=
SNIA

Advancing storage &
information technology

Storage Management Technical Specification,
Part 4 Filesystems

Version 1.6.0, Revision 5

Abstract: This SNIA Technical Position defines an interface between WBEM-capable clients and
servers for the secure, extensible, and interoperable management of networked storage.

This document has been released and approved by the SNIA. The SNIA believes that the ideas,
methodologies and technologies described in this document accurately represent the SNIA goals
and are appropriate for widespread distribution. Suggestions for revision should be directed to
http://www.snia.org/feedback/.

SNIA Technical Position

2 September, 2014

Revision History

Revision 1

Date
16 July 2010

SCRs Incorporated and other changes
None.

Comments
Editorial notes and DRAFT material are displayed.

Revision 2

Date
7 October 2010

SCRs Incorporated and other changes
None.

Comments
Editorial notes and DRAFT material are displayed.

Revision 3

Date
10 March 2011

SCRs Incorporated and other changes
File Export Manipulation (FSM-TWG-SCR00079)
- Updated the CIM Elements to remove SNIA_FileShare, SNIA_HostedShare, SNIA_SharedElement
and SNIA_SettingsDefineCapabilities and replace them with the CIM_ classes

Filesystem Manipulation (FSM-TWG-SCR00079)
- Updated the CIM Elements to remove SNIA_SettingsDefineCapabilities and replace it
with CIM_SettingsDefineCapabilities
- Changed the methods CreateFileSystem and ModifyFileSystem to SNIA_CreateFileSystem
and SNIA_ModifyFileSystem to match the SNIA mof

NAS Head (SMIS-160-Draft-SCR00004 & FSM-TWG-SCRO00077)

- Updated the profile to include the ImplementationCapabilities of the NAS Head implementation

- Promoted ElementCapabilities and ImplementationCapabilities classes for DPCO support
to Experimental

- Changed the version of the profile to be 1.6.0 and the CIM-Version to be 2.28

- Promoted Launch In Contecxt to Experimental and Changed LaunchInContext to be a DMTF
Profile and be Launch In Context.

- Promoted Operational an Experimental optional SupportedProfile

- Added classes for NAS Head predefined IndicationFilters and FilterCollection

- Adapted the Supported Profile support for Indications

- Changed the MessagelDs in the Alert Indications queries were changed to "FSM1" and "FSM3",
instead of "FSM001" and "FSM003"

- Put in cross references to the Standard Messages in the Architecture book.

SMI-S 1.6.0 Revision 5 SNIA Technical Position

Self-contained NAS (SMIS-160-Draft-SCR00004 & FSM-TWG-SCR00078)
- Updated the profile to include the ImplementationCapabilities of the Self-contained NAS implementation
- Promoted ElementCapabilities and ImplementationCapabilities classes for DPCO support
to Experimental
- Changed the version of the profile to be 1.6.0 and the CIM-Version to be 2.28
- Promoted Launch In Contecxt to Experimental and Changed LaunchinContext to be a DMTF Profile
and be Launch In Context.
- Promoted Operational an Experimental optional SupportedProfile
- Added classes for NAS Head predefined IndicationFilters and FilterCollection
- Adapted the Supported Profile support for Indications
- Changed the MessagelDs in the Alert Indications queries were changed to "FSM1" and "FSM3", instead
of "FSM001" and "FSM003"
- Put in cross references to the Standard Messages in the Architecture book

Host Filesystem (SMIS-160-Draft-SCR00004 & FSM-TWG-SCR00076)
- Updated the profile to include the ImplementationCapabilities of the Host Filesystem implementation
- Added a reference to the Host Profile Deployment Guidelines Annex of the Host Book
- Promoted ElementCapabilities and ImplementationCapabilities classes for DPCO support to

Experimental

- Changed the version of the profile to be 1.6.0 and the CIM-Version to be 2.28
- Changed LaunchIinContext Supported Profile to be a DMTF Profile and be Launch In Context.1.0.0
- Reduced the number of Mandatory properties on CIM_LogicalDisk

SMI-S Information Model (TSG-SMIS-SCR00294)
- Added this Annex

Comments

Editorial notes are displayed.
DRAFT material was hidden.

Revision 4

Date
28 September 2011

SCRs Incorporated and other changes
Front matter
- Paragraph added to Maturity Level explanation, as requested by ISO editor for SMI-S 1.1.1.

Comments
Editorial notes and DRAFT material are hidden.
Revision 5

Date
15 August 2014

SCRs Incorporated and other changes
Filesystem Copy Services Profile
- Removed per SMIS-150-Errata-SCR00045

Remote Filesystem Copy Services
- Removed per SMIS-150-Errata-SCR00045

File Export Profile
- SMIS-150-Errata-SCR00048 -- Clarified that CIM_FileShare subclasses

File Export Manipulation SubProfile

- Rolled forward per SMIS-150-Errata-SCR00048

--Clarified that CIM_FileShare subclasses (e.g., CIM_CIFSFileShare and/or CIM_NFSFileShare) should
be implemented instead of their super class

-- Fixed the CreateExportedShare and ModifyExportedShare methods to match the "fixed" mof for
SNIA_FileExportService

--Removed SNIA classes (SNIA_FileShare, SNIA_HostedShare and SNIA_SharedElement).

FS Quota
- SMIS-150-Errata-SCR00047 -- Changed references to SNIA_FSQuotaDomainldentity to
SNIA_FSDomainldentity

Comments
Editorial notes and DRAFT material are hidden.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage Management
Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/

SMI-S 1.6.0 Revision 5 SNIA Technical Position v

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Anytext, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration,
and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced must acknowledge the SNIA copyright on that material, and must credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@shnia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

Copyright © 2003-2014 Storage Networking Industry Association.

Vi

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and promoting
interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA) organization.

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2014 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of
their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed Management Task
Force (DMTF). The CIM classes that are documented have been developed and reviewed by both the SNIA and
DMTF Technical Working Groups. However, the schema is still in development and review in the DMTF Working
Groups and Technical Committee, and subject to change.

CHANGES TO THE SPECIFICATION

Each publication of this specification is uniquely identified by a three-level identifier, comprised of a version
number, a release number and an update number. The current identifier for this specification is version 1.2.0.
Future publications of this specification are subject to specific constraints on the scope of change that is
permissible from one publication to the next and the degree of interoperability and backward compatibility that
should be assumed between products designed to different publications of this standard. The SNIA has defined
three levels of change to a specification:

= Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x.X). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

=< Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of the
specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

= Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.X.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

Maturity Level

In addition to informative and normative content, this specification includes guidance about the maturity of
emerging material that has completed a rigorous design review but has limited implementation in commercial
products. This material is clearly delineated as described in the following sections. The typographical convention is
intended to provide a sense of the maturity of the affected material, without altering its normative content. By
recognizing the relative maturity of different sections of the standard, an implementer should be able to make more
informed decisions about the adoption and deployment of different portions of the standard in a commercial
product.

SMI-S 1.6.0 Revision 5 SNIA Technical Position Vii

This specification has been structured to convey both the formal requirements and assumptions of the SMI-S API
and its emerging implementation and deployment lifecycle. Over time, the intent is that all content in the
specification will represent a mature and stable design, be verified by extensive implementation experience, assure
consistent support for backward compatibility, and rely solely on content material that has reached a similar level of
maturity. Unless explicitly labeled with one of the subordinate maturity levels defined for this specification, content
is assumed to satisfy these requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three subordinate levels
of implementation maturity that identify important aspects of the content’s increasing maturity and stability. Each
subordinate maturity level is defined by its level of implementation experience, its stability and its reliance on other
emerging standards. Each subordinate maturity level is identified by a unique typographical tagging convention
that clearly distinguishes content at one maturity model from content at another level.

Experimental Maturity Level

No material is included in this specification unless its initial architecture has been completed and reviewed. Some
content included in this specification has complete and reviewed design, but lacks implementation experience and
the maturity gained through implementation experience. This content is included in order to gain wider review and
to gain implementation experience. This material is referred to as “Experimental”. It is presented here as an aid to
implementers who are interested in likely future developments within the SMI specification. The contents of an
Experimental profile may change as implementation experience is gained. There is a high likelihood that the
changed content will be included in an upcoming revision of the specification. Experimental material can advance
to a higher maturity level as soon as implementations are available. Figure 1 is a sample of the typographical
convention for Experimental content.

EXPERIMENTAL
Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

Implemented Maturity Level

Profiles for which initial implementations have been completed are classified as “Implemented”. This indicates that
at least two different vendors have implemented the profile, including at least one provider implementation. At this
maturity level, the underlying architecture and modeling are stable, and changes in future revisions will be limited to
the correction of deficiencies identified through additional implementation experience. Should the material become
obsolete in the future, it must be deprecated in a minor revision of the specification prior to its removal from
subsequent releases. Figure 2 is a sample of the typographical convention for Implemented content.

IMPLEMENTED
Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag

viii

Stable Maturity Level

Once content at the Implemented maturity level has garnered additional implementation experience, it can be
tagged at the Stable maturity level. Material at this maturity level has been implemented by three different vendors,
including both a provider and a client. Should material that has reached this maturity level become obsolete, it may
only be deprecated as part of a minor revision to the specification. Material at this maturity level that has been
deprecated may only be removed from the specification as part of a major revision. A profile that has reached this
maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next.
As a result, Profiles at or above the Stable maturity level shall not rely on any content that is Experimental. Figure 3
is a sample of the typographical convention for Implemented content.

STABLE
Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

Finalized Maturity Level

Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying the
requirements for the Stable maturity level, content at the Finalized maturity level must solely depend upon or refine
material that has also reached the Finalized level. If specification content depends upon material that is not under
the control of the SNIA, and therefore not subject to its maturity level definitions, then the external content is
evaluated by the SNIA to assure that it has achieved a comparable level of completion, stability, and
implementation experience. Should material that has reached this maturity level become obsolete, it may only be
deprecated as part of a major revision to the specification. A profile that has reached this maturity level is
guaranteed to preserve backward compatibility from one minor specification revision to the next. Over time, it is
hoped that all specification content will attain this maturity level. Accordingly, there is no special typographical
convention, as there is with the other, subordinate maturity levels. Unless content in the specification is marked
with one of the typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material

Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections identified as
“Deprecated” contain material that is obsolete and not recommended for use in new development efforts. Existing
and new implementations may still use this material, but shall move to the newer approach as soon as possible.
The maturity level of the material being deprecated determines how long it will continue to appear in the
specification. Implemented content shall be retained at least until the next revision of the specialization, while
Stable and Finalized material shall be retained until the next major revision of the specification. Providers shall
implement the deprecated elements as long as it appears in the specification in order to achieve backward
compatibility. Clients may rely on deprecated elements, but are encouraged to use non-deprecated alternatives
when possible.

SMI-S 1.6.0 Revision 5 SNIA Technical Position iX

Deprecated sections are documented with a reference to the last published version to include the deprecated
section as normative material and to the section in the current specification with the replacement. Figure 4 contains
a sample of the typographical convention for deprecated content.

Content that has been deprecated appears here.

Figure 4 - Deprecated Tag

USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no altera-
tion, and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@shnia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License
Copyright (c) 2014, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

= Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

= Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

< Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SMI-S 1.6.0 Revision 5 SNIA Technical Position Xi

Xii

Contents

RS ST o] g I o 1] (o] o VPP R PRI iii
(IS o) B =1 o] LT PSP P PP XVii
(IS o) B o [U] =P T U PP XXV
o] €21V oT o T TP XXVii
Yo 0] o PP PPPPTRRPPIN 1
2. NOIMALIVE REFEIEINCESt e et e e e e e e e e e 3
P2 R 1= s 1= = | PR PRRTP 3
A AN o o1 (0 1YL= I = (=T =) (o = SRS 3
2.3 References Under dEVEIOPMENTuui e e e s e e e e e e e e s e s et aerereeaeeessatnnbnaarereaaeaes 3
P O 1 g 1= g (=] (T (=] o[t PR PRRT 3
3. Definitions, Symbols, Abbreviations, and ConVentionsSccoovvveiiiiiiiiiiiiieee e 5
TN R 1= o 1= - | U T PO 5
T B T i1 1111 [U U T TP UPPPPRRT 5
N Lo T o 101 A (o) 1 = P 7
T B 1= od] o] O PSP PRTP O PPRPPO 7
4.2 Health and Fault Management CONSIAEIALION.oiiuiiiiiiiiie et e 9
4.3 CasCading CONSIAEIALIONSciiiiiiiiiiee ittt e ettt e e e et b et e e e s st bt e e e e abb et e e e s sabbeeeeeabbeeeeesanbneeeeeanes 10
4.4 Supported Profiles, Subprofiles, and PaCKAgEScoiuuiiiiiiiiiiiie e 10
I \Y 1= 1 o o ES o) 1 L= o 1SS 10
4.6 Client Considerations and RECIPESccoiiuuiiii ittt e e e st b e e e e s st b e e e e e s aabeeeessbreeeeeane 10
o A O 11V I = 1= o =T o S 10
5. File Export Manipulation SUDProfile ... 19
L0 A I T o3) 1T PSSR 19
5.2 Health and Fault Management CONSIAEIALIONS..........uuiiiiieeeer i e e e e e s e s s e e e e e e e e e s e s sanr e reeaeeeas 25
SRC I O 1Yoz 1o 10 To [@01 170 [T - 1o 1= PR 27
5.4 Supported SUbProfilesS and PACKAGES.........ccoiii ittt e e e e e e e s rr e e e e e e e e s e s e e e e raaaeeeas 27
5.5 Methods Of the Profil€o.veiiiiiii e e e e st b e e s e nees 27
5.6 Client Considerations @nd RECIPESuuuiiiiii i e ettt e e e e e s ee s e e e e e e e e s s s ss e eeeeaaaaeeesasanstaeareeeeaaeaes 42
I A O 11 I =T 4 1= T | £ T PP PP PRRR 54
6. File Server Manipulation SUDProfile ... 73
L0 1/ 0o o1 ST 73
LI 2 B 1T o3] o 1[0 o TSP T PP 73
6.3 Supported Profiles, Subprofiles, and Packages............ciiii e 80
6.4 Methods Of the PrOfile ... et e e e e e e e s e s nn bbb e e e e e e aaaaeeeas 80
6.5 Client ConsSiderations @n0 RECIPESuiiii ittt et e e e e e e s e e s bbb ee et e e e e e e e e e s e s anbaeaeeeaaaaaaans 90
6.6 Registered NAME AN VEISIONuuuiiiiiiiiia ettt et e e e e e e e e s s e bbbt e e et e eaaaaeaasaaababaeaeeeaaaaaaans 20
LT A 1\ I 1= 1T o £ RPN 91
7. File StOrage Profil ... e 111
4% R B L= Tod 1] o] (o] o WP PP PPPPTPTPPRPN 111
7.2 Health and Fault Management CONSIAEIAtION.oiuuiiiei ittt ee e et e e e s senneeeeanes 112
7.3 Cascading CONSIHEIALIONScciiiiiiiee ittt ettt e ettt e et e e e s ab et e e e e s bbbt e e e s sttt e e e e aasbbeeeesabeeeesaabbaeeeesanes 112
7.4 Supported Profiles, Subprofiles, and PACKagES............uiiiiiiiiiii e 114
7.5 Methods Of the PrOfilooiiii et e e e e e e e s e e s ee e e e e s e s ennnenreneeees 114
7.6 Client Considerations and RECIPESouuiiii ittt e e e st e e anbaeeeeeaaes 115
0 A O 11/ TN 1 =3 T o1 £ S 115
8. FIlEeSYStem Profile ... 117
S0 A I =YY od) 1T o O 117
8.2 Health and Fault Management CONSIAEIAtION............uuuriiiiieeeee i e e e e e e s s s rr e ee e e e e e s e eanraeeeees 120
ESTRC I OF- 1Yoz (o 10 o [@01 0 170 [T =i o] o 1= 121
8.4 Supported Profiles, Subprofiles, and Packages.........ccuuuiiiiiiiiiiiiiiieee e 121
8.5 Methods Of the Profil€cc.uuiiiiiiiee et e e st e e st e e e s abbaeeeeeanes 121
8.6 Client CoNSIAEratioNS: USE CASESccciiuiiiiieiiiiiiieesittieee e ettt et e e s sttt ee e s s stbteee e s sbbeeeeesssbeeeeesanbbseessasbaeeeesanes 121

SMI-S 1.6.0 Revision 5 SNIA Technical Position Xiii

T A O 11/ B 1 1Y 0 11T L N 131

9. Filesystem Manipulation SUBbProfile ... 147
1S A B =T To) o] (o] o BT PO PP PUPPPPPPPPPPRPT 147
9.2 Health and Fault Management CONSIAEIAtIONScuuurtiei ittt e sttt e et e e e e e s sbre e e e e s senneeeeaaes 155
9.3 CasCading CONSIHEIALIONSccceiitiiiieeiiieiee ettt e e sttt e e et b e e e et st et e e e st b e e e e e s aabbeeeeesasbeeeeesabeeeeeaabbneeeesanes 157
9.4 Supported Subprofiles and PaCKagES.........ccooiiiiiiiiiiiii e 157
9.5 Methods Of the PrOfile ...t e e e e et e e e e e e s s e eeeeeeas 157
9.6 Client Considerations and RECIPEScuuiiiii ittt e et e e s st e e e anbareeeeaaes 179
S I A O 1 I 1 1= T o £ U UT ST 199

10. Filesystem Performance Profile ... 229
00 OV o o] 1 PR 229
02 I T T oo) o PR 229
02 1491 o] (=3 0 0 =T o1 = U1 T o TR 231
10.4 Methods Of the PrOfilecoeeiii et e s e e e s e ebae e e e e nnnreas 236
F0.5 USE CaSES. .. iiiittteeeet et e e e et ettt et e e e e e e e e bttt et e e e e e e oo e E R R e e e ettt e e e e e e e e e E e Re e e e ee e e e e e e R rrrrr e e e e aeeeaa s 241
O ST O [V = 1= o =T o £ PP PPR 244

11. Filesystem QUOLAS Profil@. ... e 267
3 R ¥/ (o] 1] - F TP OO PP PPPPPPPTP 267
0 B 1T] o) o] [T OO PP PPPPPPPTR 267
11.3 Health and Fault Management CONSIAErationS.............c.uuuuiiiiiiiiiiiiiiiie e ee e e e e e e e e e e 270
11.4 Supported Profiles, Subprofiles, and PaCKAgES.........cccuui i 271
11.5 Methods Of the Profile ...t e e et e e e s bbb e eeaeaaae e e s 271
11.6 Client Considerations and SAMPIE COUE............uuuiiiiiiiiiiai e a e e e 273
A O 11V =T 41T o (TP O PP PPPPPPRTP 280

12. NAS HEAA ProOfil oottt s e e e e e e e e e e e e eeeeesennnnne 287
I R B 1T ot g1 o 1T o TP T PP P P PTPPPPTOP 287
12.2 Health and Fault Management CONSIAEIAtIONS..........ccieiiiriiieeiiiiiee ettt e e b e 297
12.3 CasCadiNg CONSIAEIALIONSiiuuriieeiitiie ettt et e e ettt e e e st bt e e e et b e e e e e st b et e e e e asbb e e e e e abbee e e asbreeeeennnres 298
12.4 Supported Subprofiles and PACKAGEScoiiuriiiieiiiiiie ettt 299
12.5 Methods Of the Profile ...ttt e e e e e e e e bbb r e e eeeaaaeeeeeas 299
12.6 Client Considerations and RECIPESuiiii ittt e e et e e e e e b e e e asbre e e e e enres 299
2 O 11V =T 41T o (PP PPRPRRTR 300

13. Self-Contained NAS Profile......... i 317
R B0 O I T XS oo) o PR 317
13.2 Health and Fault Management CONSIAEIAtIONS........cuiiieeieiiiiiiiieeer e e e e s s s re e e e e e e e s e s ennnrrrrrereeeeeeas 326
RS TS B @ TSTor=To [To JK @0 g S0 [=T =1 1 o] o PR 327
13.4 Supported Subprofiles and PacCKages..........ccccuuiiiiiiiiieeee et e e e e e e e e e e e e e 327
13.5 Methods Of the PrOfileo.eeiiii et e e e st e e e e nereas 327
13.6 Client Considerations and RECIPEScceiiiiiiictieie e e e e e e e e s e e e e e aeeeasssassnraereeeaaeeeeeas 327
R T A O |V = 1= o =T o £ PP 328

14. NAS NetWOTrK POrt Profil@. ..o 343
I R Y/ (o] ¢ 1] - F TP OO PP PPPPPPPTP 343
I B 1oL od 1] o) o] [T TP O PP PPPPPPPTP 343
I B (09T o] (=T g LT o] = U1 o o O TP O PP PPPPPPPTP 343
14.4 Health and Fault Management CONSIAEratioNS.............c.vvuuuiiiiiiiiiiiiieie e e e e e e e e e e e e e e 348
R OF= TSTo%= To [To B @01 1] 10 [=T = U1 o] o 10 349
I G =1 1 T To L OO PP PPPPPPPTT 350
o A U LT O] S PP P P PP PTPPTPRPR 350
I O 11V = =T 41T o | (TP OO PPPPPTTP 350

15. HOSt FIleSYSTem Profile ... 367
T8 R 1 (o] o L TP PP P P PTPPPPTOP 367
T B LT ol g1 o 1T o PP TP PP PTPPPPTOP 368
ST 100 o (=T 4 g T=T g =1 1T o O TP PO TP P P PUPPPPTOP 370
15.4 Methods Of the Profile ...t e e e e e e e s s nnab e reeeeaaaaeeeeeas 373

Xiv

15.5 Client Considerations and RECIPEScciiiiiiiiiiiiee ittt e e e e e e e e e e beereaeaaee e e s 374
S G I O 11V I =T 41T o (TP TP PPPPPPTR 378
Annex A (informative) SMI-S Information Model ...t 457
Annex B (informative) State Transitions from Storage to File Shares.............cccceovvnn. 459
SMI-S 1.6.0 Revision 5 SNIA Technical Position XV

XVi

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.

