TargetPool.Usage

 if ((#Usage != 2) && (#Usage != #PoolUsage[#SST]))

 {

 <error: invalid usage restriction for target pool>

 }

)

} // completed all validation checks

// Invoke either AttachOrModifyReplica or CreateReplica

if (#Attach)

{

%InArguments[“SourceElement”] = $SourceElement->

%InArguments[“TargetElement”] = $TargetElement->

%InArguments[“CopyType”] = #CT

%InArguments[“ReplicationPipe”] = $Pipe

#r = InvokeMethod(

$SCS->,

“AttachOrModifyReplica”,

%InArguments,

%OutArguments)

} else

{

%InArguments[“SourceElement”] = $SourceElement->

%InArguments[“CopyType”] = #CT

%InArguments[“TargetSettingGoal”] = $Goal->

%InArguments[“TargetPool”] = $TargetPool->

#r = InvokeMethod(

$SCS->,

“CreateReplica”,

%InArguments,

%OutArguments)

}

if (#r != 0 && #r != 4096)

{

<error: replication method failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if ($Job.JobState != 7) // “Completed”?

{

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 411

Copy Services Subprofile NO_ANSI_ID

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930
<error: replication job failed, stop and examine CIM_Error>

}

 if (!#Attach)

 {

$TL[] = Associators(

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

$TargetElement = $TL[0]

 }

} else

{

 if (!#Attach)

 {

$TargetElement-> = %OutArguments[“TargetElement”]

$TargetElement = GetInstance(

$TargetElement->,

false, false, false, null)

 }

}

if (#CT != 5) // not “UnSyncUnAssoc”

{ // locate new StorageSynchronized association for the target

$SL[] = References(

$TargetElement->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$StgSync = $SL[0]

)

// End of recipe. If successful, $TargetElement is the target replica

// instance and $StgSync is an instance of the StorageSynchronized

// association between $SourceElement and $TargetElement.
412

NO_ANSI_ID Copy Services Subprofile

1931

1932
9.7 CIM Elements

Table 229 describes the CIM elements for Copy Services.

Table 229 - CIM Elements for Copy Services

Element Name Requirement Description

9.7.1 CIM_ElementCapabilities (Associates
ReplicationServiceCapabilities and
ReplicationService)

Conditional Experimental. Conditional requirement: The
ReplicationService is implemented.

9.7.2 CIM_ElementCapabilities (Associates
StorageReplicationCapabilities and
StorageConfigurationService)

Mandatory

9.7.3 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities
with StorageConfigurationService.

9.7.4 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StoragePool)

Optional Associates StorageConfigurationCapabilities
with StoragePool.

9.7.5 CIM_HostedService (Replication
Service)

Conditional Experimental. Conditional requirement: The
ReplicationService is implemented.

9.7.6 CIM_HostedService (Storage
Configuration Service)

Mandatory

9.7.7 CIM_ReplicaPoolForStorage Optional Experimental. Associates special storage pool
for Snapshots (delta replicas) to a source
element.

9.7.8 CIM_ReplicationService Optional Experimental. Base class for Replication
Services. Methods are described in the
Extrinsic Methods clause.

9.7.9 CIM_ReplicationServiceCapabilities Conditional Experimental. Conditional requirement: The
ReplicationService is implemented. A set of
properties and methods that describe the
capabilities of a replication services provider.

9.7.10 CIM_ReplicationSettingData Optional Experimental. Contains special options for use
by methods of Replication Services.

9.7.11 CIM_SettingsDefineState Optional Experimental. Associates a storage object to
an instance of SynchronizationAspect.

9.7.12 CIM_StorageCapabilities Mandatory Base definition is in Block Services Package.

9.7.13 CIM_StorageConfigurationCapabilities Mandatory Base definition is in Block Services Package.
Adds two properties.

9.7.14 CIM_StorageConfigurationService Mandatory Base definition is in Block Services Package.
Methods are described in the Extrinsic
Methods clause. The methods of this Service
are being Deprecated in favor of
CIM_ReplicationService methods.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 413

Copy Services Subprofile NO_ANSI_ID
9.7.15 CIM_StoragePool Mandatory Base definition is in Block Services Package.

9.7.16 CIM_StorageReplicationCapabilities Mandatory A set of properties that describe the
capabilities of a copy services provider.

9.7.17 CIM_StorageSetting Mandatory Base definition is in Block Services Package.

9.7.18 CIM_StorageSynchronized Conditional Experimental. Conditional requirement: The
ReplicationService is implemented.
Associates replica target element to source
element. Property definitions and descriptions
are identical to those for LogicalDisk usage.

9.7.19 CIM_StorageSynchronized (Between
StorageExtent elements)

Mandatory Associates replica target element to a source
element.

9.7.20 CIM_SynchronizationAspect Optional Experimental. Keeps track of the source of a
copy operation, even after
StorageSynchronized is removed. Also keeps
track of point-in-time.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_StorageSynchronized

Mandatory All instance creation indications for
StorageSynchronized.

See 9.1.24.1 InstCreation on
StorageSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_StorageSynchronized

Mandatory All instance deletion indications for
StorageSynchronized.

See 9.1.24.2 InstDeletion on
StorageSynchronized.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::S
yncState <>
PreviousInstance.CIM_StorageSynchronized::
SyncState

Optional Deprecated. CQL -Synchronization state
transition for a replica association.

This Indication is being DEPRECATED.

See 9.1.24.3 InstModification on SyncState.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageSynchronized AND
SourceInstance.SyncState <>
PreviousInstance.SyncState

Mandatory Deprecated. Deprecated WQL -
Synchronization state transition for a replica
association.

This Indication is being DEPRECATED.

See 9.1.24.3 InstModification on SyncState.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_StorageSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-
synchronized')

Optional CQL -Instance deletion indications for a
specific StorageSynchronized.

See 9.1.24.4 Qualified InstDeletion on
StorageSynchronized.

Table 229 - CIM Elements for Copy Services

Element Name Requirement Description
414

NO_ANSI_ID Copy Services Subprofile

1933

1934

1935

1936

1937

1938
9.7.1 CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and ReplicationService)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The ReplicationService is implemented.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::C
opyState <>
PreviousInstance.CIM_StorageSynchronized::
CopyState AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-
synchronized')

Optional Experimental. CQL -Synchronization state
transition for a specific replica association.

See 9.1.24.5 Qualified InstModification on
CopyState.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::P
rogressStatus <>
PreviousInstance.CIM_StorageSynchronized::
ProgressStatus AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-
synchronized')

Optional Experimental. CQL -Progress status transition
for a specific replica association.

See 9.1.24.6 Qualified InstModification on
ProgressStatus.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::P
rogressStatus <>
PreviousInstance.CIM_StorageSynchronized::
ProgressStatus

Optional Experimental. CQL -Progress status transition
for replica associations.

See 9.1.24.7 InstModification on
ProgressStatus.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity = "SNIA" AND
AlertingManagedElement ISA
CIM_StorageSynchronized

Optional Experimental. Be notified when CopyState is
set to Broken.

See 9.1.24.8 AlertIndication on
StorageSynchronized.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity = "SNIA" AND
AlertingManagedElement ISA
CIM_StoragePool

Optional Experimental. Remaining pool space either
below warning threshold set for the pool or
there is no remaining space in the pool.

See 9.1.24.9 AlertIndication on StoragePool.

Table 229 - CIM Elements for Copy Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 415

Copy Services Subprofile NO_ANSI_ID

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955
Table 230 describes class CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and
ReplicationService).

9.7.2 CIM_ElementCapabilities (Associates StorageReplicationCapabilities and
StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 231 describes class CIM_ElementCapabilities (Associates StorageReplicationCapabilities and
StorageConfigurationService).

9.7.3 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 232 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

Table 230 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates Repli-
cationServiceCapabilities and ReplicationService)

Properties Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 231 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates Stor-
ageReplicationCapabilities and StorageConfigurationService)

Properties Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 232 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigura-
tionCapabilities to StorageConfigurationService)

Properties Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
416

NO_ANSI_ID Copy Services Subprofile

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973
9.7.4 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 233 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool).

9.7.5 CIM_HostedService (Replication Service)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The ReplicationService is implemented.

Table 234 describes class CIM_HostedService (Replication Service).

9.7.6 CIM_HostedService (Storage Configuration Service)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 233 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigura-
tionCapabilities to StoragePool)

Properties Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 234 - SMI Referenced Properties/Methods for CIM_HostedService (Replication Service)

Properties Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Replication Service hosted on the System.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 417

Copy Services Subprofile NO_ANSI_ID

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988
Table 235 describes class CIM_HostedService (Storage Configuration Service).

9.7.7 CIM_ReplicaPoolForStorage

Experimental. Associates special storage pool for Snapshots (delta replicas) to a source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 236 describes class CIM_ReplicaPoolForStorage.

9.7.8 CIM_ReplicationService

Experimental. Base class for Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 237 describes class CIM_ReplicationService.

Table 235 - SMI Referenced Properties/Methods for CIM_HostedService (Storage Configuration
Service)

Properties Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Storage Configuration Service hosted on the System.

Table 236 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Properties Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 237 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Requirement Description & Notes

CreateElementReplica() Mandatory

CreateSynchronizationAspect
()

Optional

ModifyReplicaSynchronizatio
n()

Mandatory

ModifyListSynchronization() Optional

ModifySettingsDefineState() Optional
418

NO_ANSI_ID Copy Services Subprofile

1989

1990

1991

1992

1993

1994

1995
9.7.9 CIM_ReplicationServiceCapabilities

Experimental. This class defines all of the capability properties for the replication services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The ReplicationService is implemented.

Table 238 describes class CIM_ReplicationServiceCapabilities.

GetAvailableTargetElements(
)

Optional

GetReplicationRelationships(
)

Optional

Table 238 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Requirement Description & Notes

SupportedReplicationTypes Mandatory Enumeration indicating the supported CopyType/Mode/Local-
or-Remote combinations. Values:

 2: Synchronous Mirror Local

 3: Asynchronous Mirror Local

 6: Synchronous Snapshot Local

 7: Asynchronous Snapshot Local

 10: Synchronous Clone Local

11: Asynchronous Clone Local.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects. Values:

 2: StorageVolume

3: LogicalDisk.

SupportedAsynchronousActio
ns

Mandatory Identify replication methods using job control. Values:

 2: CreateReplica

 4: CreateSynchronizationAspect

 5: ModifySynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

10: GetReplicationRelationships.

Table 237 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 419

Copy Services Subprofile NO_ANSI_ID

1996

1997

1998

1999

2000

2001
9.7.10 CIM_ReplicationSettingData

Experimental. Contains special options for use by methods of Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

SupportedSynchronousActio
ns

Mandatory Identify replication methods not using job control. Values:

 2: CreateReplica

 4: CreateSynchronizationAspect

 5: ModifySynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

10: GetReplicationRelationships.

ConvertSyncTypeToReplicati
onType()

Mandatory

ConvertReplicationTypeToSy
ncType()

Mandatory

GetSupportedCopyStates() Mandatory

GetSupportedFeatures() Mandatory

GetSupportedConsistency() Optional

GetSupportedOperations() Mandatory

GetSupportedSettingsDefine
StateOperations()

Optional

GetSupportedThinProvisionin
gFeatures()

Optional

GetSupportedMaximum() Optional

GetDefaultReplicationSetting
Data()

Optional

GetSupportedReplicationSetti
ngData()

Optional

Table 238 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Requirement Description & Notes
420

NO_ANSI_ID Copy Services Subprofile

2002
 Table 239 describes class CIM_ReplicationSettingData.

Table 239 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Requirement Description & Notes

Pairing Optional Controls how source and target elements are paired. Values:

 2: Instrumentation decides

 3: Exact order

4: Optimum (If possible source and target elements on
different adapters).

DesiredCopyMethodology Optional Request specific copy methodology. Values:

 1: Other

 2: Instrumentation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

8: Delta-Update.

TargetElementSupplier Optional If target elements are not supplied, this property indicates
where the target elements should come from. Values:

 1: Use existing elements

 2: Create new elements

 3: Use existing or Create new elements

4: Instrumentation decides.

ThinProvisioningPolicy Optional If the target element is not supplied, this property specifies the
provisioning of the target element. Values:

 2: Copy thin source to thin target

 3: Copy thin source to full target

 4: Copy full source to thin target

 5: Provisioning of target same as source

 6: Target pool decides provisioning of target element

7: Implementation decides provisioning of target.

ConsistentPointInTime Optional If it is true, it means the point-in-time to be created at an exact
time with no I/O activities in such a way the data is consistent
among all the elements or the group.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 421

Copy Services Subprofile NO_ANSI_ID

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015
9.7.11 CIM_SettingsDefineState

Experimental. Associates a storage object to an instance of SynchronizationAspect.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 240 describes class CIM_SettingsDefineState.

9.7.12 CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 241 describes class CIM_StorageCapabilities.

DeltaUpdateInterval Optional If non-zero, it specifies the interval between the snapshots of
source element, for example, every 23 minutes
(00000000002300.000000:000). If zero or NULL, the
implementation decides.

Multihop Optional This property applies to multihop copy operation. It specifies
the number of hops the starting source (or group) element is
expected to be copied. Default is 1.

Table 240 - SMI Referenced Properties/Methods for CIM_SettingsDefineState

Properties Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

Table 241 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Requirement Description & Notes

DeltaReservationMin Mandatory Refer to property descriptions for CIM_StorageSetting class.

DeltaReservationMax Mandatory

DeltaReservationDefault Mandatory Initial value for CIM_StorageSetting.DeltaReservationGoal.

Table 239 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Requirement Description & Notes
422

NO_ANSI_ID Copy Services Subprofile

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025
9.7.13 CIM_StorageConfigurationCapabilities

This class is only defined to maintain SMI-S 1.0 backward compatibility. This version of SMI-S indicate copy
services capabilities using instances of the StorageReplicationCapabilities class.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 242 describes class CIM_StorageConfigurationCapabilities.

9.7.14 CIM_StorageConfigurationService

Created By: Static

Table 242 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities

Properties Requirement Description & Notes

SupportedAsynchronousActio
ns

Mandatory Identify replication methods using job control. Values:

 8: Replica Creation

 9: Replica Modification

10: Replica Attachment.

SupportedSynchronousActio
ns

Mandatory Identify replication methods not using job control. Values:

 8: Replica Creation

 9: Replica Modification

10: Replica Attachment.

SupportedStorageElementTy
pes

Mandatory Storage element types that can be replicated. Values:

 2: Storage Volume

4: Logical Disk.

SupportedCopyTypes Mandatory CopyType values:

 2: Async

 3: Sync

 4: UnSyncAssoc

5: UnSyncUnAssoc.

InitialReplicationState Mandatory The initial SyncState when replica creation is completed.
Values:

 2: Initialized

 3: Prepared

4: Synchronized.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 423

Copy Services Subprofile NO_ANSI_ID

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045
Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 243 describes class CIM_StorageConfigurationService.

9.7.15 CIM_StoragePool

LowSpaceWarningThreshold only applies to specialized pools created as containers for delta replica elements
using dynamic, variable space consumption. The specialized pool is associated to either the
StorageConfigurationService or to a single replica source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 244 describes class CIM_StoragePool.

9.7.16 CIM_StorageReplicationCapabilities

This class defines all of the capability properties for a replication service. A provider must supply one instance for
each SupportedSynchronizationType value supported.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 243 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Requirement Description & Notes

ModifySynchronization() Mandatory Deprecated. This method is Deprecated in favor of
ReplicationService.ModifySynchronization.

CreateReplica() Optional Deprecated. This method is Deprecated in favor of
ReplicationService.CreateElementReplica.

AttachReplica() Optional Deprecated. This method is Deprecated in favor of
ReplicationService.CreateElementReplica.

Table 244 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Requirement Description & Notes

LowSpaceWarningThreshold Optional Experimental. Percentage of TotalManagedSpace triggering an
alert indication. When RemainingManagedSpace reaches or
falls below this percentage, the indication is generated.
424

NO_ANSI_ID Copy Services Subprofile

2046
 Table 245 describes class CIM_StorageReplicationCapabilities.

Table 245 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Requirement Description & Notes

SupportedSynchronizationTy
pe

Mandatory Provider must supply one instance of this class for each
supported value. Values:

 2: Async

 3: Sync

 4: UnSyncAssoc-Full

 5: UnSyncAssoc-Delta

6: UnSyncUnAssoc.

SupportedAsynchronousActio
ns

Mandatory Identify replication methods using job control. Values:

 2: Local Replica Creation

 4: Local Replica Modification

6: Local Replica Attachment.

SupportedSynchronousActio
ns

Mandatory Identify replication methods not using job control. Values:

 2: Local Replica Creation

 4: Local Replica Modification

6: Local Replica Attachment.

InitialReplicationState Mandatory The initial SyncState when replica creation is completed.
Values:

 2: Initialized

 3: Prepared

 4: Synchronized

5: Idle.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 425

Copy Services Subprofile NO_ANSI_ID
SupportedModifyOperations Mandatory Identify ModifySynchronization operations supported for this
CopyType. Values:

 2: Detach

 3: Fracture

 4: Resync

 5: Restore

 6: Prepare

 7: Unprepare

 8: Quiesce

 9: Unquiesce

 10: Reset To Sync

 11: Reset To Async

 12: Start Copy

13: Stop Copy.

ReplicaHostAccessibility Mandatory Host access restrictions. Values:

 2: Not accessible

 3: Any host may access

 4: Only accessible by the associated source element host

5: Accessible by hosts other than the source element host.

Table 245 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Requirement Description & Notes
426

NO_ANSI_ID Copy Services Subprofile
HostAccessibleState Mandatory Associated replicas are host accessible for these SyncState
values:

 2: Initialized

 3: Prepare In Progress

 4: Prepared

 5: Resync In Progress

 6: Synchronized

 7: Fracture In Progress

 8: Quiesce In Progress

 9: Quiesced

 10: Restore In Progress

 11: Idle

 12: Broken

 13: Fractured

 14: Frozen

15: Copy In Progress.

LocalMirrorSnapshotSupport
ed

Conditional Conditional requirement: Local or remote mirrors supported.
Only valid for CopyType "Sync" and "Async":

 true: local mirror replicas can be snapshot source element

false: local mirrors cannot be snapshot source.

MaximumReplicasPerSource Mandatory Maximum replicas of all types allowed for one source element.

MaximumLocalReplicationDe
pth

Conditional Conditional requirement: Local or remote mirrors supported.
Volume A mirrors Volume B mirrors Volume C to this maximum
allowable depth.

InitialSynchronizationDefault Conditional Conditional requirement: Managed background copy
operations supported. Refer to
CIM_StorageSetting.InitialSynchronization.

ReplicationPriorityDefault Conditional Conditional requirement: Managed background copy
operations supported. Refer to
CIM_StorageSetting.ReplicationPriority.

Table 245 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 427

Copy Services Subprofile NO_ANSI_ID

2047

2048

2049

2050

2051

2052
9.7.17 CIM_StorageSetting

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 246 describes class CIM_StorageSetting.

LowSpaceWarningThreshold
Default

Conditional Conditional requirement: Snapshots supported. Default value
for LowSpaceWarningThreshold. Percentage value between 0
and 100.

DeltaReplicaPoolAccess Conditional Conditional requirement: Snapshots supported. Indicates if a
specialized pool is required as a container for delta replicas.
Values:

 2: Any pool may contain delta replicas

 3: Exclusive special pool per source element

4: Shared special pool for all source elements.

Table 246 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Requirement Description & Notes

DeltaReservationMin Mandatory Minimum space reserved for a delta replica at time of creation.
Value 0 to 100 is a percentage of the source element size.

DeltaReservationMax Mandatory Maximum space reserved for a delta replica at time of creation.
Value 0 to 100 is a percentage of the source element size.

DeltaReservationGoal Mandatory Goal for space reserved for a delta replica at time of creation.
Value 0 to 100 is a percentage of the source element size.

Table 245 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Requirement Description & Notes
428

NO_ANSI_ID Copy Services Subprofile

2053

2054

2055

2056

2057

2058

2059

2060
9.7.18 CIM_StorageSynchronized

Experimental. Associates replica target element to source element. CIM_StorageSynchronized is subclassed from
CIM_StorageSynchronized.

Created By: Extrinsics: CreateReplica, AttachReplica, CreateElementReplica

Modified By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Requirement: The ReplicationService is implemented.

Table 247 describes class CIM_StorageSynchronized.

InitialSynchronization Optional Experimental. Indicates that the source element should be fully
copied to the target element when a replica is created. Values:

 0: Not applicable

 1: Not managed

 2: Start copy operation

3: Do not start copy operation.

ReplicationPriority Optional Experimental. Priority of copy engine I/O relative to host I/O.
Values:

 0: Not applicable

 1: Not managed

0: Not managed

 2: Lower than host I/O

 3: Same as host I/O

4: Higher than host I/O.

Table 247 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Requirement Description & Notes

WhenEstablished Optional Specifies when the association was established.

WhenActivated Optional Specifies when the association was activated.

WhenSuspended Optional Specifies when the association was suspended.

SyncType Mandatory Type of association between source and target elements.
Values:

 6: Mirror

 7: Snapshot

8: Clone.

Table 246 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 429

Copy Services Subprofile NO_ANSI_ID
Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState Mandatory Indicates the last requested or desired state for the
association. Values:

 6: Synchronized

 13: Fractured

 17: Split

 18: Inactive

 19: Suspended

20: FailedOver.

SyncState Mandatory State of association between source and target groups.
Values:

 2: Initialized

 6: Synchronized

 12: Broken

 13: Fractured

 16: Unsynchronized

 17: Split

 18: Inactive

 19: Suspended

 20: FailedOver

 21: Mixed

22: Not Applicable.

Table 247 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Requirement Description & Notes
430

NO_ANSI_ID Copy Services Subprofile

2061

2062

2063

2064

2065

2066
9.7.19 CIM_StorageSynchronized (Between StorageExtent elements)

Created By: Extrinsics: CreateReplica, AttachReplica, CreateElementReplica

Modified By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Requirement: Mandatory

Table 248 describes class CIM_StorageSynchronized (Between StorageExtent elements).

ProgressStatus Mandatory Status of association between source and target groups.
Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Synchronizing

 6: Resyncing

 7: Restoring

 8: Fracturing

 9: Splitting

 10: Failing over

 11: Failing back

12: Mixed.

PercentSynced Optional Specifies the percent of the work completed to reach
synchronization. For synchronized associations (e.g.
CopyType Mirror), while fractured, the percent difference
between source and target elements can derived by
subtracting PercentSynched from 100.

SyncedElement Mandatory

SystemElement Mandatory

Table 248 - SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between Storage-
Extent elements)

Properties Requirement Description & Notes

WhenSynced Mandatory If the replica is a PIT image, this value is the date/time created.

SyncMaintained Mandatory Boolean indicating whether synchronization is maintained.

Table 247 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 431

Copy Services Subprofile NO_ANSI_ID
CopyType Mandatory Type of association between source and target. Values:

 2: Async

 3: Sync

 4: UnSyncAssoc

5: UnSyncUnAssoc.

ReplicaType Optional Informational property describing the type of replication.
Values:

 0: Not specified

 2: Full Copy

 3: Before Delta

 4: After Delta

5: Log.

SyncState Mandatory State of the association between source and target. Values:

 2: Initialized

 3: PrepareInProgress

 4: Prepared

 5: ResyncInProgress

 6: Synchronized

 7: FractureInProgress

 8: QuiesceInProgress

 9: Quiesced

 10: RestoreInProgress

 11: Idle

 12: Broken

 13: Fractured

 14: Frozen

15: CopyInProgress.

Table 248 - SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between Storage-
Extent elements)

Properties Requirement Description & Notes
432

NO_ANSI_ID Copy Services Subprofile

2067

2068

2069

2070

2071

2072

2073
9.7.20 CIM_SynchronizationAspect

Experimental. Keeps track of source of a copy operation and point-in-time.

Created By: Extrinsics: CreateElementReplica, CreateSynchronizationAspect

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifyReplicaSynchronization, ModifySettingsDefineState

Requirement: Optional

Table 249 describes class CIM_SynchronizationAspect.

CopyPriority Optional Experimental. Priority of copy engine I/O relative to host I/O.
Values:

 0: Not managed

 1: Lower than host I/O

 2: Same as host I/O

3: Higher than host I/O.

SyncedElement Mandatory

SystemElement Mandatory

Table 249 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Requirement Description & Notes

SyncType Mandatory Type of association between source and target elements.
Values:

 6: Mirror

 7: Snapshot

8: Clone.

ConsistencyEnabled Mandatory Set to true if consistency is enabled.

ElementName Optional A end user relevant name. The value will be stored in the
ElementName property of the created SynchronizationAspect.

Table 248 - SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between Storage-
Extent elements)

Properties Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 433

Copy Services Subprofile NO_ANSI_ID
STABLE

CopyMethodology Optional Indicates the copy methodology utilized for copying. Values:

 2: Implementation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

8: Delta-Update.

WhenPointInTime Optional Specifies when point-in-time was created.

SourceElement Mandatory Reference to the source element or the source group of a copy
operation and/or a point-in-time.

Table 249 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Requirement Description & Notes
434

NO_ANSI_ID Disk Drive Subprofile

1

2

3

DEPRECATED

Clause 10: Disk Drive Subprofile

The functionality of the Disk Drive Subprofile has been subsumed by the Clause 11: Disk Drive Lite Subprofile.

The Disk Drive Subprofile is defined in section 7.3.3.4 of SMI-S 1.0.2.

DEPRECATED
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 435

Disk Drive Subprofile NO_ANSI_ID
436

NO_ANSI_ID Disk Drive Lite Subprofile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
STABLE

Clause 11: Disk Drive Lite Subprofile

11.1 Description

The Disk Drive Lite Subprofile is used to model disk drive devices. This subprofile assumes the drive is linked to a
larger system (e.g., Array, SDE). The model supports asset information, health and status, and Physical
information. The model also supports external links to Pool membership, extent mapping, backend port modeling,
SCSI buss and address mapping, and physical containment in system packages. The subprofile also includes
active management of an optional location indicator.

11.1.1 Base model

A disk drive is modeled as a single MediaAccessDevice (DiskDrive). The DiskDrive class shall be linked to a single
StorageExtent (representing the storage of the drive) by a MediaPresent association. The StorageExtent class
represents the storage of the drive and contains its size. Other classes further refine the model. PhysicalPackage
contains asset information for the device and shall be connected by a Realizes association. The model can
optionally contain SoftwareIdentity that contains information about the firmware and is linked by a DeviceSoftware
association.

The CIM_DiskDrive class can be optionally subclassed to SNIA_DiskDrive to add a set of properties that model the
capabilities of the drive. The properties include DiskType, FormFactor, and Encryption. DiskType contains
information about the technology employed to store data. FormFactor contains the physical size of the drive.
Encryption reflects the state of the encryption feature implemented by some disk drives.

Disk Drive Lite also has an optional set of classes to model the ports on the drive. These classes include
LogicalPort and ProtocolEndpoint. LogicalPort is subclassed to many different port types (e.g., Fibre channel,
SAS, SATA …). All subclasses must define the "PortType" property as mandatory so that it can be used to
determine the interface on the drive.

Note: The logicalPort class, ProtocolEndpoint, and the DiskDrive properties DiskType, FormFactor, and Encryption
will be made mandatory in the future.

11.1.2 Associations to external classes

The Disk Drive Subprofile ties into the rest of the system via a number of key associations.

• ConcreteComponent - Is used to associate the StorageExtent to the StoragePool that the disk is part of.
Required when used with Block Services profile

• BasedOn - Is used to associate The StorageExtent exported by the Disk Drive to another (higher level) extent
(or a Volume).

• Container - Is used to associate the physical package of the disk drive to the physical package of the system.

• SystemDevice - Is used to scope the Disk to the system containing it and is mandatory.

• ProtocolControllerAccessesUnit - Is used to link the Disk to system port(s) it is accessed through.

• SCSIInitiatorTargetLogicalUnitPath or MemberOfCollection may be used with Initiator Port Profiles.

• MemberOfCollection - Is used with Storage Device Enclosure.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 437

Disk Drive Lite Subprofile NO_ANSI_ID

31

32

33

34

35

36

37

38

39

40

41

42

43

44
11.1.3 Active Management

The DiskDrive class has been enhanced by the addition of a property (LocationIndicator) to read or set the state of
a location indicator. When read the property returns a value that can be used to determine of the indicator is
support and it's value. When written the indicator's state is set.

11.1.4 Diagram of CIM Elements

Figure 60 illustrates the CIM elements for modeling of Disk Drives.

This Profile defines the following CIM Classes (and their uses):

DiskDrive - Used to represent the drive characteristics.

LogicalPort - To represent (target ports) for accessing the disk drive. This is optional.

PhysicalPackage - Used to represent the physical packaging aspects of the drive.

ProtocolEndpoint - To represent the protocol used (SCSI or ATA) for accessing the disk drive. This is
optional.

SoftwareIdentity - Used to represent the firmware information for the disk drive.

StorageExtent (Primordial Disk Drive Extents) - Used to represent the storage media on a disk drive.

Figure 60 - CIM Elements in the Disk Drive Model

D is k D riv e L ite

S o ftw a re Id e n tity

S to ra g e P o o l

(S e e B lo c k S e rv ic e s P a c k a g e)

P ro to c o lE n d p o in t

(S e e In itia to r P o rts P ro file)

S C S IIn it ia to rT a rg e tL o g ic a lU n itP a th

P ro to c o lC o n tro lle r

(S e e In it ia to r P o rts P ro file)

P ro to c o lC o n tro lle rA c c e s s e s U n it

P h y s ic a lP a c k a g e

(S e e re fe re n c in g p ro file)

C o n c re te C o m p o n e n t &
A s s o c ia te d C o m p o n e n tE x te n t

C o n ta in e r

.

S to ra g e E x te n t
(P r im o rd ia l D is k D r iv e E x te n t)

P r im o rd ia l= ” tru e ”
E x te n tD is c r im in a to r= ”S N IA :D is k D r iv e ”,

“S N IA :P o o l C o m p o n e n t”

M e d ia P re s e n t

E le m e n tS o ftw a re Id e n tity

D is k D r iv e

R e a liz e s

P h y s ic a lP a c k a g e

S A P a v a ila b le
fo rE le m e n t

P ro to c o lE n d p o in t

D e v ic e S A P
Im p le m e n ta tio n

L o g ic a l P o r t

C o n c re te : S to ra g e E x te n t

(S e e E x te n t C o m p o s itio n)

B a s e d O n
(B o tto m L e v e l)
438

NO_ANSI_ID Disk Drive Lite Subprofile

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
11.1.5 Durable Names and Correlatable IDs of the Profile

None.

11.1.6 Conditional Associations to other profiles

The following associations shall be implemented if certain other profiles are implemented:

DEPRECATED

• ConcreteComponent

When implementing the Disk Drive Lite Subprofile with the Block Services Package, the
ConcreteComponent association between the disk drive StorageExtent and the primordial StoragePool to
which it is assigned shall be implemented. Block Services models logical storage (StoragePools) and Disk
Drive Lite models is StorageExtents that provide storage for a primordial storage pool.

DEPRECATED

• AssociatedComponentExtent

When implementing the Disk Drive Lite profile with the Block Services Package, the
AssociatedComponentExtent association between the disk drive StorageExtent and a primordial
StoragePool to which it is assigned shall be implemented. Block Services models logical storage
(StoragePools) and Disk Drive Lite models is StorageExtents that provide storage for a primordial storage
pool.

• BasedOn

When implementing the Disk Drive Lite subprofile with Extent Composition, the BasedOn association
between the primordial disk drive StorageExtent and higher level concrete StorageExtents that directly use
storage from the disk drive extent shall be implemented.

11.1.7 Optional Associations to other profiles

The SCSIInitiatorTargetLogicalUnitPath or MemberOfCollection from CIM_ProtocolEndpoint may be used with
Initiator Port Profiles.

The MemberOfCollection association from the LogicalPort is used with enclosure profiles.

11.2 Health and Fault Management Considerations

The DiskDrive.OperationalStatus contains the overall status of the disk, summarized in Table 250.

Table 250 - OperationalStatus For DiskDrive

Primary Operational Status Subsidiary
Operational Status

Description

2 “OK” Disk Drive is enabled.

5 “Predictive Failure” Disk Drive is functionality nominally but is
predicting a failure in the near future

6 “Error” Disk Drive is no longer functioning.

8 “Starting” Disk Drive is becoming enabled.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 439

Disk Drive Lite Subprofile NO_ANSI_ID

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85
Table 251 shows the relationship between the EnabledState of a disk drive to the drives OperationalStatus and the
disk drive StorageExtent OperationalStatus.

11.3 Cascading Considerations

Not defined in this standard.

11.4 Supported Profiles, Subprofiles and Packages

Related Profiles for Disk Drive Lite: Not defined in this standard.

11.5 Methods of this Profile

11.5.1 Extrinsic Methods on Disk Drives

11.5.1.1 Request State Change

uint32 RequestStateChange(

[In] uint16 RequestedState,

[Out] CIM_ConcreteJob REF Job,

[In] datetime TimeoutPeriod)

The allowed state changes are indicated by the RequestedStatesSupported property of
EnabledLogicalElementCapabilities. A Job shall be returned if the operation takes longer than the TimeoutPeriod.
The Requested State of Offline makes a drives extents unavailable to the dependent volume.

The Job may represent a drive rebuild if the RequestedState of the drive is Offline and a failover shall be complete
before the offline operation can finish.

9 “Stopping” Disk Drive is being disabled.

10 “Stopped” Disk Drive is disabled.

Table 251 - Enabled State

StorageExtent.
OperationalStatus

DiskDrive.
OperationStatus

DiskDrive.
EnabledState

2, OK 2, OK 2, Enabled

13, Lost Communication 10, Stopped 3, Disabled

13, Lost Communication 9, Stopping 4, Shutting Down

13, Lost Communication 2, OK 6, Enabled but Offline

13, Lost Communication 8, Starting 10, Starting

Table 250 - OperationalStatus For DiskDrive (Continued)

Primary Operational Status Subsidiary
Operational Status

Description
440

NO_ANSI_ID Disk Drive Lite Subprofile

86

87
11.6 Registered Name and Version

Disk Drive Lite version 1.5.0 (Component Profile)

11.7 CIM Elements

Table 252 describes the CIM elements for Disk Drive Lite.

Table 252 - CIM Elements for Disk Drive Lite

Element Name Requirement Description

11.7.1 CIM_ATAPort (Disk Drive Target ATA
Port)

Optional Represents an ATA target port for the disk
drive.

11.7.2 CIM_ATAProtocolEndpoint (Disk Drive
target ATA Protocol Endpoint)

Optional A target ATA protocol endpoint for a disk drive
if ATA protocols are supported.

11.7.3 CIM_AssociatedComponentExtent
(Pool Component to Primordial Pool)

Mandatory

11.7.4 CIM_BasedOn (Bottom Level
BasedOn)

Conditional Conditional requirement: Implementation of
the Extent Composition profile. Associates a
concrete StorageExtent representing a
decomposition(partial allocation) or
composition to the disk drive StorageExtent
that it is allocated from.

11.7.5 CIM_ConcreteComponent (Disk Extent
to Primordial Pool)

Conditional Deprecated. Conditional requirement:
Implementation of the Block Services
Package. Associates a disk drive extent to a
primordial storage pool.

11.7.6 CIM_Container Optional Associates a disk drive physical package to its
higher level package.

11.7.7 CIM_DeviceSAPImplementation (ATA) Optional Associates a target ATA protocol endpoint to
the target port for the drive.

11.7.8 CIM_DeviceSAPImplementation
(SCSI)

Optional Associates a target SCSI protocol endpoint to
the target port for the drive.

11.7.9 CIM_DiskDrive Mandatory Represents the disk drive.

11.7.10 CIM_ElementSoftwareIdentity Mandatory Associates the firmware (SoftwareIdentity) to
a disk drive.

11.7.11 CIM_FCPort (Disk Drive Target FC
Port)

Optional Represents an FC target port for the disk
drive.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 441

Disk Drive Lite Subprofile NO_ANSI_ID
11.7.12 CIM_FilterCollection (Disk Drive Lite
Predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

11.7.13 CIM_HostedCollection (System to
predefined IndicationFilters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

11.7.14 CIM_IndicationFilter (Disk Drive
Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition
of a new DiskDrive instance.

11.7.15 CIM_IndicationFilter (Disk Drive
Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion
of a DiskDrive instance.

11.7.16 CIM_MediaPresent Mandatory Associates a disk drive to its storage extent.

11.7.17 CIM_MemberOfCollection (Disk Drive
Lite Filter Collection to FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Disk Drive
Lite predefined FilterCollection to the
FilterCollection for the autonomous profile
(e.g., the Array FilterCollection).

Table 252 - CIM Elements for Disk Drive Lite

Element Name Requirement Description
442

NO_ANSI_ID Disk Drive Lite Subprofile

88

89

90

91

92
11.7.18 CIM_MemberOfCollection
(Predefined Filter Collection to Disk Drive Lite
Filters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Disk Drive
Lite predefined FilterCollection to the
predefined Filters supported by the
implementation.

11.7.19 CIM_PhysicalPackage Mandatory The physical package for the disk drive.

11.7.20 CIM_ProtocolControllerAccessesUnit Optional Deprecated. Associates an initiator protocol
controller to the disk drive storage extent.

11.7.21 CIM_Realizes Mandatory Associates the disk drive to its physical
package.

11.7.22 CIM_SAPAvailableForElement Optional Associates the target protocol endpoint to the
disk drive.

11.7.23 CIM_SASPort (Disk Drive Target SAS
Port)

Optional Represents a SAS target port for the disk
drive.

11.7.24
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Associates protocol endpoints of the initiator
and target ports to the extent that is exposed
through the ports.

11.7.25 CIM_SCSIProtocolEndpoint (Disk
Drive target SCSI Protocol Endpoint)

Optional A target SCSI protocol endpoint for a disk
drive if SCSI protocols are supported.

11.7.26 CIM_SPIPort (Disk Drive Target
Parallel SCSI Port)

Optional Represents a parallel SCSI target port for the
disk drive.

11.7.27 CIM_SoftwareIdentity Mandatory Represents the firmware information for the
disk drive.

11.7.28 CIM_StorageExtent (Primordial Disk
Drive Extent)

Mandatory The storage extent that represents the storage
of the disk drive.

11.7.29 CIM_SystemDevice (Disk Drive
System)

Mandatory Associates DiskDrive to a hosting computer
system.

11.7.30 CIM_SystemDevice (Port System) Optional Associates disk drive Ports to a hosting
computer system.

11.7.31 CIM_SystemDevice (Storage Extent
System)

Mandatory Associates a StorageExtent to a hosting
computer system.

11.7.32 SNIA_DiskDrive Optional This is a subclass of CIM_DiskDrive.
CIM_DiskDrive may be subclassed as
SNIA_DiskDrive to add additional properties.

Table 252 - CIM Elements for Disk Drive Lite

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 443

Disk Drive Lite Subprofile NO_ANSI_ID

93

94

95

96

97

98

99

100

101

102
11.7.1 CIM_ATAPort (Disk Drive Target ATA Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 253 describes class CIM_ATAPort (Disk Drive Target ATA Port).

11.7.2 CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_DiskDrive

Mandatory Addition of a new Disk Drive instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_DiskDrive

Mandatory Deletion of a Disk Drive instance.

Table 253 - SMI Referenced Properties/Methods for CIM_ATAPort (Disk Drive Target ATA Port)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PortType Mandatory Shall be 92|93 (SATA or SATA2) .

Table 252 - CIM Elements for Disk Drive Lite

Element Name Requirement Description
444

NO_ANSI_ID Disk Drive Lite Subprofile

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120
Table 254 describes class CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint).

11.7.3 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)

The referenced primordial disk drive StorageExtent represents capacity has not been allocated, is allocated in part,
or is allocated in its entirety.

Requirement: Mandatory

Table 255 describes class CIM_AssociatedComponentExtent (Pool Component to Primordial Pool).

11.7.4 CIM_BasedOn (Bottom Level BasedOn)

Created By: External

Modified By: External

Deleted By: External

Requirement: Implementation of the Extent Composition profile.

Table 254 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Disk Drive target
ATA Protocol Endpoint)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Shall be 3 (Target).

ProtocolIFType Mandatory

OtherTypeDescriptio
n

Mandatory

ConnectionType Mandatory

Table 255 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool
Component to Primordial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool.

PartComponent Mandatory The disk drive storage extent that is a component of the
primordial storage pool.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 445

Disk Drive Lite Subprofile NO_ANSI_ID

121

122

123

124

125

126

127

128

129

130

131

132
Table 256 describes class CIM_BasedOn (Bottom Level BasedOn).

11.7.5 CIM_ConcreteComponent (Disk Extent to Primordial Pool)

Deprecated. Associates a disk drive extent to a primordial storage pool. This is Deprecated since its function is
better covered by AssociatedComponentExtent.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation of the Block Services Package.

Table 257 describes class CIM_ConcreteComponent (Disk Extent to Primordial Pool).

11.7.6 CIM_Container

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 256 - SMI Referenced Properties/Methods for CIM_BasedOn (Bottom Level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional This should be specified if the concrete extent does not use
the whole disk drive extent.

EndingAddress Optional This should be specified if the concrete extent does not use
the whole disk drive extent.

Dependent Mandatory This is a reference to the concrete storage extent.

Antecedent Mandatory This is a reference to the disk drive storage extent.

Table 257 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Disk Extent to Pri-
mordial Pool)

Properties Flags Requirement Description & Notes

PartComponent Mandatory A reference to an instance of CIM_StorageExtent that
represents the storage on the disk drive. The extent shall
have its Primordial property set to true.

GroupComponent Mandatory A reference to an instance of CIM_StoragePool with the
Primordial property set to true.
446

NO_ANSI_ID Disk Drive Lite Subprofile

133

134

135

136

137

138

139

140

141

142

143

144

145
Table 258 describes class CIM_Container.

11.7.7 CIM_DeviceSAPImplementation (ATA)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 259 describes class CIM_DeviceSAPImplementation (ATA).

11.7.8 CIM_DeviceSAPImplementation (SCSI)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 260 describes class CIM_DeviceSAPImplementation (SCSI).

Table 258 - SMI Referenced Properties/Methods for CIM_Container

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of CIM_PhysicalPackage that
represents the higher level package that contains the disk
drive package.

PartComponent Mandatory A reference to an instance of CIM_PhysicalPackage that
represents the packaging for the disk drive.

Table 259 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (ATA)

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of an ATA port with a
UsageRestriction property set to '2' (Target).

Dependent Mandatory A reference to an instance of an ATA protocol endpoint with
a Role property set to '3' (Target).

Table 260 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (SCSI)

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of a parallel SCSI (SPI), SAS or
FC port with a UsageRestriction property set to '2' (Target).

Dependent Mandatory A reference to an instance of a SCSI protocol endpoint with
a Role property set to '3' (Target).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 447

Disk Drive Lite Subprofile NO_ANSI_ID

146

147

148

149

150

151

152
11.7.9 CIM_DiskDrive

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 261 describes class CIM_DiskDrive.

11.7.10 CIM_ElementSoftwareIdentity

Created By: Static

Table 261 - SMI Referenced Properties/Methods for CIM_DiskDrive

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Name Mandatory

OperationalStatus Mandatory Possible OperationalStatus values are 2 (OK), 5 (Predictive
Failure), 6 (Error), 8 (Starting), 9 (Stopping) or 10
(Stopped).

EnabledState Mandatory Possible EnabledStates are 2 (Enabled), 3 (Disabled), 4
(Shutting Down), 6 (Enabled but Offline) or 10 (Starting)

Enabled - drive is spun up and online.

Disabled - drive is spun down, and offline

Shutting down - drive is spinning down

Enabled but Offline - drive is spun up but offline

Starting - drive is spinning up.

RequestedState Optional Possible RequestedStates are 2 (Enabled), 4 (Shutting
Down) and 6 (Offline)

Enabled - Spin up drive if it was spun down and Online the
drive if it was offline.

Shutting down - spin down drive

Offline - offline drive.

RequestStateChange
()

Optional
448

NO_ANSI_ID Disk Drive Lite Subprofile

153

154

155

156

157

158

159

160

161

162

163

164

165

166
Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 262 describes class CIM_ElementSoftwareIdentity.

11.7.11 CIM_FCPort (Disk Drive Target FC Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 263 describes class CIM_FCPort (Disk Drive Target FC Port).

Table 262 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of CIM_SoftwareIdentity that
represents the software the disk drive.

Dependent Mandatory A reference to an instance of CIM_DiskDrive or
SNIA_diskdrive.

Table 263 - SMI Referenced Properties/Methods for CIM_FCPort (Disk Drive Target FC Port)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PortType Mandatory Shall be 0|1|10|11|12|13|14|15|16|17|18 (Unknown or Other
or N or NL or F/NL or Nx or E or F or FL or B or G).

PermanentAddress CD Mandatory Port WWN. Shall be 16 unseparated uppercase hex digits.

SupportedCOS Optional

ActiveCOS Optional

SupportedFC4Types Optional

ActiveFC4Types Optional
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 449

Disk Drive Lite Subprofile NO_ANSI_ID

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183
11.7.12 CIM_FilterCollection (Disk Drive Lite Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Disk Drive Lite
implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 264 describes class CIM_FilterCollection (Disk Drive Lite Predefined FilterCollection).

11.7.13 CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 265 describes class CIM_HostedCollection (System to predefined IndicationFilters).

11.7.14 CIM_IndicationFilter (Disk Drive Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new DiskDrive instance.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 264 - SMI Referenced Properties/Methods for CIM_FilterCollection (Disk Drive Lite Pre-
defined FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Disk Drive
Lite'.

Table 265 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined
IndicationFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Disk Drive
Lite.

Antecedent Mandatory Reference to the 'Top level' System.
450

NO_ANSI_ID Disk Drive Lite Subprofile

184

185

186

187

188

189

190

191
Table 266 describes class CIM_IndicationFilter (Disk Drive Creation).

11.7.15 CIM_IndicationFilter (Disk Drive Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a DiskDrive instance.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 267 describes class CIM_IndicationFilter (Disk Drive Deletion).

Table 266 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Creation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory This shall be 'SNIA:Disk Drive Lite:DiskDriveCreation'.

SourceNamespace N Optional Deprecated. For Predefined IndicationFilters in the
Implementation Namespace this shall be NULL.

SourceNamespaces N Optional Experimental. For Predefined IndicationFilters in the
Implementation Namespace this shall be NULL.

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_DiskDrivel.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional This should be NULL for predefined indication filters.

Table 267 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory This shall be 'SNIA:Disk Drive Lite:DiskDriveDeletion'.

SourceNamespace N Optional Deprecated. For Predefined IndicationFilters in the
Implementation Namespace this shall be NULL.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 451

Disk Drive Lite Subprofile NO_ANSI_ID

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206
11.7.16 CIM_MediaPresent

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 268 describes class CIM_MediaPresent.

11.7.17 CIM_MemberOfCollection (Disk Drive Lite Filter Collection to FilterCollection)

Experimental. This associates the Disk Drive Lite predefined FilterCollection to the FilterCollection for the
autonomous profile (e.g., the Array FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 269 describes class CIM_MemberOfCollection (Disk Drive Lite Filter Collection to FilterCollection).

SourceNamespaces N Optional Experimental. For Predefined IndicationFilters in the
Implementation Namespace this shall be NULL.

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_DiskDrive.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional This should be NULL for predefined indication filters.

Table 268 - SMI Referenced Properties/Methods for CIM_MediaPresent

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of CIM_StorageExtent with the
Primordial propery set to true (a disk drive extent).

Antecedent Mandatory A reference to an instance of CIM_DiskDrive or
SNIA_DiskDrive.

Table 269 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Disk Drive Lite Fil-
ter Collection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Disk Drive Lite predefined FilterCollection.

Member Mandatory Reference to the Disk Drive Lite predefined FilterCollection.

Table 267 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Deletion)

Properties Flags Requirement Description & Notes
452

NO_ANSI_ID Disk Drive Lite Subprofile

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225
11.7.18 CIM_MemberOfCollection (Predefined Filter Collection to Disk Drive Lite Filters)

Experimental. This associates the Disk Drive Lite predefined FilterCollection to the predefined Filters supported by
the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 270 describes class CIM_MemberOfCollection (Predefined Filter Collection to Disk Drive Lite Filters).

11.7.19 CIM_PhysicalPackage

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 271 describes class CIM_PhysicalPackage.

11.7.20 CIM_ProtocolControllerAccessesUnit

Deprecated.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 270 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Disk Drive Lite Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Disk Drive Lite predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Disk
Drive Lite implementation.

Table 271 - SMI Referenced Properties/Methods for CIM_PhysicalPackage

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Tag Mandatory

Manufacturer Mandatory

Model Mandatory

SerialNumber Optional

PartNumber Optional
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 453

Disk Drive Lite Subprofile NO_ANSI_ID

226

227

228

229

230

231

232

233

234

235

236

237

238

239
Table 272 describes class CIM_ProtocolControllerAccessesUnit.

11.7.21 CIM_Realizes

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 273 describes class CIM_Realizes.

11.7.22 CIM_SAPAvailableForElement

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 274 describes class CIM_SAPAvailableForElement.

Table 272 - SMI Referenced Properties/Methods for CIM_ProtocolControllerAccessesUnit

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of CIM_StorageExtent with the
Primordial property set to true (the disk drive extent).

Antecedent Mandatory A reference to a CIM_ProtocolController (from the Initiator
for this disk drive).

Table 273 - SMI Referenced Properties/Methods for CIM_Realizes

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of a physical package that
represents the packaging for the disk drive.

Dependent Mandatory A reference to an instance of CIM_DiskDrive or
SNIA_DiskDrive.

Table 274 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory A reference to an instance of a SCSI or ATA protocol
endpoint that represents the target endpoint (role='3') for
the disk drive.

ManagedElement Mandatory A reference to an instance of a Disk Drive or
SNIA_DiskDrive.
454

NO_ANSI_ID Disk Drive Lite Subprofile

240

241

242

243

244

245

246

247

248

249

250

251
11.7.23 CIM_SASPort (Disk Drive Target SAS Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 275 describes class CIM_SASPort (Disk Drive Target SAS Port).

11.7.24 CIM_SCSIInitiatorTargetLogicalUnitPath

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 276 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

Table 275 - SMI Referenced Properties/Methods for CIM_SASPort (Disk Drive Target SAS Port)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PermanentAddress Mandatory SAS Address. Shall be 16 un-separated upper case hex
digits.

PortType Mandatory Shall be 94 (SAS).

Table 276 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

Initiator Mandatory The protocol endpoint for the back end initiator port for
accessing the disk drive.

Target Mandatory A reference to an instance of a SCSI or ATA protocol
endpoint that represents the target endpoint (role='3') for
the disk drive.

LogicalUnit Mandatory Shall reference the StorageExtent associated to the
DiskDrive.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 455

Disk Drive Lite Subprofile NO_ANSI_ID

252

253

254

255

256

257

258

259

260

261

262
11.7.25 CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 277 describes class CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint).

11.7.26 CIM_SPIPort (Disk Drive Target Parallel SCSI Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 278 describes class CIM_SPIPort (Disk Drive Target Parallel SCSI Port).

Table 277 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Disk Drive target
SCSI Protocol Endpoint)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Shall be 3 (Target).

ProtocolIFType Mandatory

OtherTypeDescriptio
n

Mandatory

ConnectionType Mandatory

Table 278 - SMI Referenced Properties/Methods for CIM_SPIPort (Disk Drive Target Parallel SCSI
Port)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory
456

NO_ANSI_ID Disk Drive Lite Subprofile

263

264

265

266

267

268

269

270

271

272
11.7.27 CIM_SoftwareIdentity

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 279 describes class CIM_SoftwareIdentity.

11.7.28 CIM_StorageExtent (Primordial Disk Drive Extent)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PortType Mandatory Shall be 101 (SCSI Parallel).

Table 279 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory

VersionString Mandatory

Manufacturer Optional

BuildNumber Optional

MajorVersion Optional

RevisionNumber Optional

MinorVersion Optional

Table 278 - SMI Referenced Properties/Methods for CIM_SPIPort (Disk Drive Target Parallel SCSI
Port)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 457

Disk Drive Lite Subprofile NO_ANSI_ID

273

274

275

276

277

278

279

280

281

282
Table 280 describes class CIM_StorageExtent (Primordial Disk Drive Extent).

11.7.29 CIM_SystemDevice (Disk Drive System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 281 describes class CIM_SystemDevice (Disk Drive System).

11.7.30 CIM_SystemDevice (Port System)

Created By: Static

Modified By: Static

Deleted By: Static

Table 280 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Disk Drive
Extent)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks as reported by the hardware.

ConsumableBlocks Mandatory The number of usable blocks.

Primordial Mandatory Shall be true.

ExtentStatus Mandatory

OperationalStatus Mandatory

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Pool Component' and 'SNIA:DiskDrive'.

Table 281 - SMI Referenced Properties/Methods for CIM_SystemDevice (Disk Drive System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_DiskDrive or
SNIA_DiskDrive used in this profile.
458

NO_ANSI_ID Disk Drive Lite Subprofile

283

284

285

286

287

288

289

290

291

292

293

294
Requirement: Optional

Table 282 describes class CIM_SystemDevice (Port System).

11.7.31 CIM_SystemDevice (Storage Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 283 describes class CIM_SystemDevice (Storage Extent System).

11.7.32 SNIA_DiskDrive

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 284 describes class SNIA_DiskDrive.

Table 282 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_FCPort, CIM_SPIPort,
CIM_SASPort or CIM_ATAPort used in this profile.

Table 283 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_StorageExtent used in
this profile.

Table 284 - SMI Referenced Properties/Methods for SNIA_DiskDrive

Properties Flags Requirement Description & Notes

DiskType Mandatory The technology employed to store data. DiskType values
are 0 (Unknown), 1 (Other), 2 (Hard Disk Drive) or 3 (Solid
State Disk).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 459

Disk Drive Lite Subprofile NO_ANSI_ID
STABLE

FormFactor Mandatory The Physical size of the disk drive. FormFactor values are
0 (Unknown), 1 (Other), 2 (Not Reported), 3 (5.25 inch), 4
(3.5 inch), 5 (2.5 inch), 6 (1.8 inch).

Encryption Mandatory This propery reflects the state of the encryption feature
implemented by some disk drives. Encryption values are 0
(Unknown), 1 (Not Supported), 2 (unlocked) or 3 (locked).

Table 284 - SMI Referenced Properties/Methods for SNIA_DiskDrive

Properties Flags Requirement Description & Notes
460

NO_ANSI_ID Disk Sparing Subprofile

1

2

3

4

5

6

7

8

9

10
IMPLEMENTED

Clause 12: Disk Sparing Subprofile

12.1 Description

Many block service systems enhance availability by providing backup storage capacity to be used in place of a
failed component. The failure of the component may be caused by the failure of a physical component that realizes
that component or the invalidation or corruption of the component itself.

The end result of the failure is that block server is degraded by performance or spare redundancy. In the first case,
it is important that the cause of the performance degradation is known so the appropriate response may be taken.
In the second case, the administrator will have to know of the loss of redundancy. The administrator can then plan
to replace the used redundancy and fix the broken component. A sample instance diagram is provided in Figure
61: "Sparing Instance Diagram".

Figure 61 - Sparing Instance Diagram

Current Failover

Previous Failover

ComputerSystem

SpareConfigurationCapabilities ElementCapabilities

StorageExtent

failed

StorageExtent

StorageExtent

StorageRedundancySet

ConcreteDependency

ConcreteDependency

ConcreteDependency

MemberOfCollection

MemberOfCollection

StorageExtent

Spared

AffectedJobElement

AffectedJobElement

ConcreteJob

FailoverStorageExtentsCollection

MemberOfCollection

StorageExtent

(failed drive)

AffectedJobElement

StorageExtent

IsSpare

IsSpare

MemberOfCollection

StorageVolume or
LogicalDisk, or
StoragePool

HostedCollection
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 461

Disk Sparing Subprofile NO_ANSI_ID

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
Clause 14: "Extent Composition Subprofile" focuses on the mapping of storage to storage elements,
StorageVolume and LogicalDisk. This subprofile enhances that picture by representing how spare physical storage
components like disk drives or purely logical constructs like LUNs or even host partitions, can be used to provide
redundancy for storage elements. The spare elements are represented as StorageExtents themselves.

Clause 11: "Disk Drive Lite Subprofile" can be used to supplement this subprofile by explicitly listing the changes in
operational status resulting from the failure of disks and the affect of this failure on the StorageVolumes or
LogicalDisks they support. In conjunction with Storage Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 Clause 25: Health Package and the RelatedElementCausingError association, a client can
tell, unambiguously the effect and cause of the storage component failure.

Fail Over is the name of the process by which the capacity provided by one StorageExtent is replaced by that of
the spare StorageExtent. The block contents of the original StorageExtent is copied to the replacement
StorageExtent. During this process a ConcreteJob shall be created to represent this process and report the
progress and status of the fail over.

The functionality provided by this subprofile includes:

• The representation of the current state of the spares whether they are not in use, are in use, or in transition
from not in use to being put into service. All three of these states can be present at once.

• The detection of the addition of another spare element and whether the implementation requires client
intervention to assign the spare element.

• Client initiated fail over. A client may cause the fail over process to start.

• Client initiated rebuild of Extent data.

• Client initiated check and rebuild of Extent parity.

12.1.1 Durable Names and Correlatable IDs of the Profile

The StorageVolumes are required to provide the correlatable ID, Name. See Storage Management Technical
Specification, Part 1 Common Architecture, 1.5.0 Rev 6 7.2, "Guidelines for SCSI Logical Unit Names".

12.1.2 Sparing Model

StorageExtents are used as the unit of redundancy in this model. StorageExtents can be said to be a grouping of
capacity. For the question of what component of the system has failed, the StorageExtent should be realized by a
DiskDrive or some of component to which the failure is meaningful. This model represents how the capacity is used
in the protection of the data. Other models define how StorageExtents are realized by other components or
devices.

A spare is, functionally, the union of the StorageExtent representation and the associated component
representation that realizes the Extent. This subprofile uses this term in this union.

The sparing model provides for mechanisms to:

• Group StorageExtents that have failed.

• Group spares that can be used to replace failed components. The group of spares may be shared across
StorageVolumes, LogicalDisks, or StoragePools.

• Report what component is being spared or replaced by the spare

• Report the process of a fail over, sparing reconfiguration, storage extent rebuild, or parity check

• Report the capabilities of the Sparing implementation
462

NO_ANSI_ID Disk Sparing Subprofile

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
The physical resources on which a StorageExtent is realized are components that may result in data loss if they
fail. If the physical resource is modeled, its storage shall be represented by a primordial StorageExtent. This profile
requires that the physical resource on which a spare extent is realized be identifiable. As a consequence, if a
StorageExtent is used as a spare, it shall either be a primordial extent, or it shall have a ConcreteDependency
association to one or more antecedent primordial StorageExtents.

The StorageRedundancySet class is used to group spares. There may be a single StorageRedundancySet per
StorageVolume or LogicalDisk. Multiple StorageVolumes or LogicalDisks may share a single
StorageRedudancySet. In the first case, the spares grouping can be said to be dedicated to that StorageVolume or
LogicalDisk. In the second case, the spares grouping can be said to be global; that is, the spares will be used for all
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 463

Disk Sparing Subprofile NO_ANSI_ID

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96
the StorageVolumes or LogicalDisks that are associated to a StorageRedundancySet. This is illustrated in Figure
62: "Variations of RS per Storage Element".

In the case where spares are not dedicated, the decision to group Extents with a given StorageRedundancySet
depends of the rules of the implementation. Some implementations require particular types of spares to be used
together. For example, some implementations may require that a DiskDrive is spared by another DiskDrive of the
same size and/or type. This profile does not model DiskDrives. To implement this case, the implementer would
model the StorageExtent associated to the DiskDrive, a StorageRedundancySet, and associate StorageExtents to
that StorageRedundancySet that share the characteristics, whatever they may be, that permit these
StorageExtents to be used as spares. If an implementation supports such rules then a StorageRedundancySet

Figure 62 - Variations of RS per Storage Element

Global

Dedicated

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteComponent

ConcreteComponent MemberOfCollection

MemberOfCollection

StorageExtent

Failed

IsSpare

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent
ConcreteComponent

ConcreteComponent MemberOfCollection

MemberOfCollection

StorageExtent

IsSpare

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageExtentConcreteComponent

MemberOfCollection
464

NO_ANSI_ID Disk Sparing Subprofile

97

98

99

100

101

102

103

104

105

106

107
shall be created per rule. When StorageVolumes or LogicalDisk are created or modified, the implementation can
select the StorageRedundancySet to associate to the created or modified storage element using on the
PackageRedundancy Goal. An implementation that supports global spares that supported both the Clause 5:,
"Block Services Package" and this subprofile, would match this Goal with StorageRedundancySet that had at least
that number of spares.

A StoragePool, StorageVolume, or LogicalDisk may be have one or more StorageExtents that provide redundancy
of its data. Storage elements for which this is the case shall participate in a ConcreteDependency association with
the StorageExtents that form its redundancy. These StorageExtents shall participate MemberOfCollection
associations to a RedundancySet. In turn, the reference RedundancySet shall indicate the status of the
redundancy. The StorageExtents that be used to replace a StorageExtent whose realization has failed shall be
associated to this StorageRedundancySet via an IsSpare association. Once the substitution of the failed
StorageExtent for the spare StorageExtent started, the failed StorageExtent shall be associated to the spare
StorageExtent via the Spared association. This shall be the case until the process of substitution has completed.
After which, the failed StorageExtent shall participate in a MemberOfCollection with a
FailoverStorageExtentsCollection but not participate in a MemberOfCollection association with a
StorageRedundancySet nor in a ConcreteDependency association with any storage element. The failed
StorageExtents are removed from the FEC when the failed component on which they are based in removed from
the system through a means not defined in this profile, i.e., the drive FRU pulled from the array.

The FailoverExtentsCollection class is used to collect the spares that have failed. These are the components that
need to be diagnosed, repaired, and, possibly, replaced or assigned to the primordial StoragePool.

The StorageConfigurationCapabilities class is used to report the capabilities of the implementation. Not all sparing
functionality is required. This class is used to report what methods are implemented. The properties and methods
of the class are specified later in this profile. Table 285 below lists the action names for the sparing methods. If a
sparing method is supported synchronously, then the action name for the method shall be present in
SupportedSynchronousActions array. If a sparing method is supported asynchronously, then the action name for
the method shall be present in SupportedAsynchronousActions array.

12.1.3 Modeling Fail Over, Past and Present

This section illustrates the requirements for modeling spare fail over in three cases, before the failure, during the
fail over, and after the fail over.

Table 285 - Supported Methods to Method Mapping

Action Method

Assign Spares SpareConfigurationService.AssignSpares

Unassign Spares SpareConfigurationService.UnassignSpares

Rebuild Storage Extent SpareConfigurationService.RebuildStorageExtent

Check Parity Consistency SpareConfigurationService.CheckParityConsistency

Repair Parity SpareConfigurationService.RepairParity

Fail Over StorageRedundancySet.Failover
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 465

Disk Sparing Subprofile NO_ANSI_ID

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127
Figure 63: "Before Failure" shows a dedicated RedundancySet with a single spare.

Once the failure has occurred, a ConcreteJob is created to represent the fail over process, as shown in Figure 64:
"During Failure".

The AffectJobElement association shall associate the LogicalDisk or StorageVolume that is being failed over, the
StorageExtent that has failed and is causing the fail over, and the spare StorageExtent. The associations shall
remain for some period of time as per the rules in the Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 Clause 26: "Job Control Subprofile". For these rules consider the two extents as
Input values to the StorageRedundancySet.Failover() method.

This subprofile supports fail over initiated by the implementation or by the client. So that an observer can tell what
this fail over ConcreteJob is doing, the implementation shall model the ConcreteJob as if another client initiated the
fail over, even though the implementation did the initiation. In other words, the ConcreteJob shall be associated to

Figure 63 - Before Failure

Figure 64 - During Failure

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalDisk, or

StoragePool

IsSpare

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalDisk, or

StoragePool

ConcreteJob

IsSpare

AffectedJobElement

AffectedJobElement

Spared

Failed

AffectedJobElement
466

NO_ANSI_ID Disk Sparing Subprofile

128

129

130

131

132

133

134

135

136

137

138

139

140

141
142
143
144
145

146

147

148

149

150

151

152

153

154

155

156

157
the StorageRedundancySet associated to the two Extents in question via the OwningJobElement association. The
MethodResult instance, as defined in Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0
Rev 6 Clause 26: "Job Control Subprofile", shall contain the StorageRedundancySet.Failover() method name and
parameters.

Once the fail over is complete, the failed Extent shall no longed have a ConcreteDependency association to
StorageVolume or LogicalDisk that was once based on it. The spare StorageExtent shall now participate in a
MemberOfCollection associated to the StorageRedundancySet instead of the IsSpare association. The failed over
Volume or LogicalDisk shall now participate in a ConcreteDependency relationship with the spare Extent. The
failed Extent may now participate in a MemberOfCollection association with the FailoverStorageExtentsCollection,
illustrated in Figure 65: "After Failure".

EXPERIMENTAL

12.1.4 Sparing Configuration and Control

All six methods defined or used in this subprofile, AssignSpares, UnassignSpares, RebuildStorageExtent,
CheckParityConsistency, CheckStorageElement, and RepairParity can be initiated by the implementation or the
client. If the method execution is not instantaneous, then information about what method invocation gave rise to the
job follows the rules in Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6 Clause
26: "Job Control Subprofile". These methods can also be initiated by the implementation itself. The implementation
shall represent the execution of the job, job name, and method parameters in said manner even it initiated the Job.
If the implementation supports this functionality but does not allow the client to initiate the action, it shall still
represent the execution of the functionality, as represented by a method execution, in said manner.

The purpose of these rules to allow an observer to tell that, for example, a RepairParity task is executing.

EXPERIMENTAL

Figure 65 - After Failure

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency
MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalDisk, or

StoragePool

failed

MemberOfCollection

FalloverStorageExtentsCollection
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 467

Disk Sparing Subprofile NO_ANSI_ID

158

159

160

161

162

163

164

165

166

167

168

169

170
171
172
173

174

175

176

177

178

179
180
181
182

183

184

185

186

187

188

189
190
191

192

193

194

195

196

197

198
199
200
201
12.2 Health and Fault Management Considerations

One of the primary reasons for this subprofile to allow a client to determine if the cause of performance degradation
of a block server is caused by spare fail over, volume rebuild, or parity repair.

There are several failure cases possible with this subprofile:

• There may be failures of the several configuration and control methods of this subprofile for reasons other than
the parameters provided by the client.

The StorageExtents used in the configuration and control methods may be invalid.

12.3 Cascading Conjurations

Not defined in this standard.

12.4 Supported Subprofiles and Packages

Table 286 describes the supported profiles for Disk Sparing.

12.5 Methods of the Profile

EXPERIMENTAL

12.5.1 AssignSpares

uint32 AssignSpares(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StoragePool REF InPool
[In] CIM_StorageExtent REF InExtents[]
[In] CIM_StorageRedundancySet REF RedundancySet)

This method is used to assign spares to a particular RedundancySet. If there is more than one StoragePool in this
implementation, then the arguments to the method shall contain the references to StorageExtents and references
to the primordial StoragePools of which they are components. This method shall not permit the assignment of
spare from more than one StoragePool.

This method may return the follow error codes. Many of the return codes are used widely and documented in CIM.
The following documents the return codes that are unique to this method. This method shall not return vendor
specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099", "4100..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

Table 286 - Supported Profiles for Disk Sparing

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Mandatory
468

NO_ANSI_ID Disk Sparing Subprofile

202

203

204

205
206
207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229
230
231

232

233

234

235

236

237

238

239

240

241

242

243

244

245
 "Method Parameters Checked - Job Started",

 "Multiple StoragePools",

 "Spares Are Not Compatible",

 "StorageExtent is in use",

 "Method Reserved", "Vendor Specific" }

• 4097, “Multiple StoragePools”, means the client passed Extents that are components of more than one
Primordial StoragePool.

• 4098, “Spares Are Not Compatible”, means the client pass Extents than may not be used together. There is no
mechanism at this time to tell a client, through the model, what spares can be used together.

• 4099, “StorageExtent is in use”, means that one or more of the Extents passes are already in use as a spare or
as part of a StorageVolume or LogicalDisk.

12.5.2 UnassignSpares

uint32 UnassignSpares(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StoragePool REF InPool
[In] CIM_StorageExtent REF InExtents[])

This method is used to remove a spare from a StorageRedundancy and also unassign that Extent as a spare. The
unassigned spare may end up as a member of the FailoverStorageExtentsCollection. The rules for the parameters
and the same descriptions of assign spares are true for the parameters and return codes shared between the two
method definitions. This method shall not return vendor specific return codes.

12.5.3 GetAvailableSpareExtents

uint32 GetAvailableExtents(
[In] CIM_StoragePool REF InPool<
[In] CIM_StorageRedundancySet REF RedundancySet,
[Out] CIM_StorageExtent REF AvailableExtents[])

This method returns references of available StorageExtents that may be as spares for the given
StorageRedundancySet and StoragePool. The referenced StorageRedundancySet shall provide redundancy for
the referenced StoragePool.

The method may return error codes. Many of the return codes are used widely and documented in CIM. There are
no return codes that are unique to this method. This method shall not return vendor specific return codes.

12.5.4 FailOver

uint32 Failover(
[In] CIM_ManagedElement REF FailoverFrom
[In] CIM_ManagedElement REF FailoverTo)

This method is used to force a failover between StorageExtents. The FailoverFrom reference shall be a reference
to a StorageExtent that participates in a MemberOfCollection association with the StorageRedundancySet instance
on which this method is called. The FailoverTo reference shall be a reference to a StorageExtent that participates in
a IsSpare association with the StorageRedundancySet instance on which this method is called.

This method may return the follow error codes. Many of the return codes are used widely and documented in CIM.
The following documents that return code semantics that are unique to this method.

ValueMap { "0", "1", "2", "3", "4", "..", "32768..65535" },
Values { "Completed with No Error", "Not Supported",
"Unknown/Unspecified Error", "Busy/In Use",
"Parameter Error", "DMTF Reserved", "Vendor Reserved" }]
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 469

Disk Sparing Subprofile NO_ANSI_ID

246
247

248

249

250

251

252

253

254

255
256
257

258

259

260

261

262

263

264

265

266
267
268
269
270
271
272
273
274
275
276
277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292
• 3, "Unknown/Unspecified Error", means that the implementation failed to failover for some unspecified reason.

• 4, "Busy/In use", means that the failover between the reference StorageExtents is already in progress.

12.5.5 RebuildStorageExtent

uint32 RebuildStorageExtent(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StorageExtent REF Target)

This method is used to rebuild the data distribution on the passed Extent with the other member Extents associated
to a single StorageRedundancySet. If the Job execution fails, then use ConcreteJob.GetError() to get the
CIM_Error that states what the error was. In this case, the Target Extent shall report the appropriate, non “OK”,
OperationalStatus.

The method may return the following error codes. Many of the return codes are used widely and documented in
CIM. The following documents the return codes that are unique to this method. This method shall not return vendor
specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Target is Not a Member of a StorageRedundancySet",

 "Rebuild already in Progress",

 "Method Reserved", "Vendor Specific" }

• 4097 "Target is Not a Member of a StorageRedundancySet", means that the Extent passed is not a member of
StorageRedundancySet

• 4098 "Rebuild already in Progress", means that a rebuild of the data and/or parity on the passed Extent or one
or more of the other member Extents of the same StorageRedundancySet is already in progress.

12.5.6 CheckParityConsistency

uint32 CheckParityConsistency(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StorageExtent REF Target)

This method is used to check of the parity distribution on the passed Extent with the other member Extents
associated to a single StorageRedundancySet. If the Job execution fails, then use ConcreteJob.GetError() to get
the Error that states what the error was. In this case, the Target Extent shall report the appropriate, non “OK”,
OperationalStatus. If method execution determines that the parity is inconsistent, the ConcreteJob shall report
successful completion and one of Operational Statuses of the passed Extent shall be 6 “Error”.

The method may return the following error codes. Many of the return codes are used widely and documented in
CIM. The following documents the return codes that are unique to this method. This method shall not return
vendor-specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",
470

NO_ANSI_ID Disk Sparing Subprofile

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329
330

331

332

333
 "Consistency Check Already in Progress",
"No Parity to Check",

 "Method Reserved", "Vendor Specific" }

• 4097 "Consistency Check Already in Progress", means that a check and rebuild of the data parity on the
passed Extent or one or more of the other member Extents of the same StorageRedundancySet is already in
progress.

• 4098 "No Parity to Check", means that the member Extents of the StorageRedundancySet are not built with
parity distribution. Recheck the Virtualization modeled.

12.5.7 RepairParity

uint32 RepairParity(
[In] CIM_ConcreteJob REF Job,
[Out] CIM_StorageExtent REF Target)

This method is used to rebuild of the parity distribution on the passed Extent with the other member Extents
associated to a single StorageRedundancySet. The intent is that this method would be run after finding out that the
CheckParityConsistency() reported that the Extent pair is inconsistent. If the Job execution fails, then use
ConcreteJob.GetError() to get the Error that states what the error was. In this case, the Target Extents shall report
the appropriate, non “OK”, OperationalStatus and HealthState.

The method may return error codes. Many of the return codes are used widely and documented in CIM. There are
no return codes that are unique to this method. This method shall not return vendor specific return codes.

12.5.8 CheckStorageElement

uint32 CheckStorageElement(
[In
 Values {"Default", "Parity", "Bad Block",
"Replication"}
 ValueMap{"1","2","3","4"}]
uint16 CheckType,
[In
 Values {"Run One Time", "Continuous"}
 ValueMap{"1","2"}]
uint16 CheckMode,
[In] CIM_LogicalElement REF TargetElement,
[Out] CIM_ConcreteJob REF Job

This method requests that the reference target element be checked with a given check type and with a given check
mode. If a check mode of 1 "Run One Time" is requested, then the element check shall run once. If a check mode
of 2 "Continuous", then the element shall be checked and checked again until the ConcreteJob instance,
referenced by the Job parameter, is terminated.

The method may return the following error codes. Many of the return codes are used widely and documented in
CIM. The following documents the return codes that are unique to this method. This method shall not return vendor
specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Storage Element Check Already in Progress",

 "Method Reserved", "Vendor Specific" }
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 471

Disk Sparing Subprofile NO_ANSI_ID

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353
• 4097 "Storage Element Check Already in Progress", means that a check on the passed Extent or one or more
of the other member Extents of the same StorageRedundancySet is already in progress.

EXPERIMENTAL

12.6 Client Considerations and Recipes

The sparing implementation may cause the sparing configuration changes (i.e., jobs start and run) on its own in
response to other clients.

The number of StorageRedundancySets may change over time because the physical components, realizing the
spare StorageExtent, like disk drives are added or remove from the block server. Additionally, purely logical
realizations of the spare StorageExtent may change as well. The StorageRedundancySets themselves once empty
may remain in the model, but be empty, or may be removed from the model entirely for this or other reasons.

The sparing implementation shall report the correct RedundancyStatus, either ‘Unknown’ 0, ‘Redundant’ 1, or
‘Redundancy Lost’ 2. See property description (12.6.1) for details.

12.6.1 Determine if spare model is constructed correctly

// DESCRIPTION

// The goal of this recipe is to verify that the Sparing model

// is correctly instantiated.

// This type of instance traversal would be used by a client

// to determine if a particular storage element has spare

// coverage.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a storage element, either a StorageVolume,

// a LogicalDisk, or a StoragePool, is previously defined in the

// $StorageElement-> variable

$SparedExtents->[] =

AssociatorNames($StorageElement->,

“CIM_ConcreteDependency”,

“CIM_StorageExtent”,

“Dependent”, “Antecedent”)

for i in SparedExtents->[] {

#RedundancySets->[] =

AssociatorNames($SparedExtents->[#i],

“CIM_MemberOfCollection”,

“CIM_StorageRedundancySet”,

“Member”, “Collection”)

// We should find at least one RS per spared SE

if(1 > #RedundancySets.length) {

<ERROR! There should be at least one RedundancySet per spared
StorageExtent>

}

for j in RedundancySets->[] {

#SpareSEs->[] =
472

NO_ANSI_ID Disk Sparing Subprofile
AssociatorNames($RedundancySets->[#j],

“CIM_IsSpare”,

“CIM_StorageExtent”,

“Dependent”, “Antecedent”) // SRE has the Dependent role

if (0 < #SpareSEs->[]) {

<EXIT: Successfully found at least one spare StorageExtent

}

else {

<ERROR! The SRE associated to the subject StorageElement

 must have at least one Spare>

}

}

}

<ERROR! At least one Spared Extent MUST have been found.

 If one or more was found, an successful exit would have occured

 before this point in the code.>

12.7 Registered Name and Version

Disk Sparing version 1.5.0 (Component Profile)

12.8 CIM Elements

Table 287 describes the CIM elements for Disk Sparing.

Table 287 - CIM Elements for Disk Sparing

Element Name Requirement Description

12.8.1 CIM_AssociatedComponentExtent
(Spare to Storage Pool)

Conditional Conditional requirement: Implementation of
the Extent Composition profile.

12.8.2 CIM_ConcreteDependency (Extent to
LogicalDisk)

Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory. Represents the group of
StorageExtents that form the redundancy of a
LogicalDisk.

12.8.3 CIM_ConcreteDependency (Extent to
Pool)

Mandatory Represents the group of StorageExtents that
form the redundancy of a StoragePool.

12.8.4 CIM_ConcreteDependency (Extent to
StorageVolume)

Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory. Represents the
group of StorageExtents that form the
redundancy of a StorageVolume.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 473

Disk Sparing Subprofile NO_ANSI_ID

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369
12.8.5 CIM_ElementCapabilities Optional Associates SpareConfigurationCapabilities
with the Block Server's ComputerSystem
instance.

12.8.6 CIM_HostedCollection
(ComputerSystem to
FailoverStorageExtentsCollection)

Optional Associates FailoverStorageExtentsCollection
with the Block Server's ComputerSystem
instance.

12.8.7 CIM_HostedCollection
(ComputerSystem to RedundancySet)

Mandatory Associates StorageRedundancySet with the
Block Server's ComputerSystem instance.

12.8.8 CIM_HostedService (ComputerSystem
to SpareConfigurationService)

Optional Associates SpareConfigurationService with
the Block Server's ComputerSystem instance.

12.8.9 CIM_IsSpare Mandatory Represents the spare that may be used as a
spare for any StorageExtents that is not a
spare.

12.8.10 CIM_LogicalDisk Conditional Conditional requirement: Referenced from
Volume Management - LogicalDisk is
mandatory.

12.8.11 CIM_MemberOfCollection Mandatory Represents the relationship between the
StorageExtents that form the redundancy of a
StoragePool, StorageVolume, or LogicalDisk.

12.8.12 CIM_Spared Mandatory Represents the relationship between the
spare and the StorageExtent that has failed
and is being spared.

12.8.13 CIM_StorageExtent (Spare) Mandatory Represents the redundant or spare capacity.

12.8.14 CIM_StoragePool Mandatory Elements to Primordial and Concrete Pools.

12.8.15 CIM_StorageRedundancySet Mandatory Represents the group of spare StorageExtents
and StorageExtents that these spares will
substitute for case of failure.

12.8.16 CIM_StorageVolume Conditional Conditional requirement: Referenced from
Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer -
StorageVolume is mandatory. Commonly
known as a LUN but without the semantics of
mapping to a host (which is covered by
Masking and Mapping).

12.8.17
SNIA_FailoverStorageExtentsCollection

Optional The collection of StorageExtents that have
failed.

12.8.18 SNIA_SpareConfigurationCapabilities Optional Instances of this class define the behavior
supported by this sparing implementation.

12.8.19 SNIA_SpareConfigurationService Optional This service manages sparing and validates
the data and the parity for the StorageExtent
Not instantiating the service means that the
service methods are supported.

Table 287 - CIM Elements for Disk Sparing

Element Name Requirement Description
474

NO_ANSI_ID Disk Sparing Subprofile

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385
12.8.1 CIM_AssociatedComponentExtent (Spare to Storage Pool)

The referenced spare StorageExtent represents capacity has not been allocated, is allocated in part, or is allocated
in its entirety.

Requirement: Implementation of the Extent Composition profile.

Table 288 describes class CIM_AssociatedComponentExtent (Spare to Storage Pool).

12.8.2 CIM_ConcreteDependency (Extent to LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 289 describes class CIM_ConcreteDependency (Extent to LogicalDisk).

12.8.3 CIM_ConcreteDependency (Extent to Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 288 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Spare to
Storage Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The StoragePool.

PartComponent Mandatory The spare storage extent that is a component of the
storage pool.

Table 289 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to Logi-
calDisk)

Properties Flags Requirement Description & Notes

Antecedent Mandatory An underlying Storage Extent.

Dependent Mandatory A Logical Disk.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 475

Disk Sparing Subprofile NO_ANSI_ID

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400
Table 290 describes class CIM_ConcreteDependency (Extent to Pool).

12.8.4 CIM_ConcreteDependency (Extent to StorageVolume)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage Virtualizer -
StorageVolume is mandatory.

Table 291 describes class CIM_ConcreteDependency (Extent to StorageVolume).

12.8.5 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 292 describes class CIM_ElementCapabilities.

12.8.6 CIM_HostedCollection (ComputerSystem to FailoverStorageExtentsCollection)

Created By: Static

Table 290 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to Pool)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 291 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to Stora-
geVolume)

Properties Flags Requirement Description & Notes

Antecedent Mandatory An underlying primordial Extent.

Dependent Mandatory A StorageVolume.

Table 292 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The hosting System.

Capabilities Mandatory The support spare configuration capabilities.
476

NO_ANSI_ID Disk Sparing Subprofile

401

402

403

404

405

406

407

408

409

410

411

412

413
Modified By: Static

Deleted By: Static

Requirement: Optional

Table 293 describes class CIM_HostedCollection (ComputerSystem to FailoverStorageExtentsCollection).

12.8.7 CIM_HostedCollection (ComputerSystem to RedundancySet)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 294 describes class CIM_HostedCollection (ComputerSystem to RedundancySet).

12.8.8 CIM_HostedService (ComputerSystem to SpareConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 293 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to
FailoverStorageExtentsCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory Indicates which FailoverStorageExtentsCollection are part
of Disk Sparing implementation.

Table 294 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to
RedundancySet)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory Indicate which StorageRedundancySets are part of Disk
Sparing implementation.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 477

Disk Sparing Subprofile NO_ANSI_ID

414

415

416

417

418

419

420

421

422
Table 295 describes class CIM_HostedService (ComputerSystem to SpareConfigurationService).

12.8.9 CIM_IsSpare

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 296 describes class CIM_IsSpare.

12.8.10 CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 297 describes class CIM_LogicalDisk.

Table 295 - SMI Referenced Properties/Methods for CIM_HostedService (ComputerSystem to
SpareConfigurationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The support spare configuration service.

Table 296 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Flags Requirement Description & Notes

SpareStatus Mandatory

FailoverSupported Mandatory

Antecedent Mandatory A Spare Storage Extent.

Dependent Mandatory

Table 297 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory
478

NO_ANSI_ID Disk Sparing Subprofile

423

424

425

426

427

428

429

430

431

432

433
12.8.11 CIM_MemberOfCollection

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 298 describes class CIM_MemberOfCollection.

12.8.12 CIM_Spared

Created By: Static

Modified By: Static

DeviceID Mandatory Opaque identifier.

ElementName Optional User friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory Format for name.

ExtentStatus Mandatory

OperationalStatus Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks that make of this LogicalDisk.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Primordial Mandatory Shall be false.

Table 298 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 297 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 479

Disk Sparing Subprofile NO_ANSI_ID

434

435

436

437

438

439

440

441
Deleted By: Static

Requirement: Mandatory

Table 299 describes class CIM_Spared.

12.8.13 CIM_StorageExtent (Spare)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 300 describes class CIM_StorageExtent (Spare).

12.8.14 CIM_StoragePool

Requirement: Mandatory

Table 299 - SMI Referenced Properties/Methods for CIM_Spared

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to the StorageExtent that as replaced another
StorageExtent.

Dependent Mandatory The StorageExtent that has failed and is being replaced.

Table 300 - SMI Referenced Properties/Methods for CIM_StorageExtent (Spare)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

HealthState Mandatory Reports the state of the StorageExtents underlying
component.

OperationalStatus Mandatory Reports the operational status of the StorageExtent.

Primordial Mandatory A boolean that identifies whether the spare is primordial or
concrete.
480

NO_ANSI_ID Disk Sparing Subprofile

442

443

444

445

446

447

448

449

450

451

452

453

454

455
Table 301 describes class CIM_StoragePool.

12.8.15 CIM_StorageRedundancySet

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 302 describes class CIM_StorageRedundancySet.

12.8.16 CIM_StorageVolume

Table 301 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

PoolID Mandatory A unique name in the context of this system that identifies
this Pool.

Table 302 - SMI Referenced Properties/Methods for CIM_StorageRedundancySet

Properties Flags Requirement Description & Notes

InstanceID Mandatory

RedundancyStatus Mandatory The redundancy status shall be either 'Unknown' 0,
'Redundant' 2, or 'Redundancy Lost' 3. The implementation
should report 2 or 3 most of the time, although it may report
0 sometimes. It should report 2 when there is at least one
spare per the StorageRedundancySet. It should report 3
when there are no more spares (via IsSpare association)
per the StorageRedundancySet.

TypeOfSet Mandatory 'Limited Sparing', 5, is the type of sparing supported in the
subprofile.

MinNumberNeeded Mandatory

MaxNumberSupporte
d

Mandatory

Failover() Optional For block servers that do not do automatically fail over
failed components, this method is used to cause the fail
over to occur. More commonly, block server
implementations automatically maintain the availability of
their capacity. In this case, the method would only be used
to cause fail back to occur, if that also does not occur
automatically.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 481

Disk Sparing Subprofile NO_ANSI_ID

456

457

458

459

460

461

462

463

464
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage Virtualizer -
StorageVolume is mandatory.

Table 303 describes class CIM_StorageVolume.

12.8.17 SNIA_FailoverStorageExtentsCollection

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 304 describes class SNIA_FailoverStorageExtentsCollection.

12.8.18 SNIA_SpareConfigurationCapabilities

Created By: Static

Table 303 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User friendly name.

Name Mandatory VPD 83 identifier for this volume (ideally a LUN WWN).

NameFormat Mandatory Format for name.

ExtentStatus Mandatory

OperationalStatus Mandatory

Primordial Mandatory Shall be false.

Table 304 - SMI Referenced Properties/Methods for SNIA_FailoverStorageExtentsCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User friendly name.
482

NO_ANSI_ID Disk Sparing Subprofile

465
 Modified By: Static

Deleted By: Static

Requirement: Optional

Table 305 describes class SNIA_SpareConfigurationCapabilities.

12.8.19 SNIA_SpareConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 305 - SMI Referenced Properties/Methods for SNIA_SpareConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User friendly name.

SupportedAsynchron
ousActions

N Mandatory Enumeration indicating what operations will be executed as
asynchronous jobs. If an operation is included in both this
and SupportedSynchronousActions then the underlying
implementation is indicating that it may or may not create.

SupportedSynchrono
usActions

N Mandatory Enumeration indicating what operations will be executed
without the creation of a job. If an operation is included in
both this and SupportedAsynchronousActions then the
underlying instrumentation is indicating that it may or may
not create a job.

SystemConfiguredSp
ares

Mandatory Set to true if this storage system automatically configures
spares. If set to false, the client shall use the extrinsic
methods AssignSpares and UnassignSpares.

AutomaticFailOver Mandatory Set to true if this storage system automatically fails over. If
set to false, the client shall use the FailOver extrinsic
method, although that method may not be supported.

MaximumSpareStora
geExtents

Mandatory States the maximum number of StorageExtents that can be
configured as spares for the entire block server. A 0 means
that all primordial StorageExtents can be configured as
spares.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 483

Disk Sparing Subprofile NO_ANSI_ID
Table 306 describes class SNIA_SpareConfigurationService.

IMPLEMENTED

Table 306 - SMI Referenced Properties/Methods for SNIA_SpareConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory Opaque identifier.

AssignSpares() Mandatory

UnassignSpares() Mandatory

GetAvailableSpareEx
tents()

Mandatory

RebuildStorageExten
t()

Optional

CheckParityConsiste
ncy()

Optional

RepairParity() Optional

CheckStorageEleme
nt()

Optional
484

NO_ANSI_ID Erasure Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
EXPERIMENTAL

Clause 13: Erasure Profile

13.1 Description

The Erasure Profile describes how data on a storage element (StorageVolume, LogicalDisk, or primordial
StorageExtent) may be erased. As data is replicated, migrated and archived throughout its lifecycle, there is a need
to ensure that residual and superseded copies or versions of the data that remain on storage media are destroyed
in line with business policies for privacy, confidentiality and security.

Erasure will be required whenever it is deemed that the data on a storage element is sufficiently sensitive or of
competitive value that the media cannot be reused, redeployed or made redundant without ensuring that the data
is destroyed.

As part of the data lifecycle, data will potentially be replicated and migrated several times throughout their life
before final destruction, as a result of media and technology change or management policies.

Common situations would include:

• Migration to secondary or tertiary archive storage followed by deletion of the source data

• Movement of data from a failing device to a spare.

• Migration and cut-over to new target media, retaining the source media for a "fall back" for some period then
reuse (or resale) of the source media.

13.1.1 Existing Erasure standards

There are numerous erasure standards in the industry. These techniques generally involve writing a bit pattern to
the storage media and in most cases require multiple passes of overwriting of these bit patterns. The following is
an incomplete list of erasure techniques to illustrate the variety that exists today.

• HMG Infosec Standard 5, The Baseline Standard.

• HMG Infosec Standard 5, The Enhanced Standard.

• Peter Gutmann's algorithm.

• U.S.Department of Defense Sanitizing (DOD 5220.22-M)

• Bruce Schneier's algorithm.

• Navy Staff Office Publication (NAVSO P-5239-26) for RLL.

• The National Computer Security Center (NCSC-TG-025).

• Air Force System Security Instruction 5020.

• US Army AR380-19.

• German Standard VSIT

• OPNAVINST 5239.1A.

Because there is such a wide variety of techniques, this subprofile does not dictate which technique shall be used.
The instrumentation shall tell the client which methods are supported. Since erasure of data on a volume may be a
lengthy process and will most likely be a background task, the volume may provide the status of the erasure and
may provide notification via an Indication of the erasure completion.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 485

Erasure Profile NO_ANSI_ID

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58
To support this profile, instrumentation shall provide a list of supported erasure methods in the
ErasureCapabilities.SupportedErasureMethods property. If the instrumentation supports erasing a volume upon
return to a storage pool, then the ErasureCapabilities.CanEraseOnReturnToStoragePool property shall be set to
true. If the instrumentation does not support this capability, then the value shall be false (the default value). The
ErasureCapabilities shall be associated to the ErasureService via the ElementCapabilities association.

If CanEraseOnReturnToStoragePool is true, then the ErasureCapabilities.DefaultErasureMethod shall be used to
erase StorageVolume or LogicalDisk elements, unless the ErasureSetting.ErasureMethod is non-NULL. The
instrumentation may provide a default value for this property. A client may be able to change the
ErasureCapabilities.DefaultErasureMethod and ErasureSetting.ErasureMethod.

The erasure of StorageExtents is restricted to primordial extents only and shall be accomplished by calling
ErasureService.Erase explicitly. The CanEraseOnReturnToStoragePool shall only be used for StorageVolumes
and LogicalDisks.

To erase the volume explicitly, the user shall call the ErasureService.Erase method, passing in the volume to erase
and the erasure method to use. The erasure method shall be one of the erasure methods the instrumentation
supports. A NULL may be passed in as the ErasureMethod, in which case, the instrumentation shall use the
DefaultErasureMethod from the capabilities as the erasure method. To erase a volume implicitly, it is required that
the CanEraseOnReturnToStoragePool shall be true and that the ErasureSetting associated to the volume has the
EraseOnReturnToPool value set to true. If these conditions are met, then when the user calls the
ReturnToStoragePool method, the volume shall be erased before being returned to the pool.

If a ConcreteJob has been started as a result of the erasure (either from calling Erase or ReturnToStoragePool),
then the ConcreteJob shall have an AffectedJobElement association to the StorageVolume being erased.

Table 66 shows the new properties and method introduced by this subprofile. While a StorageVolume is shown, the
same shall apply to LogicalDisk.
486

NO_ANSI_ID Erasure Profile

59

60

61

62

63

64

65

66

67

68
13.2 Health and Fault Management Considerations

Not defined in this standard.

13.3 Cascading Considerations

Not applicable

13.4 Supported Profiles, Subprofiles, and Packages

Not defined in this standard.

13.5 Methods of the Profile

The Erase method in the ErasureService shall erase the contents of the volume using the specified erasure
method. The erasure methods that the instrumentation supports shall be found in the
ErasureCapabilities.SupportedErasureMethods property.

Figure 66 - Model Elements

ComputerSystem

StoragePool

ErasureCapabilities

SupportedErasureMethods[]
CanEraseOnReturnToStoragePool
DefaultErasureMethod

ElementCapabilities

HostedService

ErasureService

Erase(out CIM_ConcreteJob, in CIM_StorageExtent, in ErasureMethod)

HostedStoragePool

SystemDevice
StorageVolume

AllocatedFromStoragePool

ErasureSetting

ErasureMethod
EraseOnReturnToPool

ElementSettingData
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 487

Erasure Profile NO_ANSI_ID

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
Table 307 - Erase Method

13.6 Client Considerations and Recipes

These cases can be generalized into the explicit case of "Volume Erasure" and the implicit case of "Volume
Deletion".

13.6.1 Recipe 1: Volume Erasure

This is the case where it is determined that the contents of a storage volume must be erased. This requires the
client to call the ErasureService method Erase() to specify the StorageVolume and the ErasureMethod.

// DESCRIPTION:

//

// Erase a volume

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The ErasureService has been found and the object path

// value is stored in $ErasureService->

// 2. The ErasureCapabilities associated to the

Method: Erase

Return Values:

Value Description

0: Job completed Job completed with no error

1: Not supported Method not supported

2: Unspecified Error

3: Timeout

4: Failed Refer to instance of CIM_Error

5: Invalid parameter Refer to instance of CIM_Error

6: In Use

7..4095 DMTF Reserved

4096: Job started REF returned to started ConcreteJob

Errors:

(status):registry:MessageID ErrorName:MessageArguments

Parameters:

Qualifiers Name Type Description/Values

OUT Job CIM_ConcreteJob REF Returned if job started.

IN, REQ Extent CIM_StorageExtent REF Extent (volume) to erase

IN, REQ Type uint16 Type of extent
(StorageVolume, LogicalDIsk,
or primordial StorageExtent)

IN, REQ ErasureMethod uint32 Erasure method to use
488

NO_ANSI_ID Erasure Profile

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125
// ErasureService has been found and the instance stored

// in $ControllerCapabilities

// 3. The StorageVolume to use has been identified and the object path

// values are stored in $Volume->

// 4. The erasure method to use has been determined and it’s value

// stored in #ErasureMethod

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobStatus != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. Erase the volume

if ((#ErasureMethod != NULL) &&

 (contains(#ErasureMethod,

 $ControllerCapabilities.SupportedErasureMethods[]) == false)) {

 <ERROR! Invalid Erasure method>

}

%InputArguments[“Extent”] = { $Volume-> }

%InputArguments[“Type”] = 1 // StorageVolume

%InputArguments[“ErasureMethod”] = #ErasureMethod

#ReturnCode = InvokeMethod($ErasureService->,

 “Erase”,

 %InputArguments,

 %OutputArguments)
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 489

Erasure Profile NO_ANSI_ID

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168
// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

<ERROR! Method failure>

}

$Job-> = %OutputArguments[“Job”]

if ($Job-> != null) {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $Job->)

}

13.6.2 Recipe 2: Volume Deletion

This case is where a volume is being returned to the storage pool, and it needs to be erased. The client needs to
check the CanEraseOnReturnToStoragePool property to see if this is possible. If it is, then the client looks for an
ErasureSetting associated to the volume, creating one if necessary. The client sets the
ErasureSetting.ErasureMethod and ErasureSetting.EraseOnReturnToStoragePool for the setting associated to the
volume, then calls ReturnToStoragePool.

// DESCRIPTION:

//

// Erase a volume as a byproduct of being deleted

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The ErasureService has been found and the object path

// value is stored in $ErasureService->

// 2. The ErasureCapabilities associated to the

// ErasureService has been found and the instance stored

// in $ControllerCapabilities

// 3. The StorageConfigurationService has been found and the object path

// value is stored in $StorageConfigService->

// 4. The StorageVolume to use has been identified and the object path

// values are stored in $Volume->

// 5. The erasure method to use has been determined and it’s value

// stored in #ErasureMethod

//

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as
490

NO_ANSI_ID Erasure Profile

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209
a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobStatus != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. Check capabilities

if ($ControllerCapabilities.CanEraseOnReturnToStoragePool == false) {

 <ERROR! Implicit erasure not supported. Use Erase() method >

}

// Step 2. Find/create setting

$Setting[] = Associators($Volume->,

 “CIM_ElementSettingData”,

 “SNIA_ErasureSetting”,

 null, null,

 false, false, null)

if ($Setting[].length == 0) {

 // Create setting

 $TheSetting = newInstance(“SNIA_ErasureSetting”)

 $TheSetting.InstanceID = “SNIA:0001” // create unique ID

 $TheSetting.ErasureMethod = #ErasureMethod

 $TheSetting.EraseOnReturnToStoragePool = true

 $instance-> = CreateInstance($TheSetting)

}

else {

 $Setting[0].ErasureMethod = #ErasureMethod

 $Setting[0].EraseOnReturnToStoragePool = true

 ModifyInstance($Setting[0])

}

// Step 3 Delete the volume

%InArguments[“TheElement”] = $Volume->

#ReturnCode = InvokeMethod($StorageService->,

 “ReturnToStoragePool”,

 %InArguments,

 %OutArguments)
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 491

Erasure Profile NO_ANSI_ID

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227
// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

<ERROR! Method failure>

}

$Job-> = %OutputArguments[“Job”]

if ($Job-> != null) {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $Job->)

}

13.7 Registered Name and Version

Erasure version 1.2.0 (Component Profile)

13.8 CIM Elements

Table 308 describes the CIM elements for Erasure.

13.8.1 CIM_AllocatedFromStoragePool

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 308 - CIM Elements for Erasure

Element Name Requirement Description

13.8.1 CIM_AllocatedFromStoragePool Mandatory AllocationFromStoragePool as defined in the
Array Profile.

13.8.2 CIM_LogicalDisk Conditional Conditional requirement: Conditional

13.8.3 CIM_StoragePool Mandatory

13.8.4 CIM_StorageVolume Conditional Conditional requirement: Conditional

13.8.5 SNIA_ErasureCapabilities Mandatory

13.8.6 SNIA_ErasureService Mandatory

13.8.7 SNIA_ErasureSetting Mandatory
492

NO_ANSI_ID Erasure Profile

228

229

230

231

232

233

234

235

236

237

238

239

240
Table 309 describes class CIM_AllocatedFromStoragePool.

13.8.2 CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: null

Table 310 describes class CIM_LogicalDisk.

13.8.3 CIM_StoragePool

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 311 describes class CIM_StoragePool.

Table 309 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 310 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 311 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

Primordial Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 493

Erasure Profile NO_ANSI_ID

241

242

243

244

245

246

247

248

249

250
13.8.4 CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: null

Table 312 describes class CIM_StorageVolume.

13.8.5 SNIA_ErasureCapabilities

Created By: Static

Requirement: Mandatory

Table 313 describes class SNIA_ErasureCapabilities.

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Table 312 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 313 - SMI Referenced Properties/Methods for SNIA_ErasureCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory User friendly name for this instance of Capabilities.

InstanceID Mandatory Unique identifier for the instance.

ErasureMethods Mandatory Indicates erasure methods supported.

DefaultErasureMetho
d

Mandatory Erasure method to use if none specified in the volume's
setting.

Table 311 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes
494

NO_ANSI_ID Erasure Profile

251

252

253

254

255

256

257

258

259

260
13.8.6 SNIA_ErasureService

Created By: Static

Requirement: Mandatory

Table 314 describes class SNIA_ErasureService.

13.8.7 SNIA_ErasureSetting

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 315 describes class SNIA_ErasureSetting.

CanEraseOnReturnT
oStoragePool

Mandatory Indicates that the volume can be erased when deleted.

ElementTypesSuppor
ted

Mandatory Supported element types for the Erase method. Valid
values are StorageVolume, LogicalDisk, and
StorageExtent.

Table 314 - SMI Referenced Properties/Methods for SNIA_ErasureService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

Erase() Mandatory This service contains the Erase method used to erase
storage elements.

Table 315 - SMI Referenced Properties/Methods for SNIA_ErasureSetting

Properties Flags Requirement Description & Notes

ErasureMethod Mandatory Erasure method to use. Must be one of the erasure
methods supported by the instrumentation.

EraseOnReturnToPo
ol

Mandatory Indicates if this volume should be erased when deleted.
Default is false.

Table 313 - SMI Referenced Properties/Methods for SNIA_ErasureCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 495

Erasure Profile NO_ANSI_ID
EXPERIMENTAL
496

NO_ANSI_ID Extent Composition Subprofile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
STABLE

Clause 14: Extent Composition Subprofile

14.1 Description

The Extent Composition Subprofile allows an implementation that supports the Block Services package to
optionally provide an abstraction of how it virtualizes exposable block storage elements from the underlying
Primordial storage pool. The abstraction is presented to the client as a representative hierarchy of extents. These
extents are instances of CompositeExtents and StorageExtents linked by a combination of
CompositeExtentBasedOn and BasedOn associations. The foundation of the hierarchy is a set of Primordial
extents.

This subprofile is used optionally with the Array, Virtualization, Self-Contained NAS, NAS Head, and Volume
Management profiles.

A Primordial storage extent can represent a Disk Drive in the Array or Self-contained NAS, a downstream
virtualized Volume used by the Virtualizer or NAS Head Profiles, or a OS Logical Disk in the Volume Management
Profile.

An exposable block storage element as used in this subprofile is defined as a Storage Volume or a Logical Disk.

In the presented hierarchy each extent (the dependent) is formed from those that it “precede” it (the antecedents)
by a process of either decomposition or composition.

14.1.1 Decomposition

Decomposition is used to allocate space from an antecedent extent, in order to form a new dependent extent. This
allocation may be partial or complete consumption. Complete consumption is the degenerate case in which all
space in the antecedent extent is used. In this case the decomposed dependent extent may be either modeled
even though it is one to one with the antecedent extent or omitted and the antecedent extent used in its stead.

14.1.2 Composition

Composition is used to form an a dependent extent from antecedent extents for the purpose of either
concatenating the antecedent blocks to achieve a size goal, or to achieve a Quality Of Service goal such as
mirroring the antecedent extents for redundancy, striping the antecedent extents for performance, or striping the
antecedent extents with the addition of parity to achieve redundancy.

These extent “productions” can be assembled in a multi-layer hierarchy.

14.1.3 Model Element Summary

This subprofile uses the following CIM Classes:

LogicalDisk & StorageVolume - These are used to model the exposable block storage element. These are as
defined in the Block Services Package. The StorageVolume may also be a Constituent Volume as defined by the
Pools From Volumes Profile.

StorageExtent (Intermediate or Pool Component) - Used to represent the decomposition (partial allocation) of an
Antecedent extent.

StorageExtent (Remaining) - Used to represent the unused portion of an antecedent StorageExtent (Pool
Component).

CompositeExtent (Composite Intermediate or Composite Pool Component) - Used to represent the composition of
several antecedent extents into a virtualized set of blocks with desired size and Quality-Of-Service.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 497

Extent Composition Subprofile NO_ANSI_ID

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
BasedOn - Used to associate a Dependent and Antecedent extent in the subprofile hierarchy for both composition
and decomposition. It is also used in one special case as a one-to-one (neither composing or decomposing),
always associating the StorageVolume or LogicalDisk to the antecedent CompositeExtent. This is because, as a
sibling of StorageExtent and LogicalDisk, CompositeExtent cannot be exposed directly.

CompositeExtentBasedOn - A subclass of BasedOn that is used in a composition production when the Dependent
is a CompositeExtent which is describing striping; it contains Stripe Depth information. Stripe Depth is the number
of blocks written to an Antecedent extent before moving on to the next extent Although this property is on the
association class, its values shall be the same for each instance of the association with the same Dependent
CompositeExtent.

DEPRECATED

ConcreteComponent - Used to associate extents (Pool Component and Remaining) to their parent StoragePool
(See 14.1.4.2).

DEPRECATED

AssociatedComponentExtent - Used to associate extents (Pool Component or Composite Pool Component) to
their parent StoragePool (See 14.1.4.2).

StoragePool and AllocatedStoragePool are shown in instance diagrams for context but are part of the Block
Service package Read Only sub-package.

Refer to 14.8 "CIM Elements" for detailed class descriptions.

14.1.4 Relation to other Packages and Subprofiles

14.1.4.1 Block Services StoragePool hierarchy.

The Block Services package defines the model for the hierarchy of pools from the exposable storage element to
the Primordial Pool. The hierarchy defined in this subprofile parallels that pool hierarchy and is layered so that the
virtualization can be presented within the pool level in which it actually takes place.

14.1.4.2 Component Extents

Component Extents of a pool are the most dependent extents in the pool; they are also the only extents that are
directly manageable by the methods in the Block Services Package. They are also the only extents that figure into
the reconciliation of managed space in the pool (see 14.1.4.3).

Although a given implementation may choose a low level (i.e., detailed) or high-level presentation of how it
virtualizes a storage element from a pool, or how space in a pool is itself virtualized, the Pool Component extents
that are part of an exposable block storage element’s hierarchy shall be modeled along with their associations to
the parent pool.

14.1.4.3 Block Services Extent Conservation

The Block Services package describes the concept of Extent Conservation, which describes the result of allocating
storage from Pool Component extents using “Remain Space Extents”. These extents are not modeled by the
Extent Composition Subprofile, they are discoverable by the GetAvailableExtents method in Block Services.

14.1.4.4 Block Services Common RAID Levels

The Block Services Package describes a set of RAID Levels and in addition, properties on StorageSetting such as
ExtentStripeLength and UserDataStripeDepth which allow creation of a subset of those RAID levels, using
CreateOrModifyElementFromElements.
498

NO_ANSI_ID Extent Composition Subprofile

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90
However, the Extent Composition Subprofile is capable of describing general organizations, such as
heterogeneous, multi-layer RAID such as can be create by the Volume Management Profile. An example of this
would be a RAID5 mirrored against a RAID0, a RAID(5,0)+1. Another example would be a three layer RAID
organization such as a RAID10 where the bottom layer RAID1 members were concatenations of available extents.

14.1.5 Remaining Extents

When a StorageExtent (or CompositeExtent) is based on only part of an underlying storage extent (a partial
allocation), the unused part of the underlying StorageExtent is represented by a Remaining StorageExtent. This is
illustrated in Figure 67.

Figure 67 shows two Remaining StorageExtents. Building from the bottom, there is a Pool Component
StorageExtent allocated from the Primordial StorageExtent. But this StorageExtent does not use all space on the
primordial extent. So a Remaining StorageExtent is shown to represent the unallocated space on the primordial
extent. The Remaining StorageExtent has a BaseOn association to the primordial extent to indicate that it is
unallocated space from the primordial extent. The Remaining Extent also has an AssociatedRemainingExtent
association to the same primordial StoragePool that the primordial StorageExtent has its
AssociatedComponentExtent association.

Figure 67 - Remaining Extents in Extent Composition

Extent Composition

StoragePool (Primordial)

Primordial=”true”
(See Block Services)

ConcreteComponent &
AssociatedComponentExtent

Primordial: StorageExtent

Primordial=”true”
(See Referencing Profile)

BasedOn
(Bottom Level)

StorageVolume
(Allocated)

Primordial=”false”
ExtentDiscriminator=”SNIA:Allocated”

(See Referencing Profile)

AllocatedFromStoragePool

StoragePool (Concrete)

Primordial=”false”
(See Referencing Profile)

AllocatedFromStoragePool

StorageExtent
(Pool Component)

Primordial=”false”
ExtentDiscriminator=“SNIA:Pool Component”

StorageExtent
(Intermediate)

Primordial=”false”
ExtentDiscriminator=“SNIA:Intermediate”

CompositeExtent
(Composite Intermediate)

Primordial=”false”
ExtentDiscriminator=“SNIA:Intermediate”,

“SNIA:Composite”

BasedOn
(Mid Level)

BasedOn / CompositeBasedOn
(Mid Level)

BasedOn
(Top Level)

ConcreteComponent &
AssociatedComponentExtent

StorageExtent
(Remaining)

Primordial=”false”
ExtentDiscriminator=“SNIA:Remaining”

BasedOn
(Remaining)

ConcreteComponent &
AssociatedRemainingExtent

StorageExtent
(Remaining)

Primordial=”false”
ExtentDiscriminator=“SNIA:Remaining”

BasedOn
(Remaining)

ConcreteComponent &
AssociatedRemainingExtent
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 499

Extent Composition Subprofile NO_ANSI_ID

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108
The Pool Component extent above the primordial storage extent also has a StorageExtent allocated from it that is
also a partial allocation. So, it too has a Remaining StorageExtent to represent the unallocated space on the Pool
Component StorageExtent. This Remaining StorageExtent has a BasedOn association to the Pool Component
StorageExtent and an AssociatedRemainingExtent association to the same Concrete StoragePool that the Pool
Component StorageExtent has its AssociatedComponentExtent association.

For more information and detail on the use and application of Remaining StorageExtents see 5.1.15 for extent
conservation provisions.

14.1.6 Scenarios

The following example scenarios are common abstractions of the use-cases that were used when this subprofile
was being defined. The scenarios are not intended to cover all possible variations of the use of Extent
Composition.

14.1.6.1 Volume Composition

Figure 68: "Volume Composition from General QOS Pool" shows extent composition when a single RAID QOS/
Level is applied directly to the construction of a StorageVolume. The Storage Volume or Logical Disk and the
underlying CompositeExtent represent the same virtual extent and range of blocks; The initial BasedOn
association between them is a one-to-one “dummy” association. The Storage Volume and Logical Disk classes do
not have the necessary properties to describe the RAID information and the CompositeExtent which is a sibling
class of StorageVolume and LogicalDisk, cannot be directly exposed. This Based on association does not
500

NO_ANSI_ID Extent Composition Subprofile

109

110

111

112

113

114

115

116

117

118

119
represent composition or decomposition, but the main recipe (see 14.6.1) for this subprofile makes use of the
decomposition function (i.e., complete consumption) to make this initial traversal.

Figure 69: "Single QOS Pool Composition (RAID Groups)" shows a single composition (such as a RAID5 or
RAID1). Not shown is the scenario where there may be two or more such back to back productions (such as a
RAID10). Also not shown is the scenario where the two productions may be in different concrete pools in the
hierarchy. A RAID10 Volume may be constructed as a RAID0 composition from a concrete pool that is itself a
RAID1 pool (see 14.1.6.2).

In this scenario, note that the extents below the StorageVolume and the Component Extents are not part of the
pool, but allocated from it.

In fact this StorageVolume and its companion CompositeExtent could be composed from member extents (labeled
PartialAllocOfConcrete in the diagram) from different pools.

Figure 68 - Volume Composition from General QOS Pool

AssociatedComponentExtent & ConcreteComponent

 Extent Composition

Concrete:
StorageExtent (Pool Component)

ExtentDiscriminator= ”SNIA:Component”
Primordial=”false”

Primordial=”false”
(See referencing profile)

ConcretePool:
StoragePool

ExtentDiscriminator=”SNIA:Exported”
Primordial=”false”
(See referencing profile)

StorageVolume / LogicalDisk

AllocatedFromStoragePool

ExtentDiscriminator= ”SNIA:Intermediate”, “SNIA:Composite”
Primordial=”false”

CompositeExtent (Composite Intermediate)

BasedOn/
CompositedExtentBasedOn

PartialAllocOfConcrete:
StorageExtent (Intermediate)

ExtentDiscriminator= ”SNIA:Intermediate”
Primordial=”false”

BasedOn

Primordial=”true”
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

BasedOn

(See referencing profile)

StorageSetting

ElementSettingData

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

Concrete:
StorageExtent (Pool Component)

ExtentDiscriminator= ”SNIA:Component”
Primordial=”false”

BasedOn

PartialAllocOfConcrete:
StorageExtent (Intermediate)

ExtentDiscriminator= ”SNIA:Intermediate”
Primordial=”false”

...

BasedOn

...

...

BasedOn

AssociatedComponentExtent & ConcreteComponent
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 501

Extent Composition Subprofile NO_ANSI_ID

120

121

122

123

124

125

126

127

128
14.1.6.2 Pool Composition

Certain pools can be created or modified to contain one or more extents each with a single specific quality of
service. These extents are known as Raid Groups. The bound space in each of these RAID Groups is represented
by this subprofile as a single CompositeExtent at the top of an extent sub-hierarchy in that pool. Volumes created
from this type of Pool are partially allocated (decomposed) from the CompositeExtent playing the role of the
RAIDGroup. Figure 69 shows the Single QOS Pool Composition (RAID Groups).

Figure 70: "SIngle QOS Pool Composition - Two Concretes" extends this scenario by allocating a child concrete
pool from the RAID Group instead of a Volume and then allocating the Volume from the child concrete. In this
example the child pool contains a single component extent that has a single Quality of Service (that of the parent

Figure 69 - Single QOS Pool Composition (RAID Groups)

AssociatedComponentExtent & ConcreteComponent

 Extent Composition

Primordial=”false”
(See referencing profile)

ConcretePool:
StoragePool

AssociatedComponentExtent
& ConcreteComponent

ExtentDiscriminator=”SNIA:Exported”
Primordial=”false”
(See referencing profile)

StorageVolume

AllocatedFromStoragePool

ExtentDiscriminator= ”SNIA:Component”, “SNIA:Composite”
Primordial=”false”

RAIDGroup:
CompositeExtent (Composite Pool Component)

BasedOn/
CompositedExtentBasedOn

BasedOn

Primordial=”true”
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

(See referencing profile)

StorageSetting

ElementSettingData

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

...

Complete
Consumption of

Primordials
502

NO_ANSI_ID Extent Composition Subprofile

129

130

131

132

133

134
RAID Group concrete pool). The Storage Volume or Logical Disk is allocated or decomposed directly from the pool
component extent.

14.1.6.3 Example RAID Compositions from Block Services

Table 316 is an abridged version of the RAID Mapping table in Block Services. The table describes the RAID levels
commonly used at the time this version of SMI-S was released. Table 316 lists the subset of those RAID Levels
that can be modeled by using the Extent Composition Subprofile, and the properties used to distinguish them.

Figure 70 - SIngle QOS Pool Composition - Two Concretes

AssociatedComponentExtent & ConcreteComponent

 Extent Composition

Primordial=”false”
(See referencing profile)

ConcretePool:
StoragePool

AssociatedComponentExtent
& ConcreteComponent

AllocatedFromStoragePool

ExtentDiscriminator= ”SNIA:Component”, “SNIA:Composite”
Primordial=”false”

RAIDGroup:
CompositeExtent (Composite Pool Component)

BasedOn/
CompositedExtentBasedOn

Primordial=”true”
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

...

Primordial=”false”
(See referencing profile)

ConcretePool:
StoragePool

PartialAllocOfConcrete:
StorageExtent (Pool Component)

ExtentDiscriminator= ”SNIA:Component”
Primordial=”false”

BasedOn
(Mid Level)

AssociatedComponentExtent
& ConcreteComponent

BasedOn
(Top Level)

StorageVolume

ExtentDiscriminator=”SNIA:Exported”
Primordial=”false”
(See referencing profile)

AllocatedFromStoragePool

Complete
Consumption of

Primordials
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 503

Extent Composition Subprofile NO_ANSI_ID

135

136

137

138

139
Following Table 316 are some example instance diagrams, showing the use of CompositeExtent, StorageExtent,
BasedOn and CompositeExtentBasedOn to represent the construction of many of the RAID levels. In these cases
there will be at most, two levels of CompositeExtent and CompositeExtentBasedOn/BasedOn.

In complex compositions, such as RAID10, there is no intermediate decomposition modeled; each extent
Antecedent to the top level CompositeExtent is itself a CompositeExtent.

Table 316 - Supported Common RAID Levels

RAID Level Package

Redundancy

Data

Redundancy

Extent

Stripe

Length

User Data

Stripe

Depth

JBOD 0 1 1 Null

0 (Striping) 0 1 2 - n Vendor

Dependent

1 1 2 - n 1 Null

10 1 2 - n 2 - n Vendor

Dependent

0+1 1 2 - n 2 - n Vendor

Dependent

3 or 4 1 1 3 - n Vendor

Dependent

4DP 2 1 4 - n Vendor

Dependent

5 (3/5) 1 1 3 - n Vendor

Dependent

6, 5DP 2 1 4 - n Vendor

Dependent

15 2 2 - n 3 - n Vendor

Dependent

50 1 1 3 - n Vendor

Dependent

51 2 2 - n 3 - n Vendor

Dependent
504

NO_ANSI_ID Extent Composition Subprofile

140

141

142

143

144
14.1.6.3.1 JBOD (Concatenation)

Figure 71: "Concatenation Composition" shows a partial instance diagram for a JBOD Volume or Pool, in which
the Antecedent Extents are concatenated.

14.1.6.3.2 RAID0 (Striping)

Figure 72: "RAID0 Composition" shows a partial instance diagram for a RAID0 Volume or Pool.

Figure 71 - Concatenation Composition

Figure 72 - RAID0 Composition

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = true
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress StorageExtent

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 505

Extent Composition Subprofile NO_ANSI_ID

145

146

147

148

149

150

151
14.1.6.3.3 RAID1

Figure 73: "RAID1 Composition" shows a partial instance diagram for a RAID1 Volume or Pool.

14.1.6.3.4 RAID10

Figure 74: "RAID10 Composition" shows a partial instance diagram for a RAID10 Volume or Pool. In this example
the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level, not just the top level
composition which by itself is a non-redundant stripeset. That is, the top level is a RAID0, but the DataRedundancy
value for the corresponding CompositeExtent is 2, reflecting two complete copies of the data.

Figure 73 - RAID1 Composition

StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

StorageExtent

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
506

NO_ANSI_ID Extent Composition Subprofile

Figure 74 - RAID10 Composition

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 507

Extent Composition Subprofile NO_ANSI_ID

152

153
14.1.6.3.5 RAID0+1

Figure 75: "RAID0+1 Composition" shows a partial instance diagram for a RAID0+1 Volume or Pool

Figure 75 - RAID0+1 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth
508

NO_ANSI_ID Extent Composition Subprofile

154

155
14.1.6.3.6 RAID4 or 5

Figure 76: "RAID4, 5 Composition" shows a partial instance diagram for a RAID4 or 5 Volume or Pool.

Figure 76 - RAID4, 5 Composition

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 509

Extent Composition Subprofile NO_ANSI_ID

156

157

158

159

160

161

162

163
14.1.6.3.7 RAID6, 5DP, and 4DP

Figure 77: "RAID 6, 5DP, 4DP" shows a partial instance diagram for a RAID6, 5DP, or 4DP Volume or Pool. Note
that the PackageRedundancy is 2, indicating that two of the antecedent extents can fail simultaneously without loss
of data. Four extents are shown, the minimum required for these double parity RAID organizations.

14.1.6.3.8 RAID 15

Figure 78: "RAID15 Composition" shows a partial instance diagram for a RAID15 Volume or Pool. In this example
the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level, not just the top level
composition which by itself is a simple RAID5.

Figure 77 - RAID 6, 5DP, 4DP

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 4
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent

CompositeExtentBasedOn

OrderIndex = 4
StartingAddress
EndingAddress
UserDataStripeDepth
510

NO_ANSI_ID Extent Composition Subprofile

164

165

166

167

168
Note: Only CompositeExtent members 1 and 3 of the Raid 5 layer are shown.

14.1.6.3.9 RAID50

Figure 79: "RAID50 Composition" shows a partial instance diagram for a RAID50 Volume or Pool. In this example
the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level, not just the top level
composition which by itself is a non-redundant stripeset.

I

Figure 78 - RAID15 Composition

Com positeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundanc = true
IsConcatenated = false
ExtentStripeLength = 1
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 511

Extent Composition Subprofile NO_ANSI_ID

169

170

171

172

173

174

175
Note: In the Raid 5 layer, CompositeExtent member 2 in each stripe member is not shown.

14.1.6.3.10 RAID51

Figure 80: "RAID51 Composition" shows a partial instance diagram for a RAID51 Volume or Pool. In this example
the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level, not just the top level
composition which by itself is a simple mirror. That is, the top level is a RAID1, but the PackageRedundancy is 2,
indicating the QOS for the entire hierarchy.

Note: In the Raid 5 layer, CompositeExtent member 2 in each mirror is not shown.

Figure 79 - RAID50 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscrim inator= “SNIA:Composite”
Primordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscrim inator= “SNIA:Composite”
Primordial=”false”

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscrim inator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth
512

NO_ANSI_ID Extent Composition Subprofile

176

177

178

179

180

181
14.2 Health and Fault Management Considerations

Not defined in this standard.

14.3 Cascading Considerations

None.

14.4 Supported Subprofiles and Packages

Related Profiles for Extent Composition: Not defined in this standard.

Figure 80 - RAID51 Composition

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 2
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

Com positeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA :Com posite”
Prim ordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

Com positeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

Com positeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 513

Extent Composition Subprofile NO_ANSI_ID

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217
14.5 Methods of the Profile

None.

14.6 Client Considerations and Recipes

14.6.1 Traverse the virtualization hierarchy of a StorageVolume or LogicalDisk

// DESCRIPTION

//

// This recipes defines a mechanism for traversing the extent hierarchy between

// the Exposable Block Storage Element and the Primordial Extents it makes use

// of, determining the RAID level structure, Concrete and Primordial pool

// membership.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The instance name for an exposable block storage element (e.g.

// StorageVolume, LogicalDisk) of interest has been previously identified as

// $BlockElement->.

// This function determines if an Extent is a Primary(non-remaining) Component

// of a Pool.

//

sub boolean IsPrimaryComponent(REF $TargetExtent->) {

$Pools->[] = AssociatorNames($TargetExtent->,

“CIM_ConcreteComponent”,

“CIM_StoragePool”,

“PartComponent”,

“GroupComponent”)

if ($Pools->[] != null && $Pools->[].length == 1) {

 // This Extent is a Component Extent of either a Concrete

 // or Primoridal pool

 return true

}

else

 return false

}

// This function determines the RAID Level or Quality of Service of a

// CompositeExtent and then recursively traverses the hierarchy beneath it.

//

sub void traverseComposition(REF $Composite->) {
514

NO_ANSI_ID Extent Composition Subprofile

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257
 // See if this composite is a Primary(non-remaining) Component

 // Extent of a Pool (for information only.)

#PrimaryComponent = &IsPrimaryComponent($Composite->)

 // Get the instances of the associations in which this Extent is the

 // Dependent reference. The association instances retrieved should be

 // either BasedOn or CompositeExtentBasedOn.

 $Associations[] = References($Composite->,

 NULL,

 “Dependent”,

 false,

 false,

 NULL)

 // Now get the underlying extents

 $TargetExtents->[] = AssociatorNames($Composite->,

 Associations[0].getClassName(),

 NULL,

 “Dependent”,

 “Antecedent”)

 // Examine the QOS of the current level’s Composite Extent

 $CompositeExtent = GetInstance($Composite->,

 false,

 false,

 false,

 {“IsConcatenated”, “ExtentStripeLength”,

 “IsBasedOnUnderlyingRedundancy”})

 if (($Associations[0] ISA CIM_CompositeExtentBasedOn)

 && ($CompositeExtent.IsConcatenated == false)

 && ($CompositeExtent.ExtentStripeLength > 1)) {

 // The TargetExtents are striped together. Get the Stripe Depth from

 // the first association. The assumption here is that this property is

 // the same for each association instance.

 #StripeDepth = $Associations[0].UserDataStripeDepth

 // Inspect the RAID level.

 #RAID = 0

 if ($CompositeExtent.IsBasedOnUnderlyingRedundancy) {

 #RAID = 5

 }

 } else {

 // Associations are CIM_BasedOn, So this is either a Mirror or

 // a Concatenation
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 515

Extent Composition Subprofile NO_ANSI_ID

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300
 if (($CompositeExtent.IsBasedOnUnderlyingRedundancy == true)

 && ($CompositeExtent.IsConcatenated == false)

 && ($CompositeExtent.ExtentStripeLength == 1)) {

 // The TargetExtents are mirrored together,

 // This level is a RAID 1

 } else if (($CompositeExtent.IsBasedOnUnderlyingRedundancy == false)

 && ($CompositeExtent.IsConcatenated == true)

 && ($CompositeExtent.ExtentStripeLength == 1)) {

 // The TargetExtents are concatenated together,

 // This level is a JBOD.

 } else {

 <ERROR! Illegal combination of property values; does not

 correspond to supported composition type.>

 }

 }

// Now for each underlying extent at this level, traverse the sub-tree

// it is the sub-root of. If the extent is a CompositeExtent, then this

// is part of a complex RAID level; recursively invoke the Composition

// Algorithm. Otherwise it is just a regular StorageExtent and thus

// either a Primoridal or decomposed from an Antecedent, so invoke the

// recursive Decomposition Algorithm.

for (#i in $TargetExtents->[]) {

 if ($TargetExtents->[#i] ISA CIM_CompositeExtent) {

 &traverseComposition($TargetExtents->[#i])

 } else {

 &traverseDecomposition($TargetExtents->[#i])

 }

 }

}

// This function recursively traverses the hierarchy below a non-Composite

// Storage Extent.

sub void traverseDecomposition(REF $SubjectExtent->) {

 // See if this extent is a Primary(non-remaining) Component

 // Extent of a Pool (for information only.)

#PrimaryComponent = &IsPrimaryComponent($SubjectExtent->)

// Check here to see if we have reached the leaves of the hierarchy

 $SubjectExtent = GetInstance($SubjectExtent->,

 false,

 false,

 false,

 {“Primordial”})
516

NO_ANSI_ID Extent Composition Subprofile

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345
if ($SubjectExtent.Primordial == true) {

 // Recursion ends with each Primordial Extent.

 <EXIT: Recursion ends with each Primordial Extent.>

} else {

 // The Subject Extent is allocated partially or in full from the

 // Antecedent Extent, so a single BasedOn is expected.

 $TargetExtents[] = Associators($SubjectExtent->,

 “CIM_BasedOn”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”,

 false,

 false,

 {“Primordial”})

 // Since the Subject Extent is allocated from the Antecedent, there can

 // only be one Antecedent.

 if ($TargetExtents[] == null || $TargetExtents[].length != 1) {

 <ERROR! Extent allocated from multiple Antecedents>

 }

 $TargetExtent = $TargetExtents[0]

 if ($TargetExtent ISA CIM_CompositeExtent) {

 // This is a Composite Extent representing a RAID Level. Since we

 // encountered the Composite in a decomposition, the

 // Dependent/Antecedent relationship falls into one of the

 // following scenarios:

 //

 // o The Subject Extent is a StorageVolume that is one-to-one with

 // the Target Composite Extent.

 //

 // o The Subject Extent is a StorageVolume partially allocated from

 // the Target Composite Extent, where the Composite is a RAID Group.

 //

 // o The Subject Extent is a ComponentExtent of a Concrete pool and is

 // partially allocated from the Target Composite Extent where the

 // Composite is a RAID Group.

 //

 // Call the (recursive) function to analyze the sub-hierarchy

 // composed by the Target Extent.

 //

 &traverseComposition($TargetExtent.getObjectPath())

 } else {

 // The Antecedent is a regular StorageExtent and was not

 // Primordial, so it must be in turn a dependent decomposed

 // from an Antecedent, so invoke
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 517

Extent Composition Subprofile NO_ANSI_ID

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381
 // ourselves recursively.

 &traverseDecomposition($TargetExtent.getObjectPath())

 }

 }

}

// MAIN

// Since the exposable block element is either one-to-one with the initial

// CompositeExtent, or a partial allocation of it (in the case of a RAID Group),

// decompose the block hierarchy.

//

&traverseDecomposition($BlockElement->)

14.6.2 Find the Primordial Extents used by a Storage Volume or Logical Disk

A storage administrator may want the information provided by this recipe for several reasons:

Failure Exposure: To understand what Drive or virtualized Volume failures may affect the health of a block storage
element, or conversely what block storage elements are affected by a given Drive failure.

Performance and Loading: To avoid locating frequently accessed Volumes on the same Disk Drive.

Utilization: To avoid locating portions of too many volumes on the same Drive while leaving other drives under
utilized.

// DESCRIPTION

//

// This recipe defines a mechanism for finding the Primordial Storage Extents

// used by a Storage Volume in an Array or Virtualizer, or a LogicalDisk in

// a Volume Manager or NAS system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The instance name for an exposable block storage element (e.g.

// StorageVolume, LogicalDisk) of interest has been previously identified as

// $BlockElement->.

// This function recursively searches for the Primordial Storage Extents that

// comprise the specified block storage element.

sub $PrimordialExtents[] findPrimordials(REF $SubjectExtent->) {

 // Get the Extents that are Antecedent to the specified Extent.

 //

 $TargetExtents[] = Associators($SubjectExtent->,

 “CIM_BasedOn”,
518

NO_ANSI_ID Extent Composition Subprofile

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421
 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”,

 false,

 false,

 {“Primordial”})

 // Examine each Extent at the next level to determine if its Primordial.

 #i = 0

 for (#j in $TargetExtents[]) {

if ($TargetExtents[#j].Primordial == true) {

 // The Extent is Primordial, the recursion ends here. Add it to

 // the group of Primordials gathered at this level or below.

 $PrimordialExtents[#i++] = TargetExtents[j]

} else {

 // The Extent is not Primordial, but it must be based on a

 // sub-hierarchy in which each leaf is a Primordial, so call this

 // function Recursively.

 $SubordinatePrimordialExtents[] =

 &findPrimordials(TargetExtents[#j].getObjectPath())

 if ($SubordinatePrimordialExtents[] == null

 || $SubordinatePrimordialExtents[].length == 0) {

<ERROR! Found a Leaf Extent that is not a Primordial>

 }

 for (#k in $SubordinatePrimordialExtents[]) {

// The recursion delivers the bottom for each branch

// These need to be collected and added into the whole

$PrimordialExtents[#i++] = SubordinatePrimordialExtents[#k]

 }

}

 }

 return ($PrimordialExtents[])

}

// MAIN

// Make initial call to the recursive function.

$PrimordialExtents[] = &findPrimordials($BlockElement->)

if ($PrimordialExtents[] == null || $PrimordialExtents[].length == 0) {

 <ERROR! No Primordials Found>

} else {

 <EXIT: Primordial Extents accumulated>

}

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 519

Extent Composition Subprofile NO_ANSI_ID

422

423

424

425
14.7 Registered Name and Version

Extent Composition version 1.5.0 (Component Profile)

14.8 CIM Elements

Table 317 describes the CIM elements for Extent Composition.

Table 317 - CIM Elements for Extent Composition

Element Name Requirement Description

14.8.1 CIM_AssociatedComponentExtent
(Pool Component to Concrete Pool)

Mandatory

14.8.2 CIM_AssociatedRemainingExtent
(Pool to its remaining extents)

Mandatory

14.8.3 CIM_BasedOn (Mid level BasedOn) Optional Associates a Storage Extent (Pool
Component or Intermediate) to underlying
Storage Extents it is based on.

14.8.4 CIM_BasedOn (Top level BasedOn) Mandatory Associates a StorageVolume (or LogicalDisk)
to the underlying Storage Extent it is based
on.

14.8.5 CIM_CompositeExtent (Composite
Intermediate)

Optional Represents a Concrete StorageExtent that is
a composite and does not have an
AssociatedComponentExtent association to a
Concrete StoragePool.

14.8.6 CIM_CompositeExtent (Composite
Pool Component)

Optional Represents a Concrete StorageExtent that is
a composite and has an
AssociatedComponentExtent association to a
Concrete StoragePool.

14.8.7 CIM_CompositeExtentBasedOn Optional Associates a Composite Extent representing a
striping simple RAID organization such as
RAID 0 or RAID 5 to the underlying Storage
Extents that it virtualizes.

14.8.8 CIM_ConcreteComponent (Pool
Component to Concrete Pool)

Mandatory Deprecated. Associate the extents that are
playing the Pool Component role to their
aggregating StoragePool.

14.8.9 CIM_ConcreteComponent (Remaining
Extent to Pool)

Mandatory Deprecated. Associate a remaining extent to
the StoragePool for which it represents
unused space.

14.8.10 CIM_FilterCollection (Extent
Composition Predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.
520

NO_ANSI_ID Extent Composition Subprofile

426

427

428

429
14.8.1 CIM_AssociatedComponentExtent (Pool Component to Concrete Pool)

The referenced StorageExtent represents capacity has not been allocated, is allocated in part, or is allocated in its
entirety.

Requirement: Mandatory

14.8.11 CIM_HostedCollection (System to
predefined IndicationFilters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

14.8.12 CIM_MemberOfCollection (Extent
Composition Filter Collection to
FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Extent
Composition predefined FilterCollection to the
FilterCollection for the autonomous profile
(e.g., the Array FilterCollection).

14.8.13 CIM_MemberOfCollection
(Predefined Filter Collection to Extent
Composition Filters)

Optional Experimental. This associates the Extent
Composition predefined FilterCollection to the
predefined Filters supported by the
implementation.

14.8.14 CIM_StorageExtent (Intermediate) Optional Represents a Concrete StorageExtent that is
not a composite and does not have an
AssociatedComponentExtent association to a
Concrete StoragePool.

14.8.15 CIM_StorageExtent (Pool
Component)

Optional Represents a Concrete StorageExtent that is
not a composite and has an
AssociatedComponentExtent association to a
Concrete StoragePool.

14.8.16 CIM_StorageExtent (Remaining) Optional Represents a Concrete StorageExtent that
identifies unused space in a Concrete
StoragePool and has an
AssociatedRemainingExtent association to
that Concrete StoragePool.

14.8.17 CIM_SystemDevice (Composite
Extent System)

Optional Associates a CompositeExtent to a hosting
computer system.

14.8.18 CIM_SystemDevice (Storage Extent
System)

Optional Associates a StorageExtent to a hosting
computer system.

Table 317 - CIM Elements for Extent Composition

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 521

Extent Composition Subprofile NO_ANSI_ID

430

431

432

433

434

435

436

437

438

439

440

441
Table 318 describes class CIM_AssociatedComponentExtent (Pool Component to Concrete Pool).

14.8.2 CIM_AssociatedRemainingExtent (Pool to its remaining extents)

The referenced StorageExtent represents the capacity of the StorageExtent on which it is based that was not used
in resource allocation.

Requirement: Mandatory

Table 319 describes class CIM_AssociatedRemainingExtent (Pool to its remaining extents).

14.8.3 CIM_BasedOn (Mid level BasedOn)

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 320 describes class CIM_BasedOn (Mid level BasedOn).

Table 318 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool
Component to Concrete Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) Concrete StoragePool.

PartComponent Mandatory The storage extent or composite extent that is a component
of the concrete storage pool.

Table 319 - SMI Referenced Properties/Methods for CIM_AssociatedRemainingExtent (Pool to its
remaining extents)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty, Concrete or Primordial) StoragePool.

PartComponent Mandatory The storage extent that represents free space in the
concrete storage pool.

Table 320 - SMI Referenced Properties/Methods for CIM_BasedOn (Mid level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

Dependent Mandatory The Storage Extent (Pool Component, Intermediate,
Composite Intermediate, Composite Pool Component or
Remaining) that is based on underlying extents.

Antecedent Mandatory The underlying extents. They may be intermediate or Pool
Components and they may be composite or uncomposed.
522

NO_ANSI_ID Extent Composition Subprofile

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456
14.8.4 CIM_BasedOn (Top level BasedOn)

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 321 describes class CIM_BasedOn (Top level BasedOn).

14.8.5 CIM_CompositeExtent (Composite Intermediate)

Instances of this class with the discriminator of 'SNIA:Intermediate' and 'SNIA:Composite' are Concrete
StorageExtents that are a composite and do not have an AssociatedComponentExtent association to a Concrete
StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 322 describes class CIM_CompositeExtent (Composite Intermediate).

Table 321 - SMI Referenced Properties/Methods for CIM_BasedOn (Top level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

Dependent Mandatory The Storage Volume or Logical Disk that dependents on the
associated extent.

Antecedent Mandatory The extent on which the storage volume or logical disk is
based.

Table 322 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Intermedi-
ate)

Properties Flags Requirement Description & Notes

Name CD Mandatory

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

DataRedundancy Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 523

Extent Composition Subprofile NO_ANSI_ID

457

458

459

460

461

462

463

464

465
14.8.6 CIM_CompositeExtent (Composite Pool Component)

Instances of this class with the discriminator of 'SNIA:Pool Component' and 'SNIA:Composite' are Concrete
StorageExtents that are a composite and have an AssociatedComponentExtent association to a Concrete
StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 323 describes class CIM_CompositeExtent (Composite Pool Component).

PackageRedundancy Mandatory

NoSinglePointOfFailu
re

Mandatory

IsBasedOnUnderlyin
gRedundancy

Mandatory

IsConcatenated Mandatory

ExtentStripeLength Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent
Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain
'SNIA:Intermediate' and 'SNIA:Composite'.

Table 323 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Com-
ponent)

Properties Flags Requirement Description & Notes

Name CD Mandatory

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

Table 322 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Intermedi-
ate)

Properties Flags Requirement Description & Notes
524

NO_ANSI_ID Extent Composition Subprofile

466

467

468

469

470

471
14.8.7 CIM_CompositeExtentBasedOn

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 324 describes class CIM_CompositeExtentBasedOn.

DataRedundancy Mandatory

PackageRedundancy Mandatory

NoSinglePointOfFailu
re

Mandatory

IsBasedOnUnderlyin
gRedundancy

Mandatory

IsConcatenated Mandatory

ExtentStripeLength Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent
Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain
'SNIA:Pool Component' and 'SNIA:Composite'.

Table 324 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

OrderIndex Mandatory Indicates the order in which the antecedent extents have
blocks striped onto them.

UserDataStripeDepth Mandatory The number of blocks written to an Antecedent extent
before moving on to the next extent Although this property
is on the association class, its values shall be the same for
each instance of the association with the same Dependent
CompositeExtent.

Table 323 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Com-
ponent)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 525

Extent Composition Subprofile NO_ANSI_ID

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486
14.8.8 CIM_ConcreteComponent (Pool Component to Concrete Pool)

Deprecated. Associate the extents that are playing the Pool Component role to their aggregating StoragePool.This
is Deprecated since its function is better covered by AssociatedComponentExtent.

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 325 describes class CIM_ConcreteComponent (Pool Component to Concrete Pool).

14.8.9 CIM_ConcreteComponent (Remaining Extent to Pool)

Deprecated.

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 326 describes class CIM_ConcreteComponent (Remaining Extent to Pool).

Dependent Mandatory The composite extent that is based on underlying extents.

Antecedent Mandatory The extents on which the composite extent is based. They
may be intermediate or pool component extents and they
may be either other composite extents or uncomposed
extents.

Table 325 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Pool Component
to Concrete Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) Concrete StoragePool.

PartComponent Mandatory The storage extent or composite extent that is a component
of the concrete storage pool.

Table 326 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Remaining Extent
to Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) StoragePool.

PartComponent Mandatory The storage extent that represents unused space in the
storage pool.

Table 324 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn

Properties Flags Requirement Description & Notes
526

NO_ANSI_ID Extent Composition Subprofile

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503
14.8.10 CIM_FilterCollection (Extent Composition Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Extent
Composition implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 327 describes class CIM_FilterCollection (Extent Composition Predefined FilterCollection).

14.8.11 CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 328 describes class CIM_HostedCollection (System to predefined IndicationFilters).

14.8.12 CIM_MemberOfCollection (Extent Composition Filter Collection to FilterCollection)

Experimental. This associates the Extent Composition predefined FilterCollection to the FilterCollection for the
autonomous profile (e.g., the Array FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 327 - SMI Referenced Properties/Methods for CIM_FilterCollection (Extent Composition
Predefined FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Extent
Composition'.

Table 328 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined
IndicationFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Extent
Composition.

Antecedent Mandatory Reference to the 'Top level' System.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 527

Extent Composition Subprofile NO_ANSI_ID

504

505

506

507

508

509

510

511

512

513

514

515

516

517
Table 329 describes class CIM_MemberOfCollection (Extent Composition Filter Collection to FilterCollection).

14.8.13 CIM_MemberOfCollection (Predefined Filter Collection to Extent Composition Filters)

Experimental. This associates the Extent Composition predefined FilterCollection to the predefined Filters
supported by the implementation.

Requirement: Optional

Table 330 describes class CIM_MemberOfCollection (Predefined Filter Collection to Extent Composition Filters).

14.8.14 CIM_StorageExtent (Intermediate)

Instances of this class with the discriminator of 'SNIA:Intermediate' are Concrete StorageExtents that are not a
composite and do not have an AssociatedComponentExtent association to a Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 331 describes class CIM_StorageExtent (Intermediate).

Table 329 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Extent Composi-
tion Filter Collection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Extent Composition predefined
FilterCollection.

Member Mandatory Reference to the Extent Composition predefined
FilterCollection.

Table 330 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Extent Composition Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Extent Composition predefined
FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Extent
Composition implementation.

Table 331 - SMI Referenced Properties/Methods for CIM_StorageExtent (Intermediate)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory
528

NO_ANSI_ID Extent Composition Subprofile

518

519

520

521

522

523

524

525
14.8.15 CIM_StorageExtent (Pool Component)

Instances of this class with the discriminator of 'SNIA:Pool Component' are Concrete StorageExtents that are not a
composite and have an AssociatedComponentExtent association to a Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 332 describes class CIM_StorageExtent (Pool Component).

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent
Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain
'SNIA:Intermediate'.

Table 332 - SMI Referenced Properties/Methods for CIM_StorageExtent (Pool Component)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent
Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain
'SNIA:Pool Component'.

Table 331 - SMI Referenced Properties/Methods for CIM_StorageExtent (Intermediate)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 529

Extent Composition Subprofile NO_ANSI_ID

526

527

528

529

530

531

532

533

534

535

536

537

538

539
14.8.16 CIM_StorageExtent (Remaining)

Instances of this class with the discriminator of 'SNIA:Remaining' are Concrete StorageExtents that are not a
composite and have an AssociatedRemainingExtent association to the Concrete StoragePool for which they
represent free space.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 333 describes class CIM_StorageExtent (Remaining).

14.8.17 CIM_SystemDevice (Composite Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 333 - SMI Referenced Properties/Methods for CIM_StorageExtent (Remaining)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent
Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain
'SNIA:Remaining'.
530

NO_ANSI_ID Extent Composition Subprofile

540

541

542

543

544

545

546
Table 334 describes class CIM_SystemDevice (Composite Extent System).

14.8.18 CIM_SystemDevice (Storage Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 335 describes class CIM_SystemDevice (Storage Extent System).

STABLE

Table 334 - SMI Referenced Properties/Methods for CIM_SystemDevice (Composite Extent Sys-
tem)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_CompositeExtent
(Composite Intermediate or Composite Pool Component)
used in this profile.

Table 335 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_StorageExtent
(Intermediate, Pool Component or Remaining) used in this
profile.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 531

Extent Composition Subprofile NO_ANSI_ID
532

NO_ANSI_ID LUN Creation Subprofile

1

2

3

4

DEPRECATED

Clause 15: LUN Creation Subprofile

The functionality of the LUN Creation and Pool Manipulation Capabilities, and Settings Subprofiles have been
subsumed by the Clause 5: Block Services Package.

The LUN Creation Subprofile is defined in section 7.3.3.11 of SMI-S 1.0.2.

DEPRECATED
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 533

LUN Creation Subprofile NO_ANSI_ID
534

NO_ANSI_ID Extent Mapping Subprofile

1

2

3

DEPRECATED

Clause 16: Extent Mapping Subprofile

The functionality of the Extent Mapping Subprofile (Section 7.3.3.5 of SMI-S 1.0.2) has been subsumed by the
Extent Composition Subprofile (8.3.1.15).

DEPRECATED
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 535

Extent Mapping Subprofile NO_ANSI_ID
536

NO_ANSI_ID LUN Mapping and Masking Subprofile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
DEPRECATED

Clause 17: LUN Mapping and Masking Subprofile

The LUN Mapping and Masking Subprofile (section 7.3.3.14 in SMI-S 1.0.2) has been replaced by Clause 18:
Masking and Mapping Subprofile.

17.1 Compatibility with SMI-S 1.0 clients.

Problems with the functionality and complexity of the LUN Mapping and Masking Subprofile in SMI-S 1.0 required
some changes that may not be backwards compatible in the 1.1.0 version. The Mapping and Masking Subprofile
now reduces the complexity by replacing the 1.0.2 extrinsic methods and severely constraining the valid
combinations of parameters. Additionally, changes made to support non-FC transports and non-SCSI protocols
also affect backwards compatibility. Specifically, associating the SCSIProtocolController to a
SCSIProtocolEndpoint instead of LogicalPort. SCSIProtocolEndpoint is associated to the LogicalPort. Separating
the port from the protocol allows the port to be used with non-SCSI protocols such as IP. Most of the model is
identical, but new classes, properties, and methods have been added to simplify it's operation. Some of the old
methods are still used in 1.1.0.

Class and association changes to the model for 1.1.0:

• SAPAvailableForElement replaces the ProtocolControllerForPort association

• SCSIProtocolEndpoint replaces LogicalPort

• LogicalPort is associated to SCSIProtocolEndpoint via PortImplementsEndpoint (see Clause 17: LUN Mapping
and Masking Subprofile in Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev
6.)

• AuthorizedPrivilege associations to SystemSpecificCollection via AuthorizedSubject associations are no longer
allowed

Instrumentation may be able to provide 1.0.2 and 1.0 compliant implementations in a single namespace, if the
following conditions are met:

• ProtocolControllerMaskingCapabilities.ProtocolControllerSupportsCollections is false (StorageHardwareID
instances are referenced directly by AuthorizedSubject associations).

• There is exactly a 1-1-1 relationship between instance of AuthorizedSubject, AuthorizedPrivilege, and
AuthorizedTarget. In other words, Privilege instances cannot be shared.

If these criteria are not met, instrumentation could provide separate 1.0.2 and 1.1.0 implementations in separate
CIM namespaces.

DEPRECATED
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 537

LUN Mapping and Masking Subprofile NO_ANSI_ID
538

NO_ANSI_ID Masking and Mapping Subprofile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
STABLE

Clause 18: Masking and Mapping Subprofile

18.1 Description

Note: See 17.1 for notes on compatibility with the LUN Mapping and Masking Subprofile in SMI-S 1.0.2.

Many disk arrays provide an interface for the administrator to specify which initiators can access what volumes
through which target ports. The effect is that the given volume is only visible to SCSI commands that originate from
the specified initiators through specific sets of target ports. There may also be a capability to select the SCSI
Logical Unit Number as seen by an initiator through a specific set of ports. The ability to limit access is called
Device Masking; the ability to specify the device address seen by particular initiators is called Device Mapping (For
SCSI systems, these terms are known as LUN Masking and LUN Mapping.)

Given a storage system with no LUN masking or mapping, all hosts/initiators see the same elements when they
discover a storage system. In a storage system supporting LUN Masking, logical units are masked (hidden) from
SCSI initiators (Host Bus Adaptors) by default. The administrator uses the Masking and Mapping Subprofile to
determine which logical units are visible (exposed) to specific initiators through which target ports. The LUN
masking and mapping interfaces allow an administrator to customize the “view” of elements that are discovered.
The effect is that the real storage system appears to be a number of subsets - each subset exposing a view
customized for a particular set of initiators.

The management model is built on these “views” of a storage system - each view is a subset of components the
administrator exposes to certain hosts - and the classes that model the authorization and access rights.

The model described here is generalized to include access management in disks arrays, virtualization systems,
and routers used in tape libraries. The model is also generalized beyond just SCSI and Fibre Channel
implementations. Many of the examples and use cases refer to LUN masking in Fibre Channel arrays, but the
model is general.

18.1.1 Views and Paths

The key concepts for Device Masking and Mapping are view and path. A “view” is a list of logical units exposed to
a list of initiators through a list of target ports, modeled as SCSIProtocolController (SPC) with associated
LogicalDevices, StorageHardwareIDs, and SCSIProtocolEndpoints. The logical devices have logical unit numbers
and access permissions relative to the view, modeled as DeviceNumber and DeviceAccess properties of the
ProtocolControllerForUnit association. A full “path” is a combination of one each logical unit, initiator port, and
target port - the concept of path is independent from a CIM model, but a view expresses a combinations of paths
that comply with SCSI rules. In essence, an SPC serves as a collection of paths - each initiator ID is granted
access to each logical unit through each target port.

In addition, there are partial and invalid states. A partial path is a path missing associations to instances of logical
unit, initiator port, or target port. In practice, some arrays do not support partial paths and other arrays support
some, but not all, configurations with partial paths. An SPC lacking associations to logical units, initiator ports, or
target ports - as required by the underlying implementation - is in an invalid partial path state.

An invalid view state is a combination of classes and associations in the provider that does not map to a committed
configuration of the underlying implementation. The 1.0 LUN Masking and Mapping interfaces required clients to
perform multiple transactions to achieve a valid view, forcing providers to maintain invalid view states while waiting
for the client to complete a sequence of transactions. This created non-interoperability when the providers only
supported transactions in a certain order, and when a second client looked at the model before a sequence of
transactions was completed.

An SPC with no instances of one type of association (to initiators, targets, or LUs) with support from the
instrumentation is in a valid partial path state. The result is that the SPC does not expose any valid SCSI paths.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 539

Masking and Mapping Subprofile NO_ANSI_ID

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71
Instrumentation may support these states as convenience to clients - allowing a client to quickly activate/deactivate
a configuration by adding/removing associations - or as an intermediate state between multiple ExposePath or
HidePath requests. It is not mandatory in SMI-S to support these partial path states, but clients need to understand
which partial path states are and are not valid.

18.1.2 Model Elements

The model uses three basic types of objects:

LogicalDevice, the superclass of volumes and tape drives representing SCSI logical units

SCSIProtocolController - models the “view” described above.

SCSIProtocolEndpoint – models the SCSI protocol aspects of a port. A SCSIProtocolEndpoint is associated to
one or more ports (modeled as subclasses of LogicalPort). SCSIProtocolEnpoint and classes (such as FCPort)
representing ports are part of target port subprofiles.

These objects are related by two associations:

ProtocolControllerForUnit associates a SCSIProtocolController with its LogicalDevices; the controller-relative
address (such as a SCSI Logical Unit Number) is modeled as the DeviceNumber property of
ProtocolControllerForUnit.

SAPAvailableForElement associates a SCSIProtocolController to one or more SCSIProtocolEndpoints.

In this subprofile, the existence of a ControllerConfigurationService with a ConcreteDependency association to a
SCSIProtocolController governs the high-level device mapping and masking policy for that protocol controller.

If the service does not exist, then regardless of host port, the policy is that SAPAvailableForElementassociates
SCSIProtocolController to all SCSIProtocolEndpoints that represent SCSI target behavior (that is, have Role
property set to “Target”).

If the service is present, then for a particular host port, the policy is that SAPAvailableForElement connects a
SCSIProtocolController to a SCSIProtocolEndpoint only when access is explicitly granted.

Figure 81: "Generic System with no Configuration Service" and Figure 82: "Generic System with
ControllerConfigurationService" depict an instance diagram of a generic storage system with dual-port access to
four logical devices and an implementation with no device mapping and masking services. All of the
LogicalDevices are exposed to all initiators with the same DeviceNumber. Figure 81: "Generic System with no
Configuration Service" depicts a configuration with no LUN Masking capabilities.

Figure 81 - Generic System with no Configuration Service

ProtocolController
ForUnit

LogicalDevice
LogicalDevice

SCSIProtocolController

LogicalDevice
LogicalDevice

SCSIProtocolController

ProtocolController
ForUnit

SCSIProtocolEndpoint

SCSIProtocolEndpoint

SAPAvailable
ForElement

SAPAvailable
ForElement
540

NO_ANSI_ID Masking and Mapping Subprofile

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
Figure 82: "Generic System with ControllerConfigurationService" depicts the same configuration in an
implementation with an ControllerConfigurationService defined. In this case, access to the ProtocolController is
denied to each host port unless it is specifically granted access.

The means to grant access is discussed in 18.5.1 "ExposePaths".

18.1.3 SCSIProtocolController Views

Device Masking limits the devices seen by particular host initiators (such as HBAs). For example, when a host
discovers a device (using SCSI Report LUNs and Inquiry commands), it may see two of four LogicalDevices, other
hosts may see no LogicalDevices, and yet other hosts may only see LogicalDevices through a subset of target
ports.

Device Mapping allows the same LogicalDevice to be assigned different DeviceNumber (LUN) as seen by different
host HBAs. This would allow each of four LogicalDevices to appear to be Logical Unit zero to four different hosts.

An initiator sees a single view (SCSIProtocolController) through a target port. This view includes LogicalDevices
explicitly exposed to specified initiators and “default access” LogicalDevices (that are exposed to all initiators).

An administrator can use the ControllerConfigurationService interfaces to create “views” (SCSIProtocolControllers)
of a storage system – each view exposes a subset of components that are intended to behave as a cohesive
subset. In particular, a view:

• is associated with a set of LogicalDevices;

• may be exposed to zero or more host ports;

• is associated with one or more target device ports;

• shall not be exposed through a particular host / target port pair that is in use by another view. (In other words, a
view corresponds to the logical unit inventory provided by SCSI REPORT LUNS and INQUIRY commands.

For systems where access is granted through all or no target ports (where
ProtocolControllerMaskingCapabilities.PortsPerView is set to “All Ports share the same View”), this rule is simpler
– an initiator StorageHardwareID shall not be associated with more than one view (SCSIProtocolController).

• each LogicalDevice in a view shall have a unique DeviceNumber (SCSI logical unit number);

• a LogicalDevice may be in multiple views, and in each may be assigned the same or different DeviceNumbers
(Logical Units);

Figure 82 - Generic System with ControllerConfigurationService

LogicalDevice
LogicalDevice

LogicalDevice
LogicalDevice

SCSIProtocolController

ProtocolControllerForUnit

ControllerConfigurationService

ConcreteDependency

SCSIProtocolEndpoint

SAPAvailable
ForElement

SAPAvailable
ForElement

SCSIProtocolEndpoint
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 541

Masking and Mapping Subprofile NO_ANSI_ID

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125
The device uses the initiator port identifier to authorize access and to determine the view to present to the HBA.
The initiator ID (such as FC Port WWN) is modeled as a subclass of Identity called StorageHardwareID. As used in
this subprofile, AuthorizedSubject associates a AuthorizedPrivilege with a StorageHardwareID. As used in this
subprofile, AuthorizedTarget associates an AuthorizedPrivilege with a SCSIProtocolController.

In this version of the subprofile, there is exactly a one-to-one-to-one relationship between AuthorizedSubject,
AuthorizedPrivilege, and AuthorizedTarget. In other words, for each StorageHardwareID associated to a
SCSIProtocolController, there will be unique instances of AuthorizedSubject, AuthorizedPrivilege, and
AuthorizedTarget

18.1.4 Initiator ID Collections

An implementation may optionally model collections of Initiator IDs. This is modeled as depicted in Figure 83:
"Relationship of Initiator IDs, Endpoints, and Logical Units". If the implementation supports collection of initiator
IDs, the instrumentation shall set ProtocolControllerMaskingCapabilities.ProtocolControllerSupportsCollections to
True

18.1.5 Default View / Default Logical Unit Access

An implementation may expose some logical units to all initiators while restricting access to others. A default LUN
exposes the same SCSI logical unit to all initiators, so adding a default LUN requires that the instrumentation
assure that no existing logical-unit-view map uses that same logical unit address. Whenever a new
SCSIProtocolController is created, it is automatically attached to all default LUNs

This is modeled with a SCSIProtocolController that is associated via AuthorizedTarget to a AuthorizedPrivilege that
is associated via AuthorizedSubject to a StorageHardwareID with an Name property set to null (not the zero-length
string “”). These are known as default protocol controllers - exposing a view that is granted by default to all
initiators, regardless or masking rules. If the implementation supports default protocol controllers, the
instrumentation shall instantiate at least one default protocol controller when the instrumentation starts. The
instrumentation shall reject any client attempt to delete a default protocol controller.

Only one null-name StorageHardwareID is allowed. It is associated to all default SPCs. No other
StorageHardwareIDs may be associated to default SPCs. A target port can be associated with at most one default
SPC.

Figure 83 - Relationship of Initiator IDs, Endpoints, and Logical Units

LogicalDevice
(StorageVolume)

SCSIProtocolController

AuthorizedPrivilege

SystemSpecificCollection
(optional)

AuthorizedTarget

MemberOfCollection

StorageHardwareID

AuthorizedSubject

* *1

*

*

1

SCSIProtocolEndpoint

ProtocolController
ForUnit

* *

SAPAvailable
ForElement
542

NO_ANSI_ID Masking and Mapping Subprofile

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164
If ProtocolControllerMaskingCapabilities.PortsPerView is not set to “All Ports share the same View”, the
instrumentation may support multiple default protocol controllers, but a target port shall not be associated to more
than one default protocol controller.

A client requests a logical unit be given default access by associating with the default protocol controller using
ExposeDefaultLUs method. The instrumentation shall ensure that the requested unit number is not used in any
SCSIProtocolController connected to target ports associated with the default protocol controller. If the unit number
is available, the logical unit is attached to the default protocol controller and all the other protocol controllers that
share its target ports. Similarly, a client requests default access be removed from a logical unit by calling
HideDefaultLUs, passing in a reference to the default protocol controller and the logical unit’s ID.

18.1.6 Arbitrary Logical Units

If the implementation supports logical units for management (rather than storage), they shall be modeled with
SCSIArbitraryLogicalUnit. If these management units are exposed regardless of masking access then they shall be
associated to the default protocol controller.

18.1.7 Read-only verses Read-Write access

ExposePaths includes a DeviceAccess parameter that is used to set the DeviceAccess property of
ProtocolControllerForUnit association.

18.1.8 Read-Only Volumes

An implementation may model a volume that is readable, but not writable to any initiator by setting
StorageVolume.Access to “Readable” (1).

18.1.9 Finding Volumes that are not Mapped

A StorageVolume is considered mapped if it is exposed to an initiator. Instrumentation shall inform clients whether
a volume is or is not mapped using the “In-Band Access Granted” value in StorageVolume.ExtentStatus array
property. If a volume is associated with one or more protocol controllers and one of the associated protocol
controllers is associated with one or more StorageHardwareIDs, the instrumentation shall set “In-Band Access
Granted” in ExtentStatus. Otherwise, “In-Band Access Granted” shall not be set.

18.1.10 Limits on Map counts per Logical Unit

ProtocolControllerMaskingCapabilities.MaximumMapCount is the maximum number of times the underlying
implementation allows a logical unit to be mapped (in other words, the maximum number of
ProtocolControllerForUnit associations that can be associated to the logical unit represented by the LogicalDevice
subclass. The instrumentation sets this to 0 if it has no limit.

18.1.11 Deactivated Logical Units

Instrumentation may describe inaccessibility of a logical unit through a path using
ProtocolControllerForUnit.AccessState. This property may be read, but not written by clients. Possible values are
Active, Inactive, “Replication In Progress”, and “Mapping Inconsistency”.

Since default protocol controllers were not defined in SMI-S 1.0, a client could have created a configuration that
does not comply with the SMI-S 1.1.0 semantics (which are intended to mimic SCSI's). Similarly, a non-compliant
configuration could have been created using non-SMI-S interfaces. Instrumentation may set AccessState to
“Mapping Inconsistency” to express these states. A client request to set a valid mapping configuration using
ExposePaths should clear this state and reset AccessState to Active.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 543

Masking and Mapping Subprofile NO_ANSI_ID

165

166

167

168

169

170

171

172
18.1.12 SCSIProtocolController Properties

There are two clarifications to the property descriptions in Table 336. If the implementation supports partial path
SPCs, the intrinsic DeleteInstance is used to delete an SPC with no full paths. If DeleteInstance is called to delete
an SPC with full paths, the instrumentation shall return CIM Error with CIM_ERR_FAILED status code.

18.1.13 Initiator Setting Data

Some storage systems allow a customer (or host-side agent) to provide information about OS hosting initiators.
The storage system uses this information to provide OS-specialized behavior (for example, SCSI responses).
Being able to identify the OS-specific operating mode ("host mode") of an element (i.e., FCPort or

Table 336 - SCSIProtocolController Property Description

Property Description Impact on
ExposePaths (see 1)

Impact on HidePaths

SPCAllowsNoLUs It is valid to have no
LogicalDevices
associated with an
SPC

If true, LUNames,
DeviceNumbers, and
DeviceAccess may
be null. If false,
LUNames and
DeviceAcceses shall
be non-null;
DeviceNumbers
depends on
ClientSelectableDevi
ceNumbers

If true, then all
associated
LogicalDevices may
be specified in
LUNames. If false
and client specifies
names of all
associated LUs in
LUNames, then see 2

SPCAllowsNoTargets It is valid to have no
target ports
associated with an
SPC

If true, TargetPortIDs
may be null. If false,
TargetPortIDs shall
be non-null.

If true, then all
associated target
ports may be
specified in
TargetPortIDs. If
false, and client
specifies names of all
associated target
ports in
TargetPortIDs, then
see 2

SPCAllowsNoInitiators In is valid to have no
initiator port IDs
associated with an
SPC

If true,
InitiatorPortIDs may
be null. If false,
InitiatorPortIDs shall
be non-null.

If true, then all
associated initiator
port IDs may be
specified in
InitiatorPortIDs. If
false, and client
specifies names of all
associated initiator
port IDs in
InitatorPortIDs, then
see 2

1. This only applies to the "Create a new view" use case for ExposePaths

2. The result of this HidePaths request would be an invalid partial path state; therefore, the
instrumentation shall delete the SPC and all its associations.
544

NO_ANSI_ID Masking and Mapping Subprofile

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192
SCSIProtocolController) is essential because there are variances in SCSI communications between different
operating systems or even different versions of the same operating system, and having the incorrect “host mode”
will cause operations to have degraded performance or even fail. This information is modeled as
StorageClientSettingData. StorageClientSettingData.ClientTypes[] is an array of OS names. This array property
allows a single StorageClientSettingData instance to apply to multiple OS Types. The StorageClientSettingData
instances shall be scoped to a particular ComputerSystem because a CIM server hosting multiple devices will
need to distinguish the valid StorageClientSettingData instances for one array from another.

The instrumentation should provide a meaningful name for each StorageClientSettingData instance; typically this
will be names already exposed via existing management tools and documentation.

StorageClientSettingData instances are not created by clients; any storage system that provides OS type behavior
advertises these instances (via EnumerateInstance and GetInstance) and associates them (using
ElementSettingData) with elements previous configured with the setting behavior.

A client can associate StorageHardwareIDs to a StorageClientSettingData instance (when a customer or host
agent maps an initiator to an OS type). This is done by specifying the Setting parameter to
CreateStorageHardwareID). A client can also associate an StorageClientSettingData instance to a storage system
element (such as a Port, a SCSIProtocolController, or a StorageVolume) to request that this element exhibit the
setting-specific behavior. This is done by creating a new ElementSettingData association from the element to the
StorageClientSettingData instance using the intrinsic CreateInstance method. If any ElementSettingData
association between the element and a StorageClientSettingData instance already exists, it shall be deleted by the
client before calling CreateInstance. Figure 84: "StorageClientSettingData Model" provides an example.

Figure 84 - StorageClientSettingData Model

StorageClientSettingData

ClientTypes[] = "AIX",
"Solaris", "Solaris"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageClientSettingData

ClientTypes[] = "Windows"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageHardwareID

ID="5100123412341234"

StorageHardwareID

ID="5100123412341235"

StorageHardwareID

ID="5100123412341236"

ElementSettingData

ElementSettingData
ElementSettingData

StorageHardwareID

ID="5100123412341237"

ElementSettingData

StorageHardwareID

ID="5100123412341236"

ElementSettingData

StorageHardwareID

ID="5100123412341255"

ElementSettingData

Array:
ComputerSystem

Element
Setting
Data

Element
Setting
Data
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 545

Masking and Mapping Subprofile NO_ANSI_ID

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209
Figure 85: "Entire Model" depicts the entire model.

18.1.14 Durable Names and Correlatable IDs of the Profile

The Masking and Mapping Subprofile uses the durable names/correlatable ID for logical devices as defined by the
parent profile.

18.1.15 Instrumentation Requirements

If a PrivilegeManagementService is not present, then all access is assumed. If an PrivilegeManagementService is
present, then access shall be specifically granted.

A LogicalDevice may have ProtocolControllerForUnit associations to multiple SCSIProtocolControllers - this
models a device shared by different subject sets.

Clients may need to know the range of possible unit numbers supported by a storage system. The agent should set
SCSIProtocolController.MaxUnitsControlled.

EXPERIMENTAL

The two CIM_ProtocolControllerMaskingCapabilities properties (SupportedSynchronousMethods and
SupportAsynchronousMethods) describe the methods that are supported by the instrumentation. These
enumerations indicate what operations will be executed as asynchronous jobs or synchronously. If an operation is
included in both, then the underlying implementation is indicating that it may or may not create a job. If an operation
is not included in either, then the instrumentation does not implement that method. If an instrumentation does not
support all of the methods as defined by this subprofile, these properties can help a client determine if there is

Figure 85 - Entire Model

Target Ports
Subprofiles

ProtocolControllerSAPAvailable
ForElement

SCSIProtocol
Endpoint

LogicalDevice
(e.g. StorageVolume)

ProtocolController
ForUnit

AuthorizedPrivilege

SystemSpecificCollection

AuthorizedTarget

StorageHardwareID

MemberOfCollection

ControllerConfigurationService

CIM_ProtocolController
MaskingCapabilities

Privilege
ManagementService

StorageHardwareID
ManagementService

ComputerSystem

HostedService

HostedService

Hosted
Service

ConcreteDependency

ConcreteDependency

Element
Capabilities

*

*

*

**

*

*

*

Concrete
Dependency

ConcreteDependency

*
*

CIM_StorageClient
SettingData

ElementSettingData

Hosted
Collection

AuthorizedSubject
546

NO_ANSI_ID Masking and Mapping Subprofile

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231
sufficient support to manage masking and mapping. Any instrumentation that does not support the required
methods of this subprofile shall not be considered compliant even if these properties are supported.

18.1.16 Element Naming

The name of a ProtocolController, StorageHardwareID, GatewayPathID, or SystemSpecificCollection may be
changed. The existence of the EnabledLogicalElementCapabilities instance associated to the element indicates
that the element can be named. If ElementNameEditSupported is set to TRUE, then the ElementName of the
associated element name may be modified. The ElementNameMask property provides the regular expression that
expresses the limits of the name; see 18.8.19 for the class definition for EnabledLogicalElementCapabilities for
details for this property.

However, this model does not indicate which element names can be used in the creation or modification of the
element through the corresponding service methods if there no elements of a given type. To do this, the
instrumentation shall support a single EnabledLogicalElementCapabilities for each element type. There shall be a
single mask for each storage element type as well. Each of these instances shall be associated to the appropriate
service as described in Table 337.

The EnabledLogicalElementCapabilities associated to an element shall have the ElementName property set as per
Table 338.

If the implementation supports the creation or modification of a given element type and the modification of the
name of the storage element, then it shall produce an EnabledLogicalElementCapabilities instance for each of
those elements.

If an storage element's name is modifiable through once of the aforementioned service methods, it shall also be
modifiable through instance modification. However, a storage element's name may be modifiable through instance
modification but storage element modification may not be allowed through these service methods.

EXPERIMENTAL

Table 337 - Element to Service Mapping

Element Service Created by Service Method

GatewayPathID StorageHardwareIDManagementService CreateGatewayPathID

StorageHardwareID StorageHardwareIDManagementService CreateStorageHardwareID

StorageHardwareID ControllerConfigurationService ExposePaths

SystemSpecificCollection StorageHardwareIDManagementService CreateHardwareIDCollection

ProtocolController ControllerConfigurationService ExposePaths

Table 338 - Element to Element Name Mapping

Element EnabledLogicalElementCapabilities.ElementName

GatewayPathID GatewayPathID Enabled Capabilities

StorageHardwareID StorageHardware Enabled Capabilities

SystemSpecificCollection SystemSpecificCollection Enabled Capabilities

ProtocolController ProtocolController Enabled Capabilities
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 547

Masking and Mapping Subprofile NO_ANSI_ID

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273
18.2 Health and Fault Management Considerations

None.

18.3 Cascading Considerations

None.

18.4 Supported Subprofiles, and Packages

None.

18.5 Methods of the Profile

18.5.1 ExposePaths

ExposePaths is used in place of the AssignAccess and AttachDevice methods used in 1.0. The problem with these
methods was that they required the clients to perform multiple transactions to achieve a valid view. This forced
providers to maintain invalid view states while waiting for the client to complete a sequence of transactions. This
also created non-interoperability when the providers only supported transactions in a certain order, and when a
second client looked at the model before a sequence of transactions was completed.

ExposePaths performs the mapping and masking operation in one method call. It exposes a list of SCSI logical
units (such as RAID volumes or tape drives) to a list of initiators through a list of target ports, through one or more
SCSIProtocolControllers (SPCs). Support for the 1.0 equivalent functionality is available by passing in an existing
SCSIProtocolController.

There are two modes of operation, create and modify. If a NULL value is passed in for the SPC, then the
instrumentation will create at least one SPC that satisfies the request. Depending upon the instrumentation
capabilities, more than one SPC may be created. (e.g. if
ProtocolControllerMaskingCapabilities.OneHardwareIDPerView is true and more than one initiatorID was passed
in, then one SPC per initiatorID will be created). If an SPC is passed in, then the instrumentation attempts to add
the new paths to the existing SPC. Depending upon the instrumentation capabilities, this may result in the creation
of additional SPCs. The instrumentation shall return an error if honoring this request would violate SCSI semantics.

For creating an SPC, the parameters that need to be specified are dependent upon the SPCAllows* properties in
ProtocolControllerMaskingCapabilities. If SPCAllowsNoLUs is false, the caller shall specify a list of LUNames. If it
is true, the caller may specify a list of LUNames or may pass in null. If SPCAllowsNoTargets is false and
PortsPerView is not 'All Ports share the same view' the caller shall specify a list of TargetPortIDs. If it is true, the
caller may specify a list of TargetPortIDs or may pass in null. If SPCAllowsNoInitiators is false, the caller shall
specify a list of InitiatorPortIDs. If it is true, the caller may specify a list of InitiatorPortIDs or may pass in null. If
LUNames is not null, the caller shall specify the DeviceAccess for each logical unit. If the provider's
ProtocolControllerMaskingCapabilities ClientSelectableDeviceNumbers property is TRUE then the client shall
either provide a list of device numbers (LUNs) to use for the paths to be created or pass in NULL. If is false, the
client shall pass in NULL for this parameter.

The LUNames, DeviceNumbers, and DeviceAccesses parameters are mutually indexed arrays - any element in
DeviceNumbers or DeviceAccesses will set a property relative to the LogicalDevice instance named in the
corresponding element of LUNames. LUNames and DeviceAccesses shall have the same number of elements.
DeviceNumbers shall be null (asking the instrumentation to assign numbers) or have the same number of elements
as LUNames. If these conditions are not met, the instrumentation shall return a 'Invalid Parameter' status.

For modifying an SPC, there are three specific use cases identified. The instrumentation shall support these use
cases. Other permutations are allowed, but are vendor-specific. The use cases are: Add LUs to a view, Add
initiator IDs to a view, and Add target port IDs to a view.
548

NO_ANSI_ID Masking and Mapping Subprofile

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291
Add LUs to a view requires that the LUNames parameter not be null and that the InitiatorIDs and TargetPortIDs
parameters be null. DeviceNumbers may be null if ClientSelectableDeviceNumbers is false. DeviceAccess shall be
specified.

Add initiator IDs to a view requires that the LUNames parameter be null, that the InitiatorIDs not be null, and that
the TargetPortIDs parameters be null. DeviceNumbers and DeviceAccess shall be null.

Add target port IDs to a view requires that the LUNames and InitiatorPortIDs parameters be null and is only
possible is PortsPerView is 'Multiple Ports Per View'. DeviceNumbers and DeviceAccess shall also be null.

If a client calls ExposePaths specifying logical units already associated to the SPC and specifies different
DeviceNumber or DeviceAccess values, the instrumentation shall change these properties in the appropriate
ProtocolControllerForUnit instance(s).

When calling ExposePaths where an entry (e.g., LogicalDevice) does not exist, then ExposePaths shall fail and
report an error.

There are four valid use cases for ExposePaths - create plus the three modify use cases above. These four use
cases and the requirements for parameters are summarized in Table 339.

The relevant rules of SCSI semantics are:

- an SPC shall not be exposed through a particular host/target port pair that is in use by another SPC. (In other
words, an SPC and its associated logical units and ports together correspond to the logical unit inventory provided
by SCSI REPORT LUNS and INQUIRY commands)

Table 339 - ExposePath Use Cases

parameter
s/use
cases

LUNames InitiatorPo
rtIDs

TargetPort
IDs

DeviceNu
mbers

DeviceAcc
esses

ProtocolC
ontrollers
(on input)

Create a new
view

See 1) See 1) See 1)

See 2)

See 3) Mandatory,
see 4)

NULL

Add LUs to a
view

Mandatory NULL NULL See 3) Mandatory,
see 4)

contains a
single SPC
ref

Add initiator
IDs to a view
(see 5)

NULL Mandatory NULL NULL NULL contains a
single SPC
ref

Add target
port IDs to a
view (see 6)

NULL NULL Mandatory NULL NULL contains a
single SPC
ref

Vendor-
specific

As long as all the previous use cases are implemented, the instrumentation may support other
vendor-specific combinations of parameters.

1.Dependent on values of new SPCAllowsNo* capability properties described below
2.If PortsPerView is "All ports share same view", TargetPortIDs parameter shall be null.
3.If ClientSelectableDeviceNumbers is true, shall either be null or have same number of
 elements as LUNames. If ClientSelectableDeviceNumbers is false, shall be null.
4.shall have same number of elements as LUNames
5.Only valid if OneHardwareIDPerView is false
6.Only valid if PortsPerView is "Multiple Ports per View"
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 549

Masking and Mapping Subprofile NO_ANSI_ID

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329
- each LogicalDevice associated to an SPC shall have a unique ProtocolControllerForUnit DeviceNumber (logical
unit number)

The instrumentation shall report an error if the client request would violate one of these rules.

If the instrumentation provides PrivilegeManagementService, the results of setting DeviceAccesses shall be
synchronized with PrivilegeManagementService as described in the ProtocolControllerForUnit DeviceAccess
description (18.8.27 "CIM_ProtocolControllerForUnit").

18.5.1.1 Uint32 ExposePaths

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances need to already exist. The members of this array
shall match the Name property of LogicalDevice instances that represent SCSI logical units. See
Table 339, “ExposePath Use Cases” for situations where this parameter may be null.

IN string InitiatorPortIDs[]

IDs of initiator ports. If existing StorageHardwareID instances exist, they shall be used. If no
StorageHardwareID instance matches, then one is implicitly created. See Table 339, “ExposePath Use
Cases” for situations where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See Table 339, “ExposePath Use Cases” for situations where this parameter may be
null.

IN string DeviceNumber[]

A list of logical unit numbers to assign to the corresponding logical unit in the LUNames parameter. (within
the context of the elements specified in the other parameters). If the LUNames parameter is null, then this
parameter shall be null. Otherwise, if this parameter is null, all LU numbers are assigned by the hardware
or instrumentation. This shall be formatted as unseparated uppercase hexadecimal digits, with no leading
“0x”.

IN uint16 DeviceAccess[]

A list of permissions to assign to the corresponding logical unit in the LUNames parameter. This specifies
the permission to assign within the context of the elements specified in the other parameters. Setting this
to 'No Access' assigns the DeviceNumber for the associated initiators, but does not grant read or write
access. If the LUNames parameter is not null then this parameter shall be specified.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element; if null on input, the instrumentation will create one or more new SPC instances.

On output, this will be either null (if a job was created) or the set of SPCs affected (those created or
modified). or those having some part of the ‘view’ modified, e.g. such as association being created or an
AuthorizedPrivilege being created). If a job was started, references to the SPCs affected will be found by
following the AffectedJobElement association from the job.
550

NO_ANSI_ID Masking and Mapping Subprofile

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354
18.5.2 HidePaths

HidePaths is used in place of the HideAccess and DetachDevice methods used in SMI-S 1.0. The problem with
these methods is the same as AssignAccess and AttachDevice, in that they required the clients to perform multiple
transactions to achieve a valid view. This forced providers to maintain invalid view states while waiting for the client
to complete a sequence of transactions. This also created non-interoperability when the providers only supported
transactions in a certain order, and when a second client looked at the model before a sequence of transactions
was completed.

HidePaths is the inverse of ExposePaths. It hides a list of SCSI logical units (such as RAID volumes or tape drives)
from a list of initiators through a list of target ports, through one or more SCSIProtocolControllers (SPCs). Support
the 1.0 equivalent functionality is available by passing in an existing SCSIProtocolController.

When hiding logical units, there are three specific use cases identified. The instrumentation shall support these use
cases. Other permutations are allowed, but are vendor-specific. The use cases are: Remove LUs from a view,
Remove initiator IDs from a view, and Remove target port IDs from a view.

Remove LUs from a view requires that the LUNames parameter not be null and that the InitiatorIDs and
TargetPortIDs parameters be null.

Remove initiator IDs from a view requires that the LUNames parameter be null, that the InitiatorIDs not be null, and
that the TargetPortIDs parameters be null.

Remove target port IDs from a view requires that the LUNames and InitiatorPortIDs parameters be null.