List of Tables

Related Profiles fOr FIlE EXPOIT........oo ittt ettt e skt e st esr et e s s e e aan e e e s ne e e e as e e e nnne e e s nnee s 7
FIleShare OPEratiONAISTALIUSuii ettt ettt ettt s bt e st bt e e st et e sa bt e et bt e e aab e e e s abe e e eabbeeesnbeeesnnee s 9
CIM EIEMENTS TOr FlE EXPOIT......eiiitiiiiiete ittt ettt ettt ettt ettt ettt e e e sttt e sttt e e sbb e e e anbe e e ste e e smbeeeanbbeeeanteeesnbeeeanbbeenan
SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share).........ccooocveeiiiiiiiiiiiiiiiieeee e
SMI Referenced Properties/Methods for CIM_ConcreteDePENTENCYccocviiiiiieeiiiie et
SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare) ...
SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)
SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)ccccooiiiiiiiiiiiiiie e
SMI Referenced Properties/Methods for CIM_HOSIEASNAre...........oouiiiiiiiii e
SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)
SMI Referenced Properties/Methods for CIM_SAPAvailableFOrEIementcccoiiiiiiiiiiiiieeiiee e
SMI Referenced Properties/Methods for CIM_SharedEIEMENT............eeiiiiiiiiiiee e
Related Profiles for File EXPOrt ManipUIALIONcoiiiiiiiiiieiiiee ettt
Operational Status fOr FIIEEXPOIT SEIVICEccuiiiiiiiiiiee ettt ettt e bbb e e sne e e e sbneeea
Operational Status for File Server COMPULIEISYSIEIMcoiiiiiiiiiie ettt e e s b e e st e e s areeesebeeenas
FileEXportManipulation METNOUSueiiiie ettt ettt e e e ettt e e e s e anb e e e e e e e aanbeeeaeeenbneeas
Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings
Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedSharecccoceeviiiiniiee e
Parameters for Extrinsic Method FileExportServices.SNIA_ModifyEXportedSharecccoceeeviiiiiiieeeniieeniieene
Parameters for Extrinsic Method FileExportServices.ReleaseExportedSharecccoooieiiiiiiiiiiiiieiiiiieee e,
SMI-S File Export Supported CapabilitieS PatterNSccoiiiiiiiie et
CIM Elements for File EXPOrt ManiPUIALIONooueiiiiieeeiiiie ittt sre e st e st e e sneeeentneeeaas
SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share).........ccoccveiiieieiiiee e
SMI Referenced Properties/Methods for CIM_ConcreteDependencCycc.ueiieeiiiiiiieeeeiiiiiee et
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)ccccevvvveinneeenineens 57
SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting).........cccccoovveviiiiiieeeiiieene 58
SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)
SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)...........cooiiiiiiie e
SMI Referenced Properties/Methods for CIM_HOSIEUSEIVICEcveiiiiiieriiie ettt
SMI Referenced Properties/Methods for CIM_HOSIEASNAre...........oouviiiiiiiiii e
SMI Referenced Properties/Methods for CIM_LogicalFile (SUDElemMENt)..........ciiuiiiiiiieiiiii e
SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)........ccccoovieiiiiiiiiiiieeiiieeee e 61
SMI Referenced Properties/Methods for CIM_SAPAvailableForElement
SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)
SMI Referenced Properties/Methods for CIM_SharedEIEMENT............uiiiiiiiiiiie e
SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)

SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES Capabilities)............ccccevveeene 64
SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)ccocevveeiinennne 65
SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)...........occoeveeiiiiiieecinnnnne. 67
SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configuration)cccccevvvrveeerineene 69
SMI Referenced Properties/Methods for SNIA_FIIEEXPOMSEIVICE.ccccuiiiiiiiiiiiieeeiite et 71

Operational Status for File Server ComputerSystem
Supported Profiles for File Server Manipulationcooooiiiiiiiiiiiee e

Array Element Mappings for TemplateGoalSettings and SupportedGoalSettingscccevvveeiriiierieee e 81
Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettingscccvevereiiiieeiiiie e 82
Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServercccccccooviieiieeiiciieee e, 84

SMI-S 1.6.0 Revision 5 SNIA Technical Position XVii

Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.

Table 57.
Table 58.
Table 59.
Table 60.

Table 61.

Table 62.

Table 63.

Table 64.
Table 65.

Table 66.

Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.

Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.

XViii

Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer............ccccoiiiieiiiiiieee e, 86
Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer..........coovviiiiiieeiniieeniee e 87
Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface..........cccvvveeeeiiiiieie v 88
Parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface............ccccoviiiiiiiie e, 89
Parameters for Extrinsic Method FileServerConfigurationService.DeletelPInterface...........cccccooiiiieiniiiiee e, 90
CIM Elements for File Server ManipUIBLIONooiiiiiie et e et e s 91
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)....... 94
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to DNSSettingData) 94
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to IPInterfaceSetting-
(D= L=) PP T TP PPRT PP 94
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NFSSettingData)......... 95
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NISSettingData)......... 95
SMI Referenced Properties/Methods for CIM_DNSSettingDatacccoiiiiiiiiieiiiiiiieee e 95
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationService to File-

ST YT (0= T o1 =T TP R TRPTRR 96
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationService to File-
ServerConfiguratioNCapPabilitIES)cuiuureiie it e e e e e e e e e e ab e e e e s et e e e e e e ab e ee e e e e nnaeeas 96
SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem FileServer to FileServer-

ST =] 11 0 PP UP PRI 97

SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEnd-

SMI Referenced Properties/Methods for CIM_HostedDependency

SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer System to FileServerConfig-
(UL ec U iTo] ST =T oY Tt TP PSP PP PP PP OPPPPPRPI 98

SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkV-
7Y 1) OO 98

SMI Referenced Properties/Methods for CIM_NEIWOIKVLANccoiiiiiiieiiiiii e e et e e e e
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSettingData)...........ccccoeecveveeeeennnee.
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSettingData)ccovervveeennnee.

SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServerSettings)..........
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceSettingData)
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSettingData)cccccevvvvveeeennn.
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSettingData)...........ccccovveerveeennnee.

SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem FileServer to FileServer-
1=l 11 [0 OO EPPPRR SRR

SMI Referenced Properties/Methods for SNIA_CIFSSettingDatal.........c.cveviriiiiiiiie e
SMI Referenced Properties/Methods for SNIA_FileServerCapabilities..........ccccoovviiiiiiiiie e
SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities
SMI Referenced Properties/Methods for SNIA_FileServerConfigurationService

SMI Referenced Properties/Methods for SNIA_FIleServerSettingscvvviriiiiiiiee i
SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData............coocveeiiieeiiiiieiiee e
SMI Referenced Properties/Methods for SNIA_NFSSettingData...........coieiiiiiiiiaiiiiiee e
SMI Referenced Properties/Methods for SNIA_NISSEttiNgDataccoovvieiriiiiiiiee e
(07 Tor= o [<To [BS] (0] 1= Lo [TP P PP OUPPPPI
CIM EIEmMENLS fOr Fil® STOTAQEuviiiieiiiiiiiee ettt e e e e e e e e ettt e e e s e tbeb e e e s asbbaaeeeessantaeeeeesatbaneeeenanes
SMI Referenced Properties/Methods for CIM_ResidesOnExtent...................
Related Profiles fOr FIESYSIEMoii ittt e st e et e e e nne e e s nn e e e anneeenns
FileSyStem OPEratiON@ISTAIUSiiiieiiiiiie ettt ettt et e et e e ate e e sb et e e bt e e eabe e e s nneeeanneeena
CIM EIEmMENLS fOr FIlESYSIEIMuiiiiiie et e e e e e e e e sttt e e e e e tbee e e e s asbbaeeeeeesaataeseeesatbaneeeeaane
SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)cccceeeevvuveeeeenn. 133
SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)cccccvveviiiiiieeiiiec e, 134

Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.

Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.

SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)...........ccceeeevvveneennn. 134
SMI Referenced Properties/Methods for CIM_FIlESIOragEcocuviiiiiieeiiiie ittt 134
SMI Referenced Properties/Methods for CIM_FileSysStemMSEetting..........eviiiiiiiiiiiie e e e 135
SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required)..........ccceeeevivvieeeennn. 136
SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)..........ccccveeiiiiiiieeeiniiieeeeenne 137

SMI Referenced Properties/Methods for CIM_LocalFileSystem
SMI Referenced Properties/Methods for CIM_LogicalFileccccooevveeen..
SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable
SMI Referenced Properties/Methods for SNIA_LOCAIFIESYSEMeeiiiiiiieee e
SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSettingccocvvvivieieiiieciiiiecnee.
Related Profiles for Filesystem ManipUIBLIONccuviiieiiiiiiiiee et e e e et e e e et e e e e e st ae e e e s enneees
LocalFileSystem OPeratiON@ISTALUScooiiuiiiiieiiiiii ettt e e e e st e e e e s e nbb e e e e e e anbbeeeeeeaeneees
Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification............cccccoeeiiieeneeniine
Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettingsccccecvverieeeiiieenns
Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize
Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettingscccceeeevnene
Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystemccccooocveeeeniiie
Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystemc..ccccvviveinieenn.
Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem...........ccccocvvveeeeiiiiiieee e
Filesystem Manipulation Supported CapabilitieS PAEINScooiiiiiiiiiiiiii e
CIM Elements for Filesystem ManipUIALIONcoio it e e et e e e et e e e e e s e nbeeeaeeeanes
SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)ccccccveeevvveennnee.
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabilities)
SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration Capabilities)204
SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default) ..o

SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)..........ccccovevvveeennnee.

SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)..........cccceeevcvveneennn.

SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System).........cccccovviieeeenn.

SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabilities)...........cccccoeeveeeeennn.

SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting)cccovevvveviieeiiiiecnnee.

SMI Referenced Properties/Methods for CIM_HostedFileSystem
SMI Referenced Properties/Methods for CIM_HOSIEASEIVICEooiuiiiiiiiiiiiiiee e
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined FS Settings)
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined Local Access Settings)....209

SMI Referenced Properties/Methods for SNIA_ElementCapabilities (Default)ccccceeeviiiiiiee i 210
SMI Referenced Properties/Methods for SNIA_FileSystemCapabilitiesccooiiiiiiiiiii e 210
SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilitiescccccoeiiiieeiiiiiineee 211
SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService...........ooovveviiiiiieeeiiee e 214
SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)..........ccccceevviiveneenn. 214

SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Settings)

SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable 218
SMI Referenced Properties/Methods for SNIA_LOCAIFIESYSIEMccoiiiiiiiiiiiiieie e 219
SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilitiescccccveeeeiiiiieneen. 221
SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSettingccceeeeviiiiiieeeiiiiieeeenne 224
Related Profiles for Filesystem PerfOrManCeoouuiiiiiiiie e e e e 229
Summary of Element TYPES DY Profileooo i 233
Creation, Deletion and Modification Methods in the Filesystem Performance Subprofileccccvvveeiiiiieneen. 236
Summary of Statistics SUPPOIt DY EIBMENToiii e e e 241
Formulas and Calculations - Calculated Statistics for a Time Intervalcooooiiiiiiii e 242

SMI-S 1.6.0 Revision 5 SNIA Technical Position XiX

Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.
Table 147.
Table 148.
Table 149.
Table 150.
Table 151.
Table 152.
Table 153.
Table 154.
Table 155.

Table 156.

Table 157.
Table 158.
Table 159.
Table 160.
Table 161.
Table 162.
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
Table 177.
Table 178.
Table 179.
Table 180.
Table 181.
Table 182.
Table 183.
Table 184.
Table 185.
Table 186.
Table 187.

XX

Filesystem Performance Subprofile Supported Capabilities Patternsoooi e 243
CIM Elements for FileSysStem PerfOorManCeooiiiiiiiieeiee ettt e e 244
SMI Referenced Properties/Methods for CIM_ElementCapabilitieS............occcvviieiiiiiiieii e 247
SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File Share Stats) 247
SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port Stats)cccceeviciieeeenn. 248
SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesystem Stats)c.cccccvveenee. 248
SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element Type Stats) 249
SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)ccooccieeiiiiiiiiieei e 249
SMI Referenced Properties/Methods for CIM_HostedCollection (Default)............coooiiiiiiiiiiiiniiee e 250
SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)..........ccocoviiiiiieiieeinieecee. 250
SMI Referenced Properties/Methods for CIM_HOSIEASEIVICEc.cooiuiiiiiiiiiciiiie et a e 251
SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined collection)........... 251
SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of predefined collection) 251
SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collection)................... 252
SMI Referenced Properties/Methods for CIM_StatisticSCOIIECLIONcccoiiiiiiiieiiiiieee e 252
SMI Referenced Properties/Methods for SNIA_AssociatedFileSystemStatisticsManifestCollection (Client de-

L1al=T Wete] | F=Tox 1o o) TP T O TP P PO TP T RO P PP R PPPOPPOPN 253

SMI Referenced Properties/Methods for SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider de-
LiLa Lo eo] | [=Toxt i o1 0) R PP OSSPSR

SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalDatacooocuveeiieiiiiiiiiee e
SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsSCapabilitiescocvviiiiiieeeniiec e,
SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Client Defined)...........

SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Provider Support)
SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection (Client Defined) 262
SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection (Provider Defined) 262
SMI Referenced Properties/Methods for SNIA_FileSystemStatiStiCSSErVICe.......cuviiiiiiiiiiieiiieeee e
Related Profiles for FileSYStemM QUOLAS...........uuiiiiiiiiiiiie ettt e e e s et e e e e s sabe e e e s st b e e e e e s sntaaeeaesansnenes
CIM Elements for FileSYStem QUOLASoieiiiuiiiiie ettt e et e e e e e eibe et e e e s e tbee e e e e s aaeeeaeeeannbaeeeeeaabbeeeeaeaann
SMI Referenced Properties/Methods for SNIA_FSDOMAINIAENTILYcveiiiiiiiiiiieiiee e
SMI Referenced Properties/Methods for SNIA_FSQuotaApplieSTOEIEMENTccoiiiiiiiiiiiiiieece e
SMI Referenced Properties/Methods for SNIA_FSQuotaApplieSTOPTINCIPAl..........cooiiiiiiiiieiiieee e
SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree
SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities............coceveiiiiieeiiiie e
SMI Referenced Properties/Methods for SNIA_FSQUOtaCONFIGENTIYccoiiiiiiiiie e
SMI Referenced Properties/Methods for SNIA_FSQUOtaINICALIONuveeiiiiiiiiiie e
SMI Referenced Properties/Methods for SNIA_FSQuotaManagementServiCeccueeiiiiieeeeiiiiiiiee e
SMI Referenced Properties/Methods for SNIA_FSQUOtaRePOrtRECOIdooviiiiiiieeeiiie e
Related Profiles fOr NAS HEAccoiiiiiie ittt e e et e e e e st e e e e e stb et e e e e aesssbeeeeeesnstaeeaeesansneees
InstModification Events for ComputerSystem
InstModification EVENtS fOr LOGICAIDISKcoiuuiiiiieiiiiiie ettt e et e e e et e e e s e nnees
Bellwether Alertindication Events for ComputerSystem
Bellwether Alertindication Events for LogicalDisk
Standard Messages USEed DY NAS HEAocuiiiiiiiicic ettt e e e e e e et e e e e st e e e e e s etbaeeeeeeanes
CIM EIEmMENLS fOr NAS HEAMttt ettt e e e ettt e e e e e bbb et e e e e an b b et e e e e abee e e e e e e sanbaeeeeeaanbbeeeaeeann
SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)
SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)
SMI Referenced Properties/Methods for CIM_ConcreteCOMPONENToeiiiiiiiiiieiiiee i siree e seee e
SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to Service) 306
SMI Referenced Properties/Methods for CIM_FilterCollection (NAS Head Predefined FilterCollection) 306
SMI Referenced Properties/Methods for CIM_HostedCollection (NAS Head to predefined FilterCollection) 306

Table 188.
Table 189.
Table 190.
Table 191.
Table 192.
Table 193.
Table 194.
Table 195.

Table 196.
Table 197.
Table 198.
Table 199.
Table 200.
Table 201.
Table 202.
Table 203.
Table 204.
Table 205.
Table 206.
Table 207.
Table 208.
Table 209.
Table 210.

Table 211.
Table 212.
Table 213.
Table 214.
Table 215.
Table 216.
Table 217.
Table 218.

Table 219.
Table 220.
Table 221.
Table 222.
Table 223.
Table 224.
Table 225.
Table 226.
Table 227.
Table 228.
Table 229.
Table 230.
Table 231.
Table 232.
Table 233.

SMI Referenced Properties/Methods for CIM_HoStedDePENUENCYcc.coiiiiiriiaiiiiiiieaeeeeiieee e e e e e 307
SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapabilities) 307
SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)..308
SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus)..............ccccveeeennn. 309

SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bellwether Alert)........ 310
SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus)
SMI Referenced Properties/Methods for CIM_LogicalDisk (LD fOr FS)ccociiiiieiiiiiiieie e

SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to NAS Head
1L =T £ PSSP RPN

SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)
SMI Referenced Properties/Methods for CIM_SystemDevice (Logical DiSKS)coovueeeriiiiriiiiinieee e
SMI Referenced Properties/Methods for CIM_SystemDevice (Storage EXIENtS)........c.eeevvvieriiieiiieeeiiiee e
Related Profiles for Self-contained NAS System
InstModification EVENtS fOr COMPULEISYSIEIMccciiiuiiiiii ettt e et e e e e s e e e e s abb e e e e e e snbeeeeaeeanneees
InstModification EVENtS fOr LOGICAIDISKoo..ueiiiieiiiiie ettt e et e e e et e e e e e e st e e e e e ennees
Bellwether Alertindication Events for ComputerSystem
Bellwether Alertindication Events for LOGICAIDISKciiiiiiiieiiiiiiic et e e
Standard Messages USEd DY NAS HEAM ..ottt e e et e e e et e e e e e s e ebaeeeeeanes
CIM Elements for Self-contained NAS SYSTEIMcccviiiiiieeiiiie it e s e e nneees
SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System).........ccoccveiiieeeiiieeinine e,
SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)........cooceeeiiiiiiieececccneneee,
SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to Service) 333
SMI Referenced Properties/Methods for CIM_FilterCollection (Self-contained NAS Predefined FilterCollection).334
SMI Referenced Properties/Methods for CIM_HostedCollection (Self-contained NAS to predefined FilterCol-

[[=To1 o] o) PO PP R OUPRPI 334
SMI Referenced Properties/Methods for CIM_HOStedDEPENAENCYccvviiiiiiiiiiiiieiiiee e 334
SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapabilities)............. 335
SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)..335
SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus).............cccccuveeneee. 337

SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bellwether Alert)........ 338
SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus)
SMI Referenced Properties/Methods for CIM_LogicalDisk (DiSK fOr FS)uuuiiiiiiiiiiieiiieee e

SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Self-con-
e L= Te N NS 1 (= =) PRSP

SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)
Related Profiles for NAS NEtWOIK POcooiiiiiiii ettt et et e e e e e sibeeenas
InstModification EVENtS fOr NEIWOIKPOIT.t e et e e e e et e e e s aanees
InstModification Events for ProtOCOIENAPOINToi ittt e e et e e e et e e e e s e nnees
Bellwether Alertindication Events for NEtWOIrKPOIoi i e e e e e e
NEtWOIrKPOIt OPeratiONAISTALUSiiiiiiiiiiee ettt e et e e e e e et e e e e st e e e e s s sab e e e e e e s abaeeaaeaasstaeeaeeesstansaeesasneees
ProtocolEndpoint OperationalStatus
Standard Messages USEd DY NAS HEAM ..ottt e e e e e et e e e e st e e e e e e anaeeeaaeanns
CIM Elements fOr NAS NEIWOTIK POIT..... ...ttt e e e sttt e e e e st ae e e e e s ataeeaeessnntaeeaeesansaeeeaeeaanns
SMI Referenced Properties/Methods for CIM_BIiNdsTo (CIFS 0F NFS)coociiiiiiiiiieee e
SMI Referenced Properties/Methods for CIM_BINASTO (TCP)ciiiiiiiiiiiiaiiiiieiee ettt
SMI Referenced Properties/Methods for CIM_BIiNASTOLANENAPOINTcoiiiuiiiiaiiiiiiiiae et e e e e

SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort) 354
SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)........... 355
SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEnd-

00131 TR PPPRTPPPPRRRN 355

SMI-S 1.6.0 Revision 5 SNIA Technical Position XXi

Table 234.
Table 235.
Table 236.
Table 237.
Table 238.
Table 239.
Table 240.

Table 241.
Table 242.
Table 243.
Table 244.
Table 245.
Table 246.
Table 247.
Table 248.
Table 249.
Table 250.
Table 251.
Table 252.
Table 253.
Table 254.
Table 255.
Table 256.
Table 257.
Table 258.
Table 259.
Table 260.

Table 261.
Table 262.
Table 263.

Table 264.
Table 265.
Table 266.
Table 267.
Table 268.
Table 269.
Table 270.
Table 271.
Table 272.
Table 273.

Table 274.
Table 275.
Table 276.
Table 277.
Table 278.
Table 279.

XXii

SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS).......cccooiiiiiaiiiiiieee e 356
SMI Referenced Properties/Methods for CIM_HostedACCeSSPOINt (IP).....ccooviiiiiiieiiieeee e 356
SMI Referenced Properties/Methods for CIM_HostedAccesSPOINt (LAN)uviiiiiiiiiieiie e 356
SMI Referenced Properties/Methods for CIM_HostedAccesSPOINt (TCP)uviiiiiiiieiieiiiieiee e 357
SMI Referenced Properties/Methods for CIM_IPProtoCOIENAPOINt.........coooiiiiiiiee it 357
SMI Referenced Properties/Methods for CIM_LANENAPOINToooiiiiiiiiieiiii e 359
SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkV-

[I PP UR TP UPRTRRTR 360

SMI Referenced Properties/Methods for CIM_NetWOrKPOIT...........cooiiiiiiiii it
SMI Referenced Properties/Methods for CIM_NEIWOIKVLANc.coiiiiiiiiaiiet ettt e s e e e
SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS Or NFS)occeveiiiieiiiieiieee e
SMI Referenced Properties/Methods for CIM_SystemDevice (Network POrtS)..........ccccveiiieiiiiiiiieee e
SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint...........ccccceeevvvneeenn.

SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData
Related Profiles for HOSt FIESYSIEIMooiiiieiiie ettt e e e e sttt e e e e et e e e e e enbeeeaaeeannees
Discovery of the Filesystem Volumes....
EXPANSION Of @ FIlESYSIEIM ...ttt e e e e e e e e e et e e e s e tb et e e e e sasatbeeeeessstbeeeeesasseees
RePICAtiON Of & FIESYSIEIMttt e bttt e e s et e e e e e e bb et e e e e s nnbbe e e e e e annbbeeeaeeannnees
QUIESCE @ FIIESYSIEIM ...ttt e e ookttt e e e e sttt e e e e e e nte et e e e e anbeeeaeeaasneeeeaeeeannsneaeeeaansaneeaaeaanns
UNQUIESCE @ FIIESYSTEM ...ttt ettt h e e ekt e e bttt e s a bt e e et e e st et e anbe e e et b e e e eabeeesnneeeabbeeea
FileSyStem QUIESCE TIMEBOULeiiiiiiiiiiiee ettt e e e e e e e e e e s et e e e e e s s saa e e e e e e tbeaeeaeaasataeeaeessstaeeeeesasreees
Retrieve File INFOMMALIONo ittt e ettt e e e ettt e e e s e abb et e e s e bbbt e e e s e nnbbe e e e e e snnbeeeeeeeannnees
CIM Elements for Host Filesystem
SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)
SMI Referenced Properties/Methods for CIM_Dependency (SYStEMS)ccccvvviieiiiiiiieeeeeeiiiee e e s e eriee e
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabilities)
SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to Service) 384
SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (FilesystemConfigurationService to

Host Filesystem RegiSteredProfile)eeeiiiiiiiiie ettt e e 384
SMI Referenced Properties/Methods for CIM_FilterCollection (Host Filesystem Predefined FilterCollection)....... 385
SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated RESOUICES)ccvevvveieiiieeineeeennnen. 385

SMI Referenced Properties/Methods for CIM_HostedCollection (Host Filesystem to predefined FilterCollec-

SMI Referenced Properties/Methods for CIM_IndicationFilter (Extent OperationalStatus)ccccveeeeiniiieeeennn.
SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus)
SMI Referenced Properties/Methods for CIM_LogicalDisk (ShadOow)cccviiiiiiiiieieiiieicee e
SMI Referenced Properties/Methods for CIM_LOGICAIFIIEoiiiiiiiiiiiii et
SMI Referenced Properties/Methods for CIM_Logicalldentity (LogicalDisk)

SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Host File-
S S = T T 1= = PRSP 393

SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote ReSOUrCes).........coocvvveviveeiivneennnne. 393
SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)
SMI Referenced Properties/Methods for CIM_ResideSONEXteNt..........c.ccoocvveeeeeiiciieeeenn.
SMI Referenced Properties/Methods for CIM_SAPAvailableForElement
SMI Referenced Properties/Methods for CIM_Service AffeCtSEIBMENTcc.eviiiiiiiiiee e

SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)...........ccccceveeeviiveneenn. 396

Table 280.
Table 281.
Table 282.
Table 283.
Table 284.
Table 285.

SMI Referenced Properties/Methods for CIM_SystemDevice (LogiCalDiSKS)occuvieiiiiiiiiiiiie i 396
SMI Referenced Properties/Methods for SNIA_AIIOCAtEdRESOUICESccoiviiiiiiiiiiiiee et 397
SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilitiesccccccoovvvieeeiiiiiieneen, 397
SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService...........ccooocueveeeiiiiiiieeeinniieeeeene 398
SMI Referenced Properties/Methods for SNIA_LOCAIFIlESYSEMeeiiiiiiiiie e 399
SMI Referenced Properties/Methods for SNIA_REMOLERESOUICEScc.vviiiriiiiiiiiie ittt 400

SMI-S 1.6.0 Revision 5 SNIA Technical Position XXiii

XXiV

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

List of Figures

Experimental Maturity LEVE] TG ...uuuruieiieiiiei ettt e e s s e e e e e e e s e s st en e e e e e e s e s ennnnneneneees viii
Implemented MatUFity LEVEI TAG.......u ittt e e e e e e s sb b e e ee e viii
Stable MAtUNTY LEVEI TG ...veeeeeeiiiiiie ettt ettt e e e st e e e e s bbb e e e s anba e e e e s abbeeeeeaas iX
(DT o (=T or= 1 =T N - o [P U X
Fle EXPOIT INSTANCEceiiiiiiiie ettt e e ek e e e e ek et e e e e aabe e e e e aabre e e e e anbe e e e e e nnees 8
File Export Manipulation Subprofile INStANCE.............uuuviiiiiee e 21
Capabilities and Settings for Exported File Share Creation.............ooooiiiiiiieiiiieeeie e 24
File Server Classes and Associations (Read ONIY VIEW)coiiuiiiiiiiiiiiieniieiee et 75
File Server Configuration classes and asSOCIAtIONoovviiiiiiiiiiiiiriis e e e e e e e e e e e e e aaaanen 77

File STOrage INSTANCE ..ottt e sttt e e s s bbbt e e s an et e e s enbb e e e e annneeee s 112
O 1Y o= Lo [0 To [T TSI (o] = Vo [P SEERRR 113
FlESYSIEM INSTANCEeiiiiiiiiie ettt e ekt ee s st e e s e e e e s nbb e e e e e snnneeee s 118
LocalFileSystem Creation INStance DIagramcccuurieiieiieeeeeesissicieteeee e e e ee e e s e s e s ssnrnraeeereeeeeessannnnes 149
Capabilities and Settings for FileSyStem Creationcciiii i 154
Filesystem Performance Subprofile Summary Instance Diagramccccovveeieiiiiieiee e 232
Filesystem Quotas INStANCE DIAGIaMccuiiiieeii it r e e e e e e e e s erc e e e e e e e e e e s e s s sasrararrreeeeessesaannnnns 270
NAS Head Profiles and SUDPIOFIESooiiiiiiiie e 289
NAS HEA INSTANCEoeiiiiiiie ettt s e sn e st e s are e e ssre e e nnre e e nnree e e 290
NAS SEOrage INSLANCEottt oo e e e e et et et e ettt et eete e bbbe b b a s s e e e e e e e e aaeaaeaaaaaaaaaaaeeeeennees 292
NAS Head Cascading SUPPOIT INSTANCEvueiiiiiiiiiie ettt neee s 294
Self-Contained NAS Profile and SUDPIofiles. ... 319
Self-ContaiNed NAS INSTANCEccooiiiiiee et e e e e e e e r e e e e e e e e s saansntaereeaeeeeessaannnes 320
AN IR (o] = o [N 1 1S3 = o o PPt 322
NAS Support for Front-end NetWOrk POIS.........cooiiiiiiiiiiie e 344
Optional NAS TCP Interface MOAEIINGuuveiiiiiee i e e e e e e e e e e e e e nenenes 345
Mandatory NAS Ethernet POrt MOAEINGooiiiiiiiiiieie et e e 346
Host Filesystem Profiles, Subprofiles and Packagec..cooiiiiiiiiiiiiie e 369
Host Filesystem INStANCE DIAGIAMuviiiiiiiiie e e e e e e e s e s s re e e e e e e e e e s e s sssrnraeaeeeeeessessannnnes 370
Host Filesystem support for CASCATINGc.uueiiiiiiiiiiee ittt 372

Figure B.1 State Transitions From LogicalDisk t0 FllE@ShAreccoooiiiiiiiiiiiiiiiecee e 460

SMI-S 1.6.0 Revision 5 SNIA Technical Position XXV

XXVi

Foreword

The Filesystems part of the Storage Management Technical Specification contains Profiles and other clauses for
management of devices and programs that support filesystems. A filesystem is a specific formatting of storage for
storing and accessing files on external storage. This part describes how filesystems are created, modified and
deleted, as well as how they can be found and reported. This part also describe modeling for how filesystems are
exported for access from remote systems. The filesystem profiles use information from other parts of the Storage
Management Technical Specifications. Specifically, they reference profiles in the Common Profiles and the Block
Devices parts of the specification. This part describes how these profiles are used in filesystem profiles.

Parts of this Standard

This standard is subdivided in the following parts:

= Storage Management Technical Specification, Overview, 1.6.0 Rev 5

= Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 5
= Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 5

= Storage Management Technical Specification, Part 3 Block Devices, 1.6.0 Rev 5

- Storage Management Technical Specification, Part 4 Filesystems, 1.6.0 Rev 5

= Storage Management Technical Specification, Part 5 Fabric, 1.6.0 Rev 5

= Storage Management Technical Specification, Part 6 Host Elements, 1.6.0 Rev 5

= Storage Management Technical Specification, Part 7 Media Libraries, 1.6.0 Rev 5

Acknowledgments

The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to recognize the
significant contributions made by the following members:

Organization Represented Name of Representative
Brocade Communications SYStEMSccceevcviieriieeiniee e John Crandall

EMC COrPOrationccocuiiiiiiieiiiee ettt Tony Fiorentino
.. Mike Hadavi

Hitachi Data SYStEMS.......cccoiiiiiiiieeiciiiiee e Steve Quinn

12 PP URT O Jun Wei Zhang
Individual ContribUtOr..........cociiiiiiiiie e Mike Walker

Individual ContribULOr ... Paul von Behren
WBEM SOlUtiONS, INC ..o Jim Davis

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org
SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage Networking
Industry Association, 4360 ArrowsWest Drive, Colorado Springs, Colorado 80907, U.S.A.

SMI-S 1.6.0 Revision 5 SNIA Technical Position XXVii

XXViii

Scope

Clause 1: Scope

The Filesystems part of the Storage Management Technical Specification defines management profiles for
Autonomous (top level) profiles for programs and devices whose central function is providing support and access
to file data. In addition, it provides documentation of component profiles (or subprofiles) that deal with filesystems
and management interface functions that may be used by other autonomous profiles not included in this part of the
specification.

There is an informative annex that describes how storage is mapped from block storage to file shares exported by
the filesystem and the mechanisms involved in that establishing those mappings. This annex is recommended for
getting an overview of how the filesystem models work.

This version of the Filesystems part of the Storage Management Technical Specification includes two autonomous
profiles:

e The NAS Head Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users and gets
its storage from a SAN (array devices attached to the NAS Head device).

e The Self-Contained NAS Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users, but gets
its storage from disk drives that are internal to the NAS device (instead of externally attached arrays).

In addition to these autonomous profiles, this part of the specification defines a number of component profiles,
which are used by the autonomous NAS profiles and might also be used by other autonomous profiles that feature
filesystem elements and services. The component profiles (subprofiles) defined in this version of the specification
include:

= The File Export (component) Profile

This component profile defines the elements used to model the exporting of filesystems or directories for any
autonomous profile that exports file data to remote systems.

= The File Export Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
the file shares (the representation of exported filesystems or directories) for any autonomous profile that
provides manipulation of exported filesystems or directories.

= The File Storage (component) Profile

This component profile defines the elements used to model the storage of filesystems on logical disks. This
profile does not have services for maintaining the mapping of filesystems to logical disks. These services are
addressed in the Filesystem Manipulation Profile.

= The Filesystem (component) Profile

This component profile defines the elements used to model filesystems and its related elements, such as
logical files, directories and information on how the filesystem is addressed when mounted to a specific
system. The services for defining and maintaining the information in the Filesystem Profile are contained in the
Filesystem Manipulation Profile.

= The Filesystem Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
filesystems and their related elements.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 1

Scope

= The Filesystem Quotas (component) Profile

This component profile defines the elements used to model the elements associated with creating, maintaining
and reporting on quotas on various filesystem elements.

Normative References

Clause 2: Normative References

21 General

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

2.2 Approved references
ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]

2.3 References under development

Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 5
Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 5
Storage Management Technical Specification, Part 3 Block Devices, 1.6.0 Rev 5

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

2.4 Other references
DMTF DSP0214:2004 CIM Operations over HTTP

SMI-S 1.6.0 Revision 5 SNIA Technical Position 3

Normative References

Definitions, Symbols, Abbreviations, and Conventions

Clause 3: Definitions, Symbols, Abbreviations, and Conventions

3.1 General

For the purposes of this document, the definitions, symbols, abbreviations, and conventions given in Storage
Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 5 and the following apply.

3.2 Definitions

3.2.1 CIFS
Common Internet File System.

3.2.2 Directory
A subtree within a filesystem. A directory may contain files or other directories.

3.2.3 File
A logical file in a filesystem.

3.24 File Server

A system configuration which supports the exporting of files and files systems. A file server may be a virtual system
element.

3.25 File Share
Sharing protocols applied to a directory. A directory is exported to remote users through a file share.

3.2.6 Filesystem
A filesystem is the way in which files are named and where they are placed logically for storage and retrieval.

3.2.7 FS Quota
A quota (hard or soft limit) placed on filesystem resource usage.

3.2.8 Logical Disk

This refers to block storage on which filesystems are built. A logical disk would be formatted for a particular
filesystem.

3.2.9 NAS
Network Attached Storage. In the context of this specification this refers to devices that serve files to a network.

3.2.10 NAS Head
A NAS device that gets its physical storage from one or more arrays that are externally attached to the NAS device.

3.2.11 NFS
Network File System.

3.2.12 Self-Contained NAS
A NAS device that has its own internal (to the NAS device) storage.

3.2.13 Quota

A hard or soft limit defined for users, user groups or resource collections on the amount of resources that may be
consumed.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 5

Definitions, Symbols, Abbreviations, and Conventions

File Export Profile

STABLE

Clause 4: File Export Profile

4.1 Description

41.1 Synopsis

Profile Name: File Export (Component Profile)
Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.18

Table 286 describes the related profiles for File Export.

Table 286 - Related Profiles for File Export

Profile Name Organization | Version Requirement | Description
Indication SNIA 15.0 Mandatory

Experimental SNIA 1.5.0 Optional

Indication

Central Class: CIM_FileShare

Scoping Class: CIM_ComputerSystem

4.1.2 Overview

The File Export Profile is a subprofile for autonomous profiles that support exporting of filesystems. Specifically, in
this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles. In some of these autonomous
profiles the File Export is required. In others it may not be. See the parent profile to see if this profile is required or
not.