The disposition of the SPC when the last logical unit, initiator ID, or target port ID is removed depends upon the
ProtocolControllerMaskingCapabilites SPCAllowsNo* properties. If SPCAllowsNoLUs is false, then the SPC is
automatically deleted when the last logical unit is removed. If SPCAllowsNoTargets is false, then the SPC is
automatically deleted when the last target port ID is removed. If SPCAllowsNoInitiators is false, then the SPC is
automatically deleted when the last initiator port ID is removed. In all other cases, the SPC needs to be explicitly
deleted via the DeleteInstance intrinsic function or via the DeleteProtocolController method. The use cases for
HidePaths() are summarized in Table 340.

Table 340 - HidePaths Use Cases

Parameters/use cases LUNames InitiatorPo
rtIDs

TargetPortI
Ds

ProtocolController
(on input) see 1

Remove LUs from a view Mandatory NULL NULL contains a single SPC
ref

Remove initiator IDs from a view NULL Mandatory NULL contains a single SPC
ref

Remove target ports from a view
(see 2)

NULL NULL Mandatory contains a single SPC
ref

Hide full paths from a view Mandatory Mandatory Mandatory contains a single SPC
ref

Vendor-specific As long as all the previous use cases are implemented, the instrumentation
may support other vendor-specific combinations of parameters.

1. On output, the provider returns a list of refs to SPCs that have been affected (those created or modified or
those having some part of the ‘view’ modified, e.g. such as association being created or deleted an
AuthorizedPrivilege being created or deleted).Will be NULL if the SPC is automatically deleted as a result of
one or more of the SPCAllowsNoLUs, SPCAllowsNoTargets, or SPCAllowsNoInitiators conditions being
met as a result of the HidePaths operation.

2. Only valid if PortsPerView is "Multiple Ports per View"
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 551

Masking and Mapping Subprofile NO_ANSI_ID

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397
When calling HidePaths where the Port, SPC, StorageHardwareID, or StorageVolume exist, but the association(s)
that are being modified don't exist (e.g. calling HidePaths for a volume that is not currently exposed), then
HidePaths may return success. The rationale for returning success is the net result of the operation is the same
whether or not the association exists, so it is not necessarily considered an error

However, when calling HidePaths where an entry (e.g. Port) does not exist, then HidePaths shall return an error.
The difference between this and the above case is that the above has just a connection between instances
missing, while this case has an actual instance missing. The net result of the HidePaths operation would be
different because HidePaths does not delete the instance (with the exception of the AuthorizedPrivilege), just the
association between instances.

18.5.2.1 uint32 HidePaths

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances need to already exist. See Table 340,
“HidePaths Use Cases” for situations where this parameter may be null.

IN string InitiatorPortIDs[]

IDs of initiator ports. See Table 340, “HidePaths Use Cases” for situations where this parameter may be
null.

IN string TargetPortIDs[]

IDs of target ports. See Table 340, “HidePaths Use Cases” for situations where this parameter may be null.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element. The instrumentation will attempt to remove associations (LUNames, InitiatorPortIDs, or
TargetPortIDs) from this SPC. Depending upon the specific implementation, the instrumentation may need
to create new SPCs with a subset of the remaining associations.

On output, this will be either null (if a job was created or if the SPC was automatically removed per the
SPCAllowsNo* rules) or the set of SPCs affected (those created or modified). If a job was started,
references to the SPCs affected will be found by following the AffectedJobElement association from the
job.

18.5.3 ExposeDefaultLUs

ExposeDefaultLUs is similar to ExposePaths, except ExposeDefaultLUs works with 'default view' SPCs. The
'default view' SPC exposes logical units to all initiators. This SPC is identified by an association to a
StorageHardwareID with Name property set to the empty string. ExposeDefaultLUs exposes a list of SCSI logical
units (such as RAID volumes or tape drives) through a 'default view' SCSIProtocolController (SPC) through a list of
target ports.

As with ExposePaths, there are two modes of operation, create and modify. If a NULL value is passed in for the
SPC, then the instrumentation will attempt to create a new default view. If PortsPerView is 'All Ports share the
same view', then there is at most one default view SPC. If PortsPerView is not 'All Ports share the same view', then
there may be multiple default view SPCs as long as different ports are associated with each. If an SPC is passed
in, then the instrumentation adds the new paths to the existing SPC. The instrumentation may return an error if
honoring this request would violate SCSI semantics.

For creating a default view SPC, the parameters that need to be specified are dependent upon the SPCAllows*
properties in ProtocolControllerMaskingCapabilities. If SPCAllowsNoLUs is false, the caller shall specify a list of
552

NO_ANSI_ID Masking and Mapping Subprofile

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417
LUNames. If it is true, the caller may specify a list of LUNames or may pass in null. If SPCAllowsNoTargets is false,
the caller shall specify a list of TargetPortIDs. If it is true, the caller may specify a list of TargetPortIDs or may pass
in null. If LUNames is not null, the caller shall specify the DeviceAccess for each logical unit. If the provider's
ProtocolControllerMaskingCapabilities ClientSelectableDeviceNumbers property is TRUE then the client shall
either provide a list of device numbers (LUNs) to use for the paths to be created or pass in NULL. If is false, the
client shall pass in NULL for this parameter.

The LUNames, DeviceNumbers, and DeviceAccesses parameters are mutually indexed arrays - any element in
DeviceNumbers or DeviceAccesses will set a property relative to the LogicalDevice instance named in the
corresponding element of LUNames. LUNames and DeviceAccesses shall have the same number of elements.
DeviceNumbers shall be null (asking the instrumentation to assign numbers) or have the same number of elements
as LUNames. If these conditions are not met, the instrumentation shall return a 'Invalid Parameter' status.

For modifying an SPC, there are two specific use cases identified. The instrumentation shall support one and the
other is required depending on a how a property is set. Other permutations are allowed, but are vendor-specific.

The required use case is - Add LUs to a default view. Add LUs to a default view requires that the LUNames
parameter not be null and that the TargetPortIDs parameters be null. DeviceNumbers may be null if
ClientSelectableDeviceNumbers is false. DeviceAccess shall be specified.

Add target port IDs to a default view is only valid if PortsPerView is set to 'Multiple Ports per View'. It requires that
the LUNames, DeviceNumbers, and DeviceAccess shall also be null. The use cases for ExposeDefaultLUs() are
summarized in Table 341.

The relevant rules of SCSI semantics are:

Table 341 - Use Cases for ExposeDefaultLUs

Parameter
s /use
cases

LUNames TargetPort
IDs

DeviceNu
mbers

DeviceAcc
esses

ProtocolControllers (on
input)

Create a new
default view
(see 1)

See 2) See 2) See 3) Mandatory,
see 4)

Shall be null

Add LUs to a
view

Mandatory Shall be null See 3) Mandatory,
see 4)

Shall contain a single SPC
ref

Add target
port IDs to a
view (see 5)

Shall be null Mandatory Shall be null Shall be null Shall contain a single SPC
ref

Vendor-
Specific

As long as all the previous use cases are implemented, the instrumentation may support other
vendor-specific combinations of parameters.

1. Only valid if PortsPerView is not "All Ports share the same View"

2. Dependent on values of SPCAllows* capability properties described above

3. If ClientSelectableDeviceNumbers is true, shall either be null or have same number of elements as
LUNames. If ClientSelectableDeviceNumbers is false, shall be null.

4. Shall have same number of elements as LUNames

5. Only valid if PortsPerView is "Multiple Ports per View"
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 553

Masking and Mapping Subprofile NO_ANSI_ID

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455
• an SPC shall be exposed through a particular host/target port pair that is in use by another SPC. (In other
words, an SPC and its associated logical units and ports together correspond to the logical unit inventory
provided by SCSI REPORT LUNS and INQUIRY commands)

• each LogicalDevice associated to an SPC shall have a unique ProtocolControllerForUnit DeviceNumber
(logical unit number)

The instrumentation shall report an error if the client request would violate one of these rules.

If the instrumentation provides PrivilegeManagementService, the results of setting DeviceAccesses shall be
synchronized with PrivilegeManagementService as described in the ProtocolControllerForUnit DeviceAccess
description (18.8.27 "CIM_ProtocolControllerForUnit").

If the instrumentation supports ExposeDefaultLUs then it shall also support HideDefaultLUs.

18.5.3.1 uint32 ExposeDefaultLUs

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances shall already exist. The members of this array
shall match the Name property of LogicalDevice instances that represent SCSI logical units. See
Table 341, “Use Cases for ExposeDefaultLUs” for situations where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See Table 341, “Use Cases for ExposeDefaultLUs” for situations where this parameter
may be null.

IN string DeviceNumber[]

A list of logical unit numbers to assign to the corresponding logical unit in the LUNames parameter. (within
the context of the elements specified in the other parameters). If the LUNames parameter is null, then this
parameter shall be null. Otherwise, if this parameter is null, all LU numbers are assigned by the hardware
or instrumentation. Each element shall be formatted as unseparated uppercase hexadecimal digits, with
no leading “0x”.

IN uint16 DeviceAccess[]

A list of permissions to assign to the corresponding logical unit in the LUNames parameter. This specifies
the permission to assign within the context of the elements specified in the other parameters. Setting this
to 'No Access' assigns the DeviceNumber for the associated initiators, but does not grant read or write
access. If the LUNames parameter is not null then this parameter shall be specified.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element; there may be multiple references on output. If null on input, the instrumentation will create
one or more new SPC instances.

On output, this will be either null (if a job was created) or the set of SPCs affected (those created or
modified). If a job was started, references to the SPCs affected will be found by following the
AffectedJobElement association from the job.
554

NO_ANSI_ID Masking and Mapping Subprofile

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486
18.5.4 HideDefaultLUs

HideDefaultLUs is similar to HidePaths, except HideDefaultLUs works with 'default view' SPCs. The 'default view'
SPC exposes logical units to all initiators. This SPC is identified by an association to a StorageHardwareID with
Name property set to the empty string. HideDefaultLUs hides a list of SCSI logical units (such as RAID volumes or
tape drives) through a 'default view' SCSIProtocolController (SPC) through a list of target ports.

HideDefaultLUs is the inverse of ExposeDefaultLUs. It hides a list of SCSI logical units (such as RAID volumes or
tape drives) from a list of initiators through a list of target ports, through one or more SCSIProtocolControllers
(SPCs).

When hiding logical units, there are two specific use cases identified. The use cases are: Remove LUs from a
default view and Remove target port IDs from a default view. Remove LUs from a default view requires that the
LUNames parameter not be null and that the TargetPortIDs parameter be null. Remove target port IDs from a
default view is required if PortsPerView is Multiple Ports per view. It requires that the LUNames parameter be null.

The instrumentation shall support the Remove LUs case and shall support the remove target port IDs if
PortsPerView is set to 'Multiple Ports per View'. Other permutations are allowed, but are vendor-specific.

If both LUNames and TargetIDs parameters are non-null and
ProtocolControllerMaskingCapabilities.MaximumMapCount is 0, then the instrumentation shall create new SPCs
and change associations as necessary to meet the client request and maintain the relevant rules of SCSI in the
ExposeDefaultLUs description. If both LUNames and TargetIDs parameters are non-null and
ProtocolControllerMaskingCapabilities.MaximumMapCount is greater than 0, then any client that cannot be
honored by changing associations to the specified SPC shall receive a 'Maximum Map Count Error' response. The
use cases for HideDefaultLUs are summarized in Table 342

The disposition of the SPC when the last logical unit or target port ID is removed depends upon the
ProtocolControllerMaskingCapabilites SPCAllows* properties. If SPCAllowsNoLUs is false, then the SPC is
automatically deleted when the last logical unit is removed. If SPCAllowsNoTargets is false, then the SPC is
automatically deleted when the last target port ID is removed. In all other cases, the SPC shall be explicitly deleted
via the DeleteInstance intrinsic function.

If the instrumentation supports HideDefaultLUs then it shall also support ExposeDefaultLUs.

18.5.4.1 uint32 HideDefaultLUs

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

Table 342 - Use Cases for HideDefaultLUs

parameters/
use cases

LUNames TargetPortIDs ProtocolController (on input)

Remove LUs from a
default view

Mandatory Shall be null Mandatory

Remove target ports from
a view (see 1)

Shall be null Mandatory Mandatory

Vendor-specific As long as all the previous usecases are implemented, the instrumentation may
support other vendor-specific combinations of parameters.

1. Only valid if PortsPerView is "Multiple Ports per View"
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 555

Masking and Mapping Subprofile NO_ANSI_ID

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524
An array of IDs of logical unit instances. The LU instances shall already exist. See Table 342, “Use Cases
for HideDefaultLUs” for situations where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See Table 342, “Use Cases for HideDefaultLUs” for situations where this parameter
may be null.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this shall contain exactly one
element. The instrumentation will attempt to remove associations (LUNames or TargetPortIDs) from this
SPC. Depending upon the specific implementation, the instrumentation may need to create new SPCs with
a subset of the remaining associations.

On output, this will be either null (if a job was created or if the SPC was automatically removed per the
SPCAllowsNo* rules) or the set of SPCs affected (those created or modified). If a job was started,
references to the SPCs affected will be found by following the AffectedJobElement association from the
job.

18.5.5 CreateStorageHardwareID

CreateStorageHardwareID creates a StorageHardwareID and the ConcreteDependency association between this
service and the new StorageHardwareID.

18.5.5.1 Uint32 CreateStorageHardwareID(

IN string ElementName

The ElementName of the new StorageHardwareID instance.

IN string StorageID

StorageID is the value used by the SecurityService to represent identity - in this case, a hardware
worldwide unique name.

IN Uint16 IDType

The type of the StorageID property.

IN string OtherIDType

The type of the storage ID, when IDType is 'Other'.

IN CIM_StorageClientSettingData REF Setting

REF to the StorageClientSettingData containing the OSType appropriate for this initiator. If left NULL, the
instrumentation assumes a standard OSType - i.e., that no OS-specific behavior for this initiator is defined.

IN CIM_StorageHardwareID REF HardwareID

REF to the new StorageHardwareID instance.

18.5.6 DeleteStorageHardwareID

DeleteStorageHardwareID deletes a StorageHardwareID and the ConcreteDependency association between the
ID and the service. If the StorageHardwareID still has associations to AuthorizedPrivilege instances (and thus to
ProtocolControllers), then this method shall return an error. The reason is that deleting it without deleting the
associations would cause an invalid model. Deleting the Association and AuthorizedPrivilege and SPC would be a
very unexpected side effect. The client shall call HidePaths() first to delete these associations.
556

NO_ANSI_ID Masking and Mapping Subprofile

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561
18.5.6.1 Uint32 DeleteStorageHardwareID

IN CIM_StorageHardwareID REF HardwareID

REF to the StorageHardwareID to delete

18.5.7 CreateHardwareIDCollection

Create a group of StorageHardwareIDs as a new instance of SystemSpecificCollection. This is useful to define a
set of authorized subjects that can access volumes in a disk array. This method allows the client to make a request
of a specific Service instance to create the collection and provide the appropriate class name. When these
capabilities are standardized in CIM/WBEM, this method can be deprecated and intrinsic methods used. In addition
to creating the collection, this method causes the creation of the HostedCollection association (to this service's
scoping system) and MemberOfCollection association to members of the IDs parameter.

18.5.7.1 uint32 CreateHardwareIDCollection

IN string ElementName

The ElementName to be assigned to the created collection.

IN string HardwareIDs[]

Array of strings containing representations of references to StorageHardwareID instances that will become
members of the new collection.

OUT CIM_SystemSpecificCollection REF Collection

The new instance of SystemSpecificCollection that is created.

18.5.8 AddHardwareIDsToCollection

Create MemberOfCollection instances between the specified Collection and the StorageHardwareIDs. This
method allows the client to make a request of a specific Service instance to create the associations. When these
capabilities are standardized in CIM/WBEM, this method can be deprecated and intrinsic methods used.

18.5.8.1 uint32 AddHardwareIDsToCollection

IN string HardwareIDs[]

Array of strings containing representations of references to StorageHardwareID instances that will become
members of the collection.

IN CIM_SystemSpecificCollection REF Collection

The Collection which groups the StorageHardwareIDs.

EXPERIMENTAL

18.5.9 DeleteProtocolController

DeleteProtocolController deletes the ProtocolController and all associations connected directly to this
ProtocolController. It shall also delete any AuthorizedPrivilege instances associated to this ProtocolController as
otherwise they would be left dangling. Since this subprofile does not have the notion of child ProtocolControllers,
the DeleteChildrenProtocolControllers parameter shall be false. If the DeleteLogicalUnits parameter is True, the
provider also deletes LogicalDevice instances associated via ProtocolControllerForUnit to this ProtocolController.
LogicalDevice instances shall only be deleted when they are not part of any other ProtocolControllerForUnit
associations. Whether or not the volumes may be deleted shall be determined by the instrumentation's support for
the ReturnToStoragePool method in Block Services.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 557

Masking and Mapping Subprofile NO_ANSI_ID

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600
601

602
18.5.9.1 Uint32 DeleteProtocolController(

 IN CIM_ProtocolController REF ProtocolController

 ProtocolController to be deleted.

IN boolean DeleteChildrenProtocolControllers

If true, the management instrumentation provider will also delete 'child' ProtocolControllers (i.e., those
defined as Dependent references in instances of AssociatedProtocolController where this
ProtocolController is the Antecedent reference). Also, all direct associations involving the 'child'
ProtocolControllers will be removed.

IN boolean DeleteUnits

If true, the management instrumentation provider will also delete LogicalDevice instances associated via
ProtocolControllerForUnit, to this ProtocolController and its children. (Note that 'child' controllers will only
be affected if the DeleteChildrenProtocolControllers input parameter is TRUE). LogicalDevice instances
are only deleted if there are NO remaining ProtocolControllerForUnit associations, to other
ProtocolControllers.

EXPERIMENTAL

18.6 Client Considerations and Recipes

18.6.1 Expose and Hide LUNs

// DESCRIPTION:

//

// Test the accuracy of the Masking and Mapping

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. A reference to a storage element, a Storage Volume or Logical Disk

// is defined in the $StorageElement-> variable

// This storage element must not already be masked to any initiator

// 2. The WWN of two different Initiator Ports to be masked to is defined in the

// #InitiatorWWN1 and #InitiatorWWN2 variables.

// 3. The value of

// CIM_ProtocolControllerMaskingCapabilities.ClientSelectableDeviceNumbers

// is stored in #ClientSelectableDeviceNumbers

// 4. If #ClientSelectableDeviceNumbers is TRUE, the device number to be used

// for mapping is defined in #DeviceNumber.

// 5. The value of CIM_ProtocolControllerMaskingCapabilities.PortsPerView is

// stored in #PortsPerView

// 6. If #PortsPerView != 4 (All ports share the same view), the target port WWN

// is contained in the #TargetPortWWN variable.

// 7. The ControllerConfigurationService has been found and the object path

// value is stored in $ControllerConfigService->

// 8. The value of CIM_ProtocolControllerMaskingCapabilities.OneHardwareIDPerView
is

// stored in #OneHardwareIDPerView
558

NO_ANSI_ID Masking and Mapping Subprofile

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644
// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobState != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

/ Step 1. Subscribe for indications on the Job

// Job success -- Status is ‘17’ (“Completed”) and ‘2’ (“OK”)

#Filter1 = “SELECT FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2 “

// Determine if the Indication already exists

// If it doesn’t, create it

// Job failure -- Status is ‘17’ (“Completed”) and ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

// Determine if the Indication already exists

// If it doesn’t, create it

/ Step 2. Expose a new LUN to an initiator

$StorageElement = GetInstance($StorageElement->,

false, false, false, {“Name”})

%InputArguments[“LUNames”] = {$StorageElement.Name}

%InputArguments[“InitiatorPortIDs”] = {#InitiatorWWN1}
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 559

Masking and Mapping Subprofile NO_ANSI_ID

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686
if (#PortsPerView != 4) {// 4 = All ports share the same view

 %InputArguments[“TargetPortIDs”] = {#TargetPortWWN}

}

if (#ClientSelectableDeviceNumbers == TRUE) {

 %InputArguments[“DeviceNumbers”] = {#DeviceNumber}

 %InputArguments[“DeviceAccesses”] = {2} // Read-Write

}

else {

 %InputArguments[“DeviceNumbers”] = NULL

 %InputArguments[“DeviceAccesses”] = NULL

}

#ReturnCode = InvokeMethod($ControllerConfigService->,

 “ExposePaths”,

 %InputArguments,

 %OutputArguments)

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

<ERROR! Method failure>

}

$MMJob-> = %OutputArguments[“Job”]

if ($MMJob-> == null) {

 $CreatedOrModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

}

else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $MMJob->)

 // Now get the SPCs

 $CreatedOrModifiedSPCs->[] = Associators(

 $MMJob->,

 “CIM_AffectedJobElement”,

 “CIM_ProtocolController”,

 “AffectingElement”,

 “AffectedElement”,

 false, false, null)

}

// Verify results

if ($CreatedOrModifiedSPCs->[].length == 0) {

 <ERROR! There must be one or more SPC created or modified>

}

#Found = false

for #i in $CreatedOrModifiedSPCs->[] {
560

NO_ANSI_ID Masking and Mapping Subprofile

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732
 $CheckSPCForUnits[] = References($CreatedOrModifiedSPCs->[#i],

 “CIM_ProtocolControllerForUnit”,

 “Antecedent”,

 false, false, null)

 for #u in $CheckSPCForUnits[] {

 if (#ClientSelectableDeviceNumbers == TRUE) {

 if ($CheckSPCForUnits[#u].DeviceNumber != #DeviceNumber ||

 $CheckSPCForUnits[#u].DeviceAccess != 2) {

 // no match found try next one (if any)

 continue

 }

 }

 // Validate Initiator ID

 $CheckAuthTargets->[] = AssociatorNames($CheckSPCForUnits[#u].Antecedent,

 “CIM_AuthorizedTarget”,

 “CIM_AuthorizedPrivilege”,

 null, null)

 for #k in $CheckAuthTargets->[] {

 $StorageHWIDs[] = Associators($CheckAuthTargets->[#k],

 “CIM_AuthorizedSubject”,

 “CIM_StorageHardwareID”,

 null, null, false, false, null)

 for #j in $StorageHWIDs[] {

 if ($StorageHWIDs[#j].StorageID == #InitiatorWWN1) {

 #Found = true

 break

 }

 }

 if (#Found == true) {

 break

 }

 }

 // Validate StorageElement

 if (#Found == true) {// If we didn’t find initiator then don’t bother

 $CheckStorageElement = GetInstance($CheckSPCForUnits[#u].Dependent,

 false, false, false, null)

 if ($StorageElement.Name != $CheckStorageElement.Name) {

 <ERROR! Masked and Mapped Storage Element not found>

 }

 }

 }

}

if (#Found == false) {

 <ERROR! Created mapping and masking was not found>

}

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 561

Masking and Mapping Subprofile NO_ANSI_ID

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777
// Note: since we created one SPC, there should only be one entry here

$AllCreatedOrModifiedSPCs->[] = $CreatedOrModifiedSPCs->[]

// Step 3. Expose a currently exposed LUN to a different initiator

if (#OneHardwareIDPerView == FALSE) {

 %InputArguments[“LUNames”] = NULL

 %InputArguments[“InitiatorPortIDs”] = {#InitiatorWWN2}

 %InputArguments[“TargetPortIDs”] = NULL

 %InputArguments[“DeviceAccesses”] = NULL

 // Note: ExposePaths on a modify operation takes an array containing

 // one and only one SPC, which is what we have here

 %InputArguments[“ProtocolControllers”] = { $CreatedOrModifiedSPCs->[0]}

 #ReturnCode = InvokeMethod($ControllerConfigService->,

 “ExposePaths”,

 %InputArguments,

 %OutputArguments)

 // 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

 if (#ReturnCode != 0 || #ReturnCode != 4096) {

 <ERROR! Method failure>

 }

 $MMJob-> = %OutputArguments[“Job”]

 if ($MMJob-> == null) {

 $CreatedOrModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

 }

 else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $MMJob->)

 // Now get the SPCs

 $CreatedOrModifiedSPCs->[] = Associators($MMJob->,

 “CIM_AffectedJobElement”,

 “CIM_ProtocolController”,

 “AffectingElement”,

 “AffectedElement”,

 false, false, null)

 }

 // Verify results

 if ($CreatedOrModifiedSPCs->[].length == 0) {

 <ERROR! There must be one or more SPC created or modified>

 }

 #Found = false

 for #i in $CreatedOrModifiedSPCs->[] {

 $CheckSPCForUnits[] = References($CreatedOrModifiedSPCs->[#i],
562

NO_ANSI_ID Masking and Mapping Subprofile

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822
 “CIM_ProtocolControllerForUnit”,

 “Antecedent”,

 false, false, null)

 for #u in $CheckSPCForUnits[] {

 // Validate Initiator ID

 $CheckAuthTargets->[] =

 AssociatorNames($CheckSPCForUnits[#u].Antecedent,

 “CIM_AuthorizedTarget”,

 “CIM_AuthorizedPrivilege”,

 null, null)

 for #k in $CheckAuthTargets->[] {

 $StorageHWIDs[] = Associators($CheckAuthTargets->[#k],

 “CIM_AuthorizedSubject”,

 “CIM_StorageHardwareID”,

 null, null, false, false, null)

 for #j in $StorageHWIDs[] {

 if ($StorageHWIDs[#j].StorageID == #InitiatorWWN2) {

 #Found = true

 break

 }

 }

 if (#Found == true) {

 break

 }

 }

 // Validate StorageElement

 if (#Found == true) {// If we didn’t find initiator then don’t bother

 $CheckStorageElement =

 GetInstance($CheckSPCForUnits[#u].Dependent,

 false, false, false, null)

 if ($StorageElement.Name != $CheckStorageElement.Name) {

 <ERROR! Masked and Mapped Storage Element not found>

 }

 }

 }

 }

 if (#Found == false) {

 <ERROR! Created mapping and masking was not found>

 }

 $AllCreatedOrModifiedSPCs->[] = $AllCreatedOrModifiedSPCs->[] +

 $CreatedOrModifiedSPCs->[]

 /* Current contents of $AllCreatedOrModifiedSPCs->[] array

 plus any new, unique SPC REFs */

} // if #OneHardwareIDPerView == FALSE

/ Step 4. Hide the paths previously exposed
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 563

Masking and Mapping Subprofile NO_ANSI_ID

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868
// Since we can only pass in one SPC to HidePaths, we need to loop

// through the SPCs and call HidePaths for each one

$ModifiedSPCs->[] = null

for #spc in $AllCreatedOrModifiedSPCs->[] {

 $StorageElement = GetInstance($StorageElement->,

 false, false, false, {“Name”})

 %InputArguments2[“LUNames”] = {$StorageElement.Name}

 if (#OneHardwareIDPerView == FALSE) {

 %InputArguments2[“InitiatorPortIDs”] = {#InitiatorWWN1,#InitiatorWWN2}

 }

 else {

 %InputArguments2[“InitiatorPortIDs”] = {#InitiatorWWN1}

 }

 if (#PortsPerView != 4) { // All ports share the same view

 %InputArguments[“TargetPortIDs”] = {#TargetPortWWN}

 }

 %InputArguments2[“ProtocolControllers”] = {$AllCreatedOrModifiedSPCs->[#spc]}

 #ReturnCode = InvokeMethod($ControllerConfigService->,

 “HidePaths”,

 %InputArguments2, %OutputArguments2)

 // 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

 if(#ReturnCode != 0 || #ReturnCode != 4096) {

 <ERROR! Method failure>

 }

 // Save any SPCs returned for later validation

 $MMJob-> = %OutputArguments[“Job”]

 if ($MMJob == null) {

 $ModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

 }

 else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $MMJob->)

 // Now get the SPCs

 $CreatedOrModifiedSPCs->[] = Associators(

 $MMJob->,

 “CIM_AffectedJobElement”,

 “CIM_ProtocolController”,

 “AffectingElement”,

 “AffectedElement”,

 false,

 false,

 null)
564

NO_ANSI_ID Masking and Mapping Subprofile

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913
 $ModifiedSPCs->[] = $ModifiedSPCs->[] + $CreatedOrModifiedSPCs->[]

 /* Current contents of $ModifiedSPCs->[] array

 plus any new, unique SPC REFs from $CreatedOrModifiedSPCs->[]

 this list may be null */

 }

}

// Verify results

#Found = false

// See if the storage element is still associated to one of the SPCs

$CheckSPCs->[] = AssociatorNames($StorageElement->,

 “CIM_ProtocolControllerForUnit”,

 “CIM_ProtocolController”,

 // Assumes StorageElement LogicalDevice

 null, null)

for #x in $CheckSPCs->[] {

 for #i in $ModifiedSPCs->[] {

 if($CheckSPCs->[#x].DeviceID == $ModifiedSPCs->[#i].DeviceID) {

 #Found = true

 break

 }

 }

 if (#Found == true) {

 <ERROR! Element still mapped>

 }

}

// See if the Initiator WWNs are still associated to one of the SPCs

for #i in $ModifiedSPCs->[] {

 $CheckAuthPrivilege->[] = AssociatorNames($ModifiedSPCs->[#i],

 “CIM_AuthorizedTarget”,

 “CIM_AuthorizedPrivilege”,

 null, null)

 for #k in $CheckAuthPrivilege->[] {

 $StorageHWIDs[] = Associators($CheckAuthPrivilege->[#k],

 “CIM_AuthorizedSubject”,

 “CIM_StorageHardwareID”,

 null, null, false, false, { “StorageID” })

 for #j in $StorageHWIDs[] {

 if($StorageHWIDs[#j].StorageID == #InitiatorWWN1 ||

 $StorageHWIDs[#j].StorageID == #InitiatorWWN2) {

 #Found = true

 break

 }

 }
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 565

Masking and Mapping Subprofile NO_ANSI_ID

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

 if(#Found == true) {

 break // CheckAuthTargets loop

 }

 }

 if(#Found == true) {

 <ERROR! Element still masked>

 }

}

18.6.2 Set Host Mode for a Port

// DESCRIPTION:

//

// Associate a ElementSettingData to a Port

// In this use case, the client wishes to set the FCPort to a specific

// OS-type.

// 1. Find a StorageClientSettingData instance to uses by enumerating

// all instances of StorageClientSettingData scoped to that

// ComputerSystem

// 2. Identify the Port to use

// 3. Find the existing ElementSettingData association (if any),

// 4. Delete it via DeleteInstance

// 5. Create a new one from the Port to the

// StorageClientSettingData via CreateInstance

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The StorageClientSettingData instance to use has been identified

// and its reference stored in $ClientSettingData->

// 2. A Port has been identified and the reference stored in

// $Port->

// Step 1. Delete any existing ElementSettingData association

$ExistingAssocs[] = Associators(

 $Port->,

 “CIM_ElementSettingData”,

 “CIM_StorageClientSettingData”,

 “ManagedElement”,

 “SettingData”,

 false, false, null)

for #i in $ExistingAssocs[] {

 $ObjectPath-> = $ExistingAssocs[#i].getObjectPath()

 #Result = DeleteInstance($ObjectPath->)

}

// Step 2. Associate the Port to the new setting
566

NO_ANSI_ID Masking and Mapping Subprofile

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994
$instance = newInstance(“CIM_ElementSettingData”)

$instance.ManagedElement = $Port->

$instance.SettingData = $ClientSettingData->

$CreatedInst-> = CreateInstance($instance)

18.6.3 Set Host Mode for a ProtocolController

// DESCRIPTION:

//

// Associate a ElementSettingData to a ProtocolController

// In this use case, the client wishes to set the ProtocolController

// to a specific OS-type.

// 1. Find a StorageClientSettingData instance to uses by enumerating

// all instances of StorageClientSettingData scoped to that

// ComputerSystem

// 2. Identify the ProtocolController to use

// 3. Find the existing ElementSettingData association (if any),

// 4. Delete it via DeleteInstance

// 5. Create a new one from the ProtocolController to the

// StorageClientSettingData via CreateInstance

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The StorageClientSettingData instance to use has been identified

// and its reference stored in $ClientSettingData->

// 2. A ProtocolController has been identified and the reference stored in

// $SPC->

// Step 1. Delete any existing ElementSettingData association

$ExistingAssocs[] = Associators(

 $SPC->,

 “CIM_ElementSettingData”,

 “CIM_StorageClientSettingData”,

 “ManagedElement”,

 “SettingData”,

 false, false, null)

for #i in $ExistingAssocs[] {

 $ObjectPath-> = $ExistingAssocs[#i].getObjectPath()

 #Result = DeleteInstance($ObjectPath->)

}

// Step 2. Associate the ProtocolController to the new setting

$instance = newInstance(“CIM_ElementSettingData”)

$instance.ManagedElement = $SPC->
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 567

Masking and Mapping Subprofile NO_ANSI_ID

995

996

997

998

999

1000
$instance.SettingData = $ClientSettingData->

$CreatedInst-> = CreateInstance($instance)

18.7 Registered Name and Version

Masking and Mapping version 1.4.0 (Component Profile)

18.8 CIM Elements

Table 343 describes the CIM elements for Masking and Mapping.

Table 343 - CIM Elements for Masking and Mapping

Element Name Requirement Description

18.8.1 CIM_AuthorizedPrivilege Mandatory

18.8.2 CIM_AuthorizedSubject Mandatory

18.8.3 CIM_AuthorizedTarget Mandatory

18.8.4 CIM_ConcreteDependency
(Associates ControllerConfiguirationService
and ProtocolController)

Mandatory

18.8.5 CIM_ConcreteDependency
(Associates PrivilegeManagementService and
AuthorizedPrivilege)

Mandatory

18.8.6 CIM_ConcreteDependency
(Associates
StorageHardwareIDManagementService and
StorageHardwareID)

Mandatory

18.8.7 CIM_ConcreteDependency
(Associates
StorageHardwareIDManagementService and
SystemSpecificCollection)

Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs.

18.8.8 CIM_ControllerConfigurationService Mandatory

18.8.9 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ControllerConfigurationService)

Optional Associates
EnabledLogicalElementCapabilities with
ControllerConfigurationService.

18.8.10 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ProtocolController)

Optional Expressed the ability for the element to be
named or have its state changed.

18.8.11 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareID)

Optional Associates
EnabledLogicalElementCapabilities to
StorageHardwareID.
568

NO_ANSI_ID Masking and Mapping Subprofile
18.8.12 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService)

Optional Associates
EnabledLogicalElementCapabilities with
StorageHardwareIDManagementService.

18.8.13 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
SystemSpecificCollection)

Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs. Associates
EnabledLogicalElementCapabilities and
SystemSpecificCollection.

18.8.14 CIM_ElementCapabilities (System to
ProtocolControllerMaskingCapabilities)

Mandatory

18.8.15 CIM_ElementSettingData (Associates
ComputerSystem and
StorageClientSettingData)

Mandatory

18.8.16 CIM_ElementSettingData (Associates
Port and StorageClientSettingData)

Optional

18.8.17 CIM_ElementSettingData (Associates
ProtocolController and
StorageClientSettingData)

Optional

18.8.18 CIM_ElementSettingData (Associates
StorageHardwareID and
StorageClientSettingData)

Optional

18.8.19
CIM_EnabledLogicalElementCapabilities

Optional This class is used to express the naming and
possible requested state change possibilities
for storage elements.

18.8.20 CIM_HostedCollection Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs.

18.8.21 CIM_HostedService (Associates
ComputerSystem and
ControllerConfigurationService)

Mandatory

18.8.22 CIM_HostedService (Associates
ComputerSystem and
PrivilegeManagementService)

Mandatory

18.8.23 CIM_HostedService (Associates
ComputerSystem and
StorageHardwareIDManagementService)

Mandatory

18.8.24 CIM_MemberOfCollection Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs.

18.8.25 CIM_PrivilegeManagementService Mandatory

18.8.26 CIM_ProtocolController Mandatory

Table 343 - CIM Elements for Masking and Mapping

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 569

Masking and Mapping Subprofile NO_ANSI_ID

1001
 18.8.1 CIM_AuthorizedPrivilege

18.8.27 CIM_ProtocolControllerForUnit Mandatory

18.8.28
CIM_ProtocolControllerMaskingCapabilities

Mandatory

18.8.29 CIM_SAPAvailableForElement Mandatory

18.8.30 CIM_StorageClientSettingData Mandatory

18.8.31 CIM_StorageHardwareID Mandatory

18.8.32
CIM_StorageHardwareIDManagementService

Mandatory

18.8.33 CIM_SystemSpecificCollection Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs.

18.8.34
SNIA_ProtocolControllerMaskingCapabilities

Optional An experimental subclass of
CIM_ProtocolControllerMaskingCapabilities.

18.8.35 SNIA_StorageHardwareID Optional Experimental SNIA class adding SAS Address
IDs.

18.8.36
SNIA_StorageHardwareIDManagementServic
e

Optional Experimental subclass with support for SAS
StorageHardwareIDs.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Creation of a ProtocolController.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Deletion of a ProtocolController.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_ProtocolControllerForUnit

Mandatory Creation of a ProtocolControllerForUnit
association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_ProtocolControllerForUnit

Mandatory Deletion of a ProtocolControllerForUnit
association.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolControllerForUnit

Mandatory Modification of a ProtocolControllerForUnit
association (e.g. changing DeviceNumber).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Creation of an AuthorizedSubject association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Deletion of an AuthorizedSubject association.

Table 343 - CIM Elements for Masking and Mapping

Element Name Requirement Description
570

NO_ANSI_ID Masking and Mapping Subprofile

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025
Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 344 describes class CIM_AuthorizedPrivilege.

18.8.2 CIM_AuthorizedSubject

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 345 describes class CIM_AuthorizedSubject.

18.8.3 CIM_AuthorizedTarget

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Table 344 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Optional User friendly name.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write').

Table 345 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

PrivilegedElement Mandatory The Subject for which Privileges are granted or denied.

Privilege Mandatory The Privilege either granted or denied to an Identity or
group of Identities collected by a Role.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 571

Masking and Mapping Subprofile NO_ANSI_ID

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041
Requirement: Mandatory

Table 346 describes class CIM_AuthorizedTarget.

18.8.4 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 347 describes class CIM_ConcreteDependency (Associates ControllerConfiguirationService and
ProtocolController).

18.8.5 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivilege)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 348 describes class CIM_ConcreteDependency (Associates PrivilegeManagementService and
AuthorizedPrivilege).

Table 346 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

TargetElement Mandatory The target set of resources to which the Privilege applies.

Privilege Mandatory The Privilege affecting the target resource.

Table 347 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates Con-
trollerConfiguirationService and ProtocolController)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 348 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates Privi-
legeManagementService and AuthorizedPrivilege)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
572

NO_ANSI_ID Masking and Mapping Subprofile

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062
18.8.6 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and
StorageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 349 describes class CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and
StorageHardwareID).

18.8.7 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and
SystemSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 350 describes class CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and
SystemSpecificCollection).

18.8.8 CIM_ControllerConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 349 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates Stor-
ageHardwareIDManagementService and StorageHardwareID)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 350 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates Stor-
ageHardwareIDManagementService and SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 573

Masking and Mapping Subprofile NO_ANSI_ID

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075
Table 351 describes class CIM_ControllerConfigurationService.

18.8.9 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 352 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ControllerConfigurationService).

18.8.10 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 351 - SMI Referenced Properties/Methods for CIM_ControllerConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

ExposePaths() Mandatory

HidePaths() Mandatory

ExposeDefaultLUs() Optional

HideDefaultLUs() Optional

DeleteProtocolContro
ller()

Optional

Table 352 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
574

NO_ANSI_ID Masking and Mapping Subprofile

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090
Table 353 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController).

18.8.11 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 354 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID).

18.8.12 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 355 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService).

Table 353 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to ProtocolController)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 354 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to StorageHardwareID)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 355 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 575

Masking and Mapping Subprofile NO_ANSI_ID

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108
18.8.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 356 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
SystemSpecificCollection).

18.8.14 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 357 describes class CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities).

18.8.15 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 356 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 357 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to Proto-
colControllerMaskingCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory
576

NO_ANSI_ID Masking and Mapping Subprofile

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123
Table 358 describes class CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData).

18.8.16 CIM_ElementSettingData (Associates Port and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 359 describes class CIM_ElementSettingData (Associates Port and StorageClientSettingData).

18.8.17 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 360 describes class CIM_ElementSettingData (Associates ProtocolController and
StorageClientSettingData).

18.8.18 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)

Table 358 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Com-
puterSystem and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 359 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port
and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 360 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Proto-
colController and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 577

Masking and Mapping Subprofile NO_ANSI_ID

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139
Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 361 describes class CIM_ElementSettingData (Associates StorageHardwareID and
StorageClientSettingData).

18.8.19 CIM_EnabledLogicalElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 362 describes class CIM_EnabledLogicalElementCapabilities.

18.8.20 CIM_HostedCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Table 361 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Stor-
ageHardwareID and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 362 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory The moniker for the instance.

ElementNameEditSu
pported

Mandatory Denotes whether an storage element can be named.

MaxElementNameLe
n

Mandatory Specifies the maximum length in glyphs (letters) for the
name. See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content
and format for the element name. See MOF for details.

RequestedStatesSup
ported

Optional Expresses the states to which this element may be
changed using the RequestStateChange method. If this
property, it may be assumed that the state may not be
changed.
578

NO_ANSI_ID Masking and Mapping Subprofile

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153
Requirement: Implementation support for collections of StorageHardwareIDs.

Table 363 describes class CIM_HostedCollection.

18.8.21 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 364 describes class CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService).

18.8.22 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 365 describes class CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService).

Table 363 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 364 - SMI Referenced Properties/Methods for CIM_HostedService (Associates Computer-
System and ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 365 - SMI Referenced Properties/Methods for CIM_HostedService (Associates Computer-
System and PrivilegeManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 579

Masking and Mapping Subprofile NO_ANSI_ID

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172
18.8.23 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 366 describes class CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService).

18.8.24 CIM_MemberOfCollection

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection,
CIM_StorageHardwareIDManagementService.AddHardwareIDsToCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 367 describes class CIM_MemberOfCollection.

18.8.25 CIM_PrivilegeManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 366 - SMI Referenced Properties/Methods for CIM_HostedService (Associates Computer-
System and StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 367 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
580

NO_ANSI_ID Masking and Mapping Subprofile

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189
Table 368 describes class CIM_PrivilegeManagementService.

18.8.26 CIM_ProtocolController

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 369 describes class CIM_ProtocolController.

18.8.27 CIM_ProtocolControllerForUnit

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Table 368 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System Name.

Name Mandatory Uniquely identifies the Service.

ElementName Mandatory User friendly name.

AssignAccess() Mandatory

RemoveAccess() Mandatory

Table 369 - SMI Referenced Properties/Methods for CIM_ProtocolController

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System's Name.

DeviceID Mandatory Unique name for the ProtocolController.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 581

Masking and Mapping Subprofile NO_ANSI_ID

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200
Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 370 describes class CIM_ProtocolControllerForUnit.

18.8.28 CIM_ProtocolControllerMaskingCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 371 describes class CIM_ProtocolControllerMaskingCapabilities.

Table 370 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be
formatted as unseparated uppercase hexadecimal digits,
with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as
exposed through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block
Services StorageVolume).

Table 371 - SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Mandatory User-friendly name.

ValidHardwareIdType
s

Mandatory A list of the valid values for StrorageHardwareID.IDType.

PortsPerView Mandatory Indicates the way that ports per view (ProtocolController)
are handled.

ClientSelectableDevi
ceNumbers

Mandatory Indicates whether the client can specify the
DeviceNumbers parameter when calling
ControllerConfigurationService.ExposePaths().

OneHardwareIDPerV
iew

Mandatory Set to true if this storage system limits configurations to a
single subject hardware ID per view.

PrivilegeDeniedSupp
orted

Mandatory Set to true if this storage system allows a client to create a
Privilege instance with PrivilegeGranted set to FALSE.
582

NO_ANSI_ID Masking and Mapping Subprofile

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211
18.8.29 CIM_SAPAvailableForElement

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

UniqueUnitNumbers
PerPort

Mandatory Indicates whether different ProtocolContollers attached to a
SCSIProtocolEndpoint can expose the same unit numbers
(e.g. multiple LUN 0s) or if the numbers must be unique.

ProtocolControllerSu
pportsCollections

Optional Indicates the storage system supports
SystemSpecificCollections of StorageHardwareIDs.

OtherValidHardwareI
DTypes

Conditional Conditional requirement: Properties required when
ValidHardwareIDTypes includes 1 (Other).An array of
strings describing types for valid
StorageHardwareID.IDType. Used when the
ValidHardwareIdTypes includes Other.

MaximumMapCount Mandatory The maximum number of ProtocolControllerForUnit
associations that can be associated with a single
LogicalDevice (for example, StorageVolume). Zero
indicates there is no limit.

SPCAllowsNoLUs Mandatory Set to true if a client can create an SPC with no
LogicalDevices.

SPCAllowsNoTargets Mandatory Set to true if a client can create an SPC with no target
SCSIProtocolEndpoints.

SPCAllowsNoInitiator
s

Mandatory Set to true if a client can create an SPC with no
StorageHardwareIDs.

SPCSupportsDefault
Views

Mandatory Set to true if it the instrumentation supports default view
SPCs that exposes logical units to all initiators.

Table 371 - SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 583

Masking and Mapping Subprofile NO_ANSI_ID

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225
Table 372 describes class CIM_SAPAvailableForElement.

18.8.30 CIM_StorageClientSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 373 describes class CIM_StorageClientSettingData.

18.8.31 CIM_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Mandatory

Table 374 describes class CIM_StorageHardwareID.

Table 372 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 373 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

ClientTypes Mandatory Array of OS names.

Table 374 - SMI Referenced Properties/Methods for CIM_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5 (Other or
PortWWN or NodeWWN or Hostname or iSCSI Name).
584

NO_ANSI_ID Masking and Mapping Subprofile

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237
18.8.32 CIM_StorageHardwareIDManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 375 describes class CIM_StorageHardwareIDManagementService.

18.8.33 CIM_SystemSpecificCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 376 describes class CIM_SystemSpecificCollection.

Table 375 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

CreateStorageHardw
areID()

Mandatory

DeleteStorageHardw
areID()

Mandatory

CreateHardwareIDC
ollection()

Optional

AddHardwareIDsToC
ollection()

Optional

Table 376 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 585

Masking and Mapping Subprofile NO_ANSI_ID

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258
18.8.34 SNIA_ProtocolControllerMaskingCapabilities

An experimental subclass of CIM_ProtocolControllerMaskingCapabilities that adds properties asserting method
support and support for SAS StorageHardwareIDs.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 377 describes class SNIA_ProtocolControllerMaskingCapabilities.

18.8.35 SNIA_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 378 describes class SNIA_StorageHardwareID.

18.8.36 SNIA_StorageHardwareIDManagementService

Experimental subclass with support for SAS StorageHardwareIDs.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 377 - SMI Referenced Properties/Methods for SNIA_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes

SupportedAsynchron
ousActions

Mandatory Indicates which operations will result in a Job being
created.

SupportedSynchrono
usActions

Mandatory Indicates which operations will execute without a Job being
created.

Table 378 - SMI Referenced Properties/Methods for SNIA_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5|6 (Other or
PortWWN or NodeWWN or Hostname or iSCSI Name or
SAS Address).
586

NO_ANSI_ID Masking and Mapping Subprofile

1259
 Table 379 describes class SNIA_StorageHardwareIDManagementService.

STABLE

Table 379 - SMI Referenced Properties/Methods for
SNIA_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

CreateStorageHardw
areID()

Mandatory Experimental: may use SAS Address IDType.

DeleteStorageHardw
areID()

Mandatory

CreateHardwareIDC
ollection()

Optional

AddHardwareIDsToC
ollection()

Optional
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 587

Masking and Mapping Subprofile NO_ANSI_ID
588

NO_ANSI_ID Pool Manipulation Capabilities, and Settings Subprofile

1

2

3

4

DEPRECATED

Clause 19: Pool Manipulation Capabilities, and Settings Subprofile

The functionality of the LUN Creation and Pool Manipulation Capabilities, and Settings Subprofiles has been
subsumed by the Clause 5: Block Services Package.

The Pool Manipulation Capabilities, and Settings Subprofile is defined in section 7.3.3.10 of SMI-S 1.0.2.

DEPRECATED
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 589

Pool Manipulation Capabilities, and Settings Subprofile NO_ANSI_ID
590

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
EXPERIMENTAL

Clause 20: Storage Server Asymmetry Profile

20.1 Description

20.1.1 Overview

High-availability storage servers using multiple redundant storage processors exhibit a range of interrelated
behavior involving load-balancing, ports, and failover. This profile provides for management of these aspects.

Many such systems have the concept of a storage resource (either a RAID group or a storage volume) having an
assignment to, or affinity for, one of the storage processors in a redundant set. This affinity may have one or more
underlying architectural reasons for existing. Examples are both front-end (target) port connectivity with and
between processors, cache processing, virtualization (RAID) processing, or connectivity partitioning of back end
resources.

When the storage processor for which the storage resource has affinity fails, the resource is taken over by one of
the other processors in the redundancy set

When both storage processors are healthy, the ports on the storage processor for which the storage resource as
affinity provide full bandwidth access to the resource. The ports on the “other” storage processors provide full,
limited, or standby access, depending on implementation

20.1.2 Relationship to Multiple Computer System Subprofile

This profile is a component profile (or subprofile) and extends the functionality of the Multiple Computer System
Subprofile, which in turn references this profile as a supported profile. This profile requires the use of the Multiple
Computer System Subprofile.

A separate profile was created for two purposes. Firstly, the functionality of Asymmetric Access is largely storage-
related and since the MCS is a common profile, the asymmetry functions are specified separately. Secondly,
although some asymmetric behavior may be modeled using provisions under the Multiple Computer System Profile
regarding aggregating resources to the lowest level ComputerSystem that represents availability, many
implementations aggregate all resources to the top-level ComputerSystem, even though these implementations
exhibit asymmetric behavior. These resources include CIM_StorageVolumes, CIM_StoragePools,
CIM_ProtocolControllers, CIM_ProtocolEndpoints, and the CIM_StorageConfiguration and
CIM_ControllerConfiguration services. CIM_LogicalPorts are usually aggregated to the lower level systems that
represent the storage processors.

Asymmetric behavior is modeled through constructs in this profile and is independent of SystemDevice and
Hosting associations in Multiple Computer System.

20.1.3 Relationship to Masking and Mapping Subprofile

The Masking and Mapping Subprofile provides the means to expose storage volumes to initiators through front-
end ports. In systems with asymmetric behavior, Masking and Mapping alone does not provide for determining
whether the action of the ExposePaths method will result in the creation of a path that is primary, secondary, or
standby from a performance standpoint.

This profile is does not formally extend Masking and Mapping but augments it’s functionality by providing the model
constructs to support this determination by a client. It does this with model relationships directly between groups of
front-end ports (which are represented by subclasses of CIM_ProtocolEndpoint) and groups of storage resources,
independent of the implementation of Mapping and Masking “View” CIM_ProtocolControllers. This is necessary
because some implementations may not generate “primary” and “standby” view/mappings for the ports on each
SMI-S 1.5.0 Revision 6 SNIA Technical Position 591

Storage Server Asymmetry Profile NO_ANSI_ID

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80
storage processor but instead share common view controllers between storage processors, making it impossible to
use the “view” CIM_ProtocolController to group ports with volumes.

20.1.4 Relationship to T10

This subprofile supports the passive management of the functionality defined in the Target Port Group Access
States clause of the T10 SPC-4 specification.

20.1.5 Behavior, Characteristics, and Capabilities

The behavioral use cases for redundant systems are used to derive asymmetry characteristics which in turn are
used to distill capabilities for the profile that allow a client to interpret the asymmetric model objects.

20.1.5.1 Port Failover

The first differentiator to consider when trying to classify asymmetric behavior is target port failover behavior. Front-
end ports on storage processors in a redundancy set exhibit either transparent or non-transparent behavior when
the supporting storage processor fails

20.1.5.1.1 Transparent

In transparent failover, a storage processor can support multiple virtual ports, that is the ports that it normally has,
and the functionality of ports from a failed storage processor in the same redundancy set. Stated another way,
when a storage processor fails, its ports don’t fail, they fail over to a healthy storage processor. This mode is called
transparent because the host sees only a transient loss of access to the port. The port itself is still present after the
failover.

20.1.5.1.2 Non-Transparent

In this type of architecture, the ports supported by a storage processor fail when the processor fails. Access to the
storage volumes that were exposed through the failed ports is provided through ports on a surviving processor.

20.1.5.2 Port Asymmetry

Healthy storage servers have variant functionality with respect to access to volumes through ports on different
storage processors. This may be related to the affinity of such volumes (or the pools to which they belong) to
storage processors as described in 20.1.5.3 "Storage Resource Affinity". In some systems, there is “full” bandwidth
access to a volume through both ports on processor A and ports on processor B. This is actually symmetric
access. In other cases, access to a volume is full bandwidth access through ports on the storage processor (“this”)
for which the volumes have affinity and “reduced” bandwidth access through ports on the “other” processor. The
third variation is the there is no access at all, other than inquiry type commands, through ports on the “other”
processor, until the processor for which the volumes have affinity fails. This functionality is reflexive in that there is
full access to volumes having affinity for the “other” processor through ports on that processor, while there is
reduced access or no access to volumes affinitied to “other” through ports on “this”.

20.1.5.3 Storage Resource Affinity

Storage resource affinity is the behavior that in many redundant servers, storage resources, either individual
volumes or RAID groups (also called RAID sets or RAID ranks) and thus the volumes allocated from them, have an
affinity for a given storage processor in a redundancy set. This affinity may stem from allocation of non-dual ported
drives to a processor or assignment of these resources to a processor for cache or RAID processing architectural
considerations. Managing this affinity is necessary on redundant systems as part of a static load balancing
strategy. This is true even when the front-end ports exhibit symmetric access behavior, because assigning all
resources to one storage processor may degrade the overall system throughput.
592

NO_ANSI_ID Storage Server Asymmetry Profile

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
20.1.6 Model

20.1.6.1 Classes

This profile introduces five new classes. These include one capabilities class, two collections, and two
associations, shown in Figure 86.

20.1.6.1.1 Asymmetry Capabilities

This class contains properties that enable a client to determine the combination of asymmetry characteristics
implemented by the subject storage system. More specifically, they guide the client algorithms in interpretation of
the instances of the asymmetry classes and associations. The capabilities are detailed in 20.8 "CIM Elements".

20.1.6.1.2 TargetPortGroup

This sub-class of CIM_SystemSpecificCollection aggregates the instances of CIM_ProtocolEndpoint or its
subclasses that represent the ports on a storage processor (represented by CIM_ComputerSystem). The ports are
aggregated because their relationship to the storage processors for failover and to the storage resources for
accessibility are the same.

Whether ProtocolEndpoint is used directly or one of its subclasses is used depends on which Target Port
component profile is implemented by the storage server.

Because CIM_TargetPortGroup ISA CIM_SystemSpecificCollection there must be an instance of
CIM_HostedCollection from each instance of CIM_TargetPortGroup to the instance of CIM_ComputerSystem in
the referencing Multiple Computer System Profile that represents the Top-Level System.

Figure 86 - Storage Asymmetry Class Hierarchy

CIM_SystemSpecificCollection

CIM_TargetPortGroup

CIM_Dependency

CIM_StorageResourceLoadGroup

CIM_AsymmetricAccessibility CIM_StorageProcessorAffinity

CIM_Capabilities

CIM_StorageServerAsymmetryCapabilities
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 593

Storage Server Asymmetry Profile NO_ANSI_ID

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139
20.1.6.1.2.1 Multiple Hierarchical TargetPortGroups

Some Target Port profiles, such as the ISCS Target Port Profile, may have a hierarchy of ProtocolEndpoints. Each
layer of ProtocolEndpoints in the hierarchy that can have affinity for a storage processor may be aggregated by a
separate TargetPortGroup. This enables a client to determine which lower-level ProtocolEndpoints in the hierarchy
may be used to create upper-level ProtocolEndpoints with the desired affinity. An example is the need to select
TCPProtocolEndpoints with the same affinity for a storage processor when attempting to create an
iSCSIProtocolEndpoint for that same processor.

20.1.6.1.3 StorageResourceLoadGroup

This sub-class of CIM_SystemSpecificCollection aggregates either the storage volumes or storage pools that have
the same affinity for a storage processor. What type of storage resource is aggregated depends on whether the
pools have affinity or are common between processors and just the individual volumes have affinity. There is a
capabilities property to specify this. There is one static instance of StorageResourceLoadGroup for each storage
processor, with a single exception described in 20.1.6.1.3.1.

Because CIM_StorageResourceLoadGroup ISA CIM_SystemSpecificCollection there must be an instance of
CIM_HostedCollection from each instance of CIM_StorageResourceLoadGroup to the instance of
CIM_ComputerSystem in the referencing Multiple Computer System Profile that represents the Top-Level System.

20.1.6.1.3.1 Single Volume Accessibility Override.

Some implementations allow for the normal “healthy” accessibility to a Storage Volume on the “other” storage
processor through ports on “this” storage processor to be overridden. Normally in an asymmetric system this
accessibility is “Standby” or “Active-NonOptimized”. This override gives Active-Optimized, or full bandwidth access
to this single volume.

This is modeled by an additional instance of StorageResourceLoadGroup that collects the subject volume together
with an instance of AsymmetricAccessibility that associates that special StorageResourceLoadGroup with the
TargetPortGroup. The properties on AsymmetricAccessibility reflect the override. This profile does not support the
action that creates or removes the override. Methods of this profile that relate to assignment of affinity operate on
the default static instance of StorageResourceLoadGroup only.

20.1.6.1.4 StorageProcessorAffinity

This sub-class of CIM_Dependency associates instances of StorageResourceLoadGroup in a Redundancy Set to
each instance of CIM_ComputerSystem representing a storage processor. Primary and Active properties are used
to surface what the affinity is in both healthy and failed situations, and which storage processor owns the resource
group which is where the Load Group will fail back to.

20.1.6.1.5 Asymmetric Accessibility

This sub-class of CIM_Dependency associates instances of StorageResourceLoadGroup in a Redundancy Set to
each instance of CIM_CIM_TargetPortGroup in the same RedundancySet. The AccessiblityState surfaces both the
current and normal (healthy) accessibility of volumes in the LoadGroup from ports in the Port Group.

20.1.6.2 Instance Diagrams

The following instance diagrams provide show various asymmetry use cases. They are extensions of the MCS
model, but for readability do not show Hosting and SystemDevice relationships. All instances are scoped to the
top-level system.

Figure 87 shows the Asymmetry instances in context of the Multiple Computer System Profile for a dual redundant
storage server.
594

NO_ANSI_ID Storage Server Asymmetry Profile

140

141

142

143

144

145

146

147

148

149

150
Figure 87, Figure 88, Figure 89, and Figure 90 do not show the RedundancySet-related classes.

20.1.6.2.1 Multiple Tiers of Systems

Not shown is a system that has three tiers (see Clause 30: Multiple Computer System Subprofile in Storage
Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6). This type of system may aggregate
storage processors into more than one redundant-failover sub-system. These subsystems are then clustered in a
non-failover, but load-balancing relationship to form the top-level storage server. In this type of system,
StorageProcessorAffinity associations would be contained within failover subsystems, but AsymmetricAccessibility
associations may span subsystem boundaries to reflect mid-level load-balancing paths.

20.1.6.2.2 Non-Transparent Asymmetry Cases

Figure 88: "Ports Do Not Failover, Healthy" and Figure 89: "Ports Do Not Failover, Failed Controller" are instance
diagrams that show the model for healthy and failed situations in a non-transparent port implementation. Because

Figure 87 - Asymmetry with MCS

StorageServer:
ComputerSystem

Top-level

StorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity

StorageProcessorAffinity

StorageProcessorAffinity StorageProcessorAffinity

StorageProcessorAffinity

AsymmetricAccessibility

AsymmetricAccessibility

AsymmetricAccessibility

StorageProcessorAffinity
StorageProcessorAffinity

RedundancySetMemberOf
Collection

ConcreteIdentity

MemberOf
Collection
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 595

Storage Server Asymmetry Profile NO_ANSI_ID

151

152
the ports and thus the Target Port Group do not failover, there is no need for a StorageResourceAffinity association
from the Target Port Group on the storage processor to which the ports belong to the “Other” storage processor.

Figure 88 - Ports Do Not Failover, Healthy

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity,
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

| Standby

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

 | Standby

AsymmetricAccessibility
State=

ActiveOptimized
596

NO_ANSI_ID Storage Server Asymmetry Profile
Figure 89 - Ports Do Not Failover, Failed Controller

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

Unavailable

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity,
IsPrimary=false

IsActive=trueStorageProcessorAffinity,
IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

Unavailable

AsymmetricAccessibility
State=

ActiveNonOptimized
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 597

Storage Server Asymmetry Profile NO_ANSI_ID

153

154

155
20.1.6.2.3 Transparent Asymmetry Cases

Figure 90: "Ports Failover, Healthy" and Figure 91: "Ports Failover, Failed Controller" are instance diagrams that
show the model for healthy and failed situations in a transparent failover port implementation.

Figure 90 - Ports Failover, Healthy

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity,
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveOptimized

StorageProcessorAffinity
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false
598

NO_ANSI_ID Storage Server Asymmetry Profile

156

157

158

159

160

161

162

163

164

165

166
20.2 Health and Fault Management Consideration

None

20.3 Cascading Considerations

None.

20.4 Supported Profiles, Subprofiles, and Packages

None.

20.5 Methods of the Profile

20.5.1 Assign Storage Resource Affinity

This profile specific method of CIM_StorageConfigurationService starts a job to assign affinity of a StoragePool(s)
or StorageVolume(s) to a storage processor. At the conclusion of the operation, the resource will be a associated
by CIM_MemberOfCollection to the StorageResourceLoadGroup with the primary affinity for the specified storage

Figure 91 - Ports Failover, Failed Controller

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveNonOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity
IsPrimary=false

IsActive=trueStorageProcessorAffinity
IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveNonOptimized

StorageProcessorAffinity
IsPrimary=false
IsActive=trueStorageProcessorAffinity

IsPrimary=false
IsActive=false
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 599

Storage Server Asymmetry Profile NO_ANSI_ID

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200
processor. The existing instance of CIM_MemberOfCollection to the existing StorageResourceLoadGroup is
deleted.

Support for this method is indicated by the presence of an instance of StorageServerAsymmetryCapabilities in
which the property StorageResourceAffinityAssignable is 'true'. If 0 is returned, the function completed successfully
and no ConcreteJob instance was required. If 4096/0x1000 is returned, a job will be started to assign the element.
The Job's reference will be returned in the output parameter Job.

AssignStorageResourceAffinity

 IN, string ResourceType

This specifies whether the resource is a StorageVolume (= 2) or StoragePool (= 3).

 OUT, CIM_ConcreteJob REF JOB,

Reference to a job which may be created (may be null if job completed).

 IN, CIM_ComputerSystem REF StorageProcessor

Reference to the storage processor to which to assign the resource.

 IN, CIM_LogicalElement REF StorageResources[]

Array of references to storage resource instances to be assigned.

20.5.1.1 Return Codes

 Completed with No Error - 0

 Not Supported - 1

 Unknown - 2

 Timeout - 3

 Failed - 4

 Invalid Parameter - 5

 In Use - 6

 Method Parameters Checked - Job Started - 4096

 Size Not Supported - 4097

20.6 Client Considerations and Recipes

20.6.1 Determine which ports provide full bandwidth access to a storage element.

//

// DESCRIPTION

// Determine which ports on a storage server provide full

// bandwidth access to a storage volume.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The Top-Level ComputerSystem representing the target system of interest
600

NO_ANSI_ID Storage Server Asymmetry Profile

201

202

203

204

205

206

207
208

209

210

211

212

213

214

215

216

217

218

219
220

221

222

223

224

225

226
227

228

229

230

231

232

233

234

235

236

237
238

239

240

241

242

243

244

245

246
// has been previously identified and defined in the $StorageServer-> variable.

//

// 2. The CIM_StorageVolume of interest has been previously identified

// and defined in the $StorageVolume-> variable.

//

// MAIN

// Step 1. Locate the instance of CIM_StorageServerAsymmetryCapabilities
associated to the

// target ComputerSystem to insure the profile is supported.

//

$StorageServerAsymmetryCapabilities[] = Associators($StorageServer->,

“CIM_ElementCapabilities”,

“CIM_StorageServerAsymmetryCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“StorageResourceSymmetryCapability”})

if ($StorageServerAsymmetryCapabilities[] == null ||
$StorageServerAsymmetryCapabilities[].length != 1) {

 <ERROR! The profile capabilities could not be found>

}

// Step 2. Check to see if this server has symmetric behavior.

// If so, exit here as an optimization.

//

if ($StorageServerAsymmetryCapabilities[0].StorageResourceSymmetryCapability == 2
) // Symmetric

 { <EXIT! Symmetric. All ports on the server provide full bandwidth access.> }

// Step 3. Find the Storage Resource Load Group to which this volume belongs.

//

$StorageResourceLoadGroup->[] = AssociatorNames($StorageVolume->,

“CIM_MemberOfCollection”,

“CIM_StorageResourceLoadGroup”,

“ManagedElement”,

“Collection”)

if ($StorageResourceLoadGroup[] == null || $StorageResourceLoadGroup[].length !=
1)

 { <ERROR! Volume must be a member of one and only one Load Group > }

// Step 4. Find the Target Port groups whose member ports provide full

// bandwidth access to the subject volume, and collect the port references for

// each such port group.

//

$AsymmetricAccessibility[] = References($StorageResourceLoadGroup->[0],

 “CIM_AsymmetricAccessibility”,

 “Dependent”,
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 601

Storage Server Asymmetry Profile NO_ANSI_ID

247

248

249

250

251

252
253

254

255

256

257

258

259

260

261

262

263

264

265

266

267
268

269

270

271

272

273
 false,

 false,

 {“Antecedent”, “NormalAccessState”})

#index = 0

for #i in $AsymmetricAccessibility[] {

 if ($AsymmetricAccessibility[#i].NormalAccessState == 5) { // Active
Optimized

 $Ports->[] = AssociatorNames($AsymmetricAccessibility[#i].Antecedent,

 “CIM_MemberOfCollection”,

 “CIM_ProtocolEndpoint”,

 “Collection”,

 “ManagedElement”)

 if ($Ports->[] != null) {

 for #j in $Ports->[] {

 $FullAccessPorts->[#index] = $Ports->[#j]

 #index++

 }

 }

 }

}

<EXIT: $Ports will contain the references to the ProtocolEndpoints representing
the ports which

 will give full bandwidth access to the volume.>

20.7 Registered Name and Version

Storage Server Asymmetry version 1.4.0 (Component Profile)

20.8 CIM Elements

Table 380 describes the CIM elements for Storage Server Asymmetry.

Table 380 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description

20.8.1 CIM_AsymmetricAccessibility Mandatory This association indicates the accessibility of
StorageVolumes in the
StorageResourceLoadGroup through ports in
the associated TargetPortGroup.

20.8.2 CIM_ElementCapabilities (To Top-level
ComputerSystem)

Mandatory
602

NO_ANSI_ID Storage Server Asymmetry Profile
20.8.3 CIM_HostedCollection (Top-Level
System to Load Group)

Mandatory Associates the instances of
StorageResourceLoadGroup to the Top-Level
ComputerSystem. Enables a Client to find
these groups without first traversing to each
Storage Processor ComputerSystem.

20.8.4 CIM_HostedCollection (Top-Level
System to Port Group)

Mandatory Associates the instances of TargetPortGroup
to the Top-Level ComputerSystem. Enables a
Client to find these groups without first
traversing to each Storage Processor
ComputerSystem.

20.8.5 CIM_MemberOfCollection (SATA
Target Port Group)

Conditional Conditional requirement: Requires
TargetPortGroup to aggregate
CIM_ProtocolEndpoint. Used to aggregate
SATA Target Ports in a Target Port Group.

20.8.6 CIM_MemberOfCollection (SB Target
Port Group)

Conditional Conditional requirement: Requires
TargetPortGroup to aggregate
SNIA_SBProtocolEndpoint. Used to
aggregate SB Target Ports in a Target Port
Group.

20.8.7 CIM_MemberOfCollection (SCSI
Target Port Group)

Conditional Conditional requirement: Requires
TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint. Used to
aggregate DA, FC, SPI, or SAS Target Ports
in a Target Port Group.

20.8.8 CIM_MemberOfCollection (Storage
Resource Load Group aggregating Storage
Pools)

Conditional Conditional requirement: Requires
StorageResourceLoadGroup to aggregate
CIM_StoragePool. Aggregates Storage Pools
in a Storage Resource Load Group.

20.8.9 CIM_MemberOfCollection (Storage
Resource Load Group aggregating Storage
Volumes)

Conditional Conditional requirement: Requires
StorageResourceLoadGroup to aggregate
CIM_StorageVolume. Aggregates Storage
Volumes in a Storage Resource Load Group.

20.8.10 CIM_MemberOfCollection (iSCSI
Target Port Group)

Conditional Conditional requirement: Requires
TargetPortGroup to aggregate
CIM_iSCSIProtocolEndpoint. Used to
aggregate iSCSI Target Ports in a Target Port
Group.

20.8.11 CIM_StorageConfigurationService Optional

Table 380 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 603

Storage Server Asymmetry Profile NO_ANSI_ID
20.8.12 CIM_StorageProcessorAffinity
(StorageResourceLoadGroup)

Mandatory Indicates a processing affinity and state
between a TargetPortGroup and a
ComputerSystem representing a storage
processor in a redundant storage server. The
processor can host the group in either a
healthy or failover state. Instances of this
association are static, one for each
combination of StorageResourceLoadGroup
and ComputerSystem in the RedundancySet.

20.8.13 CIM_StorageProcessorAffinity (Target
Port Group)

Mandatory Indicates a processing affinity and state
between a TargetPortGroup and a
ComputerSystem representing a storage
processor in a redundant storage server. The
processor can host the group in either a
healthy or failover state. Instances of this
association are static, one for each
combination of StorageResourceLoadGroup
and ComputerSystem in the RedundancySet.

20.8.14 CIM_StorageResourceLoadGroup
(Load Groups)

Mandatory StorageResourceLoadGroup aggregates
either the StoragePools or the individual
StorageVolumes that have the same affinity
for a storage processor. The affinity of this
group may change during failover or failback/
rebind from one storage processor to another
in a storage server.
StorageResourceLoadGroup has a instance
of the StorageProcessorAffinity association to
each instance of CIM_ComputerSystem
representing a storage processor that may
host the StorageResourceLoadGroup in either
a healthy or failover state. Each instance of
StorageResourceLoadGroup in a storage
server is also associated to each instance of
TargetPortGroup in the server by the
AsymmetricAccessibility class.

20.8.15
CIM_StorageServerAsymmetryCapabilities

Mandatory This class defines the asymmetric
characteristics and capabilities of a redundant
storage server. The properties in this class
guide client algorithms in the interpretation of
the instances of StorageResourceLoadGroup,
TargetPortGroup, StorageProcessorAffinity,
and AsymmetricAccessibility, and also
determining support for methods that affect
assignment of storage resources to storage
processors.

Table 380 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description
604

NO_ANSI_ID Storage Server Asymmetry Profile
20.8.16 CIM_TargetPortGroup (Port Groups) Mandatory TargetPortGroup aggregates the
ProtocolEndpoints representing a group of
target ports in a storage server. The
ProtocolEndpoints may be a subclass of
CIM_ProtocolEndpoint as appropriate for the
type of target port implemented by the storage
server. The target ports are aggregated
because they have the same affinity for an
associated storage processor for failover and
the same accessibility state to storage
resources in a given
StorageResourceLoadGroup. The
TargetPortGroup may have either a fixed
affinity for a storage processor within the
server or an affinity that changes during
failover from one storage processors to
another. TargetPortGroup has a instance of
the StorageProcessorAffinity association to
each instance of CIM_ComputerSystem
representing a storage processor that may
host the TargetPortGroup in either a healthy or
failover state. Each instance of
TargetPortGroup in a storage server is also
associated to each instance of
StorageResourceLoadGroup in the server by
the AsymmetricAccessibility class.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageProcessorAffinity AND
SourceInstance.CIM_StorageProcessorAffinit
y::IsActive <>
PreviousInstance.CIM_StorageProcessorAffin
ity::IsActive

Mandatory CQL -Change in Affinity of a
StorageResourceLoadGroup.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageProcessorAffinity AND
SourceInstance.IsActive <>
PreviousInstance.IsActive

Mandatory Deprecated WQL -Change in Affinity of a
StorageResourceLoadGroup.

Table 380 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 605

Storage Server Asymmetry Profile NO_ANSI_ID

274

275

276

277

278
20.8.1 CIM_AsymmetricAccessibility

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_AsymmetricAccessibility AND
SourceInstance.CIM_AsymmetricAccessibility
::CurrentAccessState <>
PreviousInstance.CIM_AsymmetricAccessibili
ty::CurrentAccessState

Mandatory CQL -Modification of accessibility to a storage
element.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_AsymmetricAccessibility AND
SourceInstance.CurrentAccessState <>
PreviousInstance.CurrentAccessState

Mandatory Deprecated WQL -Modification of accessibility
to a storage element.

Table 380 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description
606

NO_ANSI_ID Storage Server Asymmetry Profile

279

280

281

282

283

284

285
Table 381 describes class CIM_AsymmetricAccessibility.

20.8.2 CIM_ElementCapabilities (To Top-level ComputerSystem)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 382 describes class CIM_ElementCapabilities (To Top-level ComputerSystem).

Table 381 - SMI Referenced Properties/Methods for CIM_AsymmetricAccessibility

Properties Flags Requirement Description & Notes

CurrentAccessState Mandatory This property indicates the current accessibility state of
volumes in the StorageResourceLoadGroup through ports
in the TargetPortGroup. With the exception of Unavailable',
the states are those defined by the T10 SPC-4 Target Port
Group Access States clause. 2(Unavailable): The volumes
are not accessible in any way. 3(Standby): No data access
to the volume is possible. Status and other non-data access
commands are available. 4(Active Non-Optimized): Data
access to the volume is available at less than full
bandwidth. 5(Active Optimized): Data access to the volume
is available at full bandwidth.

NormalAccessState Mandatory This property indicates the accessibility state of volumes in
the StorageResourceLoadGroup through ports in the
TargetPortGroup when the primary storage processor
hosting the groups is healthy. With the exception of
'Unavailable', the states are those defined by the T10 SPC-
4 Target Port Group Access States clause. 2(Unavailable):
The volumes are not accessible in any way. 3(Standby): No
data access to the volume is possible. Status and other
non-data access commands are available. 4(Active Non-
Optimized): Data access to the volume is available at less
than full bandwidth. 5(Active Optimized): Data access to
the volume is available at full bandwidth.

Antecedent Mandatory The Port Group.

Dependent Mandatory The Storage Resource Load Group.

Table 382 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (To Top-level Com-
puterSystem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Top-level Storage Sever ComputerSystem.

Capabilities Mandatory StorageServerAsymmetryCapabilities.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 607

Storage Server Asymmetry Profile NO_ANSI_ID

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302
20.8.3 CIM_HostedCollection (Top-Level System to Load Group)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 383 describes class CIM_HostedCollection (Top-Level System to Load Group).

20.8.4 CIM_HostedCollection (Top-Level System to Port Group)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 384 describes class CIM_HostedCollection (Top-Level System to Port Group).

20.8.5 CIM_MemberOfCollection (SATA Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_ProtocolEndpoint.

Table 383 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to
Load Group)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 384 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to
Port Group)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
608

NO_ANSI_ID Storage Server Asymmetry Profile

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317
Table 385 describes class CIM_MemberOfCollection (SATA Target Port Group).

20.8.6 CIM_MemberOfCollection (SB Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate SNIA_SBProtocolEndpoint.

Table 386 describes class CIM_MemberOfCollection (SB Target Port Group).

20.8.7 CIM_MemberOfCollection (SCSI Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint or Requires TargetPortGroup to
aggregate CIM_SCSIProtocolEndpoint or Requires TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint or
Requires TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint.

Table 387 describes class CIM_MemberOfCollection (SCSI Target Port Group).

Table 385 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SATA Target Port
Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The SATA Target Ports.

Table 386 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SB Target Port
Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The The SB Target Ports.

Table 387 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SCSI Target Port
Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The DA, FC, SPI, or SAS Target Ports.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 609

Storage Server Asymmetry Profile NO_ANSI_ID

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335
20.8.8 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Pools)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires StorageResourceLoadGroup to aggregate CIM_StoragePool.

Table 388 describes class CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Pools).

20.8.9 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Volumes)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires StorageResourceLoadGroup to aggregate CIM_StorageVolume.

Table 389 describes class CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage
Volumes).

20.8.10 CIM_MemberOfCollection (iSCSI Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_iSCSIProtocolEndpoint.

Table 388 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource
Load Group aggregating Storage Pools)

Properties Flags Requirement Description & Notes

Collection Mandatory The Storage Resource Load Group.

Member Mandatory The StoragePools.

Table 389 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource
Load Group aggregating Storage Volumes)

Properties Flags Requirement Description & Notes

Collection Mandatory The Storage Resource Load Group.

Member Mandatory The Storage Volumes.
610

NO_ANSI_ID Storage Server Asymmetry Profile

336

337

338

339

340

341

342

343

344

345

346

347
Table 390 describes class CIM_MemberOfCollection (iSCSI Target Port Group).

20.8.11 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 391 describes class CIM_StorageConfigurationService.

20.8.12 CIM_StorageProcessorAffinity (StorageResourceLoadGroup)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 390 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (iSCSI Target Port
Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The iSCSI Target Ports.

Table 391 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

AssignStorageResou
rceAffinity()

Optional Start a job to assign affinity of a StoragePool(s) or
StorageVolume(s) to a storage processor. At the conclusion
of the operation, the resource will be a member of the
StorageResourceLoadGroup with the primary affinity for the
specified storage processor. Support for this method is
indicated by the presence of an instance of
StorageServerAsymmetryCapabilites in which the property
StorageResourceAffinityAssignable is 'true'. If 0 is returned,
the function completed successfully and no ConcreteJob
instance was required. If 4096/0x1000 is returned, a job will
be started to assign the element. The Job's reference will
be returned in the output parameter Job.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 611

Storage Server Asymmetry Profile NO_ANSI_ID

348

349

350

351

352

353

354
Table 392 describes class CIM_StorageProcessorAffinity (StorageResourceLoadGroup).

20.8.13 CIM_StorageProcessorAffinity (Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 393 describes class CIM_StorageProcessorAffinity (Target Port Group).

Table 392 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (StorageRe-
sourceLoadGroup)

Properties Flags Requirement Description & Notes

IsPrimary Mandatory This property is set to true if the TargetPortGroup is hosted
by the storage processor when the processor is healthy. It
is set to false if the group can be hosted by the processor
when the primary storage processor for the group has
failed. For each StorageResourceLoadGroup, one instance
of StorageProcessorAffinity will have IsPrimary=true, the
rest will have IsPrimary=false.

IsActive Mandatory This property is set to true if the
StorageResourceLoadGroup is currently being hosted by
the storage processor.

Antecedent Mandatory The storage processor for which the Storage Resource
Load Group has affinity.

Dependent Mandatory The Storage Resource Load Group.

Table 393 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (Target Port
Group)

Properties Flags Requirement Description & Notes

IsPrimary Mandatory This property is set to true if the TargetPortGroup is hosted
by the storage processor when the processor is healthy. It
is set to false if the group can be hosted by the processor
when the primary storage processor for the group has
failed. For each StorageResourceLoadGroup, one instance
of StorageProcessorAffinity will have IsPrimary=true, the
rest will have IsPrimary=false.

IsActive Mandatory This property is set to true if the TargetPortGroup is
currently being hosted by the storage processor.

Antecedent Mandatory The storage processor for which the Port Group has affinity.

Dependent Mandatory The Target Port Group.
612

NO_ANSI_ID Storage Server Asymmetry Profile

355

356

357

358

359

360

361

362

363

364

365
20.8.14 CIM_StorageResourceLoadGroup (Load Groups)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

20.8.15 CIM_StorageServerAsymmetryCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 394 describes class CIM_StorageServerAsymmetryCapabilities.

Table 394 - SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities

Properties Flags Requirement Description & Notes

StorageResourceSy
mmetryCapability

Mandatory If this property is set to Symmetric it indicates that the
StoragePools or StorageVolumes are processed in a
distributed load-balanced manner between storage
processors. If this property is set to Asymmetric it indicates
that the StoragePools or StorageVolumes are have a
primary affinity for one storage processor.

StorageResourceTyp
e

Mandatory If this property is set to StorageVolume it indicates that the
StoragePools have symmetric behavior(or no affinity) and
that the Volumes have affinity for one storage processor or
the other. If this property is set to StoragePool it indicates
that a StoragePool as well as the Volumes allocated from it
have affinity for one storage processor or the other.

StorageResourceAffi
nityAssignable

Mandatory Set to true if this storage system allows the client to specify
which storage processor a storage resource is assigned to,
either using one of the CreateOrModify methods or the
AssignStorageResourceAffinity method on
StorageConfigurationService.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 613

Storage Server Asymmetry Profile NO_ANSI_ID

366

367

368

369

370
20.8.16 CIM_TargetPortGroup (Port Groups)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

EXPERIMENTAL

PortGroupFailoverBe
havior

Mandatory This property specifies whether a storage server supports
transparent or non-transparent failover of
TargetPortGroups. If this value is 2(Port Group Fails), a
TargetPortGroup will have a single
StorageProcessorAffinity association to the storage
processor it belongs to and will fail with. If this property has
a value of 3, the TargetPortGroup will have a
StorageProcessorAffinity association to each storage
processor that can host it's function, and the properties on
the association will indicate both which processor is
primary and which is currently hosting the ports in the
group.

TargetPortSymmetry
Capability

Mandatory This property indicates the normal(healthy) state
accessibility to volumes both in the
StorageResourceLoadGroup on the same storage
processor as a TargetPortGroup, and to volumes in
StorageResourceLoadGroups on 'other' storage
processors in the redundant server. If this values is
2(Symmetric): There is equal bandwidth access to volumes
on all storage processors through target ports on this
storage processor. If this value is 3(Asymmetric Non-
Optimized): There is full bandwidth access to volumes in
the StorageResourceLoadGroup on the same storage
processor as the TargetPortGroup and degraded bandwidth
access to volumes in the StorageResourceLoadGroups on
the 'other' storage processors. If this value is 4(Asymmetric
No Access): There is full bandwidth access to volumes in
the StorageResourceLoadGroup on the same storage
processor as the TargetPortGroup and no access to
volumes on 'other' storage processors.

Table 394 - SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities

Properties Flags Requirement Description & Notes
614

NO_ANSI_ID Block Services Resource Ownership Subprofile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
DEPRECATED

Clause 21: Block Services Resource Ownership Subprofile

Note: The Block Services Resource Ownership Subprofile is scheduled for removal for SMI-S 2.0. The
functionality of this profile will not be replaced in SMI-S 2.0. The Storage Network Industry Association
(SNIA) is not aware of any implementations of this profile. The SNIA would like to hear from anyone
that has implemented the Block Services Resource Ownership Subprofile. If your company or
organization has implemented this subprofile and is a member of the SNIA, please contact the DRM
Technical Working Group or indicate your preference to keep this subprofile in SMI-S 2.0 during
member reviews and ballots. If your company or organization has implemented this subprofile and is
not a member of the SNIA, please indicate your preference to keep this subprofile as part of SMI-S
using the SNIA feedback portal: http://www.snia.org/tech_activities/feedback/ .

21.1 Description

The Block Services Resource Ownership common subprofile models control over the rights of a client to grant or
deny access to block storage resources, as shown in Figure 92. By asserting exclusive control over these rights,
one client can control which other clients may access those resources. This subprofile is intended for environments
in which multiple CIM clients may not be completely aware of each other's activities, making it important that use of
the resource not be disrupted by a client that is unaware of shared resource use. Specific examples include use of
a volume by in-band virtualizers and NAS gateways, where attempts to manage the volume by clients not
associated with this use could be seriously disruptive. An intended configuration is that a CIM client exists in the
cascading device that has exclusive use of the volume. The Resource Ownership Subprofile is optional.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 615

Block Services Resource Ownership Subprofile NO_ANSI_ID

18

19

20

21

22
This profile concerns itself with the existence and use of two sets of rights which may be realized as two Privilege
instances that are associated via ConcreteDependency to a PrivilegeManagementService. There is one Privilege
to "Manage StorageVolume" and a superset of that to "Manage Storage". Each is described in Table 395.

Figure 92 - Resource Ownership for Block Services

Table 395 - Block Service Management Rights

ElementName Property Index Value

Manage StorageVolume Activities 0 Execute

QualifiersFormats 0 <class>.method

Privilege

ElementName = Manage StorageVolume
RepresentsAuthorizationRights = TrueConcreteDependency

SystemDevice

HostedCollection

ConcreteDependency

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

System

1

HostedService
*

*
*

Subprofile: Security RBAC
Subprofile: Security ResourceOwnership

Subprofile: BlockServices ResourceOwnership

Registered Profile

ReferencedProfile

RegisteredSubProfile

RegisteredName = “BlockServices ResourceOwnership”*

*RegisteredSubProfile

RegisteredName = “Security ResourceOwnership”

ReferencedProfile

*

RegisteredSubProfile

RegisteredName = “Security RBAC”
*

*

*

Bold: Required

StorageVolume

StoragePool

1

HostedStoragePool

Subject: Identity

InstanceID: string
CurrentlyAuthenticated: boolean

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromStorageP
ool()
DeleteStoragePool()
ReturnToStoragePool()
CreateOrModifyElementFromElement()

ControllerConfigurationService

AttachDevice()
DetachDevice()
ExposePaths()
HidePaths()

1

HostedService

*

HostedService* *

Privilege

ElementName = Manage Storage
RepresentsAuthorizationRights = True

ElementConformsToProfile

ReferencedProfile
*

*

StorageExtentConcreteComponent

*

*

*

*
RedundancySet

*

*

*

*

SystemDevice

IdentityContext *

*

*

1
*

PrivilegePropagationRule

 ElementName = "SNIA_BSResourceOwnership"

PolicyRuleInSystem

PolicySetAppliesToElement

PolicySetAppliesToElement

*

ConcreteIdentity

*

Registered Profile

RegisteredName = “Security”
SubProfileRequiresProfile

1..*
*

616

NO_ANSI_ID Block Services Resource Ownership Subprofile

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
This profile assumes that the intrinsic CreateInstance and DeleteInstance methods are not supported for either
StorageVolumes or StoragePools.

With RepresentsAuthorizationRights set to True, the ChangeAccess call may be used to assign "Manage
StorageVolume" rights to a StorageVolume for a particular set of subjects, each represented by an Identity. Once
this assignment is made, only members of that set of subjects are permitted to assign “Manage StorageVolume”
rights to other subjects, (regardless of the setting of RepresentsAuthorizationRights. The ShowAccess call may be
used to list the rights granted to a particular subject Identity and target StorageVolume or StoragePool.

To establish an “Owner” in the sense meant by this profile, only one subject is assigned the "Manage
StorageVolume" privilege with RepresentsAuthorizationRights set both to True and False.

The same strategy is used to assign "Manage Storage" rights to a StoragePool.

Even though the SMI-S 1.1 ExposePaths and HidePaths extrinsics act on StorageVolumes by the LUID string
parameter rather than a reference, nevertheless they are governed by authorization rights.

This profile requires that every StorageVolume allocated from a StoragePool that is governed by "Manage Storage"
rights be assigned the corresponding "Manage StorageVolume" rights to the same subject. This is an implicit
PrivilegePropagationRule, which need not be made explicit to be in affect. Whenever ChangeAccess, or other
means, is used to modify the “Manage StorageVolume” rights of a particular subject to a StoragePool, those rights

ActivityQualifiers 0 StorageConfigurationService.
 ReturnToStoragePool
StorageConfigurationService.
 CreateorModifyElementfromElements
StorageConfigurationService.AttachDevice,
StorageConfigurationService.DetachDevice,
StorageConfigurationService.ExposePaths,
StorageConfigurationService.HidePaths,
PrivilegeManagementService.AssignAccess,
PrivilegeManagementService.ChangeAccess,
ModifyInstance,
SetProperty

Manage Storage Activities 0 Execute

QualifiersFormats 0 <class>.method

ActivityQualifiers 0 StorageConfigurationService.
 CreateOrModifyStoragePool,
StorageConfigurationService.
 CreateOrModifyElementFromStoragePool,
StorageConfigurationService.
 DeleteStoragePool,
StorageConfigurationService.
 ReturnToStoragePool,
StorageConfigurationService.
 CreateorModifyElementfromElements,
ControllerConfigurationService.AttachDevice,
ControllerConfigurationService.DetachDevice,
ControllerConfigurationService.ExposePaths,
ControllerConfigurationService.HidePaths,
PrivilegeManagementService.AssignAccess,
PrivilegeManagementService.ChangeAccess,
ModifyInstance,
SetProperty

Table 395 - Block Service Management Rights

ElementName Property Index Value
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 617

Block Services Resource Ownership Subprofile NO_ANSI_ID

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
are propagated for that subject to all StorageVolumes that have an AllocatedFromStoragePool association to that
StoragePool.

If an explicit PrivilegePropagationRule is used, it shall have ElementName set to “SNIA_BSResourceOwnership”.