EXPERIMENTAL

NOTE: The ExportedFileShareSetting is defined as SNIA_ classes. While this is defined to hold new properties,
the CIM version of this class will be supported for backward compatibility.

EXPERIMENTAL

4.1.3 Implementation

Figure 5 illustrates the classes mandatory for modeling the export of File Shares for the filesystem profiles. This
profile is supported by the Self-contained NAS and the NAS Head Profiles. Figure 5 shows the ComputerSystem
that hosts the LocalFileSystem (“filesystem host”) as different from the ComputerSystem hosting the FileShare

SMI-S 1.6.0 Revision 5 SNIA Technical Position 7

File Export Profile

(“File server”). While they may be different ComputerSystems, they may also be the same ComputerSystem
instance.

FrotocolEndPoint

ProtocollF Type = 4200 | 4201
(MFS" or "CIFS%)
(See NAS Network Port Profile)

W

_ SAPAvailableForElement SAP AvailableForElement
File Export)
Frofile -—IFIIBSI'I.'HB | ExportedFileShareS etling
NES or CIFS ElemenSettingD ala { Flle=hare
. ! 1] NFS of CIFS
o0.” 0.* ExportedFileShareSetting
| ElementSettingD ata
HosladShars SharedElement SharedElamem

ConcreteDapandeancy
(Deprecated, Optional) 4
(For Backward Com patibility)

LogicalFile (Deprecated)
1 {for Backward Compatibility)

C utersyst
amputersystem (See Fllesystem Profile)
File server (Dedicated="15") FF"*::[“E‘Q“ J%‘*p'“*’?:lﬂm’ .
. (For Backward Compal i
(See referancing profile) PolntinTimeCopy ‘
ComputerSystem LacalFlle=ystom {See Flie Sytem Copy
HostedFilaSystam Services Profile)

Filesystem Haost {See Filesytem Profile) 1 -

{See referencing profile)

Figure 5 - File Export Instance

The referencing profile shall model any File Shares that have been exported to the network. A File Share shall be
represented as a FileShare instance with associations to the ComputerSystem that hosts the share (via
HostedShare), to the ExportedFileShareSetting (via ElementSettingData) and to the ProtocolEndpoint (via
SAPAvailableForElement) through which the Share can be accessed.

Note: In Figure 5 the FileShare shown is intended to represent a subclass of CIM_FileShare (e.g., CIFSShare
or NFSShare). It is not intended to imply that either should be represented by CIM_FileShare (which
does not indicate the type of file share).

EXPERIMENTAL

The FileShare also has a SharedElement association to the LocalFileSystem on which the share is based.

Note that a FileShare may be defined on a PointinTimeCopy (of a filesystem). A FileShare may refer to either a
LocalFileSystem or a PointinTimeCopy of a filesystem. But a FileShare cannot reference both a LocalFileSystem
and a PointInTimeCopy.

EXPERIMENTAL

File Export Profile

In addition, there may also be an association between the FileShare and the LogicalFile that the share represents
(via ConcreteDependency). This is provided for backward compatibility with previous releases of the standard.

4.1.3.1 Associations to FileShare

The SAPAvailableForElement is a many to many association. That is, multiple FileShares may be exported through
the same ProtocolEndpoint and multiple ProtocolEndpoints may support the same FileShare (CIFSShare or
NFSShare).

The SharedElement association between the FileShare (CIFSShare or NFSShare) and a LocalFileSystem is
many to one association. Zero or more FileShares may be associated to one LocalFileSystem. But each FileShare
(CIFSShare or NFSShare) shall only reference one LocalFileSystem.

The ConcreteDependency association between the FileShare and the LogicalFile is a many to one association.
Zero or more FileShares may be associated to one LogicalFile. But each FileShare shall only reference one
LogicalFile.

The ElementSettingData association between the FileShare (CIFSShare or NFSShare) and the
ExportedFileShareSetting is a one to one association. That is, a FileShare (CIFSShare or NFSShare) shall have
an ExportedFileShareSetting and that ExportedFileShareSetting shall be associated to exactly one FileShare
(CIFSShare or NFSShare).

4.2 Health and Fault Management Consideration

The File Export Profile supports state information (e.g., OperationalStatus) on the following element of the model:

= FileShares that are exported (See section 4.2.1)

4.2.1 OperationalStatus for FileShares

Table 2 shows FileShare operationalStatus.

Table 2 - FileShare OperationalStatus

Operational Status Description

OK FileShare is online

Error FileShare has a failure. This could be due to a
filesystem failure.

Stopped FileShare is disabled

Unknown

SMI-S 1.6.0 Revision 5 SNIA Technical Position 9

File Export Profile

4.3 Cascading Considerations

None

4.4 Supported Profiles, Subprofiles, and Packages

See section 4.1.1 for this information.

4.5 Methods of the Profile

45.1 Extrinsic Methods of the Profile

None

45.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

= Associators

= AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

e EnumeratelnstanceNames

4.6 Client Considerations and Recipes

4.6.1 List Existing FileShares on the system

A client shall be able to find FileShares attached to a system (e.g., a file server) by doing an association traversal
from the ComputerSystem that represents the system using the HostedShare association.

4.7 CIM Elements

Table 3 describes the CIM elements for File Export.

Table 3 - CIM Elements for File Export

Element Name Requirement | Description

4.7.1 CIM_CIFSShare (Exported File Share) Optional Represents the CIFS sharing characteristics
of a particular file element.

4.7.2 CIM_ConcreteDependency Optional Deprecated. Represents an association
between a FileShare element and the actual
shared LogicalFile or Directory on which it is
based. This is provided for backward
compatibility.

10

File Export Profile

Table 3 - CIM Elements for File Export

Element Name

Requirement

Description

4.7.3 CIM_ElementSettingData (FileShare) Mandatory Associates a FileShare (CIFSShare or
NFSShare) and ExportedFileShareSetting
elements.

4.7.4 CIM_ExportedFileShareSetting (Setting) | Mandatory The configuration settings for an Exported
FileShare that is a setting for a FileShare
(CIFSShare or NFSShare) available for
exporting.

4.7.5 CIM_FileShare (Exported File Share) Mandatory Represents the sharing characteristics of a
particular file element.

4.7.6 CIM_HostedShare Mandatory Represents that a shared element is hosted
by a File Server Computer System.

4.7.7 CIM_NFSShare (Exported File Share) Optional Represents the NFS sharing characteristics of
a particular file element.

4.7.8 CIM_SAPAvailableForElement Mandatory Represents the association between a
ProtocolEndpoint to the shared element that is
being accessed through that SAP.

4.7.9 CIM_SharedElement Mandatory Associates a FileShare (CIFSShare or
NFSShare) to the LocalFileSystem on which it
is based.

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL -Change of Status of a

WHERE Sourcelnstance ISA CIM_FileShare FileShare. PreviousInstance is optional, but

AND Sourcelnstance.OperationalStatus <> may be supplied by an implementation of the

Previouslnstance.OperationalStatus Profile.

SELECT * FROM CIM_InstModification Optional CQL -Change of Status of a FileShare.

WHERE Sourcelnstance ISA CIM_FileShare
AND
Sourcelnstance.CIM_FileShare::OperationalS
tatus <>
Previousinstance.CIM_FileShare::Operational
Status

Previouslnstance is optional, but may be
supplied by an implementation of the Profile.

4.7.1 CIM_CIFSShare (Exported File Share)

The CIM_CIFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may instantiate either

(or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

SMI-S 1.6.0 Revision 5

SNIA Technical Position

11

File Export Profile

Table 4 describes class CIM_CIFSShare (Exported File Share).

Table 4 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.7.5
CIM_FileShare (Exported File Share).

ElementName Mandatory See the ElementName definition in section 4.7.5
CIM_FileShare (Exported File Share).

Name Mandatory See the Name definition in section 4.7.5 CIM_FileShare
(Exported File Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.5
CIM_FileShare (Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.5
CIM_FileShare (Exported File Share).

Description N Optional See the Description definition in section 4.7.5

CIM_FileShare (Exported File Share).

4.7.2 CIM_ConcreteDependency

Deprecated.

Created By: External

Modified By: Static

Deleted By: External
Requirement: Optional

Table 5 describes class CIM_ConcreteDependency.

Table 5 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The LogicalFile that is being shared.
Dependent Mandatory The Share that represents the LogicalFile being shared.

4.7.3 CIM_ElementSettingData (FileShare)

Created By: External

Modified By: Static

Deleted By: External
Requirement: Mandatory

12

File Export Profile

Table 6 describes class CIM_ElementSettingData (FileShare).

Table 6 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)

Properties Flags Requirement | Description & Notes

IsDefault N Optional Not Specified in this version of the Profile.
IsCurrent N Optional Not Specified in this version of the Profile.
IsNext N Optional Not Specified in this version of the Profile.
IsMinimum N Optional Not Specified in this version of the Profile.
IsMaximum N Optional Not Specified in this version of the Profile.
ManagedElement Mandatory The FileShare (CIFSShare or NFSShare).
SettingData Mandatory The settings define on creation of the FileShare.

4.7.4 CIM_ExportedFileShareSetting (Setting)

Created By: External
Modified By: External
Deleted By: External

Requirement: Mandatory

Table 7 describes class CIM_ExportedFileShareSetting (Setting).

Table 7 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique ID for the setting.

ElementName Mandatory A user-friendly name for the Setting.

FileSharingProtocol Mandatory The file sharing protocol supported by this share. NFS (2)
and CIFS (3) are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing
protocol. A share may support multiple versions of the
same protocol.

InitialEnabledState N Optional Valid values are '1]2|3|7|8|9' for ('Other' | 'Enabled' |
'‘Disabled' | 'In Test' | 'Deferred' | 'Quiesce’).

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is '1'".

DefaultUserldSuppor | N Optional Valid values are '2|3|4' for (‘No Default User Id' | 'System-

ted Specified Default User Id' | 'Share-Specified Default User
Id".

RootAccess N Optional Valid values are '2|3' for (No Root Access' | 'Allow Root

Access').

SMI-S 1.6.0 Revision 5

SNIA Technical Position

13

File Export Profile

Table 7 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)

Properties Flags Requirement | Description & Notes
AccessPoints N Optional Valid values are '2|3|4|5' for (None' | 'Service Default' | 'All' |
‘Named Points').

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.
DefaultReadWrite N Optional Not Specified in this version of the Profile.

DefaultExecute N Optional Not Specified in this version of the Profile.
ExecuteSupport N Optional Not Specified in this version of the Profile.

WritePolicy N Optional Not Specified in this version of the Profile.

4.7.5 CIM_FileShare (Exported File Share)

SMI-S treats CIM_FileShare as an abstract class. It is mandatory because an implementation shall instantiate

either (or both) CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 8 describes class CIM_FileShare (Exported File Share).

Table 8 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the
path to the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is
useful when importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in
section 4.2.1.

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

14

File Export Profile

Table 8 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement | Description & Notes

OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

RequestStateChange Optional Not Specified in this version of the Profile.

0

4,76 CIM_HostedShare

Created By: External
Modified By: External
Deleted By: External

Requirement: Mandatory

Table 9 describes class CIM_HostedShare.

Table 9 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement | Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile.

Dependent Mandatory The Share that is hosted by a Computer System.
Antecedent Mandatory The Computer System that hosts the FileShare. This can

be the top level or non-top level system, or a virtual file
server. But it shall be a File Server (Dedicated='16").

4.7.7 CIM_NFSShare (Exported File Share)

The CIM_NFSShare is a subclass of CIM_FileShare.

(or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

SMI-S 1.6.0 Revision 5

It is optional, since an implementation may instantiate either

SNIA Technical Position 15

File Export Profile

Table 10 describes class CIM_NFSShare (Exported File Share).

Table 10 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.7.5
CIM_FileShare (Exported File Share).

ElementName Mandatory See the ElementName definition in section 4.7.5
CIM_FileShare (Exported File Share).

Name Mandatory See the Name definition in section 4.7.5 CIM_FileShare
(Exported File Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.5
CIM_FileShare (Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.5
CIM_FileShare (Exported File Share).

Description N Optional See the Description definition in section 4.7.5
CIM_FileShare (Exported File Share).

4.7.8 CIM_SAPAvailableForElement

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 11 describes class CIM_SAPAvailableForElement.

Table 11 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory The element that is made available through a SAP. In the
File Export subprofile, these are FileShares configured for
either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare.
This shall have a value of '4200' (NFS) or '4201' (CIFS).

4.7.9 CIM_SharedElement

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

16

File Export Profile

Table 12 describes class CIM_SharedElement.

Table 12 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement | Description & Notes

SystemElement Mandatory The LocalFileSystem that is exporting some contained file
or directory as a FileShare.

SameElement Mandatory The FileShare (CIFSShare or NFSShare) that exposes a

contained file or directory of the LocalFileSystem as an
exported object.

STABLE

SMI-S 1.6.0 Revision 5

SNIA Technical Position

17

18

File Export Profile

File Export Manipulation Subprofile

EXPERIMENTAL

Clause 5: File Export Manipulation Subprofile

5.1 Description

5.1.1 Synopsis

Profile Name: File Export Manipulation (Component Profile)
Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.18

Table 13 describes the related profiles for File Export Manipulation.

Table 13 - Related Profiles for File Export Manipulation

Profile Name Organization | Version Requirement | Description
Job Control SNIA 1.5.0 Optional

File Export SNIA 1.5.0 Mandatory

Indication SNIA 1.5.0 Mandatory

Experimental SNIA 15.0 Optional

Indication

Central Class: FileExportService

Scoping Class: File server ComputerSystem element (with Dedicated property containing "16”)

5.1.2 Overview

The File Export Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It makes
use of elements of the filesystem subprofiles and supports creation, modification and deletion of FileShares that
are exported by the File Export Subprofile. A number of other profiles and subprofiles also make use of elements of
the filesystem subprofile and will be referred to in this specification as “filesystem related profiles” -- these include
but are not limited to the filesystem subprofile, the Filesystem Manipulation Subprofile, the File Export Subprofile,
the NAS Head Profile, the Self-Contained NAS Profile, and so on.

In this release of SMI-S, the autonomous profiles that use the File Export Manipulation Subprofile are the NAS
Head and Self-Contained NAS Profiles.

Annex B, "(informative) State Transitions from Storage to File Shares" describes the states that a storage element,
initially an unused LogicalDisk, goes through before it can be exported as a CIFS or NFS file share. The Filesystem
Manipulation Subprofile provides the methods to create the filesystem as a LocalFileSystem and make it locally
accessible at a file server ComputerSystem (associated to the file server ComputerSystem via the
LocalAccessAvailable association). This profile (the File Export Manipulation Profile) provides the methods to
"Export a file share" from the file server that allows the file server to share its contents with remote operational

SMI-S 1.6.0 Revision 5 SNIA Technical Position 19

File Export Manipulation Subprofile

users. Sharing the contents of a LocalFileSystem can be from the root directory or some contained internal
directory, or some contained internal file. When a directory (root or otherwise) is shared, all files and sub-directories
of that directory are also automatically shared (recursively). The semantics of sharing are ultimately controlled by
the Authorization profiles and by the filesystem implementation, so sharing cannot violate the access rules
specified internally to the filesystem. In addition to specifying the object (file or directory) to be shared, the
filesystem implementation shall specify the protocol to use (CIFS, NFS, or other protocol) for sharing.

SMI-S uses a FileShare (CIFSShare or NFSShare) element to represent the externally accessible file share. A
SharedElement association will exist between the FileShare (CIFSShare or NFSShare) and the
LocalFileSystem. The FileShare.Name property indicates the shared object (it is the filesystem-specific path to the
contained file or directory that is being shared). The format of Name is specific to the filesystem type indicated by
the associated FileSystemSetting.ActualFileSystemType property; the LocalFileSystem.PathnameSeparatorString
property indicates the "separator string" that may be used to split the PathName into the components of a
hierarchical path name from the root of the associated filesystem (indicated by the LocalFileSystem).

20

File Export Manipulation Subprofile

5.1.3 Instance Diagrams

5.1.3.1 File Export Creation classes and associations
Figure 6 illustrates the constructs involved with creating a FileShare (CIFSShare or NFSShare) for a File Export

CormputérSysiem
1 Dedicated]="File Serder 16
1 1
1
FileExpont Capabitias
FilsSharingFrotcols[] R
It ProtocolVersons] HostedService
SynchronousExportethods)] | 1
AeynchronousExpontdethads]) | BlementCapabikties
InitialE nabledState 1 FileExportSarvice HostedShars
JomanCapabimas .
_ Dementepabikies SNIA_CreateExportedShare()
Cheractenstcs={ Default’} by M —
ElermeniCapatities S n_h"c,uhr_rum.nidild &)
1 ReteaseExpontedShare)
. 1
) 1 ServiceAlfectsElemant
ExportedtilaSharaCapabiibias) | # W
FileShanngProtacal FileZhare
I FrotocalVersions]] T — - - |
SupportedProperties(] 1) e nff::n:ﬂ['gr ared ExportedrileShars3eting LocalAccesslvalable
P . AT
Creaedoal Setings() = 7 1 FileShamingPretocol
1 I Frotocolyiersions]]
nitialEnabled=tate
HostedActassPoint Blamant3etingDaa OtherEnahledSala
Def aukReadirite
SattingsDefineCapabilities CefaukExecute
ExecuteSuppon
SAPAvalEDlaForElamant 1 Catault I serl dSupponid
§ L ConcreteDepandeancy —SharadBlement— "?"-’_o_."ﬁ":\:"’af
ExportédFikeShareSeting (Eptiona] WriteFolicy
AccessPaints
-
- 1 1 i
1 PratocalEndPaint LogcalFile LocalFileSystem
: {or Directory) 1]
FrotocollFType="0ther™ FileStorage.
CiherTypeDescription="MNF5"
o "CIFS"

Figure 6 - File Export Manipulation Subprofile Instance

Subprofile. This summarizes the mandatory classes and associations for this subprofile. Specific areas are
discussed in later sections.

The FileExportService provides configuration support for exporting elements (files' and ’directories’) of a
LocalFileSystem as FileShare (CIFSShare or NFSShare) elements. A FileExportService is hosted by the file server
ComputerSystem that exports the directories/files (these would be the file server ComputerSystems in the
filesystem subprofile that were given local access to the filesystem). FileShares are accessed through
ServiceAccessPoint(s) hosted by the file server ComputerSystem. FileShares are associated with the
FileExportService via ServiceAffectsElement and with the ServiceAccessPoint(s) via SAPAvailableToElement.

If a filesystem-related profile supports the File Export Manipulation Subprofile, it shall have at least one
FileExportService element. This FileExportService shall be hosted on the top level ComputerSystem of the File
Export Subprofile (which shall be a file server ComputerSystem element in the filesystem related profiles). The
methods offered are CreateFileShare, ModifyFileShare, and ReleaseFileShare.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 21

File Export Manipulation Subprofile

Associated to the FileExportService (via ElementCapabilities) shall be one FileExportCapabilities element that
describes the capabilities of the service. It identifies the methods supported, whether the methods support Job
Control or not, the protocols that the created file share can support, and whether or not the file share shall be made
available after creation.