Optionally, a QueryCondition, (not shown), may be associated to that PrivilegePropagationRule via
PolicyConditionInPolicyRule, (not shown), if specified the QueryCondition instance shall have its QueryLanguage
property set to “2”, meaning “CQL”, its QueryResultName set to “SNIA_BSResourceOwnershipCondition” and its
Query property set to

“SELECT (M.SourceInstanceHost || '/' || M.SourceInstanceModelPath) AS PMSPath,
M.MethodParameters.Subject,
M.MethodParameters.Target,
FROM CIM_InstMethodCall M,
WHERE M.MethodName = 'ChangeAccess'
AND M.ReturnValue = 0
AND M.PreCall = FALSE
AND M.MethodParameters.Target ISA CIM_StoragePool
AND ANY P IN M.MethodParameters.Privileges[*]
 SATISFIES (P.ElementName = 'ManageStorage')

Additionally, if this optional QueryCondition is associated then a corresponding MethodAction instance, (not
shown), shall also be associated to the same PrivilegePropagationRule via PolicyActionInPolicyRule, (not shown).
The MethodAction instance shall have its QueryLanguage property set to “2”, meaning “CQL”, its
InstMethodCallName set to “SNIA_BSResourceOwnershipAction” and its Query property set to

“SELECT (BS.PMSPath || '.' || 'ChangeAccess') AS MethodName,
BS.Subject AS Subject,
ObjectPath(SV) AS Target,
NULL AS PropagationPolicies,
BS.Privileges AS Privileges
FROM SNIA_BSResourceOwnershipCondition BS,
 CIM_AllocatedFromStoragePool AFSP,
 CIM_StorageVolume SV,
 CIM_Privilege P
WHERE ObjectPath(SV) = AFSP.Dependent
AND BS.Target = AFSP.Antecedent
AND P.ElementName = 'Manage StorageVolume'

If AuthorizedSubject/AuthorizedTarget associations are implemented, then these need to be created as
appropriate to reflect the assigned rights. In any case, a client may use ShowAccess to determine what privileges
are in force for particular subject Identity, StorageVolume or StoragePool.

If the ChangeAccess request to establish ownership is not permitted, then the return status shall be
CIM_ERR_ACCESS_DENIED. This result may be because the requestor is not permitted to make the call, or the
requestor does not have sufficient rights to modify ownership of the target.

Some vendors may define additional vendor-specific extrinsic operations that need to be restricted in order to
realize the functionality of Resource Ownership. Execution of each such vendor-specific extrinsics shall be added
to the above list of restricted activities. Clients may check for the presence of at least the above list of restricted
activities, but shall not check for an exact match to the above list, as such a check may fail if there are vendor-
specific extrinsics that are also restricted.

21.1.1 Design considerations

This list realizes a number of design decisions:
618

NO_ANSI_ID Block Services Resource Ownership Subprofile

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109
• For simplicity, the "Manage Storage" Privilege is a superset of the "Manage StorageVolume" Privilege. The
"Manage Storage" Privilege may be used against both StorageVolumes and StoragePools. When applied to a
StorageVolume, methods called out in that Privilege that do not affect StorageVolumes are simply ignored.

• The capability to own StoragePools is signaled by a PrivilegeManagementService with a
ConcreteDependency.Dependent ”Manage Storage” Privilege with RepresentsAuthorizationRights set to True.

• The "Manage StorageVolume" Privilege does not provide the ability to manage StoragePools.

• DeleteProtocolController is not restricted. The design goal is to control resource management in a fashion that
keeps reasonably well-behaved clients from causing unintended problems. Control of the StoragePool and
StorageVolume instances is sufficient, as a reasonably well-behaved client should at least call DetachDevice
or HidePaths on the associated StorageVolumes before calling DeleteProtocolController (both DeleteDevice
and HidePaths are controlled), or at the very least understand what the attached volumes are being used for
before deleting the protocol controller. The ProtocolControllerforPort and the associated port (e.g., FCPort) are
also not restricted for similar reasons.

• RemoveAccess and ChangeAccess are not restricted to avoid complexity. These could be restricted by
creating a second type of resource ownership Privilege to control them, and the corresponding access
Privileges to enforce the restrictions, but for 1.1, it seems reasonable to trust clients that don't know what
they're doing to avoid invocations of RemoveAccess and ChangeAccess.

• ServiceAffectsElement associations are assumed between Services and affected elements. (See Figure 93:
"ServiceAffectsElement Associations for ResourceOwnership".) This subprofile does not REQUIRE an
implementation to present these associations unless there is more than one of a particular type Service in the
profiled Namespace.

• AuthorizedPrivilege instances are assumed when a Privilege is granted to a subject or assigned to a target.
(See Figure 94: "AuthorizedPrivilege Associations for ResourceOwnership".) AuthorizedTarget and
AuthorizedSubject associations are assumed between the AuthorizedPrivilege and the target and subject
entities respectively. This subprofile does not REQUIRE the implementation to make these instances explicit.

Figure 93 - ServiceAffectsElement Associations for ResourceOwnership

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

*

Subprofile: Security RBAC
Subprofile: Security ResourceOwnership

Subprofile: BlockServices ResourceOwnership

Bold: Required

StorageVolume

StoragePool*

*

*

*Identity

*

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromStoragePool()
DeleteStoragePool()
ReturnToStoragePool()
CreateOrModifyElementFromElement()

ControllerConfigurationService

AttachDevice()
DetachDevice()
ExposePaths()
HidePaths()

ServiceAffectsElement

*

*

*

*

StorageExtent *

RedundancySet

*

*

ServiceAffectsElement

ServiceAffectsElement
*ServiceAffectsElement
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 619

Block Services Resource Ownership Subprofile NO_ANSI_ID

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130
Instead this profile relies on the ChangeAccess method to grant or deny rights and on the ShowAccess method
to display rights

• PrivilegePropagationRule instances are assumed with appropriate PolicySetAppliesToElement associations to
StoragePool and StorageVolume instances and a PolicyRuleInSystem association to a System instances. This
subprofile does not REQUIRE either the PrivilegePropagationRule instances nor the related association
instances.

21.1.2 Privilege Propagation

Propagation is a means of restricting the number of AuthorizedTarget associations for a Privilege. Propagation has
two elements:

1) Privilege restrictions on a StoragePool propagate to ConcreteComponent.PartComponent StorageExtents.

2) Privilege restrictions on a StoragePool propagate across ConcreteIdentity to a StorageExtent aspect. (For
instance when a Raid 5 extent is used as a StoragePool.)

3) Privilege restrictions on a StorageExtent propagate across ConcreteIdentity to a RedundancySet aspect. (For
instance when spares are available for a Raid 5 extent.)

To place these rules in force, a PrivilegePropagationRule instance is associated via PolicySetAppliesToElement to
affected StoragePools or StorageVolumes. This rule shall have its ElementName set to "BlockServices
ResourceOwnership" and it shall not have any PolicyCondition or PolicyAction instances associated with it.

ShowAccess may be used to determine the resulting behavior.

21.2 Client Considerations and Recipes

Resource Ownership Privileges can be distinguished from LUN Mapping/Masking privileges as the latter contain
Execute (instance of Activities[]) cdb=* (ActivityQualifiers[]) SCSI Command (QualifierFormats[]).

Figure 94 - AuthorizedPrivilege Associations for ResourceOwnership

Subprofile : Security RBAC
Subprofile : Security ResourceO w nership

Subprofile : B lockServices ResourceO w nership

Bold: Required

StorageVolum e

StoragePool *

AuthorizedPrivilege*

*

Identity

AuthorizedSubject

*
Privilege

StorageExtent

RedundancySet

*

*

*

AuthorizedTarget
620

NO_ANSI_ID Block Services Resource Ownership Subprofile

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155
A cascading provider determines whether or not Resource Ownership is supported by an array by looking for Block
Services Resource Ownership as a RegisteredSubprofile of the Array Profile.

While this subprofile is intended to support cascading, it can be used with any CIM Client that can authenticate to
the CIM Server and thereby obtain an authenticated Identity.

A client can determine whether resource ownership restrictions are enforced on a StorageVolume or StoragePool
by using the ShowAccess method (preferred) or by association traversal via AuthorizedTarget to resource
ownership Privileges.

When CIM Servers are cascaded, it's necessary to be able to associate the embedded CIM client (e.g., in a
virtualizer or NAS head) with the Identity in the array that is the AuthorizedSubject of the privileges. Assuming
shared secrets, this can be modeled and realized as follows:

• In the virtualizer or NAS Head, a CIM Service instance is associated (ServiceSAPDependency) with a
RemoteServiceAccessPoint that has associated via CredentialContext to a SharedSecret credential that
contains information necessary for authentication.

• RemoteID: String by which the principal is known. This maps to Account.UserID

• Secret: Password or other secret. This is set, but is not typically readable.

• In the array, the Identity instance is created that is authenticated by the Credential in the previous step. This
Identity may be associated via ConcreteIdentity to an Account. Or, it may be associated via IdentityContext to
a RemoteServiceAccessPoint that provides access to a 3rd Party Authentication service. If the latter, then the
Security 3rdPartyAuthentication Subprofile shall be present on the Array.

• When the CIM client uses HTTP authentication with that username and password, the authenticated Identity is
assigned to the CIM client's session.

There is no requirement that the Identity and Account instances in the array be creatable or manipulable via CIM.
The contents of these instances have significant security implications and hence the ability to create and change
them need to be carefully controlled. This example uses HTTP authentication, but is not meant to exclude other
forms of authentication.

DEPRECATED
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 621

Block Services Resource Ownership Subprofile NO_ANSI_ID
622

NO_ANSI_ID Storage Virtualizer Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14
IMPLEMENTED

Clause 22: Storage Virtualizer Profile

22.1 Description

Storage virtualizers act like RAID arrays but can use storage provided by systems external to the storage virtualizer
and local disks. A storage virtualizer system combines both remote and local storage to create a seamless pool.
The virtualization system allocates volumes from the pool for host systems to use.

The basic virtualizer system profile provides a read-only view of the system. The various subprofiles indicated in
Figure 95: "Storage Virtualizer Package Diagram" extend this description and also enable configuration. Refer to
22.4 for more information on these optional extensions. This profile also includes the mandatory Clause 31:
Physical Package Package (in Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev
6) that describes the physical layout of the system and includes product identification information. The modeling in
this document is split into various sections that describe how to model particular elements of an storage virtualizer
system.

Figure 95: "Storage Virtualizer Package Diagram" illustrates the relationship between the packages related to the
Storage Virtualizer Profile.

Figure 95 - Storage Virtualizer Package Diagram

Location

Masking & Mapping

Copy Services

Storage Virtualization Profile

Multiple System

Access Points

Software

Block Services
PhysicalPackage

HostedService

ComputerSystemPackage

HostedAccessPoint

ComponentCS

PhysicalElementLocation

InstalledSoftwareIdentity

InitiatorPorts

TargetPorts

Job Control

Cascading
(Deprecated)

Disk Drive
Lite

Storage
Server

Asymmetry

SystemDevice

SystemDevice

HostedCollection

Block Server
Performance

Device
Credentials

Replication
Services

Thin
Provisioning

ConcreteComponent

Extent
Composition

BasedOn

ConcreteComponent

Volume
Composition

Storage
Element

Protection

Erasure
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 623

Storage Virtualizer Profile NO_ANSI_ID

15

16

17

18

19

20
22.1.1 Instance Diagram

The diagrams used in this document are 'Instance' diagrams implying the actual classes that you implement rather
than the class hierarchy diagrams often used to show CIM models. This is felt to be easier to understand. Refer to
the DMTF MOF files for information on class inheritance information and full information on the properties and
methods used.

Figure 96: "Storage Virtualizer System Instance" is an instance diagram of a simple Storage Virtualization system.
624

NO_ANSI_ID Storage Virtualizer Profile

21

22

23

24

25
22.1.2 Storage Virtualization System

The Virtualization system is modeled using the ComputerSystem class with the “Dedicated” properties set to
‘BlockServer’ and “StorageVirtualizer”. The model allows the system to be a cluster or contain redundant
components, but the components act as a single system. The ComputerSystem class and common Multiple
Computer System Subprofile model this.

Figure 96 - Storage Virtualizer System Instance

ProtocolC ontroller

S torageVolum e

LU ID : //VPD pg 83 ID
D efaultAccessM ode

StorageExtent
(Im ported Extents)

Prim ordia l=”true”
ExtentD iscrim inator= ”SN IA :Pool C om ponent” ,
“SN IA:Im ported”

S toragePool

A llocatedFrom StoragePool

S torageSetting

E lem entSettingD ata

A llocatedFrom StoragePool

C om puterSystem

D edicated [x] =
'S torage V irtualizer '

H ostedStoragePool

Port

S torageSetting

E lem entSettingD ata

ProtocolEndpoint

P rotocolC ontrollerForU nit

SAPAvailableForE lem ent D eviceSAPIm plem entation

Target Port Subprofile

In itia tor Port Subprofile

B lock Services Package

LogicalPort

In itiator:
SC SIProrocolEndpoint

S torageVolum e

N am e: //VPD pg 83 ID
D efaultAccessM ode

System D evice

H ostedAccessPoint

Target:
SC SIProrocolEndpoin t

SC SIInitiatorTarget
LogicalU nitPath

D eviceSAP
Im plem entation

System D evice

LogicalIdentity

M asking/M apping Subprofile

SC SIProtocolC ontroller
(for SM I-S 1.0
C om patib ility)

ProtocolC ontro ller
AccessU nit

P rotocolC ontrro ller
ForPort

S torageExtent
(Prim ordia l D isk D rive Extent)

C oncreteC om ponent &
AssociatedC om ponentExtent

D iskD rive

Physical Package

D iskD rive L ite

ProtocolC ontroller

SC SIArbitraryLogicalU nit

System D evice

ProtocolC ontrollerForU nit
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 625

Storage Virtualizer Profile NO_ANSI_ID

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64
The StoragePool classes in the center of the diagram represents the mapping from array storage to volumes for
host access. The pool is hosted on the ComputerSystem and services to control it are host on the same controller.
The StorageExtent at the bottom of the screen represents the storage from external arrays used by the mapping.
These StorageExtents are connected to the pool using the ConcreteComponent association. The
SCSIProtocolController with the ProtocolControllerAccessesUnit association to the StorageVolume are provided
for clients convenience (and compatibility with SMI-S 1.0).

StorageVolumes at the upper right are the volumes created from the StoragePool and are accessible from hosts.
The associations to the SCSIProtocolController and to the Port indicate ports the volume is mapped to. The
StorageVolumes are described by the StorageSetting class connected by the ElementSettingData association.

22.1.3 Disk Drive Lite

The Disk Drive Lite Subprofile is optional. It should be used to model storage local to the storage virtualizer system.
The Disk Drive Lite model includes a StorageExtent instance that represents the storage of the disk drive. If the
Disk Drive Lite Profile is implemented, the StorageExtent shall be associated to a primordial pool. It may share a
primordial pool with external storage or it can have its own primordial pool.

22.1.4 Controller Software

Information on the installed controller software is represented by the optional Software Subprofile. This is linked to
the controller using an InstalledSoftwareIdentity association.

22.1.5 Device Management Access

Most devices now have a web GUI to allow device specific configuration. This is modeled using the common
subprofile “Access Point”.

22.1.6 Physical Modeling

The physical aspects of the storage virtualizer ComputerSystem are represented by the Storage Management
Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6 Package Clause 31: "Physical Package Package"
and the optional Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6 Clause 27:
"Location Subprofile", which provide more details.

22.1.7 Services

The system hosts services used to control the configuration of the system’s resources. These services are optional
and modeled by Clause 5: "Block Services Package", Clause 9: "Copy Services Subprofile", and Clause 26: "Job
Control Subprofile".

22.1.8 Ports

An implementation of the storage virtualizer shall implement at least one Target Ports Subprofile and may
implement one or more of the Initiator Ports Subprofiles. However, this specification does not specify any particular
port type be supported. In either target or initiator cases, the ports could be FC or iSCSI. All port subprofiles are
documented in Storage Management Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6.

The storage virtualizer ConcreteComponent StorageExtent instances shown in the Initiator Ports Profile are the
optional remote LogicalDevice instances from Initiator Ports. However, these StorageExtents are mandatory in the
Storage Virtualizer Profile.

EXPERIMENTAL

22.1.9 Model Element Summary

This Profile defines the following CIM Classes (and their uses):
626

NO_ANSI_ID Storage Virtualizer Profile

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92
ComputerSystem (Top Level System) - This is the top level ComputerSystem of the Storage Virtualizer,
distinguished by the Dedicated Property of ‘15’ and ‘21’.

ComputerSystem (Shadow) - This is the ComputerSystem(s) to which the Storage Virtualizer cascades.

SCSIArbitraryLogicalUnit - To represent a LUN address for receiving SCSI commands.

SCSIProtocolController - To represent wide-open mapping of volumes (in the absence of the Masking and
Mapping Profile).

StorageExtent (Imported Extents) - Used to represent the volumes that have been imported from external
devices.

StorageVolume (Shadow) - Used to represent the volumes that are imported to the Storage Virtualizer.

EXPERIMENTAL

22.2 Health and Fault Management

Defined in the included subprofiles.

EXPERIMENTAL

22.3 Storage Virtualizer Support for Cascading

The Cascading Profile (see Clause 24: Cascading Subprofile in the Storage Management Technical Specification,
Part 2 Common Profiles, 1.5.0 Rev 6) has been deprecated in favor of embedding the cascading related classes in
the Storage Virtualizer Profile. The classes identified in this section identify the elements of Storage Virtualizer
support for the cascading function.

Figure 97: "Virtualizer, Cascading and Initiator Ports" shows the relationship between the Storage Virtualizer and
the elements that support cascading of elements to other block server profiles. For example, cascading is required
when the virtualizer imports logical units from arrays.

Each imported array is modeled in the virtualizer with a shadow ComputerSystem; the arrays’ logical units are
modeled using shadow StorageVolume instances. These are depicted in Figure 97: "Virtualizer, Cascading and
Initiator Ports" in the box labeled “Cascading Support”.

Each shadow ComputerSystem (representing an array) is associated to the Storage Virtualizer ComputerSystem
using a Dependency association. StorageVolume models an Array logical unit and is associated to storage
virtualizer ConcreteComponent StorageExtent via the LogicalIdentity association. The StorageExtent represents
the virtualizer’s view of logical units imported from arrays. The StorageExtents are local resources. The shadow
ComputerSystem and StorageVolumes contain the correlatable IDs needed to map virtualizer resources to
equivalent objects in an Array Profile.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 627

Storage Virtualizer Profile NO_ANSI_ID

93

94

95
The AllocatedResources collection identifies the shadow StorageVolumes that are actually allocated to the
StorageVirtualizer for its use. Optionally, the implementation may also have a RemoteResources collection that
identifies all the storage volumes it can see on the SAN.

EXPERIMENTAL

Figure 97 - Virtualizer, Cascading and Initiator Ports

Cascading Support

Block Services Package

Initiator Ports Profile

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

StorageExtent
(Imported Extents)

Primordial=”true”
ExtentDiscriminator=”SNIA:Pool
Component”, “SNIA:Imported”

StoragePool

AllocatedFromStoragePool

StorageSetting

ElementSettingData

AllocatedFromStoragePool

ComputerSystem

Dedicated[x] =
'Storage Virtualizer'

HostedStoragePool

StorageSetting

ElementSettingData

LogicalPort

Initiator:
SCSIProtocolEndpoint

SystemDevice

HostedAccessPoint

Target:
SCSIProtocolEndpoint

SCSIInitiatorTarget
LogicalUnitPath

DeviceSAP
Implementation

SystemDevice

SCSIProtocolController
(for SMI-S 1.0
Compatibility)

ProtocolController
AccessesUnit

ProtocolController
ForPort

ComputerSystem (Shadow)

OtherIdentifyingInfo=”Shadow”
IdentifyingDescriptions=”SNIA:DetailedType”

ConcreteComponent &
AssociatedComponentExtent

StorageVolume (Shadow)

LUID: //VPD pg 83 ID
DefaultAccessMode
ExtentDiscriminator=”Shadow”

LogicalIdentity

SystemDevice

Dependency

AllocatedResources

ElementType=”3"
CollectionDiscriminator=”SNIA:Imported Volumes”

MemberOfCollection

HostedCollection
628

NO_ANSI_ID Storage Virtualizer Profile

96

97
22.4 Supported Subprofiles and Packages

Table 396 describes the supported profiles for Storage Virtualizer.

Table 396 - Supported Profiles for Storage Virtualizer

Profile Name Organization Version Requirement Description

Access Points SNIA 1.3.0 Optional

Block Server
Performance

SNIA 1.5.0 Optional

Block Storage Views SNIA 1.5.0 Optional

CKD Block Services SNIA TBD Optional

Cluster SNIA 1.0.2 Optional

Extra Capacity Set SNIA 1.0.2 Optional

Disk Drive SNIA 1.0.2 Optional

Disk Drive Lite SNIA 1.5.0 Optional

Extent Mapping SNIA 1.0.2 Optional

Erasure SNIA 1.2.0 Optional

Storage Server
Asymmetry

SNIA 1.4.0 Optional

Volume Composition SNIA 1.5.0 Optional

Storage Element
Protection

SNIA 1.4.0 Optional

Copy Services SNIA 1.5.0 Optional

Pool Manipulation
Capabilities and
Settings

SNIA 1.0.2 Optional

LUN Creation SNIA 1.0.2 Optional

Device Credentials SNIA 1.3.0 Optional

LUN Mapping and
Masking

SNIA 1.0.2 Optional

Job Control SNIA 1.5.0 Optional

Location SNIA 1.4.0 Optional

Masking and
Mapping

SNIA 1.4.0 Optional

Software SNIA 1.4.0 Optional

Multiple Computer
System

SNIA 1.2.0 Optional

Backend Ports SNIA 1.0.2 Optional
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 629

Storage Virtualizer Profile NO_ANSI_ID

98

99

100

101
 22.5 Methods of the Profile

None.

22.6 Client Considerations and Recipes

None.

Disk Sparing SNIA 1.5.0 Optional

FC Initiator Ports SNIA 1.4.0 Optional

iSCSI Initiator Ports SNIA 1.2.0 Optional

SAS Initiator Ports SNIA 1.4.0 Optional

ATA Initiator Ports SNIA 1.4.0 Optional

Extent Composition SNIA 1.5.0 Optional

Cascading SNIA 1.3.0 Mandatory Deprecated. This is deprecated in
favor of embedding cascading
elements in the Storage Virtualizer
profile.

Indication SNIA 1.5.0 Mandatory

Experimental
Indication

SNIA 1.5.0 Optional

Block Services SNIA 1.5.0 Mandatory

Physical Package SNIA 1.5.0 Mandatory

Health SNIA 1.2.0 Mandatory

Thin Provisioning SNIA 1.5.0 Optional

Replication Services SNIA 1.5.0 Optional

Operational Power SNIA 1.5.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version
1.0.0

iSCSI Target Ports SNIA 1.2.0 Support for
at least one
is mandatory.FC Target Ports SNIA 1.4.0

SAS Target Ports SNIA 1.4.0

SB Target Ports SNIA 1.2.0

SB Initiator Ports SNIA 1.4.0

Table 396 - Supported Profiles for Storage Virtualizer

Profile Name Organization Version Requirement Description
630

NO_ANSI_ID Storage Virtualizer Profile

102

103

104

105
22.7 Registered Name and Version

Storage Virtualizer version 1.5.0 (Autonomous Profile)

22.8 CIM Elements

Table 397 describes the CIM elements for Storage Virtualizer.

Table 397 - CIM Elements for Storage Virtualizer

Element Name Requirement Description

22.8.1 CIM_AssociatedComponentExtent
(Pool Component to Primordial Pool)

Conditional Conditional requirement: Implementation of
the Extent Composition profile.

22.8.2 CIM_ComputerSystem (Shadow) Mandatory Experimental. 'Top level' system that
represents a block storage device (e.g., an
Array).

22.8.3 CIM_ComputerSystem (Top Level
System)

Mandatory 'Top-level' system that represents the whole
virtualizer. Associated to RegisteredProfile.

22.8.4 CIM_ConcreteComponent (Imported
Extents to Primordial Pool)

Mandatory Used to associate StorageExtents that are
playing the Pool Component role to a
Primordial StoragePool.

22.8.5 CIM_Dependency (Systems) Mandatory Experimental. This associates the block
storage (e.g., Array) System to the Storage
Virtualizer System.

22.8.6 CIM_FilterCollection (Storage
Virtualizer Predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

22.8.7 CIM_HostedCollection (Allocated
Resources)

Mandatory Experimental. This would associate the
AllocatedResources collection to the top level
system for the Storage Virtualizer.

22.8.8 CIM_HostedCollection (Remote
Resources)

Conditional Experimental. Conditional requirement: This is
required if SNIA_RemoteResources is
modeled. This would associate the
RemoteResources collection to the top level
system for the Storage Virtualizer.

22.8.9 CIM_HostedCollection (Storage
Virtualizer to predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 631

Storage Virtualizer Profile NO_ANSI_ID
22.8.10 CIM_IndicationFilter (Storage
Virtualizer LogicalPort OperationalStatus)

Conditional Deprecated. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of LogicalPorts.

22.8.11 CIM_IndicationFilter (Storage
Virtualizer Storage Volume OperationalStatus)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of StorageVolumes.

22.8.12 CIM_IndicationFilter (Storage
Virtualizer System Creation)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the addition of a new Storage
Virtualizer system instance.

22.8.13 CIM_IndicationFilter (Storage
Virtualizer System Deletion)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for the removal of a new Storage
Virtualizer system instance.

22.8.14 CIM_IndicationFilter (Storage
Virtualizer System OperationalStatus)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of a System.

22.8.15 CIM_IndicationFilter (WQL Storage
Virtualizer FCPort OperationalStatus)

Optional Deprecated. This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance
for changes in the OperationalStatus of
FCPorts.

Table 397 - CIM Elements for Storage Virtualizer

Element Name Requirement Description
632

NO_ANSI_ID Storage Virtualizer Profile
22.8.16 CIM_IndicationFilter (WQL Storage
Virtualizer Storage Volume OperationalStatus)

Optional Deprecated. This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance
for changes in the OperationalStatus of
StorageVolumes.

22.8.17 CIM_IndicationFilter (WQL Storage
Virtualizer System OperationalStatus)

Optional Deprecated. This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance
for changes in the OperationalStatus of a
System.

22.8.18 CIM_LogicalIdentity (Shadow Storage
Volume)

Mandatory Experimental. Associates a Storage Virtualizer
StorageExtent to a shadow instance of an
(imported) StorageVolume.

22.8.19 CIM_MemberOfCollection (Allocated
Resources)

Mandatory Experimental. This supports collecting
StorageVolumes. This is required to support
the AllocatedResources collection.

22.8.20 CIM_MemberOfCollection
(Predefined Filter Collection to Storage
Virtualizer Filters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Storage
Virtualizer predefined FilterCollection to the
predefined Filters supported by the Storage
Virtualizer.

22.8.21 CIM_MemberOfCollection (Remote
Resources)

Optional Experimental. This supports collecting all
Shadow instances of StorageVolume that the
Storage Virtualizer has available to use. This
is optional when used to support the
RemoteResources collection (the
RemoteResources collection is optional).

22.8.22 CIM_ProtocolControllerForUnit
(Arbitrary LU for All LUNs View)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

22.8.23 CIM_ProtocolControllerForUnit
(Storage volumes for All LUNs View)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

22.8.24 CIM_RemoteServiceAccessPoint
(Shadow)

Optional Experimental.
CIM_RemoteServiceAccessPoint represents
the management interface to a Shadow
system.

22.8.25 CIM_SAPAvailableForElement Conditional Experimental. Conditional requirement: This is
required if CIM_RemoteServiceAccessPoint is
modeled. Represents the association between
a RemoteServiceAccessPoint and the
Shadow (e.g., Array) System to which it
provides access.

Table 397 - CIM Elements for Storage Virtualizer

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 633

Storage Virtualizer Profile NO_ANSI_ID
22.8.26 CIM_SCSIArbitraryLogicalUnit
(Arbitrary LU)

Optional A SCSI Logical Unit that exists only for
management of the virtualizer.

22.8.27 CIM_SCSIProtocolController (All
LUNs View)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented.

22.8.28 CIM_StorageExtent (Imported
Extents)

Mandatory Used to represent the storage imported from
external arrays and used as
ConcreteComponents of Primordial
StoragePools.

22.8.29 CIM_StorageVolume (Shadow) Mandatory Experimental. A shadow copy of a remote
StorageVolume that is imported to the Storage
Virtualizer.

22.8.30 CIM_SystemDevice (Shadow
StorageVolumes)

Mandatory Experimental. This association links shadow
StorageVolumes to the scoping (Shadow)
system (of the array). This is used to
associate the shadow StorageVolunmes with
the System that manages them.

22.8.31 CIM_SystemDevice (System to
SCSIArbitraryLogicalUnit)

Conditional Conditional requirement: Elements that are
mandatory if SCSIArbitraryLogicalUnit is
instantiated. This association links
SCSIArbitraryLogicalUnit to the scoping
system.

22.8.32 CIM_SystemDevice (System to
SCSIProtocolController)

Conditional Conditional requirement: Elements that are
mandatory if Masking and Mapping is not
implemented. This association links
SCSIProtocolController to the scoping
system.

22.8.33 CIM_SystemDevice (System to
StorageExtent)

Mandatory This association links the primordial imported
StorageExtent to the scoping system.

22.8.34 SNIA_AllocatedResources Mandatory Experimental. This is a
SystemSpecificCollection for collecting
StorageVolumes that are being used by the
Storage Virtualizer (e.g., StorageVolumes that
the Virtualizer is using as Imported Primordial
Extents).

22.8.35 SNIA_RemoteResources Optional Experimental. This is a
SystemSpecificCollection for collecting
StorageVolumes that may be allocated by the
Storage Virtualizer profile (e.g.,
StorageVolumes that may be allocated to
support a Storage Virtualizer primordial
storage pool).

Table 397 - CIM Elements for Storage Virtualizer

Element Name Requirement Description
634

NO_ANSI_ID Storage Virtualizer Profile
SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Creation of a ComputerSystem instance. See
section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 22.8.12 CIM_IndicationFilter (Storage
Virtualizer System Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of a ComputerSystem instance. See
section Storage Management Technical
Specification, Part 3 Block Devices, 1.5.0 Rev
6 22.8.13 CIM_IndicationFilter (Storage
Virtualizer System Deletion).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Deprecated. Deprecated WQL -Modification of
OperationalStatus of a Storage Volume
instance, provided for backward compatibility
with In-band Virtualization. See section
Storage Management Technical Specification,
Part 3 Block Devices, 1.5.0 Rev 6 22.8.16
CIM_IndicationFilter (WQL Storage Virtualizer
Storage Volume OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::Operati
onalStatus <>
PreviousInstance.CIM_StorageVolume::Oper
ationalStatus

Mandatory CQL -Modification of OperationalStatus of a
Storage Volume instance. See section
Storage Management Technical Specification,
Part 3 Block Devices, 1.5.0 Rev 6 22.8.11
CIM_IndicationFilter (Storage Virtualizer
Storage Volume OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Deprecated. Deprecated WQL -Modification of
OperationalStatus of a FC port instance,
provided for backward compatibility with In-
band Virtualization. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 22.8.15
CIM_IndicationFilter (WQL Storage Virtualizer
FCPort OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_LogicalPort
AND
SourceInstance.CIM_LogicalPort::Operational
Status <>
PreviousInstance.CIM_LogicalPort::Operation
alStatus

Mandatory Deprecated. CQL -Modification of
OperationalStatus of a Logical (FC or
Ethernet) port instance. See section Storage
Management Technical Specification, Part 3
Block Devices, 1.5.0 Rev 6 22.8.10
CIM_IndicationFilter (Storage Virtualizer
LogicalPort OperationalStatus).

Table 397 - CIM Elements for Storage Virtualizer

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 635

Storage Virtualizer Profile NO_ANSI_ID

106

107

108

109

110

111

112

113

114

115

116
22.8.1 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)

The referenced primordial imported StorageExtent represents capacity has not been allocated, is allocated in part,
or is allocated in its entirety.

Requirement: Implementation of the Extent Composition profile.

Table 398 describes class CIM_AssociatedComponentExtent (Pool Component to Primordial Pool).

22.8.2 CIM_ComputerSystem (Shadow)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Deprecated. Deprecated WQL -Modification of
OperationalStatus of a ComputerSystem
instance, provided for backward compatibility
with In-band Virtualization. See section
Storage Management Technical Specification,
Part 3 Block Devices, 1.5.0 Rev 6 22.8.17
CIM_IndicationFilter (WQL Storage Virtualizer
System OperationalStatus).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus

Mandatory CQL -Modification of OperationalStatus of a
ComputerSystem instance. See section
Storage Management Technical Specification,
Part 3 Block Devices, 1.5.0 Rev 6 22.8.14
CIM_IndicationFilter (Storage Virtualizer
System OperationalStatus).

Table 398 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool
Component to Primordial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool.

PartComponent Mandatory The imported storage extent that is a component of the
primordial storage pool.

Table 397 - CIM Elements for Storage Virtualizer

Element Name Requirement Description
636

NO_ANSI_ID Storage Virtualizer Profile

117

118

119

120

121

122

123

124

125
Table 399 describes class CIM_ComputerSystem (Shadow).

22.8.3 CIM_ComputerSystem (Top Level System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile
instance shall have RegisteredName set to 'Storage Virtualizer', RegisteredOrganization set to 'SNIA', and
RegisteredVersion set to '1.5.0'.

Table 399 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the shadow system. E.g., IP address.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory At least one of the indices of this array should contain any
of the valid system name formats. Another index should
contain the string 'Shadow'.

IdentifyingDescription
s

C Mandatory For system names this array property should contain the
NameFormat of the system name (e.g., 'Ipv4 Address' if the
OtherIdentifyInfo is an IPv4 address). In the index for the
OItherIdentifyingInfo string 'Shadow' the
IdentifyingDescriptions entry should be
'SNIA:DetailedType'.

OperationalStatus Mandatory Overall status of the shadow system, as seen by the
Storage Virtualizer.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to
operation as a block storage system (e.g., an Array).

PrimaryOwnerContac
t

M Optional Contact details for owner.

PrimaryOwnerName M Optional Owner of the shadow system.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 637

Storage Virtualizer Profile NO_ANSI_ID

126

127

128

129

130

131

132

133

134

135

136

137

138
Table 400 describes class CIM_ComputerSystem (Top Level System).

22.8.4 CIM_ConcreteComponent (Imported Extents to Primordial Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 401 describes class CIM_ConcreteComponent (Imported Extents to Primordial Pool).

22.8.5 CIM_Dependency (Systems)

Experimental. CIM_Dependency is an association between a shadow System (e.g., Array) and the Storage
Virtualizer top level System (ComputerSystem). The specific nature of the dependency is determined by
associations between resources (imported StorageExtents) of the Storage Virtualizer system and resources
(StorageVolumes) of the shadow system.

CIM_Dependency is not subclassed from anything.

Table 400 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name C Mandatory Unique identifier for the storage virtualizer. Eg IP address
or a FC WWN.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory

IdentifyingDescription
s

C Mandatory

OperationalStatus Mandatory Overall status of the storage virtualizer.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory The values 15 and 21 indicate that this computer system is
dedicated to operation as a storage virtualizer.

PrimaryOwnerContac
t

M Optional Contact details for owner.

PrimaryOwnerName M Optional Owner of the storage virtualizer.

Table 401 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Imported Extents
to Primordial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A Primordial StoragePool.

PartComponent Mandatory The imported StorageExtent.
638

NO_ANSI_ID Storage Virtualizer Profile

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 402 describes class CIM_Dependency (Systems).

22.8.6 CIM_FilterCollection (Storage Virtualizer Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Storage
Virtualizer implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 403 describes class CIM_FilterCollection (Storage Virtualizer Predefined FilterCollection).

22.8.7 CIM_HostedCollection (Allocated Resources)

Experimental. CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are restricted by
the definition of the System. In the Storage Virtualizer profile, it is used to associate the Allocated Resources to the
top level Computer System of the Storage Virtualizer.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 402 - SMI Referenced Properties/Methods for CIM_Dependency (Systems)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Storage Virtualizer top level System.

Dependent Mandatory The shadow System (e.g., system of the Array device).

Table 403 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Virtualizer Pre-
defined FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Storage
Virtualizer'.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 639

Storage Virtualizer Profile NO_ANSI_ID

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177
Table 404 describes class CIM_HostedCollection (Allocated Resources).

22.8.8 CIM_HostedCollection (Remote Resources)

Experimental. CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are restricted by
the definition of the System. In the Storage Virtualizer Profile, it is used to associate the Remote Resources to the
top level Computer System of the Storage Virtualizer.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if SNIA_RemoteResources is modeled.

Table 405 describes class CIM_HostedCollection (Remote Resources).

22.8.9 CIM_HostedCollection (Storage Virtualizer to predefined FilterCollection)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 406 describes class CIM_HostedCollection (Storage Virtualizer to predefined FilterCollection).

Table 404 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Top Level System of the Storage Virtualizer.

Dependent Mandatory The AllocatedResources collection of shadow storage
volumes.

Table 405 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Top Level System of the Storage Virtualizer.

Dependent Mandatory The RemoteResources collection of shadow storage
volumes.

Table 406 - SMI Referenced Properties/Methods for CIM_HostedCollection (Storage Virtualizer to
predefined FilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Storage
Virtualizer.

Antecedent Mandatory Reference to the 'Top level' Storage Virtualizer System.
640

NO_ANSI_ID Storage Virtualizer Profile

178

179

180

181

182

183

184

185

186
22.8.10 CIM_IndicationFilter (Storage Virtualizer LogicalPort OperationalStatus)

Deprecated. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
LogicalPorts.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 407 describes class CIM_IndicationFilter (Storage Virtualizer LogicalPort OperationalStatus).

Table 407 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Log-
icalPort OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Storage
Virtualizer:LogicalPortOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalPort AND
SourceInstance.CIM_LogicalPort::OperationalStatus <>
PreviousInstance.CIM_LogicalPort::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 641

Storage Virtualizer Profile NO_ANSI_ID

187

188

189

190

191

192

193

194

195
22.8.11 CIM_IndicationFilter (Storage Virtualizer Storage Volume OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
StorageVolumes.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 408 describes class CIM_IndicationFilter (Storage Virtualizer Storage Volume OperationalStatus).

Table 408 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Stor-
age Volume OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Storage
Virtualizer:StorageVolumeOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
642

NO_ANSI_ID Storage Virtualizer Profile

196

197

198

199

200

201

202

203

204
22.8.12 CIM_IndicationFilter (Storage Virtualizer System Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new Storage Virtualizer
system instance. This would represent the addition of a controller computer system to the Storage Virtualizer.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 409 describes class CIM_IndicationFilter (Storage Virtualizer System Creation).

Table 409 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Sys-
tem Creation)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:SystemCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 643

Storage Virtualizer Profile NO_ANSI_ID

205

206

207

208

209

210

211

212

213
22.8.13 CIM_IndicationFilter (Storage Virtualizer System Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the removal of a new Storage Virtualizer
system instance. This would represent the removal of a controller computer system from the Storage Virtualizer.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 410 describes class CIM_IndicationFilter (Storage Virtualizer System Deletion).

Table 410 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Sys-
tem Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:SystemDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).
644

NO_ANSI_ID Storage Virtualizer Profile

214

215

216

217

218

219

220

221

222
22.8.14 CIM_IndicationFilter (Storage Virtualizer System OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of a
System.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 411 describes class CIM_IndicationFilter (Storage Virtualizer System OperationalStatus).

Table 411 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Sys-
tem OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Storage
Virtualizer:SystemOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatus
<>
PreviousInstance.CIM_ComputerSystem::OperationalStatu
s.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 645

Storage Virtualizer Profile NO_ANSI_ID

223

224

225

226

227

228

229

230
22.8.15 CIM_IndicationFilter (WQL Storage Virtualizer FCPort OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of FCPorts.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 412 describes class CIM_IndicationFilter (WQL Storage Virtualizer FCPort OperationalStatus).

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Table 412 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer
FCPort OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Storage
Virtualizer:FCPortOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Table 411 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Sys-
tem OperationalStatus)

Properties Flags Requirement Description & Notes
646

NO_ANSI_ID Storage Virtualizer Profile

231

232

233

234

235

236

237

238
22.8.16 CIM_IndicationFilter (WQL Storage Virtualizer Storage Volume OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolumes.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 413 describes class CIM_IndicationFilter (WQL Storage Virtualizer Storage Volume OperationalStatus).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FCPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Table 413 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer
Storage Volume OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Storage
Virtualizer:StorageVolumeOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Table 412 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer
FCPort OperationalStatus)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 647

Storage Virtualizer Profile NO_ANSI_ID

239

240

241

242

243

244

245

246
22.8.17 CIM_IndicationFilter (WQL Storage Virtualizer System OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of a System.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 414 describes class CIM_IndicationFilter (WQL Storage Virtualizer System OperationalStatus).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Table 414 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer
System OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Storage
Virtualizer:SystemOperationalStatusWQL'.

Table 413 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer
Storage Volume OperationalStatus)

Properties Flags Requirement Description & Notes
648

NO_ANSI_ID Storage Virtualizer Profile

247

248

249

250

251

252

253

254

255

256

257

258
22.8.18 CIM_LogicalIdentity (Shadow Storage Volume)

Experimental. Associates local StorageExtent to a shadow instance of an (imported) StorageVolume.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 415 describes class CIM_LogicalIdentity (Shadow Storage Volume).

22.8.19 CIM_MemberOfCollection (Allocated Resources)

Experimental. This use of MemberOfCollection is to collect all allocated shadow StorageVolume instances (in the
AllocatedResources collection).

Created By: Static

Modified By: Static

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.5.0 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.5.0 Rev 6 42.8.3 CIM_IndicationFilter (pre-
defined).

Table 415 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (Shadow Storage Vol-
ume)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the shadow (imported)
StorageVolume.

SameElement Mandatory This is a reference to the Storage Virtualizer StorageExtent
that maps to the shadow (imported) StorageVolume.

Table 414 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer
System OperationalStatus)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 649

Storage Virtualizer Profile NO_ANSI_ID

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275
Deleted By: Static

Requirement: Mandatory

Table 416 describes class CIM_MemberOfCollection (Allocated Resources).

22.8.20 CIM_MemberOfCollection (Predefined Filter Collection to Storage Virtualizer Filters)

Experimental. This associates the Storage Virtualizer predefined FilterCollection to the predefined Filters
supported by the Storage Virtualizer.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 417 describes class CIM_MemberOfCollection (Predefined Filter Collection to Storage Virtualizer Filters).

22.8.21 CIM_MemberOfCollection (Remote Resources)

Experimental. This use of MemberOfCollection is to collect all shadow StorageVolume instances (in the
RemoteResources collection). Each association (and the RemoteResources collection, itself) is created through
external means.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 416 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated
Resources)

Properties Flags Requirement Description & Notes

Member Mandatory A shadow storage volume (one with
ExtentDiscriminator='SNIA:Shadow').

Collection Mandatory The AllocatedResources collection of shadow storage
volumes.

Table 417 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Storage Virtualizer Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Storage Virtualizer predefined
FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Storage
Virtualizer.
650

NO_ANSI_ID Storage Virtualizer Profile

276

277

278

279

280

281

282

283

284

285

286

287
Table 418 describes class CIM_MemberOfCollection (Remote Resources).

22.8.22 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 419 describes class CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View).

22.8.23 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 418 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote
Resources)

Properties Flags Requirement Description & Notes

Member Mandatory A shadow storage volume (one with
ExtentDiscriminator='SNIA:Shadow').

Collection Mandatory The RemoteResources collection of shadow storage
volumes.

Table 419 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU
for All LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be
formatted as unseparated uppercase hexadecimal digits,
with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as
exposed through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI Arbitrary logical unit.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 651

Storage Virtualizer Profile NO_ANSI_ID

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303
Table 420 describes class CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View).

22.8.24 CIM_RemoteServiceAccessPoint (Shadow)

Experimental. CIM_RemoteServiceAccessPoint is an instance that provides access information for accessing the
actual Shadow (e.g., Array) system via a management interface.

CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 421 describes class CIM_RemoteServiceAccessPoint (Shadow).

22.8.25 CIM_SAPAvailableForElement

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if CIM_RemoteServiceAccessPoint is modeled.

Table 420 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage vol-
umes for All LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be
formatted as unseparated uppercase hexadecimal digits,
with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as
exposed through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block
Services StorageVolume).

Table 421 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
management interface.

SystemName Mandatory The name of the Computer System hosting the
management interface.

CreationClassName Mandatory The CIM Class name of the management interface.

Name Mandatory The unique name of the management interface.
652

NO_ANSI_ID Storage Virtualizer Profile

304

305

306

307

308

309

310

311

312

313

314

315
Table 422 describes class CIM_SAPAvailableForElement.

22.8.26 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 423 describes class CIM_SCSIArbitraryLogicalUnit (Arbitrary LU).

22.8.27 CIM_SCSIProtocolController (All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 422 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Shadow System.

AvailableSAP Mandatory The service access point of the shadow system.

Table 423 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifer.

ElementName Mandatory User-friendly name.

Name Mandatory

OperationalStatus Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 653

Storage Virtualizer Profile NO_ANSI_ID

316

317

318

319

320

321

322

323

324

325

326

327
Table 424 describes class CIM_SCSIProtocolController (All LUNs View).

22.8.28 CIM_StorageExtent (Imported Extents)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 425 describes class CIM_StorageExtent (Imported Extents).

22.8.29 CIM_StorageVolume (Shadow)

Experimental. A shadow copy of a remote StorageVolume that is imported to the Storage Virtualizer. If the Storage
Virtualizer has access to the leaf profile, the data in this class should reflect what the Storage Virtualizer obtains
from that profile. If the referencing profile does not have access to the leaf profile, then this should be filled out as
best can be done.

Table 424 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 425 - SMI Referenced Properties/Methods for CIM_StorageExtent (Imported Extents)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

ExtentStatus Mandatory

OperationalStatus Mandatory

Primordial Mandatory This shall be true for extents instantiated in the Storage
Virtualizer.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Pool Component' and 'SNIA:Imported'.
654

NO_ANSI_ID Storage Virtualizer Profile

328

329

330

331

332
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 426 describes class CIM_StorageVolume (Shadow).

Table 426 - SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory The identifier for this volume. If the Storage Virtualizer has
access to the CIM Server for the device that exports the
storage volume, then this should be the Name property as
reported by the CIM Server. If the Storage Virtualizer does
not have access to the CIM Server for the device, then it
should be one of the names supported for storage volumes.

OtherIdentifyingInfo CD Optional Additional correlatable names. Specific values should be
values that may be correlated with the names reported by
the device that exports the storage volume.

IdentifyingDescription
s

Optional

NameFormat Mandatory The type of identifier in the Name property.

NameNamespace Mandatory The namespace that defines uniqueness for the
NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 655

Storage Virtualizer Profile NO_ANSI_ID

333

334

335

336

337

338

339
22.8.30 CIM_SystemDevice (Shadow StorageVolumes)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 427 describes class CIM_SystemDevice (Shadow StorageVolumes).

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

ExtentDiscriminator Mandatory This shall be 'SNIA:Shadow'.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Table 427 - SMI Referenced Properties/Methods for CIM_SystemDevice (Shadow StorageVol-
umes)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Shadow Computer System that contains this
StorageVolume.

PartComponent Mandatory The storage volume that is managed by a computer
system.

Table 426 - SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow)

Properties Flags Requirement Description & Notes
656

NO_ANSI_ID Storage Virtualizer Profile

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356
22.8.31 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if SCSIArbitraryLogicalUnit is instantiated.

Table 428 describes class CIM_SystemDevice (System to SCSIArbitraryLogicalUnit).

22.8.32 CIM_SystemDevice (System to SCSIProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 429 describes class CIM_SystemDevice (System to SCSIProtocolController).

22.8.33 CIM_SystemDevice (System to StorageExtent)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 428 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitrary-
LogicalUnit)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 429 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocol-
Controller)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 657

Storage Virtualizer Profile NO_ANSI_ID

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376
Table 430 describes class CIM_SystemDevice (System to StorageExtent).

22.8.34 SNIA_AllocatedResources

Experimental. An instance of a default SNIA_AllocatedResources defines the set of StorageVolumes that are
allocated and in use by the Storage Virtualizer.

SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the SNIA_AllocatedResources shall exist for a Storage Virtualizer Profile and shall be
hosted by one of its ComputerSystems (typically the top level ComputerSystem.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 431 describes class SNIA_AllocatedResources.

22.8.35 SNIA_RemoteResources

Experimental. An instance of a default SNIA_RemoteResources defines the set of shadow StorageVolumes that
are available to be used by the Storage Virtualizer.

SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the SNIA_RemoteResources would exist and shall be hosted by the top level ComputerSystems
of the Storage Virtualizer Profile.

Created By: Static

Modified By: Static

Table 430 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageEx-
tent)

Properties Flags Requirement Description & Notes

PartComponent Mandatory The imported StorageExtent.

GroupComponent Mandatory The scoping ComputerSystem.

Table 431 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection
(e.g., Allocated StorageVolumes).

ElementType Mandatory The type of remote resources collected by the
AllocatedResources collection.

For this version of SMI-S, the only value supported is '3'
(StorageVolume).

CollectionDiscriminat
or

Mandatory An array of strings indicating the purposes of the collection
of elements. This shall contain 'SNIA:Imported Volumes'.
658

NO_ANSI_ID Storage Virtualizer Profile

377

378

379
Deleted By: Static

Requirement: Optional

Table 432 describes class SNIA_RemoteResources.

IMPLEMENTED

Table 432 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection
(e.g., Remote Storage Volumes).

ElementType Mandatory The type of remote resources collected by the
RemoteResources collection. This shall be '3'
(StorageVolume).

CollectionDiscriminat
or

Mandatory An array of strings indicating the purposes of the collection
of elements. This shall contain 'SNIA:Imported Volumes'.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 659

Storage Virtualizer Profile NO_ANSI_ID
660

NO_ANSI_ID Volume Composition Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
EXPERIMENTAL

Clause 23: Volume Composition Profile

23.1 Description

23.1.1 Overview

Some Arrays and Storage Virtualizers as well as Volume Managers have the ability to combine together existing
storage volumes to make them appear to be one, bigger, volume. These are called composite volumes in this
version of the specification. This is different from the approach shown in the Block Services Package which shows
how to create StorageExtents and StoragePools. This subprofile shows how to create StorageVolumes from
volumes that are already allocated from the Storage Pool and exposed. These volumes may not necessarily be
mapped to a port or masked to a host. These volumes can come from the same or different storage pools. Often
the rules to determine which volumes can be combined with other volumes are quite complex and can vary even
across a vendor's own product line. Once these elements are combined together, only one storage element is
visible and the rest of the storage elements are hidden and cannot be exposed. When the composite storage
element is dissolved, the hidden StorageVolumes reappear.

The Volume Composition Subprofile describes how instrumentation would combine exposable storage elements
into other exposable storage elements. Storage Elements in this context are Storage Volumes or Logical Disks,
although for this version of the specification, only StorageVolumes are supported.

This subprofile introduces a number of new methods and capabilities. The existing methods in the StoragePool and
StorageConfigurationService classes (CreateOrModifyElementFromStoragePool,
CreateOrModifyElementFromElements, ReturnToStoragePool) were found to be inadequate or attached to the
wrong class (i.e., StoragePool) to support the desired functionality. For this reason new methods with a
composition-specific focus are introduced, instead of extending or overloading the usage of existing methods.

23.1.2 Relationship to Block Services Package

This profile makes use of the Block Services Package model and the applicable methods. Block Services shows
how StorageExtents and StoragePools may be constructed from StoragePools and ultimately how StorageExtents
may be exposed as a storage element (StorageVolume or LogicalDisk). This subprofile uses the StorageVolume,
StorageExtent, and StoragePool classes in essentially the same ways as Block Services This subprofile does not
discuss how to create or delete StoragePools. It does maintain the concept that a StorageVolume is allocated from
a StoragePool as shown by the AllocatedFromStoragePool association, although it does extend by allowing a
StorageVolume to be allocated from multiple StoragePools. It also maintains the concept that a StorageVolume has
a BasedOn association to an underlying StorageExtent. Because of this, the capacity calculations as defined in the
Block Services Package shall continue to produce the correct results.

23.1.3 Relationship to Extent Composition

This profile is a component profile (or subprofile) and extends the functionality of the Extent Composition
subprofile, which in turn references this profile as a supported profile. This profile requires the use of the Extent
Composition Subprofile.

Extent Composition shows the hierarchical relationships between StorageVolumes and StorageExtents. This
subprofile shows how to model composite storage elements (composite StorageVolumes). Extent Composition
does not define any methods. This profile defines methods to perform composition and decomposition of
composite StorageVolumes.

23.1.4 Model

To model these composite volumes, this subprofile shall define the use of CompositeExtent to represent the
“composition” characteristics of the volume. A composite StorageVolume shall have a BasedOn association to the
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 661

Volume Composition Profile NO_ANSI_ID

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63
Antecedent CompositeExtent. That CompositeExtent shall have CompositeExtentBasedOn or BasedOn
relationships to the underlying extents (from potentially multiple pools) that comprise the StorageVolume. These
underlying extents could, in turn, be CompositeExtents.

If the volume is a composite from multiple pools, there shall be one AllocatedFromStoragePool association to each
pool. SpaceConsumed shall show applicable space consumed from each pool. The general class model looks like
Figure 98: "Volume Composition Class Mode".

One important thing to note about the class model is that the CompositeExtent is not associated via
ConcreteComponent to the StoragePool.

The client can use the StorageElementCompositionCapabilities to determine which features of this profile are
supported. The first property is to check is SupportsComposites, which will be set to true if the instrumentation
supports creating and modifying composites. The client should also check MaxCompositeSize and
MaxCompositeElements to determine the bounds for composite creation. Since there are a number of differences
in the way vendors have implemented creation and modification, the client should check the
CompositionCharacteristics array to understand which creation and modification options the instrumentation
supports. The SupportedAsynchronousActions and SupportedSynchronousActions indicate which methods are
supported and whether or not a job is started when the method is invoked. An entry in both arrays indicates a job
may be started in some cases but not in others. SupportedStorageElements indicates the types of storage
elements that may be used. For this version of the specification, only StorageVolumes are supported. The
CompositionMethodsSupported indicates which of the different ways of creating a composite (simple
concatenation, striping across elements, concatenate and stripe, etc.) are supported by the instrumentation. Lastly,
CompositeSourcesSupported is used to indicate the source of storage elements when they are not explicitly

Figure 98 - Volume Composition Class Mode

StorageVolume

CompositeExtent

StorageExtent

StoragePool

BasedOn

BasedOn

ConcreteComponent

AllocatedFromStoragePool
ComputerSystem SystemDevice

HostedService

ElementCapabilities

StorageElementCompositionService

StorageElementCompositionCapabilities

SystemDevice

Block Services

StorageSetting

1

1

1

1 11

1

1

*

1

*

Extent Composition

ElementSettingData 1

*

662

NO_ANSI_ID Volume Composition Profile

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87
specified in the call to CreateOrModifyCompositeElement. The client can examine the CompositionCharacteristics
property to determine which options are permitted. See Table 433 for a summary of those possible values.

23.1.5 Quality of Service (QoS) Considerations

It is a requirement of Block Services that each StorageVolumes have an associated StorageSetting. This
StorageSetting defines a requested ‘service level’ in terms of data and package redundancy. The currently
achieved value is found in the StorageVolume itself.

When a composite is created, it shall have an associated StorageSetting as regular StorageVolumes do. It shall
also track the current ‘service level’ achieved in the StorageVolume properties as specified by Block Services.
However, the resulting ‘service level’ needs to be determined. Determining what this resulting ‘service level’ will
depend upon the parameters passed in to CreateOrModifyCompositeElement. If only InElements is passed in, the
‘service level’ of the StorageVolume shall be determined by the instrumentation. If Goal or RepresentativeElement
is passed in, the instrumentation shall attempt to meet the ‘service level’ specified by the Goal or
RepresentativeElement instead of InElements (if InElements is non-NULL).

23.1.6 Composite Stripe Length and Depth

This profile supports the creation of composites where the elements are either concatenated together, striped, or
concatenated and striped. To provide this information, this profile utilizes a StorageSetting that contains additional
information about any striping done on the composite. StorageSetting.ExtentStripeLength describes the number of
underlying storage elements in a composite volume that data is striped across. For any volumes not participating in
the stripe, data is linearly written to the remaining volumes. This property only applies to composites that have a
CompositeType of "Stripe elements” or "Concatenate and stripe elements". In the case of "Stripe elements", this
value shall be equal to the number of elements in the composite. In the case of "Concatenate and stripe elements",
ExtentStripeLength shall be equal to the number of striped elements and not the number of concatenated
elements. In other words, for "Concatenate and stripe elements", ExtentStripeLength would be equivalent to the
total number of volumes in the composite minus the number of concatenated elements.

Table 433 - CompositionCharacteristics Property

Value Description

CompositionIsDestructive Any data that exists on the elements will be destroyed when the composite is
created

CanCompositeComposites It is possible to use an existing composite as an element to a new composite

CanModifyComposite An existing composite can be modified by adding or removing one or more
elements

CompositeElementsMustBeSame
Size

All elements used to create/modify a composite shall be the same size

CompositeElementsMustBeSame
RAID/QoS

All elements used to create/modify a composite shall have the same RAID or
QoS level

DecompositionDeletesElements When the composite is dissolved, the component elements (e.g.
StorageVolumes) are deleted

CanAddToComposite Elements can be added to a composite in any position

CanAppendToComposite Elements can only be added at the end of a composite.

CanRemoveFromComposite Elements can be removed from a composite

CompositeAdditionIsDestructive Adding elements to a composite results in loss of data

CompositeRemovalIsDestructive Removing elements from a composite results in loss of data
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 663

Volume Composition Profile NO_ANSI_ID

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114
The StorageSetting class also defines the UserDataStripeDepth property. This property defines the number bytes
written to an individual striped volume in a composite volume before data is written to the next volume in the stripe.
This property only applies to Composite Volumes that have a CompositeType of "Stripe elements” or "Concatenate
and stripe elements". Furthermore, for a composite volume there is no relationship between
StorageSetting.ExtentStripeLength and StorageSetting.UserDataStripeDepth, which collectively with
StorageSetting.ParityLayout describe the RAID level of storage elements. As an example, consider the case where
you have a 4-volume composition with 3 striped and 1 concatenated volumes. In this example,
UserDataStripeDepth bytes of data are written alternatively to the first 3 volumes until they fill up. Then all the
writes go to the last volume.

The CompositeExtent properties are also affected by the stripe length. The CompositeExtent.ExtentStripeLength
shall be set to 1 when the CompositeType is “Concatenate elements”, n for “Stripe elements”, and (n minus number
of concatenated volumes) for “Concatenated and stripe elements”; where n is the number of members of a
composite volume. CompositeExtent.IsConcatenated shall be set to true for CompositeType “Concatenate
elements” and “Concatenated and stripe elements”, false otherwise. PackageRedundancy shall be set to zero as
there is no package redundancy in the CompositeExtent. IsBasedOnUnderlyingRedundancy shall be set to true if
all of the composite volumes’ IsBasedOnUnderlyingRedundancy property is set to true, false otherwise.
NoSinglePointOfFailure shall be set to false as the CompositeExtent represents a single point of failure for the
composite volume.

23.1.7 Examples

23.1.7.1 Example 1

Figure 99 shows how a composite volume may be created. For simplification, the value of the
StorageExtent.BlockSize property is 1 and the associations to the underlying primordial StoragePool have been
omitted, along with the StorageSettings associated to the volumes. In some implementations, there may be
intermediate extents between the volume and the ConcreteComponent StorageExtent.

In this example, we have four StorageExtents of 40 blocks each that are combined into a concrete storage pool of
160 blocks and four storage volumes allocated from the pool, each consuming 40 blocks. The remaining space in
the pool is 0 blocks.
664

NO_ANSI_ID Volume Composition Profile

115

116

117

118

119

120

121

Next, a composite volume is created by calling CreateOrModifyCompositeElement using three of the volumes (V1,
V2, and V3). The result, shown in Figure 100, is the creation of a composite volume with the name V1 whose size
is now 120 blocks and volumes V2 and V3 are now inaccessible. The volume V4 is unchanged. A
CompositeExtent is added and is the Antecedent of a BasedOn association to the StorageVolume. In turn, the
BasedOn associations that were going from volumes V1, V2, and V3 from extents SE1, SE2, and SE3 are now
associated from the extents to the CompositeExtent.

Figure 99 - Example 1 Step 1

V1: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

Apool: StoragePool

Primordial = false
TotalManagedSpace = 160
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V3: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V2: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn BasedOn BasedOn BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent

ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 665

Volume Composition Profile NO_ANSI_ID

122

123

124

125

126

127
23.1.7.2 First Alternative to Example 1

Figure 101 shows how the StorageSetting would be set when two volumes are turned into a composite. In this
example, the volumes have a BasedOn relationship to a CompositeExtent. These volumes partially consume the
underlying extent. Not shown in the diagram are the other StorageVolumes that consume the rest of the extent. In
this example, the first volume, V1, has a DataRedundancy of 2 and a PackageRedundancy of 1. The second
volume, V2, has a DataRedundancy of 1 and a PackageRedundancy of 0

Figure 100 - Example 1 Step 2

V1: StorageVolume

NumberOfBlocks = 120
ConsumableBlocks = 120

Apool: StoragePool

Primordial = false
TotalManagedSpace = 160
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn

BasedOn

BasedOn
BasedOn

ConcreteComponent

ConcreteComponent

ConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=120 AllocatedFromStrorgePool

SpaceConsumed=40

C1: CompositeExtent

NumberOfBlocks = 120
ConsumableBlocks = 120
ExtentStripeLength=1
PackageRedundancy=0

BasedOn

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40
666

NO_ANSI_ID Volume Composition Profile

128

129

130

131

132

133

134
.

As shown in Figure 102, after composition, the two volumes are combined into a single volume, V1, with a size
equal to the sum of the prior two volumes. The StorageSetting of composite volume has been set to the lowest
StorageSetting of the “before” volumes, which in this case is the StorageSetting from volume V2, for a
DataRedundancy of 1 and a PackageRedundancy of 0. Also note that (partial) StorageExtents have been added
between the CompositeExtent representing the composite volume (CE1-2) and the underlying CompositeExtents
from before (CE1 and CE2). This is to preserve the consumption information of the original volumes.

Figure 101 - First Alternative Example - Before Composition

V1: StorageVolume

NumberOfBlocks = 10
ConsumableBlocks = 10

V2: StorageVolume

NumberOfBlocks = 20
ConsumableBlocks = 20

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn

S1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

S2: StorageSetting

DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL

ElementSettingData
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 667

Volume Composition Profile NO_ANSI_ID

135

136

137

138

139
23.1.7.3 Second Alternative to Example 1

Figure 103 also shows an alternative extent model. In this example, the volumes have a BasedOn relationship to a
CompositeExtent that in turn is based on an underlying StorageExtent (e.g. a ConcreteComponent of a concrete
StoragePool). These volumes wholly consume the underlying extent. In this example, both volumes have a
DataRedundancy of 2 and a PackageRedundancy of 1.

Figure 102 - First Alternative Example - After Composition

V1: StorageVolume

NumberOfBlocks = 30
ConsumableBlocks = 30

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CSS1: StorageSetting

DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL
StripeLength=0
StripeDepth=0

ElementSettingData

BasedOn

CE1-2: CompositeExtent

NumberOfBlocks = 30
ConsumableBlocks = 30
ExtentStripeLength=1
PackageRedundancy=0

BasedOn BasedOn

PE1: StorageExtent

NumberOfBlocks = 10
ConsumableBlocks = 10

PE2: StorageExtent

NumberOfBlocks = 20
ConsumableBlocks = 20

BasedOnBasedOn
668

NO_ANSI_ID Volume Composition Profile

140

141

142

143

144
After composition, as shown in Figure 104, the two volumes are combined into a single volume, V1, with a size
equal to the sum of the prior two volumes. The StorageSetting of the composite volume has been set to the
StorageSetting of the “before” volumes, which in this case is a DataRedundancy of 2 and a PackageRedundancy
of 1. Also note that the volume is now based on a single CompositeExtent (CE2 has been removed), which is now
based on the previous two underlying StorageExtents.

Figure 103 - Second Alternative Example - Before Composition

V1: StorageVolume

NumberOfBlocks = 50
ConsumableBlocks = 50

V2: StorageVolume

NumberOfBlocks = 50
ConsumableBlocks = 50

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn
S1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

S2: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

SE1: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

SE2: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 669

Volume Composition Profile NO_ANSI_ID

145

146

147

148

149
23.1.7.4 Example 2

In this example, shown in Figure 105, a composite volume is built from volumes from two concrete storage pools.
The configuration is the same as in the first example, except now there are two concrete StoragePools. Volumes
V1 and V2 and extents SE1 and SE2 are associated to StoragePool A, and volumes V3 and V4 and extents SE3
and SE4 are associated to StoragePool B.

Figure 104 - Second Alternative Example - After Composition

V1:StorageVolume

NumberOfBlocks = 100
ConsumableBlocks = 100

CE1: CompositeExtent

NumberOfBlocks = 100
ConsumableBlocks = 100
ExtentStripeLength=1
PackageRedundancy=0

BasedOn

ElementSettingData

SE1: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

SE2: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn

CSS1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL
StripeLength=0
StripeDepth=0
670

NO_ANSI_ID Volume Composition Profile

150

151

152

153

154

155

156

157

158

Like the example shown in Figure 104, three volumes are combined into a composite volume, leaving one original
volume. In this case, the composite volume has an AllocatedFromStoragePool association to each of the pools
from which it was created. The SpaceConsumed property in the association is set to the space used from that
particular pool. In this case, since two extents were consumed from StoragePool A and one from StoragePool B,
the AllocatedFromStoragePool.SpaceConsumed for StoragePool A is 80 blocks and the
AllocatedFromStoragePool.SpaceConsumed for StoragePool B is 40 blocks. The CompositeExtent has BasedOn
associations to the underlying StorageExtents in each pool. Figure 106: "Example 2 - After Composition" shows
the resulting model.

Figure 105 - Example 2 - Before Composition

V1: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

PoolA: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V3: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V2: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn BasedOn BasedOn BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

PoolB: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

StoragePool A StoragePool B

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 671

Volume Composition Profile NO_ANSI_ID

159

160

161

162

163

164

165

166

167

168
23.2 Striped and Concatenated Composite Volumes

The profile supports a composite volume that consists of striping across some constituent elements and
concatenation among the remaining constituent elements, or vice versa. For example, Figure 107 shows the model
for a composite volume that combines striping and concatenation. In this example, a composite volume consisting
of “vol1” and “vol2” existed. Then, the composite volume was expanded using “vol3” and composite type of
Concatenate. Therefore, the expanded composite volume now has a composition of “Concatenate+Stripe”. It is
also possible to start with a composite volume that has a composite type of Concatenate and expand it with two ore
more volumes that are Striped. In this case, the composition is still considered “Concatenate+Stripe”.

Use the method 23.6.5 "GetCompositeElements" to determine which constituent elements are striped and which
ones are concatenated.

Figure 106 - Example 2 - After Composition

V1: StorageVolume

NumberOfBlocks = 120
ConsumableBlocks = 120

PoolA: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn

BasedOn BasedOn

BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=80

AllocatedFromStrorgePool
SpaceConsumed=40

PoolB: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

C1: CompositeExtent

NumberOfBlocks = 120
ConsumableBlocks = 120

BasedOn

AllocatedFromStrorgePool
SpaceConsumed=40

StoragePool A StoragePool B

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40
672

NO_ANSI_ID Volume Composition Profile

169

170

171

23.3 Health and Fault Management Consideration

Not defined in this version of the specification.

Figure 107 - Striping and Concatenation

V1: StorageVolume

NumberOfBlocks = 125
ConsumableBlocks = 125
IsComposite=true

CE1: CompositeExtent

NumberOfBlocks = 100
ConsumableBlocks = 100
DataRedundancy=1
PackageRedundancy=1
ParityLayout=NULL
ExtentStripeLength=2
ExtentStripeDepth=N
IsConcatenated=false

SE1: StorageExtent (was
Vol1)

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn

SE2: StorageExtent (was
Vol2)

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn

SE3: StorageExtent (was
Vol3)

NumberOfBlocks = 25
ConsumableBlocks = 25

BasedOn

CE2: CompositeExtent

NumberOfBlocks = 125
ConsumableBlocks = 125
DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL
ExtentStripeLength=1
IsConcatenated=True

BasedOn BasedOn
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 673

Volume Composition Profile NO_ANSI_ID

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187
23.4 Cascading Considerations

None

23.5 Supported Profiles, Subprofiles, and Packages

Table 434 describes the supported profiles for Volume Composition.

23.6 Methods of the Profile

Table 435 describes the methods of the profile.

23.6.1 CreateOrModifyCompositeElement

This method is found in the StorageElementCompositionService. It creates or modifies a composite element. Only
like elements (e.g., StorageVolumes) can be combined. In this version of the specification, only StorageVolumes
may be used to create composite elements.

This method attempts to support vendors’ sometimes complicated algorithms for creating and modifying composite
storage elements, while simplifying it as much as possible. The key parameters are the Goal,
RepresentativeElement, Size, InElements[], and TheElement. Setting one or more of these values will influence
what the other values of these key parameters may be. These combinations will be described below. Of the other
parameters, they are fairly self-explanatory and are described in Table 436. For this version of the specification,
ElementType shall only be “StorageVolume”.

Table 434 - Supported Profiles for Volume Composition

Profile Name Organization Version Requirement Description

Extent Composition SNIA 1.5.0 Mandatory

Block Services SNIA 1.5.0 Mandatory

Table 435 - Method Summary

Method Created Instances Modified Instances Deleted Instances

CreateOrModifyCompositeElement StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

ReturnElementToElements StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

GetAvailableElements N/A N/A N/A

GetCompositeElements N/A N/A N/A

GetSupportedStripeLengths N/A N/A N/A

GetSupportedStripeLengthRange N/A N/A N/A

GetSupportedStripeDepths N/A N/A N/A

GetSupportedStripeDepthRange N/A N/A N/A

RemoveElementsFromElement StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

N/A
674

NO_ANSI_ID Volume Composition Profile

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234
The Goal parameter specifies a set of generic QoS settings to use when creating the composite. The
RepresentativeElement parameter is intended as a more detailed goal or QoS target for the composite. Because
vendors have complex rules to create composites, it can be difficult to map those to the standard QoS settings that
might be expressed in the usual setting properties. By passing in a representative element, the client is indicating
to the instrumentation that it should use additional vendor-specific information about that storage element when
trying to create a composite. This allows for better interoperability because it hides those vendor rules, while still
supporting vendor needs. If Goal or RepresentativeElement is non-null, then the other shall be null. InElements[]
can also be used to deduce QoS setting to use in case neither Goal or RepresentativeElement is specified. In this
case, the QoS for the composite element will be the lowest common denominator of the QoS values for the
InElements array.

23.6.1.1 Creating a Composite

When creating a new composite storage element, there are two distinct modes of operation. Regardless of which
mode is used, the following values shall apply:

The TheElement parameter shall be NULL. ElementName may be specified if the instrumentation supports naming
of composite elements. CompositeType may be specified if the instrumentation supports the setting of this
parameter. See the CompositeTypesSupported property in the StorageElementCompositionCapabilities class to
determine if this can be set. Job will be non-NULL upon the method return if a Job was created.

The two creation use cases are the following:

• Pass in a non-empty list of extents (e.g., StorageVolumes) in InElements[] and a NULL Size parameter. The
RepresentativeElement and Goal parameters may be NULL as the instrumentation will pick up the QoS goal
from the InElements. If RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the
QoS settings in the RepresentativeElement. It shall fail if it cannot create a composite that satisfies that QoS. If
Goal is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it
cannot create a composite that satisfies that Goal. The user may specify RepresentativeElement or Goal, but
not both. The ElementSource parameter shall be NULL.

• Pass in a Size and a NULL InElements parameter. In this case, the instrumentation shall find the elements to
use, based on the value of the ElementSource parameter, which may be NULL, indicating the instrumentation
will determine the source of the elements. Goal or RepresentativeElement shall be specified. If
RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the
RepresentativeElement. It shall fail if it cannot create a composite that satisfies that QoS. If Goal is not NULL,
the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it cannot create a
composite that satisfies that Goal. The user may specify RepresentativeElement or Goal, but not both. The
size of the composite created shall be equal to or greater than the Size passed in.

23.6.1.2 Modifying a Composite

When modifying a composite, the client should examine the supported capabilities of the instrumentation before
modifying a composite, as certain operations may result in data loss, depending upon the capabilities of the
instrumentation.

Modifying a composite is similar to creation, with a few differences. The key difference is that TheElement shall be
specified. ElementName may be specified if the instrumentation supports naming of composite elements.
CompositeType may be specified if the instrumentation supports the setting of this parameter. See the
CompositeTypesSupported property in the StorageElementCompositionCapabilities class to determine if this can
be set. Job will be non-NULL upon the method return if a Job was created.

The two modification use cases are the following:

• Pass in a non-empty list of extents (e.g., StorageVolumes) in InElements[] and a NULL Size parameter. The
RepresentativeElement and Goal parameters may be NULL as the instrumentation will pick up the QoS goal
from the existing composite and the InElements. If RepresentativeElement is not NULL, the instrumentation
shall attempt to satisfy the QoS settings in the RepresentativeElement. It shall fail if it cannot modify the
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 675

Volume Composition Profile NO_ANSI_ID

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249
composite to satisfies that QoS. If Goal is not NULL, the instrumentation shall attempt to satisfy the QoS
settings in the Goal. It shall fail if it cannot modify a composite to satisfy that Goal. The user may specify
RepresentativeElement or Goal, but not both. If the Size parameter is NULL, the Instrumentation shall modify
the composite size to be the current size plus the sum of the ConsumableBlocks times BlockSize of the
InElements[] entries. The ElementSource parameter shall be NULL.

• Pass in a Size and a NULL InElements parameter. In this case, the instrumentation shall find the elements to
use, based on the value of the ElementSource parameter, which may be NULL, indicating the instrumentation
will determine the source of the elements. Goal or RepresentativeElement shall be specified. If
RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the
RepresentativeElement. It shall fail if it cannot modify the composite to satisfy that QoS. If Goal is not NULL,
the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it cannot modify a
composite to satisfy that Goal. The user may specify RepresentativeElement or Goal, but not both. The size of
the composite created shall be equal to or greater than the Size passed in. If Size is smaller than the current
composite size, this may mean that volumes in the composite may remove from the composite.

Table 436 describes the return values for the CreateOrModifyCompositeElement method.

Table 436 - CreateOrModifyCompositeElement

Method: CreateOrModifyCompositeElement

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot be modified

4096: Method Parameters Checked -
Job started

Job was started

4097: Size Not supported

Parameters:

Qualifiers Name Type Description/Values

IN ElementName string End-user relevant name for the
element created

IN ElementType uint16 Type of element being created

OUT Job REF ConcreteJob Reference to the job created
676

NO_ANSI_ID Volume Composition Profile
IN Goal REF ManagedElement The QoS requirements for the
composite element to maintain. This
parameter may be null. If both Goal
and RepresentativeElement are null,
the implementation selects an
appropriate Goal from the InElements.
When a StorageSetting is used, this
will include the stripe length and
depth.

IN RepresentativeEl
ement

REF StorageExtent The instrumentation will use this
parameter + Size or InElements to
determine the elements used to
construct the composite. This
parameter may be NULL. If both Goal
and RepresentativeElement are null,
the implementation selects an
appropriate Goal from the InElements.

IN/OUT Size uint64 Unit: bytes

As an input parameter Size specifies
the desired size. If NULL, then
InElements shall be supplied. If not
NULL, this parameter will supply a
new size when creating or modifying
an existing element.

As an output parameter Size specifies
the size achieved.

IN InElements[] REF StorageExtent The elements from which to create the
composite element. If this parameter is
NULL then Size shall be non-NULL.

Once the elements are combined, they
will be removed from the model and
replaced with a single element.

For some instrumentation, this may be
one of the InElements, so in effect, all
but one are removed.

IN/OUT TheElement REF LogicalElement When used to create a composite, this
shall be NULL

Upon modification, this shall specify
an existing composite element. The
method will then modify the specified
element. Upon completion (unless a
Job is started), a reference to the
resulting element shall be returned

Table 436 - CreateOrModifyCompositeElement

Method: CreateOrModifyCompositeElement
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 677

Volume Composition Profile NO_ANSI_ID

250

251

252

253

254

255

256
23.6.2 RemoveElementsFromElement

This method is found in the StorageElementCompositionService. It removes selected elements from a composite
volume. Note that the elements returned may not match the elements that went into the composite (e.g., VPD page
83h information may not be the same). Also, removing a member element from a composite element may impact
the data stored on the remaining members (see Table 433, “CompositionCharacteristics Property”). Removing all
members is the same as calling ReturnElementToElements.

Table 437 describes the return values for the RemoveElementsFromElement method.

IN CompositeType uint16 Type of composite element to create.
Possible values are Concatenate,
Stripe,

Concatenate+Stripe, Vendor specific.

If NULL, the instrumentation will
decide

IN ElementSource uint16 Tell the instrumentation where to get
the elements. Only applies when Size
is specified and not InElements.
Otherwise it shall be NULL.

Possible values are:

1. Use existing elements only

2. Create new elements only

3. Can use existing or create new or
both

4. Instrumentation decides

If NULL, the instrumentation will
decide.

Table 437 - RemoveElementsFromElement

Method: RemoveElementsFromElement

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot be modified

4096: Method Parameters Checked - Job
started

Job was started

Table 436 - CreateOrModifyCompositeElement

Method: CreateOrModifyCompositeElement
678

NO_ANSI_ID Volume Composition Profile

257

258

259

260

261

262

263

264

265
23.6.3 ReturnElementToElements

This method is found in the StorageElementCompositionService. It dissolves a composite into its constituent
elements. Note that the elements returned may not match the elements that went into the composite (e.g., VPD
page 83h information may not be the same).

Table 438 describes the return values for the ReturnElementToElements method.

23.6.4 GetAvailableElements

This method, found in the StorageElementCompositionService, queries the set of pools passed in and returns a set
of elements (volumes or logical disks) that can be composed together based on the specified goal and element
passed in. Since there are usually complicated vendor-specific rules for creating these composite volumes, using

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

INOUT TheElement REF StorageVolume Composite element to modify. Returns element
in case object path changes as a result of
removal

IN InElements[] REF StorageExtent The elements to remove from the composite ele-
ment. These may be found by calling
GetCompositeElements or keeping track of the
elements that went into the composite.

Table 438 - ReturnElementToElements

Method: ReturnElementToElements

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

6: In use Element is in use and cannot be dissolved

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN TheElement REF LogicalElement The composite element to dissolve

OUT OutElements[] REF StorageExtent Elements the composite was dissolved into

Table 437 - RemoveElementsFromElement

Method: RemoveElementsFromElement
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 679

Volume Composition Profile NO_ANSI_ID

266

267

268

269
the representative element can supply more vendor-specific information than there would be in a interoperable
setting. The client can then use some or all of this list in a call to CreateOrModifyCompositeElement().

In this version of the specification, only StorageVolumes shall be supported as the ElementType.

Table 439 describes the return values for the GetAvailableElements method.

Table 439 - GetAvailableElements

Method: GetAvailableElements

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

6: In use Element is in use and cannot be dissolved

4096: Method Parameters Checked -
Job started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN InPools[] REF StoragePool List of pools to look in

IN Goal REF StorageSetting The QoS goal requirements for the
composite element. Can be NULL. If it
is NULL, then RepresentativeElement
shall be non-NULL

IN ElementType uint16 Enumeration indicating the type of
element being created or modified

Values:

2: StorageVolume

3: LogicalDisk

IN RepresentativeEl
ement

REF StorageExtent Serves as a guide to help the
instrumentation determine which
elements to return. It shall be a
member of one of the pools passed in.
This may be NULL, only if Goal is
non-NULL
680

NO_ANSI_ID Volume Composition Profile

270

271

272

273

274

275
23.6.5 GetCompositeElements

This method is found in the StorageElementCompositionService. It is used to query an existing composite element
to determine the component elements that make up that composite element (i.e., the “parents” of a composite
element). If the method is executed under control of a job, examine the AffectedJobElement associations for the list
of the constituent elements after the job completes.

Table 440 describes the return values for the GetCompositeElements method.

OUT Candidates[] REF StorageExtent The elements that can be used to
create the composite element. These
will be an array of references to
StorageVolumes or LogicalDisks.

Table 440 - GetCompositeElements

Method: GetCompositeElements

Return Values:

Value Description

0: Success Method completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

6: In use Element is in use and cannot be accessed

4096: Method Parameters Checked -
Job started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN TheElement REF StorageExtent The element to query

IN RequestType uint16 Possible values are:

Immediate -- return the immediate
“parent” of TheElement.

Primordial -- return dependent storage
extents of TheElement at the lowest
extent hierarchy.

OUT OutElements[] REF StorageExtent The elements that comprise the
composite.

Table 439 - GetAvailableElements

Method: GetAvailableElements
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 681

Volume Composition Profile NO_ANSI_ID

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290
23.6.6 GetSupportedStripeLengths

This method is found in the StorageElementCompositionService. This method returns the list of possible stripe
lengths which can be used in the property StorageSetting.ExtentStripeLength supplied, as the Goal, to the
CreateOrModifyCompositeElement method. Note that different implementations may support either the
GetSupportedStripeLengths or the GetSupportedStripeLengthRange method. If the system only supports a range
of lengths, then the return value will be set to 3.

Table 441 describes the return values for the GetSupportedStripeLengths method.

23.6.7 GetSupportedStripeLengthRange

This method is found in the StorageElementCompositionService. For systems that support a range of stripe
lengths for composite volumes, this method can be used to retrieve the range of possible stripe lengths which can
be used in the property StorageSetting.ExtentStripeLength supplied, as the Goal, to the
CreateOrModifyCompositeElement method. Note that different implementations may support either the
GetSupportedStripeLengths or the GetSupportedStripeLengthRange method. If the system only supports discrete
values, then the return value will be set to 3.

Table 442 describes the return values for the GetSupportedStripeLengthRange method.

OUT OutElementType
s[]

uint16 A parallel array to OutElements array.
Possible values:

Member of Stripe Set, and

Member of Concatenation

Table 441 - GetSupportedStripeLengths

Method: GetSupportedStripeLengths

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeLengthRange instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT StripeLengths[] uint64 List of supported stripe
Lengths

Table 440 - GetCompositeElements

Method: GetCompositeElements
682

NO_ANSI_ID Volume Composition Profile

291

292

293

294

295

296

297

298

299
23.6.8 GetSupportedStripeDepths

This method is found in the StorageElementCompositionService. This method returns the list of possible stripe
depths which can be used in the property StorageSetting.UserDataStripeDepth supplied, as the Goal, to the
CreateOrModifyCompositeElement method for systems that support discrete stripe depths. For systems that
require the stripe depth to be on a given boundary, such as 512, the stripe length will be rounded up to the next
higher value that is a multiple of the required boundary. Note that different implementations may support either the
GetSupportedStripeDepths or the GetSupportedStripeDepthRange method. If the system only supports a range of
stripe depths, then the return value will be set to 3.

Table 443 describes the return values for the GetSupportedStripeDepths method.

Table 442 - GetSupportedStripeLengthRange

Method: GetSupportedStripeLengthRange

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeLengths instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT MinimumStripeLength uint64 Minimum ExtentStripeLength
for a composite element

OUT MaximumStripeLength uint64 Maximum ExtentStripeLength
for a composite element

OUT StripeLengthDivisor uint64 Composite element’s stripe
length must be a multiple of
this value

Table 443 - GetSupportedStripeDepths

Method: GetSupportedStripeDepths

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeDepthRange instead
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 683

Volume Composition Profile NO_ANSI_ID

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323
23.6.9 GetSupportedStripeDepthRange

This method is found in the StorageElementCompositionService. For systems that support a range of stripe depths
for composite volumes, this method can be used to retrieve the range of possible stripe depths which can be used
in the property StorageSetting.UserDataStripeDepth supplied, as the Goal, to the
CreateOrModifyCompositeElement method. Note that different implementations may support either the
GetSupportedStripeDepths or the GetSupportedStripeDepthRange method. If the system only supports discrete
values, then the return value will be set to 3.

Table 444 describes the return values for the GetSupportedStripeDepthRange method.

23.7 Client Considerations and Recipes

23.7.1 Indications

When storage elements are combined into a composite or a composite is dissolved, indications shall be sent.
When a composite is created, the instrumentation shall send an InstDelete indication for all volumes that no longer
exist as StorageVolumes. The AllocatedFromStoragePool association shall be deleted, as well as the

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT StripeDepths[] uint64 List of supported stripe depths

Table 444 - GetSupportedStripeDepthRange

Method: GetSupportedStripeDepthRange

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeDepths instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT MinimumStripeDepth uint64 Minimum User-
DataStripeDepth for a com-
posite element

OUT MaximumStripeDepth uint64 Maximum User-
DataStripeDepth for a com-
posite element

OUT StripeDepthDivisor uint64 Composite element’s stripe
depth must be a multiple of
this value

Table 443 - GetSupportedStripeDepths

Method: GetSupportedStripeDepths
684

NO_ANSI_ID Volume Composition Profile

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368
ElementSettingData association and its associated StorageSetting. Indications shall not be required to be sent for
those deletions. If the storage element still exists but is no longer accessible, the provider may send an
InstModification indication for the StorageVolume depending upon whether or not there are any changes to the
storage element itself. If the instrumentation creates a new storage element, then it shall send an InstCreation
indication for the new element. If the instrumentation modifies an existing element and it becomes the element to
represent a composite, an InstModification indication shall be sent. InstModification indications for the
AllocatedFromStoragePool association, ElementSettingData association, and associated StorageSetting shall not
be not required.

When a composite is dissolved, the instrumentation shall send an InstCreation indication for each storage element
created. It shall send an InstDeletion indication if the composite element is deleted and an InstModification
indication if the composite element is merely modified. Indications for the AllocatedFromStoragePool associations,
ElementSettingData associations, and associated StorageSettings that are created, deleted, or modified as a
result of the dissolution of the composite shall not be required.

The user is advised to check the StorageSetting for the storage elements they are interested in after composite
creation or deletion as those settings may have changed from what they were before.

23.7.2 Recipe 1: Create Composite Volume

In this use case, all available storage is consumed in StorageVolumes. The client wishes to create a larger volume
from volumes that are not being used. The client will call CreateOrModifyElementFromElements(), passing in a set
storage volumes. The provider will then create the concatenated volume.

// DESCRIPTION:

//

// Create a composite volume

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The StorageElementCompositionService has been found and the object path

// value is stored in $CompositionService->

// 2. The list of elements (volumes) to use to create the composite has been

// identified and the object path values are stored in $volumes->[]

// 3. The StorageSetting to use has been identified and the object path

// values are stored in $Goal->

// 4. The type of element to create has been selected (LogicalDisk or

// StorageVolume and it’s value stored in #ElementType

// 5. A representative element (LogicalDisk or StorageVolume instance)

// has been identified and it’s object path stored in $SampleElement->

// Note: this is allowed to be null

// 6. The StorageElementCompositionCapabilities associated to the

// StorageElementCompositionService has been found and the instance

// stored in $CompositionCapabilities

// 7. The type of composite to create has been identified and the value

// stored in #CompositeType

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 685

Volume Composition Profile NO_ANSI_ID

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387
388

389
390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409
// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobState != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. See if creation is supported

if ($CompositionCapabilities.SupportsComposites == false) {

 <ERROR! Volume composition not supported>

}

if ((contains(“CreateOrModifyCompositeElement”,

 $CompositionCapabilities.SupportedAsynchronousActions[]) == FALSE)

 && (contains(“CreateOrModifyCompositeElement”,

 $CompositionCapabilities.SupportedSynchronousActions[]) == FALSE)) {

 <ERROR! Volume composition creation not supported>

}

// Step 2. Subscribe to indications

#Filter1 = “SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StorageVolume”;

#Filter2 = “SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StorageVolume”;

// Determine if the Indication filters already exist

// If they don’t, create them

// Step 3. Create the composite

%InputArguments[“ElementName”] = {“Test”}

%InputArguments[“ElementType”] = #ElementType

%InputArguments[“Goal”] = $Goal->

%InputArguments[“InElements”] = {$volumes->}

%InputArguments[“ElementType”] = #CompositeType

#ReturnCode = InvokeMethod($CompositionService->,

 “CreateOrModifyCompositeElement”,
686

NO_ANSI_ID Volume Composition Profile

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452
 %InputArguments,

 %OutputArguments)

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

 <ERROR! Method failure>

}

$Job-> = %OutputArguments[“Job”]

if ($Job-> == null) {

 $CompositeCreated-> = %OutputArguments[“TheElement”]

}

else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $Job->)

 // Now get the composite just created

 $CompositeCreated-> = Associators($Job->,

 “CIM_AffectedJobElement”,

 “CIM_StorageExtent”,

 “AffectingElement”,

 “AffectedElement”,

 false, false, null)

}

// Step 4: Verify the volumes that went into the composite are no longer accesible

for #i in $Candidates->[] {

 if ($Candidates->[#i] == $CompositeCreated->) {

 // It’s allowed for the created composite to take over the

 // identity of a volume that went into creating it

 }

 else {

 $Refs->[] = AssociatorNames(

 $Candidates->[#i],

 “CIM_SystemDevice”, // AssocClass

 “CIM_ComputerSystem”, // ResultClass

 “PartComponent”, // Role

 null)

 if($Refs->[].length != 0)

 {

 <“ERROR! Composite volume component still exists”>

 }

 }

}

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 687

Volume Composition Profile NO_ANSI_ID

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481
482

483
484

485

486

487

488

489

490

491

492

493

494
23.7.3 Recipe 2: Delete Composite Volume

In this use case, the client wishes to return a concatenated volume to its individual component storage volumes.
The client calls ReturnElementToElements() to dissolve the concatenated volume.