For each file sharing protocol that is supported, there shall be one ExportedFileShareCapabilities element that
defines the range of capabilities supported for that particular file sharing protocol. The
ExportedFileShareCapabilities elements shall be associated via ElementCapabilities to the FileExportService. One
of the ExportedFileShareCapabilities may be identified as a default (by setting the property
ElementCapabilities.IsDefault). The default ExportedFileShareCapabilities element also indicates the default file
sharing protocol to be supported. These defaults apply if any of the extrinsic methods of the FileExportService are
invoked with a NULL value for the Capabilities parameter.

Each ExportedFileShareCapabilities element is defined by a set of ExportedFileShareSettings that are associated
to it by the SettingsDefineCapabilities association. These ExportedFileShareSettings may be structured to indicate
a range of supported and unsupported property values and shall have the same value for the FileSharingProtocol
property as the ExportedFileShareCapabilities element.

For the convenience of clients the File Export Manipulation Subprofile may populate a set of “pre-defined”
ExportedFileShareSettings for each of the ExportedFileShareCapabilities. These shall be associated to the
ExportedFileShareCapabilities via the SettingsDefineCapabilities association -- the association shall have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and
theSettingsDefineCapabilities.ValueRole property set to "Supported".

Note: That they are pre-defined and therefore exist at all times does not imply that these
ExportedFileShareSettings must be made persistent by the implementation.

The ExportedFileShareCapabilities instance supports the CreateGoalSettings method, described in detail in ,
"Table 16 shows methods and instances for FileExportManipulation.”. This method supports establishing one
client-defined ExportedFileShareSettings (as a goal).

CreateGoalSettings takes an array of embedded SettingData elements as the input TemplateGoalSettings and
SupportedGoalSettings parameters and may generates an array of embedded SettingData elements as the output
SupportedGoalSettings parameter. However, this profile only uses a single embedded ExportedFileShareSettings
element in the input parameters (both TemplateGoalSettings and SupportedGoalSettings) and generate a single
valid embedded ExportedFileShareSettings element as output (SupportedGoalSettings). If a client supplies a
NULL ExportedFileShareSettings (i.e., the empty string) as input to this method, the returned
ExportedFileShareSettings structure shall be a default setting for the parent ExportedFileShareCapabilities. If the
input (the embedded ExportedFileShareSettings) is not NULL, the method may return a “best fit” to the requested
setting. The client may iterate on the CreateGoalSettings method until it acquires a setting that suits its needs. This
embedded settings structure may then be used when the CreateFileShare or ModifyFileShare methods are
invoked. The details of how iterative negotiation can work are discussed in 5.5.1.1,
"ExportedFileShareCapabilities.CreateGoalSettings”. Note that the file sharing protocol indicated by the
FileSharingProtocol property is invariant in all of these interactions. It is an error if the client changes the
FileSharingProtocol property for a Setting and submits it as a goal to the Capabilities element that provided the
original Setting.

Note: Itis not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back
mechanism is needed. This profile does not require negotiation -- an implementation may support only
a set of pre-defined correlated point settings that a client can preload and use without modification. The
implementation could also support only settings whose properties are selectable from an arithmetic
progression or from a fixed enumeration, so that the client may construct a goal setting that is
guaranteed to be supported without negotiation.

Note: That a client has obtained a goal setting supported by the implementation does not guarantee that a
create or modify request will succeed. Such a setting only specifies a supported static configuration not
that the current dynamic environment has the resources to implement a specific request.

22

File Export Manipulation Subprofile

Armed with the goal (the embedded ExportedFileShareSettings element), a reference to a LocalFileSystem, and a
path to a file or directory contained within that LocalFileSystem, the client can now use the CreateFileShare
method to create the file share for export. The CreateFileShare method creates a FileShare element, and a new
ExportedFileShareSettings instance as well as several necessary associations. These associations are:

= HostedFileShare association between the FileShare and the file server ComputerSystem that hosts it.

< SharedElement association between the FileShare and the LocalFileSystem. In addition, the FileShare
element specifies the pathname for the shared element (file or directory) relative to the root of the
LocalFileSystem (using the Name property).

= ElementSettingData to associate the FileShare to the ExportedFileShareSetting defined for it

= For backward compatibility with previous releases of SMI-S:
= The file or directory of the LocalFileSystem that is being shared is represented as a LogicalFile
= A FileStorage association is created between the LogicalFile and the LocalFileSystem
= A ConcreteDependency association is created between the FileShare and the LogicalFile.

= In addition, optional parameters to the method can cause other classes to be created:

= DefaultUserld could create a Privilege (see Clause 5: File Export Manipulation Subprofile of Storage
Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 5) associated to the FileShare as
AuthorizationTarget and to a Userldentity as AuthorizationSource

= RootAccessHosts array parameter could create root access Privileges from a number of remote Host
ComputerSystems to the FileShare (also using the Security Authorization Subprofile)

= AccessPointPorts array parameter could create SAPAvailableForElement associations to a number of
ProtocolEndPoints representing TCP/IP ports through which access is provided to this FileShare.

The ReleaseFileShare method is straightforward -- it deletes the FileShare and the ExportedFileShareSetting, and
the associations to those elements (HostedFileShare, the ElementSettingData element, SharedElement, all the
SAPAvailableForElement associations and all Privileges that reference this FileShare as an AuthorizationTarget).
Any ComputerSystem elements created to represent remote hosts with root access to this FileShare that have no
further references may also be removed. A LogicalFile element associated to the LocalFileSystem via FileStorage
will not necessarily be deleted (the implementation may keep track of the other users of this element and be able to
delete it). For similar reasons, a ProtocolEndPoint created as a result of being specified in the AccessPointPorts
parameter may not be deleted. In both these cases, if the element has no associations other than the scoping one
(FileStorage to LocalFileSystem for LogicalFile and HostedAccessPoint to ComputerSystem for ProtocolEndPoint)
the provider may stop surfacing it at any time.

The ModifyFileShare method modifies an existing FileShare -- this requires a new ExportedFileShareSetting
element to be used as a goal. But not any ExportedFileShareSetting will do; the client shall use the
ExportedFileShareCapabilities.CreateGoalSettings method which would have been used to create the file share,
or an appropriate compatible ExportedFileShareCapabilities instance. The CreateGoalSettings method is used to
establish a new ExportedFileShareSetting goal (as with the original file share creation, it may be necessary to
iterate on the CreateGoalSettings method). Since only properties controlled by Settings can be changed by
ModifyFileShare, elements surfaced as a side-effect of creating or modifying a file share (i.e., any
ComputerSystems created to represent remote hosts with root access or an ProtocolEndPoints created to
represent access points for the share, or any user id created as a default user id) cannot be deleted, though new
ones can be created and/or added), the effect of ModifyFileShare is to change some properties of the FileShare or
of the associated ExportedFileShareSetting.

5.1.3.2 Finding File Export Services, Capabilities and Pre-defined Settings

When creating a file share the first step is to determine what can be created. Figure 7 illustrates an instance
diagram showing the elements that shall exist for supporting fileshare creation.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 23

File Export Manipulation Subprofile

ComputsrSystem

Cadbcated="Fila Sanver” 16

ElementCapabilties
1 Charactenstcss { Defiaul)

Expoded-deShereCapabd bes

Exponted-ileShareCapabilfies

CreateG-oal Settings{)

SatingsDefinaCapatiibes —

ExportadFi E.R'EEE':".'.I'I'.'

ernlCapabiibes

HostedSernce

FlleExpon Senvice

A _CresteEqportedsShans|]
SMILA_Mod ortedShare()
FredeaseExporledShare!)

BlamentCapabiiies

FileExponCapabiities

FilaSharingFratocols]]

L . I Probo ol Wersaons]]
...... vdAr casstant Gkl ExpomedFileShareSeqing SynchronousExportMethods]] . .
Eletharinabretseel AsynichronousExpoiathods) i

nitigEnatledas

ServiceAlecl sl ement

C LogcalFile
FrofocoEndP ont ConcrateDapendency | for Dinectory] HestbdShars
Eroi LEkmentSegingliats - {Chptsanal
OthiarT {Conditional)
Ot
FileStorag
[Condtional)
-]
SAP Ry alableF o lemant

LocaFileSystem

SharedElement

Figure 7 - Capabilities and Settings for Exported File Share Creation

At least one FileExportService shall exist if the Filesystem Profile has implemented the File Export Manipulation
Subprofile. The instance(s) of this service can be found by following the HostedService association and filtering on
the target class of FileExportService.

Note: If no service is found from the Top Level file server ComputerSystem, the client should look for other
component file server ComputerSystems that may be hosting the service. This is not recommended,
but permitted.

An instance of the FileExportCapabilities shall be associated to the FileExportService via the ElementCapabilities
association. A client should follow this association (filtering on the result value of "CIM_FileExportCapabilities") to
inspect the configuration capabilities that are supported. The client would choose between the file sharing
protocols specified in the array property FileSharingProtocol.

For each entry in the FileSharingProtocol array, there shall be one instance of ExportedFileShareCapabilities with
the same value for the FileSharingProtocol property that shall be associated to the FileExportService using the
ElementCapabilities association (filtering on the result value of "CIM_ExportedFileShareCapabilities"). This
ExportedFileShareCapabilities element shall specify the supported capabilities for that FileSharingProtocol using a
collection of ExportedFileShareSetting elements. These ExportedFileShareSetting shall be associated the
ExportedFileShareCapabilities via SettingsDefineCapabilities.

24

File Export Manipulation Subprofile

An implementation may support a set of pre-defined ExportedFileShareSetting that clients could use directly if
desired. The SettingsDefineCapabilities association from the ExportedFileShareCapabilities to the pre-defined
ExportedFileShareSettings shall have the PropertyPolicy property be "Correlated”, the ValueRole property be
"Supported” and the ValueRange property be "Point". Other pre-defined combinations of property values may be
specified by ExportedFileShareSetting whose SettingsDefineCapabilities association has the PropertyPolicy be
"Independent”, ValueRole property be "Supported" and the ValueRange array property contain "Minimums”,
"Maximums", or "Increment". These settings can be used by the client to compose ExportedFileShareSetting that
are more likely to be directly usable.

5.2 Health and Fault Management Considerations

The key elements of this profile are the FileExportService and the file server ComputerSystem.

5.2.1 OperationalStatus for FileExportService

Table 14 shows operational status for FileExport services.

Table 14 - Operational Status for FileExport Service

Primary OperationalStatus Description
2 “0OK” The service is running with good status
3 “Degraded” The service is operating in a degraded mode. This could be

due to the health state of the underlying file server, or of the
storage being degraded or in error.

4 “Stressed” The services resources are stressed

5 “Predictive Failure” The service might fail because some resource or component is
predicted to fail

6 “Error” An error has occurred causing the service to become
unavailable. Operator intervention through SMI-S to restore
the service may be possible.

6 “Error” An error has occurred causing the service to become
unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The service is not functioning. Operator intervention through
SMI-S will not fix the problem.

8 “Starting” The service is in process of initialization and is not yet
available operationally.

9 “Stopping” The service is in process of stopping, and is not available
operationally.

10 “Stopped” The service cannot be accessed operationally because it is
stopped -- if this did not happened because of operator
intervention or happened in real-time, the OperationalStatus
would have been “Lost Communication” rather than “Stopped”.

11 “In Service” The service is offline in maintenance mode, and is not
available operationally.

13 “Lost Communications” The service cannot be accessed operationally -- if this
happened because of operator intervention it would have been
“Stopped” rather than “Lost Communication”.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 25

File Export Manipulation Subprofile

Table 14 - Operational Status for FileExport Service

Primary OperationalStatus Description
14 *Aborted” The service is stopped but in a manner that may have left it in
an inconsistent state.
15 “Dormant” The service is offline; and the reason for not being accessible
is unknown.
16 “Supporting Entity in Error” The service is in an error state, or may be OK but not

accessible, because a supporting entity is not accessible.

5.2.2 OperationalStatus for File Server ComputerSystem

Table 15 shows operational status for File Server ComputerSystem.

Table 15 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description
2 “0OK” The file server is running with good status
3 “Degraded” The file server is operating in a degraded mode. This could be

due to the health state of some component of the
ComputerSystem, due to load by other applications, or due to
the health state of backend or front-end network interfaces.

4 “Stressed” The file server resources are stressed

5 “Predictive Failure” The file server might fail because some resource or
component is predicted to fail

6 “Error” An error has occurred causing the ComputerSystem to
become unavailable. Operator intervention through SMI-S to
restore the service may be possible.

6 “Error” An error has occurred causing the ComputerSystem to
become unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The file server ComputerSystem is not functioning. Operator
intervention through SMI-S will not fix the problem.

8 “Starting” The ComputerSystem is in process of initialization and is not
yet available operationally.

9 “Stopping” The ComputerSystem is in process of stopping, and is not
available operationally.

10 “Stopped” The ComputerSystem cannot be accessed operationally
because it is stopped -- if this did not happened because of
operator intervention or happened in real-time, the
OperationalStatus would have been “Lost Communication”
rather than “Stopped”.

11 “In Service” The ComputerSystem is offline in maintenance mode, and is
not available operationally.

26

File Export Manipulation Subprofile

Table 15 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description

13 “Lost Communications” The ComputerSystem cannot be accessed operationally -- if
this happened because of operator intervention it would have
been “Stopped” rather than “Lost Communication”.

14 “Aborted” The ComputerSystem is stopped but in a manner that may
have left it in an inconsistent state.

15 “Dormant” The ComputerSystem is offline; and the reason for not being
accessible is unknown.

16 “Supporting Entity in Error” The ComputerSystem is in an error state, or may be OK but
not accessible, because a supporting entity is not accessible.

5.3 Cascading Considerations
Not Applicable.

5.4 Supported Subprofiles and Packages

See section 5.1.1 for this information.

55 Methods of the Profile

5.5.1 Extrinsic Methods of the Profile

Table 16 shows methods and instances for FileExportManipulation.

Table 16 - FileExportManipulation Methods

Method Created Instances Deleted Instances Modified Instances

SNIA_CreateExportedS | FileShare (Export) N/A N/A
hare ExportedFileShareSetting
ElementSettingData
HostedShare
SharedElement
SAPAvailableForElement
ServiceAffectsElement

LogicalFile (or Directory)
(for bc to 1.1)

ProtocolEndPoint

SNIA_ModifyExportedS ExportedFileShareSetting

hare)
FileShare (Export)

ProtocolEndPoint

SMI-S 1.6.0 Revision 5 SNIA Technical Position 27

File Export Manipulation Subprofile

Table 16 - FileExportManipulation Methods (Continued)

ReleaseExportedShare N/A FileShare (Export) N/A
ExportedFileShareSetting
ElementSettingData
HostedShare
SharedElement
ServiceAffectsElement
ProtocolEndPoint

LogicalFile

CreateGoalSettings N/A N/A N/A

5.5.1.1 ExportedFileShareCapabilities.CreateGoalSettings

This extrinsic method of the ExportedFileShareCapabilities class validates support for a caller-proposed
ExportedFileShareSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this
method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
ExportedFileShareSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type ExportedFileShareSetting. As
such, these settings do not exist in the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass previously
returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation
may determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are
the same. A client may infer from the same result that the TemplateGoalSettings must be modified.

551.11 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges with respect to the filesystem, the filesystem host, or the file server or
the file share. During negotiation, the client will show the current state to the user -- the SupportedGoalSettings
received to date (either the latest or some subset), the TemplateGoalSettings proposed (the most recent, but
possibly more). But the administrator needs a representation of what is available, possibly the range or sets of
values that the different setting properties can take. Some decisions are assumed to have been made already,
such as the file-sharing protocol to be used or the filesystem element to be shared or the resources allocated for
providing local access to the filesystem from the file server.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified using ExportedFileShareSettings -- these points
can be further qualified to indicate whether these are supported (or not), and even whether they represent some
ideal point in the space -- a "minimum", or a "maximum", or an "optimal" point. Other settings can provide ranges
for properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can
be specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for
a property that do not follow some pattern is possible, if a bit tedious.

28

File Export Manipulation Subprofile

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a wuser is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
ExportedFileShareSetting elements that are associated to the ExportedFileShareCapabilities via SettingDefi-
nesCapabilities association with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"
= SettingDefinesCapabilities.ValueRole = "Supported"
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the ExportedFileShareSetting elements that are
associated to the ExportedFileShareCapabilities via SettingDefinesCapabilities association with the following
property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"”

= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

55.1.1.2 Signature and Parameters of CreateGoalSettings
Table 17 describes the parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings.

Table 17 - Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings

Parameter Qualifier Type Description & Notes
Name
TemplateGoalSe | IN string Embeddedinstance
ttings[] ("SNIA_ExportedFileShareSetting")

TemplateGoalSettings is a string array containing
embedded instances of class
ExportedFileShareSetting, or a derived class. This
parameter specifies the client’s requirements and
is used to locate matching settings that the
implementation can support.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 29

File Export Manipulation Subprofile

Table 17 - Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings

SupportedGoalS | INOUT string Embeddedinstance
ettings|] ("SNIA_ExportedFileShareSetting")

SupportedGoalSettings is a string array containing
embedded instances of class
ExportedFileShareSetting, or a derived class. On
input, it specifies a previously returned set of
Settings that the implementation could support. On
output, it specifies a new set of Settings that the
implementation can support. If the output set is
identical to the input set, both client and
implementation may conclude that this is the best
match for the TemplateGoalSettings that is
available.

If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method shall
return "Alternative Proposed”.

If the output is NULL, the method shall return an

“Failed”.
Normal Return
Status uint32 "Success",
"Failed",
"Timeout",

"Alternative Proposed"”

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

5.5.1.2 FileExportServices.SNIA_CreateExportedShare

This extrinsic method creates a FileShare providing access to a contained sub-element of a LocalFileSystem
(either a LogicalFile or its sub-class Directory). A reference to the created FileShare is returned as the output
parameter TheShare. This FileShare element is hosted by the same file server ComputerSystem that hosts the
FileExportService. The LocalFileSystem whose element is exported shall be locally accessible to the file server
ComputerSystem (and need not be hosted by it), as represented by the LocalAccessAvailable association from the
file server ComputerSystem to the LocalFileSystem.

The LocalFileSystem whose sub-element is being exported is specified by the input parameter Root. The input
string parameter SharedElementPath specifies a pathname from the root directory of the Root to the sub-element
to be exported. If SharedElementPath is NULL or the empty string, it specifies the root directory of Root. The
format of SharedElementPath is implementation-specific -- the most common format is as a sequence of directory
names separated by a character or short string indicated by the FileSystemSetting.PathNameSeparatorString

property.

30

File Export Manipulation Subprofile

Note: The root directory of Root is the base from which a path to the LogicalFile being shared is specified. In
the simplest and possibly the most common case, the LogicalFile element is the root directory of Root
and the path is NULL or the empty string.

The desired settings for the FileShare are specified by the Goal parameter (a string-valued Embeddedinstance
object of class ExportedFileShareSetting). An ExportedFileShareSetting element shall be created that represents
the settings of the created FileShare and will be associated via ElementSettingData to the FileShare. (This
ExportedFileShareSetting may be identical to the Goal or may be its equivalent). The created element shall be
returned as the output Goal parameter.

The input Goal parameter can be NULL, in which case the ExportedFileShareSetting associated with the default
ExportedFileShareCapabilities of the FileExportService is used as the goal. In that case, the following references
to Goal are to the output value of the Goal parameter.

If Goal.DefaultUserldSupported="Share-Specified Default User Id" and the input parameter DefaultUserld is not
NULL, the FileShare will support the specified user id as the default user when the share is accessed. This access
privilege will be represented by creating instances of the Privilege class as described in the Security Authorization
Subprofile. The Security Authorization Subprofile shall be used for fine-grained access to, or modification of, the
default user.