// DESCRIPTION:

//

// Delete a composite volume

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The StorageElementCompositionService has been found and the object path

// value is stored in $CompositionService->

// 2. A composite volume has been created and the object path stored in

// $compositeVolume->

// 3. The StorageElementCompositionCapabilities associated to the

// StorageElementCompositionService has been found and the instance

// stored in $CompositionCapabilities

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobState != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. Subscribe to indications

#Filter1 = “SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StorageVolume”;

#Filter2 = “SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StorageVolume”;

// Determine if the Indication filters already exist

// If they don’t, create them
688

NO_ANSI_ID Volume Composition Profile

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524
// Step 2. Dissolve the composite volume

if ($CompositionCapabilities.SupportsComposites == false) {

 <ERROR! Volume composition not supported>

}

%InputArguments[“TheElement”] = $CompositeVolume->

#ReturnCode = InvokeMethod($CompositionService->,

 “ReturnElementToElement”,

 %InputArguments,

 %OutputArguments)

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

<ERROR! Method failure>

}

$Job-> = %OutputArguments[“Job”]

if ($Job-> == null) {

 $Volumes->[] = %OutputArguments[“OutElements”]

}

else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $Job->)

 // Now get the SPCs

 $Volumes->[] = Associators(

 $Job->,

 “CIM_AffectedJobElement”,

 “CIM_StorageExtent”,

 “AffectingElement”,

 “AffectedElement”,

 false, false, null)

}

// Step 2. Show the elements from the former composite

for #v in $Volumes->[] {

 $AnInstance = GetInstance($Volumes->[#i],

 false, false, false, null)

 // Display instance

}

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 689

Volume Composition Profile NO_ANSI_ID

525

526

527

528

529

530

531

532
23.8 Registered Name and Version

Volume Composition version 1.5.0 (Component Profile)

23.9 CIM Elements

Table 445 describes the CIM elements for Volume Composition.

23.9.1 CIM_CompositeExtent

Created By: Extrinsic

Modified By: Extrinsic

Deleted By: Extrinsic

Requirement: Mandatory

Table 445 - CIM Elements for Volume Composition

Element Name Requirement Description

23.9.1 CIM_CompositeExtent Mandatory

23.9.2 CIM_CompositeExtentBasedOn
(Volume Composition)

Mandatory

23.9.3 CIM_ElementCapabilities Mandatory

23.9.4 CIM_ElementSettingData Mandatory

23.9.5 CIM_HostedService (Associates
ComputerSystem and the
ElementCompositionService)

Mandatory

23.9.6
CIM_StorageElementCompositionCapabilities

Mandatory

23.9.7
CIM_StorageElementCompositionService

Mandatory

23.9.8 CIM_StorageSetting Mandatory

23.9.9 CIM_StorageVolume Conditional Conditional requirement: Storage Volumes
used as storage elements.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageVolume

Conditional Conditional requirement: Storage Volumes
used as storage elements. Modification of a
StorageVolume upon creation or deletion of a
composite.
690

NO_ANSI_ID Volume Composition Profile

533

534

535

536

537

538

539

540

541

542

543

544
Table 446 describes class CIM_CompositeExtent.

23.9.2 CIM_CompositeExtentBasedOn (Volume Composition)

Created By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Modified By: External

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Mandatory

Table 447 describes class CIM_CompositeExtentBasedOn (Volume Composition).

23.9.3 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 446 - SMI Referenced Properties/Methods for CIM_CompositeExtent

Properties Flags Requirement Description & Notes

IsConcatenated Mandatory Indicates data is concatenated across extents in the group.

BlockSize Mandatory Size in bytes of the blocks which form this StorageExtent.

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The maximum number of blocks, of size BlockSize, which
are available for consumption.

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

Table 447 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn (Volume
Composition)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 691

Volume Composition Profile NO_ANSI_ID

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560
Table 448 describes class CIM_ElementCapabilities.

23.9.4 CIM_ElementSettingData

Created By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Modified By: Static

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Mandatory

Table 449 describes class CIM_ElementSettingData.

23.9.5 CIM_HostedService (Associates ComputerSystem and the ElementCompositionService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 450 describes class CIM_HostedService (Associates ComputerSystem and the
ElementCompositionService).

23.9.6 CIM_StorageElementCompositionCapabilities

Table 448 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 449 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The composite setting data object associated with the
composite element.

Table 450 - SMI Referenced Properties/Methods for CIM_HostedService (Associates Computer-
System and the ElementCompositionService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
692

NO_ANSI_ID Volume Composition Profile

561

562

563

564

565
Created By: Static

Requirement: Mandatory

Table 451 describes class CIM_StorageElementCompositionCapabilities.

23.9.7 CIM_StorageElementCompositionService

Created By: Static

Requirement: Mandatory

Table 451 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory User friendly name for this instance of Capabilities.

InstanceID Mandatory Unique identifier for the instance.

SupportsComposites Mandatory Indicates if instrumentation supports composite elements.

MaxCompositeSize Mandatory Indicates the largest composite element that can be
created in bytes.

MaxCompositeEleme
nts

Mandatory Indicates the most elements that can be combined into a
composite element.

CompositionCharact
eristics

Mandatory Composition characteristics supported by this system.

SupportedAsynchron
ousActions

Mandatory Indicates which methods are executed asynchronously.

SupportedSynchrono
usActions

Mandatory Indicates which methods are executed synchronously.

SupportedStorageEle
ments

Mandatory Managed element types that can be composited. Currently
only StorageVolume.

CompositionMethods
Supported

Mandatory Composition methods supported.

CompositeSourcesS
upported

Mandatory Composition sources supported.

SupportsCompositeN
aming

Mandatory Can the user name the composite.

SupportsRepresentat
iveElement

Mandatory Can the user specify the RepresentativeElement in
CreateOrModifyComposite and GetAvailableElements.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 693

Volume Composition Profile NO_ANSI_ID

566

567

568

569

570
Table 452 describes class CIM_StorageElementCompositionService.

23.9.8 CIM_StorageSetting

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 452 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

CreateOrModifyCom
positeElement()

Mandatory This method creates or modifies a composite element. Only
like elements (e.g. StorageVolumes) can be combined.

ReturnElementToEle
ments()

Mandatory Dissolve the composite. All elements in the composite are
restored.

RemoveElementsFro
mElement()

Optional Removes one or more constituent elements from a
composite volume.

GetAvailableElement
s()

Optional This method queries the set of pools passed in and returns
a set of volumes or logical disks that can be composed
together based on the specified goal and element passed
in.

GetCompositeEleme
nts()

Optional Returns list of volumes/logical disks that were combined
into this composite volume. Since (usually) all but one of
these volumes/logical disks disappear when the composite
is created, this is an essential method to help the client
figure out what is in the composite. Remember that a
particular client may not have been the one to create the
composite.

GetSupportedCompo
siteStripeDepths()

Optional This method returns the list of possible stripe depths (a.k.a.
stripe size) to use in the
CreateOrModifyCompositeElement method.

GetSupportedCompo
siteStripeDepthRang
e()

Optional This method returns the range of possible stripe depths
(a.k.a. stripe size) to use in the
CreateOrModifyCompositeElement method.
694

NO_ANSI_ID Volume Composition Profile

571
 Table 453 describes class CIM_StorageSetting.

Table 453 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In
addition, the user-friendly name can be used as a index
property for a search of query. (Note: Name does not have
to be unique within a namespace.).

NoSinglePointOfFailu
re

Mandatory Indicates the desired value for No Single Point of Failure.
Possible values are false = single point of failure, and true =
no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of
complete copies of data to be maintained. Examples would
be RAID 5 where 1 copy is maintained and RAID 1 where 2
or more copies are maintained. Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of
complete copies of data to be maintained. Examples would
be RAID 5 where 1 copy is maintained and RAID 1 where 2
or more copies are maintained. Possible values are 1 to n.

DataRedundancyGoa
l

Mandatory

PackageRedundancy
Min

Mandatory PackageRedundancyMin describes the minimum number
of spindles or logical devices to be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancy
Max

Mandatory PackageRedundancyMax describes the maximum number
of spindles or logical devices to be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancy
Goal

Mandatory

ExtentStripeLength Optional Number of underlying StorageVolumes in a composite
volume that data is striped across.

ExtentStripeLengthMi
n

Optional ExtentStripeLengthMin describes the minimum acceptable
stripe length.

ExtentStripeLengthM
ax

Optional ExtentStripeLengthMax describes the maximum acceptable
stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value
may be 1 or 2 (Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional The number of bytes forming a stripe (aka stripe size).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 695

Volume Composition Profile NO_ANSI_ID

572

573

574

575

576

577
23.9.9 CIM_StorageVolume

Created By: Extrinsic: ReturnElementToElements

Modified By: External

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Storage Volumes used as storage elements.

Table 454 describes class CIM_StorageVolume.

UserDataStripeDepth
Min

Optional UserDataStripeDepthMin describes the minimum
acceptable stripe depth.

UserDataStripeDepth
Max

Optional UserDataStripeDepthMax describes the maximum
acceptable stripe depth.

ChangeableType Mandatory This property informs a client if the setting can be modified.
It also tells the client how long this setting is expected to
remain in the model. If the implementation allows it, the
client can use the property to request that the setting's
existence be not transient.

StorageExtentInitialU
sage

Optional The Usage value to be used when creating a new storage
element.

StoragePoolInitialUsa
ge

Optional The Usage value to be used when creating a new storage
pool.

Table 454 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks as reported by the hardware.

ConsumableBlocks Mandatory The number of usable blocks.

ExtentStatus Mandatory

OperationalStatus Mandatory

Table 453 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
696

NO_ANSI_ID Volume Composition Profile
EXPERIMENTAL
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 697

Volume Composition Profile NO_ANSI_ID
698

NO_ANSI_ID Volume Management Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
DEPRECATED

Clause 24: Volume Management Profile

Note: The Volume Management Profile is scheduled for removal for SMI-S 2.0. The functionality of this profile
will not be replaced in SMI-S 2.0. The Storage Network Industry Association (SNIA) is not aware of any
implementations of this profile. The SNIA would like to hear from anyone that has implemented the
Volume Management Profile. If your company or organization has implemented this profile and is a
member of the SNIA, please contact the DRM Technical Working Group or indicate your preference to
keep this profile in SMI-S 2.0 during member reviews and ballots. If your company or organization has
implemented this profile and is not a member of the SNIA, please indicate your preference to keep this
profile as part of SMI-S using the SNIA feedback portal: http://www.snia.org/tech_activities/feedback/ .

24.1 Description

The host Volume Management (VM) Profile addresses block storage virtualization and presents virtual block
devices to clients. The model represents virtualization for host volume management where LogicalDisks are
exported.

A host volume manager is a software storage management subsystem that allows one to manage physical disks
as logical devices called volumes. A volume is a logical device that appears to data management systems as a
physical disk. Through support of RAID, the volume manager provides similar features as many disk arrays.
Therefore, CIM administration of a volume manager is similar to that of an array. Embedded volume managers, like
in a switch, should use the Virtualization Profile.

The Volume Management Profile uses existing classes from the Array Profile and Block Services Subprofile, and
optionally uses the Host Discovered Resources Subprofile to bind with the disks in the host operating system.
SMI-S 1.5.0 Revision 6 SNIA Technical Position 699

Volume Management Profile NO_ANSI_ID

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
24.1.1 Instance Diagram

24.1.2 Input Class of the Volume Manager

The host operating system provides a unique name for each disk via a special file name. Typically, these are
device file names: drive letters on Windows systems or /dev/dsk/device1 on UNIX systems. A LogicalDisk can be
based on a disk partition or created by the operating system to represent a discovered volume and would have an
operating system device name. The volume manager provider will place into a primordial pool all disks that it
discovers as a LogicalDisk and uses the Name property to specify the operating system device file name.

24.1.3 Export Class of the Volume Manager

The Volume Management Profile exports LogicalDisk, which may be referred to as a volume in a typical host
volume manager. For host volume managers, this is treated as a virtual disk or volume, and is where a file system
or database would reside.

24.1.4 Initializing OS Disks for Volume Manager Use

All disks initially discovered by the volume manager from the host's device tree are added to a Primordial Pool by
creating an association between the Primordial Pool and a LogicalDisk instance. Typically, these discovered disks
are those listed in the /dev directory. Disks on a host are not immediately available for volume manager use; they
are first initialized for volume manager use by writing metadata to the disk. Any disks that are not yet initialized for
volume manager use will become initialized as a side effect of creating a concrete StoragePool.

24.1.5 Creating Pools and Logical Volumes

Concrete StoragePools are created by the Block Services CreateOrModifyStoragePool method.
Any uninitialized disks that are added to the concrete StoragePool are initialized as a side-effect of adding the disk

Figure 108 - Volume Management Instance Diagram

Host

CIM_ComputerSystem

CIM_StoragePool

CIM_HostedStoragePool

Output_Material::
 CIM_LogicalDisk

CIM_StorageCapabilities

CIM_ElementCapabilities

CIM_AllocatedFromStoragePool

Input_material
CIM_LogicalDisk

CIM_BasedOn

CIM_StorageSetting

CIM_AllocatedFromStoragePool

CIM_BasedOn

CIM_SystemDevice

CIM_ConcreateComponent

CIM_ElementSettingData
700

NO_ANSI_ID Volume Management Profile

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70
to the pool.
The Block Services methods CreateOrModifyElementFromStoragePool or CreateOrModifyElementFromElements
are used to create and modify volumes. When specifying a primordial pool or uninitialized disks to create or modify
volumes, any disks that are not yet initialized will be initialized as a side effect of adding the disks to a concrete
pool and creating the volume. See 5.1 Description for more details on methods for creating pools and logical
volumes.

24.1.6 Storage Settings for Volumes

Providers need to map a Quality of Service and any Storage Settings to a particular volume's redundancy or raid
level. This is similar to creating StorageVolumes in the Block Services Subprofile.

The StorageSetting, StorageSettingWithHints, and StorageCapabilities classes may be used to specify striping
parameters such as number of stripe columns, or the extent stripe length. See Clause 5: "Block Services Package"
for a description of these settings. The StorageSettings.Description string should be updated with an appropriate
string describing the volume's settings. The Exported value in ExtentStatus[] of the LogicalDisk should be set if it is
intended for application use.

24.1.7 Durable Names and Other Correlatable ids of the Profile

Each object's Name in the volume manager is not durable. The names can be changed at any time. However,
names will always be unique and correlatable. The provider will present names that the underlying volume
manager software creates using its own naming heuristics. When available, the Host Discovered Resources Profile
provides the connectivity and correlatable IDs of the host resources.

24.2 Health and Fault Management Considerations

Not defined in this standard.

24.3 Cascading Considerations

The Cascading Subprofile may be used when the Host Discovered Resources Profile is available on the host,
where the Host Discovered Resource Profile would be the leaf profile. In this case, all discovered disks by the
provider are still placed in the primordial pool. Therefore, the behavior of what is in the primordial pool should not
change based on the presence of another profile. The content should be consistent regardless of the presence of
the Host Discovered Resources Profile. The the description of the Cascading Subprofile for usage with the Security
Resource Ownership Subprofile.

24.4 Supported Subprofiles and Packages

Table 455 describes the supported profiles for Volume Management.

Table 455 - Supported Profiles for Volume Management

Profile Name Organization Version Requirement Description

Access Points SNIA 1.3.0 Optional

Extent Composition SNIA 1.5.0 Optional

Location SNIA 1.4.0 Optional

Software SNIA 1.4.0 Optional

Disk Sparing SNIA 1.5.0 Optional

Job Control SNIA 1.5.0 Optional
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 701

Volume Management Profile NO_ANSI_ID

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89
24.5 Methods of the Profile

None

24.6 Client Considerations and Recipes

Use Clause 5: Block Services Package to create and modify volumes.

See recipes for creating volumes in 5.6.6 "Conditional: Create StoragePool and Storage Element on Block Server
(e.g., Array or Volume Manager)" in Clause 5: Block Services Package.

Replacing a disk is done by using the Sparing Subprofile. Newly added disks are first made and then are used to
replace the old disk.

24.6.1 Storage Configuration

The Volume Management Profile uses the StorageConfigurationService in the Block Services Subprofile for
creating and modifying objects in a StoragePool. Creating volumes with specified extents shall be done using the
CreateorModifyElementFromElements method. When specifying extents, or when using the InExtents[] parameter
of CreateOrModifyStoragePool for creating storage pools as well as adding disks, then the specified extents shall
be from among the extents returned from the StoragePool.GetAvailableExtents method. Any other extents may
cause the operation to fail.

24.7 Registered Name and Version

Volume Management version 1.2.0 (Autonomous Profile)

24.8 CIM Elements

Table 456 describes the CIM elements for Volume Management.

Block Server
Performance

SNIA 1.5.0 Optional

Block Services SNIA 1.5.0 Mandatory

Health SNIA 1.2.0 Mandatory

Indication SNIA 1.5.0 Mandatory

Table 456 - CIM Elements for Volume Management

Element Name Requirement Description

24.8.1 CIM_AllocatedFromStoragePool
(LogicalDisk from Pool)

Mandatory

24.8.2 CIM_AllocatedFromStoragePool (Pool
from Pool)

Mandatory

Table 455 - Supported Profiles for Volume Management

Profile Name Organization Version Requirement Description
702

NO_ANSI_ID Volume Management Profile
24.8.3 CIM_ComputerSystem Mandatory Associated to RegisteredProfile.

24.8.4 CIM_ElementCapabilities Mandatory

24.8.5 CIM_ElementSettingData Mandatory

24.8.6 CIM_HostedStoragePool Mandatory

24.8.7 CIM_LogicalDisk Mandatory

24.8.8 CIM_StorageCapabilities Mandatory

24.8.9 CIM_StoragePool (Concrete) Mandatory Logical Disks are allocated from 'concrete'
pools.

24.8.10 CIM_StoragePool (Primordial) Mandatory At least one primordial pool must exist for a
host. This is the 'unallocated storage' of the
host, and contains unused disks.

24.8.11 CIM_StorageSetting Mandatory

24.8.12 CIM_SystemDevice Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Mandatory Addition of a new logical disk instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Mandatory Deletion of a logical disk instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Change of status of a Logical Disk.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::Operationa
lStatus <>
PreviousInstance.CIM_LogicalDisk::Operation
alStatus

Mandatory CQL -Change of status of a Logical Disk.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StoragePool AND
SourceInstance.CIM_StoragePool::Operation
alStatus <>
PreviousInstance.CIM_StoragePool::Operatio
nalStatus

Mandatory CQL -Change of status of a storage pool.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Addition of a storage pool instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of a storage pool instance.

Table 456 - CIM Elements for Volume Management

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 703

Volume Management Profile NO_ANSI_ID

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106
24.8.1 CIM_AllocatedFromStoragePool (LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 457 describes class CIM_AllocatedFromStoragePool (LogicalDisk from Pool).

24.8.2 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 458 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

24.8.3 CIM_ComputerSystem

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 457 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (LogicalDisk
from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 458 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from
Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Dependent Mandatory

Antecedent Mandatory
704

NO_ANSI_ID Volume Management Profile

107

108

109

110

111

112

113

114

115

116

117

118

119

120
Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile
instance shall have RegisteredName set to 'Volume Management', RegisteredOrganization set to 'SNIA', and
RegisteredVersion set to '1.2.0'.

Table 459 describes class CIM_ComputerSystem.

24.8.4 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 460 describes class CIM_ElementCapabilities.

24.8.5 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Table 459 - SMI Referenced Properties/Methods for CIM_ComputerSystem

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the Host. IP address.

ElementName Mandatory User friendly name.

OperationalStatus Mandatory Overall status of the Host.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory This should include 0.

This indicates that this computer system is not dedicated to
volume management.

PrimaryOwnerContac
t

Optional

PrimaryOwnerName Optional

Table 460 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 705

Volume Management Profile NO_ANSI_ID

121

122

123

124

125

126

127

128

129

130

131

132

133

134
Requirement: Mandatory

Table 461 describes class CIM_ElementSettingData.

24.8.6 CIM_HostedStoragePool

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 462 describes class CIM_HostedStoragePool.

24.8.7 CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 463 describes class CIM_LogicalDisk.

Table 461 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory

Table 462 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 463 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifer.

ElementName Mandatory User friendly name.
706

NO_ANSI_ID Volume Management Profile

135

136

137

138

139

140
24.8.8 CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 464 describes class CIM_StorageCapabilities.

Name Mandatory Should be a durable name. As yet any name.

ExtentStatus Mandatory

OperationalStatus Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

ConsumableBlocks Mandatory

Table 464 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

NoSinglePointOfFailu
re

Mandatory

NoSinglePointOfFailu
reDefault

Mandatory

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyDef
ault

Mandatory

Table 463 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 707

Volume Management Profile NO_ANSI_ID

141

142

143

144

145

146

147

148

149

150

151
24.8.9 CIM_StoragePool (Concrete)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 465 describes class CIM_StoragePool (Concrete).

24.8.10 CIM_StoragePool (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

PackageRedundancy
Min

Mandatory

PackageRedundancy
Max

Mandatory

PackageRedundancy
Default

Mandatory

DeltaReservationDef
ault

Mandatory

DeltaReservationMax Mandatory

DeltaReservationMin Mandatory

Table 465 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

PoolID Mandatory

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Primordial Mandatory Set to false.

Table 464 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes
708

NO_ANSI_ID Volume Management Profile

152

153

154

155

156

157

158
Table 466 describes class CIM_StoragePool (Primordial).

24.8.11 CIM_StorageSetting

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 467 describes class CIM_StorageSetting.

Table 466 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

PoolID Mandatory

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Primordial Mandatory Set to true.

Table 467 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque identifier.

ElementName Mandatory User friendly name.... can be used for 'potted' settings for
specific RAID levels.

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyGoa
l

Mandatory

PackageRedundancy
Min

Mandatory

PackageRedundancy
Max

Mandatory

PackageRedundancy
Goal

Mandatory

DeltaReservationGoa
l

Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 709

Volume Management Profile NO_ANSI_ID

159

160

161

162

163

164
24.8.12 CIM_SystemDevice

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 468 describes class CIM_SystemDevice.

DEPRECATED

DeltaReservationMax Mandatory

DeltaReservationMin Mandatory

Table 468 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 467 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes
710

NO_ANSI_ID Storage Element Protection SubProfile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
EXPERIMENTAL

Clause 25: Storage Element Protection SubProfile

25.1 Description

25.1.1 Overview

The Storage Element Protection Subprofile defines classes and methods for managing access permission to a
storage element—either a storage volume or logical disk. This subprofile also defines how long the protection shall
stay in effect. It allows a client to protect data as required by changeable business and operational policies. Clients
may modify access to a storage element for various reasons, including:

• Regulatory Compliance - Ensure that vital records are available, unaltered (immutable) and protected from
accidental or malicious destruction. The degree of exposure and the retention period depend on the nature
of the records.

• Protection of Fixed Content - Maintain in “Read-only” mode between cyclic refreshes of the data content.

• Protection of Recovery Assets - Protect data from accidental reuse. For example, make recovery logs
“Read-only” or immutable.

• Reclamation of Expired (Archive) Capacity - After migration, delete or destroy data when elements are
released for re-use.

25.1.2 Use Cases

In a typical scenario, a storage element is allocated with Read/Write permission. At a later time, when the element
holds data that requires protection, the access permission is changed to Read-only with a retention period.

Changes in regulations, audit or litigation may require that the storage element be retained for a longer period. In
this case, the retention period may be extended or alternatively set to a "never to expire" value. This new setting
retains the current protection for an indefinite period--until litigation is resolved, for example.

Company policy may dictate that archived data, although still protected and retained for legal purposes, be
unavailable even for Read-only. In this case, the element may be hidden from read-and-write access. It will be
visible only to a storage administrator.

25.1.3 Functionality

A management application will interact with this subprofile in two ways—(1) the management application can
retrieve and modify the access permission attribute and (2) the management application may define the period for
which the access permission will remain in effect (the retention period). During the retention period, other functions
shall be disabled to prevent the storage element from being reformatted, erased or otherwise (logically) destroyed.
While this retention period is in effect, the access permission cannot be modified except to make it more restrictive.
Once this period expires, the access permissions remain in effect, but they may now be modified. The
management application may extend this retention period but shall not be able to shorten it.

25.1.4 Class Model

In order to support the desired protection functionality, this profile defines a new method, Protect, for the
StorageProtectionService class. This method allows the client to set the protection-related configurations of a
storage element, either a StorageVolume or LogicalDisk. When first called for a storage element, it creates a
StorageProtectionSetting instance with the client requested configuration and associates it to the target element by
the ElementProtectionSettingData association. If the target element already has a StorageProtectionSetting
associated via ElementProtectionSettingData, then it modifies the properties of the existing instance of
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 711

Storage Element Protection SubProfile NO_ANSI_ID

40

41

42

43

44

45

46
StorageProtectionSetting, as shown in Figure 109: "Storage Element Protection Class Model". After the retention

period has expired and every protection configuration has been released, the StorageProtectionSetting instance
will not automatically be removed by the instrumentation. However a state change indication will be sent to the
management application so that it may remove the instance by using the DeleteInstance operation if needed.

Table 469 shows properties this profile defines for the StorageProtectionCapabilities class, which indicates the
capability of the element protection feature of the associated StorageProtectionService, including the granularity of
the retention period.

Figure 109 - Storage Element Protection Class Model

Table 469 - Properties for StorageProtectionCapabilities

Property Flags Type Descriptions & Notes

ProtectionTimeGranularity uint16 Granularity for the time period of
StorageProtectionSetting.RemainingProtectionTime.

Possible values are: 0 (Unknown), 1 (Other), 2
(Second), 3 (Minute), 4 (Hour), 5 (Day)

SupportedStorageElementFeat
ures

uint16[] Enumeration indicating which storage elements can
be protected. Possible values:

1 - StorageVolume Protection

2 - LogicalDisk Protection

ComputerSystem

StorageVolume
or

LogicalDisk

SystemDevice

StorageProtectionSetting

HostedService

ElementCapabilities

1 *
1

*

ElementProtectionSettingData

1

1

StorageProtectionService

Protect()

StorageProtectionCapabilities
712

NO_ANSI_ID Storage Element Protection SubProfile

47

48

49

50

51

52
This profile also defines a new Setting class, StorageProtectionSetting, which contains the protection-related
properties for a particular StorageVolume or LogicalDisk storage element, shown in Table 470. This class is
associated to a storage element instance via the ElementProtectionSettingData association. A client can retrieve
the protection-related configurations and statuses of a StorageVolume or LogicalDisk by traversing the
ElementProtectionSettingData association if it exists. If that association is not found, no protection management is
applied for the StorageVolume or LogicalDisk.

SupportedSynchronousActions uint16[] Methods that will not create a job. Possible values:

1 - Storage Element Protection

SupportedAsynchronousAction
s

uint16[] Methods that will create a job. Possible values:

1 - Storage Element Protection

Table 470 - Properties for StorageProtectionSetting

Property Flags Type Descriptions & Notes

ProtectionControlled boolean Whether the storage element is under protection
control or not. If this property is FALSE that indicates
the storage device has protection feature or used to
has but currently the service has been withdrawn or
not available to obtain protection attributes by some
accident.

Access uint16 Read and write accessibility of the storage element.

1: Read/Write Enabled

2: Read Only

3. Write Once

4: Read/Write Disabled

While it is not possible to use Protect() to transition to
"Write Once", it’s still needed for correct reporting of
status

InquiryProtection Uint16[] Protected responses for SCSI inquiry commands.

1: No SCSI Inquiry Protection

2: Inquiry Disabled

3: Zero Capacity Returned

This property is utilized in the protection of a
StorageVolume and it is optional to implement

DenyAsCopyTarget boolean Whether the storage element can be specified as a
copy target or not. If this property is TRUE then this
storage element will not be selectable as a target of
copy pair

Table 469 - Properties for StorageProtectionCapabilities

Property Flags Type Descriptions & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 713

Storage Element Protection SubProfile NO_ANSI_ID

53

54

55

56
25.1.5 Access permission

The overall state of the StorageVolume or LogicalDisk protection is indicated by the combination of several
properties. Table 471, Table 472, Table 473, Table 474, and Table 475 show the possible values of each property
listed in Table 470. These tables apply to properties in the StorageProtectionSetting class.

LUNMappingConfigurable boolean Whether LU assignment to the storage element is
configurable or not. This property is utilized in the
protection of a StorageVolume and is optional to
implement

ProtectExpirationSpecified uint16 Duration type of the storage element protection.

1: None

2: Limited Expiration

3: Permanent

RemainingProtectionTime datetime Amount of remaining time before a management
application can change the access permission.

Table 471 - Values for ProtectionControlled

Value Description

TRUE Storage element is under protection control.

FALSE Storage element is NOT under protection
control.

Table 472 - Values for Access

Value Description

0 (Unknown) Accessibility status is unknown.

1 (Read/Write Enabled) Both read and write commands are allowed.

2 (Read Only) Read command is allowed; write command is
prohibited.

3 (Write Once) Read command is allowed; overwrite
command is prohibited.

4 (Read/Write Disabled) Both read and write commands are prohibited.

Table 470 - Properties for StorageProtectionSetting

Property Flags Type Descriptions & Notes
714

NO_ANSI_ID Storage Element Protection SubProfile

57

58

59

60

61

25.1.6 Retention period

The Retention period (the amount of time that the settings are to remain locked) is also indicated by the
combination of several properties. Table 476 and Table 477 show the meaning of each property value. These
tables apply to properties in the StorageProtectionSetting class.

Table 473 - Values for InquiryProtection

Value Description

0 (Unknown) Status is unknown

1 (No SCSI Inquiry Protection) Protection method by the SCSI inquiry
commands is not performed

2 (Inquiry Disabled) All SCSI inquiry commands are rejected

3 (Zero Capacity Returned) Size 0 is returned as a reply of SCSI read
capacity command

Table 474 - Values for DenyAsCopyTarget

Value Description

TRUE Storage element can not be specified as a
copy target

FALSE Storage element can be specified as a copy
target

Table 475 - Values for LUNMappingConfigurable

Value Description

TRUE LU assignment to the storage volume is
configurable

FALSE LU assignment to the storage volume is not
configurable

Table 476 - Values for ProtectExpirationSpecified

Value Description

0 (Unknown) Status is unknown.

1 (None) The protection duration is not specified.

2 (Limited Expiration) The protection expires after the time period

3 (Permanent) The protection is permanent
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 715

Storage Element Protection SubProfile NO_ANSI_ID

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
There are two ways to designate the duration of access permission, shown in Figure 110: "Retention Time Line":

• Expiration Date - Defines a future date/time when access permission may be modified.

• Remaining Retention Period - Defines the remaining length of time for access permission.

The use of an Expiration Date requires a reference to an agreed-upon reference clock. Without a trusted external
date/time reference, the retention period will be open to spoofing, conflicts between individual component clocks
(e.g., server and storage) and time zones issues. The inevitable nuances of individual implementations may
require variations in the client application.

The use of Remaining Retention Period does not require a reference clock. There is no question of interpretation of
whether or when the retention period will expire - it is either zero (expired) or not. The implementation is the
responsibility of the provider and is hidden from the client. Providers may implement the retention function that
works best for that provider, while remaining interoperable.

25.1.7 Protection State Transition

Figure 111: "Protection State Transition DIagram" shows storage element protection state transition. When the
retention period is not specified or expired, the storage element may transition to any state except Write Once
permission by using the Protect method. Once a retention period is specified to a storage element, it may transition
to a more restricted state only via the Protect method. It may transition to the other states only when the retention
period has expired. Generally a storage element starts with a protection state of "Access = Read/Write Enabled,
Retention = None/Expired" and Protect is used to set the protection to be more restrictive. If the storage element is

Table 477 - Values for RemainingProtectionTime

Value Description

datetime Amount of remaining time before a management application can change the access
permission. It is a dynamic value which keeps decreasing by the time progress until it
reaches the datetime equivalent of 0. The value will be decreased by the time period
indicated by the StorageProtectionCapabilities.ProtectionTimeGranularity property

Figure 110 - Retention Time Line

Set “R ead-W rite Enab led”

R em ain ing R etention Period

N ow R etention Period E xp ires

S et “R ead O nly”
w ith R etention P eriod

Locked

R ead O nly

R ead /W rite E nab led
716

NO_ANSI_ID Storage Element Protection SubProfile

80

81

82

83

84

85

86

87

88

89

90

91

92

93
write-once media such as a CD-ROM it will have a protection state of "Access = Write Once, Retention =
Permanent".

25.1.8 Sample Usage Scenario

Figure 112: "Step 1 - Initial State", Figure 113: "Step 2 - Volume Set to Read-only", Figure 114: "Step 3 - Second
Volume Set to Read-only", Figure 115: "Step 4 - Volume Set to Read/Write Disabled", and Figure 116: "Step 5
Volume Access Changed" show the progression of a typical usage scenario for StorageVolume protection.

25.1.8.1 Step 1: StorageVolume not protected

Figure 112: "Step 1 - Initial State" shows the initial state of a StorageVolume that does not have protection enabled
yet. In this situation, no instance of StorageProtectionSetting exists. However, it shows that the instrumentation has
the capability to support the setting of the element protection properties because the StorageProtectionCapabilities
SupportedStorageElementFeatures property includes the value 1 (StorageVolume Protection) and the
SupportedAsynchronousActions property includes the value 1 (Storage Element Protection). The
StorageProtectionCapabilities instance also has a value of 5 (Day) for the ProtectionTimeGranularity property
which indicates the retention period specified on this device will be decreased by the granularity of a day.

Figure 111 - Protection State Transition DIagram

Access = “R /W Enabled”
R etention = “N one / Exp ired”

A ccess = “W rite O nce”
R etention = “P erm anent”

Access = “R ead O nly”
R etention = “L im ited Exp ira tion”

Access = “R ead O nly”
R etention = “N one / Exp ired ”

Access = “R ead O nly”
R etention = “Perm anent”

A ccess = “R /W D isabled”
R etention = “L im ited Expira tion”

A ccess = “R /W D isabled”
R etention = “N one / E xp ired”

A ccess = “R /W D isabled”
R etention = “P erm anent”

P rotect() w ith longer period

T im e P assage

every sta te
except “W rite O nce”Protect()

P rotect()

P rotect()

P rotect()

P rotect() w ith sam e or longer period

P ro tect()

T im e Passage

Protect()

P rotect() w ith longer period

Protect()
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 717

Storage Element Protection SubProfile NO_ANSI_ID

94

95

96

97

98

99

100
25.1.8.2 Step 2: Volume Set to Read-only

In Figure 113: "Step 2 - Volume Set to Read-only", the StorageVolume is set to Read-only permission for a specific
period of time. In this example, there are two StorageVolumes, 'V1' and 'V2'. By using the Protect() method of
StorageProtectionService, volume 'V1' is set to Read-only access permission and a 365-day retention period. This
operation creates new instance of StorageProtectionSetting ('SPS1') and associates it with the target
StorageVolume 'V1'. After the Protect method completes, the Access property is now set to the value 2 (Read
Only), and the RemainingProtectionTime is set to the value of 365 days.

Figure 112 - Step 1 - Initial State

ComputerSystem

StorageVolume

SystemDevice

StorageProtectionService

Protect()
HostedService

StorageProtectionCapabilities

SupportedStorageElementfeatures = { 1, 2 }
SupportedAsynchronousActions = { 1 }
ProtectionTimeGranularity = 5

ElementCapabilities
718

NO_ANSI_ID Storage Element Protection SubProfile

101

102

103

104

105

106

107
25.1.8.3 Step 3: Second Volume Set to Read-only

Figure 114: "Step 3 - Second Volume Set to Read-only" shows Set Read-only permission to another
StorageVolume 'V2' after some amount of time.

After 30 days, the client decides to protect StorageVolume 'V2' by setting it to Read-only with a retention time of
365 days, same as ‘V1’. A new instance of StorageProtectionSetting is created by the instrumentation to the target
StorageVolume ‘V2’. A single StorageProtectionSetting instance will not be shared because it has a different
RemainingProtectionTime although both are configured with the same access permission.

Figure 113 - Step 2 - Volume Set to Read-only

ComputerSystem

‘V1’: StorageVolume

SystemDevice

‘SPS1’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 365
days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities
ElementCapabilities

ElementProtectionSettingData

‘V2’: StorageVolume

SystemDevice
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 719

Storage Element Protection SubProfile NO_ANSI_ID

108

109

110

111

112

113

114
.

25.1.8.4 Step 4: Volume Set to Read/Write Disabled
Figure 115: "Step 4 - Volume Set to Read/Write Disabled" shows access permission of StorageVolume 'V1'
changed to Read/Write Disabled.

Within the retention period, the access permission may not be changed except to be made more restricted.
Because StorageVolume 'V1' was set to Read-only permission, it is possible to modify it to Read/Write Disabled
permission within its retention period because this setting is more restrictive than Read-only.

Figure 114 - Step 3 - Second Volume Set to Read-only

ComputerSystem

‘V1’: StorageVolume

SystemDevice

‘SPS1’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 335
days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities
ElementCapabilities

ElementProtectionSettingData

‘V2’: StorageVolume

SystemDevice

‘SPS2’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 365
days

ElementProtectionSettingData
720

NO_ANSI_ID Storage Element Protection SubProfile

115

116

117

118

119

120
25.1.8.5 Step 5: Volume Access Change

Figure 116: "Step 5 Volume Access Changed" shows change of access permission of StorageVolume 'V1' to
“Read/Write Enabled” after expiration.

After the passage of the specified time, the retention period of StorageVolume will expire. Therefore, its access
permission can be modified to any level. The StorageProtectionSetting instance is not automatically deleted when
the retention period has expired. The StorageVolume maintains its access permission configuration.

Figure 115 - Step 4 - Volume Set to Read/Write Disabled

ComputerSystem

‘V1’: StorageVolume

SystemDevice

‘SPS1’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 4
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 305
days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities
ElementCapabilities

ElementProtectionSettingData

‘V2’: StorageVolume

SystemDevice

‘SPS2’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 335
days

ElementProtectionSettingData
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 721

Storage Element Protection SubProfile NO_ANSI_ID

121

122

123

124

125

126
25.2 Health and Fault Management Consideration

Not defined in this standard

25.3 Cascading Considerations

Not applicable

25.4 Supported Profiles, Subprofiles, and Packages

Related Profiles for Storage Element Protection: Not defined in this standard.

Figure 116 - Step 5 Volume Access Changed

ComputerSystem

‘V1’: StorageVolume

SystemDevice

‘SPS1’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 1
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 0 days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities
ElementCapabilities

ElementProtectionSettingData

‘V2’: StorageVolume

SystemDevice

‘SPS2’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 30 days

ElementProtectionSettingData
722

NO_ANSI_ID Storage Element Protection SubProfile

127

128

129

130

131

132

133

134
25.5 Methods of the Profile

25.5.1 Protect

This method, defined in Table 478, is found in the StorageProtectionService. It configures the protection attributes
of StorageVolumes and LogicalDisks, which prevents them from being modified for a specific period of time. Values
specified for this method shall be set as properties of the StorageProtectionSetting instance that is associated to
the specified StorageVolume or LogicalDisk. This method can be used to extend the retention period, but not
decrease it. The instrumentation shall always create a new instance of StorageProtectionSetting when protection is
first applied, but it shall reuse the existing setting when modifying the protection setting.

Table 478 - Methods of the Storage Element Protection Profile

Method: Protect

Return Values:

Value Description

0: Success Method completed with no error.

1: Not Supported Method is not supported

2: Unspecified Error Unspecified error

3: Timeout Timeout happened during processing

4: Failed Method failed.

5: Invalid Parameter Specified parameter is not allowed

6: Invalid State Transition Specified access permission or retention period is not
allowed in the current status.

4096: Method parameters checked - job
started

A Job was started

Errors:

Not defined in this standard

Parameters:

Qualifiers Name Type Description/Values

OUT Job CIM_Job REF Reference to the job created, if
any

IN Element CIM_StorageExtent
REF

StorageVolume or LogicalDisk to
be configured.

IN ElementType uint16 The type of element being
protected.

1: StorageVolume

2: LogicalDisk
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 723

Storage Element Protection SubProfile NO_ANSI_ID

135

136

137

138

139
25.6 Client Considerations and Recipes

25.6.1 Start Volume Protection

In this use case, a StorageVolume is used to store business data that needs to be protected from overwriting; there
is a regulation that this kind of data should be held for three years. Therefore, a management application requests
the instrumentation to set the StorageVolume for Read-only access permission and a three-year retention period.

IN Access uint16 Read and write accessibility of
the storage element.

1: Read/Write Enabled

2: Read Only

4: Read/Write Disabled

Note that it is not possible to
transition to "3: Write Once" from
other state

IN InquiryProtection uint16[] The inquiry protection method for
SCSI inquiry commands.

1: No SCSI Inquiry Protection

2: Inquiry Disabled

3: Zero Capacity Returned

This may be specified when
protecting a StorageVolume

IN DenyAsCopyTarget boolean Whether the storage element can
be specified as a copy target or
not. If this property is TRUE then
the storage element will not be
selectable as a target of copy pair

IN LUNMappingConfigure boolean Whether LU assignment to the
StorageVolume is configurable or
not. This may be specified when
protecting a StorageVolume

IN ProtectExpirationType uint16 Duration type of the storage
element protection.

1: None

2: Limited Expiration

3: Permanent

IN TimePeriod datetime Amount of remaining time before
a management application can
change the access permission

Table 478 - Methods of the Storage Element Protection Profile

Method: Protect
724

NO_ANSI_ID Storage Element Protection SubProfile

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177
// DESCRIPTION

//

// Start StorageVolume protection

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. Reference to the CIM_StorageVolume to be protected

// has been found and the object path value is stored in

// $StorageVolume->

// 2. Reference to the SNIA_StorageProtectionService

// has been found and the obejct path value is stored in

// $StorageProtectionService->

// 3. The SNIA_StorageProtectionCapabilities for this service

// has been found and the instance value is stored in

// $StorageProtectionCapabilities

// 4. Variable #ThreeYearsValue and #TwoYeasValue are the

// type of datetime and have the value of a three and two year

// time period, respectively

// Check for the capability

#SupportedFeatures[] =

 $StorageProtectionCapabilities.SupportedStorageElementFeatures

if (contains(1, #SupportedFeatures) == false) {

 <ERROR! StorageVolume protection feature is not supported>

}

// Invoke the protection method.

%InputArguments[“Element”] = $StorageVolume->

%InputArguments[“ElementType”] = 1// StorageVolume

%InputArguments[“Access”] = 2// Read Only

%InputArguments[“ProtectExpirationType”] = 2// Limited Expiration

%InputArguments[“TimePeriod”] = #ThreeYearsValue// 3 years

#ReturnCode = InvokeMethod(

 $StorageProtectionService->,

“Protect”,

%InputArguments,

%OutputArguments)

if (#ReturnCode != 0) {

 <ERROR! CIM_StorageProtectionSetting has not been created.>

}

 SMI-S 1.5.0 Revision 6 SNIA Technical Position 725

Storage Element Protection SubProfile NO_ANSI_ID

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192
193

194
195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217
// Verify the protection setting.

$StorageProtectionSettings->[] = Associators(

$StorageVolume->,

“SNIA_ElementProtectionSettingData”,

“SNIA_StorageProtectionSetting”,

“Dependent”,

“Antecedent”,

false, false, NULL)

for #i in $StorageProtectionSettings->[] { // should be only one item.

 if($StorageProtectionSetting->[#i].ProtectionControlled == false) {

<ERROR! CIM_StorageVolume is not under protection controlled.>

 }

 if($StorageProtectionSetting->[#i].Access == 2 &&

$StorageProtectionSetting->[#i].ProtectExpirationSpecified == 2 &&

$StorageProtectionSetting->[#i].RemainingProtectionTime > #TwoYearsValue
&&

$StorageProtectionSetting->[#i].RemainingProtectionTime <=
#ThreeYearsValue)

{

 <EXIT: StorageVolume Protection configuration successful>

 }

}

// if we get to this point, it was not set

<ERROR! StorageProtectionSetting has not been created.>

// end of the recipe

25.6.2 Extend the Retention Period

In this use case, a regulation has changed and the business data now need to be held for five years. A
management application retrieves the value of the RemainingProtectionTime property of StorageProtectionSetting
instance, which is associated to the target StorageVolume, and calculates the new value by adding two years to it.
Then the application uses the StorageProtectionService.Protect() method to configure a new retention period.

// DESCRIPTION

//

// Extend the retention period

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. Reference to the CIM_StorageVolume to be protected

// has been found and the object path value is stored in

// $StorageVolume->

// 2. Reference to the SNIA_StorageProtectionService
726

NO_ANSI_ID Storage Element Protection SubProfile

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247
248

249

250

251

252

253

254

255

256
// has been found and the obejct path value is stored in

// $StorageProtectionService->

// 3. The SNIA_StorageProtectionCapabilities for this service

// has been found and the instance value is stored in

// $StorageProtectionCapabilities

// 4. Variable #TwoYearsValue is the type of datetime and

// has two year period of value.

// Check for the capability

#SupportedFeatures[] =

 $StorageProtectionCapabilities.SupportedStorageElementFeatures

if (contains(1, #SupportedFeatures) == false) {

 <ERROR! StorageVolume protection feature is not supported>

}

// Get current value for remaining protection time.

$StorageProtectionSettings[] = Associators(

$StorageVolume->,

“SNIA_ElementProtectionSettingData”,

“SNIA_StorageProtectionSetting”,

“Dependent”,

“Antecedent”,

false, false, NULL)

for #i in $StorageProtectionSettings[] { // should be only one item.

 if($StorageProtectionSetting[#i].ProtectionControlled == false) {

<ERROR! CIM_StorageVolume is not under protection controlled.>

 }

 #RemainingProtectionTime =

 $StorageProtectionSetting[#i].RemainingProtectionTime

}

// Invoke the protection method.

// Set the time to protect the StorageVolume to the current time remaining + 2 more
years

%InputArguments[“Element”] = $StorageVolume->

%InputArguments[“ElementType”] = 1// StorageVolume

%InputArguments[“Access”] = 2// Read Only

%InputArguments[“ProtectExpirationType”] = 2// Limited Expiration

%InputArguments[“TimePeriod”] = #RemainingProtectionTime + #TwoYearsValue

#ReturnCode = InvokeMethod(

 $StorageProtectionService->,
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 727

Storage Element Protection SubProfile NO_ANSI_ID

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284
 “Protect”,

 %InputArguments,

 %OutputArguments)

if (#ReturnCode != 0) {

 <ERROR! SNIA_StorageProtectionSetting has not been created.>

}

// Verify the protection setting using prior found instance

for #i in $StorageProtectionSettings->[] {

 if($StorageProtectionSetting->[#i].ProtectionControlled == false) {

<ERROR! CIM_StorageVolume is not under protection controlled.>

 }

 if($StorageProtectionSetting->[#i].Access == 2 &&

$StorageProtectionSetting->[#i].ProtectExpirationSpecified == 2 &&

$StorageProtectionSetting->[#i].RemainingProtectionTime

 > #TwoYearsValue &&

$StorageProtectionSetting->[#i].RemainingProtectionTime

 <= #RemainingProtectionTime + #TwoYearsValue)

{

 <EXIT: StorageVolume Protection configuration successful>

 }

}

// if we get to this point, it was not set

<ERROR! SNIA_StorageProtectionSetting was not created>

// end of the recipe

25.7 Registered Name and Version

Storage Element Protection version 1.4.0 (Component Profile)

25.8 CIM Elements

Table 479 describes the CIM elements for Storage Element Protection.

Table 479 - CIM Elements for Storage Element Protection

Element Name Requirement Description

25.8.1 CIM_ElementCapabilities Mandatory Associates the capabilities to the service.

25.8.2 CIM_HostedService Mandatory Associates the service to the system providing
the service.
728

NO_ANSI_ID Storage Element Protection SubProfile

285

286

287

288

289

290

291

292

293

294

295
25.8.1 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 480 describes class CIM_ElementCapabilities.

25.8.2 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

25.8.3 SNIA_ElementProtectionSettingData Mandatory SNIA_ElementProtectionSettingData
represents the association between the
storage element to be protected and
applicable protection setting.

25.8.4 SNIA_StorageProtectionCapabilities Mandatory

25.8.5 SNIA_StorageProtectionService Mandatory

25.8.6 SNIA_StorageProtectionSetting Mandatory SNIA_StorageProtectionSetting class holds
properties for the protection-related
configuration and statuses of a storage
element. It is associated to the StorageVolume
or LogicalDisk class by
SNIA_ElementProtectionSettingData. A
management application can retrieve the
protection-related information by traversing
the ElementProtectionSettingData
association. If is not found, it indicates no
protection management is applied for the
storage element.

Table 480 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The service.

Capabilities Mandatory The associated capabilities.

Table 479 - CIM Elements for Storage Element Protection

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 729

Storage Element Protection SubProfile NO_ANSI_ID

296

297

298

299

300

301

302

303

304

305

306
Table 481 describes class CIM_HostedService.

25.8.3 SNIA_ElementProtectionSettingData

Created By: Extrinsic: Protect

Modified By: Static

Deleted By: External

Requirement: Mandatory

Table 482 describes class SNIA_ElementProtectionSettingData.

25.8.4 SNIA_StorageProtectionCapabilities

Created By: Static

Requirement: Mandatory

Table 483 describes class SNIA_StorageProtectionCapabilities.

Table 481 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory The protection service.

Antecedent Mandatory The system providing the service.

Table 482 - SMI Referenced Properties/Methods for SNIA_ElementProtectionSettingData

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The storage element to be protected.

SettingData Mandatory The protection setting and status of the storage element.

Table 483 - SMI Referenced Properties/Methods for SNIA_StorageProtectionCapabilities

Properties Flags Requirement Description & Notes

ProtectionTimeGranu
larity

Mandatory Granularity for the time period of
StorageProtectionSetting.RemainingProtectionTime. 0:
Unknown 1: Other 2: Second 3: Minute 4: Hour 5: Day.

SupportedStorageEle
mentFeatures

Mandatory Value for storage element protection. 1 (StorageVolume
Protection), 2 (LogicalDisk protection.

SupportedSynchrono
usActions

Mandatory Value for storage element protection. 1 (Storage Element
Protection).

SupportedAsynchron
ousActions

Mandatory Value for element protection. 1 (Storage Element
Protection).
730

NO_ANSI_ID Storage Element Protection SubProfile

307

308

309

310

311

312

313

314

315

316
25.8.5 SNIA_StorageProtectionService

Created By: Static

Requirement: Mandatory

Table 484 describes class SNIA_StorageProtectionService.

25.8.6 SNIA_StorageProtectionSetting

Created By: Extrinsic: Protect

Modified By: Extrinsic: Protect

Deleted By: DeleteInstance

Requirement: Mandatory

Table 485 describes class SNIA_StorageProtectionSetting.

Table 484 - SMI Referenced Properties/Methods for SNIA_StorageProtectionService

Properties Flags Requirement Description & Notes

Protect() Mandatory Configures the protection attributes of the storage element
and prevent modification for a specific period of time.
Values specified for this method will be set as properties of
StorageProtectionSetting instance which is associated to
the specified storage element. This method can be used to
extend the retention period, but not for decreasing it.

Table 485 - SMI Referenced Properties/Methods for SNIA_StorageProtectionSetting

Properties Flags Requirement Description & Notes

ProtectionControlled Optional Whether the storage element is under protection control or
not.

Access Mandatory Read and write accessibility of the StorageVolume. 0:
Unknown 1: Read/Write Enabled 2: Read Only 3: Write
Once 4: Read/Write Disabled.

InquiryProtection Conditional Conditional requirement: Storage Volumes used as storage
elements. StorageVolume protection method for SCSI
inquiry commands. 0: Unknown 1: No SCSI Inquiry
Protection 2: Inquiry Disabled 3: Zero Capacity Returned.

DenyAsCopyTarget Optional Whether the storage element can be specified as a copy
target or not.

LUNMappingConfigu
rable

Conditional Conditional requirement: Storage Volumes used as storage
elements. Whether LU assignment to the StorageVolume is
configurable or not.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 731

Storage Element Protection SubProfile NO_ANSI_ID
EXPERIMENTAL

ProtectionExpiration
Specified

Mandatory Duration type of the storage element protection. 1: None 2:
Limited Expiration 3: Permanent.

RemainingProtection
Time

Mandatory Amount of remaining time before a management
application can change the access permission.

Table 485 - SMI Referenced Properties/Methods for SNIA_StorageProtectionSetting

Properties Flags Requirement Description & Notes
732

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
EXPERIMENTAL

Clause 26: Replication Services Profile

26.1 Description

26.1.1 Synopsis

Profile Name: Replication Services

Version: 1.5.0

Organization: SNIA

CIM schema version: 2.23

Central Class: ReplicationService

Scoping Class: ComputerSystem

26.1.2 Supported Profiles, Subprofiles, and Packages

Table 486 describes the supported profiles for Replication Services.

26.1.3 Overview

The Replication Services, a component profile, specifies attributes and methods to copy data from a source
element to a target element. The copy operations may be performed on elements from the same storage system or
across a connection to a different storage system. Elements may be placed into a group in order to facilitate copy
operations on many elements at the same time. The elements of a group may be declared as Consistent.

Two types of synchronization views are supported. A replica may be synchronized to the current view of the source
element or may be synchronized to a point-in-time view. Snapshots and clones always represent a point-in-time
view, while a mirror represents a current view.

Two copy operation modes are supported -- synchronous and asynchronous. In the synchronous mode, the write
operations to the source elements are reflected to the target elements before signalling the host that a write
operation is complete. In the asynchronous mode, the host is signaled as soon as the write operations to the
source elements are complete; however, the writes to the target elements may take place at a later time.

Table 486 - Supported Profiles for Replication Services

Profile Name Organization Version Requirement Description

Block Services SNIA 1.5.0 Mandatory

Copy Services SNIA 1.5.0 Mandatory

Job Control SNIA 1.5.0 Optional

Indication SNIA 1.5.0 Optional

Cascading SNIA 1.3.0 Mandatory Deprecated. This is a deprecated
profile. Related cascading elements
are marked as Optional.
SMI-S 1.5.0 Revision 6 SNIA Technical Position 733

Replication Services Profile NO_ANSI_ID

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
Replication Services supports local and remote replication. Local replication specifies that both the source and
target elements are contained in a single managed system, such as an array platform. Remote replication specifies
the source and the target elements are contained in separate systems. For remote replication, the client may
interact with both the source and the target systems; however, the client only invokes the replication methods to a
single Replication Service.

Replication Services supports “copying” thinly provisioned elements. Unlike fully provisioned elements, a thinly
provisioned element has fewer actual allocated storage blocks than the advertised capacity of the element.

The Replication Service supports copy operations to and from undiscovered resources. An undiscovered resource
is an addressable entity without a known object model.

Replication Services includes the methods to create the necessary access point and shared secret instances that
may be required for copy operations to remote resources.

The Replication Service generally relies on the underlying implementation to perform the actual copy operations.
However, the profile can expose the “copy methodology” if that information is available.

Throughout this profile, there are specific references to class properties and methods pertaining to each section.
Refer to 26.8 "CIM Elements" for a complete list of all properties and methods, including their description.

26.1.4 Key Features

The following is a brief list of key features of the Replication Services:

• The ability to specify individual or Groups of elements to manage replication

• The ability to copy to and from undiscovered resources

• The ability to support Consistency Management

• The ability to handle local and remote replication seamlessly

• The ability to replicate Thinly Provisioned elements

• The ability to offer different Copy Methodologies

• The ability to efficiently retrieve replication relationships

• The ability to reduce the potential to receive many unwanted indications

26.1.5 Replication Services and Copy Services Profiles

The Replication Services Profile extends the functionality of the Copy Services Subprofile by including enhanced
local replication for thinly provisioned storage objects, remote replication, and support for replication groups and
consistency groups.

Any action taken via a Copy Services conformant interface shall be reflected correctly in the applicable Replication
Services properties. Furthermore, any action taken via a Replication Services conformant interface shall be
reflected correctly in the applicable Copy Services properties, as if the similar action was taken by the Copy
Services. Refer to 26.5.1 "Replication Services and Copy Services Properties and Methods Mapping" for mapping
between Copy Services specific properties and properties introduced for Replication Services.

26.1.6 Key Components

Table 487 shows a list of key classes used by Replication Services. Refer to 26.5 "Methods of the Profile" and “CIM
Elements” for additional details on methods and properties of these classes.
734

NO_ANSI_ID Replication Services Profile

61

62

63

64

65

66

67

68
Clients should refer to 26.6 "Client Considerations and Recipes" for a list of steps to follow to utilize the replication
service.

26.1.7 Replication Services Discovery

Figure 117 depicts the Replication Services discovery instance diagram.

The single instance of the class ReplicationService and its methods provide the mechanism for creating and
managing replicas.

Table 487 - Key Classes

Class Name Notes

ReplicationService The main class for Replication Services. It contains methods for replication
and group management, for example, CreateGroup, CreateElementReplica,
CreateGroupReplica, ModifyReplicaSynchronization.

ReplicationServiceCapabilities Contains a set of properties and methods that describe the capabilities of the
service, for example, SupportedReplicationTypes, GetSupportedFeatures.

ReplicationGroup Represents a group of elements participating in replication activities.

ReplicationSettingData Contains options to customize replication operations, for example, pairing of
group elements, TargetElementSupplier, CopyMethodology,
ThinProvisioningPolicy.

ReplicationEntity Represents information about an addressable entity without a known object
model.

GroupSynchronized Associates source and target groups.

StorageSynchronized Associates source and target elements.

Figure 117 - Replication Services Discovery

ComputerSystem

// Array

ReplicationService

HostedService

ReplicationServiceCapabilities

ElementCapabilities
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 735

Replication Services Profile NO_ANSI_ID

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96
Replication Services relies on the Block Services Package for storage pool manipulations and capacity related
indications; and on the Storage Element Protection Profile for changing the protection of elements. For access to
remote resources, the profile also relies on other access related profiles such as the Masking and Mapping Profile.

26.1.8 Replication Services Capabilities

The single instance of the class ReplicationServiceCapabilities and its methods describe the various capabilities of
the service. Clients should examine the ReplicationServiceCapabilities instance and invoke its methods to
determine the specific capabilities of a replication service implementation.

26.1.9 SyncTypes

SyncTypes describe the replication policy supported by the profile. The following SyncTypes are defined:

Mirror: Creates and maintains a synchronized mirror copy of the source. Writes done to the source
element are reflected to the target element. The target element remains dependent on the source element.

Snapshot: Creates a point-in-time, virtual image of the source element. The target element remains
dependent on the source element. Snapshots are commonly known as delta replicas and contain
incrementally changed data as well as references (e.g. pointers) to the unchanged source element data.

Clone: Creates a point-in-time, independent, copy of the source element.

Synchronized replication indicates that updates to a source element are reflected to the target element. The mode
determines whether the target element is updated immediately, in the case of synchronous mode, or some time
later, in the case of asynchronous mode.

Table 488 compares the SyncTypes and the relationships between the source and target elements. It is a quick
reference for the clients to determine the appropriate SyncType for the intended target results.

With respect to "Relation of Target to Source," Dependent indicates the target element must remain associated
with the source element; Independent indicates the target element can exist without the source element.

With respect to “Target is Virtual copy of the Source,” the target element is not a “physical” copy of the source
element, instead the system holds a collection of mapping information that map the target element data to the
source element data.

26.1.10 Modes

The mode controls when the write operations are performed. The following modes are defined:

Synchronous: The writer waits until the write operations are committed to both the source and target
elements; or to both the source element and a target related entity, such as pointer tables.

Table 488 - Comparing SyncTypes

SyncType Relation
of Target
to Source

Updates
 to Source
Reflected
to Target

Target
 is Point-
 In-Time

Copy

Target
 is self-

contained

Target is
Virtual
copy of
Source

Target’s
 space

consumption

Mirror Dependent Yes No Yes-after
Split/Detach

No Same as
source

Snapshot Dependent No Yes No Yes Less than
source

Clone Independent No Yes Yes No Same as
source
736

NO_ANSI_ID Replication Services Profile

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111
Asynchronous: The writer waits until the write operations are committed to the source elements only. In
this mode, there can be a delay before the write operations are committed to the target elements.

26.1.11 Locality of Target Elements

Locality specifies the relationship between the source and the target elements. Replication Services defines the
following localities:

Local: It indicates the source and target elements are contained in a single managed system.

Remote: It indicates the source and target elements are contained in separate managed systems. In this
case, the service must rely on a networking protocol for the copy operations.

The networking protocols are modeled using ProtocolEndpoint, which enables a replication service to reach a
remote element. The property ProtocolEndpoint.ProtocolIFType specifies the protocol type, for examples, TCP,
Fibre Channel, Other, etc.

Locality is important because it advertises the capability of replication service. For example, the property
ReplicationServiceCapabilities.SupportedReplicationType may have values such as “Synchronous Mirror Local”
and “Synchronous Mirror Remote.”

Figure 118 and Figure 119 show the local and remote instance diagrams, respectively.

Figure 118 - Local Replica

ComputerSystem

Name:
 SanJose

StorageVolume1
(source)

SystemName:
 SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
 SanJose

StorageSynchronized

SystemDevice SystemDevice

Local Replication
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 737

Replication Services Profile NO_ANSI_ID

112

113

114

115

116

117
The ConnectivityCollection “collects” all the paths that provide access to a remote system. As long as there is a
path to a remote system, the property ConnectivityCollection.ConnectivityStatus indicates “Up”.

The ConnectivityCollection abstracts the details of network connections to a remote system to allow clients to focus
on whether a remote system is reachable or not. For example, the Figure 120, “Remote Replication over two
Paths” shows the local system has two connections to a remote system. As long as one connection is functioning,
there are replication operations between the local and the remote system.

Figure 119 - Remote Replica

ComputerSystem

Name:
 SanJose

StorageVolume1
(source)

SystemName:
 SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
 Boston

StorageSynchronized

Remote Replication

SystemDevice

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ServiceAffectsElement

ConnectivityCollection

ConnectivityStatus: Up,
Down, Unknown

HostedCollection

MemberOfCollection

HostedAccessPoint

Remote System in BostonLocal System in San Jose

Network TrafficSAPAvailableForElement
738

NO_ANSI_ID Replication Services Profile

118

119

120
Figure 121, “Expanded Remote Replica” shows a local system and two remote systems. The remote elements are
associated to a remote ComputerSystem. In this configuration, all the replication operations utilize a single
connection (ProtocolEndpoint) to all remote systems

Figure 120 - Remote Replication over two Paths

ComputerSystem

Name:
 SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
 Boston

Remote Replication

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ServiceAffectsElement

ConnectivityCollection

ConnectivityStatus: Up,
Down, Unknown

HostedCollection

HostedAccessPoint

Remote System in Boston

Local System in San Jose

Network Traffic

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

Remote System in Boulder
StorageVolume3

(target)

SystemName:
 Boulder

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

Network Traffic

ConnectivityCollection

ConnectivityStatus: Up,
Down, Unknown

HostedCollection

HostedAccessPoint

ServiceAffectsElement

MemberOfCollection

MemberOfCollection
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 739

Replication Services Profile NO_ANSI_ID

121

122

123

124

125

126

127

128
26.1.12 Remote Replication

Remote replication may require access information such as an RemoteServiceAccessPoint instance for the remote
resources. See 26.3 "Replication Services Support for Cascading" for additional information.

26.1.13 Undiscovered Resources

An undiscovered resource is any addressable entity without a known object model. Generally, clients identify an
undiscovered resource using one or more of the following:

• WWN (World Wide Name)

• URI (Uniform Resource Identifier)

Figure 121 - Expanded Remote Replica

Shadow Model for Boston Array

Computer SystemProtocolEndpoint

HostedAccessPoint

SystemDevice

StorageVolume

Shadow Model for Boulder Array

Computer SystemProtocolEndpoint

HostedAccessPoint

SystemDevice
StorageVolume

Computer System

ProtocolEndpoint

HostedAccessPoint

SystemDevice

StorageVolume

StorageVolume

StorageSynchronized

StorageSynchronized

SystemDevice

ConnectivityCollection

MemberOf
Collection

MemberOf
Collection

MemberOf
Collection

Model for array in San Jose with remote
replication in place for arrays in Boston and

Boulder

Dependency

Dependency

HostedCollection
740

NO_ANSI_ID Replication Services Profile

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150
• IP Address

• Remote ComputerSystem Objectpath

• Remote Filesystem Objectpath

In all cases, the assumption is that the underlying implementation "knows" how to perform the copy operation.

The Replication Service includes the necessary methods to create and manage the instances representing
undiscovered resources. See the class ReplicationEntity (in 26.8 "CIM Elements") and the method
AddReplicationEntity (26.5.0.16). Also in the replication service capabilities the absence of “Requires full discovery
of target ComputerSystem“ in the SupportedFeatures property indicates the service supports undiscovered
resources.

Figure 122 shows an instance of ReplicationEntity and its association to ReplicationService.

An instance of the StorageSynchronized association identifies the source and the target elements of a copy
operation even in the case where the source or the target element is an instance of ReplicationEntity, which is a
ManagedElement. Additionally, the StorageSynchronized.UndiscoveredElement property may indicate which
elements in the copy operation are “undiscovered”. The possible values are:

• SystemElement -- the source element.

• SyncedElement -- the target element.

• Both -- both the source and the target elements.

Figure 123 shows an example of a StorageSynchronized association where the source element is a
StorageVolume and the target element is a ReplicationEntity.

26.1.14 Multi-hop Replication

In multi-hop replication, the target element of one copy operation can simultaneously be the source for another
copy operation. As shown in Figure 124, multi-hop replication involves at least three elements.

Figure 122 - An instance of ReplicationEntity

Figure 123 - StorageSynchronized and ReplicationEntity

ReplicationEntity

InstanceID: xyz
Type: WWN
EntityID: 0011223344556677

ReplicationService

ServiceAffectsElement

ReplicationEntity

// Remote Target
InstanceID: xyz
Type: WWN
EntityID: 0011223344556677

StorageVolume

// Local Source
DeviceID: 123

StorageSynchronized
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 741

Replication Services Profile NO_ANSI_ID

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178
If an implementation supports multi-hop replication, the supported features capabilities will indicate “Multi-hop
element replication”. Furthermore, the implementation may need to know that the client is planning to add
additional hops in subsequent operations. In this case, the replication capabilities would indicate “Multi-hop
requires advance notice”. In response to this capability, the client in creating the first replica, must set the property
ReplicationSettingData.Multihop appropriately (see 26.8 "CIM Elements" for details on Multi-hop specification).
The capabilities method GetSupportedMaximum indicates the maximum number of hops supported by the
implementation.

26.1.15 Groups

Replication Services utilizes Groups of elements to manage replication activities that include more than one source
or target element in a copy operation. A major advantage of using groups is that an operation, such as fracture,
(see 26.5.0.27 "GetSupportedOperations") may be performed on the group as a whole, instead of fracturing
individual element pairs one by one.

The optional ReplicationGroup class represents a collection of ordered storage elements.

Key features of replication groups are:

• A group can be the source and/or the target of a copy operation.

• Elements of a group may be optionally declared Consistent.

• A group may optionally be declared as temporary (Persistent = false).

• A group may contain zero elements (an empty group).

Replication Services includes methods to create and delete a group, and methods to add elements or pair of
elements to an existing group(s) or to remove elements from a group.

Certain copy operations such as copying one source element to many target elements (one-to-many) may result in
the service creating a temporary group to keep track of all the target elements. The service may delete temporary
groups that are no longer associated with a copy operation. Deleting a temporary group does not affect the
elements associated with the group.

The method ReplicationService.CreateGroupReplica() is used to copy a group of elements. The property
ReplicationSettingData.Pairing determines the pairing of the source and the target elements. Possible values are:
Exact order and Optimum. Exact order means the first element of the source group is copied to the first element of
the target group, the second element of the source group is copied to the second element of the target group, and

Figure 124 - Multi-hop Replication

StorageVolum e

// Hop 1 Source

StorageVolum e

// Hop 1 Target
// Hop 2 Source

StorageSynchronized

M ultihop Replication

StorageVolum e

// Hop 2 Target

StorageSynchronized
742

NO_ANSI_ID Replication Services Profile

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203
so on. Optimum means in order to minimize any resource and data flow contentions, if possible, pair the source
and the target elements in such a way that they are on different data paths.

An implementation may allow the target group to have more (or fewer) elements than the source group.

See the ReplicationServiceCapabilities.GetSupportedReplicationSettingData() method for Pairing and for
UnequalGroupsAction capabilities.

Figure 125 shows group instances and the associated storage volumes.

The association between ReplicationGroup and its storage elements (e.g. StorageVolume) is
OrderedMemberOfCollection to maintain the order of the storage elements to facilitate pairing of the source and
the target group elements.

26.1.15.1 Composite Groups

A Composite Group is a group that includes storage elements from multiple storage arrays.

26.1.15.2 Consistency Groups

A Consistency Group is a set of elements that have an "Application Consistent View." Application Consistent View
is a set of elements that collectively represent some resource in a known state.

Block Storage Systems can only maintain state as to whether a group of elements is “sequentially consistent” or
not.

The instrumentation may support consistency groups for a given copy type and mode. The CreateGroupReplica
method allows a client to specify the target group to be consistent.

26.1.15.2.1 Sequentially Consistent

A group of target elements is considered to be "sequentially consistent” if each element is updated in the same
order as the application updates the corresponding source elements. Sequentially Consistent is also known as
Dependent Write Consistency.

Figure 126 shows the target elements that have a sequentially consistent view at all times. Once the connection
between volume2 and volume5 fails, all subsequent copy operations to the target elements stop, therefore
maintaining the consistency of the target elements.

Figure 125 - Group Instances

ReplicationGroup

// Source Group

StorageVolume

// One or more
source elements

OrderedMemberOfCollection

StorageVolume

// One or more target
elements

StorageSynchronized

ReplicationGroup

// Target Group

OrderedMemberOfCollection

GroupSynchronized
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 743

Replication Services Profile NO_ANSI_ID

204

205

206

207
26.1.16 Associations

Replication Services utilizes a number of stateful associations to associate source and target groups, source and
target elements, and, when necessary, the individual elements to their corresponding point-in-time aspect.

Figure 127 shows the associated groups with equal number of source and target elements.

Figure 126 - Sequentially Consistent Example

StorageVolume1

W1, W4, W7

StorageVolume2

W2, W5, W8

StorageVolume4

W1

StorageVolume5

W2

Source Group Target Group

StorageVolume3

W3, W6

StorageVolume6

W3

break

Because of the break between
volumes 2 and 5, suspend data
transfers between the remaining
volumes.

Order of writes to source:
 W1, W2, W3;
 W4, W5, W6;
 W7, W8

Consistent view given W1,
W2, W3
(Target elements are
sequentially consistent at
W3 Point-In-Time)

After W3
copy
744

NO_ANSI_ID Replication Services Profile

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230
26.1.16.1 GroupSynchronized Association

This association relates source and target groups, or, for a one-to-many relationship, relates a source element to a
target group. The association’s property ConsistencyEnabled indicates whether the target elements are required to
be Consistent or not.

Within a group, the SyncType and Mode properties of all subordinate StorageSynchronized associations between
the source and the target elements shall be the same. The SyncType and Mode properties of the
GroupSynchronized association shall also be the same as the SyncType and Mode properties of subordinate
StorageSynchronized associations.

This association relates the individual source and target elements. The association’s property CopyState indicates
the current state of the association. Some possible values of CopyState are Initialized or Synchronized.

A StorageSynchronized association can participate in only one pair of related replication groups.

26.1.16.2 SettingsDefineState Association and SynchronizationAspect Instance

The SettingsDefineState associates an element (e.g., a StorageVolume), or a group of elements (e.g. a
ReplicationGroup), to a SynchronizationAspect. An instance of SynchronizationAspect includes properties for the
date and time of the point-in-time copy and a reference to the source element (see Figure 128). The association is
particularly useful for Clones (targets) and Snapshots (source) that do not have a StorageSynchronized association
to another storage element. In the case of Clones, the StorageSynchronized association is removed (generally,
following the provider’s restart) after the copy operation completes. As for Snapshots, it is possible to create a
point-in-time snapshot copy of an element, or a group of elements, without having a target element (using the
method CreateSynchronizationAspect). In this mode, the target elements are added at a later time (using the
method ModifySettingsDefineState). Creating a SynchronizationAspect of a Snapshot is particularly useful when a
client wants to capture a point-in-time copy at a given time; however, the client wants to create the actual target
element at a later time, perhaps when it is more convenient.

Figure 127 - Associated Groups and Elements

StorageVolume1

StorageSynchronized

StorageVolume2

StorageVolume3

StorageVolume4
StorageSynchronized

GroupSynchronized

Source Group Target Group

CIM_ReplicationGroup extends
CIM_Collection

Property ConsistencyEnabled = true or false
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 745

Replication Services Profile NO_ANSI_ID

231

232

233

234

235

236

237

238

239

240

241
If an instance of a SynchronizationAspect is associated to a group of elements, the property “WhenPointInTime”
applies to all elements of the group, indicating the point-in-time copy of all elements is created at the same exact
time.

SettingsDefineState may also be applied to Mirror targets; as such, the property
SynchronizationAspect.WhenPointInTime would have the date and time of when the mirror relationship was
fractured (or split).

In all cases, the SettingsDefineState association may not persist across the provider’s restarts. Furthermore, an
instance of a SynchronizationAspect shall be removed if the SourceElement is deleted.

Figure 129 is an instance diagram for a clone target element and its associated SynchronizationAspect instance.
Once the clone target element becomes synchronized, the StorageSynchronized association is removed and the
property SynchronizationAspect.CopyState has a value of “Operation Completed.”

Figure 128 - SettingsDefineState Association

StorageVolume or
ReplicationGroup

Source or Target Element

SynchronizationAspect

datetime WhenPointInTime
REF SourceElementSettingsDefineState
746

NO_ANSI_ID Replication Services Profile

242

243

244
26.1.16.3 One-to-Many Association

Using a replication group, Replication Services allows for one source element to be copied to many target
elements.

Figure 129 - SynchronizationAspect Instance

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

StorageSynchronized

Before

SynchronizationAspect

// SyncStatus: Operation In Progress
// WhenPointInTime
// SourceElement ObjectPath

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

After

SynchronizationAspect

// SyncStatus: Operation Completed
// WhenPointInTime
// SourceElement ObjectPath

Once synchronization is reached, StorageSynchronized association is removed.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 747

Replication Services Profile NO_ANSI_ID

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271
As shown in Figure 130, one source element is associated to more than one target element. With
ConsistencyEnabled set to true, if the link to a target element is broken, all subsequent copy operations to all other
target elements are suspended. This ensures all the target elements contain the same exact data.

26.1.17 Operations on List of Synchronizations

Primarily for scalability reasons, an implementation optionally may offer the ability to perform an operation, such as
fracture, on a list of synchronization associations. The list of synchronization associations may be a collection of
independent associations or a subset of StorageSynchronized associations belonging to a source and a target
replication groups. The method ModifyListSynchronization and GetSupportedListOperations are used for list
modifications.

26.1.18 State Management For Associated Replicas

Both mirror and snapshot replicas maintain stateful associations with source elements. In the case of clone
replicas, the replication associations to the source elements exist while the copy operation is in progress.

The CopyState property of the replication association identifies the state, while the ProgressStatus property of the
same association indicates the “status” of the copy operation to reach the requested CopyState, which is indicated
in the property RequestedCopyState. For example, CopyState might have a value of “UnSynchronized”, while
ProgressStatus might have a value of “Synchronizing”, also known as “sync-in-progress”. In all cases, when
creating a replica element, the desired CopyState, as reflected in the property RequestedCopyState, is
Synchronized, which indicates the replica element has the same data as the source element. The
RequestedCopyState property will contain “Not Applicable” once the requested CopyState is achieved.

The GroupSynchronized association between the source and target groups also includes the CopyState
properties. If all values of StorageSynchronized.CopyState of source and target associations are the same (i.e.,
Synchronized), GroupSynchronized.CopyState will also have the same value. On the other hand, any mismatch in
the StorageSynchronized.CopyState values, will render the GroupSynchronized.CopyState property to have a
value of Mixed.

Unplanned states, such as Broken or Aborted, can be entered from any other state and generally indicate an
unusual circumstance. Recovery from the Broken state may be automatic once the error condition is resolved, or it
may require a client to intervene with a “Resync” operation (see 26.5.0.21 "GetSupportedFeatures"). Continuing

Figure 130 - One-to-Many Association

StorageVolume1

StorageSynchronized

StorageVolume2

StorageVolume3

StorageSynchronized

GroupSynchronized

Source Element

Target Group

Property ConsistencyEnabled = true or false
748

NO_ANSI_ID Replication Services Profile

272

273

274

275

276

277

278

279

280

281

282
from an Aborted state requires a client to intervene with a Resync operation. In this situation, the implementation
may indicate a Resync operation is required by the setting the ProgressStatus to "Waiting for resync". Additionally,
the copy operation may be temporarily stopped due to system or connection bandwidth. In this case the
ProgressStatus will be set to “Pending.” See 26.5.0.21 "GetSupportedFeatures".

Use the method ReplicationServiceCapabilities.GetSupportedCopyStates to determine the possible CopyStates.
The CopyStates have been normalized in such a way that they may apply to all SyncTypes.

Table 489 describes the supported CopyStates.

Figure 131 shows the CopyState transitions. The dashed arrow lines represent automatic transitions. They
transition unconditionally when the target element is ready to move to the next state. The solid arrow lines
represent the transitions as the result of a requested operation (using, for example,
ModifyReplicaSynchronization). The label of the solid arrow line indicates the requested operation.

Table 489 - CopyStates Values

CopyState value Description

Initialized The source and target elements are associated. The copy operation has not
started -- no data flow.

Synchronized The “copy operation” is complete. The target element is an “exact replica” of the
source element.

Unsynchronized Not all the source element data has been “copied” to the target element.

Fractured The target element was abruptly split from its source element -- consistency is not
guaranteed.

Split The target element was gracefully (or systematically) split from its source element
-- consistency is guaranteed.

Suspended Data flow between the source and target elements has stopped. Writes to source
element are held until a resume operation is completed.

Broken Replica is not a valid view of the source element. OperationalStatus of replica
may indicate an Error condition. This state generally indicates an error condition
such as broken connection.

Failedover Reads and writes to/from the target element. Source element is not “reachable”.

Inactive Copy operation has stopped, writes to source element will not be sent to target
element.

Prepared Initialization is completed, the copy operation has started, however, the data flow
has not started.

Aborted The copy operation is aborted with the Abort operation. Use the Resync Replica
operation to restart the copy operation.

Skewed The target has been modified and is no longer synchronized with the source
element or the point-in-time view. Use the Resync Replica operation to
resynchronize the source and target elements.

Mixed Applies to the CopyState of GroupSynchronized. It indicates the
StorageSynchronized associations of the elements in the groups have different
CopyState values.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 749

Replication Services Profile NO_ANSI_ID

283

284

285

286
The “create” methods normally start with the Initialized state. However, it is possible to use the WaitForCopyState
parameter of the create method to force the CopyState to the Inactive or Prepared state after the initialization is
complete. In this case, CopyState will remain in Inactive or Prepared state until such time a Modify method is used
to Activate the synchronization.

Figure 131 - CopyState Transitions

Exit

Initialized

Unsynchronized

Fractured

Synchronized

Fracture

Inactive

Suspended

Suspend

Suspend

Activate

Resume

Split

Split

Failedover

Failover

Resync

Detach

Detach

ReturnToResourcePool

Deactivate

Entry

Exit

Deactivate

Exit

Detach

Resync

Failback

Create*Replica may
specify WaitForCopyState

= Inactive or Prepared
Note: Dashed arrow lines represent triggerless transition. They fire

unconditionally when target element is ready to move to the next state.

General flow: Initialized, Unsynchronized, Synchronized.

(Synchronized
Clone Target
Detaches
Relationship)

Exit

Dissolve

Prepared

Activate

Unprepare

SkewedResync
750

NO_ANSI_ID Replication Services Profile

287

288

289

290

291

292

293

294

295

296

297

298
26.1.18.1 Synchronized CopyState

Synchronized state for the Mirror and Clone SyncTypes indicates all data has been copied from the source element
to the target element. For the Snapshot SyncType, because the target element is a virtual point-in-time view of the
source element, the Synchronized CopyState indicates all the metadata (pointers/mapping information) for the
snapshot have been created. Synchronization for the snapshots is achieved rapidly in comparison to
synchronization of Mirrors or Clones.

Depending on implementation, the clone target element detaches automatically when the target element becomes
synchronized; otherwise, the client needs to explicitly request a detach operation. See the method
ReplicationServiceCapabilities.GetSupportedFeatures in 26.5.0.21.

Figure 132 shows a sampling of the CopyState transitions and the corresponding ProgressStatus changes. In a
steady state condition, for example, the CopyState has a value of “Synchronized”, and at the same time the
ProgressStatus has a value of “Completed”
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 751

Replication Services Profile NO_ANSI_ID
Figure 132 - Sample CopyState and ProgressStatus Transitions

 Resyncing

 Completed

 Initializing

 Detaching

 Fracturing

 Synchronizing

 Completed

 Completed

Legend:

ProgressStatus

Initialized

Unsynchronized

Synchronized

Fractured

Fracture

Resync

Entry

ExitCopyState

Detach

Automatic
Transition

Operation
752

NO_ANSI_ID Replication Services Profile

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340
26.1.19 Unsynchronized and Skewed CopyStates

Unsynchronized CopyState indicates the target element is not an exact copy of the source element (or the source’s
point-in-time). The copy operation automatically continues until the synchronization between the source element
(or its point-in-time) and the target element is reached.

The Skewed CopyState is similar to the Unsynchronized CopyState except that the synchronized relationship
remains in the Skewed state until a client issues the Resync operation (ModifyReplicaSynchronization or
ModifyListSynchronization invoke methods). As an example: Committing write operations to a Snapshot target
element causes the source and the target elements to become Skewed.

26.1.20 Accessibility to Associations and Elements

There are two cases that should be considered:

Case 1: The method completes successfully without returning a job. The created replication associations
(StorageSynchronized and GroupSynchronized for Mirror and Snapshot copy types) and the newly created target
elements shall be accessible. The StorageSynchronized or GroupSynchronized associations between source and
target elements for the Clone copy type may not be accessible after synchronization is achieved; however, there
will be a SettingsDefineState association (if supported) between the newly copied target element and a
SynchronizationAspect instance.

Case 2: The method returns the status of “Job Started”. The AffectedJobElement association associates the
concrete job to the target element (or group), unless there is no target element (or group) such as
CreateSynchronizationAspect or when the target element (or group) is deleted (ReturnToResourcePool). In this
case, the AffectedJobElement points to the source element (or group). To ensure the replication association is
accessible, the CopyState of the association has to have at least reached the Initialized state. To guarantee
accessibility to associations and elements, specify the WaitForCopyState when issuing the methods
CreateElementReplica and CreateGroupReplica.

26.1.21 Host Access Restrictions

Generally, exposing both the source and replica to the same host may cause problems due to a duplicate volume
signature. At a minimum, the signature of a replica must be changed before the replica is exposed to the same host
as the source element.

Managing host access to source and target elements can be managed by using services described in Clause 18:
Masking and Mapping Subprofile.

The method ReplicationServiceCapabilities.GetSupportedCopyStates for each CopyState additionally returns
information as to whether a replica is host accessible (boolean) for the given CopyState.

26.1.22 Deleting the Target Elements

Mirror, Clone, and Snapshot target elements that are no longer in a synchronization association are deleted using
the StorageConfigurationService.ReturnToStoragePool method. However, the Snapshot target elements that are in
a synchronization association are deleted using the ReplicationService.ModifyReplicaSynchronization (or
ModifyListSynchronization) method with the “Return To ResourcePool” operation parameter, which also removes
the synchronization association.

26.1.23 Completion of Long Operations

There are two ways of indicating the completion of long running operations when a replica element is created or
modified:

Option 1: Generally, the long running operations are performed under the control of a job. The client can monitor
the progress of the job by polling the job’s status and percent complete, or by subscribing to job related indications.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 753

Replication Services Profile NO_ANSI_ID

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381
Option 2: Subscribe to receive indications when the CopyState of StorageSynchronized (or GroupSynchronized)
changes.

Clients may utilize both options simultaneously. To avoid receiving many indications, it is recommended for the
clients to utilize indication queries that are constrained by the object path of the appropriate replication association.

If a replication operation was specified using a WaitForCopyState parameter and the method is executing under
the control of a job, the job “waits” until at least the CopyState is reached, at which point the job considers the
operation complete. However, depending on the specified WaitForCopyState, the copy operation may continue
until a steady state is achieved. For example, in the Figure 131, “CopyState Transitions” diagram, Inactive and
Synchronized states are considered steady states; whereas Initialized and Unsynchronized are transient states.

During the copy operation, the AffectedJobElement association associates the job to the target element or to the
target group. In case an operation does not have a target element (e.g. CreateSynchronizationAspect), the
AffectedJobElement is the source element.

26.1.24 Managing Background Copy

By default, replication service performs the copy operations in the background. In other words, the methods such
as CreateElementReplica, start the copy operation (or start a job) and return while the copy operation is in
progress. To perform a copy operation in the foreground, the method may specify the WaitForCopyState of
Synchronized, in which case the call will not return until the copy operation is complete.

Alternatively, the methods CreateElementReplica and CreateGroupReplica may specify the WaitForCopyState of
Inactive if the ReplicationType supports it. In this case, the copy operation is not started until the inactive
synchronization is activated (using the ModifyReplicaSynchronization or ModifyListSynchronization methods).

26.1.25 Managing CopyPriority

A client may be able to manipulate the CopyPriority of a StorageSynchronized association -- see the
ReplicationServiceCapabilities.GetSupportedFeatures method in 26.8 "CIM Elements", which would indicate
"Adjustable CopyPriority".

CopyPriority allows a client to manage the copy I/O rate and the priority of peer I/O operations relative to host I/O
operations. Before the copy operation starts, the CopyPriority may be specified in ReplicationSettingData
parameter supplied to the CreateElementReplica or CreateGroupReplica. After the copy operation starts, the
StorageSynchronized.CopyPriority property may be modified by invoking the intrinsic ModifyInstance method.

The CopyPriority values are:

• Low - copy operation lower priority than host I/O.

• Same - copy operation has the same priority as host I/O.

• High - copy operation has higher priority than host I/O.

In a group copy operation, adjusting the CopyPriority of one StorageSynchronized association belonging to the
group shall cause the CopyPriority of the remaining group StorageSynchronized associations to be adjusted
likewise.

26.1.26 Using StorageSettings for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this class are
used as the goal parameter for the methods of this profile. The extrinsic method
CIM_StorageCapabilities.CreateSetting is used to create a setting and the intrinsic method ModifyInstance is used
to adjust the properties of a created StorageSetting. See Clause 5: "Block Services Package" for the details of
creating and modifying a storage setting.
754

NO_ANSI_ID Replication Services Profile

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416
26.1.27 Finding and Creating Target Elements

The extrinsic method ReplicationService.GetAvailableTargetElements is used to locate the available target
elements for a given source and SyncType. The implementation may also support creating target elements if the
appropriate target elements are not supplied and/or are not available. The implementation may require the client to
create specialized elements to be used as a target of a copy operation. The specialized elements have a specific
values in their Usage property. Certain types of specialized elements can be provided by changing the Usage
property of existing elements. Refer to Clause 5: "Block Services Package" for creating (specialized) elements and
modifying the Usage value of existing elements.

Refer to 26.5.0.35 "GetSupportedReplicationSettingData" and 26.5.0.21 "GetSupportedFeatures" to determine if
the implementation automatically creates target elements, and if specialized elements are required for the desired
SyncType.

26.1.28 Using StoragePools (e.g. ResourcePools) for Replicas

Replicas are allocated from storage pools (e.g. resource pools). The implementation may require specialized
storage pools to contain delta replicas (changed tracks of snapshots) or the “write intent log” files. The specialized
storage pools have a specific value in their Usage property, for example, “Reserved as a Delta Replica Container“,
“Reserved for Local Replication Services“, or “Reserved for Remote Replication Services”.

26.1.28.1 Delta Replica StoragePools

Depending on the implementation, the Snapshot targets may require a fixed space consumption or variable space
consumption. Refer to 26.5.0.21 "GetSupportedFeatures" to determine if specialized resource pool are required.

There are three types of delta replica pool access:

• “Any” - specialized storage pools are not required for delta replicas. The implementation creates delta replicas
based on the fixed space consumption model and the client can select any storage pool as a container.

• “Shared” - a single shared storage pool is the container for all delta replicas. This type of storage pool is always
preexisting and may be located with the GetElementBasedOnUsage method. The client may need to add
space to this type of storage pool.

• “Exclusive” - each source element requires an exclusive, special storage pool for associated delta replicas. If
the storage pool already exists, it is associated to the source element with a ReplicaPoolForStorage
association. If the storage pool does not exist, the client creates the storage pool.

• “Multiple” - “multiple specialized, exclusive pools may exist or may be created.“

Figure 133 and Figure 134 show the fixed and variable space consumption for the Snapshot targets, respectively. If
the implementation supports fixed space consumption, the DeltaReservation properties are set by the client to the
appropriate values for a new snapshot. The values are set in the associated StorageSetting element to be passed
as a goal parameter to the CreateElementReplica method (or CreateGroupReplica or
CreateSynchronizationAspect methods). For variable space consumption, there are no special properties to set by
the client.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 755

Replication Services Profile NO_ANSI_ID

417
 :

Figure 133 - Fixed Space Consumption

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

CopyType = “Snapshot”
756

NO_ANSI_ID Replication Services Profile

418

419

420

421

422

423

424

425

426

427

428

429

430

431
26.1.29 Provider Configurations for Remote Replication

Remote replication involves a minimum of two peer system instances. There are two possible provider
configurations for controlling remote replication service access points:

Configuration 1: One instance of the provider controls both peers. A client interfaces to one SMI-S server and
CIMOM. The only stitching required between arrays is a StorageSynchronized (and GroupSynchronized)
association between storage elements in separate arrays.

Configuration 2: A separate instance of the provider controls each peer system. Each provider has its own SMI-S
server/CIMOM instance. Clients are required to interact with two providers: the provider controlling the source
element and the provider controlling the target element. See the method
ReplicationServiceCapabilities.GetSupportedFeatures in 26.5.0.21 "GetSupportedFeatures" for the capability
“Remote resource requires remote CIMOM“.

The remote replication model allows connections that are bi-directional or uni-directional. By default, connections
to remote systems are bi-directional, unless it is stated otherwise. Refer to 26.5.0.37
"GetSupportedConnectionFeatures".

Figure 134 - Variable Space Consumption

StorageSynchronized

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M

StoragePool

// container element
// delta replica pool
TotalManagedSpace = S
RemainingManagedSpace = variable
LowSpaceWarningThreshold = T2
Usage =
 “Reserved as a Delta Replica Container”

AllocatedFromStoragePool

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M

SpaceConsumed = variable

CopyType = “Snapshot”

ReplicaPoolForStorage
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 757

Replication Services Profile NO_ANSI_ID

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450
26.1.30 Thinly Provisioned Elements

Replication Services supports “copying” thinly provisioned elements. Depending on the underlying implementation,
it is possible to copy a thinly provisioned source element to a thinly provisioned target element or alternatively to a
fully provisioned target element. Other combinations may be advertised in the capabilities.

If an implementation supports more than one combination of source and target provisioning, clients may use the
ReplicationSettingData parameter of the CreateElementReplica or CreateGroupReplica to request a specific
combination. Clients can set the property ReplicationSettingData.ThinProvisioningPolicy for the desired results.

Refer to the capabilities for the allowable combinations supported by the implementation. See 26.5.0.31
"GetSupportedThinProvisioningFeatures", 26.5.0.30 "GetSupportedSettingsDefineStateOperations" and 26.5.0.36
"GetDefaultReplicationSettingData".

26.1.31 Indications

Depending on the implementation, the Replication Services Profile generates a number of different alert and life
cycle indicatons, as shown in Table 490. Clients decide what indications they wish to receive by subscribing to the
appropriate indications.

Because on a large system with many copy operations in progress simultaneously, there is a potential to receive
many unwanted indications. Therefore, it is recommended for the clients to subscribe to indications that have a
query that is constrained to a specific replication association. See 26.8 "CIM Elements" for the indication queries.
For the storage pool and job indications, refer to Clause 5: "Block Services Package" and Storage Management
Technical Specification, Part 2 Common Profiles, 1.5.0 Rev 6 Clause 26: "Job Control Subprofile".

Table 490 - Indications

Indication Source Of

CIM_InstCreation • New Job Creation

• New Target Element Creation

• New StorageSynchronized Association Creation

• New GroupSynchronized Association Creation

CIM_InstDeletion • Job Deletion

• Target Element Deletion (e.g. Snapshot)

• StorageSynchronized Association Deletion

• GroupSynchronized Association Deletion

CIM_InstModification • Job Progress and Status Changes

• Source and Target Elements Status Changes

• CopyState Changes

• ProgressStatus Changes

• ProtocolEndpoints and ConnectivityCollections Status Changes
758

NO_ANSI_ID Replication Services Profile

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475
26.2 Health and Fault Management Consideration

The profile uses indications to report health and fault management. In general, instance modification indications
are sent when changes in OperationalStatus and HealthState values of the following instances indicate a fault
condition:

• Source and Replica elements

• ProtocolEndpoints

• ConnectivityCollections

In response to a fault indication, clients can follow the RelatedElementCausingError association between the
instance reporting the error and the faulted component.

The profile also generates alert indications when the CopyState of a replication association transitions to the
Broken state.

The Replication Services Profile generates alert indications that allow monitoring of storage pool consumption by
the replica elements.

26.3 Replication Services Support for Cascading

For remote replication, the Replication Services Profile requires a cascading provider (replication services) to
perform the "stitching" of the local resources and the shadow resources as well as their equivalent real objects
where the remote resources are contained. The cascading provider ensures that the shadow resources represent
real instances of ComputerSystem, ProtocolEndpoint, and storage objects such as a StorageVolume. Furthermore,
the cascading provider shall ensure that state and status properties such as OperationalStatus and CopyState
have consistent values between the shadow and real resources.

Replication service relies on other profiles to facilitate access to the shadow resources. For example, the
RemoteServiceAccessPoint instance identifies the necessary information to establish access to the shadow
system’s resources. See Figure 135 for an instance diagram of establishing access to the shadow resources. This
figure also shows instances of additional objects inherited from the class ServiceAccessPoint that can facilitate
access to remote resources.

CIM_AlertIndication • StoragePool space consumption Alerts (especially by Snapshot targets).

• Error conditions, such as

• StorageSynchronized and GroupSynchronized State set to Broken.

• ProtocolEndpoints.OperationalStatus set to Error.

• ConnectivityCollection.ConnectivityStatus set to “down”

Table 490 - Indications

Indication Source Of
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 759

Replication Services Profile NO_ANSI_ID

476

477

478

479

480

481

482

483
26.3.1 ServiceAccessPoint and SharedSecret Instances

Access to remote resources may require an instance of ServiceAccessPoint such as RemoteServiceAccessPoint
(inherited from ServiceAccessPoint) and its associated SharedSecret instance, which describes response to a
challenge question (i.e., password).

Figure 136 shows an instance of ServiceAccessPoint associated to an instance of SharedSecret via the
CredentialContext association.

The method AddServiceAccessPoint (26.5.0.17) and the method AddSharedSecret (26.5.0.18) can be used to
create the required instances.

Figure 135 - Instance Diagram for Access to shadow Resources

Figure 136 - Instance of ServiceAccessPoint

C om puterSystem

N am e:
 SanJose

R eplicationServ ice

H ostedServ ice

S torageV olum e2
(targe t)

System N am e:
 B oston

R em ote R ep lica tion w ith S erv iceA ccessP o in t

R em oteServ iceAccessP oint

S erviceAccessPoint

(abstract)H ostedAccessPoint

R em ote S ystem in B oston

Loca l S ystem in S an Jose
N etw ork T ra ffic

ProtocolEndpo int AccessS erviceU R I

S torageVolum e1
(source)

S ystem N am e:
 SanJose

SAPAvailab leForE lem ent

SharedSecretServiceAccessPoint

CredentialContext
760

NO_ANSI_ID Replication Services Profile

484

485

486

487

488

489

490

491
26.3.2 Cascading Support

Figure 137 illustrates the Replication Services support for cascading.

The embedded dashed box in the figure illustrates the classes and associations of the cascading support. The
dashed classes are shadow of instances provided by the remote system. The collection AllocatedResources
collects all the components in use by the replication service. The RemoteResources collection collects all
components (StorageVolumes, LogicalDisks, StoragePools, etc.) accessible to the replication service (whether
used or not).

Figure 137 - Replication Services support for Cascading

 Replication Services Profile

 Cascading Support

ComputerSystem

ComputerSystem
(Shadow)

StorageVolume
(Shadow)

Name=“OS X”

StorageVolume
(Shadow)

RemoteResources

ElementType = "Volume"
CollectionDiscriminator =
["SNIA:Target Volume",
”SNIA:Remote Storage
Pools”]

Dependency

RemoteServiceAccessPoin
t

SAPAvailableForElement

SystemDevice

AllocatedResources

ElementType = "Volume"
CollectionDiscriminator =
 "SNIA:Target Volume"

MemberOfCollection

MemberOfCollection

HostedCollection

HostedCollection

StorageVolume

Name=”LocalDevice”

StorageSynchronized

SystemDevice

“Remote Volume”

“Local Volume”

StoragePool
(Shadow)

HostedStoragePool
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 761

Replication Services Profile NO_ANSI_ID

492

493

494

495

496

497
Figure 138 shows cascading support utilizing replication groups.

26.4 Mapping of Copy Services and Replication Services Properties and Methods

Any action taken using the Replication Services methods is reflected, where applicable, appropriately in the
properties used by the Copy Services Subprofile (Clause 9: Copy Services Subprofile). The reverse is also true in
that any action taken by the Copy Services methods is reflected correctly in the properties used by the Replication

Figure 138 - Cascading and Replication Groups

 Replication Services Profile

 Cascading Support

ComputerSystem

ComputerSystem
(Shadow) StorageVolume

(Shadow)

Name=“OS X”

StorageVolume
(Shadow)

RemoteResources

Dependency

RemoteServiceAccessPoint

SAPAvailableForElement

SystemDevice

AllocatedResources

MemberOfCollection

MemberOfCollection

HostedCollection

HostedCollection
StorageVolume

Name=”LocalDevice”

StorageSynchronized

SystemDevice

ReplicationGroup

InstanceID=”LocalGroup”

ReplicationGroup
(Shadow)

InstanceID=“RemoteGroup”

ReplicationService

HostedService

ServiceAffectsElement OrderededMemberOfCollection

GroupSynchronized

OrderededMemberOfCollection

MemberOfCollection
762

NO_ANSI_ID Replication Services Profile

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516
Services Profile. Refer to Table 198, “Alignment of SyncType/Mode and CopyType” and Table 199, “Alignment of
CopyState and SyncState” for alignment of the specific properties used by Copy Services and this profile.

26.5 Methods of the Profile

The Replication Services Profile has a number of extrinsic methods for group management and replication
management. Additionally, there are a number of extrinsic methods in the ReplicationServiceCapabilities that
advertise the implemented replication services capabilities. Also, the Profile is dependent on other extrinsic
methods provided by the Block Services Package for storage pool and storage element manipulations.
Furthermore, the Profile relies on a number of intrinsic methods such as ModifyInstance, DeleteInstance for certain
optional capabilities.

All of the Profile extrinsic methods return one of the following status codes. Depending on the error condition, a
method may return additional error codes and/or throw an appropriate exception to indicate the error encountered.

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 491 summarizes the extrinsic methods for group management (class ReplicationService).

Table 492 summarizes the extrinsic methods for replication management (class ReplicationService).

Table 491 - Extrinsic Methods for Group Management

Method Described in

CreateGroup() See 26.5.0.1

DeleteGroup() See 26.5.0.2

AddMembers() See 26.5.0.3

RemoveMembers() See 26.5.0.4

Table 492 - Extrinsic Methods for Replication Management

Method Described in

CreateElementReplica() See 26.5.0.5

CreateGroupReplica() See 26.5.0.6

CreateListReplica() See 26.5.0.7

CreateSynchronizationAspect() See 26.5.0.8

ModifyReplicaSynchronization() See 26.5.0.9

ModifyListSynchronization() See 26.5.0.10

ModifySettingsDefineState() See 26.5.0.11
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 763

Replication Services Profile NO_ANSI_ID

517

518

519

520

521
Table 493 summarizes the extrinsic methods for examining the implemented capabilities (class
ReplicationServiceCapabilities). The majority of these methods accept the ReplicationType as an input
parameter. The supplied ReplicationType must be a supported replication type corresponding to the property
ReplicationServicesCapabilities.SupportedReplicationTypes; otherwise the method returns “Not Supported” (or
throws a “Not Supported” exception).

GetAvailableTargetElements() See 26.5.0.12

GetPeerSystems() See 26.5.0.13

GetServiceAccessPoints() See 26.5.0.15

GetReplicationRelationships() See 26.5.0.14

AddReplicationEntity See 26.5.0.16

AddServiceAccessPoint See 26.5.0.17

AddSharedSecret See 26.5.0.18

Table 493 - Extrinsic Methods for Getting Supported Capabilities

Method Described in

ConvertSyncTypeToReplicationType() See 26.5.0.19

ConvertReplicationTypeToSyncType() See 26.5.0.20

GetSupportedFeatures() See 26.5.0.21

GetSupportedGroupFeatures() See 26.5.0.22

GetSupportedCopyStates() See 26.5.0.23

GetSupportedGroupCopyStates() See 26.5.0.24

GetSupportedWaitForCopyStates() See 26.5.0.25

GetSupportedConsistency() See 26.5.0.26

GetSupportedOperations() See 26.5.0.27

GetSupportedGroupOperations() See 26.5.0.28

GetSupportedListOperations() See 26.5.0.29

GetSupportedSettingsDefineStateOperations() See 26.5.0.30

ad() See 26.5.0.31

GetSupportedMaximum() See 26.5.0.32

GetDefaultConsistency() See 26.5.0.33

GetDefaultGroupPersistency() See 26.5.0.34

GetSupportedReplicationSettingData See 26.5.0.35

GetDefaultReplicationSettingData() See 26.5.0.36

Table 492 - Extrinsic Methods for Replication Management

Method Described in
764

NO_ANSI_ID Replication Services Profile

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558
26.5.0.1 CreateGroup

uint32 ReplicationService.CreateGroup(

[IN] string GroupName,

[IN] CIM_LogicalElement REF Members[],

[IN] boolean Persistent,

[IN] boolean DeleteOnEmptyElement,

[IN] boolean DeleteOnUnassociated,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[OUT] SNIA_ReplicationGroup REF ReplicationGroup);

This method allows a client to create a new replication group. Any required associations (such as
HostedCollection) are created in addition to the instance of the group. The parameters are as follows:

• GroupName: If nameable, represents a user friendly name for the group being created. If null or not nameable,
then the implementation assigns a name.

• Members[]: An array of strings containing object references to the elements to add to the group -- order is
maintained. If null, the group will be empty, assuming empty groups are supported. Duplicates members are
not allowed.

• Persistent: If true, the group must persist across Provider reboots (group is not temporary). If null, the
implementation decides. Use the intrinsic method ModifyInstance to change Persistency of a group if the group
persistency is supported by the implementation.

• DeleteOnEmptyElement: If true and empty groups are allowed, the group will be deleted when the last element
is removed from the group. If empty groups are not allowed, the group will be deleted automatically when the
group becomes empty. If this parameter is not null, its value will be used to set the group's
DeleteOnEmptyElement property. Use the intrinsic method ModifyInstance to change this property after the
group is created.

• DeleteOnUnassociated: If true, the group will be deleted when the group is no longer associated with another
group. This can happen if all synchronization associations to the individual elements of the group are “deleted”.
If this parameter is not null, its value will be used to set the group's DeleteOnUnassociated property. Use the
intrinsic method ModifyInstance to change this property after the group is created.

• ServiceAccessPoint: Reference to access point information to allow the service to create a group on a remote
system. If null, the group is created on the local system.

• ReplicationGroup: If the method completes successfully, then the ReplicationGroup is a reference to the group
that is created.

This method returns the following additional values/statuses:

• If groups are not nameable and a name is supplied, the method returns 7 (“Groups are not nameable“) or
throws an appropriate exception.

• If the ServiceAccessPoint is not specified, the replication group is created on the system hosting the replication
service, via the HostedService association.

GetSupportedConnectionFeatures() See 26.5.0.37

Table 493 - Extrinsic Methods for Getting Supported Capabilities

Method Described in
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 765

Replication Services Profile NO_ANSI_ID

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595
26.5.0.2 DeleteGroup

uint32 ReplicationService.DeleteGroup(

[IN, Required] SNIA_ReplicationGroup REF ReplicationGroup.

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN] boolean RemoveElements);

This method allows a client to delete a replication group. All associations to the deleted group are also removed as
part of the action. The parameters are as follows:

• ReplicationGroup: This is a reference to the group that the client wants to delete.

• ServiceAccessPoint: Reference to access point information to allow the service to delete the group on a
remote system. If null, the group is on the local system.

• RemoveElements: The client can request to delete the group even if it is not empty. If one or more elements in
the group are in a replication relationship, RemoteElements is ignored.

This method returns the following additional values/statuses:

• If an element in the group is in a replication association, the method returns 7 (“One or more element in a
replication relationship“) or throws an appropriate exception.

26.5.0.3 AddMembers

uint32 ReplicationService.AddMembers(

[IN] CIM_LogicalElement REF Members[],

[IN, Required] SNIA_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint);

This method allows a client to add members to an existing replication group. The parameters are as follows:

• Members[]: An array of strings containing object references to the new elements to add to the replication
group. The new elements are added at the end of current members of the replication group. Duplicate
members are not allowed.

• ReplicationGroup: A reference to an existing replication group.

• ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

26.5.0.4 RemoveMembers

uint32 ReplicationService.RemoveMembers(

[IN] CIM_LogicalElement REF Members[],

[IN] boolean DeleteOnEmptyElement,

[IN, Required] SNIA_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint);

This method allows a client to remove members from an existing replication group. If empty replication groups are
not supported by the implementation, deleting all members will delete the group. The parameters are as follows:

• Members[]: An array of strings containing object references to the elements to remove from the replication
group. Attempting to remove a member that is not in the replication group, returns an error.
766

NO_ANSI_ID Replication Services Profile

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636
• DeleteOnEmptyElement: If true and removal of the members causes the group to become empty, the group
will be deleted. Note, if empty groups are not allowed, the group will be deleted automatically when the group
becomes empty. If this parameter is not null, it overrides the group's property DeleteOnEmptyElement.

• ReplicationGroup: A reference to an existing replication group.

• ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

This method returns the following additional values/statuses:

• Attempting to remove a group member that is in a replication association, returns 7 (“One or more element in a
replication relationship“) or throws an appropriate exception.

26.5.0.5 CreateElementReplica

 uint32 ReplicationService.CreateElementReplica(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN, EmbeddedInstance("SNIA_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) a new storage object which is a replica of the
specified source storage object (SourceElement). The parameters are as follows:

• ElementName: A end user relevant name for the element being created. If null, then a system supplied name
is used. The value will be stored in the 'ElementName' property for the created element.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously.

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element.

• TargetElement:

• As an input, refers to a target element to use. If a target element is not supplied, the implementation may
locate or create a suitable target element. See 26.5.0.35 "GetSupportedReplicationSettingData".

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 767

Replication Services Profile NO_ANSI_ID

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664
• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be null if job is completed).

• Synchronization: Refers to the created association between the source and the target element. If a job is
created, this parameter may be null, unless the association is actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null.

• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached. For example,
CopyState of Initialized means associations have been established, but there is no data flow. CopyState of
Synchronized indicates the replica is an exact copy of the source element. CopyState of UnSynchronized
means copy operation is in progress (see Table 489 for the CopyStates).

Method Notes:

• Creates a storage element of the same type as the source element.

• If the TargetElement, the TargetPool, or the TargetAccessPoint are not specified, the TargetElement is created
on the system hosting the replication service, via the HostedService association. Additionally, when required,
the created TargetElement will have the applicable association to the top level ComputerSystem. For example,
if the TargetElement is a StorageVolume, the created TargetElement will have a SystemDevice association to
the top level computer system.

• Creates a StorageSynchronized association.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target element.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 494 shows selected optional parameters that can interact:

Table 494 - Selected CreateElementReplica optional parameters

TargetElement TargetSettingGoal TargetPool Comment

Null Null Null Implementation locates/
creates target element*

Supplied Null Null

Null Supplied Null Goal is used to locate/
create target element*

Null Supplied Supplied Goal is used to locate/
create target element* in
the supplied Pool
768

NO_ANSI_ID Replication Services Profile

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699
* Note: See capabilities (Table 512, “Target Element Suppliers”) for whether implementation locates/creates target
elements.

26.5.0.6 CreateGroupReplica

 uint32 ReplicationService.CreateGroupReplica(

 [IN] string RelationshipName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] SNIA_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] SNIA_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance("SNIA_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) a new group of storage objects which are replicas of
the specified source storage or a group of source storage objects (SourceElements). The parameters are as
follows:

• RelationshipName: A user relevent name for the relationship between the source and target groups or
between a source element and a target group (i.e., one-to-many). If null, the implementation assigns a name. If
the individual target elements require an ElementName, a name would be constructed using
RelationshipName as prefix followed by \"_n\" sequence number, where n is a number beginning with 1.

• SyncType: See CreateElementReplica’s parameters (26.5.0.5).

• Mode: See CreateElementReplica’s parameters (26.5.0.5).

• SourceGroup: A group of source storage objects which may be a StorageVolume or storage object. If this
parameter is not supplied, SourceElement is required. Both SourceGroup and SourceElement shall not be
supplied.

• SourceElement: The source storage object which may be a StorageVolume or storage object. If this parameter
is not supplied, SourceGroup is required. Both SourceGroup and SourceElement shall not be supplied.

Null Null Supplied Pool is used to locate/
create target element* in
Pool. Implementation
determines the Goal

Table 494 - Selected CreateElementReplica optional parameters

TargetElement TargetSettingGoal TargetPool Comment
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 769

Replication Services Profile NO_ANSI_ID

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729
• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source elements/group.

• TargetGroup:

• As an input, refers to a target group to use.

• As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately. If TargetGroup is supplied, TargetElementCount shall be null.

• TargetElementCount: This parameter applies to one-source-to-many-target elements. If TargetGroup is
supplied, this parameter shall be null.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

• Consistency: This parameter overrides the default group consistency. For example, "No Consistency",
"Sequential Consistency".

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.0.5).

• Job: See CreateElementReplica’s parameters (26.5.0.5).

• Synchronization: Refers to the created association between the source element (or source replication group)
and the target replication group. If a job is created, this parameter may be null, unless the association is
actually formed.

• TargetSettingGoal: See CreateElementReplica’s parameters (26.5.0.5).

• TargetPool: See CreateElementReplica’s parameters (26.5.0.5).

• WaitForCopyState: See CreateElementReplica’s parameters (26.5.0.5).

Method Notes:

• Creates storage elements of the same type as the source element(s).

• If the TargetGroup or the TargetAccessPoint are not specified, the TargetGroup is created on the system
hosting the replication service, via the HostedService association.

• Creates StorageSynchronized and GroupSynchronized associations.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target elements.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 495 shows selected optional parameters that can interact:

Table 495 - Selected CreateGroupReplica optional parameters

TargetGroup TargetElementCount TargetSettingGoal TargetPool Comment

Null Null Null Null Implementation locates/
creates target
elements*

Supplied Null Null Null
770

NO_ANSI_ID Replication Services Profile

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747
* Note: See capabilities (Table 512, “Target Element Suppliers”) for whether implementation locates/creates target
elements.

26.5.0.7 CreateListReplica

 uint32 ReplicationService.CreateListReplica(

 [IN] string ElementNames[],

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElements[],

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_LogicalElement REF TargetElements[],

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN, EmbeddedInstance("SNIA_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[],

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

Supplied Supplied Null Null An illegal combination.

Null Supplied Null Null Implementation locates/
creates target
elements*

Null Supplied Supplied Null Goal is used to locate/
create target elements*

Null Supplied Supplied Supplied Goal is used to locate/
create target elements*
in the supplied Pool

Null Null Supplied Null Goal is used to locate/
create target elements*

Null Null Supplied Supplied Goal is used to locate/
create target elements
in the supplied Pool

Null Null Null Supplied Pool is used to locate/
create target elements*
in Pool. Implementation
determines the Goal

Table 495 - Selected CreateGroupReplica optional parameters

TargetGroup TargetElementCount TargetSettingGoal TargetPool Comment
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 771

Replication Services Profile NO_ANSI_ID

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790
This method allows a client to create (or start a job to create) new storage objects which are a replica of the
corresponding specified source storage object (an element of the SourceElements). The parameters are as
follows:

• ElementNames: An array of end user relevant names for the elements being created. If null, then a system
supplied name is used. The value will be stored in the 'ElementName' property for the created element. The
first element of the array ElementNames is assigned to the first replica, the second element to the second
replica and so on. If there are more SourceElements entries than ElementNames, the system supplied name is
used.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone. The same
SyncType is applied to all SourceElements entries.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously. The same
Mode is applied to all SourceElements entries.

• SourceElements: An array of source storage objects which may be StorageVolumes or storage objects. All the
source elements shall be of the same type -- for example, all StorageVolumes.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element. The same SourceAccessPoint applies to all SourceElements
entries.

• TargetElements:

• As an input, refers to an array of target elements to use. If specified, the elements will match one to one with
SourceElements[]. If a target elements are not supplied, the implementation may locate or create a suitable
target elements. See 26.5.0.35 "GetSupportedReplicationSettingData".

• As an output, refers to the created target storage elements (i.e., the replicas). If a job is created, the target
elements may not be available immediately.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element. The same TargetAccessPoint applies to all TargetElements entries.

• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data. The same ReplicationSettingData
applies to SourceElements entries.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be null if job is completed).

• Synchronizations: Refers to an array of created associations between the source and the target elements. If a
job is created, this parameter may be null, unless the associations are actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null. The same TargetSettingGoal applies to all
TargetElements entries.

• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null. The same TargetPool applies to all TargetElement entries.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached for all
Synchronizations. For example, CopyState of Initialized means associations have been established, but there
is no data flow. CopyState of Synchronized indicates the replicas are an exact copy of the corresponding
source element. CopyState of UnSynchronized means copy operation is in progress (see Table 489 for the
CopyStates).
772

NO_ANSI_ID Replication Services Profile

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815
Method Notes:

• Creates a storage elements of the same type as the source elements.

• If the TargetElements, the TargetPool, or the TargetAccessPoint are not specified, the TargetElements are
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElements will have the applicable associations to the top level ComputerSystem.
For example, if the TargetElements are StorageVolumes, the created TargetElements will have SystemDevice
associations to the top level computer system.

• Creates the StorageSynchronized associations.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target elements.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 496shows selected optional parameters that can interact:

* Note: See capabilities (Table 512, “Target Element Suppliers”) for whether implementation locates/creates target
elements.

26.5.0.8 CreateSynchronizationAspect

 uint32 ReplicationService.CreateSynchronizationAspect(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] SNIA_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance ("SNIA_ReplicationSettingData")]

Table 496 - Selected CreateListReplica optional parameters

TargetElements TargetSettingGoal TargetPool Comment

Null Null Null Implementation locates/
creates target elements*

Supplied Null Null

Null Supplied Null Goal is used to locate/
create target elements*

Null Supplied Supplied Goal is used to locate/
create target elements* in
the supplied Pool

Null Null Supplied Pool is used to locate/
create target elements* in
Pool. Implementation
determines the Goal
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 773

Replication Services Profile NO_ANSI_ID

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854
 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SettingsDefineState REF SettingsState);

This method allows a client to create (or start a job to create) new instances of SynchronizationAspect that are
associated to the source element (or a group of source elements) via the SettingsDefineState associations. This
representation may be of a form of pointers or a series of checkpoints that keep track of the source element data
for the created point-in-time.

This method does not include a target element, however, a target element can be added subsequently using the
ModifySettingsDefineState method.

The method creates individual associations between the source elements and the instances of
SynchronizationAspect.

The parameters are as follows:

• ElementName: A end user relevant name. If null, then a system supplied default name can be used. The value
will be stored in the ElementName property of the created SynchronizationAspect.

• SyncType: See CreateElementReplica’s parameters (26.5.0.5).

• Mode: See CreateElementReplica’s parameters (26.5.0.5).

• SourceGroup: See parameters in 26.5.0.6 "CreateGroupReplica".

• SourceElement: See CreateGroupReplica’s parameters (26.5.0.6)

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element/group.

• Consistency: See CreateGroupReplica’s parameters (26.5.0.6)

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.0.5).

• Job: See CreateElementReplica’s parameters (26.5.0.5).

• SettingsState: Refers to the created association between the source element or group and the instance of the
SynchronizationAspect. If a job is created, this parameter may be null, unless the association is actually
formed.

Method Notes:

• May create an instance of SynchronizationAspect if an appropriate one does not exist already.

• May create ReplicaPoolForStorage associations.

26.5.0.9 ModifyReplicaSynchronization

 uint32 ReplicationService.ModifyReplicaSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("SNIA_ReplicationSettingData")]

 string ReplicationSettingData,

[IN] CIM_StorageSynchronized REF SyncPair[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

[OUT] CIM_SettingsDefineState REF SettingsState,
774

NO_ANSI_ID Replication Services Profile

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893
 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the synchronization association between two storage
objects or replication groups. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: The reference to the replication association describing the elements/groups relationship that
is to be modified.

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.0.5).

• SyncPair[]: This parameter applies to AddSyncPair/RemoveSyncPair Operations. It allows a client to form a
StorageSynchronized association between source and target elements and then add the association to
existing source and target groups. Alternatively, a client can remove a StorageSynchronized association from
source and target groups.

• Job: See CreateElementReplica’s parameters (26.5.0.5).

• SettingsState: Reference to the association between the source or group element and an instance of
SynchronizationAspect. This parameters applies to operations such as Dissolve, which dissolves the
Synchronized relationship, but causes the SettingsDefineState association to be created. Depending on the
implementation, Deactivate may also return a SettingsState.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See CreateElementReplica’s parameters (26.5.0.5).

26.5.0.10 ModifyListSynchronization

 uint32 ReplicationService.ModifyListSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization[],

 [IN, EmbeddedInstance ("SNIA_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) a list of synchronization associations between two
storage objects or replication groups. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: An array of references to the replication association describing the elements/groups
relationship that is to be modified. All elements of the this array shall of the same concrete class, i.e.,
StorageSynchronized or GroupSynchronized, and shall have the same SyncType, the same Mode, and the
Operation must be valid for the ReplicationType -- SyncType, Mode, Local/Remote.

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.0.5).

• Job: See CreateElementReplica’s parameters (26.5.0.5).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 775

Replication Services Profile NO_ANSI_ID

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934
• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See CreateElementReplica’s parameters (26.5.0.5). All the supplied synchronization
associations must reach at least the specified CopyState before the method returns.

26.5.0.11 ModifySettingsDefineState

 uint32 ReplicationService.ModifySettingsDefineState(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SettingsDefineState REF SettingsState,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, OUT] SNIA_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("SNIA_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the SettingsDefineState association between the
storage objects and SynchronizationAspect. The modification could range from introducing the target elements,
which creates new StorageSynchronized associations, to dissolving the SettingsDefineState associations all
together.

With the Copy To Target operation, the supplied SettingsState is deleted since an “active” Synchronization is
created to associate the source and the target elements (or groups).

The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the related associations, for
example, Copy To Target, which initiates the copy operation from the point-in-time view to the supplied targets.

• SettingsState: Refers to the associations between the source elements and the SynchronizationAspect
instances. If an associated source element is part of a consistency group, all members of the group shall be
paired with the appropriate target elements.

• TargetElement: If TargetElement is supplied, TargetGroup and TargetCount shall be null.

• As an input, if the point-in-time has only one source element, this parameter supplies the target element.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetGroup: If TargetGroup is supplied, TargetElement and TargetElementCount shall be null.

• As an input, refers to a target group to use. If the source has only one element, the presence of a group
creates a one-to-many association between the source and the target elements. If TargetGroup is supplied,
TargetElement and TargetCount shall be null."

• As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately.
776

NO_ANSI_ID Replication Services Profile

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972
• TargetElementCount: This parameter applies to one-source-to-many-target-elements. It is possible to create
multiple copies of a source element. If TargetCount is supplied, TargetElement and TargetGroup shall be null.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

• Synchronization: The reference to the replication association describing the elements/groups relationship.

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.0.5).

• Job: See CreateElementReplica’s parameters (26.5.0.5).

• TargetSettingGoal: See CreateElementReplica’s parameters (26.5.0.5).

• TargetPool: See CreateElementReplica’s parameters (26.5.0.5).

• WaitForCopyState: See CreateElementReplica’s parameters (26.5.0.5).

26.5.0.12 GetAvailableTargetElements

 uint32 ReplicationService.GetAvailableTargetElements(

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN, EmbeddedInstance ("SNIA_ReplicationSettingData")]

 string ReplicationSettingData,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPools[],

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_LogicalElement REF Candidates[]);

This method allows a client to get (or start a job to get) all of the candidate target elements for the supplied source
element. If a job is started, once the job completes, examine the AffectedJobElement associations for candidate
targets. The parameters are as follows:

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• SyncType: See CreateElementReplica’s parameters (26.5.0.5).

• Mode: See CreateElementReplica’s parameters (26.5.0.5).

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.0.5). The parameter is useful for
requesting a specific combination of thinly and fully provisioned elements.

• TargetSettingGoal: Desired target StorageSetting. If null, settings of the source elements shall be used.

• TargetPools[]: The storage pools for the target elements. If null, all storage pools (on the given systems) are
examined.

• TargetAccessPoint: Reference to target access point information. If null, only local targets are returned.

• Job: See CreateElementReplica’s parameters (26.5.0.5).

• Candidates[]: The list of the candidate target elements found.

26.5.0.13 GetPeerSystems

 uint32 ReplicationService.GetPeerSystems(
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 777

Replication Services Profile NO_ANSI_ID

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013
 [IN] uint16 Options,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_ComputerSystem REF Systems[]);

This method allows a client to get (or start a job to get) all of the peer systems. A peer system is a system that is
known and visible to the Replication Service. Peer systems are discovered through discovery services and/or
implementation specific services. If a job is started, once the job completes, examine the AffectedJobElement
associations for the peer systems. The parameters are as follows:

• Options: This parameter specifies whether to return all known peer systems or only the systems that are
currently reachable. If null, all known systems are returned, whether they are currently reachable or not.

• Job: See CreateElementReplica’s parameters (26.5.0.5).

• Systems[]: The list of peer computer systems.

26.5.0.14 GetReplicationRelationships

 uint32 ReplicationService.GetReplicationRelationships(

 [IN] uint16 Type,

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 Locality,

 [IN] uint16 CopyState,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationships known to the
processing replication service. If a job is started, once the job completes, examine the AffectedJobElement
associations for the synchronization relationships. The parameters are as follows:

• Type: The type of synchronization relationships, for example, StorageSynchronized or GroupSynchronized. If
this parameter is not supplied, all such relationships are retrieved.

• SyncType: See CreateElementReplica’s parameters (26.5.0.5). If this parameter is not supplied, all SyncTypes
are retrieved.

• Mode: See CreateElementReplica’s parameters (26.5.0.5). If this parameter is not supplied, all Modes are
retrieved.

• Locality: Describes the desired locality. If this parameter is not supplied, all replication relationships are
retrieved, regardless of the locality of elements. Choices are: Local only -- Source and target elements are
contained in the same system; and Remote only -- Source and target elements are contained in two different
systems.

• CopyState: Only retrieve synchronization relationships that currently this CopyState (see Table 489). If this
parameter is not supplied, relationships are retrieved regardless of their current CopyState.

• Job: See CreateElementReplica’s parameters (26.5.0.5).

• Synchronizations[]: An array of elements found.

26.5.0.15 GetServiceAccessPoints

 uint32 ReplicationService.GetServiceAccessPoints(

 [IN] CIM_ComputerSystem REF System,

 [OUT] CIM_ConcreteJob REF Job,
778

NO_ANSI_ID Replication Services Profile

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051
 [OUT] CIM_ServiceAccessPoint REF ServiceAccessPoints[]);

This method allows a client to get (or start a job to get) ServiceAccessPoints associated with a peer system. If a job
is started, once the job completes, examine the AffectedJobElement associations for the peer system’s
ServiceAccessPoints. The parameters are as follows:

• System: A reference to the computer system.

• Job: See CreateElementReplica’s parameters (26.5.0.5).

• ServiceAccessPoints[]: An array of references to ServiceAccessPoints associated with the supplied system.

26.5.0.16 AddReplicationEntity

uint32 ReplicationService.AddReplicationEntity(

 [Required, IN, EmbeddedInstance("SNIA_ReplicationEntity")]

 string ReplicationEntity,

 [IN] boolean Persistent,

 [IN] string InstanceNamespace,

 [OUT] CIM_ReplicationEntity REF ReplicationEntityPath);

This method allows a client to introduce a new instance of ReplicationEntity in the specified Namespace. The
parameters are as follows:

• ReplicationEntity: A required parameter containing the information for the ReplicationEntity.

• Persistent: If true, the instance must persist across a Management Server reboot. If null, the value will be
based on the default value of the class in the MOF. Use the intrinsic method ModifyInstance to change the
Persistency value.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same namespace
as the service. Namespace must already exist.

• ReplicationEntityPath: A reference to the created instance.

26.5.0.17 AddServiceAccessPoint

uint32 ReplicationService.AddServiceAccessPoint(

 [Required, IN, EmbeddedInstance("CIM_ServiceAccessPoint")]

 string ServiceAccessPoint,

 [IN] string InstanceNamespace,

 [OUT] CIM_ServiceAccessPoint REF ServiceAccessPointPath);

This method allows a client to introduce a new instance of ServiceAccessPoint in the specified Namespace. The
parameters are as follows:

• ServiceAccessPoint: A required parameter containing the information for the ServiceAccessPoint, or a
subclass of the class ServiceAccessPoint, for example, a RemoteServiceAccessPoint.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same namespace
as the service. Namespace must already exist.

• ServiceAccessPointPath: A reference to the created instance.

26.5.0.18 AddSharedSecret

uint32 ReplicationService.AddSharedSecret(
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 779

Replication Services Profile NO_ANSI_ID

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075
 [Required, IN, EmbeddedInstance("CIM_SharedSecret")]

 string SharedSecret,

 [IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

 [IN] string InstanceNamespace,

 [OUT] CIM_SharedSecret REF SharedSecretPath);

This method allows a client to introduce a new instance of SharedSecret in the specified Namespace and
optionally associate it to an instance of a ServiceAccessPoint. The parameters are as follows:

• SharedSecret: A required parameter containing the information for the SharedSecret.

• ServiceAccessPoint: Associate created instance to this ServiceAccessPoint. If null, no such association is
established.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same namespace
as the service. Namespace must already exist.

• SharedSecretPath: A reference to the created instance.

26.5.0.19 ConvertSyncTypeToReplicationType

uint32 ReplicationServiceCapabilities.ConvertSyncTypeToReplicationType(

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 LocalOrRemote,

 [OUT] uint16 SupportedReplicationTypes);

The majority of the methods in this class accept ReplicationType which represents a combination of SyncType,
Mode, and Local/Remote. This method accepts the supplied information and returns the corresponding
ReplicationType, which can be passed to other methods to get the additional capabilities.

Table 497, Table 498, Table 499, and Table 500 show the values for the CovertSyncTypeToReplicationType
parameters. These values also appear in the value maps in the appropriate MOF files.

Table 497 - SyncTypes

SyncType Value

Mirror 6

Snapshot 7

Clone 8

Table 498 - Modes

Mode Value

Synchronous 2

Asynchronous 3
780

NO_ANSI_ID Replication Services Profile

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087
26.5.0.20 ConvertReplicationTypeToSyncType

 uint32 ReplicationServiceCapabilities.ConvertReplicationTypeToSyncType(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SyncType,

 [OUT] uint16 Mode,

 [OUT] uint16 LocalOrRemote);

This method does the opposite of the method ConvertSyncTypeToReplicationType. This method translates
ReplicationType to the corresponding SyncType, Mode, and Local/Remote.

26.5.0.21 GetSupportedFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 Features[]);

Table 499 - Local or Remote

LocalOrRemote Value

Local 2

Remote 3

Table 500 - ReplicationTypes

SupportedReplicationType Value

Synchronous Mirror Local 2

Asynchronous Mirror Local 3

Synchronous Mirror Remote 4

Asynchronous Mirror Remote 5

Synchronous Snapshot Local 6

Asynchronous Snapshot Local 7

Synchronous Snapshot Remote 8

Asynchronous Snapshot Remote 9

Synchronous Clone Local 10

Asynchronous Clone Local 11

Synchronous Clone Remote 12

Asynchronous Clone Remote 13
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 781

Replication Services Profile NO_ANSI_ID

1088
 For a given ReplicationType, this method returns the supported features, as listed in Table 501.

Table 501 - Features

Feature Description

“Replication Groups” Elements in a replication group are supported in a
replication operation.

"Multi-hop element replication" A target element can also act as the source for
another copy operation.

“Each hop must have same SyncType“ In a multi-hop replication, the new hop must have the
same SyncType as the previous hop.

“Multi-hop requires advance notice” The service needs to know when multi-hoping is
intended to allow the service to do the appropriate set
up. The parameter ReplicationSettingData specifies
the number of hops intended.

"Requires full discovery of target ComputerSystem" Provider requires the remote ComputerSystems to be
discovered. The absence of this capability indicates
the service supports undiscovered resources.

"Service suspends source I/O when necessary" Provider is able to suspend I/O to source elements
before splitting the target elements. Otherwise, the
client needs to quiesce the application before issuing
the split command.

"Targets allocated from Any storage pool" Specialized storage pools are not required for the
target elements, as long as the pool is not reserved for
special activities.

"Targets allocated from Shared storage pool" Targets are allocated from storage pools reserved for
Replication Services.

"Targets allocated from Exclusive storage pool" Targets are allocated from exclusive storage pools.

"Targets allocated from Multiple storage pools" Targets are allocated from multiple specialized,
exclusive pools.

“Targets require reserved elements” The target elements must have a specific Usage
value. For example, reserved for "Local Replica
Target" (mirror), reserved for "Delta Replica Target"
(Snapshot)., etc.

"Target is associated to SynchronizationAspect” The target element is associated to
SynchronizationAspect via SettingsDefineState.
SynchronizationAspect contains the point-in-time
timestamp and the source element reference used to
copy to the target element.

"Source is associated to SynchronizationAspect” The source element is associated to
SynchronizationAspect via the SettingsDefineState
association. SynchronizationAspect contains the
point-in-time information of the source data.
782

NO_ANSI_ID Replication Services Profile

1089

1090

1091

1092
26.5.0.22 GetSupportedGroupFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedGroupFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 GroupFeatures[]);

"Error recovery from Broken state Automatic", For example, if the connection between the source
and target elements is broken (CopyState = Broken),
once the connection is restored, the copy operation
continues automatically. If the error recovery is not
automatic, it requires manual intervention to restart the
copy operation. Use ModifyReplicaSynchronization,
with Operation set to Resume.

“Target must remain associated to source” A dependent target element must remain associated
to source element at all times.

"Remote resource requires remote CIMOM" Client is required to interact with two providers: the
provider controlling the source element and the
provider controlling the target element.

"Synchronized clone target detaches automatically" The clone target element detaches automatically
when the target element becomes synchronized;
otherwise, the client needs to explicitly request a
detach operation.

"Reverse Roles operation requires Read Only source" The “Reverse Roles” operation requires the source
element to be in the Read Only mode. To change the
protection of an element, see Clause 25: "Storage
Element Protection SubProfile".

"Reverse Roles operation requires resync" After the “Reverse Roles” operation completed, it is
required to resync the synchronization relationship
between the source and the target elements. This is
indicated in the property Synchronized.ProgressStatus
- “Requires resync“.

"Restore operation requires fracture" The “Restore from Replica” operation requires the
synchronization relationship to be fractured after
restore is completed -- indicated in the property
Synchronized.ProgressStatus - “Requires fracture”.

"Resync operation requires activate" For the copy operation to continue, the
synchronization relationship must be activated --
indicated in the property Synchronized.ProgressStatus
- “Requires activate”.

"Copy operation requires offline source" Instrumentation requires the source element to be
offline (not-ready) to ensure data does not change
before starting the copy operation.

"Adjustable CopyPriority" Priority of copy operation versus the host I/O can be
adjusted.

Table 501 - Features

Feature Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 783

Replication Services Profile NO_ANSI_ID

1093
 For a given ReplicationType, this method returns the supported replication group features, as listed in Table 502.

Table 502 - Group Features

GroupFeatures Description

"One-to-many replication" One source element can be copied to multiple target
elements in a group.

“Many-to-many replication“ One or more elements in the source group and one or
more elements in the target group.

“Consistency enabled for all groups” By default, all groups are Consistent

“Empty replication groups allowed” It is possible to have a replication group with no
members; otherwise, an empty group gets deleted
automatically.

"Source group must have more than one element" One members replication groups are not supported.

"Composite Groups" A replication group can have members from different
ComputerSystems.

"Multi-hop group replication" A target replication group can also act as a source for
another copy operation.

“Each hop must have same SyncType” The SyncType of each hop must be the same, e.g.,
mirror, snapshot, clone.

"Group can only have one single relationship active" At any given time, only one relationship in the source
group can be active.

“Source element can be removed from group” A source element can be removed even when the
group is associated with another replication group.

“Target element can be removed from group” A target element can be removed even when the group
is associated with another replication group.

"Group can persist" The replication group can persist across the Provider
reboot (group is not temporary).

"Group is nameable" A user friendly name can be given to a replication
group (ElementName)

"Supports target element count" It is possible to supply one source element and request
more than one target element copies.

"Synchronized clone target detaches automatically" The clone target element detaches automatically when
the target element becomes synchronized; otherwise,
the client needs to explicitly request a detach operation.

"Reverse Roles operation requires Read Only
source"

The “Reverse Roles” operation requires the source
element to be in the Read Only mode. To change the
protection of an element, see Clause 25: "Storage
Element Protection SubProfile".

"Reverse Roles operation requires resync" After the “Reverse Roles” operation completed, it is
required to resync the synchronization relationship
between the source and the target elements. This is
indicated in the property Synchronized.ProgressStatus
- “Requires resync“.
784

NO_ANSI_ID Replication Services Profile

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117
26.5.0.23 GetSupportedCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[],

 [OUT] boolean HostAccessible[]);

For a given ReplicationType, this method returns the supported CopyStates (see Table 489) and a parallel array to
indicate whether for a given CopyState the target element is host accessible or not (true or false).

26.5.0.24 GetSupportedGroupCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedGroupCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[]);

For a given ReplicationType, this method returns the supported replication group CopyStates (see Table 489).

26.5.0.25 GetSupportedWaitForCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedWaitForCopyStates(

 [IN] uint16 ReplicationType,

 [IN] unit16 MethodName,

 [OUT] uint16 SupportedCopyStates[]);

This method, for a given ReplicationType and method, returns the supported CopyStates that can be specified in
the method's WaitForCopyState parameter.

26.5.0.26 GetSupportedConsistency

 uint32 ReplicationServiceCapabilities.GetSupportedConsistency(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedConsistency[]);

For a given ReplicationType, this method returns the supported Consistency, as listed in Table 503.

"Restore operation requires fracture" The “Restore from Replica” operation requires the
synchronization relationship to be fractured after
restore is completed -- indicated in the property
Synchronized.ProgressStatus - “Requires fracture”.

"Resync operation requires activate" For the copy operation to continue, the synchronization
relationship must be activated -- indicated in the
property Synchronized.ProgressStatus - “Requires
activate”.

"Copy operation requires offline source" Instrumentation requires the source element to be
offline (not-ready) to ensure data does not change
before starting the copy operation.

Table 502 - Group Features

GroupFeatures Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 785

Replication Services Profile NO_ANSI_ID

1118

1119

1120

1121

1122

1123

1124

1125
26.5.0.27 GetSupportedOperations

 uint32 ReplicationServiceCapabilities.GetSupportedOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported Operations on a StorageSynchronized association
that can be supplied to the ModifyReplicaSynchronization method. Table 504 shows the possible Operations that
an implementation may support.

Refer to Figure 54, “CopyState Transitions” for additional information.

Table 503 - Consistency

Consistency Description

“Sequentially Consistent” Provider guarantees ordered write consistency.

Table 504 - Operations

Operation Description Special Consideration

"Abort" Abort the copy operation if it is possible.

"Activate Consistency" Enable consistency.

“Activate” Activate an “Inactive” or “Prepared”
StorageSynchronized association.

"AddSyncPair" Add source and target elements of a
StorageSynchronized association to the source
and target replication groups. The SyncType of
the associations must be the same.

"Deactivate Consistency" Disable consistency.

“Deactivate” Stop the copy operation. Writes to source
element are allowed.

Snapshot: Writes to target
element after point-in-time is
created are lost (pointers
removed).

"Detach" Remove the association between the source and
target elements. Detach does not delete the
target element.

“Dissolve” Dissolve the synchronization association
between two storage objects, however, the
target element continues to exist.

Snapshot: This operation also
creates a SettingsDefineState
association between the
source element and an
instance of
SynchronizationAspect if the
ReplicationType supports it.
786

NO_ANSI_ID Replication Services Profile
"Failover" Enable the read and write operations from the
host to the target element. This operation useful
for situations when the source element is
unavailable.

"Failback" Switch the read/write activities from the host
back to source element. Update source element
from target element with writes to target during
the failover period.

"Fracture" Separate the target element from the source
element.

"RemoveSyncPair" Remove the elements associated via the
StorageSynchronized association from the
source and the target groups.

"Resync Replica" Resynchronize a fractured target element. Or,
from a Broken or Aborted relationship.

To continue from the Broken
state, the problem should be
corrected first before
resyncing the replica. Also, to
continue from the Aborted
state.

"Restore from Replica" Copy target element to the source element. To ensure integrity of data,
restoring to a source element
which is the source of multiple
copy operations, the
implementation may impose
additional restrictions ranging
from not supporting the
restore operation to such a
source element to preventing
multiple restore operations
simultaneously. Also, after the
operation is completed, it may
be necessary to fracture the
synchronization relationship.
See GetSupportedFeatures in
capabilities.

"Resume" Continue the copy operation of a suspended
relationship.

"Reset To Sync" Change Mode to Synchronous.

"Reset To Async" Change Mode to Asynchronous.

“Return To ResourcePool” Delete a Snapshot target.

"Reverse Roles" Switch the source and the target element roles. The source element may
need to be Read Only. See
GetSupportedFeatures in
capabilities.

Table 504 - Operations

Operation Description Special Consideration
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 787

Replication Services Profile NO_ANSI_ID

1126
 Table 505 compares the action of similar Operations.

"Split" Separate the source and the target elements in a
consistent manner.

"Suspend" Stop the copy operation in such a way that it can
be resumed.

“Unprepare” Causes the synchronization to be reinitialized
and stop in Prepared state.

Table 505 - Comparison of Similar Operations

Operations Description

Activate versus Resume Activate: Activates a StorageSynchronizes
association that has a CopyState of “Inactive.”

Resume: Resumes a StorageSynchronized
association that has a CopyState of
“Suspended”.

Deactivate versus Suspend Deactivate: Stops the copy operation. In the
case of Snapshots, all writes to target element
are deleted (pointers to changed data are
removed). While inactive, writes to source
element will not be committed to target
element once activated.

Suspend: Stops the copy operation. All writes
to target element are preserved. Once
resumed, pending writes to target element are
committed.

Fracture versus Split Fracture: Source and target elements are
separated “abruptly.”

Split: Source and target elements are
separated in an orderly fashion. Consistency
of target elements is maintained.

Detach versus Dissolve Detach: The association between the source
and target element must be first Fractured/
Split before it can be Detached.

Dissolve: The association can have a
CopyState of Synchronized. Additionally,
Dissolve can create a SettingsDefineState
association based on GetSupportedFeatures
(26.5.0.21) Capabilities.

Table 504 - Operations

Operation Description Special Consideration
788

NO_ANSI_ID Replication Services Profile

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148
26.5.0.28 GetSupportedGroupOperations

uint32 ReplicationServiceCapabilities.GetSupportedGroupOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported replication group Operations (see Table 504) on a
GroupSynchronized association that can be supplied to the ModifyReplicaSynchronization method.

26.5.0.29 GetSupportedListOperations

uint32 ReplicationServiceCapabilities.GetSupportedListOperations(

 [IN] uint16 ReplicationType,

 [IN] uint16 SynchronizationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported replication Operations (see Table 504) on a list of
associations that can be supplied to the ModifyListSynchronization method. The parameter SynchronizationType
specifies the operations as they apply to a list of StorageSynchronized or GroupSynchronized. If
SynchronizationType is not specified, StorageSynchronized is assumed.

26.5.0.30 GetSupportedSettingsDefineStateOperations

uint32 ReplicationServiceCapabilities.GetSupportedSettingsDefineStateOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported operations on a SettingsDefineState association
that can be supplied to the ModifySettingsDefineState method. Table 506 shows the list of SettingsDefineState
operations that an implementation may support.

Unsynchronized versus Skewed Unsynchronized: The source element
contains data that has not been copied to the
target element. Most likely, the copy operation
is in the process of updating the target
element (ProgressStatus=Synchronizing).

Skewed: The target element has been
updated by a host (e.g. target of a snapshot).
Resynchronization is not automatic and
requires an explicit “Resync” operation (i.e.,
ModifySynchronization)

Table 505 - Comparison of Similar Operations

Operations Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 789

Replication Services Profile NO_ANSI_ID

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160
26.5.0.31 GetSupportedThinProvisioningFeatures

uint32 ReplicationServiceCapabilities.GetSupportedThinProvisioningFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedThinProvisioningFeatures[]);

For a given ReplicationType this method returns the supported features related to thin provisioning. Table 507
shows the list of the Thin Provisioning Features an implementation may support.

A client can request a specific thin provisioning policy in the ReplicationSettingData parameter of the appropriate
method call. See the property ReplicationSettingData.ThinProvisioningPolicy for the supported options for a copy
operation.

26.5.0.32 GetSupportedMaximum

 uint32 ReplicationServiceCapabilities.GetSupportedMaximum(

 [IN] uint16 ReplicationType,

Table 506 - SettingsDefineState Operations

SettingsDefineState
Operation

Description Special Consideration

"Activate Consistency" Enable consistency

"Deactivate Consistency" Disable consistency

"Delete" Remove the SettingsDefineState association.
Instance of SynchronizationAspect may also be
deleted if it is not shared with other elements.

"Copy To Target" Introduces the target elements and forms the
necessary associations between the source and
the target elements i.e., StorageSynchronized
and GroupSynchronized.

Table 507 - Thin Provisioning Features

Feature Description

"Thin provisioning is not supported" The replication service does not distinguish between
thinly and fully provisioned elements. The service treats
all elements as fully provisioned elements.

"Zeros written in unused allocated blocks of target" Applies to copying from a thinly provisioned element to
a fully provisioned element. The implementation needs
to allocate “real” storage blocks on the target side for
the corresponding blocks of the source element that are
unused. The implementation then writes zeros in the
unused blocks of the target element.

"Unused allocated blocks of target are not initialized" Applies to copying from a thinly provisioned element to
a fully provisioned element. The implementation needs
to allocate “real” storage blocks on the target side for
the corresponding blocks of the source element that are
unused.
790

NO_ANSI_ID Replication Services Profile

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175
 [IN] uint16 Component,

 [OUT] uint64 MaxValue);

This method accepts a ReplicationType and a component, it then returns a static numeric value representing the
maximum number of the specified component that the service supports. A value of 0 indicates unlimited
components of the given type. In all cases the maximum value is bounded by the availability of resources on the
computer system. If the information is not known, the method returns 7 which indicates "Information is not
available".

Effectively, this method informs clients of the edge conditions.

Table 508 shows the list of components that can be specified.

26.5.0.33 GetDefaultConsistency

uint32 ReplicationServiceCapabilities.GetDefaultConsistency(

 [IN] uint16 ReplicationType,

 [OUT] uint16 DefaultConsistency);

This method for a given ReplicationType, returns the default consistency value for the replication groups. Table 509
shows the list of possible Default Consistency values that an implementation may offer.

Table 508 - Components

Component Description

“Number of groups” Maximum number of groups supported by the replication
service.

"Number of elements per source group" Maximum number of elements in a group that can be
used as a source group.

"Number of elements per target group" Maximum number of elements in a group that can be
used as a target group.

"Number of target elements per source element" Maximum number of target elements per source element.

"Number of total source elements" Maximum number of total source elements supported by
the service.

"Number of total target elements" Maximum number of total target elements supported by
the source.

"Number of peer systems" Maximum number of peer systems that replication
service can communicate with.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the
service can manage.

Table 509 - Default Consistency

DefaultConsistency Description

"No default consistency" Replication groups are not declared as
consistent.

"Sequentially Consistent" By default, a newly created replication group
is declared to be consistent.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 791

Replication Services Profile NO_ANSI_ID

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189
26.5.0.34 GetDefaultGroupPersistency

 uint32 ReplicationServiceCapabilities.GetDefaultGroupPersistency(

 [OUT] uint16 DefaultGroupPersistency);

This method returns the default persistency for a newly created group. Table 510 shows the list of possible Group
Persistency values that an implementation may offer.

26.5.0.35 GetSupportedReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetSupportedReplicationSettingData(

 [IN] uint16 ReplicationType,

 [IN] uint16 PropertyName,

 [OUT] uint16 SupportedValues[]);

This method, for a given ReplicationType, returns an array of supported settings that can be utilized in an instance
of the ReplicationSettingData class. See the MOF for the ReplicationSettingData class for the value map of the
properties. Explanation of some of the properties appears below.

Table 511 shows the values for the property ReplicationSettingData.CopyMethodology:

Table 510 - Group Persistency

DefaultGroupPersistency Description

"No default persistency" Replication groups are not declared as
persistent across the Provider reboots.

"Persistent" By default, a newly created replication group
is declared to be persistent across the
Provider reboot (group is not temporary).

Table 511 - Copy Methodologies

CopyMethodology Description

"Other" A methodology not listed in this table.

"Implementation decides" Implementation determines a suitable
methodology.

"Full-Copy" All data is copied to the target element.

"Incremental-Copy" Only changed data is copied to the target
element.

"Differential-Copy" Only the new writes are copied to the target
element.

"Copy-On-Write" Affected data is copied on the first write to the
source or to the target elements.

"Copy-On-Access" Affected data is copied on the first access to
the source element.
792

NO_ANSI_ID Replication Services Profile

1190

1191
Table 512 shows the values for the property ReplicationSettingData.TargetElementSuppliers.

Table 513 shows the values for the property ReplicationSettingData.ThinProvisioningPolicy.

“Delta-Update” Difference based replication where initially the
source element is copied to the target
element. Then, at regular intervals, only
changes to the source element that have
taken place since the previous copy operation
are incrementally updated to the target
element. This copy operation is also referred
to as asynchronous mirroring.

“Snap-And-Clone“ The service creates a snapshot of the source
element first, then uses the snapshot as the
source of the copy operation to the target
element.

Table 512 - Target Element Suppliers

TargetElementSupplier Description

“Use existing” Use existing elements only. If appropriate
elements are not available, returns an error.

“Create new” Create new target elements only.

“Use and create“ If appropriate elements are not available,
create new target elements.

“Instrumentation decides“

Table 513 - ThinProvisioningPolicy

Feature Description

"Copy thin source to thin target" Thinly provisioned source element is copied to a thinly
provisioned target element.

"Copy thin source to full target" Thinly provisioned source element is copied to a fully
provisioned target element.

"Copy full source to thin target" Fully provisioned source element is copied to a thinly
provisioned target element.

"Provisioning of target same as source" Provisioning of the target element is the same as the
provisioning of the source element.

"Target pool decides provisioning of target element" In the call to the CreateElementReplica or
CreateGroupReplica method, the storage pool for the
target elements is supplied. The supplied storage pool
decides the provisioning of the created target elements.

"Implementation decides provisioning of target" Vendor specific.

Table 511 - Copy Methodologies

CopyMethodology Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 793

Replication Services Profile NO_ANSI_ID

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217
26.5.0.36 GetDefaultReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetDefaultReplicationSettingData(

 [IN] uint16 ReplicationType,

 [OUT, EmbeddedObject]

 string DefaultInstance);

This method, for a given ReplicationType, returns the default ReplicationSettingData as an instance. Use this
method to determine the implementation behavior for replication settings that do not have a distinct capability
method.

26.5.0.37 GetSupportedConnectionFeatures

uint32 ReplicationServiceCapabilities.GetSupportedConnectionFeatures(

 [IN] CIM_ProtocolEndpoint REF connection,

 [OUT] uint16 SupporteConnectionFeatures[]);

This method accepts a connection reference and returns specific features of that connection. Table 514 shows the
list of possible Connection Features that an implementation may support.

26.5.1 Replication Services and Copy Services Properties and Methods Mapping

To preserve backward compatibility, a few additional properties in the existing classes are introduced instead of
changing the semantics of the existing properties. Any action taken by a Replication Services client shall be
reflected correctly in the applicable properties visible to a Copy Services client. The reverse is also true in that any
action taken by a Copy Services client shall be reflected correctly in the properties visible to a Replication Services
client. Keep in mind certain requests that are not supported by Copy Services result in the request failing. For
example, passing an instance of StorageSynchronized that contains a remote SyncedElement reference to the
Copy Services’ ModifySynchronization method will generate an error.

26.5.1.1 Properties Mapping

See 9.1.6.1.1 "Alignment of StorageSynchronized Properties" to determine the alignment between CopyType and
SyncState (from Copy Services) and SyncType, Mode, CopyState, and ProgressStatus (from Replication
Services).

Table 514 - Connection Features

ConnectionFeature

"Unidirectional to ProtocolEndpoint" Direction of data flow to this ProtocolEndpoint,
from a remote system (by default the
connection is bi-directional).

"Unidirectional from ProtocolEndpoint" Direction of data flow from this
ProtocolEndpoint to a remote system (by
default the connection is bi-directional).
794

NO_ANSI_ID Replication Services Profile

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246
26.5.1.2 Method Mapping

Table 515, “Copy Services and Replication Services Methods Mapping” summarizes the method mapping between
Copy Services and Replication Services Profiles. Again, use the Replication Services for extended functionality,
such as Thin Provisioning.

For description of the Copy Services Methods, see 9.5 "Methods of the Profile".

26.6 Client Considerations and Recipes

26.6.1 Creating and Managing Replicas

In general, creating and managing replicas involves the following steps:

• Decide on the SyncType of replica (Mirror, Snapshot, Clone) and Mode (Synchronous, Asynchronous). See
26.1.9 "SyncTypes".

• Locate the hosted instance of ReplicationService. See 26.1.7.

• Locate the instance of ReplicationServiceCapabilities. Utilize its properties and methods to determine the
applicable capabilities offered by the implementation for the desired ReplicationType (includes SyncType and
Mode). See 26.1.8 "Replication Services Capabilities".

• Use the method ReplicationService.GetAvailableTargetElements to locate appropriate target elements.
Depending on the implementation, it is also possible to allow the service to locate target elements. See
26.1.27.

• Verify StoragePools have sufficient free capacity for the target elements. See 26.1.28.

• If necessary, use the ReplicationService’s group manipulation methods to create and populate source and
target groups. See 26.5 "Methods of the Profile".

• Invoke the appropriate extrinsic method of the ReplicationService to create a replica. See 26.5 "Methods of the
Profile".

• Monitor the copy operation’s progress by examining the replication associations properties, or subscribe to the
appropriate indications -- including storage pool low space alert indications. See 26.1.16 "Associations" and
26.1.31 "Indications".

• Invoke the method ReplicationService.ModifyReplicaSynchronization to modify a replica. For example, “split” a
replica from its source element. See 26.5 "Methods of the Profile".

26.7 Registered Name and Version

Replication Services version 1.5.0 (Component Profile)

Table 515 - Copy Services and Replication Services Methods Mapping

Copy Services Method Corresponding Replication Services Method

CreateReplica() CreateElementReplica()

AttachReplica()

ModifySynchronization() ModifyReplicaSynchronization()

ModifyListSynchronization()
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 795

Replication Services Profile NO_ANSI_ID

1247

1248
26.8 CIM Elements

Table 516 describes the CIM elements for Replication Services.

Table 516 - CIM Elements for Replication Services

Element Name Requirement Description

26.8.1 CIM_ConnectivityCollection Conditional Conditional requirement: Required if remote
replication is supported. A
ConnectivityCollection groups together a set
of ProtocolEndpoints of the same 'type' (i.e.,
class) which are able to communicate with
each other. The ProtocolEndpoints are used
by Replication Services.

26.8.2 CIM_ElementCapabilities Mandatory Associates StorageReplicationCapabilities
and ReplicationService.

26.8.3 CIM_GroupSynchronized Conditional Experimental. Conditional requirement:
Required if groups are supported. Associates
source and target groups, or a source element
to a target group.

26.8.4 CIM_HostedAccessPoint
(ForProtocolEndpoint)

Conditional Conditional requirement: Required if remote
replication is supported. Associates
ProtocolEndpoint to the ComputerSystem on
which it is hosted.

26.8.5 CIM_HostedAccessPoint
(ForRemoteServiceAccessPoint)

Conditional Conditional requirement: Required if remote
replication is supported. Associates
RemoteServiceAccessPoint to the
ComputerSystem.

26.8.6 CIM_HostedCollection (Allocated
Resources)

Optional This would associate the AllocatedResources
collection to the top level system for the
Replication Services Profile using Cascading.

26.8.7 CIM_HostedCollection (Between
ComputerSystem and ConnectivityCollection)

Conditional Conditional requirement: Required if remote
replication is supported. Associates the
ConnectivityCollection to the hosting System.

26.8.8 CIM_HostedCollection (Between
ComputerSystem and ReplicationGroup)

Conditional Conditional requirement: Required if groups
are supported. Associates the replication
group to the hosting System.

26.8.9 CIM_HostedCollection (Remote
Resources)

Conditional Conditional requirement: This is required if
SNIA_RemoteResources is modeled. This
would associate the RemoteResources
collection to the top level system for the
Replication Services Profile in support of
Cascading.

26.8.10 CIM_HostedService Mandatory

26.8.11 CIM_MemberOfCollection (Allocated
Resources)

Optional This supports collecting replication
components. This is required to support the
AllocatedResources collection for Cascading.
796

NO_ANSI_ID Replication Services Profile
26.8.12 CIM_MemberOfCollection
(ProtocolEndpoints to ConnectivityCollection)

Conditional Conditional requirement: Required if remote
replication is supported. Associates
ProtocolEndpoints to ConnectivityCollection.

26.8.13 CIM_MemberOfCollection (Remote
Resources)

Optional This supports collecting all Shadow instances
of components that the Replication Service
has available to use. This is optional when
used to support the RemoteResources
collection (the RemoteResources collection is
optional).

26.8.14 CIM_OrderedMemberOfCollection Conditional Conditional requirement: Required if groups
are supported. Associates ReplicationGroup
to storage elements.

26.8.15 CIM_ProtocolEndpoint Conditional Conditional requirement: Required if remote
replication is supported. Special purpose
endpoint that represents connections between
systems.

26.8.16 CIM_RemoteServiceAccessPoint Conditional Conditional requirement: Required if remote
replication is supported. A
ServiceAccessPoint for replication service.

26.8.17 CIM_ReplicaPoolForStorage Optional Associates special storage pool for Snapshots
(delta replicas) to a source element.

26.8.18 CIM_ReplicationEntity Optional Represents a replication entity such as an
entity known by its World Wide Name (WWN).

26.8.19 CIM_ReplicationGroup Conditional Experimental. Conditional requirement:
Required if groups are supported. Represents
a group of elements participating in a
replication activity.

26.8.20 CIM_ReplicationSettingData Optional Experimental. Contains special options for use
by methods of Replication Services.

26.8.21 CIM_SAPAvailableForElement Conditional Conditional requirement: Required if remote
replication is supported. This association
identifies the element that is serviced by the
ServiceAccessPoint.

26.8.22 CIM_ServiceAffectsElement
(Between ReplicationService and
ConnectivityCollection)

Conditional Conditional requirement: Required if remote
replication is supported. Associates
Replication Service to ConnectivityCollection.

26.8.23 CIM_ServiceAffectsElement
(Between ReplicationService and
ReplicationEntity)

Optional Associates Replication Service to
ReplicationEntity.

26.8.24 CIM_ServiceAffectsElement
(Between ReplicationService and
ReplicationGroup)

Conditional Conditional requirement: Required if groups
are supported. Associates Replication Service
to Replication Group.

Table 516 - CIM Elements for Replication Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 797

Replication Services Profile NO_ANSI_ID
26.8.25 CIM_SettingsDefineState (Between
ReplicationGroup and SynchronizationAspect)

Optional Associates a replication group to an instance
of SynchronizationAspect.

26.8.26 CIM_SettingsDefineState (Between
storage object and SynchronizationAspect)

Optional Associates a storage object to an instance of
SynchronizationAspect.

26.8.27 CIM_SharedSecret Conditional Conditional requirement: Required if remote
replication is supported.

26.8.28 CIM_StorageSynchronized Mandatory Experimental. Associates replica target
element to source element. Property
definitions and descriptions are identical to
those for LogicalDisk usage.

26.8.29 CIM_SynchronizationAspect Optional Experimental. Keeps track of the source of a
copy operation, even after
StorageSynchronized is removed. Also keeps
track of point-in-time.

26.8.30 SNIA_AllocatedResources Optional This is a SystemSpecificCollection for
collecting components that are being used by
the Replication Services profile (e.g.,
StorageVolumes, LogicalDisks, etc.) that
supports Cascading.

26.8.31 SNIA_RemoteResources Optional This is a SystemSpecificCollection for
collecting components that may be allocated
by the Replication Services profile (e.g.,
StorageVolume) that supports Cascading.

26.8.32 SNIA_ReplicationService Mandatory Experimental. Base class for Replication
Services. Methods are described in the
Extrinsic Methods clause.

26.8.33 SNIA_ReplicationServiceCapabilities Mandatory Experimental. A set of properties and methods
that describe the capabilities of a replication
services provider.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_StorageSynchronized

Mandatory All instance creation indications for
StorageSynchronized.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_GroupSynchronized

Conditional Conditional requirement: Required if groups
are supported. All instance creation
indications for GroupSynchronized.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_SynchronizationAspect

Optional All instance creation indications for
SynchronizationAspect.

Table 516 - CIM Elements for Replication Services

Element Name Requirement Description
798

NO_ANSI_ID Replication Services Profile
SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_StorageSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-
synchronized')

Conditional Conditional requirement: Required if semi-
fixed indication filters are supported. CQL -
Instance deletion indications for a specific
StorageSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_StorageSynchronized

Optional All instance deletion indications for
StorageSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_GroupSynchronized
AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-group-
synchronized')

Conditional Conditional requirement: Required if groups
and semi-fixed indication filters are supported.
CQL -Instance deletion indications for a
specific GroupSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_GroupSynchronized

Optional All instance deletion indications for
GroupSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_SynchronizationAspect

Optional All instance deletion indications for
SynchronizationAspect.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::C
opyState <>
PreviousInstance.CIM_StorageSynchronized::
CopyState AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-
synchronized')

Conditional Conditional requirement: Required if semi-
fixed indication filters are supported. CQL -
Synchronization state transition for a specific
replica association.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::C
opyState <>
PreviousInstance.CIM_StorageSynchronized::
CopyState

Optional CQL -Synchronization state transition for
replica associations.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::P
rogressStatus <>
PreviousInstance.CIM_StorageSynchronized::
ProgressStatus AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-
synchronized')

Optional CQL -Progress status transition for a specific
replica association.

Table 516 - CIM Elements for Replication Services

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 799

Replication Services Profile NO_ANSI_ID
SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
SNIA_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::P
rogressStatus <>
PreviousInstance.CIM_StorageSynchronized::
ProgressStatus

Optional CQL -Progress status transition for replica
associations.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_GroupSynchronized AND
SourceInstance.CIM_GroupSynchronized::Co
pyState <>
PreviousInstance.CIM_GroupSynchronized::
CopyState AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-group-
synchronized')

Conditional Conditional requirement: Required if groups
and semi-fixed indication filters are supported.
CQL -Synchronization state transition for a
specific replication group association.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_GroupSynchronized AND
SourceInstance.CIM_GroupSynchronized::Co
pyState <>
PreviousInstance.CIM_GroupSynchronized::
CopyState

Optional CQL -Synchronization state transition for
replication group associations.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity = 'SNIA' AND
AlertingManagedElement ISA
SNIA_StorageSynchronized

Optional Be notified when CopyState is set to Broken.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity = 'SNIA' AND
AlertingManagedElement ISA
SNIA_GroupSynchronized

Optional Be notified when CopyState is set to Broken.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity = 'SNIA' AND
AlertingManagedElement ISA
CIM_StoragePool

Optional Remaining pool space either below warning
threshold set for the pool or there is no
remaining space in the pool.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity = 'SNIA' AND
AlertingManagedElement ISA
CIM_ConnectivityCollection

Optional Be notified of changes in
ConnectivityCollections.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity = 'SNIA' AND
AlertingManagedElement ISA
CIM_ProtocolEndpoint

Optional Be notified of changes in ProtocolEndpoints.

Table 516 - CIM Elements for Replication Services

Element Name Requirement Description
800

NO_ANSI_ID Replication Services Profile

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268
26.8.1 CIM_ConnectivityCollection

Collects the ProtocolEndpoints/ServiceAccessPoints used by Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 517 describes class CIM_ConnectivityCollection.

26.8.2 CIM_ElementCapabilities

Associates StorageReplicationCapabilities and ReplicationService.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 518 describes class CIM_ElementCapabilities.

26.8.3 CIM_GroupSynchronized

Experimental. Associates source and target groups, or a source element to a target group.

Created By: Extrinsic: CreateGroupReplica

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsic: ModifyReplicaSynchronization

Requirement: Required if groups are supported.

Table 517 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque.

ElementName Optional User Friendly name.

ConnectivityStatus Mandatory An enumeration describing the current or potential
connectivity between endpoints in this collection. Values:

 2: Connectivity - Up

 3: No Connectivity - Down

4: Partitioned - Partial connectivity.

Table 518 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 801

Replication Services Profile NO_ANSI_ID

1269
 Table 519 describes class CIM_GroupSynchronized.

Table 519 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes

RelationshipName Mandatory A user relevant name for the relationship between the
source and target groups or between a source element and
a target group (i.e. one-to-many).

SyncType Mandatory Type of association between source and target groups.
Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState N Optional Indicates the last requested or desired state for the
association. Values:

 4: Synchronized

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: Failedover

 11: Prepared

 12: Aborted

15: Not Applicable.
802

NO_ANSI_ID Replication Services Profile
CopyState Mandatory State of association between source and target groups, or
source element and target group. Values:

 2: Initialized

 3: UnSynchronized

 4: Synchronized

 5: Broken

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: FailedOver

 11: Prepared

 12: Aborted

 13: Skewed

 14: Mixed

15: Not Applicable.

Table 519 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 803

Replication Services Profile NO_ANSI_ID
ProgressStatus N Optional Status of association between source and target groups.
Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Preparing

 6: Synchronizing

 7: Resyncing

 8: Restoring

 9: Fracturing

 10: Splitting

 11: Failing over

 12: Failing back

 13: Aborting

 14: Mixed

 15: Not Applicable

 16: Suspending

 17: Requires fracture

 18: Requires resync

 19: Requires activate

 20: Pending

21: Detaching.

PercentSynced N Optional Percent of individual elements in the group synched.
Values: 0-100.

ConsistencyEnabled Mandatory Set to true if consistency is enabled.

ConsistencyType Conditional Conditional requirement: Required if group consistency is
enabled. Indicates the consistency type used by the
groups. Values:

2: Sequential Consistency.

Table 519 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes
804

NO_ANSI_ID Replication Services Profile

1270

1271

1272

1273

1274

1275

1276
26.8.4 CIM_HostedAccessPoint (ForProtocolEndpoint)

Associates ProtocolEndpoint to the System on which it is hosted.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 520 describes class CIM_HostedAccessPoint (ForProtocolEndpoint).

ConsistencyState Conditional Conditional requirement: Required if group consistency is
enabled. Indicates the current state of consistency. Values:

 2: Not Applicable

 3: Consistent

4: Inconsistent.

ConsistencyStatus Conditional Conditional requirement: Required if group consistency is
enabled. Indicates the current status of consistency.
Values:

 2: Completed

 3: Consistency-in-progress

 4: Consistency disabled

5: Consistency-error.

WhenEstablished N Optional Specifies when the association was established.

WhenSynchronized N Optional Date and time synchronization of all elements in the group
is achieved.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.

SyncedElement Mandatory

SystemElement Mandatory

Table 520 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEnd-
point)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access points that are hosted on this System.

Table 519 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 805

Replication Services Profile NO_ANSI_ID

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300
26.8.5 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)

Associates RemoteServiceAccessPoint to the ComputerSystem.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 521 describes class CIM_HostedAccessPoint (ForRemoteServiceAccessPoint).

26.8.6 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Replication Services profile, it is used to associate the Allocated Resources to the top level
Computer System of the Replication Services Profile in support of Cascading.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 522 describes class CIM_HostedCollection (Allocated Resources).

26.8.7 CIM_HostedCollection (Between ComputerSystem and ConnectivityCollection)

Associates the ConnectivityCollection to the hosting System.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 521 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteService-
AccessPoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access points that are hosted on this System.

Table 522 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
806

NO_ANSI_ID Replication Services Profile

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319
Table 523 describes class CIM_HostedCollection (Between ComputerSystem and ConnectivityCollection).

26.8.8 CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)

Associates the replication group to the hosting System.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 524 describes class CIM_HostedCollection (Between ComputerSystem and ReplicationGroup).

26.8.9 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Replication Services Profile, it is used to associate the Remote Resources to the top level
Computer System of the Replication Services Profile that supports Cascading.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if SNIA_RemoteResources is modeled.

Table 525 describes class CIM_HostedCollection (Remote Resources).

Table 523 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between Computer-
System and ConnectivityCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 524 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between Computer-
System and ReplicationGroup)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 525 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 807

Replication Services Profile NO_ANSI_ID

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339
26.8.10 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 526 describes class CIM_HostedService.

26.8.11 CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow component instances (in the AllocatedResources
collection).

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 527 describes class CIM_MemberOfCollection (Allocated Resources).

26.8.12 CIM_MemberOfCollection (ProtocolEndpoints to ConnectivityCollection)

Associates ProtocolEndpoints to ConnectivityCollection.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 526 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Replication Service hosted on the System.

Table 527 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated
Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory
808

NO_ANSI_ID Replication Services Profile

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355
Table 528 describes class CIM_MemberOfCollection (ProtocolEndpoints to ConnectivityCollection).

26.8.13 CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow components (in the RemoteResources collection). Each
association (and the RemoteResources collection, itself) is created through external means.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 529 describes class CIM_MemberOfCollection (Remote Resources).

26.8.14 CIM_OrderedMemberOfCollection

Associates ReplicationGroup to storage elements.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsics: DeleteGroup, RemoveMembers

Requirement: Required if groups are supported.

Table 530 describes class CIM_OrderedMemberOfCollection.

Table 528 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints
to ConnectivityCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 529 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote
Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 530 - SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection

Properties Flags Requirement Description & Notes

AssignedSequence Mandatory Indicates relative position of members within a group.

Collection Mandatory

Member Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 809

Replication Services Profile NO_ANSI_ID

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366
26.8.15 CIM_ProtocolEndpoint

Special purpose endpoint that represents connections between systems.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 531 describes class CIM_ProtocolEndpoint.

26.8.16 CIM_RemoteServiceAccessPoint

Created By: Extrinsic: Static

Modified By: Static

Deleted By: Static

Table 531 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Value always reflects protocol type. Values:

 1: Other

 6: Ethernet CSMA/CD

 7: ISO 802.3 CSMA/CD

 8: ISO 802.4 Token Bus

 15: FDDI

 56: Fibre Channel

 117: Gigabit Ethernet

 4096: IPv4

 4097: IPv6

 4098: IPv4/IPv6

4111: TCP.

OtherTypeDescriptio
n

N Optional String identifying the Other connection protocol.

OperationalStatus Mandatory An array containing the operational status of protocol end
point.
810

NO_ANSI_ID Replication Services Profile

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381
Requirement: Required if remote replication is supported.

Table 532 describes class CIM_RemoteServiceAccessPoint.

26.8.17 CIM_ReplicaPoolForStorage

Associates special storage pool for Snapshots (delta replicas) to a source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 533 describes class CIM_ReplicaPoolForStorage.

26.8.18 CIM_ReplicationEntity

Represents a replication entity such as an entity known by its World Wide Name (WWN).

Created By: Extrinsic: AddReplicationEntity

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 532 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

ElementName Optional User Friendly name.

AccessInfo Mandatory Access or addressing information or a combination of this
information for a remote connection. This information can
be a host name, network address, or similar information.

InfoFormat Mandatory The format of the Management Address (i.e. AccessInfo).
For example: "Host Name", "IPv4 Address", "IPv6
Address", "URL". See MOF for the complete list and
values.

Table 533 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 811

Replication Services Profile NO_ANSI_ID

1382

1383

1384

1385

1386

1387

1388
Table 534 describes class CIM_ReplicationEntity.

26.8.19 CIM_ReplicationGroup

Experimental. Represents a group of elements participating in a replication activity.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 534 - SMI Referenced Properties/Methods for CIM_ReplicationEntity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

Type Mandatory Indicates how to interpret the information appearing in
EntityID. Values:

 2: StoragePool

 3: StorageExtent

 4: StorageVolume

 5: LogicalDisk

 6: Filesystem

 7: WWN

 8: URI

 9: Objectpath

10: Encoded in EntityID.

EntityID Mandatory An ID representing the resource identified by this entity. For
example, the WWN or the URI of an element. The property
Type is to be used to interpret the ID.

OtherTypeDescriptio
n

N Optional Populated when Type has the value of Other.

Persistent MN Optional If false, the instance of this object, not the element
represented by this entity, may be deleted at the completion
of a copy operation.
812

NO_ANSI_ID Replication Services Profile

1389

1390

1391

1392

1393

1394

1395

1396
Table 535 describes class CIM_ReplicationGroup.

26.8.20 CIM_ReplicationSettingData

Experimental. Contains special options for use by methods of Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 536 describes class CIM_ReplicationSettingData.

Table 535 - SMI Referenced Properties/Methods for CIM_ReplicationGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and
uniquely identifies an instance of this class.

Persistent MN Optional If false, the group, not the elements associated with the
group, may be deleted at the completion of a copy
operation.

DeleteOnEmptyElem
ent

M Mandatory If true and empty groups are allowed, the group will be
deleted when the last element is removed from the group. If
empty groups are not allowed, the group will be deleted
automatically when the group becomes empty.

DeleteOnUnassociat
ed

M Mandatory If true, the group will be deleted when the group is no
longer associated with another group. This can happen if all
synchronization associations to the individual elements of
the group are dissolved.

Table 536 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

Pairing MN Optional Controls how source and target elements are paired.
Values:

 2: Instrumentation decides

 3: Exact order

4: Optimum (If possible source and target elements on
different adapters).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 813

Replication Services Profile NO_ANSI_ID
UnequalGroupsActio
n

MN Optional Indicates what should happen if number of elements in
source and target are unequal. Values:

 2: Return an error

 3: Allow larger source group

4: Allow larger target group.

DesiredCopyMethod
ology

MN Optional Request specific copy methodology. Values:

 1: Other

 2: Instrumentation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

 8: Delta-Update

9: Snap-And-Clone.

TargetElementSuppli
er

MN Optional If target elements are not supplied, this property indicates
where the target elements should come from. Values:

 1: Use existing elements

 2: Create new elements

 3: Use existing or Create new elements

4: Instrumentation decides.

ThinProvisioningPolic
y

MN Optional If the target element is not supplied, this property specifies
the provisioning of the target element. Values:

 2: Copy thin source to thin target

 3: Copy thin source to full target

 4: Copy full source to thin target

 5: Provisioning of target same as source

 6: Target pool decides provisioning of target element

7: Implementation decides provisioning of target.

ConsistentPointInTim
e

MN Optional If it is true, it means the point-in-time to be created at an
exact time with no I/O activities in such a way the data is
consistent among all the elements or the group.

Table 536 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes
814

NO_ANSI_ID Replication Services Profile

1397

1398

1399

1400

1401

1402

1403

1404

1405
26.8.21 CIM_SAPAvailableForElement

This association identifies the element that is serviced by the ProtocolEndpoint.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 537 describes class CIM_SAPAvailableForElement.

26.8.22 CIM_ServiceAffectsElement (Between ReplicationService and ConnectivityCollection)

Associates Replication Service to ConnectivityCollection.

DeltaUpdateInterval MN Optional If non-zero, it specifies the interval between the snapshots
of source element, for example, every 23 minutes
(00000000002300.000000:000). If zero or NULL, the
implementation decides.

Multihop MN Optional This property applies to multihop copy operation. It
specifies the number of hops the starting source (or group)
element is expected to be copied. Default is 1.

OnGroupOrListError MN Optional This property applies to group or list operations. It specifies
what the implementation should do if an error is
encountered before all entries in the group or list are
processed. Default is to Stop.

 2: Continue

3: Stop.

CopyPriority MN Optional This property sets the StorageSynchronized.CopyPriority
property. CopyPriority allows the priority of background
copy operation to be managed relative to host I/O
operations during a sequential background copy operation.

 0: Not Managed

 1: Low

 2: Same (as host I/O)

3: High.

Table 537 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element.

AvailableSAP Mandatory The servicing protocol end point.

Table 536 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 815

Replication Services Profile NO_ANSI_ID

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 538 describes class CIM_ServiceAffectsElement (Between ReplicationService and ConnectivityCollection).

26.8.23 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)

Associates Replication Service to ReplicationEntity.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 539 describes class CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity).

26.8.24 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)

Associates Replication Service to Replication Group.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 538 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between Repli-
cationService and ConnectivityCollection)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Connectivity Collection.

Table 539 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between Repli-
cationService and ReplicationEntity)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Replication Entity.
816

NO_ANSI_ID Replication Services Profile

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439
Table 540 describes class CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup).

26.8.25 CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)

Associates a replication group to an instance of SynchronizationAspect.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 541 describes class CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect).

26.8.26 CIM_SettingsDefineState (Between storage object and SynchronizationAspect)

Associates a storage object to an instance of SynchronizationAspect.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 542 describes class CIM_SettingsDefineState (Between storage object and SynchronizationAspect).

26.8.27 CIM_SharedSecret

Table 540 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between Repli-
cationService and ReplicationGroup)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Replication Group.

Table 541 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between Replica-
tionGroup and SynchronizationAspect)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

Table 542 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage
object and SynchronizationAspect)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 817

Replication Services Profile NO_ANSI_ID

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451
Created By: Extrinsic: AddSharedSecret

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 543 describes class CIM_SharedSecret.

26.8.28 CIM_StorageSynchronized

Experimental. Associates replica target element to source element.

Created By: Extrinsics: CreateElementReplica, CreateGroupReplica, CreateListReplica

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsic: ModifyReplicaSynchronization

Requirement: Mandatory

Table 544 describes class CIM_StorageSynchronized.

Table 543 - SMI Referenced Properties/Methods for CIM_SharedSecret

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

ServiceCreationClas
sName

Mandatory Key.

ServiceName Mandatory Key.

RemoteID Mandatory Key, The identity of the client as known on the remote
system.

Secret Mandatory A secret.

Table 544 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

WhenSynced N Optional Date and time synchronization of the elements is achieved.

WhenEstablished N Optional Specifies when the association was established.

WhenSynchronized N Optional Specifies when the CopyState has a value of Synchronized.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.

SyncMaintained Mandatory Boolean indicating whether synchronization is maintained.
818

NO_ANSI_ID Replication Services Profile
SyncType Mandatory Type of association between source and target groups.
Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState Optional Indicates the last requested or desired state for the
association. Values:

 4: Synchronized

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: Failedover

 11: Prepared

 12: Aborted

15: Not Applicable.

ReplicaType Optional

Table 544 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 819

Replication Services Profile NO_ANSI_ID
CopyState Mandatory State of association between source and target groups.
Values:

 2: Initialized

 3: Unsynchronized

 4: Synchronized

 5: Broken

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: FailedOver

 11: Prepared

 12: Aborted

 13: Skewed

 14: Mixed

15: Not Applicable.

Table 544 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes
820

NO_ANSI_ID Replication Services Profile
ProgressStatus N Optional Status of association between source and target groups.
Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Preparing

 6: Synchronizing

 7: Resyncing

 8: Restoring

 9: Fracturing

 10: Splitting

 11: Failing over

 12: Failing back

 13: Aborting

 14: Mixed

 15: Not Applicable

 16: Suspending

 17: Requires fracture

 18: Requires resync

 19: Requires activate

 20: Pending

21: Detaching.