Note: If the Security Authorization Subprofile is not supported, this parameter may be set at creation but
cannot be accessed later. It can only be replaced with a new DefaultUserld using the
SNIA_ModifyExportedShare method.

Note: The format of the user id is not specified by this subprofile. If a security principal subprofile or a
Filesystem Quotas Subprofile is defined, the user id format defined therein may be used.

If Goal.RootAccess="Allow Root Access" then the input parameter RootAccessHosts will be an array of URIs of
ComputerSystems from which root access will be permitted. This access privilege will be represented by creating
instances of the Privilege class as described in the Security Authorization Subprofile. The Security Authorization
Subprofile shall be used for fine-grained access to, or modification of, the set of hosts with root access.

Note: If the Security Authorization Subprofile is not supported, this parameter may be set at creation but
cannot be accessed later. It can only be replaced by specifying a new RootAccessHosts array using the
SNIA_ModifyExportedShare method.

Note: The computer systems may not be managed by this implementation, so they may not be represented
by ComputerSystem references.

If Goal.AccessPoints="Named Points", then the input parameter AccessPointPorts will be an array of references to
ProtocolEndpoints that provide access to this FileShare. This will be represented by creating instances of the
SAPAuvailableForElement association between the FileShare and the specified ProtocolEndpoint. Fine-grained
access to this set of ProtocolEndpoints or modification this set can be performed using the
SNIA_ModifyExportedShare method.

Note: This changes the type of the AccessPointPorts parameter from a string array in the previous version to
an array of references to ProtocolEndpoints (or more generally to ServiceAccessPoints).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 31

55121

File Export Manipulation Subprofile

Signature and Parameters of SNIA_CreateExportedShare

Table 18 shows parameters for Extrinsic Method FileExportServices.SNIA CreateExportedShare.

32

Table 18 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

Parameter
Name

Qualifier

Type

Description & Notes

ElementName

IN

string

An end user relevant name for the FileShare being
created. If NULL, then a system-supplied default
name can be used.

The value shall be stored in the 'ElementName’
property for the created element.

Comment

string

An end user relevant comment for the FileShare
being created. If NULL, then a system-supplied
default comment can be used.

The value shall be stored in the 'Description’
property for the created element.

Job

OUT, REF

CIM_Concret
eJob

Reference to the job (may be null if job completed).

Root

IN, REF

SNIA_LocalF
ileSystem

A reference indicating a LocalFileSystem element
whose sub-element is being exported. The
LocalFileSystem shall be locally available (either
explicitly or implicitly) to the file server
ComputerSystem that hosts the FileExportService.

SharedElement
Path

IN, OUT

string

An opague string representing a path to the shared
element from the root directory of the FileSystem
indicated by the Root parameter. The format of this
is as a sequence of directory names (from the
\"root\") separated by the
PathNameSeparatorString property.

Multiple paths could lead to the same element but
the access rights or other privileges could be
specific to the path. The client needs to specify the
path.

If SharedElementPath is NULL or is the empty
string, it indicates the \"root\” directory of the
filesystem indicated by Root.

The value shall be stored in the 'Name' property for
the created element.

Table 18 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

File Export Manipulation Subprofile

Parameter
Name

Qualifier

Type

Description & Notes

Goal

IN, OUT, El

string

EmbeddedInstance
("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the SNIA_ExportedFileShareSetting
class, or a derived class, encoded as a string-
valued embedded object parameter. If NULL or the
empty string, the default configuration will be
specified by the FileExportService.

TheShare

OUT, REF

CIM_FileSha
re

If successful, this returns a reference to the created
file share.

DefaultUserld

IN, OUT,
REF, NULL
allowed,

CIM_identity

A reference to a concrete derived class of
CIM_Identity that indicates the user id to use for
default access to this share. A NULL value on input
indicates that no user id is requested. A NULL
value on output indicates that no user id has been
assigned, even by default. The provider is
expected to surface this access using the
Authorization Subprofile.

A default user id per share is not supported by the
CIFS Protocol so this is ignored if the Goal
specifies creating a CIFSShare.

RootAccessHost

s[]

IN, OUT,
URI, NULL
allowed

string

An array of strings that specify the hosts that have
root access to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess
property is set to 'Allow Root Access'. Each entry
specifies a host by a URI. All entries up to the first
empty string are allowed root access; the entries
after the first empty string are denied root access. If
this parameter is NULL, root access will be denied
to all hosts, effectively overriding the value of the
property
SNIA_ExportedFileShareSetting.RootAccess. If
the first entry is the empty string, root access will
be allowed from all hosts, and subsequent entries
will be denied root access. The provider is
expected to surface this access using the
Authorization Subprofile. This property needs to be
an array of URIs because the remote host may not
be known to the provider and therefore a reference
to the host may not exist.

Root Access is not supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

33

File Export Manipulation Subprofile

Table 18 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

Parameter Qualifier Type Description & Notes
Name
AccessPointPort | IN, OUT, CIM_Service | An array of references to the ProtocolEndpoints
sl REF, NULL AccessPoints | that can connect to this Share, if the
Allowed SNIA_ExportedFileShareSetting.AccessPoints

property is set to 'Named Ports'.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of
the property
ExportedFileShareSetting.AccessPoints.

If the array has multiple entries and the first entry in
the array is NULL, all access points supported by
the service will be supported, and subsequent
entries will be denied access.

The provider is expected to surface these access
rights (whether granted or denied) using the
Authorization Subprofile. Any AccessPoints
granted access via this parameter will also be
associated to this share with
SAPAuvailableForElement. If the AccessPoint is not
already enabled it will appear in a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

Normal Return

Status ouT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuUT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

5.5.1.3 FileExportServices.SNIA_ModifyExportedShare

This extrinsic method modifies a FileShare element that is exporting a contained sub-element of a LocalFileSystem
(either a LogicalFile or its sub-class Directory). The FileShare is specified by the reference parameter TheShare.
TheShare cannot be NULL and it shall be hosted by the same file server ComputerSystem that hosts the
FileExportService. The input parameters Root and SharedElementPath shall be NULL or shall be the same as the
corresponding parameters when the FileShare was created (i.e., these cannot be changed using this method).

The precise constraint is that the sub-element shall not be changed even if the Root and SharedElementPath are
different. For instance, this would allow a different path that leads to the same sub-element. However, this
subprofile does not allow this flexibility.

34

File Export Manipulation Subprofile

The new desired settings for the FileShare are specified by the input parameter Goal (a string-valued
Embeddedinstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element that
represents the settings of the created FileShare (either identical to the Goal or its equivalent) will be associated via
ElementSettingData to the FileShare. The implementation shall modify the existing ExportedFileShareSetting. The
Setting that is actually established will be returned as the output parameter Goal.

The Goal parameter can be NULL on input, in which case, the settings for the FileShare are not changed. This can
happen if this method is being called to provide new values for DefaultUserld, RootAccessHosts, or
AccessPointPorts without changing any settings. In that case, the following references to Goal are to the output
value or the parameter.

If Goal.DefaultUserldSupported="Share-Specified Default User 1d" and the input parameter DefaultUserld is not
NULL, the FileShare will support the specified user id as the default user when the share is accessed. Any existing
DefaultUserld specified will be overridden. This access privilege will be represented by creating instances of the
Privilege class as described in the Security Subprofile. The Security Subprofile shall also be used to access or
modify this privilege. If DefaultUserld is NULL, the existing specification will not be changed.

Note: If the Security Subprofile is not supported, this parameter may be set but cannot be accessed later. It
can only be replaced with a new DefaultUserld using the SNIA_ModifyExportedShare method.

If Goal.RootAccess="Allow Root Access" then the non-NULL input parameter RootAccessHosts will be an array of
URIs of ComputerSystems from which root access will be permitted. This access privilege will be represented by
creating instances of the Privilege class as described in the Security Subprofile. Any existing specification of root
access by hosts will be overridden. If RootAccessHosts is NULL, the existing specification will not be changed.

Note: If the Security Subprofile is not supported, this parameter may be set at creation but cannot be
accessed later. It can only be replaced by specifying a new RootAccessHosts array using the
SNIA_ModifyExportedShare method.

If Goal.AccessPoints="Named Points", then the non-NULL input parameter AccessPointPorts will be an array of
references to ProtocolEndpoints that provide access to this FileShare. This will be represented by creating
instances of the SAPAvailableForElement association between the FileShare and the specified ProtocolEndpoint.
Any existing specification of access points to the FileShare will be overridden. If AccessPointPorts is NULL, the
existing specification will not be changed.

Note: This changes the type of the AccessPointPorts parameter from a string array to an array of references
to ProtocolEndpoints (or more generally to ServiceAccessPoints).

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this method if
the FileShare is in use and the method requires that no operations be in progress during that execution.

Note: The WaitTime and InUseOptions parameters are supported if the
ExportedFileShareCapabilities.SupportedProperties includes the "RequirelnUseOptions" option. This
requires a change to the MOF that may not show up in this document as enumerations are not
documented in the spec.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 35

55.2

File Export Manipulation Subprofile

Signature and Parameters of SNIA_ModifyExportedShare

Table 19 shows parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare.

36

Table 19 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter
Name

Qualifier

Type

Description & Notes

ElementName

IN

string

A new end-user relevant name for the FileShare
being modified. If NULL or the empty string, the
existing name stored in the 'ElementName’
property for the created element not be changed.

Comment

string

A new end-user relevant comment for the
FileShare being modified. If NULL or the empty
string, the existing comment stored in the
'‘Description’ property will not be changed.

Job

OUT, REF

CIM_Concret
eJob

Reference to the job (may be null if job completed).

Root

IN, OUT,
REF

CIM_Manage
dElement

A reference indicating a LocalFileSystem element
whose sub-element is being exported. In the
SNIA_ModifyExportedShare method, this shall not
indicate a different filesystem from the one
indicated when the file share was created (even if
the reference is to a different instance of
LocalFileSystem).

If Root is NULL on input it is ignored.

As an OUT parameter, a reference to the
LocalFileSystem is returned.

SharedElement
Path

IN, OUT

string

A string representing a path to the shared element
from the root directory of the LocalFileSystem
indicated by Root.

The SNIA_ModifyExportedShare method cannot
be used to change the object indicated by the path,
but the path itself can be different as multiple paths
could lead to the same element. Such a change
may have side-effects, for instance, the access
rights or other privileges could be specific to the
path.

If SharedElementPath is NULL, it indicates no
change to the current path. If SharedElementPath
consists of a single empty string, it indicates the
root directory of the FileSystem indicated by Root.

As an OUT parameter, the current path is returned.

The value shall be stored in the 'Name' property for
the created element.

Table 19 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

File Export Manipulation Subprofile

Parameter
Name

Qualifier

Type

Description & Notes

Goal

IN, OUT, El

string

EmbeddedInstance
("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the
specified FileShare element is to be shared or
exported by the FileExportService. This is an
element of the SNIA_ExportedFileShareSetting
class, or a derived class, encoded as a string-
valued embedded instance parameter. If NULL or
the empty string, the current setting will be re-
applied.

As an OUT parameter, the current Setting is
returned.

TheShare

IN, OUT,
REF

CIM_FileSha
re

As an IN Parameter, it specifies the share that is to
be modified or whose settings are being queried.
As an OUT Parameter, this specifies the share if
the request is successful.

DefaultUserld

IN, OUT,
REF, NULL
allowed,

CIM_identity

As an IN parameter, this is a reference to a
concrete derived class of CIM_ldentity that
indicates the user id to use for default access to
this share. A NULL value indicates no change to
the existing user id, if one has been specified. The
provider is expected to surface this access using
Authorization subprofile. As an OUT Parameter,
this returns a reference to the current
DefaultUserld.

A default user per share is not supported by the
CIFS Protocol so this is ignored if the file share is a
CIFSShare.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

37

38

File Export Manipulation Subprofile

Table 19 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Qualifier Type Description & Notes
Name
RootAccessHost | IN, OUT, string An array of strings that specify the hosts that have
sl URI, NULL root access to this Share, if the
allowed SNIA_ExportedFileShareSetting.RootAccess

property is set to 'Allow Root Access'. Each entry
specifies a host by a URI. The set of hosts
specified is added to the existing set of hosts with
root access.

If this parameter is NULL, root access will be
denied to all hosts, including the ones currently
allowed root access, effectively overriding the
value of the property
SNIA_ExportedFileShareSetting.RootAccess.

Each entry specifies a host by a URI. All entries up
to the first empty string are allowed root access;
the entries after the first empty string are denied
root access.

If the first entry is the empty string, root access will
continue to be allowed from the existing hosts, and
subsequent entries in the array will be denied root
access.

The provider is expected to surface this access
using the Authorization subprofile.

This property needs to be an array of URIs
because the remote host may not be known to the
provider and therefore a reference to the host may
not exist.

Root Access is not supported by the CIFS Protocol
so this is ignored if the Goal specifies creating a
CIFSShare.

File Export Manipulation Subprofile

Table 19 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Qualifier Type Description & Notes
Name
AccessPointPort | IN, OUT, CIM_Service | An array of references to the ProtocolEndpoints
S REF, NULL AccessPoints | that can connect to this Share, if the
Allowed SNIA_ExportedFileShareSettings.AccessPoints

property is set to 'Named Ports'. The set of access
points specified in the array is added to the existing
set of access points.

If the parameter is NULL, all access points will be
denied access, effectively overriding the value of
the property
SNIA_ExportedFileShareSetting.AccessPoints.

If the first entry in the array is NULL, existing
access points supported by the service will be
supported, and subsequent entries in the array will
be access points that are denied access.

The provider is expected to surface these access
rights (whether granted or denied) using the
Authorization subprofile. Any AccessPoints granted
access via this parameter will also be associated to
this share with SAPAvailableForElement. If the
AccessPoint is not already enabled it will appear in
a disabled state.

The CIFS protocol does not support multiple
ProtocolEndpoints, so this is ignored if the Goal
specifies creating a CIFSShare.

InUseOptions IN uintl6 An enumerated integer that specifies the action
that the provider should take if the FileShare is still
in use when this request is made. The WaitTime
parameter indicates the specified time used for this
function.

This option is only relevant if the FileShare needs
to be made unavailable while the request is being
executed.

WaitTime IN uint32 An integer that indicates the time (in seconds) that
the provider needs to wait before executing this
request if it cannot be done while the FileShare is
in use. If WaitTime is not zero, the method will
create a job, if supported by the provider, and
return immediately. If the provider does not support
asynchronous jobs, there is a possibility that the
client could time-out before the job is completed.

The combination of InUseOptions ='4' and
WaitTime ='0' (the default) is interpreted as 'Wait
(forever) until Quiescence, then Execute Request'
and will be performed asynchronously if possible.

SMI-S 1.6.0 Revision 5 SNIA Technical Position

File Export Manipulation Subprofile

Table 19 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Qualifier Type Description & Notes
Name

Normal Return

Status ouT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

5.5.2.1 FileExportServices.ReleaseExportedShare

This is an extrinsic method that will delete a FileShare specified by the parameter TheShare and delete any
associated instances and associations that are no longer needed. The deleted instances will include the Directory
(or LogicalFile) if it had been created only for the purpose of representing the shared sub-element.

Note: Deleting the Directory or LogicalFile deletes only the representation of the file or directory for
management and does not delete the underlying operational element

The deleted associations include HostedShare, ElementSettingData, and any elements and associations created
to support the DefaultUserld, RootAccessHosts, and AccessPointPorts parameters. In addition, the
ExportedFileShareSetting will be deleted if appropriate.

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this method if
the FileShare is in use and the method requires that no operations be in progress during that execution.

Note: The WaitTime and InUseOptions parameters are supported if the
ExportedFileShareCapabilities. SupportedProperties includes the "RequirelnUseOptions" option.

5.5.3 Signature and Parameters of ReleaseExportedShare

Table 20 shows parameters for Extrinsic Method FileExportServices.ReleaseExportedShare.

Table 20 - Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter Qualifier Type Description & Notes

Name

Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).

eJob
TheShare IN, OUT, CIM_FileSha | As an IN Parameter, it specifies the share that is to
REF re be modified or whose settings are being queried.

As an OUT Parameter, this specifies the share if
the request is successful.

40

File Export Manipulation Subprofile

Table 20 - Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter
Name

Qualifier

Type

Description & Notes

InUseOptions

IN

uintl6

An enumerated integer that specifies the action
that the provider should take if the FileShare is still
in use when this request is made. The WaitTime
parameter indicates the specified time used for this
function.

This option is only relevant if the FileShare needs
to be made unavailable while the request is being
executed.

WaitTime

uint32

An integer that indicates the time (in seconds) that
the provider needs to wait before executing this
request if it cannot be done while the FileShare is
in use. If WaitTime is not zero, the method will
create a job, if supported by the provider, and
return immediately. If the provider does not support
asynchronous jobs, there is a possibility that the
client could time-out before the job is completed.

The combination of InUseOptions ='4" and
WaitTime ='0" (the default) is interpreted as 'Wait
(forever) until Quiescence, then Execute Request'
and will be performed asynchronously if possible.

Normal Return

Status

ouT

uint32

ValueMap{}, Values{}

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error

A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error

An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

5.5.4 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

- Getlnstance

= Associators

e AssociatorNames

- References

SMI-S 1.6.0 Revision 5

SNIA Technical Position

41

File Export Manipulation Subprofile

- ReferenceNames
- Enumeratelnstances

- EnumeratelnstanceNames

5.6 Client Considerations and Recipes

EXPERIMENTAL

Conventions used in all the filesystem related profiles for recipes:

When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is used without further validation. Real code will need to be more robust.

=< In SMI-S, Values and Valuemap members as equivalent. In real code, client-side magic is required to convert
the integer representation into the string form given in the MOF.

= Error returns using the CIM_Error mechanism are not explicitly handled; the client shall implement handlers for
these asynchronous returns.

= These recipes do not show the details of negotiating a setting acceptable to both client and provider.
= The recipes do not show the details of managing a Job if a method returns after setting one up.

All the recipes show very simple examples of the operations that should be supported. Some recipes have been
simplified so that they would not even be minimally useful to a real client, but only show how more complete
functionality would be implemented.

5.6.1 Creation of a FileShare for Export

// DESCRIPTION
// GOAL: Create an NFS or CIFS FileShare that makes a specified

// directory or file of a filesystem available to clients
// and supports the properties specified in the array

// parameter $propertynames[]-

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The file server ComputerSystem host of the FileExportService

// will also be the host of the FileShare that will be
// made available to NFS or CIFS clients.
//

// FUNCTION CreateFileSystemShare

// This function takes a filesystem and a file server host
// ComputerSystem and creates a file share that will

// support the specified properties.

// INPUT Parameters:

// sharetype: The file sharing protocol (NFS or CIFS) that this
// share should support.

// fTs: A reference to the LocalFileSystem whose element is

// to be shared.

// server: A reference to the file server ComputerSystem that
// provides local access to the filesystem $fs.