PercentSynced N Optional Specifies the percent of the work completed to reach
synchronization. For synchronized associations (e.g.
SyncType Mirror), while fractured, the percent difference
between source and target elements can derived by
subtracting PercentSynched from 100.

CopyPriority MN Optional CopyPriority allows the priority of background copy engine
I/O to be managed relative to host I/O operations during a
sequential background copy operation. Values:

 0: Not Managed

 1: Low

 2: Same (as host I/O)

3: High.

Table 544 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 821

Replication Services Profile NO_ANSI_ID

1452

1453

1454

1455

1456

1457

1458
26.8.29 CIM_SynchronizationAspect

Experimental. Keeps track of source of a copy operation and point-in-time.

Created By: Extrinsics: CreateElementReplica, CreateListReplica, CreateSynchronizationAspect

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifyReplicaSynchronization, ModifySettingsDefineState

Requirement: Optional

Table 545 describes class CIM_SynchronizationAspect.

UndiscoveredElemen
t

N Optional Specifies whether the source, the target, or both elements
involved in a copy operation are undiscovered. If NULL
both source and target elements are considered
discovered. Values:

 2: SystemElement

 3: SyncedElement

4: Both.

SyncedElement Mandatory

SystemElement Mandatory

Table 545 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes

InstanceID Mandatory

SyncType Mandatory Type of association between source and target elements.
Values:

 6: Mirror

 7: Snapshot

8: Clone.

ConsistencyEnabled Conditional Conditional requirement: Required if groups are supported.
Set to true if consistency is enabled.

ElementName Mandatory An end user relevant name. The value will be stored in the
ElementName property of the created
SynchronizationAspect.

ConsistencyType Conditional Conditional requirement: Required if group consistency is
enabled. Indicates the consistency type used by the
groups. Values:

2: Sequential Consistency.

Table 544 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes
822

NO_ANSI_ID Replication Services Profile

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468
26.8.30 SNIA_AllocatedResources

An instance of a default SNIA_AllocatedResources defines the set of components that are allocated and in use by
the Replication Services Profile.

SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the SNIA_AllocatedResources shall exist for the Replication Services Profile and shall be
hosted by one of its ComputerSystems (typically the top level ComputerSystem.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

CopyStatus N Optional Describes the status of copy operation. Values:

 2: Not Applicable

 3: Operation In Progress

4: Operation Completed.

CopyMethodology N Optional Indicates the copy methodology utilized for copying.
Values:

 2: Implementation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

 8: Delta-Update

9: Snap-And-Clone.

WhenPointInTime N Optional Specifies when point-in-time was created.

SourceElement Mandatory Reference to the source element or the source group of a
copy operation and/or a point-in-time.

Table 545 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 823

Replication Services Profile NO_ANSI_ID

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480
Table 546 describes class SNIA_AllocatedResources.

26.8.31 SNIA_RemoteResources

An instance of a default SNIA_RemoteResources defines the set of shadow components that are available to be
used by the Replication Services Profile that supports Cascading.

SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the SNIA_RemoteResources would exist and shall be hosted by the top level ComputerSystems
of the Replication Services Profile that supports Cascading.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 547 describes class SNIA_RemoteResources.

Table 546 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection
(e.g., Allocated StorageVolumes).

ElementType Mandatory The type of remote resources collected by the
AllocatedResources collection.

For this version of SMI-S, the only value supported is '2'
(Any Type).

CollectionDiscriminat
or

Mandatory Experimental. This is an array of values that shall contain
one or more values from the list: 'SNIA:Target Volumes',
'SNIA:Source Volumes', 'SNIA:Target Volume Group',
'SNIA:Source Volume Group'.

Table 547 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection
(e.g., Remote StorageVolumes).

ElementType Mandatory The type of remote resources collected by the
RemoteResources collection. This shall be '2' (Any Type).

CollectionDiscriminat
or

Mandatory Experimental. This is an array of values that shall contain
one or more values from the list: 'SNIA:Target Volumes',
'SNIA:Source Volumes', 'SNIA:Target Volume Group',
'SNIA:Source Volume Group', 'SNIA:Remote Storage
Pools'.
824

NO_ANSI_ID Replication Services Profile

1481

1482

1483

1484

1485

1486

1487
26.8.32 SNIA_ReplicationService

Experimental. Base class for Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 548 describes class SNIA_ReplicationService.

Table 548 - SMI Referenced Properties/Methods for SNIA_ReplicationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

CreateElementReplic
a()

Mandatory

CreateGroupReplica(
)

Conditional Conditional requirement: Required if groups are supported.

CreateListReplica() Optional

CreateSynchronizatio
nAspect()

Optional

ModifyReplicaSynchr
onization()

Mandatory

ModifyListSynchroniz
ation()

Optional

ModifySettingsDefine
State()

Optional

CreateGroup() Conditional Conditional requirement: Required if groups are supported.

DeleteGroup() Conditional Conditional requirement: Required if groups are supported.

AddMembers() Conditional Conditional requirement: Required if groups are supported.

RemoveMembers() Conditional Conditional requirement: Required if groups are supported.

GetAvailableTargetEl
ements()

Optional

GetPeerSystems() Optional

GetReplicationRelati
onships()

Optional
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 825

Replication Services Profile NO_ANSI_ID

1488

1489

1490

1491

1492

1493

1494
26.8.33 SNIA_ReplicationServiceCapabilities

Experimental. This class defines all of the capability properties for the replication services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 549 describes class SNIA_ReplicationServiceCapabilities.

GetServiceAccessPo
ints()

Optional

AddReplicationEntity(
)

Optional

AddServiceAccessPo
int()

Optional

AddSharedSecret() Optional

Table 549 - SMI Referenced Properties/Methods for SNIA_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

SupportedReplication
Types

Mandatory Enumeration indicating the supported SyncType/Mode/
Local-or-Remote combinations. Values:

 2: Synchronous Mirror Local

 3: Asynchronous Mirror Local

 4: Synchronous Mirror Remote

 5: Asynchronous Mirror Remote

 6: Synchronous Snapshot Local

 7: Asynchronous Snapshot Local

 8: Synchronous Snapshot Remote

 9: Asynchronous Snapshot Remote

 10: Synchronous Clone Local

 11: Asynchronous Clone Local

 12: Synchronous Clone Remote

13: Asynchronous Clone Remote.

Table 548 - SMI Referenced Properties/Methods for SNIA_ReplicationService

Properties Flags Requirement Description & Notes
826

NO_ANSI_ID Replication Services Profile
SupportedStorageOb
jects

Mandatory Enumeration indicating the supported storage objects.
Values:

 2: StorageVolume

3: LogicalDisk.

SupportedAsynchron
ousActions

Mandatory Identify replication methods using job control. Values:

 2: CreateElementReplica

 3: CreateGroupReplica

 4: CreateSynchronizationAspect

 5: ModifyReplicaSynchronization

 6: ModifyListSynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

 9: GetPeerSystems

 10: GetReplicationRelationships

 11: GetServiceAccessPoints

19: CreateListReplica.

Table 549 - SMI Referenced Properties/Methods for SNIA_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 827

Replication Services Profile NO_ANSI_ID
SupportedSynchrono
usActions

Mandatory Identify replication methods not using job control. Values:

 2: CreateElementReplica

 3: CreateGroupReplica

 4: CreateSynchronizationAspect

 5: ModifyReplicaSynchronization

 6: ModifyListSynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

 9: GetPeerSystems

 10: GetReplicationRelationships

 11: GetServiceAccessPoints

 12: CreateGroup

 13: DeleteGroup

 14: AddMembers

 15: RemoveMembers

 16: AddReplicationEntity

 17: AddServiceAccessPoint

 18: AddSharedSecret

19: CreateListReplica.

ConvertSyncTypeTo
ReplicationType()

Mandatory

ConvertReplicationTy
peToSyncType()

Mandatory

GetSupportedCopySt
ates()

Mandatory

GetSupportedGroup
CopyStates()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedWaitFo
rCopyStates()

Optional

GetSupportedFeatur
es()

Mandatory

GetSupportedGroup
Features()

Conditional Conditional requirement: Required if groups are supported.

Table 549 - SMI Referenced Properties/Methods for SNIA_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
828

NO_ANSI_ID Replication Services Profile
EXPERIMENTAL

GetSupportedConsist
ency()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedOperati
ons()

Mandatory

GetSupportedGroup
Operations()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedListOp
erations()

Optional

GetSupportedSetting
sDefineStateOperatio
ns()

Optional

GetSupportedThinPr
ovisioningFeatures()

Optional

GetSupportedMaxim
um()

Optional

GetDefaultConsisten
cy()

Conditional Conditional requirement: Required if groups are supported.

GetDefaultGroupPer
sistency()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedReplica
tionSettingData()

Optional

GetDefaultReplicatio
nSettingData()

Optional

GetSupportedConne
ctionFeatures()

Optional

Table 549 - SMI Referenced Properties/Methods for SNIA_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 829

Replication Services Profile NO_ANSI_ID
830

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
EXPERIMENTAL

Clause 27: Thin Provisioning Profile

27.1 Description

27.1.1 Background

Thin provisioning is a capability of some block server implementations to defer provisioning of backing store for
regions of a volume until the regions have been accessed (written) by the consumer (e.g., host file system). The
alternatives (fully provisioned volumes) allocate all of the requested capacity from the backing store at the time the
volume is created. For thin provisioned volumes, the block server implementation tracks information about which
regions have been accessed, and once a region is accessed, the backing storage is allocated.

There are various approaches to implementing thin provisioning; some vendors pattern thin provisioning logic after
OS virtual memory or journaled file systems, and there are numerous variations. This profile does not address
techniques or algorithms for thin provisioning; these details are left to innovation of the vendors delivering thin
provisioning solutions. This profile provides a common abstraction for the management features of thin
provisioning. In particular, this profile allows SMI-S clients to determine whether a storage system (and children
such as pools, and volumes) supports thin provisioning, determine the difference between the exposed “virtual
capacity” and actual, committed physical storage, and create thinly provisioned volumes and pools.

27.1.2 Model

No new classes are defined by this profile; it extends the classes of Block Services.

Throughout this profile, volume refers to either StorageVolume or LogicalDisk, which are the two types of elements
exported from the Block Services Profile. Pool children refers to the three types of elements (StorageVolume,
LogicalDisk, and StoragePool) that may be carved from a pool.

27.1.2.1 Capacity Concepts for Volumes

Each storage volume has a nominal capacity value, the capacity seen by users and applications (such as file
systems). This capacity is also reported through in-band interfaces such as SCSI READ CAPACITY. Applications
cannot write more than this capacity at a given time. When fully provisioned volumes are created, the nominal
capacity is allocated by the block server. When thin provisioned volumes are created, a smaller value (referred to
here as the initial reserve capacity) is allocated (this value may be zero).

Capacity consumed is the capacity the application is actually using at a give time (the block server may have
rounded this up to a multiple of some internal granule size). For thin provisioned volumes, the capacity consumed
on the backend storage may be smaller than the nominal capacity. The capacity consumed grows from the initial
reserve capacity as the application (such as a file system) writes new areas of the volume. In theory, the capacity
consumed could grow to equal (or exceed when metadata is considered) the nominal capacity.

The nominal capacity is represented in the model by the ConsumableBlocks property of volumes. Capacity
consumed is modeled by the SpaceConsumed property of the AllocatedFromStoragePool association referencing
the volume. Initial reserve capacity is modeled as a percentage of the nominal capacity using the DeltaReservation
property of StorageSettings. In some block servers, the smaller capacity is a characteristic of a StoragePool and is
represented by the SpaceConsumed on the AllocatedFromStoragePool association between the StorageVolume or
LogicalDisk and StoragePool.

Note that these concepts and properties also apply to delta replicas as defined in Clause 9: Copy Services
Subprofile and Clause 26: Replication Services Profile.
SMI-S 1.5.0 Revision 6 SNIA Technical Position 831

Thin Provisioning Profile NO_ANSI_ID

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
27.1.2.2 Capacity Concepts for Pools

Block Servers supporting thin provisioned volumes have different approaches to modeling capacity in pools. This
profile supports three approaches:

• The first approach is used when a pool supports thin provisioned children, but the “advertised” capacity of the
pool matches the actual capacity of its underlying storage. In this case, the block server follows the provisions
in Clause 5: Block Services Package.

• The second approach is used when a pool supports thin provisioned children and has a defined capacity to
which its children can grow, but this capacity is greater than the capacity of underlying storage.

• The third approach is when the block server does not assign a maximum capacity to the pool.

The model supporting these three approaches is documented in 27.1.2.3.1 Pool Capacity.

Note that primordial StoragePools cannot be thinly provisioned, but can support allocation of thinly provisioned
concrete pools.

27.1.2.3 Overview

Figure 139. presents the classes related to this profile; properties mentioned in this profile are highlighted in red.

StorageConfigurationCapabilities.SupportedStorageElementTypes shall include a subset of
ThinlyProvisionedStorageVolume, ThinlyProvisionedLogicalDisk, ThinlyProvisionedAllocatedStoragePool,
ThinlyProvisionedQuotaStoragePool, or ThinlyProvisionedLimitlessStoragePool to indicate support for allocation of
thinly provisioned StorageVolumes, LogicalDisks, or StoragePools. The three values related to pools allow the
block server to advertise which types of pool capacity approaches are available for child pools. The meaning of
Allocated, Quota and Limitless pools is expanded in 27.1.2.2 Capacity Concepts for Pools. Similar values are used
in ElementType parameters of methods to specify which approach, the client prefers when creating new children.
Note that as defined in the Block Services Package, StorageConfigurationCapabilities associated to
StorageConfigurationService defines global block server capabilities; other instances of
StorageConfigurationCapabilities may optionally be associated to StoragePool to provide pool-specific overrides.

The SpaceLimitDetermination property of StoragePool defines the approach associated with the pool for
determining capacity information for the pool. See 27.1.2.3.1 Pool Capacity. The SpaceLimitDetermination
property is undefined if the Thin Provisioning Profile is not supported. SpaceLimitDetermination shall be present on
any StoragePool instance that supports thin provisioning and SpaceLimitDetermination is not Allocated.

Figure 139 - Thin Provisioning

StorageVolum e

C onsum ableB locks
Th in lyP rov is ioned = true

S torageP ool

P rim ordia l = Fa lse
R em ain ingM anagedS pace
Tota lM anagedS pace
SpaceLim it
SpaceLim itD eterm ination

A llocatedF rom StorageP ool

SpaceC onsum ed

S N IA _S torageC onfigura tionC apabilities
(capab ilities o f poo l)

SupportedS torageE lem entTypes
ThinProv is ionedC lien tSettab leR eserve
ThjinP rov is ionedD efau ltR eserve

E lem entC apabilities

S N IA _S torageS etting (goa l fo r
creating pools)

Th inP rovis ionedPoolType

S torageC onfigura tionS erv ice

S N IA _S torageC onfigura tionC apabilities
(capabilities o f the b lock server)

S upportedS torageE lem entTypes
ThinP rovis ionedC lientSettab leR eserve
ThinP rovis ionedD efau ltR eserve

E lem entC apabilities

S N IA _S torageS etting (fo r
vo lum es))

ThinProvis ionedIn itia lR eserve

E lem entSettingD ata
832

NO_ANSI_ID Thin Provisioning Profile

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110
The SpaceLimit property of StoragePool is the capacity of the storage allocated to the pool when
Spacelimitdetermination has the value 3 (Quota) or 4 (Limitless) or is set to the value of TotalManagedSpace if
SpaceLimitDetermination has the value 2 (Allocated). The value of SpaceLimit may be modified by a client using
CreateOrModifyStoragePool. The upper bounds returned from GetAvailableSizes and GetAvailableSizeRanges
should be approximately the same as SpaceLimit. See 27.1.2.3.1 Pool Capacity. The SpaceLimit property is not
defined if the Thin Provisioning Profile is not supported.

The ThinProvisionMetaDataSpace property of StoragePool is the size of the pool’s metadata (in bytes). Unlike fully-
provisioned pools, this value cannot be determined by subtracting the sum of SpaceConsumed of child elements
from TotalManagedSpace. The ThinProvisionMetaDataSpace property is undefined if the Thin Provisioning Profile
is not supported.

If the ThinlyProvisioned property of StorageVolume or LogicalDisk is “true”, then the block server shall support thin
provisioning for the StorageVolume or LogicalDisk. If ThinlyProvisioned is undefined or the value is null, the
StorageVolume or LogicalDisk shall not be thin provisioned. The ThinlyProvisioned property is undefined if the Thin
Provisioning Profile is not supported.

27.1.2.3.1 Pool Capacity

StoragePool.SpaceLimitDetermination indicates which of three approaches apply to determining the capacity
related properties of the associated StoragePool.

In all cases, StoragePool.TotalManagedSpace represents the sum of the usable capacity from underlying
(imported) StorageExtents. The StorageExtents may or may not be modeled and the usable capacity may have
been reduced due to redundancy or metadata. In all cases, RemainingManagedSpace shall be set to SpaceLimit
minus the sum of SpaceConsumed on AllocatedFromStoragePool associations to all pool children.

This profile supports three techniques for determining the space available for creating or expanding child elements.

• If StoragePool.SpaceLimitDetermination.SpaceLimitDetermination is set to 2 (Allocated), TotalManagedSpace
is also the capacity that may be used to create or expand pool children (StorageVolumes, LogicalDisks, or
other StoragePools). And StoragePool.RemamingManagedSpace represents the capacity left to create a new
storage element or expand an existing storage element. This approach is common to fully provisioned pools.
The SpaceLimit property should be set to the same value as TotalManagedSpace.

• If StoragePool.SpaceLimitDetermination is set to 3 (Quota), StoragePool.SpaceLimit serves as an
administratively defined limit on the capacity that may be used to create or expand child elements
(StorageVolumes, LogicalDisks, or other StoragePools).

• If StoragePool.SpaceLimitDetermination is set to 4 (Limitless), then the block server does not have a defined
limit on the capacity for creating or expanding children. Clients that support thin provisioning should not use
SpaceLimit when SpaceLimitDetermination is set to 4 (Limitless). But for compatibility with clients that do not
support this profile, the instrumentation should use a heuristic to set SpaceLimit (and to values returned from
GetAvailableSizes and GetAvailableSizeRanges) to a reasonable value. One possible heuristic is to set
SpaceLimit to the value of the largest volume supported by the implementation (e.g., 2 terabytes if the
implementation does not support SCSI sixteen byte CDBs).

If SpaceLimitDetermination is null or undefined, clients should treat the pools as if SpaceLimitDetermination was 2
(Allocated).

27.1.2.3.2 Relationship to Volumes on Files Profile

Not defined in this standard.

27.1.2.3.3 Relationship to Pools On Volumes

Not defined in this standard.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 833

Thin Provisioning Profile NO_ANSI_ID

111

112

113

114

115
116

117

118

119

120

121
122

123

124

125

126
127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146
27.1.2.4 Indications

27.1.2.4.1 Capacity Warning

This is an alert message indicating that the actual capacity of a volume or pool is nearing a limit (e.g., actual usage
of containing pool is nearing SpaceLimit). The related standard message is

Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity in
use nearing available limit.

27.1.2.4.2 Capacity Critical

This is an alert message indicating that the actual capacity of a volume or pool has reached a limit (e.g., actual
usage of containing pool is equal to SpaceLimit). Write commands from hosts to the volume or pool are failing. The
related standard message is

Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity in
use exceeded available limit.

27.1.2.4.3 Capacity Okay

This is an alert message indicating that the actual capacity of a volume or pool is no longer in a capacity warning or
critical state. The related standard message is

Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity
condition cleared.

27.2 Health and Fault Management Consideration

Not defined in this standard.

27.3 Cascading Considerations

Not defined in this standard.

27.4 Supported Profiles, Subprofiles, and Packages

This profile requires and extends the Block Services Package.

The combination of the Thin Provisioning and Extent Composition Profiles is not defined in this version of the
standard.

27.5 Methods of the Profile

This profile uses the same methods as Block Services, but requires use of certain properties in the StorageSetting
instances used as goal parameters in the methods.

When a client invokes GetSupportedSizes() or GetSupportedSizeRanges() with ElementType set to 5 (Thin
Provisioned Volume) or 6 (Thin Provisioning Logical Disk), the instrumentation shall return size information relative
to the value of SpaceLimitDetermination for the related pools.

• For pools with SpaceLimitDetermination of 2 (Allocated), the instrumentation shall return sizes using the same
approach for fully provisioned volumes as described in Clause 5: Block Services Package.

• For pools with SpaceLimitDetermination set to 3 (Quota) or 4 (Limitless), the sizes returned should not exceed
the value of SpaceLimit for pools supporting thin provisioning.

See 27.6 Client Considerations and Recipes for more information about using other methods.
834

NO_ANSI_ID Thin Provisioning Profile

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185
27.6 Client Considerations and Recipes

27.6.1 Create a Pool from a Parent Pool

Creating a thin provisioned pool follows the same approach as creating fully provisioned pool with the changes in
step 1 below. Assume the client wishes to create a pool using the Allocated approach to space determination

1) find a parent pool associated to a StorageConfigurationCapabilities instance where SupportedStorageEle-
mentTypes incudes ThinlyProvisionedAllocatedStoragePool

2) create a (or locate an existing usable) StorageSetting instance

3) Call CreateOrModifyStoragePool

• the StorageSetting as the Goal Parameter

• the appropriate parent pool as the PoolToDrawFrom,

• the size parameter is set to the client’s requested size

• ElementType is ThinlyProvisionedAllocatedStoragePool

Note: If the client sets SpaceLimitDetermination to Quota, the Size parameter becomes the value of SpaceLimit in
the created pool.

// DESCRIPTION

// The goal of this recipe is to create a thin provisioned pool

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.#PoolSize is set to the size for the new Storage Pool in bytes

// 3.#StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 4. #ElementType is set to the element to created:

// ThinlyProvisionedAllocatedStoragePool

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Configuration is not supported.>
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 835

Thin Provisioning Profile NO_ANSI_ID

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225
 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// associated with the system

$StorageConfigurationService-> = $Services->[0]

// See if the service supports thin provisioned pool creation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageConfigurationService->,

“CIM_ElementCapabilities”,

“SNIA_StorageConfigurationCapabilities”,

null, null, false, false, null)

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Creation of thin provisioned pools not supported>

}

if (contains(2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 || contains(2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #SupportsPoolCreation = true

}

if (contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[]))

{

 #PoolCreationProducesJob = true

}

if (contains(3, // 3? = ThinlyProvisionedAllocatedStoragePool

$ServiceCapabilities[0].SupportedStorageElementTypes[]))

{

 #SupportsThinPoolCreation = true

}

836

NO_ANSI_ID Thin Provisioning Profile

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267
// Return if thin provisioned pools cannot be created

if ((#SupportesPoolCreation == false) &&

 (#SupportsThinPoolCreation == false)) {

 <ERROR! Creation of thin provisioned pools not supported>

}

$StorageCapabilitiesOffered = $ServiceCapabilities[0]

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find

// a StoragePool from which thin provisioned storage pools might be created.

$PoolToDrawFrom-> = null

// Find the associated StoragePools

$StoragePools[] = Associators(

$BlockServer->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, null,false, false, null)

for #i in $StoragePools[]

{

 // Step 3. For each StoragePool, follow the CIM_ElementCapabilities

 // asociation to the StorageCapabilities of that pool. Compare the

 // StorageCapabilities to the desired StorageSetting and find the

 // best match.

// See if this pool has its own StorageConfigurationCapabilities.

$PoolServiceCapabilities[] = Associators(

$StoragePools[#i].getObjectPath(),

“CIM_ElementCapabilities”,

“SNIA_StorageConfigurationCapabilities”,

 null, null, false, false, null)

 if($PoolServiceCapabilities[] != null) {

 // see if there is a capability for this pool to create the proper pool

 for #c in $PoolServiceCapabilities[]

 {

 if (contains(2, // Storage Pool Creation

 $PoolServiceCapabilities[#c].SupportedSynchronousActions[])

 || contains(2, // Storage Pool Creation

 $PoolServiceCapabilities[#c].SupportedAsynchronousActions[]))

 {

 #Pool_SupportsPoolCreation = true

 }

 if (contains(2, // Storage Pool Creation

 $PoolServiceCapabilities[#c].SupportedAsyncronousActions[]))

 {
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 837

Thin Provisioning Profile NO_ANSI_ID

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306
 #Pool_PoolCreationProducesJob = true

 }

 #Pool_SupportsThinPoolCreation = contains(

 3, // 3? = ThinlyProvisionedAllocatedStoragePool

 $PoolServiceCapabilities[0].SupportedStorageElementTypes[])

 if (#Pool_SupportsPoolCreation == true &&

 #Pool_SupportsThinPoolCreation == true) {

 #SupportsPoolCreation = true

 #SupportsThinPoolCreation = true

 $StorageCapabilitiesOffered = $PoolServiceCapabilities[#c]

 break;

 }

 }

 } // end of if($PoolServiceCapabilities[] != null)

if($StorageCapabilitiesOffered != null){

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

 // Step 4. Determine if the selected pool has enough space for

 //another pool.

 //If the block server supports hints, then the Storage Setting returned

 //will contain default hints

// Create a setting

%InArguments[“SettingType”] = 3 // Goal

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

if ((#ReturnValue != 0) || (%OutArguments[“NewSetting”] == null))

{

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

// Determine the possible size, closest to the requested size

#PossibleSize = &Block_Services_PoolSizeAvailable(

$PoolToDrawFrom->,

$GeneratedStorageSetting->,

#RequestedSize,

#ElementType)
838

NO_ANSI_ID Thin Provisioning Profile

307

308

309

310

311

312

313

314

315

316

317

318

319

320
321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349
if(0 != #PossibleSize) // we found a size close to #RequestedSize

{

break;

}

else

{

 // Causes an error to be returned if there are no more candidate Pools

$PoolToDrawFrom-> = NULL;

}

}

} // for

if ($PoolToDrawFrom-> == NULL)

{

<ERROR! Unable to find a suitable pool from which to create the storage
element >

}

// Step 5. Register for indications on configuration jobs

if(#PoolCreationProducesJob == true)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 6. Create the Storage Pool

%InArguments[“ElementName”] = NULL// we do not care what the name is

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

%InArguments[“InExtents”] = null

%InArguments[“Pool”] = null

%InArguments[“InPools”] = $PoolToDrawFrom->

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 839

Thin Provisioning Profile NO_ANSI_ID

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385
“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // Storage Pool was not created

<ERROR! Failed >

}

if(#PoolCreationProducesJob == true && $PoolCreationJob-> != null)

{

 $PoolCreationJob-> = %OutArguments[“Job”]

//Wait until the completion of the job

 // using $PoolCreationJob-> as a filter

 // Wait for indication from either filters defined in step 5

// If the indication states the Job is ‘Complete’ and ‘Error’

// then exit with error: ERROR! Job did not complete successfully

}

else {

 $PoolToDrawFrom-> = %OutArguments[“Pool”]

}

// Use the new pool

27.6.2 Create a Pool from Extents

This recipe is similar to the above except it uses CreateOrModifyElementFromElement.

ElementType is ThinlyProvisionedAllocatedStoragePool, ThinlyProvisionedQuotaStoragePool, and
ThinlyProvisionedLimitlessStoragePool.

The size parameter is ignored if ElementType is ThinlyProvisionedAllocatedStoragePool. In this case, the size is
set by the block server based on the capacity of the imported extents allocated to the pool.

27.6.3 Creating a Thinly Provisioned Volume

Creating a thin provisioned volume follows the same approach as creating fully provisioned volume with the
following extra steps:

1) verify that the parent pool supports thin provisioned child volumes by verifying that StorageConfigurationCa-
pabilities.SupportedStorageElementTypes incudes ThinlyProvisionedStorageVolume

2) use StorageCapabilities.DeltaReservationMin and DeltaReservationMax to determine whether the desired
initial reservation is supported

3) create a (or locate and existing usable) StorageSetting instance, set DeltaReservation as needed

4) call CreateOrModifyElementFromStoragePool with using

• the StorageSetting as the Goal
840

NO_ANSI_ID Thin Provisioning Profile

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424
• the appropriate parent pool as the PoolToDrawFrom,

• the size parameter holds the nominal size.

• ElementType is ThinlyProvisionedStorageVolume

•

// DESCRIPTION

// The goal of this recipe is to create a thin provisioned StorageVolume

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.#PossibleSize is set to the size for the new StorageVolume in bytes

// 3.#StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 4. #ElementType is set to the element to created:

// ThinlyProvisionedStorageVolume

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// associated with the system

$StorageConfigurationService-> = $Services->[0]
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 841

Thin Provisioning Profile NO_ANSI_ID

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464
// See if the service supports thin provisioned pool creation

// There should be only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageConfigurationService->,

“CIM_ElementCapabilities”,

“SNIA_StorageConfigurationCapabilities”,

null, null, false, false, null)

#SupportsElementCreationSync = contains(5, // Storage Element Creation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsElementCreationFeature = contains(3, // StorageElementCreation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementCreationProducesJob = contains(5, // Storage Element Creation

 $ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsThinPoolCreation = contains(1, // 1? = ThinlyProvisionedStorageVolume

 $ServiceCapabilities[0].SupportedStorageElementTypes[])

// If a storage element can not be created and that storage element is

// neither created synchronously or asynchronously, then fail the test

if (#SupportedElementCreationFeature == false ||

 (#SupportedElementCreationSync == false &&

 #ElementCreationProducesJob == false) ||

 #SupportsThinPoolCreation == false)

{

 <ERROR! Thin provisioned StorageElement creation is not supported.>

}

$StorageCapabilitiesOffered = $ServiceCapabilities[0]

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find

// a StoragePool from which thin provisioned storage pools might be created.

$PoolToDrawFrom-> = null

// Find the associated StoragePools

$StoragePools[] = Associators(

$BlockServer->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null, null,false, false, null)

for #i in $StoragePools[]

{

 // Skip primordial pools

 if ($StoragePool[#i].Primordial == true)

 {

 <continue>
842

NO_ANSI_ID Thin Provisioning Profile

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487
488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509
 }

 // Step 3. For each StoragePool, follow the CIM_ElementCapabilities

 // asociation to the StorageCapabilities of that pool. Compare the

 // StorageCapabilities to the desired StorageSetting and find the

 // best match.

// See if this pool has its own StorageConfigurationCapabilities.

$PoolServiceCapabilities[] = Associators(

$StoragePools[#i].getObjectPath(),

“CIM_ElementCapabilities”,

“SNIA_StorageConfigurationCapabilities”,

 null, null, false, false, null)

if($PoolServiceCapabilities[] != null) {

 for #c in $PoolServiceCapabilities[]

 {

 #SupportsElementCreationSync = contains(5, // Storage Element Creation

 $PoolServiceCapabilities[#c].SupportedSynchronousActions[])

 #SupportsElementCreationFeature = contains(3, // StorageElementCreation

 $PoolServiceCapabilities[#c].SupportedStorageElementFeatures[])

 #ElementCreationProducesJob = contains(5, // Storage Element Creation

 $PoolServiceCapabilities[#c].SupportedAsynchronousActions[])

 #SupportsThinPoolCreation = contains(1, // 1? =
ThinlyProvisionedStorageVolume

 $PoolServiceCapabilities[#c].SupportedStorageElementTypes[])

 // If a storage element can not be created and that storage element is

 // neither created synchronously or asynchronously, then skip this capability

 if (#SupportedElementCreationFeature == false ||

 (#SupportedElementCreationSync == false &&

 #ElementCreationProducesJob == false) ||

 #SupportsThinPoolCreation == false)

 {

 <continue>

 }

 else {

 $StorageCapabilitiesOffered = $ServiceCapabilities[0]

 }

 }

 } // end of if($PoolServiceCapabilities[]-> != null)

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

 // Step 4. Register for indications on configuration jobs

 if(#SupportedElementProducesJob == true)

 {

 // ‘17’ (“Completed”) ‘2’ (“OK”)
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 843

Thin Provisioning Profile NO_ANSI_ID

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552
 #Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

 @{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

 // ‘17’ (“Completed”) ‘6’ (“Error”)

 #Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

 @{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

 }

 // Step 5. Create Storage Element.

 %InArguments[“SettingType”] = 3 // “Goal”

 #ReturnValue = InvokeMethod(

 $StorageCapabilitiesOffered.getObjectPath(),

 “CreateSetting”,

 %InArguments,

 %OutArguments)

 if (#ReturnValue != 0)

 {

 <ERROR! Unable to create storage setting >

 }

 $GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

 %InArguments[“ElementName”] = NULL

 %InArguments[“ElementType”] = #ElementType

 %InArguments[“Goal”] = $GeneratedStorageSetting->

 %InArguments[“Size”] = #PossibleSize

 %InArguments[“InPool”] = $PoolToDrawFrom->

 %InArguments[“TheElement”] = null

 #ReturnValue = InvokeMethod(

 $StorageConfigurationService->,

 “CreateOrModifyElementFromStoragePool”,

 %InArguments, %OutArguments)

 if(#ReturnValue != 0 || #ReturnValue != 4096)

 { // Method did not succeeded or succeeded but did not create a job

 <ERROR! Failed >

 }

 else if(#ReturnValue == 0 ||

 (#ReturnValue == 4096 && %OutArguments[“TheElement”] != null)))
844

NO_ANSI_ID Thin Provisioning Profile

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584
 {

 $CreatedElement-> = %OutArguments[“TheElement”]

 }

 else // a Job was created and TheElement is null

 {

 // Wait for indication from either filters defined in step 4

 // If the indication states the Job is ‘Complete’ and ‘Error’

 // then exit with error

 // ERROR! Job did not complete successfully

 // Once the ‘Job’ has completed successfully, then

 // follow the AffectedJobElement association from the ‘Job’ to

 // retrieve the storage element that was created.

 $CreateElements[] = Associators(

 $Job->, // Object Name coersed from %OutArguments[“Job”]

 “CIM_AffectedJobElement”,

 #StorageElementClass,

 null, null, false, false, null)

 // Only one storage element will be created,

 $CreatedElement-> = $CreatedElement[0].getObjectPath()

 }

}

27.6.4 Capacity Properties for Fully-provisioned RAID1 Volume

Figure 140 demonstrates two approaches for setting capacity properties. In one approach, the capacity due to
redundancy on RAID is included in the concrete pool; in the other approach, the capacity in the concrete pool
reflects the factoring out of the RAID overhead. In this array configuration, there is a primordial pool showing the
capacity from two 502 block disks. (The disks are not modeled, a valid option in SMI-S.) Each disk has two blocks
of metadata - yielding 2 * 500 usable blocks. The block server has assembled these two disks into a RAID1 set
(represented by the Concrete pool)—a process which consumes four blocks for metadata. A single StorageVolume
is allocated. This volume consumes 110 blocks. The SpaceConsumed value of 224 in the upper right reflects two
times 110 (the nominal volume capacity times 2 for RAID1) plus four blocks metadata.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 845

Thin Provisioning Profile NO_ANSI_ID

585

586
Note that Block Services allows an arbitrary number of concrete pools between the primordial pool and the pool
from which the volume is allocated, so other sets of instances could also represent the same RAID1 configuration.

Figure 140 - RAID1 Capacity after Volume Creation

Concrete: StoragePool

Primordial = false
TotalManagedSpace = 496 * 512
RemainingManagedSpace = 386 * 512

SVP: AllocatedFromStoragePool
SpaceConsumed = 110 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

Simple: StorageVolume

NumberOfBlocks = 110

Concrete: StoragePool

Primordial = false
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 776 * 512

SVP: AllocatedFromStoragePool
SpaceConsumed = 224 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

Simple: StorageVolume

NumberOfBlocks = 110

RAID-at-Pool approach RAID-at-Volume approach
846

NO_ANSI_ID Thin Provisioning Profile

587

588
27.6.5 Capacity Properties for Thin Provisioning

Figure 141 builds on Figure 140, showing a newly created thinly provisioned volume with of 50 blocks consumed.

Figure 141 - RAID1 Capacity with Thin Volume and RAID-at-Pool Approach

Concrete: StoragePool

Primordial = false
SpaceLimitDetermination = Allocated
TotalManagedSpace = 496 * 512
RemainingManagedSpace = 336 * 512

FVP: AllocatedFromStoragePool
SpaceConsumed = 110 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

FullVol: StorageVolume

NumberOfBlocks = 110

ThinVol: StorageVolume

NumberOfBlocks = 110

TVP: AllocatedFromStoragePool
SpaceConsumed = 50 * 512
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 847

Thin Provisioning Profile NO_ANSI_ID

589

590

591

592

593
Figure 142 adds the same thin volume, but uses the RAID-on-Volume approach.

27.7 Registered Name and Version

Thin Provisioning version 1.5.0 (Component Profile)

27.8 CIM Elements

Table 550 describes the CIM elements for Thin Provisioning.

Figure 142 - RAID1 Capacity with Thin Volume and RAID-at-Volume Approach

Table 550 - CIM Elements for Thin Provisioning

Element Name Requirement Description

27.8.1 CIM_HostedStoragePool Mandatory

27.8.2 SNIA_LogicalDisk Optional LogicalDisk as defined in Block Services.

27.8.3
SNIA_StorageConfigurationCapabilities
(Concrete)

Optional StorageConfigurationCapabilities (Concrete)
as defined in Block Services, with the addition
of SupportedStorageElementTypes for thin
pools and volumes.

Concrete: StoragePool

Primordial = false
SpaceLimitDetermination = Allocated
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 672 * 512

FVP: AllocatedFromStoragePool
SpaceConsumed = 224 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

FullVol: StorageVolume

NumberOfBlocks = 110

ThinVol: StorageVolume

NumberOfBlocks = 110

TVP: AllocatedFromStoragePool
SpaceConsumed = 104 * 512
848

NO_ANSI_ID Thin Provisioning Profile

594

595

596
27.8.1 CIM_HostedStoragePool

Requirement: Mandatory

27.8.4
SNIA_StorageConfigurationCapabilities
(Global)

Conditional Conditional requirement: Support for
StorageConfigurationService.
StorageConfigurationCapabilities (Global) as
defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools
and volumes.

27.8.5
SNIA_StorageConfigurationCapabilities
(Primordial)

Optional StorageConfigurationCapabilities (Primordial)
as defined in Block Services, with the addition
of SupportedStorageElementTypes for thin
pools and volumes.

27.8.6 SNIA_StorageConfigurationService Mandatory StorageConfigurationService as defined in
Block Services, adding thin provisioning
values to the ElementType parameter.

27.8.7 SNIA_StoragePool (Concrete) Mandatory Concrete StoragePool as defined in Block
Services with the addition of SpaceLimit,
SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

27.8.8 SNIA_StoragePool (Empty) Mandatory Empty StoragePool as defined in Block
Services with the addition of SpaceLimit,
SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

27.8.9 SNIA_StoragePool (Primordial) Mandatory Primordial StoragePool as defined in Block
Services with the addition of SpaceLimit,
SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

27.8.10 SNIA_StorageSetting Optional StorageSetting as defined in Block Services
with the addition of Thin Provisioning
properties.

27.8.11 SNIA_StorageVolume Optional StorageVolume as defined in Block Services.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity='SNIA' and
MessageID='DRM28'

Mandatory Indication that capacity is running low. See
27.1.2.4.1 Capacity Warning.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity='SNIA' and
MessageID='DRM29'

Mandatory Indication that capacity is has run out. See
27.1.2.4.2 Capacity Critical.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity='SNIA' and
MessageID='DRM30'

Optional Indication that capacity condition has been
cleared. See 27.1.2.4.3 Capacity Okay.

Table 550 - CIM Elements for Thin Provisioning

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 849

Thin Provisioning Profile NO_ANSI_ID

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618
Table 551 describes class CIM_HostedStoragePool.

27.8.2 SNIA_LogicalDisk

LogicalDisk as defined in Block Services.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Optional

Table 552 describes class SNIA_LogicalDisk.

Table 551 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.

Table 552 - SMI Referenced Properties/Methods for SNIA_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory
850

NO_ANSI_ID Thin Provisioning Profile

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634
27.8.3 SNIA_StorageConfigurationCapabilities (Concrete)

StorageConfigurationCapabilities (Concrete) as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 553 describes class SNIA_StorageConfigurationCapabilities (Concrete).

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.

ThinlyProvisioned Optional

Table 553 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities (Con-
crete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool
or Storage Pool QoS Change or Storage Pool Capacity
Expansion or Storage Pool Capacity Reduction).

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "4" (Storage Pool Modification),
"5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element
Modification) or "15" (StoragePool Usage Modification).

Table 552 - SMI Referenced Properties/Methods for SNIA_LogicalDisk

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 851

Thin Provisioning Profile NO_ANSI_ID

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649
27.8.4 SNIA_StorageConfigurationCapabilities (Global)

StorageConfigurationCapabilities (Global) as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

SupportedStorageEle
mentTypes

Mandatory Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6
(ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "4" (Storage Pool Modification),
"5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element
Modification) or "15" (StoragePool Usage Modification).

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). Matches 3|8 (StorageVolume Creation or
LogicalDisk Creation).

SupportedStorageEle
mentUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElemen
tUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.

ThinProvisionedClien
tSettableReserve

Mandatory

ThinProvisionedDefa
ultReserve

Mandatory

Table 553 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities (Con-
crete)

Properties Flags Requirement Description & Notes
852

NO_ANSI_ID Thin Provisioning Profile

650

651

652

653

654

655

656

657
Table 554 describes class SNIA_StorageConfigurationCapabilities (Global).

Table 554 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities
(Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3|5|6|7 (InExtents or Single InPool
or Storage Pool QoS Change or Storage Pool Capacity
Expansion or Storage Pool Capacity Reduction).

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs.

SupportedStorageEle
mentTypes

Mandatory Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6
(ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs.

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). Matches 3|5|8|9|11|12|13 (StorageVolume
Creation or StorageVolume Modification or LogicalDisk
Creation or LogicalDisk Modification or Storage Element
QoS Change or Storage Element Capacity Expansion or
Storage Element Capacity Reduction).

SupportedStorageEle
mentUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on supported storage elements.

ClientSettableElemen
tUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of client-settable
elements.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.

ThinProvisionedClien
tSettableReserve

Mandatory

ThinProvisionedDefa
ultReserve

Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 853

Thin Provisioning Profile NO_ANSI_ID
27.8.5 SNIA_StorageConfigurationCapabilities (Primordial)

StorageConfigurationCapabilities (Primordial) as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 555 describes class SNIA_StorageConfigurationCapabilities (Primordial).

Table 555 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities (Pri-
mordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePo
olFeatures

Optional Lists what StorageConfigurationService functionalities are
implemented. Matches 2|3 (InExtents or Single InPool).

SupportedSynchrono
usActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, shall not produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from
Element Creation) or "15" (StoragePool Usage
Modification).

SupportedStorageEle
mentTypes

Optional Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6
(ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchron
ousActions

Optional Lists what actions, invoked through
StorageConfigurationService methods, may produce
Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from
Element Creation) or "15" (StoragePool Usage
Modification).

SupportedStorageEle
mentFeatures

Optional Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStora
gePool(). This version of the standard does not recognize
any values for this property. For Primordial pools, this shall
not contain 3 (StorageVolume Creation), 5 (StorageVolume
Modification), 8 (LogicalDisk Creation) or 9 (LogicalDisk
Modification).

SupportedStorageEle
mentUsage

Optional For Primordial StorageConfigurationCapabilities, this shall
be NULL.

ClientSettableElemen
tUsage

Optional For Primordial StorageConfigurationCapabilities, this shall
be NULL.
854

NO_ANSI_ID Thin Provisioning Profile
27.8.6 SNIA_StorageConfigurationService

StorageConfigurationService as defined in Block Services, adding thin provisioning values to the ElementType
parameter.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 556 describes class SNIA_StorageConfigurationService.

SupportedStoragePo
olUsage

Optional Indicates the intended usage or any restrictions that may
have been imposed on storage pools.

ClientSettablePoolUs
age

Optional Indicates the intended usage or any restrictions that may
have been imposed on the usage of a client-settable
storage pool.

ThinProvisionedClien
tSettableReserve

Mandatory

ThinProvisionedDefa
ultReserve

Mandatory

Table 556 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

CreateOrModifyStora
gePool()

Optional Create (or modify) a StoragePool. A job may be created as
well.

DeleteStoragePool() Optional Start a job to delete a StoragePool.

CreateOrModifyElem
entFromStoragePool(
)

Mandatory Expanded ElementType parameter.

CreateOrModifyElem
entFromElements()

Optional Expanded ElementType parameter.

ReturnToStoragePool
()

Mandatory Release the capacity represented by this storage element
back to the Pool.

Table 555 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities (Pri-
mordial)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 855

Thin Provisioning Profile NO_ANSI_ID
27.8.7 SNIA_StoragePool (Concrete)

Concrete StoragePool as defined in Block Services with the addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace properties.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 557 describes class SNIA_StoragePool (Concrete).

RequestUsageChang
e()

Optional Allows a client to change the Usage for the element.

GetElementsBasedO
nUsage()

Optional Allows a client to retrieve elements for a specialized Usage.

Table 557 - SMI Referenced Properties/Methods for SNIA_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies
this Pool.

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

SpaceLimit Mandatory The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4
(Limitless) or set to the value of TotalManagedSpace if
SpaceLimitDetermination has the value 2 (Allocated).

SpaceLimitDetermina
tion

Mandatory The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for
determining capacity information for the pool.

ThinProvisionMetaDa
taSpace

Optional The size of metadata consumed by this storage pool.

Table 556 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationService

Properties Flags Requirement Description & Notes
856

NO_ANSI_ID Thin Provisioning Profile
27.8.8 SNIA_StoragePool (Empty)

Empty StoragePool as defined in Block Services with the addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace properties.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 558 describes class SNIA_StoragePool (Empty).

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService. List the discrete storage
element sizes that can be created or expanded from this
Pool.

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService. List the size ranges for
storage element that can be created or expanded from this
Pool.

GetAvailableExtents(
)

Optional List the StorageExtents from this Pool that may be used to
create or expand a storage element. The StorageExtents
may not already be in use as supporting capacity for
existing storage element.

Table 558 - SMI Referenced Properties/Methods for SNIA_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and
primordial StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManaged
Space

Mandatory

Usage Optional

OtherUsageDescripti
on

Optional

ClientSettableUsage Optional

Table 557 - SMI Referenced Properties/Methods for SNIA_StoragePool (Concrete)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 857

Thin Provisioning Profile NO_ANSI_ID
27.8.9 SNIA_StoragePool (Primordial)

Primordial StoragePool as defined in Block Services with the addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace properties.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 559 describes class SNIA_StoragePool (Primordial).

SpaceLimit Mandatory The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4
(Limitless) or set to the value of TotalManagedSpace if
SpaceLimitDetermination has the value 2 (Allocated).

SpaceLimitDetermina
tion

Mandatory The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for
determining capacity information for the pool.

ThinProvisionMetaDa
taSpace

Optional The size of metadata consumed by this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService.

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService.

GetAvailableExtents(
)

Optional

Table 559 - SMI Referenced Properties/Methods for SNIA_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies
this Pool.

TotalManagedSpace Mandatory

RemainingManaged
Space

Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

Table 558 - SMI Referenced Properties/Methods for SNIA_StoragePool (Empty)

Properties Flags Requirement Description & Notes
858

NO_ANSI_ID Thin Provisioning Profile
27.8.10 SNIA_StorageSetting

StorageSetting as defined in Block Services with the addition of and Thin Provisioning properties.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 560 describes class SNIA_StorageSetting.

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

SpaceLimit Mandatory The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4
(Limitless) or set to the value of TotalManagedSpace if
SpaceLimitDetermination has the value 2 (Allocated).

SpaceLimitDetermina
tion

Mandatory The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for
determining capacity information for the pool.

ThinProvisionMetaDa
taSpace

Optional The size of metadata consumed by this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for
StorageConfigurationService. List the discrete storage
element sizes that can be created or expanded from this
Pool.

GetSupportedSizeRa
nge()

Conditional Conditional requirement: Support for
StorageConfigurationService. List the size ranges for
storage element that can be created or expanded from this
Pool.

GetAvailableExtents(
)

Optional List the StorageExtents from this Pool that may be used to
create or expand a storage element. The StorageExtents
may not already be in use as supporting capacity for
existing storage element.

Table 560 - SMI Referenced Properties/Methods for SNIA_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In
addition, the user-friendly name can be used as a index
property for a search of query. (Note: Name does not have
to be unique within a namespace.).

Table 559 - SMI Referenced Properties/Methods for SNIA_StoragePool (Primordial)

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 859

Thin Provisioning Profile NO_ANSI_ID
NoSinglePointOfFailu
re

Mandatory Indicates the desired value for No Single Point of Failure.
Possible values are false = single point of failure, and true =
no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of
complete copies of data to be maintained. Examples would
be RAID 5 where 1 copy is maintained and RAID 1 where 2
or more copies are maintained. Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of
complete copies of data to be maintained. Examples would
be RAID 5 where 1 copy is maintained and RAID 1 where 2
or more copies are maintained. Possible values are 1 to n.

DataRedundancyGoa
l

Mandatory

PackageRedundancy
Min

Mandatory PackageRedundancyMin describes the minimum number
of spindles or logical devices to be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancy
Max

Mandatory PackageRedundancyMax describes the maximum number
of spindles or logical devices to be used. Package
redundancy describes how many disk spindles or logical
devices can fail without data loss including, at most, one
spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancy
Goal

Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length
goal.

ExtentStripeLengthMi
n

Optional ExtentStripeLengthMin describes the minimum acceptable
stripe length.

ExtentStripeLengthM
ax

Optional ExtentStripeLengthMax describes the maximum acceptable
stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value
may be 1 or 2 (Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepth
Min

Optional UserDataStripeDepthMin describes the minimum
acceptable stripe depth.

UserDataStripeDepth
Max

Optional UserDataStripeDepthMax describes the maximum
acceptable stripe depth.

Table 560 - SMI Referenced Properties/Methods for SNIA_StorageSetting

Properties Flags Requirement Description & Notes
860

NO_ANSI_ID Thin Provisioning Profile
27.8.11 SNIA_StorageVolume

StorageVolume as defined in Block Services.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Optional

Table 561 describes class SNIA_StorageVolume.

ChangeableType Mandatory This property informs a client if the setting can be modified.
It also tells the client how long this setting is expected to
remain in the model. If the implementation allows it, the
client can use the property to request that the setting's
existence be not transient.

StorageExtentInitialU
sage

Optional The Usage value to be used when creating a new storage
element.

StoragePoolInitialUsa
ge

Optional The Usage value to be used when creating a new storage
pool.

ThinProvisionedPool
Type

Optional This property is needed when the Setting is used as goal in
CreateOrModify... but is not needed when the Setting class
is associated to a pool or volume.

ThinProvisionedInitial
Reserve

Optional

Table 561 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such
as SCSI or ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescription
s

Optional

Table 560 - SMI Referenced Properties/Methods for SNIA_StorageSetting

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 861

Thin Provisioning Profile NO_ANSI_ID
NameFormat Mandatory The type of identifier in the Name property. The valid values
for StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the
NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Table 561 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes
862

NO_ANSI_ID Thin Provisioning Profile
EXPERIMENTAL

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted
by a client application.

ThinlyProvisioned Optional

Table 561 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 863

Thin Provisioning Profile NO_ANSI_ID
864

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
EXPERIMENTAL

Clause 28: Pools from Volumes Profile

28.1 Description

28.1.1 Overview

The Pools from Volumes Profile defines how a pool may be created from StorageVolumes. The Block Services
Package defines how to create a StoragePool from unallocated storage. However, there are some devices that
allow the user to create storage pools from already allocated volumes, necessitating this profile. This is a similar
concept to Volume Composition, in that the volumes are combined into a larger entity and are no longer available
for use as regular volumes. The specific use cases that have been identified for these kinds of pools are for
snapshot replica pools and thin provisioned volume pools.

28.1.2 Terminology

This profile uses the following terms to help distinguish between the different uses of StoragePool and
StorageVolume. This is done to help distinguish which kind of StorageVolume or StoragePool is being referred to.

Constituent Volume -- StorageVolumes used to create a concrete StoragePool.

Pool Volume -- StorageVolume created from a Constituent Pool.

Constituent Pool -- A concrete StoragePool created from constituent volumes.

28.1.3 Relationship to Block Services Package

The Pools from Volumes Profile extends the Block Services Package with additional descriptions and definitions
showing how such pools may be created and how to model the constituent volumes. The existing Block Services
classes, properties, and methods are used.

28.1.4 Relationship to Extent Composition

This profile shall not require Extent Composition. Some of the examples make use of Extent Composition but only
to demonstrate the relationship of the volumes to the underlying extents.

This profile shall not require any BasedOn association to any underlying extents from the volumes created from the
constituent pool, even if Extent Composition is supported by the instrumentation.

28.1.5 Class Model

Figure 143 shows the classes used in this profile. These are the same classes used in the autonomous profile and
Block Services Package.
SMI-S 1.5.0 Revision 6 SNIA Technical Position 865

Pools from Volumes Profile NO_ANSI_ID

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54
28.1.6 Model Elements

28.1.6.1 StorageVolume

StorageVolume is used in three different contexts in this profile. The first is the normal usage as described in
Clause 5: Block Services Package. The second is as a “constituent volume.” These StorageVolumes are normal
volumes that have been used to create a concrete StoragePool. This volume has the same associations as normal
StorageVolumes with its underlying elements, namely the AllocatedFromStoragePool association to the concrete
StoragePool and the BasedOn association to the StorageExtent. Once used to create a StoragePool, this volume
can be identified by its Usage property. The third type of StorageVolume is a volume created from the constituent
pool. This is referred to as a “pool volume.” This acts as a normal StorageVolume, with the exception that it does
not have a BasedOn association to any antecedent StorageExtent, even if Extent Composition is supported.

28.1.6.1.1 Volume Visibility

In some implementations, these volumes may still be visible in a list of volumes reported by the array after pool
creation. In this profile, these volumes are called "constituent volumes" to distinguish them from volumes allocated
from the pool. Even though these volumes are visible, they are not usable as normal volumes. Some
instrumentation may need the ability to “see” a constituent volume in order to perform copy operation or to resize
(e.g., shrink) the constituent pool.

28.1.6.2 StoragePool

StoragePool is used in two contexts in this profile. The first is the regular concrete StoragePool. The second is the
constituent pool that is created by the constituent volumes.

28.1.7 Example

This example will show the model changes that occur when a constituent StoragePool is created from
StorageVolumes. Figure 144 shows the starting conditions. There are two normal StorageVolumes allocated from a
concrete pool, labeled ConcretePool in the diagram. This example follows the Extent Composition model, so each
volume has a BasedOn association to an underlying StorageExtent that is a ConcreteComponent of the concrete
StoragePool. Depending upon the instrumentation, there may be intermediate extents between the volume and
extent (e.g. if the instrumentation follows the Volume Composition model, there may be an intermediate
CompositeExtent between the StorageVolume and StorageExtent). Although not shown in the diagram, for each

Figure 143 - Class Model

StorageVolume StoragePool
AllocatedFromStoragePool

ComputerSystem

SystemDevice

Block Services

StorageSetting

1 ElementSettingData 1

Autonomous Profile
(e.g. Array)
866

NO_ANSI_ID Pools from Volumes Profile

55

56

57

58

59

60

61

62

63

64

65

66

67

68
ConcreteComponent association, there is also an AssociatedComponentExtent association between the same two
instances the ConcreteComponent associates.

The next figure, Figure 145, shows the changes that would occur in the model after creation of the StoragePool
from the StorageVolumes (e.g. as a result of a invocation of he CreateOrModifyStoragePool method). In this
diagram, both of the volumes have been used to create a constituent StoragePool, labeled CreatedPool in the
diagram. The following model changes occur:

• AllocatedFromStoragePool.SpaceConsumed value goes to 0 for the constituent volumes (Volume1 and
Volume2). This is needed to prevent double counting the storage in the newly created StoragePool

• A ConcreteDependency association is added between the newly created StoragePool (CreatedPool) and
each of the StorageVolumes used to create the pool to show that they represent the same piece of storage

• A CompositeExtent is created for each created volume (PoolVolume) and associated to the created pool via
ConcreteComponent and AssociatedRemainingExtent (not shown in figure)

• A one-to-one BasedOn association from the created volume to the created CompositeExtent is created
BasedOn associations are created to associate each of these created CompositeExtents to all of the extents

Figure 144 - Before Pool Creation

CIM_StorageExtent

CIM_ConcreteComponent

Volume2:
CIM_StorageVolume

// Normal StorageVolume

CIM_AllocatedFromStoragePool

ConcretePool: CIM_StoragePool

Primordial = false

PrimordialPool: CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

CIM_BasedOn

CIM_StorageExtent

Primordial = true

CIM_ConcreteComponent

CIM_BasedOn

CIM_StorageExtent

CIM_ConcreteComponent

CIM_BasedOn

CIM_StorageExtent

Primordial = true

CIM_ConcreteComponent

CIM_BasedOn

Volume1:
CIM_StorageVolume

// Normal StorageVolume
CIM_AllocatedFromStoragePool
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 867

Pools from Volumes Profile NO_ANSI_ID

69

70

71
(StorageExtent or CompositeExtent) that have a BasedOn association to the StorageVolume that is a
constituent volume of the created StoragePool

These changes are consistent with the Extent Composition Profile.
868

NO_ANSI_ID Pools from Volumes Profile
Figure 145 - After Pool Creation

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

PoolVolume:
CIM_StorageVolume

CIM_AllocatedFromStoragePool

CIM_AllocatedFromStoragePool

CreatedPool:
CIM_StoragePool

// constituent pool

CIM_BasedOn

New Instances

CIM_BasedOn

CIM_AllocatedFromStoragePool
SpaceConsumed=0

CIM_CompositeExtent

ConcreteDependency

BasedOn

Volume2:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

Volume1:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_StorageExtent

CIM_StorageExtent

Primordial = true

CIM_BasedOn

CIM_StorageExtent

CIM_StorageExtent

Primordial = true

CIM_BasedOn

ConcretePool: CIM_StoragePool

Primordial = false

PrimordialPool: CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

ConcreteDependency

CIM_BasedOn CIM_BasedOn

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 869

Pools from Volumes Profile NO_ANSI_ID

72

73

74

75

76

77

78

79

80

81
If Extent Composition is not implemented, the model changes are much simpler. The following figure, Figure 146,
shows what model changes occur, summarized below.

• AllocatedFromStoragePool.SpaceConsumed value goes to 0 for the constituent volumes (Volume1 and
Volume2). This is needed to prevent double counting the storage in the newly created StoragePool

• A ConcreteDependency association is added between the newly created StoragePool (CreatedPool) and
each of the StorageVolumes used to create the pool to show that they represent the same piece of storage

28.2 Block Services Enhancements

The following classes, methods, and properties from Block Services are enhanced as follows.

28.2.1 StoragePool Manipulation Methods

See 5.1.6.2 "StoragePool Manipulation Methods".

Figure 146 - After Pool Creation without Extent Composition

PoolVolume:
CIM_StorageVolume

CIM_AllocatedFromStoragePool

CIM_AllocatedFromStoragePool

CreatedPool:
CIM_StoragePool

// constituent pool

ConcreteDependency

New Instances

Volume2:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

ConcretePool: CIM_StoragePool

Primordial = false

PrimordialPool: CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

Volume1:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

ConcreteDependency
870

NO_ANSI_ID Pools from Volumes Profile

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107
108
109
110
111
112
113
114

115

116

117
Possible inputs to CreateOrModifyStoragePool shall also allow StorageVolumes. More details may be found in 28.6
"Methods of the Profile".

28.2.2 Declaring Storage Configuration Options

See 5.1.7 "Declaring Storage Configuration Options".

SNIA_StorageConfigurationCapabilities.SupportedStoragePoolFeatures is enhanced to allow “StorageVolumes”
as one of the valid options.

28.2.3 The Usage Property

See 5.1.13 "The Usage Property".

The constituent volume can be identified by its Usage property. The value to use is Reserved for Computer
System.

28.3 Health and Fault Management Considerations

The same Health and Fault Management Considerations from Block Services apply here.

28.4 Cascading Considerations

Not defined in this specification

28.5 Supported Profiles, Subprofiles, and Packages

This profile requires and extends the Block Services Package.

Use of the Extent Composition Profile is optional in this profile.

28.6 Methods of the Profile

No new methods are defined. Methods from Block Services are enhanced as follows.

28.6.1 CreateOrModifyStoragePool

See 5.5.3.3 "CreateOrModifyStoragePool".

In the context of the Pools from Volumes Profile, a list of StorageVolumes shall be the only allowed type for the
InExtents[] parameter used to build the constituent pool. Use of StorageExtents is already allowed by the Block
Services Package and this profile shall not change that. The CreateOrModifyStoragePool method signature is
listed below with a description of the parameters used when creating a StoragePool from StorageVolumes.

uint32 CreateOrModifyStoragePool(
[In] string ElementName
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In,out] Uint64 Size,
[In] string InPools[],
[In] string InExtents[],
[Out] CIM_StoragePool ref Pool);

The parameters are as follows:

• ElementName: If the instrumentation supports naming of StoragePools this parameter may be used to assign a
name to the StoragePool
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 871

Pools from Volumes Profile NO_ANSI_ID

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158
• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter.

• Goal: This is the Service Level that the StoragePool is expected to provide. This may be a null value in which
case a default setting is used.

• Size: Null should be used for the Size parameter as all the passed in capacity (as specified by InExtents) shall
be used to create the StoragePool. Size may be specified, but is not recommended, as it may not be possible
to accurately estimate the resulting pool size ahead of time, due capacity being reserved for StoragePool
overhead.If it is not possible to create an element of at least the desired size, a return code of “Size not
supported” shall be returned with size set to the nearest supported size.

• InPools[]: This shall be null when creating a pool. When modifying a pool, there shall be exactly one entry,
corresponding to the pool being modified.

• InExtents[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP00200 CIM
Operations over HTTP for format) to source StorageVolumes.

• TheElement: If the method completes without creating a Job, then the TheElement is the object path of the
StoragePool that is created. Otherwise, TheElement shall be null. When the TheElement is null, then the
storage element created can be determined by using the Job model.

28.6.2 DeleteStoragePool

See 5.5.3.5 "DeleteStoragePool".

When deleting the constituent pool, the constituent volume’s AllocatedFromStoragePool.SpaceConsumed value
returns to the value it had before it was used to build the constituent pool. The RemainingManagedStorage of the
associated parent StoragePool will not change, as the same amount of storage is still in use, albeit in the formerly
constituent volumes instead of the constituent pool. The former constituent volumes will have their Usage value
reset to that of a normal volume,

The parameters and their meanings are the same as in Block Services DeleteStoragePool.

28.6.3 Storage Element Modification

See 5.5.4.4.1 "Storage Element Modification".

For a constituent pool, the capacity may be expandable by providing the references to existing component
StorageVolumes of the StoragePool and additional references to normal StorageVolumes. A constituent pool’s
capacity may be reducible by providing references to some, but not all, of the current constituent volumes of the
StoragePool. If the summary of the capacity of the referenced input StorageVolumes is greater than the
TotalManagedSpace of the StoragePool, then this action shall be characterized as a capacity expansion. If this
summary is less than the TotalManagedSpace of the StoragePool, then this action shall be characterized as
capacity reduction.

What this means in relation to the CreateOrModifyStoragePool method is that the InPools[] parameter shall have
exactly one entry, that of the StoragePool being modified. This specification shall only define the case where the
StoragePool being modified shall have been created from StorageVolumes.

28.7 Client Considerations and Recipes

28.7.1 Client Considerations

Not included in this standard.

28.7.2 Recipe 1: Create StoragePool

// DESCRIPTION
872

NO_ANSI_ID Pools from Volumes Profile

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199
// The goal of this recipe is to create a StoragePool from StorageVolumes

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.#Size is set to the size for the new Storage Pool in bytes

// #Size = total size of the volumes in bytes

// 3.#StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 4. The volumes to use to create the pool have been identified and

// their object paths stored in $Volumes->[]

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// associated with the system

$StorageConfigurationService-> = $Services->[0]

// See if the service supports thin provisioned pool creation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageConfigurationService->,

“CIM_ElementCapabilities”,
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 873

Pools from Volumes Profile NO_ANSI_ID

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238
“SNIA_StorageConfigurationCapabilities”,

null, null, false, false, null)

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Creation of thin provisioned pools not supported>

}

if (contains(2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 || contains(2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #SupportsPoolCreation = true

}

if (contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[]))

{

 #PoolCreationProducesJob = true

}

if (contains(5, // 5 = StorageVolumes

$ServiceCapabilities[0].SupportedStoragePoolFeatures[]))

{

 #SupportsPoolsFromVolumes = true

}

// Return if thin provisioned pools cannot be created

if ((#SupportesPoolCreation == false) &&

 (#SupportsPoolsFromVolumes == false)) {

 <ERROR! Creation of thin provisioned pools not supported>

}

$StorageCapabilitiesOffered = $ServiceCapabilities[0]

// Step 5. Register for indications on configuration jobs

if(#PoolCreationProducesJob == true)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)
874

NO_ANSI_ID Pools from Volumes Profile

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274
// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 6. Create the Storage Pool

%InArguments[“ElementName”] = NULL// we do not care what the name is

%InArguments[“Goal”] = NULL // use default setting

%InArguments[“Size”] = #Size

%InArguments[“InExtents”] = $Volumes->[]

%InArguments[“InPools”] = null

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,

“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // Storage Pool was not created

<ERROR! Failed >

}

if(#PoolCreationProducesJob == true && $PoolCreationJob-> != null)

{

 $PoolCreationJob-> = %OutArguments[“Job”]

//Wait until the completion of the job

 // using $PoolCreationJob-> as a filter

 // Wait for indication from either filters defined in step 5

// If the indication states the Job is ‘Complete’ and ‘Error’

// then exit with error: ERROR! Job did not complete successfully

}

else {

 $NewPool-> = %OutArguments[“Pool”]

}

// Use the new pool
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 875

Pools from Volumes Profile NO_ANSI_ID

275

276

277

278

279

280

281

282

283

284

285
28.8 Registered Name and Version

Pools from Volumes version 1.4.0 (Component Profile)

28.9 CIM Elements

Table 562 describes the CIM elements for Pools from Volumes.

28.9.1 CIM_AllocatedFromStoragePool (Volume from Pool)

AllocatedFromStoragePool as defined in Block Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 563 describes class CIM_AllocatedFromStoragePool (Volume from Pool).

Table 562 - CIM Elements for Pools from Volumes

Element Name Requirement Description

28.9.1 CIM_AllocatedFromStoragePool
(Volume from Pool)

Mandatory AllocatedFromStoragePool as defined in
Block Services.

28.9.2 CIM_ElementCapabilities Mandatory Associates StorageCapabilities or
StorageConfiguationCapabilities with
StoragePool.

28.9.3 CIM_StorageCapabilities Mandatory Capabilities class used to generate
StorageSettings. Also associated to
StoragePools via ElementCapabilities.

28.9.4 CIM_StorageVolume Mandatory StorageVolume as defined in Block Services.

28.9.5 CIM_SystemDevice Mandatory Associates top level system from Array,
Virtualizer, ... to StorageVolume.

28.9.6
SNIA_StorageConfigurationCapabilities

Mandatory SupportedStoragePoolFeatures as defined in
SNIA_StorageConfigurationCapabilities, with
the addition of support for StorageVolumes as
inputs to pool creation.

28.9.7 SNIA_StoragePool Mandatory StoragePool as defined in Block Services.

28.9.8 SNIA_StorageSetting Optional StorageSetting as defined in Block Services.

Table 563 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume
from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory
876

NO_ANSI_ID Pools from Volumes Profile

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310
28.9.2 CIM_ElementCapabilities

Associates StorageCapabilities or StorageConfiguationCapabilities with StoragePool.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 564 describes class CIM_ElementCapabilities.

28.9.3 CIM_StorageCapabilities

Capabilities class used to generate StorageSettings. Also associated to StoragePools via ElementCapabilities.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

28.9.4 CIM_StorageVolume

StorageVolume as defined in Block Services.

Created By: External

Modified By: Static

Deleted By: Extrinsic: External

Requirement: Mandatory

28.9.5 CIM_SystemDevice

Associates top level system from Array, Virtualizer, ... to StorageVolume.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: External

Requirement: Mandatory

Table 564 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 877

Pools from Volumes Profile NO_ANSI_ID

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331
Table 565 describes class CIM_SystemDevice.

28.9.6 SNIA_StorageConfigurationCapabilities

SupportedStoragePoolFeatures as defined in SNIA_StorageConfigurationCapabilities, with the addition of support
for StorageVolumes as inputs to pool creation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 566 describes class SNIA_StorageConfigurationCapabilities.

28.9.7 SNIA_StoragePool

StoragePool as defined in Block Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

28.9.8 SNIA_StorageSetting

StorageSetting as defined in Block Services.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Optional

EXPERIMENTAL

Table 565 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 566 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities

Properties Flags Requirement Description & Notes

SupportedStoragePo
olFeatures

Mandatory Lists the types of storage elements that are supported by
pool creation/modification. To support Pools from Volumes,
this list shall include 5 (StorageVolumes).
878

NO_ANSI_ID Pools from Volumes Profile
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 879

Pools from Volumes Profile NO_ANSI_ID
880

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
EXPERIMENTAL

Clause 29: Group Masking and Mapping Profile

29.1 Description

29.1.1 Synopsis

Profile Name: Group Masking and Mapping Profile

Version: 1.5.0

Organization: SNIA

CIM schema version: 2.23

Central Class: GroupMaskingMappingService

Scoping Class: ComputerSystem

Table 567 describes the supported profiles for Group Masking and Mapping Profile.

29.1.2 Overview

The Group Masking and Mapping Profile specializes Clause 18: "Masking and Mapping Subprofile". The Group
Masking and Mapping Profile is a component profile (subprofile) that allows the masking and mapping operations
based on groups of initiator ports (StorageHardwareIDs), target ports, and devices. The profile contains the
necessary methods to manipulate masking groups and create or delete masking “views”. Additionally, the group
features are advertised by the instance of GroupMaskingMappingCapabilities.

Because the Group Masking and Mapping Profile is specialization of Clause 18: "Masking and Mapping
Subprofile", all the classes of Clause 18 (including properties, methods, indications, and capabilities) are inherited
(and are available) in this profile.

A masking view created in this profile is modeled as SCSIProtocolController. This is consistent with the views
created by methods of the Masking and Mapping Subprofile.

A major goal of the profile is to simplify the masking and mapping operations as much as it is possible. For
example, once a masking view is created, to expose additional volumes to the initiators of the masking view, all a
client needs to do is to add the additional volumes to the device group belonging to the masking view. Similarly, to
remove access to one or more volumes exposed through a masking view, the client simply removes the volumes
from the device group associated with the masking view.

The Group Masking and Mapping Profile facilitates provisioning of storage to clustered systems by exposing a
group of storage volumes to the same host systems connected to the storage array.

Table 567 - Supported Profiles for Group Masking and Mapping Profile

Profile Name Organization Version Requirement Description

Generic Target Ports SNIA 1.4.0 Mandatory

Block Services SNIA 1.5.0 Mandatory

Job Control SNIA 1.5.0 Optional
SMI-S 1.5.0 Revision 6 SNIA Technical Position 881

Group Masking and Mapping Profile NO_ANSI_ID

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
29.1.3 Model Elements

In addition to the model elements inherited from Clause 18: "Masking and Mapping Subprofile", this profile uses the
following classes and associations:

MaskingGroup - This class represents a collection of storage masking objects, such as a group of InitiatorPorts,
TargetPorts or Volumes (i.e., Devices). The masking group has properties to facilitate "self cleaning" of the groups
no longer in use. For example,

• DeleteOnEmpty -- delete the group if all its members are removed.

• DeleteWhenBecomesUnassociated -- delete the group if it no longer is associated to a view.

InitiatorMaskingGroup - A class inherited from MaskingGroup. It represents a collection of StorageHardwareID
object paths.

TargetMaskingGroup - A class inherited from MaskingGroup. It represents a collection of ProtocolEndpoint object
paths.

DeviceMaskingGroup - A class inherited from MaskingGroup. It represents a collection of StorageVolume object
paths.

An implementation may allow empty masking groups to be associated to a masking view; however, an empty
associated masking group may indicate “no access” to the elements associated with the masking view. For
example, an empty associated InitiatorMaskingGroup indicates none of the initiators have access to the
LogicalDevices associated to the masking view. Refer to the group capabilities in 29.7 "CIM Elements", which may
indicate “Associated empty group indicates no access“. The absence of this value conversely indicates “all
access”. In other words, an empty associated InitiatorMaskingGroup indicates all initiators have access to the
elements associated with the masking view.

The masking groups are associated to the “view” via the following associations:

AssociatedInitiatorMaskingGroup - Associates an InitiatorMaskingGroup to a SCSIProtocolController.

AssociatedTargetMaskingGroup - Associates an TargetMaskingGroup to a SCSIProtocolController.

AssociatedDeviceMaskingGroup - Associates an DeviceMaskingGroup to a SCSIProtocolController.

Figure 147 depicts the complete model for a masking view that includes the masking groups. The gray classes are
from this profile; whereas, the remaining classes are from Clause 18: "Masking and Mapping Subprofile".
882

NO_ANSI_ID Group Masking and Mapping Profile

56

57

58

59

60

61

62

63

64

65

66

67
Figure 148 shows the masking groups and their associated masking objects. The association between the
DeviceMaskingGroup and StorageVolumes is OrderedMemberOfCollections because the method CreateGroup,
which creates this association, needs to maintain the order of the StorageVolumes as each StorageVolume is
assigned a unique device number. Assigning unique device numbers may be done when a device masking group
is created or when a masking view is created. If device numbers are supplied, the implementation shall assign the
appropriate device numbers in the order in which the devices are ordered in the device masking group, hence the
requirement to have an OrderedMemberOfCollection association between the logical devices and the device
masking group.

A SCSIProtocolController shall be associated to no more than one InitiatorMaskingGroup, one
TargetMaskingGroup, and one DeviceMaskingGroup. If any of the masking groups is nested, the child groups are
indirectly participating in the masking view. However, the nested masking groups are not associated directly to the
same masking view.

Figure 147 - Group Masking and Mapping Model

LogicalDevice
(StorageVolume)

SCSIProtocolController

AuthorizedPrivilege

SystemSpecificCollection
(optional)

AuthorizedTarget

MemberOfCollection

StorageHardwareID

AuthorizedSubject

*
*1

*

*

1

SCSIProtocolEndpoint

ProtocolController
ForUnit

* *

SAPAvailable
ForElement

InitiatorMaskingGroup

// One or more
elements

TargetMaskingGroup

// One or more
elements

DeviceMaskingGroup

// One or more
elements

AssociatedInitiatorMaskingGroup

AssociatedDeviceMaskingGroup

AssociatedTargetMaskingGroup

MemberOfCollection

OrderedMemberOfCollection

MemberOfCollection
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 883

Group Masking and Mapping Profile NO_ANSI_ID

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84
The profile includes the optional indications for when a masking group is created, deleted, or modified. Additionally,
the profile includes an alert message indicating that the associated membership of a masking group has changed.
The related standard message is:

There is a change in membership of masking group with identifier <InstanceID>.

See 29.7 "CIM Elements" for the supported indication filters.

29.1.3.1 Nested Groups

Masking groups, depending on the capabilities of the implementation, may be nested to an arbitrary depth. The
nested groups shall be of the same type, for example, nested initiator masking groups, or nested target port
groups. A masking group may contain a combination of masking objects (initiators, target ports, devices), and the
like masking groups. For example, a "top level" initiator masking group may contain zero or more
StorageHardwareIDs and zero or more initiator masking groups. The "nested" initiator masking groups may in turn
contain additional StorageHardwareIDs and initiator masking groups.

To create a masking view, a client may supply the "top level" masking group and the appropriate target port and
device masking groups to the CreateMaskingView method.

See the instance of GroupMaskingMappingCapabilities (in 29.7 "CIM Elements") for whether the implementation
supports nested masking groups, and whether the depth of nested groups is limited to one.

Figure 149 shows nest masking groups and an example of a nested initiator masking group.

Figure 148 - Masking Groups

S to r a g e H a r d w a r e ID

In i t ia to r M a s k in g G r o u p

S C S IP r o to c o lE n d p o in t

T a r g e tM a s k in g G r o u p

L o g ic a lD e v ic e
(S to r a g e V o lu m e)

D e v ic e M a s k in g G r o u p

O r d e r e d M e m b e r O fC o l le c t io nM e m b e r O fC o l le c t io nM e m b e r O fC o l le c t io n

G r o u p M a s k in g M a p p in g S e r v ic e

S e r v ic e A f fe c ts E le m e n t
S e r v ic e A f fe c ts E le m e n t

S e r v ic e A f fe c ts E le m e n t
884

NO_ANSI_ID Group Masking and Mapping Profile

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
A use case for nested group is in a simple cluster environment (see Figure 150, “Nested Masking Group
Example,”), where there is a set of HBAs that belong to one host and a set of HBAs that belong to another host.
Assume each host’s HBA ports are in their own Initiator Masking Group which is participating in some other
masking views. A nested parent group (Engineering, in the example) is then created to contain both of these child
groups (HBA0 and HBA1, in the example). This new parent group can then be directly associated to a new
masking view, furthermore, the child groups still remain associated to some other masking views.

In this example, when the Engineering InitiatorMaskingGroup is associated to a new masking view, the child
groups HBA0 and HBA1 are indirectly participating in the new masking view, however, they are not associated
directly to the new masking view. Note that HBA0 and HBA1 will have access to the devices exposed to the
Engineering InitiatorMaskingGroup by the masking view.

With nested masking groups, only the outer (i.e., the parent) initiator masking group needs to be associated to a
masking view. The inner (i.e., the children) initiator masking groups will implicitly have access to the same storage
devices made available in the masking view associated to the parent. However, the inner masking groups (i.e., the
children) can be associated to a different masking view in order to have access to storage devices participating in a
different masking view.

Figure 149 - Nested Masking Groups

StorageHardwareID

// IDType
// StorageID

InitiatorMaskingGroup

// InstanceID
// ElementName

MemberOfCollection

*

MaskingGroup

MemberOfCollection

InitiatorMaskingGroup

// InstanceID
// ElementName

MemberOfCollection

*

Nested Masking Groups Example: Nested InitiatorMaskingGroup

Class Diagram Instance Diagram
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 885

Group Masking and Mapping Profile NO_ANSI_ID

100

101

102

103

104

105
29.1.4 Device Numbers

A LogicalDevice is exposed to an initiator with a Device Number, also known as a Logical Unit Number (LUN).
Clients may supply the desired Logical Unit Numbers. If clients do not supply the desired Logical Units Numbers,
the instrumentation decides on the Logical Unit Numbers. There is a boolean property in the InitiatorMaskingGroup
class called ConsistentLogicalUnitNumber to indicate whether device numbers for a LogicalDevice (volume) visible
to the same initiator must be same.

Figure 150 - Nested Masking Group Example

InitiatorMaskingGroup

HBA1:ComputerSystem

InitiatorMaskingGroup

HBA0:ComputerSystem

InitiatorMaskingGroup

Engineering

StorageHardwareIDStorageHardwareID

MemberOfCollectionMemberOfCollection

MemberOfCollection MemberOfCollection

SCSIProtocolControllerSCSIProtocolController

AssociatedInitiatorMaskingGroup AssociatedInitiatorMaskingGroup
886

NO_ANSI_ID Group Masking and Mapping Profile

106

107

108
Figure 151 shows an example configuration with the InitiatorMaskingGroup.ConsistentLogicalUnitNumber property
set to true. In this case, the storage volume “ABC” shall have the same DeviceNumber value exposed to the same
initiator regardless of the path.

Figure 151 - Example ConsistentLogicalUnitNumber set to true

InitiatorMaskingGroup

ConsistentLogicalUnitNumber = True

StorageHardwareID

MemberOfCollection

SCSIProtocolController

SCSIProtocolController

AssociatedInitiatorMaskingGroup
AssociatedInitiatorMaskingGroup

StorageVolume

DeviceID = “ABC”

SCSIProtocolEndpoint

Name = “7E0”

SCSIProtocolEndpoint

Name = “7E1”

SAPAvailable
ForElement

SAPAvailable
ForElement

ProtocolController
ForUnit

ProtocolController
ForUnit

DeviceNumber = 0 DeviceNumber = 0
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 887

Group Masking and Mapping Profile NO_ANSI_ID

109

110

111

112

113

114

115

116

117
Figure 152 shows an example configuration with the InitiatorMaskingGroup.ConsistentLogicalUnitNumber property
set to false. In this case, depending on the path, the storage volume “ABC” may have different DeviceNumber
values exposed to the same initiator.

If the instrumentation only supports ConsistentLogicalUnitNumber, the capabilities method
SupportedInitiatorGroupFeatures shall indicate “ConsistentLogicalUnitNumber must be true“. In this case, clients
can not create an InitiatorMaskingGroup with the value of the property ConsistentLogicalUnitNumber set to false.

29.1.5 Group Masking and Mapping Capabilities

The class GroupMaskingMappingCapabilities contains the properties that advertise the capabilities of the group
masking and mapping implementation. For example, the property SupportedFeatures indicates capabilities of a

Figure 152 - Example ConsistentLogicalUnitNumber set to false

InitiatorMaskingGroup

ConsistentLogicalUnitNumber = False

StorageHardwareID

MemberOfCollection

SCSIProtocolController

SCSIProtocolController

AssociatedInitiatorMaskingGroup
AssociatedInitiatorMaskingGroup

StorageVolume

DeviceID = “ABC”

SCSIProtocolEndpoint

Name = “7E0”

SCSIProtocolEndpoint

Name = “7E1”

SAPAvailable
ForElement

SAPAvailable
ForElement

ProtocolController
ForUnit

ProtocolController
ForUnit

DeviceNumber = 0 DeviceNumber = 1
888

NO_ANSI_ID Group Masking and Mapping Profile

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140
masking view that uses groups, and the property SupportedInitiatorGroupFeatures indicates the capabilities
specific to an initiator group.

Refer to 29.7 "CIM Elements" for all the capabilities details.

29.2 Health and Fault Management Consideration

None

29.3 Cascading Considerations

None

29.4 Methods of the Profile

The Group Masking and Mapping Profile has extrinsic methods for group management and for managing masking
view.

The Profile relies on a number of intrinsic methods ModifyInstance and DeleteInstance for changing the property
values and deleting instances and that do not require special consideration such as the “force” option.

All of the Profile extrinsic methods return one of the following status codes. Depending on the error condition, a
method may return additional error codes and/or throw an appropriate exception to indicate the error encountered.

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 568 summarizes the extrinsic methods for group management (class GroupMaskingMappingService):

Table 569 summarizes the extrinsic methods for creating and deleting group masking views (class
GroupMaskingMappingService):

Table 568 - Extrinsic Methods for Masking Group Management

Method Described in

CreateGroup See 29.4.1

DeleteGroup See 29.4.2

AddMembers See 29.4.3

RemoveMembers See 29.4.4

Table 569 - Extrinsic Methods for Masking Views Management

Method Described in

CreateMaskingView See 29.4.5
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 889

Group Masking and Mapping Profile NO_ANSI_ID

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176
29.4.1 CreateGroup

 uint32 GroupMaskingMappingService.CreateGroup(

 [IN] string GroupName,

 [IN] uint16 Type,

 [IN] CIM_ManagedElement REF Members[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteOnEmpty,

 [IN] boolean DeleteWhenBecomesUnassociated,

 [IN] boolean ConsistentLogicalUnitNumber,

 [OUT] CIM_MaskingGroup REF MaskingGroup);

This method allows a client to create a new masking group. Any required associations (such as
ServiceAffectsElement) are created in addition to the instance of the group. The parameters are as follows:

• GroupName: If nameable, an end user relevant name for the group being created. If NULL or not nameable,
then system assigns a name. If nameable, the name shall be unique for given ComputerSystem. If not
nameable and a group name is supplied, the method returns an error and aborts the method call.

• Type: The type of masking group to create. Possible choices are InitiatorMaskingGroup, TargetMaskingGroup,
and DeviceMaskingGroup. Any other type or a masking group type not supported by the instrumentation are
rejected.

• Members[]: A list of elements to add to the masking group. For device masking groups the order is maintained.
If NULL, the group shall be empty -- if empty groups are supported. All the supplied elements shall be of type
appropriate for the type of masking group being created.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be NULL if job is completed).

• DeleteOnEmpty: If true, the group shall be deleted when the last element is removed from the group. If false,
the group shall not be deleted when the last element is removed from the group. If an implementation does not
allow empty groups, the group shall be deleted when it becomes empty regardless of the value of this
parameter. See the GetSupported*GroupFeatures() method of the GroupMaskingMappingCapabilities to
determine whether empty groups are allowed.

• DeleteWhenBecomesUnassociated: If true, the group shall be deleted when the group is no longer associated
to any SCSIProtocolController (i.e., a masking view).

• ConsistentLogicalUnitNumber: If true, it indicates the device numbers for a volume visible to the same initiator
through different paths must be same.

• MaskingGroup: A reference to the created group.

29.4.2 DeleteGroup

 uint32 GroupMaskingMappingService.DeleteGroup(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

DeleteMaskingView See 29.4.6

ModifyMaskingView See 29.4.7

Table 569 - Extrinsic Methods for Masking Views Management

Method Described in
890

NO_ANSI_ID Group Masking and Mapping Profile

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215
 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force);

This method allows a client to delete a masking group. Deleting a masking group does not delete its associated
members. The parameters are as follows:

• MaskingGroup: Reference to a masking group which would be deleted.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be NULL if job is completed).

• Force: Attempt to delete the masking group even though it is associated to a masking view, or the group is not
empty. The intent of the Force parameter is to reduce the chance of accidental deletion of a masking group.

29.4.3 AddMembers

 uint32 GroupMaskingMappingService.AddMembers(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

 [IN] CIM_ManagedElement REF Members[],

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job);

This method allows a client to add members to an existing masking group. The parameters are as follows:

• MaskingGroup: Reference to an existing masking group.

• Members[]: List of elements to add to the group. New members are added, in the order supplied, to the end of
the existing members of the group. It is not an error, if a new member is already in the group. All the supplied
elements shall be of type appropriate for the type of masking group supplied.

• DeviceNumbers[]: List of device numbers that correspond to Members. This property is applicable when the
group consists of storage volumes.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be NULL if job is completed).

29.4.4 RemoveMembers

 uint32 GroupMaskingMappingService.RemoveMembers(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

 [IN] CIM_ManagedElement REF Members[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteOnEmpty);

This method allows a client to remove members from a masking group. The parameters are as follows:

• MaskingGroup: Reference to an existing masking group.

• Members[]: List of elements to remove from the group. Deleting all members of a group is equivalent to
deleting the group if empty groups are not supported by the implementation.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be NULL if job is completed).

• DeleteOnEmpty: If true and removal of the members causes the group to become empty, the group shall be
deleted. Note, if empty groups are not allowed, the group shall be deleted automatically when the group
becomes empty. If this parameter is not NULL, it overrides the group's property DeleteOnEmpty.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 891

Group Masking and Mapping Profile NO_ANSI_ID

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255
29.4.5 CreateMaskingView

 uint32 GroupMaskingMappingService.CreateMaskingView(

 [IN] string ElementName,

 [IN] CIM_MaskingGroup REF InitiatorMaskingGroup,

 [IN] CIM_MaskingGroup REF TargetMaskingGroup,

 [IN] CIM_MaskingGroup REF DeviceMaskingGroup,

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SCSIProtocolController REF ProtocolController);

This method allows a client to expose a group of SCSI logical units (such as RAID volumes or tape drives) to a
group of initiators through a group of target ports, through one or more SCSIProtocolControllers (SPCs). If 0 is
returned, the function completed successfully and no ConcreteJob instance is created. If 4096/0x1000 is returned,
a ConcreteJob is started, a reference to which is returned in the Job output parameter. The parameters are as
follows:

• ElementName: A user relevant name for the masking view. If NULL, the implementation assigns a name.

• InitiatorMaskingGroup: Reference to a group of StorageHardwareIDs.

• TargetMaskingGroup: Reference to a group of SCSIProtocolEndpoints.

• DeviceMaskingGroup: Reference to a group of StorageVolumes.

• DeviceNumbers[]: List of device numbers that correspond to the elements of DeviceMaskingGroup. If this
parameter is NULL, device numbers are assigned by the instrumentation.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be NULL if job is completed).

• ProtocolController: A reference to the created SCSIProtocolController, which represents the masking view.

29.4.6 DeleteMaskingView

 uint32 GroupMaskingMappingService.DeleteMaskingView(

 [IN, Required] CIM_SCSIProtocolController REF ProtocolController,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteWhenBecomesUnassociated);

This method allows a client to delete a masking view, i.e., a SCSIProtocolController. Deleting a masking view may
also delete the associated masking groups -- see the applicable capabilities and group properties in 29.7 "CIM
Elements". The parameters are as follows:

• ProtocolController: A reference to the SCSIProtocolController to delete. The masking group associated with
the view may also get deleted depending on the groups' applicable properties.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be NULL if job is completed).

• DeleteWhenBecomesUnassociated: Override the setting of the masking groups' property
DeleteWhenBecomesUnassociated with the value of this parameter.

29.4.7 ModifyMaskingView

 uint32 GroupMaskingMappingService.ModifyMaskingView(

 [IN, Required] uint16 Operation,
892

NO_ANSI_ID Group Masking and Mapping Profile

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296
 [IN, Required] CIM_SCSIProtocolController REF ProtocolController,

 [IN] CIM_MaskingGroup REF MaskingGroup,

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] Force);

This method allows a client to modify a masking view by adding a masking group or by removing a masking group
from the masking view. The parameters are as follows:

• Operation: It describes the type of modification to be made to the masking view. Possible values: "Add Group",
"Remove Group", and “Replace Group”. Adding a masking group to a masking view which already is
associated to the same type of masking group is an error condition. For example, if a masking view is already
associated to an InitiatorMaskingGroup, attempting to add another InitiatorMaskingGroup to the same masking
view results in an error return (or an exception is thrown). The “Replace Group” operation replaces an existing
masking group of the same type (i.e., Initiator, Target Port, or Device). However, if the masking view is not
already associated to a masking group of the type supplied, the instrumentation shall create the appropriate
association between the supplied masking view and masking group; in other words, the “Replace Group”
operation behaves the same as the “Add Group” operation.

• MaskingGroup: A reference to the masking group.

• DeviceNumbers: This parameter applies to an "Add Group" operation. It is a list of device numbers that
correspond to the elements of a DeviceMaskingGroup. If device numbers are not supplied, the instrumentation
may assign the appropriate device numbers to the supplied logical devices.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is returned
through this parameter (may be NULL if job is completed).

• Force: If true, the client is not warned that the operation may render the masking view unusable.

29.5 Client Considerations and Recipes

29.5.1 Using Groups in Masking and Mapping

In general, the Masking and Mapping operations using groups involve the following steps:

• Create the masking groups (initiators, target port, and storage volumes), using the CreateGroup method call.

• Create the masking view using the CreateMaskingView method call.

Depending on the implementation, it may be necessary to supply DeviceNumbers when creating a
DeviceMaskingGroup or the actual masking view -- refer to the group capabilities (in 29.7 "CIM Elements"). If
DeviceNumbers are not required, the implementation shall assign the appropriate device numbers.

Once a masking view is created, to expose additional storage volumes to the same initiator ports, the client only
needs to add the additional storage volumes to the DeviceMaskingGroup using the AddMembers method call.
Alternatively, to remove access to certain storage volumes exposed through a masking view, the client needs only
to use the RemoveMembers method call to removed the intended storage volumes from the DeviceMaskingGroup
associated with the masking view.

An implementation may initially allow a client to create a masking view with fewer than all three masking groups
(initiators, target ports, and devices) or even empty masking groups (see the capabilities in 29.7 "CIM Elements" to
determine which groups are required for the creation of a masking view). Subsequently, the client may use the
appropriate methods (ModifyMaskingView) to add the necessary masking groups and/or to add members
(AddMembers) to the empty masking groups.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 893

Group Masking and Mapping Profile NO_ANSI_ID

297

298

299

300

301

302

303

304

305

306

307

308

309

310
Assuming the methods ExposePaths and HidePaths methods are supported by the implementation, changes
made to an masking view via the ExposePaths and HidePaths methods shall appear correctly to a client using the
Group Masking and Mapping Profile. For example, if a client utilizes the HidePaths method to remove a device
associated to a masking view, the instrumentation shall remove the device from the device masking group
associated to the same masking view. However, if the device masking group is associated to multiple masking
views, the instrumentation return an error. Similarly, if a client utilizes the AddMembers method to add a device to a
device masking group associated to an existing masking view, the end result shall be as if the client used the
ExposePaths method to expose the device. In summary, any changes made to a masking view by a 1.5 client shall
appear correct to the pre-1.5 client and vice versa.

29.6 Registered Name and Version

Group Masking and Mapping Profile version 1.5.0 (Component Profile)

Specializes SNIA Masking and Mapping version 1.4.0

29.7 CIM Elements

Table 570 describes the CIM elements for Group Masking and Mapping Profile.

Table 570 - CIM Elements for Group Masking and Mapping Profile

Element Name Requirement Description

29.7.1 CIM_AssociatedDeviceMaskingGroup Conditional Conditional requirement: Required if device
masking groups are supported. Associates
SCSIProtocolController to an
DeviceMaskingGroup.

29.7.2 CIM_AssociatedInitiatorMaskingGroup Conditional Conditional requirement: Required if initiator
masking groups are supported. Associates
SCSIProtocolController to an
InitiatorMaskingGroup.

29.7.3 CIM_AssociatedTargetMaskingGroup Conditional Conditional requirement: Required if target
masking groups are supported. Associates
SCSIProtocolController to a
TargetMaskingGroup.

29.7.4 CIM_AuthorizedPrivilege Mandatory

29.7.5 CIM_AuthorizedSubject Mandatory

29.7.6 CIM_AuthorizedTarget Mandatory

29.7.7 CIM_ConcreteDependency
(Associates ControllerConfiguirationService
and ProtocolController)

Mandatory

29.7.8 CIM_ConcreteDependency
(Associates PrivilegeManagementService and
AuthorizedPrivilege)

Mandatory

29.7.9 CIM_ConcreteDependency
(Associates
StorageHardwareIDManagementService and
StorageHardwareID)

Mandatory
894

NO_ANSI_ID Group Masking and Mapping Profile
29.7.10 CIM_ConcreteDependency
(Associates
StorageHardwareIDManagementService and
SystemSpecificCollection)

Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs.

29.7.11 CIM_DeviceMaskingGroup Mandatory Represents a group of Devices
(StorageVolumes).

29.7.12 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ControllerConfigurationService)

Optional Associates
EnabledLogicalElementCapabilities with
ControllerConfigurationService.

29.7.13 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ProtocolController)

Optional Expressed the ability for the element to be
named or have its state changed.

29.7.14 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareID)

Optional Associates
EnabledLogicalElementCapabilities to
StorageHardwareID.

29.7.15 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService)

Optional Associates
EnabledLogicalElementCapabilities with
StorageHardwareIDManagementService.

29.7.16 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
SystemSpecificCollection)

Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs. Associates
EnabledLogicalElementCapabilities and
SystemSpecificCollection.

29.7.17 CIM_ElementCapabilities (System to
ProtocolControllerMaskingCapabilities)

Mandatory

29.7.18 CIM_ElementSettingData (Associates
ComputerSystem and
StorageClientSettingData)

Mandatory

29.7.19 CIM_ElementSettingData (Associates
Port and StorageClientSettingData)

Optional

29.7.20 CIM_ElementSettingData (Associates
ProtocolController and
StorageClientSettingData)

Optional

29.7.21 CIM_ElementSettingData (Associates
StorageHardwareID and
StorageClientSettingData)

Optional

29.7.22
CIM_EnabledLogicalElementCapabilities

Optional This class is used to express the naming and
possible requested state change possibilities
for storage elements.

29.7.23
CIM_GroupMaskingMappingCapabilities

Mandatory A set of properties that describe the
capabilities of a group masking and mapping
provider.

Table 570 - CIM Elements for Group Masking and Mapping Profile

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 895

Group Masking and Mapping Profile NO_ANSI_ID
29.7.24 CIM_GroupMaskingMappingService Mandatory Central class for Group Masking and Mapping
Profile. Methods are described in the Extrinsic
Methods clause.

29.7.25 CIM_HostedCollection Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs.

29.7.26 CIM_HostedService (Associates
ComputerSystem and
ControllerConfigurationService)

Mandatory

29.7.27 CIM_HostedService (Associates
ComputerSystem and
PrivilegeManagementService)

Mandatory

29.7.28 CIM_HostedService (Associates
ComputerSystem and
StorageHardwareIDManagementService)

Mandatory

29.7.29 CIM_InitiatorMaskingGroup Mandatory Represents a group of initiator ports
(StorageHardwareIDs).

29.7.30 CIM_MemberOfCollection Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs.

29.7.31 CIM_PrivilegeManagementService Mandatory

29.7.32 CIM_ProtocolController Mandatory

29.7.33 CIM_ProtocolControllerForUnit Mandatory

29.7.34 CIM_SAPAvailableForElement Mandatory

29.7.35 CIM_ServiceAffectsElement
(Between GroupMaskingMappingService and
MaskingGroup)

Conditional Conditional requirement: Required if device
masking groups are supported or Required if
initiator masking groups are supported or
Required if target masking groups are
supported. Associates Group Masking
Mapping Service to Masking Group.

29.7.36 CIM_StorageClientSettingData Mandatory

29.7.37 CIM_StorageHardwareID Mandatory

29.7.38
CIM_StorageHardwareIDManagementService

Mandatory

29.7.39 CIM_SystemSpecificCollection Conditional Conditional requirement: Implementation
support for collections of
StorageHardwareIDs.

29.7.40 CIM_TargetMaskingGroup Mandatory Represents a group of target ports
(ProtocolEndpoints).

Table 570 - CIM Elements for Group Masking and Mapping Profile

Element Name Requirement Description
896

NO_ANSI_ID Group Masking and Mapping Profile

311

312

313

314

315

316
29.7.1 CIM_AssociatedDeviceMaskingGroup

Associates SCSIProtocolController to an DeviceMaskingGroup.

Created By: Static

Modified By: Static

Deleted By: Static

29.7.41
SNIA_ProtocolControllerMaskingCapabilities

Optional An experimental subclass of
CIM_ProtocolControllerMaskingCapabilities.

29.7.42 SNIA_StorageHardwareID Optional Experimental SNIA class adding SAS Address
IDs.

29.7.43
SNIA_StorageHardwareIDManagementServic
e

Optional Experimental subclass with support for SAS
StorageHardwareIDs.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Creation of a ProtocolController.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Deletion of a ProtocolController.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_ProtocolControllerForUnit

Mandatory Creation of a ProtocolControllerForUnit
association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_ProtocolControllerForUnit

Mandatory Deletion of a ProtocolControllerForUnit
association.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ProtocolControllerForUnit

Mandatory Modification of a ProtocolControllerForUnit
association (e.g. changing DeviceNumber).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Creation of an AuthorizedSubject association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Deletion of an AuthorizedSubject association.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_MaskingGroup

Optional Creation of a MaskingGroup.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_MaskingGroup

Optional Deletion of a MaskingGroup.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_MaskingGroup

Optional Modification of properties of a MaskingGroup.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity='SNIA' and
MessageID='DRM31'

Optional There is a change in the membership of a
masking group.

Table 570 - CIM Elements for Group Masking and Mapping Profile

Element Name Requirement Description
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 897

Group Masking and Mapping Profile NO_ANSI_ID

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334
Requirement: Required if device masking groups are supported.

Table 571 describes class CIM_AssociatedDeviceMaskingGroup.

29.7.2 CIM_AssociatedInitiatorMaskingGroup

Associates SCSIProtocolController to an InitiatorMaskingGroup.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if initiator masking groups are supported.

Table 572 describes class CIM_AssociatedInitiatorMaskingGroup.

29.7.3 CIM_AssociatedTargetMaskingGroup

Associates SCSIProtocolController to an TargetMaskingGroup.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if target masking groups are supported.

Table 573 describes class CIM_AssociatedTargetMaskingGroup.

29.7.4 CIM_AuthorizedPrivilege

Table 571 - SMI Referenced Properties/Methods for CIM_AssociatedDeviceMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory DeviceMaskingGroup.

Table 572 - SMI Referenced Properties/Methods for CIM_AssociatedInitiatorMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory InitiatorMaskingGroup.

Table 573 - SMI Referenced Properties/Methods for CIM_AssociatedTargetMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory TargetMaskingGroup.
898

NO_ANSI_ID Group Masking and Mapping Profile

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357
Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 574 describes class CIM_AuthorizedPrivilege.

29.7.5 CIM_AuthorizedSubject

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 575 describes class CIM_AuthorizedSubject.

29.7.6 CIM_AuthorizedTarget

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Table 574 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Optional User friendly name.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write').

Table 575 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

PrivilegedElement Mandatory The Subject for which Privileges are granted or denied.

Privilege Mandatory The Privilege either granted or denied to an Identity or
group of Identities collected by a Role.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 899

Group Masking and Mapping Profile NO_ANSI_ID

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372
Requirement: Mandatory

Table 576 describes class CIM_AuthorizedTarget.

29.7.7 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 577 describes class CIM_ConcreteDependency (Associates ControllerConfiguirationService and
ProtocolController).

29.7.8 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivilege)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 578 describes class CIM_ConcreteDependency (Associates PrivilegeManagementService and
AuthorizedPrivilege).

Table 576 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

TargetElement Mandatory The target set of resources to which the Privilege applies.

Privilege Mandatory The Privilege affecting the target resource.

Table 577 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates Con-
trollerConfiguirationService and ProtocolController)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 578 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates Privi-
legeManagementService and AuthorizedPrivilege)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
900

NO_ANSI_ID Group Masking and Mapping Profile

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394
29.7.9 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and
StorageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 579 describes class CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and
StorageHardwareID).

29.7.10 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and
SystemSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 580 describes class CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and
SystemSpecificCollection).

29.7.11 CIM_DeviceMaskingGroup

Represents a group of Devices (StorageVolumes).

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Table 579 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates Stor-
ageHardwareIDManagementService and StorageHardwareID)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 580 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates Stor-
ageHardwareIDManagementService and SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 901

Group Masking and Mapping Profile NO_ANSI_ID

395

396

397

398

399

400

401

402

403

404

405

406

407
Table 581 describes class CIM_DeviceMaskingGroup.

29.7.12 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 582 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ControllerConfigurationService).

29.7.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 581 - SMI Referenced Properties/Methods for CIM_DeviceMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and
uniquely identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be
deleted when the last element is removed from the group. If
empty groups are not allowed, the group will be deleted
automatically when the group becomes empty.

DeleteWhenBecome
sUnassociated

M Mandatory If true, the group will be deleted when the group is no
longer associated with a masking view. This can happen if
all masking views associated to this group are deleted.

ElementName Optional User Friendly name.

Table 582 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
902

NO_ANSI_ID Group Masking and Mapping Profile

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422
Table 583 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController).

29.7.14 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 584 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID).

29.7.15 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 585 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService).

Table 583 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to ProtocolController)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 584 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to StorageHardwareID)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 585 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 903

Group Masking and Mapping Profile NO_ANSI_ID

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440
29.7.16 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 586 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
SystemSpecificCollection).

29.7.17 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 587 describes class CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities).

29.7.18 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 586 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalEle-
mentCapabilities to SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 587 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to Proto-
colControllerMaskingCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory
904

NO_ANSI_ID Group Masking and Mapping Profile

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455
Table 588 describes class CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData).

29.7.19 CIM_ElementSettingData (Associates Port and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 589 describes class CIM_ElementSettingData (Associates Port and StorageClientSettingData).

29.7.20 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 590 describes class CIM_ElementSettingData (Associates ProtocolController and
StorageClientSettingData).

29.7.21 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)

Table 588 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Com-
puterSystem and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 589 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port
and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 590 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Proto-
colController and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 905

Group Masking and Mapping Profile NO_ANSI_ID

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472
Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 591 describes class CIM_ElementSettingData (Associates StorageHardwareID and
StorageClientSettingData).

29.7.22 CIM_EnabledLogicalElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 592 describes class CIM_EnabledLogicalElementCapabilities.

29.7.23 CIM_GroupMaskingMappingCapabilities

A set of properties that describe the capabilities of a group masking and mapping provider. The class definition
specializes the CIM_ProtocolControllerMaskingCapabilities definition in the Masking and Mapping profile.
Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Table 591 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Stor-
ageHardwareID and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 592 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory The moniker for the instance.

ElementNameEditSu
pported

Mandatory Denotes whether an storage element can be named.

MaxElementNameLe
n

Mandatory Specifies the maximum length in glyphs (letters) for the
name. See MOF for details.

ElementNameMask Mandatory The regular expression that specifies the possible content
and format for the element name. See MOF for details.

RequestedStatesSup
ported

Optional Expresses the states to which this element may be
changed using the RequestStateChange method. If this
property, it may be assumed that the state may not be
changed.
906

NO_ANSI_ID Group Masking and Mapping Profile

473

474

475

476
Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 593 describes class CIM_GroupMaskingMappingCapabilities.

Table 593 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Mandatory User-friendly name.

ValidHardwareIdType
s

Mandatory A list of the valid values for StrorageHardwareID.IDType.

PortsPerView Mandatory Indicates the way that ports per view (ProtocolController)
are handled.

ClientSelectableDevi
ceNumbers

Mandatory Indicates whether the client can specify the
DeviceNumbers parameter when calling
ControllerConfigurationService.ExposePaths().

OneHardwareIDPerV
iew

Mandatory Set to true if this storage system limits configurations to a
single subject hardware ID per view.

PrivilegeDeniedSupp
orted

Mandatory Set to true if this storage system allows a client to create a
Privilege instance with PrivilegeGranted set to FALSE.

UniqueUnitNumbers
PerPort

Mandatory Indicates whether different ProtocolContollers attached to a
SCSIProtocolEndpoint can expose the same unit numbers
(e.g. multiple LUN 0s) or if the numbers must be unique.

ProtocolControllerSu
pportsCollections

Optional Indicates the storage system supports
SystemSpecificCollections of StorageHardwareIDs.

OtherValidHardwareI
DTypes

Conditional Conditional requirement: Properties required when
ValidHardwareIDTypes includes 1 (Other).An array of
strings describing types for valid
StorageHardwareID.IDType. Used when the
ValidHardwareIdTypes includes Other.

MaximumMapCount Mandatory The maximum number of ProtocolControllerForUnit
associations that can be associated with a single
LogicalDevice (for example, StorageVolume). Zero
indicates there is no limit.

SPCAllowsNoLUs Mandatory Set to true if a client can create an SPC with no
LogicalDevices.

SPCAllowsNoTargets Mandatory Set to true if a client can create an SPC with no target
SCSIProtocolEndpoints.

SPCAllowsNoInitiator
s

Mandatory Set to true if a client can create an SPC with no
StorageHardwareIDs.

SPCSupportsDefault
Views

Mandatory Set to true if it the instrumentation supports default view
SPCs that exposes logical units to all initiators.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 907

Group Masking and Mapping Profile NO_ANSI_ID
SupportedFeatures
(added)

Mandatory Enumeration indicating the capabilities of masking and
mapping features having to do with masking groups.
Values:

 2: Supports initiator masking group

 3: Supports target masking group

 4: Supports device masking group

 5: Auto assigns host device numbers

 6: Maskview creation requires initiator masking group

 7: Maskview creation requires target masking group

 8: Maskview creation requires device masking group

 9: Maskview requires non-empty initiator masking group

 10: Maskview requires non-empty target masking group

11: Maskview requires non-empty device masking group.

SupportedAsynchron
ousActions (added)

Mandatory Identify group masking methods using job control. Values:

 19: CreateGroup

 20: DeleteGroup

 21: AddMembers

 22: RemoveMembers

 23: CreateMaskingView

 24: DeleteMaskingView

25: ModifyMaskingView.

SupportedSynchrono
usActions (added)

Mandatory Identify group masking methods not using job control.
Values:

 19: CreateGroup

 20: DeleteGroup

 21: AddMembers

 22: RemoveMembers

 23: CreateMaskingView

 24: DeleteMaskingView

25: ModifyMaskingView.

Table 593 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes
908

NO_ANSI_ID Group Masking and Mapping Profile
SupportedDeviceGro
upFeatures (added)

Conditional Conditional requirement: Required if device masking
groups are supported. Enumeration indicating the
capabilities of Initiator groups. Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking group

 10: Associated empty group indicates no access

11: Unassociated group rejects device numbers.

Table 593 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 909

Group Masking and Mapping Profile NO_ANSI_ID

477

478

479

480

481

482

483

484
29.7.24 CIM_GroupMaskingMappingService

Central class for Group Masking and Mapping Profile. The class definition specializes the
CIM_ControllerConfigurationService definition in the Masking and Mapping profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SupportedInitiatorGro
upFeatures (added)

Conditional Conditional requirement: Required if initiator masking
groups are supported. Enumeration indicating the
capabilities of Initiator groups. Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking group

 10: Associated empty group indicates no access

11: ConsistentLogicalUnitNumber must be true.

SupportedTargetGro
upFeatures (added)

Conditional Conditional requirement: Required if target masking groups
are supported. Enumeration indicating the capabilities of
Initiator groups. Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking group

10: Associated empty group indicates no access.

Table 593 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes
910

NO_ANSI_ID Group Masking and Mapping Profile

485

486

487

488

489

490
Table 594 describes class CIM_GroupMaskingMappingService.

29.7.25 CIM_HostedCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 594 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

ExposePaths() Mandatory

HidePaths() Mandatory

ExposeDefaultLUs() Optional

HideDefaultLUs() Optional

DeleteProtocolContro
ller()

Optional

CreateMaskingView()
(added)

Mandatory

DeleteMaskingView()
(added)

Optional

ModifyMaskingView()
(added)

Optional

CreateGroup()
(added)

Mandatory

DeleteGroup()
(added)

Optional

AddMembers()
(added)

Mandatory

RemoveMembers()
(added)

Mandatory
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 911

Group Masking and Mapping Profile NO_ANSI_ID

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505
Table 595 describes class CIM_HostedCollection.

29.7.26 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 596 describes class CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService).

29.7.27 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 597 describes class CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService).

29.7.28 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementService)

Created By: Static

Table 595 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 596 - SMI Referenced Properties/Methods for CIM_HostedService (Associates Computer-
System and ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 597 - SMI Referenced Properties/Methods for CIM_HostedService (Associates Computer-
System and PrivilegeManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
912

NO_ANSI_ID Group Masking and Mapping Profile

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520
Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 598 describes class CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService).

29.7.29 CIM_InitiatorMaskingGroup

Represents a group of initiator ports (StorageHardwareIDs).

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Table 599 describes class CIM_InitiatorMaskingGroup.

29.7.30 CIM_MemberOfCollection

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection,
CIM_StorageHardwareIDManagementService.AddHardwareIDsToCollection

Table 598 - SMI Referenced Properties/Methods for CIM_HostedService (Associates Computer-
System and StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 599 - SMI Referenced Properties/Methods for CIM_InitiatorMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and
uniquely identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be
deleted when the last element is removed from the group. If
empty groups are not allowed, the group will be deleted
automatically when the group becomes empty.

DeleteWhenBecome
sUnassociated

M Mandatory If true, the group will be deleted when the group is no
longer associated with a masking view. This can happen if
all masking views associated to this group are deleted.

ConsistentLogicalUni
tNumber

M Mandatory If true, it indicates the device numbers for a volume visible
to the same initiator though different paths must be the
same.

ElementName Optional User Friendly name.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 913

Group Masking and Mapping Profile NO_ANSI_ID

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538
Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 600 describes class CIM_MemberOfCollection.

29.7.31 CIM_PrivilegeManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 601 describes class CIM_PrivilegeManagementService.

29.7.32 CIM_ProtocolController

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 600 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 601 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System Name.

Name Mandatory Uniquely identifies the Service.

ElementName Mandatory User friendly name.

AssignAccess() Mandatory

RemoveAccess() Mandatory
914

NO_ANSI_ID Group Masking and Mapping Profile

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555
Table 602 describes class CIM_ProtocolController.

29.7.33 CIM_ProtocolControllerForUnit

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 603 describes class CIM_ProtocolControllerForUnit.

29.7.34 CIM_SAPAvailableForElement

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Table 602 - SMI Referenced Properties/Methods for CIM_ProtocolController

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System's Name.

DeviceID Mandatory Unique name for the ProtocolController.

Table 603 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be
formatted as unseparated uppercase hexadecimal digits,
with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as
exposed through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block
Services StorageVolume).
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 915

Group Masking and Mapping Profile NO_ANSI_ID

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575
Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 604 describes class CIM_SAPAvailableForElement.

29.7.35 CIM_ServiceAffectsElement (Between GroupMaskingMappingService and MaskingGroup)

Associates Group Masking Mapping Service to Masking Group.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if device masking groups are supported or Required if initiator masking groups are
supported or Required if target masking groups are supported.

Table 605 describes class CIM_ServiceAffectsElement (Between GroupMaskingMappingService and
MaskingGroup).

29.7.36 CIM_StorageClientSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 604 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 605 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between Group-
MaskingMappingService and MaskingGroup)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Group Masking Mapping Service.

AffectedElement Mandatory Masking Group.
916

NO_ANSI_ID Group Masking and Mapping Profile

576

577

578

579

580

581

582

583

584

585

586

587
Table 606 describes class CIM_StorageClientSettingData.

29.7.37 CIM_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Mandatory

Table 607 describes class CIM_StorageHardwareID.

29.7.38 CIM_StorageHardwareIDManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 608 describes class CIM_StorageHardwareIDManagementService.

Table 606 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

ClientTypes Mandatory Array of OS names.

Table 607 - SMI Referenced Properties/Methods for CIM_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5 (Other or
PortWWN or NodeWWN or Hostname or iSCSI Name).

Table 608 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 917

Group Masking and Mapping Profile NO_ANSI_ID

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602
29.7.39 CIM_SystemSpecificCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 609 describes class CIM_SystemSpecificCollection.

29.7.40 CIM_TargetMaskingGroup

Represents a group of target ports (ProtocolEndpoints).

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Name Mandatory Uniquely identifies the Service.

CreateStorageHardw
areID()

Mandatory

DeleteStorageHardw
areID()

Mandatory

CreateHardwareIDC
ollection()

Optional

AddHardwareIDsToC
ollection()

Optional

Table 609 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

Table 608 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes
918

NO_ANSI_ID Group Masking and Mapping Profile

603

604

605

606

607

608

609

610

611

612

613

614

615

616
Table 610 describes class CIM_TargetMaskingGroup.

29.7.41 SNIA_ProtocolControllerMaskingCapabilities

An experimental subclass of CIM_ProtocolControllerMaskingCapabilities that adds properties asserting method
support and support for SAS StorageHardwareIDs.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 611 describes class SNIA_ProtocolControllerMaskingCapabilities.

29.7.42 SNIA_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 610 - SMI Referenced Properties/Methods for CIM_TargetMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and
uniquely identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be
deleted when the last element is removed from the group. If
empty groups are not allowed, the group will be deleted
automatically when the group becomes empty.

DeleteWhenBecome
sUnassociated

M Mandatory If true, the group will be deleted when the group is no
longer associated with a masking view. This can happen if
all masking views associated to this group are deleted.

ElementName Optional User Friendly name.

Table 611 - SMI Referenced Properties/Methods for SNIA_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes

SupportedAsynchron
ousActions

Mandatory Indicates which operations will result in a Job being
created.

SupportedSynchrono
usActions

Mandatory Indicates which operations will execute without a Job being
created.
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 919

Group Masking and Mapping Profile NO_ANSI_ID

617
 Table 612 describes class SNIA_StorageHardwareID.

29.7.43 SNIA_StorageHardwareIDManagementService

Experimental subclass with support for SAS StorageHardwareIDs.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 613 describes class SNIA_StorageHardwareIDManagementService.

EXPERIMENTAL

Table 612 - SMI Referenced Properties/Methods for SNIA_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5|6 (Other or
PortWWN or NodeWWN or Hostname or iSCSI Name or
SAS Address).

Table 613 - SMI Referenced Properties/Methods for
SNIA_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

CreateStorageHardw
areID()

Mandatory Experimental: may use SAS Address IDType.

DeleteStorageHardw
areID()

Mandatory

CreateHardwareIDC
ollection()

Optional

AddHardwareIDsToC
ollection()

Optional
920

Annex A: (informative) SMI-S Information Model

This standard is based on DMTF’s CIM schema, version 2.23. The DMTF schema is available in the
machinereadable Managed Object Format (MOF) format. DMTF MOFs are simultaneously released both as an
"Experimental" and a "Final" version of the schema. This provides developers with early access to experimental
parts of the models. Both versions are available at
 http://www.dmtf.org/standards/cim/cim_schema_v2230

Most SMI-S Profiles are primarily based on the DMTF Final MOFs. Content marked as “Experimental” or
“Implemented” may be based on DMTF’s Experimental MOFs. Some SMI-S Experimental Profiles may also use
classes with a SNIA_ prefix; MOFs from these classes are available from SNIA.
SMI-S 1.5.0 Revision 6 SNIA Technical Position 155

Annex A: (informative) SMI-S Information Model NO_ANSI_ID
156

NO_ANSI_ID Annex B: (Informative) Registry of StorageExtent Definitions

1

2

3

4

5

6

7

8

9

10
Annex B: (Informative) Registry of StorageExtent Definitions

EXPERIMENTAL

Table B.1 lists a registry of StorageExtent definitions in SMI-S and the properties that distinguish the extents from
each other.

These definitions are not mutually exclusive. That is, a single StorageExtent instance may satisfy multiple of these
definitions. For example, it would not be uncommon for a StorageExtent (Primordial Disk Drive Extent) to also be a
StorageExtent (Spare). However, some are mutually exclusive. For example, all the extents defined in Extent
Composition are mutually exclusive with the StorageExtent (Primordial Disk Drive Extent). The Extent Composition
extents all have Primordial='false' and the StorageExtent (Primordial Disk Drive Extent) has Primordial='true'. So
an instance cannot be both a disk drive StorageExtent and an Extent Composition storage extent. The known valid
combinations are discussed in section B.3.

Table B.1 - Registry of StorageExtent Definitions

Extent (Usage) Profile Primordial ExtentDiscriminator

StorageExtent (Intermediate) Extent Composition 'false' 'SNIA:Intermediate'

StorageExtent (Pool Component) Extent Composition 'false' 'SNIA:Pool Component'

CompositeExtent (Composite
Intermediate)

Extent Composition 'false' 'SNIA:Intermediate' and
'SNIA:Composite'

CompositeExtent (Composite
Pool Component)

Extent Composition 'false' 'SNIA:Pool Component'
and 'SNIA:Composite'

StorageExtent (Remaining) Extent Composition 'false' 'SNIA:Remaining'

StorageExtent (Primordial Disk
Drive Extent)

Disk Drive Lite 'true' 'SNIA:Pool Component'
and 'SNIA:DiskDrive'

StorageExtent (Imported Extents) Storage Virtualizer 'true' 'SNIA:Pool Component'
and 'SNIA:Imported'

StorageExtent (Spare) Disk Sparing either 'SNIA:Spare'

StorageVolume (Allocated) Block Services, Disk
Sparing

'false' 'SNIA:Allocated'

LogicalDisk (Allocated) Block Services, Disk
Sparing

'false' 'SNIA:Allocated'

StorageVolume (Constituent) Pools from Volumes 'false' 'SNIA:Pool Component'

StorageVolume (Shadow) Storage Virtualizer, NAS
Head, Replication
Services

'false' 'SNIA:Shadow'

LogicalDisk (Shadow) Host Filesystem 'false' 'SNIA:Shadow'

LogicalDisk (Filesystem) NAS Head, Self-
contained NAS

'false' 'SNIA:Allocated' and
'SNIA:Reserved'

LogicalDisk (Intermediate) Volume Management 'false' 'SNIA:Intermediate'

LogicalDisk (Primordial) Volume Management 'true' 'SNIA:Imported'
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 923

NO_ANSI_ID

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
B.1 ExtentDiscriminator Definitions

The Values for ExtentDiscriminator are defined as follows:

SNIA:Pool Component - A StorageExtent (or CompositeExtent) that represents storage of a StoragePool,
but is not a remaining extent.

SNIA:Intermediate - A StorageExtent (or CompositeExtent) that is neither a Pool Component nor a
Remaining Extent (it does not represent storage in the pool, remaining or otherwise).

SNIA:Composite - A StorageExtent that is a CompositeExtent.

SNIA:Remaining - A StorageExtent that has an AssociatedRemainingExtent to a StoragePool
(representing free storage in the StoragePool).

SNIA:DiskDrive - A StorageExtent that is the media on a Disk Drive.

SNIA:Imported - A StorageExtent that is imported from an external source.

SNIA:Spare - A StorageExtent that acts as a spare for other StorageExtents (and has the IsSpare
association).

SNIA:Allocated - A StorageExtent that is subclassed to StorageVolume or LogicalDisk, and has an
AllocatedFromStoragePool association from a Concrete StoragePool.

SNIA:Shadow - A StorageExtent (or subclass) that represents a StorageExtent in another autonomous
profile (e.g., the StorageVirtualizer has StorageVolumes (Shadow) that represent StorageVolumes
exported by Arrays).

SNIA:Reserved - A StorageExtent that is reserved for some system use within the autonomous profile
(e.g., in NAS profiles, an Allocated LogicalDisk is reserved for holding Filesystems).

B.2 Association Significance of the Various Extent Definitions

Each of the Extent Definitions has significance relative to the associations that may exist for the Extent definition.
This section lists the associations implied by the various definitions.

B.2.1 StorageExtent (Intermediate)

An intermediate StorageExtent has the following associations defined on it:

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Dependent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.2 StorageExtent (Pool Component)

A pool component StorageExtent has the following associations defined on it:

• The PartComponent of a ConcreteComponent to a "concrete" StoragePool (Mandatory, but Deprecated)

• The PartComponent of a AssociatedComponentExtent to a "concrete" StoragePool (Mandatory)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

.

924

NO_ANSI_ID Annex B: (Informative) Registry of StorageExtent Definitions

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
• The Dependent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.3 CompositeExtent (Composite Intermediate)

An intermediate CompositeExtent has the following associations defined on it:

• The Dependent on a CompositeExtentBasedOn (Optional)

• The Dependent on a BasedOn in striping cases (Optional)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.4 CompositeExtent (Composite Pool Component)

A pool component CompositeExtent has the following associations defined on it:

• The PartComponent of a ConcreteComponent to a "concrete" StoragePool (Mandatory, but Deprecated)

• The PartComponent of a AssociatedComponentExtent to a "concrete" StoragePool (Mandatory)

• The Dependent on a CompositeExtentBasedOn (Mandatory)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.5 StorageExtent (Remaining)

A remaining StorageExtent has the following associations defined on it:

• The Dependent of a "mid level Remaining" BasedOn association (Mandatory)

• The PartComponent of a AssociatedRemainingExtent to a "concrete" StoragePool (Mandatory)

• The PartComponent of a ConcreteComponent to a StoragePool (Mandatory, but Deprecated)

B.2.6 StorageExtent (Primordial Disk Drive Extent)

A Disk drive StorageExtent has the following associations defined on it:

• The Dependent of a MediaPresent to DiskDrive (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The PartComponent of a ConcreteComponent to a "Primordial" StoragePool (Mandatory, but Deprecated)

• The Antecedent of a "Bottom level" BasedOn association (Conditional on Extent Composition)

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

• The Dependent of a ProtocolControllerAccessesUnit to ProtocolController (Optional)

• The LogicalUnit of a SCSIInitiatorTargetLogicalUnitPath to Initiator & Target ProtocolEndpoints (Optional)
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 925

NO_ANSI_ID

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110
B.2.7 StorageExtent (Imported Extents)

An imported StorageExtent has the following associations defined on it:

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The PartComponent of a ConcreteComponent to a "Primordial" StoragePool (Mandatory, but Deprecated)

• The Antecedent of a "Bottom level" BasedOn association (Conditional on Extent Composition)

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

B.2.8 StorageExtent (Spare)

A spare StorageExtent has the following associations defined on it:

• The Antecedent of an IsSpare association (Mandatory)

• The Antecedent of a Spared association (Mandatory)

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

• The PartComponent of a ConcreteComponent to a StoragePool

B.2.9 StorageVolume (Allocated)

An Allocated StorageVolume has the following associations defined on it:

• The ManagedElement of an ElementSettingData to a StorageSetting (Mandatory)

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The ManagedElement of an ElementCapabilities to a StorageCapabilities (Optional)

B.2.10 LogicalDisk (Allocated)

An Allocated LogicalDisk has the following associations defined on it:

• The ManagedElement of an ElementSettingData to a StorageSetting (Mandatory)

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The ManagedElement of an ElementCapabilities to a StorageCapabilities (Optional)

B.2.11 StorageVolume (Pool Component)

A Pool Component StorageVolume has the following associations defined on it:

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

B.2.12 StorageVolume (Shadow)

A Shadow StorageVolume has the following associations defined on it:

• The PartComponent of a SystemDevice to a "Shadow" ComputerSystem (Mandatory)
926

NO_ANSI_ID

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125
• A SystemElement of a LogicalIdentity to an "Imported" StorageExtent (Mandatory)

• A member of a MemberOfCollection to a SNIA_AllocatedResources (Mandatory)

• A member of a MemberOfCollection to a SNIA_RemoteResources (Optional)

B.2.13 LogicalDisk (Shadow)

A Shadow LogicalDisk has the following associations defined on it:

• The PartComponent of a SystemDevice to a "Shadow" ComputerSystem (Mandatory)

• A SystemElement of a LogicalIdentity to an "Imported" StorageExtent (Mandatory)

• A member of a MemberOfCollection to a SNIA_AllocatedResources (Mandatory)

• A member of a MemberOfCollection to a SNIA_RemoteResources (Optional)

B.3 Example Valid Combinations of Extent Definitions

Table B.2 shows the known valid combinations of Extent Definitions. These refer to StorageExtent instances that
have multiple Usages.

B.4 Combinations of Extent Definitions not defined in this Release of the Standard

Currently, this release of the standard does not directly or indirectly support the combinations of Extent Definitions.
Some example of combinations not defined in this standard are identified in Table B.3.

Table B.2 - Example Valid Combinations of Extent Definitions

Extent
Usage

Extent
Usage

Primordial ExtentDiscriminators Notes

Primordial Disk
Drive Extent

Spare 'true' 'SNIA:Pool Component',
'SNIA:DiskDrive' and
'SNIA:Spare'

A disk drive extent may be a
spare.

Imported
Extents

Spare 'true' 'SNIA:Pool Component',
'SNIA:Imported' and
'SNIA:Spare'

An imported extent may be a
spare.

Composite
Pool
Component

Spare 'false' 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:Spare'

A composite Pool component
(a concrete extent) may be a
spare

Pool
Component

Spare 'false' 'SNIA:Pool Component'
and 'SNIA:Spare'

A Pool Component (a concrete
extent) may be a spare

Table B.3 - Extent Combinations not defined in this Release of the Standard

Extent
Usage

Extent
Usage

Primordial ExtentDiscriminators Notes

Primordial Disk
Drive Extent

Intermediate Conflicted 'SNIA:Intermediate' and
'SNIA:DiskDrive'

An Intermediate Extent is
always a concrete extent

Imported
Extents

Intermediate Conflicted 'SNIA:Intermediate' and
'SNIA:Imported'

An Intermediate Extent is
always a concrete extent
 SMI-S 1.5.0 Revision 6 SNIA Technical Position 927

NO_ANSI_ID

126

127

128

129

130
Several of the rows in Table B.3 have the value “Conflicted” in the Primordial column. This means one type of
extent is supposed to have the value ‘true’ and the other type of extent is supposed to have the value ‘false’. For
example, the standard defines a “Primordial Disk Drive Extent” to always have Primordial=’true’ and a “Composite
Pool Component” to always have Primordial=’false’. So a “Primordial Disk Drive Extent” can never be a
“Composite Pool Component”.

EXPERIMENTAL

Remaining Intermediate ‘false’ 'SNIA:Intermediate' and
'SNIA:Remaining'

An Intermediate Extent is used
to represent storage that is in
use (and remaining is free
space).

Remaining Pool
Component

‘false’ 'SNIA:Pool Component'
and 'SNIA:Remaining'

A Remaining Extent represents
unallocated storage in a Pool
and cannot be a component of
a Pool.

Primordial Disk
Drive Extent

Composite
Pool
Component

Conflicted 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:DiskDrive'

An Composite Extent is always
a concrete extent and a drive
extent is primordial.

Imported
Extents

Composite
Pool
Component

Conflicted 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:Imported'

An Composite Extent is always
a concrete extent and an
imported extent is primordial.

Primordial Disk
Drive Extent

Imported
Extents

‘true’ 'SNIA:DiskDrive' and
'SNIA:Imported'

An extent cannot be both
imported and represent a
DiskDrive

Spare Intermediate ‘false’ 'SNIA:Spare' and
'SNIA:Intermediate'

This version of the standard
only defines sparing of Pool
Components

Spare Remaining ‘false’ 'SNIA:Spare' and
'SNIA:Remaining'

This version of the standard
only defines sparing of Pool
Components

Table B.3 - Extent Combinations not defined in this Release of the Standard

Extent
Usage

Extent
Usage

Primordial ExtentDiscriminators Notes
928

	Revision History
	List of Tables
	List of Figures
	Foreword
	Clause 1: Scope
	Clause 2: Normative References
	2.1 Approved references
	2.2 References under development
	2.3 Other references

	Clause 3: Terms and definitions
	Clause 4: Array Profile
	4.1 Description
	4.2 Health and Fault Management
	4.3 Cascading Considerations
	4.4 Supported Subprofiles and Packages
	4.5 Methods of the Profile
	4.6 Client Considerations and Recipes
	4.7 Registered Name and Version
	4.8 CIM Elements
	4.8.1 CIM_ComputerSystem (Top Level System)
	4.8.2 CIM_FilterCollection (Array Predefined FilterCollection)
	4.8.3 CIM_HostedCollection (Array to predefined FilterCollection)
	4.8.4 CIM_IndicationFilter (Array System Creation)
	4.8.5 CIM_IndicationFilter (Array System Deletion)
	4.8.6 CIM_MemberOfCollection (Predefined Filter Collection to Array Filters)
	4.8.7 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)
	4.8.8 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)
	4.8.9 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)
	4.8.10 CIM_SCSIProtocolController (All LUNs View)
	4.8.11 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)
	4.8.12 CIM_SystemDevice (System to SCSIProtocolController)

	Clause 5: Block Services Package
	5.1 Description
	5.1.1 General
	5.1.2 Storage Capacity States
	5.1.3 StoragePools
	5.1.4 Blocks, Metadata, and Capacity Reported
	5.1.5 StoragePool Management Instance Diagram
	5.1.6 StoragePool, StorageVolume and LogicalDisk Manipulation
	5.1.7 Declaring Storage Configuration Options
	5.1.8 StorageVolume Creation Instance Diagram
	5.1.9 Backward Compatibility
	5.1.10 Capacity Management
	5.1.11 Mapping of RAID levels to Data Redundancy and Package Redundancy
	5.1.12 Storage Setting Associations to Storage Capabilities
	5.1.13 The Usage Property
	5.1.14 Read-Only Model Requirements
	5.1.15 StorageExtent Conservation
	5.1.16 Formulas For Calculating Capacity
	5.1.17 Storage Element Manipulation
	5.1.18 Block Services Predefined Indications

	5.2 Health and Fault Management Considerations
	5.3 Cascading Considerations
	5.4 Supported Profile, Subprofiles and Packages
	5.5 Methods of this Profile
	5.5.1 Extrinsic Methods on StorageCapabilities
	5.5.2 Intrinsic Methods on StorageSetting
	5.5.3 Extrinsic Methods on StorageConfiguration
	5.5.4 Extrinsic Methods on StoragePool

	5.6 Client Considerations and Recipes
	5.6.1 Representative Instance Diagram
	5.6.2 Goals and Settings
	5.6.3 Representative StoragePool Creation Example
	5.6.4 Representative example of StorageVolume or LogicalDisk Creation
	5.6.5 Summarize the StoragePools in a block storage system and verify the capacity reported
	5.6.6 Conditional: Create StoragePool and Storage Element on Block Server (e.g., Array or Volume Manager)
	5.6.7 Conditional: Expand Storage Element on Block Server
	5.6.8 Conditional: Create Storage Element from Elements on Block Server
	5.6.9 Optional: Intentionally General a CIM Error

	5.7 Registered Name and Version
	5.8 CIM Elements
	5.8.1 CIM_AllocatedFromStoragePool (Pool from Pool)
	5.8.2 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)
	5.8.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)
	5.8.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)
	5.8.5 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)
	5.8.6 CIM_ElementCapabilities (StorageCapabilities to StoragePool)
	5.8.7 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	5.8.8 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)
	5.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)
	5.8.10 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)
	5.8.11 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or LogicalDisk)
	5.8.12 CIM_ElementSettingData
	5.8.13 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)
	5.8.14 CIM_EnabledLogicalElementCapabilities (For StoragePool)
	5.8.15 CIM_FilterCollection (Block Services Predefined FilterCollection)
	5.8.16 CIM_HostedCollection (System to predefined IndicationFilters)
	5.8.17 CIM_HostedService
	5.8.18 CIM_HostedStoragePool
	5.8.19 CIM_IndicationFilter (Logical Disk Creation)
	5.8.20 CIM_IndicationFilter (Logical Disk Deletion)
	5.8.21 CIM_IndicationFilter (Logical Disk OperationalStatus)
	5.8.22 CIM_IndicationFilter (Storage Pool Creation)
	5.8.23 CIM_IndicationFilter (Storage Pool Deletion)
	5.8.24 CIM_IndicationFilter (Storage Pool TotalManagedSpace)
	5.8.25 CIM_IndicationFilter (Storage Volume Creation)
	5.8.26 CIM_IndicationFilter (Storage Volume Deletion)
	5.8.27 CIM_IndicationFilter (Storage Volume OperationalStatus)
	5.8.28 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)
	5.8.29 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)
	5.8.30 CIM_LogicalDisk
	5.8.31 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)
	5.8.32 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)
	5.8.33 CIM_OwningJobElement
	5.8.34 CIM_StorageCapabilities
	5.8.35 CIM_StorageConfigurationCapabilities (Concrete)
	5.8.36 CIM_StorageConfigurationCapabilities (Global)
	5.8.37 CIM_StorageConfigurationCapabilities (Primordial)
	5.8.38 CIM_StorageConfigurationService
	5.8.39 CIM_StoragePool (Concrete)
	5.8.40 CIM_StoragePool (Empty)
	5.8.41 CIM_StoragePool (Primordial)
	5.8.42 CIM_StorageSetting
	5.8.43 CIM_StorageSettingWithHints
	5.8.44 CIM_StorageSettingsAssociatedToCapabilities
	5.8.45 CIM_StorageSettingsGeneratedFromCapabilities
	5.8.46 CIM_StorageVolume
	5.8.47 CIM_SystemDevice (System to StorageVolume or LogicalDisk)
	5.8.48 SNIA_StorageVolume

	Clause 6: Block Storage Views Profile
	6.1 Description
	6.1.1 Synopsis
	6.1.2 Overview
	6.1.3 Class Diagram for SNIA View Classes
	6.1.4 Implementation

	6.2 Health and Fault Management Consideration
	6.3 Cascading Considerations
	6.4 Supported Profiles, Subprofiles, and Packages
	6.5 Methods of the Profile
	6.5.1 Extrinsic Methods of the Profile
	6.5.2 Intrinsic Methods of the Profile

	6.6 Client Considerations and Recipes
	6.6.1 Use Cases
	6.6.2 Recipes

	6.7 CIM Elements
	6.7.1 CIM_ElementCapabilities (View Capabilities)
	6.7.2 SNIA_AllocatedFromStoragePoolView (StoragePoolView to StoragePool)
	6.7.3 SNIA_AllocatedFromStoragePoolView (Volume to StoragePoolView)
	6.7.4 SNIA_AllocatedFromStoragePoolView (VolumeView to StoragePool)
	6.7.5 SNIA_AllocatedFromStoragePoolViewView (PoolView to PoolView)
	6.7.6 SNIA_AllocatedFromStoragePoolViewView (VolumeView to PoolView)
	6.7.7 SNIA_BaseInstance (DiskDrive)
	6.7.8 SNIA_BaseInstance (StorageSetting)
	6.7.9 SNIA_BaseInstance (Volume)
	6.7.10 SNIA_BasedOnView (ExtentOnDriveExtent)
	6.7.11 SNIA_BasedOnView (VolumeOnExtent)
	6.7.12 SNIA_ConcreteComponentView
	6.7.13 SNIA_ContainerView
	6.7.14 SNIA_DiskDriveView
	6.7.15 SNIA_DriveComponentViewView
	6.7.16 SNIA_ElementStatisticalDataView (DiskDriveView)
	6.7.17 SNIA_ElementStatisticalDataView (VolumeView)
	6.7.18 SNIA_ExposedView
	6.7.19 SNIA_ExtentComponentView
	6.7.20 SNIA_HostedStoragePoolView
	6.7.21 SNIA_MappingProtocolControllerView
	6.7.22 SNIA_MaskingMappingView
	6.7.23 SNIA_ProtocolControllerForUnitView
	6.7.24 SNIA_ReplicaPairView
	6.7.25 SNIA_StoragePoolView
	6.7.26 SNIA_SystemDeviceView (DiskDriveViews)
	6.7.27 SNIA_SystemDeviceView (MappingProtocolControllerViews)
	6.7.28 SNIA_SystemDeviceView (ReplicaPairViews)
	6.7.29 SNIA_SystemDeviceView (VolumeViews)
	6.7.30 SNIA_ViewCapabilities
	6.7.31 SNIA_VolumeView

	Clause 7: Block Server Performance Subprofile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Overview

	7.2 Implementation
	7.2.1 Performance Additions Overview
	7.2.2 Performance Additions to base Array Profile
	7.2.3 Performance Additions to base Storage Virtualizer Profile
	7.2.4 Performance Additions to base Volume Management Profile
	7.2.5 Summary of BlockStorageStatisticsData support by Profile
	7.2.6 Server Profile Support for the Block Server Performance Subprofile
	7.2.7 Default Manifest Collection
	7.2.8 Performance Additions applied to Multiple Computer Systems
	7.2.9 Performance Additions to Backend Ports
	7.2.10 Performance Additions to Extent Composition
	7.2.11 Performance Additions to Disk Drives
	7.2.12 Performance Additions to SCSIArbitraryLogicalUnits (Controller LUNs)
	7.2.13 Performance Additions for Remote Mirrors
	7.2.14 Client Defined Manifest Collections
	7.2.15 Capabilities Support for Block Server Performance Subprofile

	7.3 Health and Fault Management Considerations
	7.4 Cascading Considerations
	7.5 Supported Subprofiles and Packages
	7.6 Methods of the Profile
	7.6.1 Extrinsic Methods of the Profile
	7.6.2 Intrinsic Methods of the Profile

	7.7 Client Considerations and Recipes
	7.7.1 Bulk Performance Statistics Gathering
	7.7.2 Building an Object Map of Metered Elements
	7.7.3 Retrieving Statistics for a Specific Volume
	7.7.4 Summary of Statistics Support by Element
	7.7.5 Formulas and Calculations
	7.7.6 Block Server Performance Supported Capabilities Patterns
	7.7.7 Correlation of Block Storage Statistics and Fabric Statistics

	7.8 CIM Elements
	7.8.1 CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection)
	7.8.2 CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection)
	7.8.3 CIM_BlockStatisticsCapabilities
	7.8.4 CIM_BlockStatisticsManifest (Client Defined)
	7.8.5 CIM_BlockStatisticsManifest (Provider Support)
	7.8.6 CIM_BlockStatisticsManifestCollection (Client Defined)
	7.8.7 CIM_BlockStatisticsManifestCollection (Provider Defined)
	7.8.8 CIM_BlockStatisticsService
	7.8.9 CIM_BlockStorageStatisticalData
	7.8.10 CIM_ElementCapabilities
	7.8.11 CIM_ElementStatisticalData (Back end Port Stats)
	7.8.12 CIM_ElementStatisticalData (Component System Stats)
	7.8.13 CIM_ElementStatisticalData (Disk Stats)
	7.8.14 CIM_ElementStatisticalData (Extent Stats)
	7.8.15 CIM_ElementStatisticalData (Front end Port Stats)
	7.8.16 CIM_ElementStatisticalData (Logical Disk Stats)
	7.8.17 CIM_ElementStatisticalData (Remote Copy Stats)
	7.8.18 CIM_ElementStatisticalData (Top Level System Stats)
	7.8.19 CIM_ElementStatisticalData (Volume Stats)
	7.8.20 CIM_HostedCollection (Client Defined)
	7.8.21 CIM_HostedCollection (Default)
	7.8.22 CIM_HostedCollection (Provider Supplied)
	7.8.23 CIM_HostedService
	7.8.24 CIM_MemberOfCollection (Member of client defined collection)
	7.8.25 CIM_MemberOfCollection (Member of pre-defined collection)
	7.8.26 CIM_MemberOfCollection (Member of statistics collection)
	7.8.27 CIM_StatisticsCollection
	7.8.28 SNIA_BlockStatisticsCapabilities
	7.8.29 SNIA_BlockStatisticsManifest (Client Defined)
	7.8.30 SNIA_BlockStatisticsManifest (Provider Support)

	Clause 8: CKD Block Services Profile
	8.1 Description
	8.1.1 Synopsis
	8.1.2 Overview
	8.1.3 Implementation

	8.2 Health and Fault Management Consideration
	8.3 Cascading Considerations
	8.4 Supported Profiles, Subprofiles, and Packages
	8.5 Methods of the Profile
	8.6 Client Considerations and Recipes
	8.7 Registered Name and Version
	8.8 CIM Elements
	8.8.1 CIM_AllocatedFromStoragePool
	8.8.2 CIM_AllocatedFromStoragePool (Pool from Pool)
	8.8.3 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)
	8.8.4 CIM_ElementCapabilities
	8.8.5 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)
	8.8.6 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)
	8.8.7 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)
	8.8.8 CIM_ElementCapabilities (StorageCapabilities to StoragePool)
	8.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	8.8.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)
	8.8.11 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)
	8.8.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)
	8.8.13 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or LogicalDisk)
	8.8.14 CIM_ElementSettingData
	8.8.15 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)
	8.8.16 CIM_EnabledLogicalElementCapabilities (For StoragePool)
	8.8.17 CIM_FilterCollection (Block Services Predefined FilterCollection)
	8.8.18 CIM_HostedCollection (System to predefined IndicationFilters)
	8.8.19 CIM_HostedService
	8.8.20 CIM_HostedStoragePool
	8.8.21 CIM_IndicationFilter (Logical Disk Creation)
	8.8.22 CIM_IndicationFilter (Logical Disk Deletion)
	8.8.23 CIM_IndicationFilter (Logical Disk OperationalStatus)
	8.8.24 CIM_IndicationFilter (Storage Pool Creation)
	8.8.25 CIM_IndicationFilter (Storage Pool Deletion)
	8.8.26 CIM_IndicationFilter (Storage Pool TotalManagedSpace)
	8.8.27 CIM_IndicationFilter (Storage Volume Creation)
	8.8.28 CIM_IndicationFilter (Storage Volume Deletion)
	8.8.29 CIM_IndicationFilter (Storage Volume OperationalStatus)
	8.8.30 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)
	8.8.31 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)
	8.8.32 CIM_LogicalDisk
	8.8.33 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)
	8.8.34 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)
	8.8.35 CIM_OwningJobElement
	8.8.36 CIM_StorageConfigurationCapabilities
	8.8.37 CIM_StorageConfigurationCapabilities (Concrete)
	8.8.38 CIM_StorageConfigurationCapabilities (Global)
	8.8.39 CIM_StorageConfigurationCapabilities (Primordial)
	8.8.40 CIM_StorageConfigurationService
	8.8.41 CIM_StoragePool
	8.8.42 CIM_StoragePool (Concrete)
	8.8.43 CIM_StoragePool (Empty)
	8.8.44 CIM_StoragePool (Primordial)
	8.8.45 CIM_StorageSettingWithHints
	8.8.46 CIM_StorageSettingsAssociatedToCapabilities
	8.8.47 CIM_StorageSettingsGeneratedFromCapabilities
	8.8.48 CIM_SystemDevice (System to StorageVolume or LogicalDisk)
	8.8.49 SNIA_StorageCapabilities
	8.8.50 SNIA_StorageSetting
	8.8.51 SNIA_StorageVolume
	8.8.52 SNIA_StorageVolume

	Clause 9: Copy Services Subprofile
	9.1 Description
	9.1.1 Synopsis
	9.1.2 Overview
	9.1.3 Copy Services Discovery
	9.1.4 Copy Services Capabilities
	9.1.5 Replication modeling
	9.1.6 Associations
	9.1.7 Durable Names and Correlatable IDs of the Profile
	9.1.8 Accessibility to Created Elements
	9.1.9 Completion of Long Operations
	9.1.10 State Management For Associated Replicas
	9.1.11 Reporting Time of Synchronization
	9.1.12 State Transition Rules
	9.1.13 State Transitions
	9.1.14 Accessibility to Associations and Elements
	9.1.15 Host Access Restrictions
	9.1.16 Settings, Specialized Elements and Pools for Replicas
	9.1.17 Backward Compatibility
	9.1.18 Mutually Exclusive Capabilities
	9.1.19 Deleting the Target Elements
	9.1.20 Using StorageSettings for Replicas
	9.1.21 Finding and Creating Target Elements
	9.1.22 Using StoragePools for Replicas
	9.1.23 Thinly Provisioned Elements
	9.1.24 Indication Events

	9.2 Health and Fault Management Considerations
	9.2.1 Health Indications
	9.2.2 Replication Error Messages

	9.3 Cascading Considerations
	9.4 Supported Subprofiles and Packages
	9.5 Methods of the Profile
	9.5.1 Intrinsic Methods of the Profile
	9.5.2 Extrinsic Methods of the Profile

	9.6 Client Considerations and Recipes
	9.6.1 Discovery of Copy support and Capabilities
	9.6.2 Creating and Managing Replicas
	9.6.3 Using StorageSetting for Replicas
	9.6.4 Finding and Creating Target Elements
	9.6.5 Creating and Managing Pools for Delta Replicas
	9.6.6 Creating and Managing Mirrors
	9.6.7 Creating a Clone and Redirected Restore Operations
	9.6.8 Creating and Managing Snapshots
	9.6.9 Managing Background Copy
	9.6.10 Recipes
	9.6.11 Replica Modification
	9.6.12 Replica Creation Or Attachment

	9.7 CIM Elements
	9.7.1 CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and ReplicationService)
	9.7.2 CIM_ElementCapabilities (Associates StorageReplicationCapabilities and StorageConfigurationService)
	9.7.3 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	9.7.4 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)
	9.7.5 CIM_HostedService (Replication Service)
	9.7.6 CIM_HostedService (Storage Configuration Service)
	9.7.7 CIM_ReplicaPoolForStorage
	9.7.8 CIM_ReplicationService
	9.7.9 CIM_ReplicationServiceCapabilities
	9.7.10 CIM_ReplicationSettingData
	9.7.11 CIM_SettingsDefineState
	9.7.12 CIM_StorageCapabilities
	9.7.13 CIM_StorageConfigurationCapabilities
	9.7.14 CIM_StorageConfigurationService
	9.7.15 CIM_StoragePool
	9.7.16 CIM_StorageReplicationCapabilities
	9.7.17 CIM_StorageSetting
	9.7.18 CIM_StorageSynchronized
	9.7.19 CIM_StorageSynchronized (Between StorageExtent elements)
	9.7.20 CIM_SynchronizationAspect

	Clause 10: Disk Drive Subprofile
	Clause 11: Disk Drive Lite Subprofile
	11.1 Description
	11.1.1 Base model
	11.1.2 Associations to external classes
	11.1.3 Active Management
	11.1.4 Diagram of CIM Elements
	11.1.5 Durable Names and Correlatable IDs of the Profile
	11.1.6 Conditional Associations to other profiles
	11.1.7 Optional Associations to other profiles

	11.2 Health and Fault Management Considerations
	11.3 Cascading Considerations
	11.4 Supported Profiles, Subprofiles and Packages
	11.5 Methods of this Profile
	11.5.1 Extrinsic Methods on Disk Drives

	11.6 Registered Name and Version
	11.7 CIM Elements
	11.7.1 CIM_ATAPort (Disk Drive Target ATA Port)
	11.7.2 CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint)
	11.7.3 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)
	11.7.4 CIM_BasedOn (Bottom Level BasedOn)
	11.7.5 CIM_ConcreteComponent (Disk Extent to Primordial Pool)
	11.7.6 CIM_Container
	11.7.7 CIM_DeviceSAPImplementation (ATA)
	11.7.8 CIM_DeviceSAPImplementation (SCSI)
	11.7.9 CIM_DiskDrive
	11.7.10 CIM_ElementSoftwareIdentity
	11.7.11 CIM_FCPort (Disk Drive Target FC Port)
	11.7.12 CIM_FilterCollection (Disk Drive Lite Predefined FilterCollection)
	11.7.13 CIM_HostedCollection (System to predefined IndicationFilters)
	11.7.14 CIM_IndicationFilter (Disk Drive Creation)
	11.7.15 CIM_IndicationFilter (Disk Drive Deletion)
	11.7.16 CIM_MediaPresent
	11.7.17 CIM_MemberOfCollection (Disk Drive Lite Filter Collection to FilterCollection)
	11.7.18 CIM_MemberOfCollection (Predefined Filter Collection to Disk Drive Lite Filters)
	11.7.19 CIM_PhysicalPackage
	11.7.20 CIM_ProtocolControllerAccessesUnit
	11.7.21 CIM_Realizes
	11.7.22 CIM_SAPAvailableForElement
	11.7.23 CIM_SASPort (Disk Drive Target SAS Port)
	11.7.24 CIM_SCSIInitiatorTargetLogicalUnitPath
	11.7.25 CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint)
	11.7.26 CIM_SPIPort (Disk Drive Target Parallel SCSI Port)
	11.7.27 CIM_SoftwareIdentity
	11.7.28 CIM_StorageExtent (Primordial Disk Drive Extent)
	11.7.29 CIM_SystemDevice (Disk Drive System)
	11.7.30 CIM_SystemDevice (Port System)
	11.7.31 CIM_SystemDevice (Storage Extent System)
	11.7.32 SNIA_DiskDrive

	Clause 12: Disk Sparing Subprofile
	12.1 Description
	12.1.1 Durable Names and Correlatable IDs of the Profile
	12.1.2 Sparing Model
	12.1.3 Modeling Fail Over, Past and Present
	12.1.4 Sparing Configuration and Control

	12.2 Health and Fault Management Considerations
	12.3 Cascading Conjurations
	12.4 Supported Subprofiles and Packages
	12.5 Methods of the Profile
	12.5.1 AssignSpares
	12.5.2 UnassignSpares
	12.5.3 GetAvailableSpareExtents
	12.5.4 FailOver
	12.5.5 RebuildStorageExtent
	12.5.6 CheckParityConsistency
	12.5.7 RepairParity
	12.5.8 CheckStorageElement

	12.6 Client Considerations and Recipes
	12.6.1 Determine if spare model is constructed correctly

	12.7 Registered Name and Version
	12.8 CIM Elements
	12.8.1 CIM_AssociatedComponentExtent (Spare to Storage Pool)
	12.8.2 CIM_ConcreteDependency (Extent to LogicalDisk)
	12.8.3 CIM_ConcreteDependency (Extent to Pool)
	12.8.4 CIM_ConcreteDependency (Extent to StorageVolume)
	12.8.5 CIM_ElementCapabilities
	12.8.6 CIM_HostedCollection (ComputerSystem to FailoverStorageExtentsCollection)
	12.8.7 CIM_HostedCollection (ComputerSystem to RedundancySet)
	12.8.8 CIM_HostedService (ComputerSystem to SpareConfigurationService)
	12.8.9 CIM_IsSpare
	12.8.10 CIM_LogicalDisk
	12.8.11 CIM_MemberOfCollection
	12.8.12 CIM_Spared
	12.8.13 CIM_StorageExtent (Spare)
	12.8.14 CIM_StoragePool
	12.8.15 CIM_StorageRedundancySet
	12.8.16 CIM_StorageVolume
	12.8.17 SNIA_FailoverStorageExtentsCollection
	12.8.18 SNIA_SpareConfigurationCapabilities
	12.8.19 SNIA_SpareConfigurationService

	Clause 13: Erasure Profile
	13.1 Description
	13.1.1 Existing Erasure standards

	13.2 Health and Fault Management Considerations
	13.3 Cascading Considerations
	13.4 Supported Profiles, Subprofiles, and Packages
	13.5 Methods of the Profile
	13.6 Client Considerations and Recipes
	13.6.1 Recipe 1: Volume Erasure
	13.6.2 Recipe 2: Volume Deletion

	13.7 Registered Name and Version
	13.8 CIM Elements
	13.8.1 CIM_AllocatedFromStoragePool
	13.8.2 CIM_LogicalDisk
	13.8.3 CIM_StoragePool
	13.8.4 CIM_StorageVolume
	13.8.5 SNIA_ErasureCapabilities
	13.8.6 SNIA_ErasureService
	13.8.7 SNIA_ErasureSetting

	Clause 14: Extent Composition Subprofile
	14.1 Description
	14.1.1 Decomposition
	14.1.2 Composition
	14.1.3 Model Element Summary
	14.1.4 Relation to other Packages and Subprofiles
	14.1.5 Remaining Extents
	14.1.6 Scenarios

	14.2 Health and Fault Management Considerations
	14.3 Cascading Considerations
	14.4 Supported Subprofiles and Packages
	14.5 Methods of the Profile
	14.6 Client Considerations and Recipes
	14.6.1 Traverse the virtualization hierarchy of a StorageVolume or LogicalDisk
	14.6.2 Find the Primordial Extents used by a Storage Volume or Logical Disk

	14.7 Registered Name and Version
	14.8 CIM Elements
	14.8.1 CIM_AssociatedComponentExtent (Pool Component to Concrete Pool)
	14.8.2 CIM_AssociatedRemainingExtent (Pool to its remaining extents)
	14.8.3 CIM_BasedOn (Mid level BasedOn)
	14.8.4 CIM_BasedOn (Top level BasedOn)
	14.8.5 CIM_CompositeExtent (Composite Intermediate)
	14.8.6 CIM_CompositeExtent (Composite Pool Component)
	14.8.7 CIM_CompositeExtentBasedOn
	14.8.8 CIM_ConcreteComponent (Pool Component to Concrete Pool)
	14.8.9 CIM_ConcreteComponent (Remaining Extent to Pool)
	14.8.10 CIM_FilterCollection (Extent Composition Predefined FilterCollection)
	14.8.11 CIM_HostedCollection (System to predefined IndicationFilters)
	14.8.12 CIM_MemberOfCollection (Extent Composition Filter Collection to FilterCollection)
	14.8.13 CIM_MemberOfCollection (Predefined Filter Collection to Extent Composition Filters)
	14.8.14 CIM_StorageExtent (Intermediate)
	14.8.15 CIM_StorageExtent (Pool Component)
	14.8.16 CIM_StorageExtent (Remaining)
	14.8.17 CIM_SystemDevice (Composite Extent System)
	14.8.18 CIM_SystemDevice (Storage Extent System)

	Clause 15: LUN Creation Subprofile
	Clause 16: Extent Mapping Subprofile
	Clause 17: LUN Mapping and Masking Subprofile
	17.1 Compatibility with SMI-S 1.0 clients.

	Clause 18: Masking and Mapping Subprofile
	18.1 Description
	18.1.1 Views and Paths
	18.1.2 Model Elements
	18.1.3 SCSIProtocolController Views
	18.1.4 Initiator ID Collections
	18.1.5 Default View / Default Logical Unit Access
	18.1.6 Arbitrary Logical Units
	18.1.7 Read-only verses Read-Write access
	18.1.8 Read-Only Volumes
	18.1.9 Finding Volumes that are not Mapped
	18.1.10 Limits on Map counts per Logical Unit
	18.1.11 Deactivated Logical Units
	18.1.12 SCSIProtocolController Properties
	18.1.13 Initiator Setting Data
	18.1.14 Durable Names and Correlatable IDs of the Profile
	18.1.15 Instrumentation Requirements
	18.1.16 Element Naming

	18.2 Health and Fault Management Considerations
	18.3 Cascading Considerations
	18.4 Supported Subprofiles, and Packages
	18.5 Methods of the Profile
	18.5.1 ExposePaths
	18.5.2 HidePaths
	18.5.3 ExposeDefaultLUs
	18.5.4 HideDefaultLUs
	18.5.5 CreateStorageHardwareID
	18.5.6 DeleteStorageHardwareID
	18.5.7 CreateHardwareIDCollection
	18.5.8 AddHardwareIDsToCollection
	18.5.9 DeleteProtocolController

	18.6 Client Considerations and Recipes
	18.6.1 Expose and Hide LUNs
	18.6.2 Set Host Mode for a Port
	18.6.3 Set Host Mode for a ProtocolController

	18.7 Registered Name and Version
	18.8 CIM Elements
	18.8.1 CIM_AuthorizedPrivilege
	18.8.2 CIM_AuthorizedSubject
	18.8.3 CIM_AuthorizedTarget
	18.8.4 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolController)
	18.8.5 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivilege)
	18.8.6 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and StorageHardwareID)
	18.8.7 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and SystemSpecificCollection)
	18.8.8 CIM_ControllerConfigurationService
	18.8.9 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfigurationService)
	18.8.10 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)
	18.8.11 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)
	18.8.12 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDManagementService)
	18.8.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)
	18.8.14 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)
	18.8.15 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)
	18.8.16 CIM_ElementSettingData (Associates Port and StorageClientSettingData)
	18.8.17 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)
	18.8.18 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)
	18.8.19 CIM_EnabledLogicalElementCapabilities
	18.8.20 CIM_HostedCollection
	18.8.21 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)
	18.8.22 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)
	18.8.23 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementService)
	18.8.24 CIM_MemberOfCollection
	18.8.25 CIM_PrivilegeManagementService
	18.8.26 CIM_ProtocolController
	18.8.27 CIM_ProtocolControllerForUnit
	18.8.28 CIM_ProtocolControllerMaskingCapabilities
	18.8.29 CIM_SAPAvailableForElement
	18.8.30 CIM_StorageClientSettingData
	18.8.31 CIM_StorageHardwareID
	18.8.32 CIM_StorageHardwareIDManagementService
	18.8.33 CIM_SystemSpecificCollection
	18.8.34 SNIA_ProtocolControllerMaskingCapabilities
	18.8.35 SNIA_StorageHardwareID
	18.8.36 SNIA_StorageHardwareIDManagementService

	Clause 19: Pool Manipulation Capabilities, and Settings Subprofile
	Clause 20: Storage Server Asymmetry Profile
	20.1 Description
	20.1.1 Overview
	20.1.2 Relationship to Multiple Computer System Subprofile
	20.1.3 Relationship to Masking and Mapping Subprofile
	20.1.4 Relationship to T10
	20.1.5 Behavior, Characteristics, and Capabilities
	20.1.6 Model

	20.2 Health and Fault Management Consideration
	20.3 Cascading Considerations
	20.4 Supported Profiles, Subprofiles, and Packages
	20.5 Methods of the Profile
	20.5.1 Assign Storage Resource Affinity

	20.6 Client Considerations and Recipes
	20.6.1 Determine which ports provide full bandwidth access to a storage element.

	20.7 Registered Name and Version
	20.8 CIM Elements
	20.8.1 CIM_AsymmetricAccessibility
	20.8.2 CIM_ElementCapabilities (To Top-level ComputerSystem)
	20.8.3 CIM_HostedCollection (Top-Level System to Load Group)
	20.8.4 CIM_HostedCollection (Top-Level System to Port Group)
	20.8.5 CIM_MemberOfCollection (SATA Target Port Group)
	20.8.6 CIM_MemberOfCollection (SB Target Port Group)
	20.8.7 CIM_MemberOfCollection (SCSI Target Port Group)
	20.8.8 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Pools)
	20.8.9 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Volumes)
	20.8.10 CIM_MemberOfCollection (iSCSI Target Port Group)
	20.8.11 CIM_StorageConfigurationService
	20.8.12 CIM_StorageProcessorAffinity (StorageResourceLoadGroup)
	20.8.13 CIM_StorageProcessorAffinity (Target Port Group)
	20.8.14 CIM_StorageResourceLoadGroup (Load Groups)
	20.8.15 CIM_StorageServerAsymmetryCapabilities
	20.8.16 CIM_TargetPortGroup (Port Groups)

	Clause 21: Block Services Resource Ownership Subprofile
	21.1 Description
	21.1.1 Design considerations
	21.1.2 Privilege Propagation

	21.2 Client Considerations and Recipes

	Clause 22: Storage Virtualizer Profile
	22.1 Description
	22.1.1 Instance Diagram
	22.1.2 Storage Virtualization System
	22.1.3 Disk Drive Lite
	22.1.4 Controller Software
	22.1.5 Device Management Access
	22.1.6 Physical Modeling
	22.1.7 Services
	22.1.8 Ports
	22.1.9 Model Element Summary

	22.2 Health and Fault Management
	22.3 Storage Virtualizer Support for Cascading
	22.4 Supported Subprofiles and Packages
	22.5 Methods of the Profile
	22.6 Client Considerations and Recipes
	22.7 Registered Name and Version
	22.8 CIM Elements
	22.8.1 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)
	22.8.2 CIM_ComputerSystem (Shadow)
	22.8.3 CIM_ComputerSystem (Top Level System)
	22.8.4 CIM_ConcreteComponent (Imported Extents to Primordial Pool)
	22.8.5 CIM_Dependency (Systems)
	22.8.6 CIM_FilterCollection (Storage Virtualizer Predefined FilterCollection)
	22.8.7 CIM_HostedCollection (Allocated Resources)
	22.8.8 CIM_HostedCollection (Remote Resources)
	22.8.9 CIM_HostedCollection (Storage Virtualizer to predefined FilterCollection)
	22.8.10 CIM_IndicationFilter (Storage Virtualizer LogicalPort OperationalStatus)
	22.8.11 CIM_IndicationFilter (Storage Virtualizer Storage Volume OperationalStatus)
	22.8.12 CIM_IndicationFilter (Storage Virtualizer System Creation)
	22.8.13 CIM_IndicationFilter (Storage Virtualizer System Deletion)
	22.8.14 CIM_IndicationFilter (Storage Virtualizer System OperationalStatus)
	22.8.15 CIM_IndicationFilter (WQL Storage Virtualizer FCPort OperationalStatus)
	22.8.16 CIM_IndicationFilter (WQL Storage Virtualizer Storage Volume OperationalStatus)
	22.8.17 CIM_IndicationFilter (WQL Storage Virtualizer System OperationalStatus)
	22.8.18 CIM_LogicalIdentity (Shadow Storage Volume)
	22.8.19 CIM_MemberOfCollection (Allocated Resources)
	22.8.20 CIM_MemberOfCollection (Predefined Filter Collection to Storage Virtualizer Filters)
	22.8.21 CIM_MemberOfCollection (Remote Resources)
	22.8.22 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)
	22.8.23 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)
	22.8.24 CIM_RemoteServiceAccessPoint (Shadow)
	22.8.25 CIM_SAPAvailableForElement
	22.8.26 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)
	22.8.27 CIM_SCSIProtocolController (All LUNs View)
	22.8.28 CIM_StorageExtent (Imported Extents)
	22.8.29 CIM_StorageVolume (Shadow)
	22.8.30 CIM_SystemDevice (Shadow StorageVolumes)
	22.8.31 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)
	22.8.32 CIM_SystemDevice (System to SCSIProtocolController)
	22.8.33 CIM_SystemDevice (System to StorageExtent)
	22.8.34 SNIA_AllocatedResources
	22.8.35 SNIA_RemoteResources

	Clause 23: Volume Composition Profile
	23.1 Description
	23.1.1 Overview
	23.1.2 Relationship to Block Services Package
	23.1.3 Relationship to Extent Composition
	23.1.4 Model
	23.1.5 Quality of Service (QoS) Considerations
	23.1.6 Composite Stripe Length and Depth
	23.1.7 Examples

	23.2 Striped and Concatenated Composite Volumes
	23.3 Health and Fault Management Consideration
	23.4 Cascading Considerations
	23.5 Supported Profiles, Subprofiles, and Packages
	23.6 Methods of the Profile
	23.6.1 CreateOrModifyCompositeElement
	23.6.2 RemoveElementsFromElement
	23.6.3 ReturnElementToElements
	23.6.4 GetAvailableElements
	23.6.5 GetCompositeElements
	23.6.6 GetSupportedStripeLengths
	23.6.7 GetSupportedStripeLengthRange
	23.6.8 GetSupportedStripeDepths
	23.6.9 GetSupportedStripeDepthRange

	23.7 Client Considerations and Recipes
	23.7.1 Indications
	23.7.2 Recipe 1: Create Composite Volume
	23.7.3 Recipe 2: Delete Composite Volume

	23.8 Registered Name and Version
	23.9 CIM Elements
	23.9.1 CIM_CompositeExtent
	23.9.2 CIM_CompositeExtentBasedOn (Volume Composition)
	23.9.3 CIM_ElementCapabilities
	23.9.4 CIM_ElementSettingData
	23.9.5 CIM_HostedService (Associates ComputerSystem and the ElementCompositionService)
	23.9.6 CIM_StorageElementCompositionCapabilities
	23.9.7 CIM_StorageElementCompositionService
	23.9.8 CIM_StorageSetting
	23.9.9 CIM_StorageVolume

	Clause 24: Volume Management Profile
	24.1 Description
	24.1.1 Instance Diagram
	24.1.2 Input Class of the Volume Manager
	24.1.3 Export Class of the Volume Manager
	24.1.4 Initializing OS Disks for Volume Manager Use
	24.1.5 Creating Pools and Logical Volumes
	24.1.6 Storage Settings for Volumes
	24.1.7 Durable Names and Other Correlatable ids of the Profile

	24.2 Health and Fault Management Considerations
	24.3 Cascading Considerations
	24.4 Supported Subprofiles and Packages
	24.5 Methods of the Profile
	24.6 Client Considerations and Recipes
	24.6.1 Storage Configuration

	24.7 Registered Name and Version
	24.8 CIM Elements
	24.8.1 CIM_AllocatedFromStoragePool (LogicalDisk from Pool)
	24.8.2 CIM_AllocatedFromStoragePool (Pool from Pool)
	24.8.3 CIM_ComputerSystem
	24.8.4 CIM_ElementCapabilities
	24.8.5 CIM_ElementSettingData
	24.8.6 CIM_HostedStoragePool
	24.8.7 CIM_LogicalDisk
	24.8.8 CIM_StorageCapabilities
	24.8.9 CIM_StoragePool (Concrete)
	24.8.10 CIM_StoragePool (Primordial)
	24.8.11 CIM_StorageSetting
	24.8.12 CIM_SystemDevice

	Clause 25: Storage Element Protection SubProfile
	25.1 Description
	25.1.1 Overview
	25.1.2 Use Cases
	25.1.3 Functionality
	25.1.4 Class Model
	25.1.5 Access permission
	25.1.6 Retention period
	25.1.7 Protection State Transition
	25.1.8 Sample Usage Scenario

	25.2 Health and Fault Management Consideration
	25.3 Cascading Considerations
	25.4 Supported Profiles, Subprofiles, and Packages
	25.5 Methods of the Profile
	25.5.1 Protect

	25.6 Client Considerations and Recipes
	25.6.1 Start Volume Protection
	25.6.2 Extend the Retention Period

	25.7 Registered Name and Version
	25.8 CIM Elements
	25.8.1 CIM_ElementCapabilities
	25.8.2 CIM_HostedService
	25.8.3 SNIA_ElementProtectionSettingData
	25.8.4 SNIA_StorageProtectionCapabilities
	25.8.5 SNIA_StorageProtectionService
	25.8.6 SNIA_StorageProtectionSetting

	Clause 26: Replication Services Profile
	26.1 Description
	26.1.1 Synopsis
	26.1.2 Supported Profiles, Subprofiles, and Packages
	26.1.3 Overview
	26.1.4 Key Features
	26.1.5 Replication Services and Copy Services Profiles
	26.1.6 Key Components
	26.1.7 Replication Services Discovery
	26.1.8 Replication Services Capabilities
	26.1.9 SyncTypes
	26.1.10 Modes
	26.1.11 Locality of Target Elements
	26.1.12 Remote Replication
	26.1.13 Undiscovered Resources
	26.1.14 Multi-hop Replication
	26.1.15 Groups
	26.1.16 Associations
	26.1.17 Operations on List of Synchronizations
	26.1.18 State Management For Associated Replicas
	26.1.19 Unsynchronized and Skewed CopyStates
	26.1.20 Accessibility to Associations and Elements
	26.1.21 Host Access Restrictions
	26.1.22 Deleting the Target Elements
	26.1.23 Completion of Long Operations
	26.1.24 Managing Background Copy
	26.1.25 Managing CopyPriority
	26.1.26 Using StorageSettings for Replicas
	26.1.27 Finding and Creating Target Elements
	26.1.28 Using StoragePools (e.g. ResourcePools) for Replicas
	26.1.29 Provider Configurations for Remote Replication
	26.1.30 Thinly Provisioned Elements
	26.1.31 Indications

	26.2 Health and Fault Management Consideration
	26.3 Replication Services Support for Cascading
	26.3.1 ServiceAccessPoint and SharedSecret Instances
	26.3.2 Cascading Support

	26.4 Mapping of Copy Services and Replication Services Properties and Methods
	26.5 Methods of the Profile
	26.5.1 Replication Services and Copy Services Properties and Methods Mapping

	26.6 Client Considerations and Recipes
	26.6.1 Creating and Managing Replicas

	26.7 Registered Name and Version
	26.8 CIM Elements
	26.8.1 CIM_ConnectivityCollection
	26.8.2 CIM_ElementCapabilities
	26.8.3 CIM_GroupSynchronized
	26.8.4 CIM_HostedAccessPoint (ForProtocolEndpoint)
	26.8.5 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)
	26.8.6 CIM_HostedCollection (Allocated Resources)
	26.8.7 CIM_HostedCollection (Between ComputerSystem and ConnectivityCollection)
	26.8.8 CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)
	26.8.9 CIM_HostedCollection (Remote Resources)
	26.8.10 CIM_HostedService
	26.8.11 CIM_MemberOfCollection (Allocated Resources)
	26.8.12 CIM_MemberOfCollection (ProtocolEndpoints to ConnectivityCollection)
	26.8.13 CIM_MemberOfCollection (Remote Resources)
	26.8.14 CIM_OrderedMemberOfCollection
	26.8.15 CIM_ProtocolEndpoint
	26.8.16 CIM_RemoteServiceAccessPoint
	26.8.17 CIM_ReplicaPoolForStorage
	26.8.18 CIM_ReplicationEntity
	26.8.19 CIM_ReplicationGroup
	26.8.20 CIM_ReplicationSettingData
	26.8.21 CIM_SAPAvailableForElement
	26.8.22 CIM_ServiceAffectsElement (Between ReplicationService and ConnectivityCollection)
	26.8.23 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)
	26.8.24 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)
	26.8.25 CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)
	26.8.26 CIM_SettingsDefineState (Between storage object and SynchronizationAspect)
	26.8.27 CIM_SharedSecret
	26.8.28 CIM_StorageSynchronized
	26.8.29 CIM_SynchronizationAspect
	26.8.30 SNIA_AllocatedResources
	26.8.31 SNIA_RemoteResources
	26.8.32 SNIA_ReplicationService
	26.8.33 SNIA_ReplicationServiceCapabilities

	Clause 27: Thin Provisioning Profile
	27.1 Description
	27.1.1 Background
	27.1.2 Model

	27.2 Health and Fault Management Consideration
	27.3 Cascading Considerations
	27.4 Supported Profiles, Subprofiles, and Packages
	27.5 Methods of the Profile
	27.6 Client Considerations and Recipes
	27.6.1 Create a Pool from a Parent Pool
	27.6.2 Create a Pool from Extents
	27.6.3 Creating a Thinly Provisioned Volume
	27.6.4 Capacity Properties for Fully-provisioned RAID1 Volume
	27.6.5 Capacity Properties for Thin Provisioning

	27.7 Registered Name and Version
	27.8 CIM Elements
	27.8.1 CIM_HostedStoragePool
	27.8.2 SNIA_LogicalDisk
	27.8.3 SNIA_StorageConfigurationCapabilities (Concrete)
	27.8.4 SNIA_StorageConfigurationCapabilities (Global)
	27.8.5 SNIA_StorageConfigurationCapabilities (Primordial)
	27.8.6 SNIA_StorageConfigurationService
	27.8.7 SNIA_StoragePool (Concrete)
	27.8.8 SNIA_StoragePool (Empty)
	27.8.9 SNIA_StoragePool (Primordial)
	27.8.10 SNIA_StorageSetting
	27.8.11 SNIA_StorageVolume

	Clause 28: Pools from Volumes Profile
	28.1 Description
	28.1.1 Overview
	28.1.2 Terminology
	28.1.3 Relationship to Block Services Package
	28.1.4 Relationship to Extent Composition
	28.1.5 Class Model
	28.1.6 Model Elements
	28.1.7 Example

	28.2 Block Services Enhancements
	28.2.1 StoragePool Manipulation Methods
	28.2.2 Declaring Storage Configuration Options
	28.2.3 The Usage Property

	28.3 Health and Fault Management Considerations
	28.4 Cascading Considerations
	28.5 Supported Profiles, Subprofiles, and Packages
	28.6 Methods of the Profile
	28.6.1 CreateOrModifyStoragePool
	28.6.2 DeleteStoragePool
	28.6.3 Storage Element Modification

	28.7 Client Considerations and Recipes
	28.7.1 Client Considerations
	28.7.2 Recipe 1: Create StoragePool

	28.8 Registered Name and Version
	28.9 CIM Elements
	28.9.1 CIM_AllocatedFromStoragePool (Volume from Pool)
	28.9.2 CIM_ElementCapabilities
	28.9.3 CIM_StorageCapabilities
	28.9.4 CIM_StorageVolume
	28.9.5 CIM_SystemDevice
	28.9.6 SNIA_StorageConfigurationCapabilities
	28.9.7 SNIA_StoragePool
	28.9.8 SNIA_StorageSetting

	Clause 29: Group Masking and Mapping Profile
	29.1 Description
	29.1.1 Synopsis
	29.1.2 Overview
	29.1.3 Model Elements
	29.1.4 Device Numbers
	29.1.5 Group Masking and Mapping Capabilities

	29.2 Health and Fault Management Consideration
	29.3 Cascading Considerations
	29.4 Methods of the Profile
	29.4.1 CreateGroup
	29.4.2 DeleteGroup
	29.4.3 AddMembers
	29.4.4 RemoveMembers
	29.4.5 CreateMaskingView
	29.4.6 DeleteMaskingView
	29.4.7 ModifyMaskingView

	29.5 Client Considerations and Recipes
	29.5.1 Using Groups in Masking and Mapping

	29.6 Registered Name and Version
	29.7 CIM Elements
	29.7.1 CIM_AssociatedDeviceMaskingGroup
	29.7.2 CIM_AssociatedInitiatorMaskingGroup
	29.7.3 CIM_AssociatedTargetMaskingGroup
	29.7.4 CIM_AuthorizedPrivilege
	29.7.5 CIM_AuthorizedSubject
	29.7.6 CIM_AuthorizedTarget
	29.7.7 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolController)
	29.7.8 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivilege)
	29.7.9 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and StorageHardwareID)
	29.7.10 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and SystemSpecificCollection)
	29.7.11 CIM_DeviceMaskingGroup
	29.7.12 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfigurationService)
	29.7.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)
	29.7.14 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)
	29.7.15 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDManagementService)
	29.7.16 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)
	29.7.17 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)
	29.7.18 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)
	29.7.19 CIM_ElementSettingData (Associates Port and StorageClientSettingData)
	29.7.20 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)
	29.7.21 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)
	29.7.22 CIM_EnabledLogicalElementCapabilities
	29.7.23 CIM_GroupMaskingMappingCapabilities
	29.7.24 CIM_GroupMaskingMappingService
	29.7.25 CIM_HostedCollection
	29.7.26 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)
	29.7.27 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)
	29.7.28 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementService)
	29.7.29 CIM_InitiatorMaskingGroup
	29.7.30 CIM_MemberOfCollection
	29.7.31 CIM_PrivilegeManagementService
	29.7.32 CIM_ProtocolController
	29.7.33 CIM_ProtocolControllerForUnit
	29.7.34 CIM_SAPAvailableForElement
	29.7.35 CIM_ServiceAffectsElement (Between GroupMaskingMappingService and MaskingGroup)
	29.7.36 CIM_StorageClientSettingData
	29.7.37 CIM_StorageHardwareID
	29.7.38 CIM_StorageHardwareIDManagementService
	29.7.39 CIM_SystemSpecificCollection
	29.7.40 CIM_TargetMaskingGroup
	29.7.41 SNIA_ProtocolControllerMaskingCapabilities
	29.7.42 SNIA_StorageHardwareID
	29.7.43 SNIA_StorageHardwareIDManagementService

	Annex A: (informative) SMI-S Information Model
	Annex B: (Informative) Registry of StorageExtent Definitions
	B.1 ExtentDiscriminator Definitions
	B.2 Association Significance of the Various Extent Definitions
	B.2.1 StorageExtent (Intermediate)
	B.2.2 StorageExtent (Pool Component)
	B.2.3 CompositeExtent (Composite Intermediate)
	B.2.4 CompositeExtent (Composite Pool Component)
	B.2.5 StorageExtent (Remaining)
	B.2.6 StorageExtent (Primordial Disk Drive Extent)
	B.2.7 StorageExtent (Imported Extents)
	B.2.8 StorageExtent (Spare)
	B.2.9 StorageVolume (Allocated)
	B.2.10 LogicalDisk (Allocated)
	B.2.11 StorageVolume (Pool Component)
	B.2.12 StorageVolume (Shadow)
	B.2.13 LogicalDisk (Shadow)

	B.3 Example Valid Combinations of Extent Definitions
	B.4 Combinations of Extent Definitions not defined in this Release of the Standard