42

File Export Manipulation Subprofile

// fspath: A path to the sub-element that is to be shared.
// name: A name for the created file share.
// comment: A comment to be associated with the created file share.
// propnames: An array of property names that the capabilities
// element should support.
// propvals: An array of property values corresponding to the
// property names that specify values for those properties.
// OUTPUT Parameters:
// fssh: A reference to the newly created FileShare element
// job: A reference to a ConcreteJob that is executing a long-term job.
// RESULT:
// Success or Failure
// NOTES
// 1.
sub CreateFileSystemShare(IN String $sharetype, // CIFS, NFS, etc.
IN REF CIM_FileSystem $fs, // the filesystem
IN REF CIM_ComputerSystem $server // the File Server
IN String $fspath, // subpath in the filesysten,
or
IN String $name,
IN String $comment,
IN String[] $propnames, // names of desired properties
IN String[] $propvals, // values of desired
properties
OUT REF CIM_FileShare $fssh,
OUT REF CIM_Job $job)
{
//
// Get the service and capabilities
//

//// &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,

$efscapability);
//
// Get a FileExportService via the HostedService association to
// the file server ComputerSystem
//
$feservice = Associators($server,
“CIM_HostedService”,
“SNIA_FileExportService”,
“Antecedent”,
“Dependent™)->[0];

// Assumption: There is only one FileExportService per File Server
//

// Get an ExportedFileShareCapabilities from the FileExportService
// via the ElementCapabilities association to the ComputerSystem
// (it’s indexed by NFS/CIFS/other sharing service and possibly

SMI-S 1.6.0 Revision 5 SNIA Technical Position 43

44

File Export Manipulation Subprofile

// other properties)
// Note: NFS and CIFS are two capabilities of the same service
// with different values of the FileSharingProtocol property
// In this example, we look for the
// ExportedFileShareCapabilities.IsDefault property to get a
// default sharetype.
//
$efscapabilities = Associators($feservice,
“CIM_ElementCapabilities”
“SNIA_ExportedFileShareCapabilities”,
“ManagedElement™,
“Capabilities”);
if ($efscapabilities->[] == NULL || $efscapabilities-[]-length == 0) {
#j = 0;
while (($efscapability = $efscapabilities->[#j]) !'= NULL) {
if (($sharetype == “*) && $efscapability.IsDefault ||
($efscapabilities->[#]j]-FileSharingProtocol == $sharetype)) {
$sharetype = $efscapability.FileSharingProtocol;
// Should check here that the properties named in
// $propnames-[] are supported by this capabilities
// element. |If not, the method should fail as this profile
// does not support multiple capabilities with the same
// file sharing protocol that may have different.
break;

}
#Hj++;

// Handle the error if any

iT (#] == $efscapabilities-[].length) {
<indicate error>
return false;

}

//

// Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N”, Goal-N) to
get

// the next goal for EFSSetting -- iterate until satisfied or give up

// (beware of infinite loops) Note: we don’t iterate here, just give
// up if we don’t get what we want.

//

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

&CreateGoal ($efscapability, NULL, $goal);

//

File Export Manipulation Subprofile

// Inspect Goal and modify properties as desired.
//
#i1 = 0;
while ($propnames->[#i] '= NULL) {
$goal . $propnames->[#i] = $propvals->[#i];

Hi++;

// lterate over the goal at least once
&CreateGoal ($efscapability, $goal, $settings);

#i1 = 0;

while ($propnames->[#i] '= NULL) {
// funky syntax for propnames property of settings
if ($settings.$propnames->[#i] '= $propvals->[#i]) {

//
// give up
//
return false;
¥
Hi++;

// Verify that the filesystem is locally accessible

// Does this fileserver have local access -- if not, there is no setting!
$laassocs->[] = ReferenceNames($server,
“SNIA_LocalAccessAvailable™,
“CIM_FileSystem”

$fs);
if ($laassocs->[] == NULL || $laassocs->[]-length = 1) {
{
// 1T the Tilesystem is not locally accessible from the server
// there is no setting to be found
return false;
}

$laassoc = $laassocs->[0];

//
// Get all the LocallyAccessibleFileSystemSettings
// associated with the CIM_FileSystem (via ElementSettingData)
//
$lasettings->[] = Associators($fs,
“CIM_ElementSettingDbata”,
“SNIA_Local lyAccessibleFileSystemSetting”,
“ManagedElement”,
“SettingData™);

SMI-S 1.6.0 Revision 5 SNIA Technical Position 45

File Export Manipulation Subprofile

if ($lasettings->[] == NULL || $lasettings->[]-length == 0) {
// This is an ERROR but for now we return with no results
return NULL;

#i1 = 0;
$lasetting = NULL;
while ($lasettings->[#i] '= NULL) {
// Get the association that points to this setting
$reference->[] = References($lasettings->[#i],
“CIM_ElementSettingbata”,
“SettingData™);
// There should be exactly one association to this SettingData
if ($reference->[] == NULL || $reference->[].length 1= 1) {
// This is an error -- should we continue?
continue;
// return NULL;

// The following test assumes that we only look at a setting
// that is marked as IsCurrent. There may be many such
// settings but they will be scoped to other file servers.
if ($reference->[0].IsCurrent == “Is Current”) {
// 1s this scoped to the fileserver?
$servers = Associators($settings->[#i],
“CIM_ScopedSetting”,
“CIM_ComputerSystem™,
“Dependent”’,
“Antecedent™);

if ($servers->[] = NULL && $servers->[].length 1= 0 && $servers->[0]
== $fileserver) {

$lasetting = Getlnstance($lasettings->[#i]);
break;

}

Hi++;

// if not found return NULL
if ($lasetting == NULL) {
return false;

//

// Note, this profile uses the filesystem $fs as the Root
// parameter to CreateExportedShare and does not support

// other classes.

// The fspath is a string that is FileSystemType-specific
// If path is NULL or empty, it

File Export Manipulation Subprofile

// identifies the root directory of the File System.

//
// $feservice.CreateExportedShare($name, $comment,
// $job, $fs, $fspath, $settings, $fssh);
#result = $feservice.CreateExportedShare(
$name, // share name
$comment, // comment associated with share
$job, // OUTPUT parameter if needed
$fs, // file system of the shared element
$Ffspath, // relative path to shared element
$settings, // EmbeddedlInstance of Goal
$fssh, // OUTPUT parameter -- reference to File Share
NULL, // $defaultUserld -- not being set in this example
NULL, // 3$RootAccessHosts[] -- not being set
NULL // $AccessPointPEs[] -- not being set
)

// Should handle failure and other errors here.

return true;

}

5.6.2 Modification of an Exported FileShare

// DESCRIPTION

// GOAL: Modify the creation-time settings of a NFS or

// CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through
// SMI-S.

// 2. The file share has been defined with an associated

// ExportedFileShareSettings element and hosted on an
// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides
// this method.

//

// FUNCTION ModifyFileSystemShare
// This function modifies the settings and some mutable

// properties of an existing file share hosted by the

// same ComputerSystem as the host of the service.

// This routine cannot be used to change

// the filesystem, the sharetype, or the file server.

// It can be used to change the name, the comment, and
// setting property values.

// INPUT Parameters:
// name: A new name Ffor the file share.
// comment: A comment to be associated with the created file share.

SMI-S 1.6.0 Revision 5 SNIA Technical Position

File Export Manipulation Subprofile

// fssh: A reference to the newly created FileShare element
// propnames: An array of property names that the capabilities
// element should support.

// propvals: An array of property values corresponding to the
// property names that specify values for those properties.
// OUTPUT Parameters:

// job: A reference to a ConcreteJob that is executing a long-term job.
// RESULT:

// Success or Failure

// NOTES

// 1.

sub ModifyFileSystemShare(IN String $name,
IN String $comment,
IN CIM_FileShare $fssh,
IN String $propnames[],
IN String $propvals[],
OUT CIM_Job $job)

//
// Get a client-side copy of the ExportedFileShareSetting
// associated with the ExportedFileShare (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fssh,
“CIM_ElementSettingData”,
“CIM_ExportedFileShareSetting”,
“ManagedElement™,
“SettingData™)->[0];
#i1 = 0;
while ($settings->[#i] '= NULL) {
ifT ($settings->[#i].IsCurrent) {
$setting = Getlnstance($settings->[#i].Name);
break;

//

// Get the sharetype from the FileSystemShare
// —- this cannot be changed by this method
//

$sharetype = $setting.FileSharingProtocol;

//
// Get the File Server
//
// &GetFileExportServer($fs, $server);

File Export Manipulation Subprofile

//
// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$server = Associators($fssh,
“CIM_HostedFileShare™,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent’)->[0];

//
// Get the service and capabilities
//

// &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

//
// Get a FileExportService via the HostedService association to
// the file server ComputerSystem
//
$feservice = Associators($server,
“CIM_HostedService”,
“SNIA_FileExportService”,
“Antecedent”,
“Dependent”)->[0];

// Assumption: There is only one FileExportService per File Server
//
// Get an ExportedFileShareCapabilities from the FileExportService
// via the ElementCapabilities association to the ComputerSystem
// (it’s indexed by NFS/CIFS/other sharing service and possibly
// other properties)
// Note: NFS and CIFS are two capabilities of the same service
// with different values of the FileSharingProtocol property
// The $sharetype must match the property
// ExportedFileShareCapabilities.FileSharingProtocol.
//
$efscapabilities = Associators($feservice,
“CIM_ElementCapabilities”
“SNIA_ExportedFileShareCapabilities”,
“ManagedElement™,
“Capabilities”);
if ($efscapabilities->[] == NULL || $efscapabilities-[].-length == 0) {
#j = 0;
while (($efscapability = $efscapabilities->[#j]) "= NULL) {
if ($efscapabilities->[#]j]-FileSharingProtocol == $sharetype) {
// Should check here that the properties named in
// $propnames-[] are supported by this capabilities
// element. |If not, the method should fail as this profile
// does not support multiple capabilities with the same

SMI-S 1.6.0 Revision 5 SNIA Technical Position 49

File Export Manipulation Subprofile

// file sharing protocol that may have different.
break;

¥
#Hj++;

// Handle the error if any

if (#) == $efscapabilities-[].length) {
<indicate error>
return false;

//
// Modify the copied ExportedFileShareSetting to the new
// desired properties
//
#i1 = 0;
while ($propnames->[#i] !'= NULL) {
// Note funky syntax for accessing a named property of
// the setting
$setting.$propnames->[#i] = $propvals->[#i];

}

// Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N”, Goal-N) to
get

// the next goal for EFSSetting -- iterate until satisfied or give up

// (beware of infinite loops) Note: we don’t iterate here, just give
// up if we don’t get what we want.

//

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

&CreateGoal ($efscapability, $setting, $newsetting);

// Did we get a goal back?
ifT ($newsetting==MULL)
#i = 0;
while ($propnames->[#i] = NULL) {
if ($newsetting.$propnames->[#i] !'= $propvals->[#i]) {

//
// give up
//
return NULL;
}
Hi++;

File Export Manipulation Subprofile

//

#result = feservice.ModifyExportedShare(
$name, // new name (no change if NULL)
$comment, // new comment (no change if NULL)
$job, // OUTPUT parameter if needed
NULL, // $rootfilesystem - Cannot be changed
NULL, // $Subelement -- cannot be changed
$newsetting, // Embeddedlnstance of Goal
$fssh, // reference to File Share
NULL, // $defaultUserld -- not being changed in this example
NULL, // $RootAccessHosts[] -- not being changed
NULL, // $AccessPointPEs[] -- not being changed
NULL, // $InUseOptions -- take default
NULL // $WaitTime -- take default
)

// Should handle failure and other errors here.

return TRUE;
ks

5.6.3 Removal of an Exported FileShare

// DESCRIPTION

// GOAL: UnExport an exported NFS or CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through

// SMI-S.

// 2. The file share has been defined with an associated
// ExportedFileShareSettings element and hosted on an
// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides
// this method.

//

// FUNCTION UnExportFileSystemShare

// This function removes an NFS or CIFS file share that is

// hosted by the same ComputerSystem as the host of the

// service.

// INPUT Parameters:

// fssh: A reference to the newly created FileShare element

// force: Whether the method should force all clients of the

// file share to be disconnected.

// waittime: The time in seconds to wait before implementing the

// specified force option (default 300 seconds).

// notification: A string used to notify clients that the file
// share is going to be unavailable. This is included in
// the alert indication sent to clients that subscribe for

SMI-S 1.6.0 Revision 5 SNIA Technical Position 51

52

//

File Export Manipulation Subprofile

them (but... shouldn’t this go to operational clients?)

// OUTPUT Parameters:

// job: A reference to a ConcreteJob that is executing a long-term job.
// RESULT:

// Success or Failure

// NOTES

// 1.

sub UnExportFileSystemShare(IN REF CIM_FileShare $fssh,

//

IN uintlé $force,

IN uint32 $waittime,

IN String $notification,
OUT REF CIM_Job $job);

//
// If waittime > 0, set force to 2 to distinguish between
// a force with no wait and a force with wait

// -- see the specification of ReleaseExportedShare.
//
if ($force > 0 && $waittime > 0) {
$force = 2;
}
//

// clients of the share may have registered for an indication
// when a share is disconnected

//

<send indication -- see indications recipes>

// CGet the File Server
//
&GetFileExportServer($fs, $server);

//

// Get the ComputerSystem for the filesystem (via HostedFileSystem association)

// There should be exactly one.

$server = Associators($fssh,
“CIM_HostedFileShare™,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent”)->[0];

//
// Get a FileExportService via the HostedService association to
// the file server ComputerSystem
//
$feservice = Associators($server,
“CIM_HostedService”,

//

File Export Manipulation Subprofile

“SNIA_FileExportService”,

“Antecedent”,
“Dependent’™)->[0];

// Call ReleaseExportedShare() with the $force and $waittime values
// which tell the share to wait for the specified time
// if there are any clients still connected.

//

$feservice.ReleaseExportedShare($job, $fssh, $force, $waittime);

// Should handle failure and other errors here.

return TRUE;

+
EXPERIMENTAL

5.6.4 File Export Manipulation Supported Capabilities Patterns

Table 21 lists the capabilities patterns that are formally recognized by SMI-S 1.2.0 for determining capabilities of

various implementations:

Table 21 - SMI-S File Export Supported Capabilities Patterns

FileSharingProtocols SynchronousMethods AsynchronousMethods InitialExportState
NFS, CIFS Export Creation, Export Null *
Modification, Export
Deletion
NFS, CIFS Null Export Creation, Export *
Modification, Export
Deletion
NFS, CIFS Null Null Null

Note: Asterisk (*) means any state is valid.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

53

File Export Manipulation Subprofile

5.7 CIM Elements

Table 22 describes the CIM elements for File Export Manipulation.

Table 22 - CIM Elements for File Export Manipulation

Element Name

Requirement

Description

5.7.1 CIM_CIFSShare (Exported File Share)

Optional

Represents the CIFS sharing characteristics
of a particular file element.

5.7.2 CIM_ConcreteDependency

Optional

Represents an association between a
(CIFSShare or NFSShare) FileShare element
and the actual shared LogicalFile or Directory
on which it is based. This is provided for
backward compatibility with previous releases
of SMI-S.

5.7.3 CIM_ElementCapabilities (FES
Configuration)

Mandatory

Associates the File Export Service to the
FileExportCapabilities element that describes
the service capabilities.

5.7.4 CIM_ElementSettingData (FileShare
Setting)

Mandatory

Associates a (CIFSShare or NFSShare)
FileShare and ExportedFileShareSetting
elements.

5.7.5 CIM_FileShare (Exported File Share)

Mandatory

Represents the sharing characteristics of a
particular file element.

5.7.6 CIM_FileStorage (Subelement)

Conditional

Conditional requirement: Required if parent
profile is NAS Head. or Required if parent
profile is a Self-contained NAS System.

Represents that a file or directory that is made
available for export is contained by a
LocalFileSystem specified as a dangling
reference.

5.7.7 CIM_HostedService

Mandatory

Associates the File Export Service to the
hosting File Server Computer System.

5.7.8 CIM_HostedShare

Mandatory

Represents that a shared element is hosted
by a ComputerSystem.

5.7.9 CIM_LogicalFile (Subelement)

Conditional

Conditional requirement: Required if parent
profile is NAS Head. or Required if parent
profile is a Self-contained NAS System.

A LogicalFile (or Directory subclass) that is a
sub-element of a LocalFileSystem that is
made available for export via a fileshare
hosted on a ComputerSystem. This is
included for backward compatibility with
previous releases of SMI-S.

5.7.10 CIM_NFSShare (Exported File Share)

Optional

Represents the NFS sharing characteristics of
a particular file element.

54

File Export Manipulation Subprofile

Table 22 - CIM Elements for File Export Manipulation

Element Name

Requirement

Description

5.7.11 CIM_SAPAvailableForElement

Mandatory

Represents the association between a
ServiceAccessPoint to the shared element
that is being accessed through that SAP.

5.7.12 CIM_ServiceAffectsElement

Mandatory

Associates the File Export Service to the
elements that the service manages (such as a
FileShare configured for exporting a
LogicalFile).

5.7.13 CIM_SettingsDefineCapabilities (Pre-
defined)

Optional

Represents the association between a
ExportedFileShareCapabilities and a
predefined ExportedFileShareSetting element
that specifies what the Capabilities can
support.

5.7.14 CIM_SharedElement

Mandatory

Associates a (CIFSShare or NFSShare)
FileShare to the LocalFileSystem on which it
is based.

5.7.15 SNIA_ElementCapabilities (FES
Capabilities)

Mandatory

Associates the File Export Service to at least
one ExportedFileShareCapabilities element
that indicates that support is available for
managing an exported FileShare for at least
one of the file sharing protocols recognized by
this profile. These include: "NFS"/2, "CIFS"/3,
"DAFS"/4, "WebDAV"/5, "HTTP"/6, or "FTP"/7.

5.7.16 SNIA_ExportedFileShareCapabilities
(FES Capabilities)

Mandatory

This element represents the Capabilities of
the File Export Service for managing
FileShares of a specific file sharing protocol
(and version). The file sharing protocol is
specified by the FileSharingProtocol and
ProtocolVersions properties.

5.7.17 SNIA_ExportedFileShareSetting
(FileShare Setting)

Mandatory

The configuration settings for an Exported
FileShare; i.e., a setting for a FileShare
available for exporting.

This setting may have been created or
modified by the extrinsic methods of this
profile. Note that CIFS allows in-band
creation, modification, or deletion of
FileShares; also, some systems might define
preexistent FileShares. All of these will be
surfaced.

5.7.18 SNIA_ExportedFileShareSetting (Pre-
defined)

Optional

This element represents a predefined
configuration settings for exported FileShares
that is used to define a Capabilities element
associated with the FileExportService.

5.7.19 SNIA_FileExportCapabilities (FES
Configuration)

Mandatory

This element represents the management
capabilities of the File Export Service.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 55

File Export Manipulation Subprofile

Table 22 - CIM Elements for File Export Manipulation

Element Name Requirement | Description

5.7.20 SNIA_FileExportService Mandatory The File Export Service provides the methods
to create and export file elements as shares.

SELECT * FROM CIM_InstCreation WHERE | Mandatory Creation of an exported file share.

Sourcelnstance ISA CIM_FileShare o
This indication returns the newly created

FileShare.

SELECT * FROM CIM_InstDeletion WHERE Mandatory Deletion of an exported file share.

Sourcelnstance ISA CIM_FileShare o
- This indication returns the model path to the

deleted file share and its unique instance id.
Note that a model path is like a CIM object
path but not exactly the same.

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL -Change of state of a
WHERE Sourcelnstance ISA CIM_FileShare FileShare.
AND Sourcelnstance.OperationalStatus <>

Previouslnstance.OperationalStatus Previousinstance is optional, but may be

supplied by an implementation of the

subprofile.
SELECT * FROM CIM_InstModification Optional CQL -Change of state of a FileShare.
WHERE Sourcelnstance ISA CIM_FileShare) .)
AND Previouslnstance is optional, but may be
Sourcelnstance.CIM_FileShare::OperationalS supplied by an implementation of the
tatus <> subprofile.
Previousinstance.CIM_FileShare::Operational
Status

5.7.1 CIM_CIFSShare (Exported File Share)

The CIM_CIFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may instantiate either
(or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 23 describes class CIM_CIFSShare (Exported File Share).

Table 23 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.7.5
CIM_FileShare (Exported File Share).

ElementName Mandatory See the ElementName definition in section 4.7.5
CIM_FileShare (Exported File Share).

Name Mandatory See the Name definition in section 4.7.5 CIM_FileShare
(Exported File Share).

56

File Export Manipulation Subprofile

Table 23 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement | Description & Notes

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.5
CIM_FileShare (Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.5
CIM_FileShare (Exported File Share).

Description N Optional See the Description definition in section 4.7.5
CIM_FileShare (Exported File Share).

5.7.2 CIM_ConcreteDependency

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Optional

Table 24 describes class CIM_ConcreteDependency.

Table 24 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The (CIFSShare or NFSShare) Share that represents the
LogicalFile being shared.

5.7.3 CIM_ElementCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 25 describes class CIM_ElementCapabilities (FES Configuration).

Table 25 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)

Properties Flags Requirement | Description & Notes
Capabilities Mandatory The FileExportCapabilities.
ManagedElement Mandatory The FileExportService.

5.7.4 CIM_ElementSettingData (FileShare Setting)

SMI-S 1.6.0 Revision 5 SNIA Technical Position

57

File Export Manipulation Subprofile

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 26 describes class CIM_ElementSettingData (FileShare Setting).

Table 26 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)

Properties Flags Requirement | Description & Notes

IsCurrent N Optional Is always true in this version of the subprofile because we
only support one setting per share. However support for the
other flags, specifically, IsDefault and IsNext, could be
added in future releases.

IsDefault N Optional Not Specified in this version of the Profile.

IsNext N Optional Not Specified in this version of the Profile.

IsMinimum N Optional Not Specified in this version of the Profile.

IsMaximum N Optional Not Specified in this version of the Profile.

ManagedElement Mandatory The (CIFSShare or NFSShare) FileShare used for
exporting an element.

SettingData Mandatory A Setting that specifies possible configurations of the

FileShare. In this version, we default this to
isCurrent="true".

5.7.5 CIM_FileShare (Exported File Share)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 27 describes class CIM_FileShare (Exported File Share).

Table 27 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.
Name Mandatory This shall be an opaque string that uniquely identifies the

path to the directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is
useful when importing but less so when exporting.

58

File Export Manipulation Subprofile

Table 27 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement | Description & Notes
OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in the
Health and Fault Management Clause.
Description N Optional This a comment describing the file share.
Caption N Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge
RequestStateChange Optional Not Specified in this version of the Profile.

0

5.7.6 CIM_FileStorage (Subelement)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained NAS System.

Table 28 describes class CIM_FileStorage (Subelement).

Table 28 - SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)

Properties Flags Requirement | Description & Notes
PartComponent Mandatory The file or directory that is made available for export.
GroupComponent Mandatory The local filesystem that contains the exported file or

directory.

5.7.7 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static

SMI-S 1.6.0 Revision 5

SNIA Technical Position

59

File Export Manipulation Subprofile

Requirement: Mandatory

Table 29 describes class CIM_HostedService.

Table 29 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The hosting Computer System.
Dependent Mandatory The FileExportService.

5.7.8 CIM_HostedShare

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 30 describes class CIM_HostedShare.

Table 30 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement | Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile.

Dependent Mandatory The CIFS or NFS share that is hosted by a Computer
System.

Antecedent Mandatory The Computer System that hosts a FileShare. It may be
any system, but the system shall have Dedicated=16 (File
Server).

5.7.9 CIM_LogicalFile (Subelement)

Created By: Extrinsic: SNIA_CreateExportedShare

Modified By: Extrinsic: SNIA_ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained NAS System.

60

File Export Manipulation Subprofile

Table 31 describes class CIM_LogicalFile (Subelement).

Table 31 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory CIM Class of the Computer System that hosts the

me filesystem of this File.

CSName Mandatory Name of the Computer System that hosts the filesystem of
this File.

FSCreationClassNa Mandatory CIM Class of the LocalFileSystem on the Computer System

me that contains this File.

FSName Mandatory Name of the LocalFileSystem on the Computer System that
contains this File.

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory Name of this LogicalFile.

5.7.10 CIM_NFSShare (Exported File Share)

The CIM_NFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may instantiate either
(or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External

Requirement: Optional

Table 32 describes class CIM_NFSShare (Exported File Share).

Table 32 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.7.5
CIM_FileShare (Exported File Share).

ElementName Mandatory See the ElementName definition in section 4.7.5
CIM_FileShare (Exported File Share).

Name Mandatory See the Name definition in section 4.7.5 CIM_FileShare
(Exported File Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.5
CIM_FileShare (Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.5
CIM_FileShare (Exported File Share).

Description N Optional See the Description definition in section 4.7.5
CIM_FileShare (Exported File Share).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 61

File Export Manipulation Subprofile

5.7.11 CIM_SAPAvailableForElement

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 33 describes class CIM_SAPAvailableForElement.

Table 33 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory The element that is made available through a SAP. In the
File Export subprofile, these are (CIFSShare or NFSShare)
FileShares configured for either export.

AvailableSAP Mandatory The ProtocolEndpoint that is available to this (CIFSShare
or NFSShare) FileShare. This shall be 4200 (NFS) or 4201
(CIFS).

5.7.12 CIM_ServiceAffectsElement

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 34 describes class CIM_ServiceAffectsElement.

Table 34 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Descriptions

Properties Flags Requirement | Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the
element. We allow Other to support vendor extensions. The
standard values are 1 (Other) and 5 (Manages).

OtherElementEffects Mandatory A description of other element effects that this association

might be exposing.

AffectedElement Mandatory

The (CIFSShare or NFSShare) FileShare.

AffectingElement Mandatory

The FileExportService.

5.7.13 CIM_SettingsDefineCapabilities (Pre-defined)

Created By: Static_or_External
Modified By: External
Deleted By: External

62

Requirement: Optional

File Export Manipulation Subprofile

Table 35 describes class CIM_SettingsDefineCapabilities (Pre-defined).

Table 35 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement | Description & Notes

PropertyPolicy Mandatory

ValueRole Mandatory

ValueRange Mandatory

GroupComponent Mandatory An Exported FileShare Capabilities element that is defined
by a collection of ExportedFileShareSetting Settings.

PartComponent Mandatory A Exported FileShare Setting that provides a point or a

partial definition for a Exported FileShare Capabilities
element.

5.7.14 CIM_SharedElement

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Mandatory

Table 36 describes class CIM_SharedElement.

Table 36 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement | Description & Notes

SystemElement Mandatory The LocalFileSystem that is sharing a directory or file
through a FileShare alter ego.

SameElement Mandatory The (CIFSShare or NFSShare) FileShare that is the alter

ego for a directory or file in a LocalFileSystem.

5.7.15 SNIA_ElementCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

SMI-S 1.6.0 Revision 5

SNIA Technical Position 63

File Export Manipulation Subprofile

Table 37 describes class SNIA_ElementCapabilities (FES Capabilities).

Table 37 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)

Properties Flags Requirement | Description & Notes

Characteristics Mandatory If this array enum includes the value mapped to "Default”, it
indicates that the ExportedFileShareCapabilities element
identified by this association is the default to be used for
any extrinsic method of the associated FileExportService
element.

Capabilities Mandatory The FileExportCapabilities. The FileSharingProtocol in
these capabilities shall be 2 (NFS), 3 (CIFS), 4 (DAFS), 5
(WebDAV), 6 (HTTP) or 7 (FTP).

ManagedElement Mandatory The FileExportService.

5.7.16 SNIA_ExportedFileShareCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 38 describes class SNIA_ExportedFileShareCapabilities (FES Capabilities).

Table 38 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES

Capabilities)
Properties Flags Requirement | Description & Notes
InstancelD Mandatory An opaque, unigue id for a capability of a File Export
Service.
ElementName Mandatory A provider supplied user-Friendly Name for this Capabilities
element.
FileSharingProtocol Mandatory This identifies the single file sharing protocol (e.g., NFS or

CIFS) that this Capabilities represents.

ProtocolVersions Optional An array listing the versions of the protocol specified by the
FileSharingProtocol property. A NULL value or entry
indicates support for all versions of this protocol.

At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional. If
the property is NULL, all versions of the protocol are
supported.

64

File Export Manipulation Subprofile

Table 38 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES

Capabilities)
Properties Flags Requirement | Description & Notes
SupportedProperties Mandatory This is the list of configuration properties (of

ExportedFileShareSetting) that are supported for
specification at creation time by this Capabilities element.

Properties that can appear in this array are:
"DefaultReadWrite" ("2"), "DefaultExecute" ("3"),
"DefaultUserld" ("4"), "RootAccess" ("5"), "WritePolicy"
("6"), "AccessPoints" ("7"), and "InitialEnabledState" ("8").

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a
ExportedFileShareSetting that is a supported variant of a
ExportedFileShareSetting passed in as an embedded IN
parameter TemplateGoalSettings[0]. The method returns
the supported ExportedFileShareSetting as an embedded
OUT parameter SupportedGoalSettings[0].

5.7.17 SNIA_ExportedFileShareSetting (FileShare Setting)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 39 describes class SNIA_ExportedFileShareSetting (FileShare Setting).

Table 39 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare

Setting)
Properties Flags Requirement | Description & Notes
InstancelD Mandatory An opaque, unique ID for the Setting.
ElementName Mandatory A client-defined user-friendly name for the Setting.
FileSharingProtocol Optional The file sharing protocol supported by this share. NFS (2)

and CIFS (3) are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing
protocol. A share may support multiple versions of the
same protocol. A NULL value or a NULL entry indicates
support for all versions.

At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional.

SMI-S 1.6.0 Revision 5 SNIA Technical Position

65

File Export Manipulation Subprofile

Table 39 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare

Setting)

Properties

Flags

Requirement

Description & Notes

InitialEnabledState

N

Optional

This indicates the enabled/disabled states initially set for a
created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled"), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce")

Note: We need to rethink the usage of this property once
the file share has been created. Maybe it should apply to
when the file share is re-activated when the share or
system is rebooted after a shutdown. With the current
definition, neither this nor OtherEnabledState make sense.

OtherEnabledState

Optional

This should be filled in if the InitialEnabledState is "1"
("Other").

DefaultUserldSuppor
ted

Optional

Indicates whether the associated FileShare will use a
default user id to control access to the share if the id of the
importing client is not provided.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Default User Id"), "3" ("System-
Specified Default User 1d") or "4" ("Share-Specified Default
User Id").

RootAccess

Optional

Indicates whether the associated FileShare will support
default access privileges to administrative users from
specified hosts.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root
Access").

AccessPoints

Optional

An enumerated value that specifies the service access
points that are available to this FileShare element by
default (to be used by clients for connections). Any
ServiceAccessPoint elements that actually connect to this
FileShare element will be associated to it by a
SAPAuvailableForElement association.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile. The default or built-in
access points can always be overridden by the privileges
explicitly defined through the Authorization subprofile.

Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All") or "5" ("Named Points").

Caption

Optional

Not Specified in this version of the Profile.

Description

Optional

Not Specified in this version of the Profile.

66

File Export Manipulation Subprofile

Table 39 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare

Setting)
Properties Flags Requirement | Description & Notes
DefaultReadWrite N Optional Not Specified in this version of the Profile.
DefaultExecute N Optional Not Specified in this version of the Profile.
ExecuteSupport N Optional Not Specified in this version of the Profile.
WritePolicy N Optional Not Specified in this version of the Profile.

5.7.18 SNIA_ExportedFileShareSetting (Pre-defined)

Created By: Static_or_External

Modified By: External

Deleted By: External

Requirement: Optional

Table 40 describes class SNIA_ExportedFileShareSetting (Pre-defined).

Table 40 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for this Setting element.

ElementName

Mandatory

A provider supplied user-friendly name for this Setting
element.

FileSharingProtocol

Mandatory

The file sharing protocol to which this Setting element
applies. The entries in the ProtocolVersions property
identify the specific versions of the protocol that are
supported. This profile only supports "NFS" (2) and "CIFS"

3).

ProtocolVersions

Optional

This array identifies the versions of the file sharing protocol
(specified by FileSharingProtocol) to which this Setting
element applies. If NULL, it indicates support for all
versions.

At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this is being made optional.

InitialEnabledState

Optional

This indicates the enabled/disabled states initially set for a
created FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3"
("Disabled"), "7" ("In Test"), "8" ("Deferred") or "9"
("Quiesce").

OtherEnabledState

Optional

A vendor-specific description of the initial enabled state of a
created fileshare if InitialEnabledState=1("Other").

SMI-S 1.6.0 Revision 5

SNIA Technical Position 67

File Export Manipulation Subprofile

Table 40 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties

Flags

Requirement

Description & Notes

DefaultUserldSuppor
ted

Optional

Indicates whether a FileShare created or modified by using
this Setting element will use a default user id to control
access to the share if the id of the importing client is not
provided.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Default User Id"), "3" ("System-
Specified Default User Id") or "4" ("Share-Specified Default
User Id").

RootAccess

Optional

Indicates whether a FileShare created or modified by using
this Setting element will support default access privileges to
administrative users from specific hosts specified at
creation time.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root
Access").

AccessPoints

Optional

An enumerated value that specifies the service access
points that are available to a FileShare created or modified
by using this Setting element by default (to be used by
clients for connections). These default access points can
always be overridden by the privileges explicitly defined by
a supported authorization mechanism(s). Any
ServiceAccessPoints that actually connect to this share will
be associated to it by CIM_SAPAvailableForElement.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Valid values are "2" ("None"), "3" ("Service Default"), "4"
("All") or "5" ("Named Points").

Caption

Optional

Not Specified in this version of the Profile.

Description

Optional

Not Specified in this version of the Profile.

DefaultReadWrite

Optional

Indicates the default privileges that are supported for read
and write authorization when creating or modifying a
FileShare using this Setting element.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Not Specified in this version of the Profile.

68

File Export Manipulation Subprofile

Table 40 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties

Flags

Requirement

Description & Notes

DefaultExecute

Optional

Indicates the default privileges that are supported for
execute authorization when creating or modifying a
FileShare using this Setting element.

Note: The resulting access privileges shall be surfaced
using the Authorization subprofile.

Not Specified in this version of the Profile.

ExecuteSupport

Optional

Indicates if the sharing mechanism provides specialized
support for executing a shared element when creating or
modifying a FileShare using this Setting element (for
instance, does it provide paging support for text pages).

Not Specified in this version of the Profile.

WritePolicy

Optional

Indicates whether writes through a FileShare (created or
modified by using this Setting element) to the shared
element will be handled synchronously or asynchronously
by default.

This policy may be overridden or surfaced using the Policy
subprofile.

Not Specified in this version of the Profile.

5.7.19 SNIA_FileExportCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 41 describes class SNIA_FileExportCapabilities (FES Configuration).

Table 41 - SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configura-

tion)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unigue id for the capabilities of a File Export
Service.

ElementName Mandatory A provider supplied user-friendly name for this Capabilities

element.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

69

File Export Manipulation Subprofile

Table 41 - SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configura-

tion)
Properties Flags Requirement | Description & Notes
FileSharingProtocol Mandatory An array listing all the protocols for file sharing supported

by the FileExportService represented by this
FileExportCapabilities element. Duplicate entries are
permitted because the corresponding entry in the
ProtocolVersions array property indicates the supported
version of the protocol.

Each entry must correspond to an
ExportedFileShareCapabilities element associated via
ElementCapabilities to the FileExportService -- the
FileSharingProtocol and ProtocolVersion properties of that
element must match the entry.

ProtocolVersions Optional An array listing all the versions of the file sharing protocol
specified in the corresponding entry of the
FileSharingProtocol array property. A NULL entry indicates
support for all versions of the protocol.

At this point there is no standard mechanism for naming
versions of CIFS or NFS, so this property is optional in this

subprofile.
SupportedSynchrono | N Mandatory An array listing the extrinsic methods of the
usMethods FileExportService that can be called synchronously.

Note: Every supported method shall be listed either in this
property or in the SupportedAsynchronousMethods array

property.
SupportedAsynchron | N Mandatory An array listing the extrinsic methods of the
ousMethods FileExportService that can be called synchronously.

Note: Every supported method shall be listed either in this
property or in the SupportedSynchronousMethods array

property.

InitialEnabledState Optional This represents the state of initialization of a FileShare on
initial creation.

5.7.20 SNIA_FileExportService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

70

Table 42 describes class SNIA_FileExportService.

File Export Manipulation Subprofile

Table 42 - SMI Referenced Properties/Methods for SNIA_FileExportService

Properties Flags Requirement | Description & Notes

ElementName Mandatory A provider supplied user-friendly name for this Service.
SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the
sName Service.

SystemName Mandatory The name of the Computer System hosting the Service.
CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

SNIA_CreateExporte Mandatory Create a FileShare element configured for exporting a file
dShare() or directory as a share.

SNIA_ModifyExporte Mandatory Modify the configuration of a FileShare element setup to
dShare() export a file or directory as a share.

ReleaseExportedSha Mandatory Delete the FileShare element that is exporting a file or

re()

directory as a share, thus releasing that element.

EXPERIMENTAL

SMI-S 1.6.0 Revision 5

SNIA Technical Position

71

72

File Export Manipulation Subprofile

EXPERIMENTAL

Clause 6: File Server Manipulation Subprofile

6.1 Synopsis

Profile Name: File Server Manipulation
Version: 1.5.0

Organization: SNIA

CIM schema version: 2.18

Central Class: FileServerConfigurationService

Scoping Class: ComputerSystem

6.2 Description

6.2.1 Overview

The File Server Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It makes
use of elements of the filesystem subprofiles and supports creation and deletion of Virtual File Servers and the
modification of both virtual and non-virtual File Servers. A number of other profiles and subprofiles also make use
of elements of the filesystem subprofile and will be referred to in this specification as “filesystem-related profiles” --
these include, but are not limited to, the filesystem subprofile, the Filesystem Manipulation Subprofile, the File
Export Subprofile, the NAS Head Profile, the Self-Contained NAS Profile.

In this release of SMI-S, the autonomous profiles that use the File Server Manipulation Subprofile are the NAS
Head and Self-Contained NAS Profiles.

A File Server is a computer system that is attached to a network and provides resources to allow client systems
access to filesystem resources in the form of CIFS Shares and/or NFS Exports. A File Server can be either a
physical computer system or can be a virtual system that is hosted by a physical computer system. A physical File
Server can neither be created nor deleted but may have properties that can be modified via configuration actions.
A virtual File Server can be created, deleted, and modified via configuration actions. The number of virtual File
Servers that may be created is system dependent. This profile models both physical and virtual File Servers.
Extrinsic methods are provided for the creation and deletion of virtual File Servers. Extrinsic methods are also
provide for the modification of properties in both physical and virtual File Servers.

This profile supports viewing and configuring the following property “areas” of a File Server:
* NFS Exports

* CIFS Shares

* Ethernet port properties including VLAN tagging.

* DNS Settings

* NIS Settings

A given implementation may choose to support a strict read only view of the File Server configuration or may
provide any combination of capabilities for modifying any and all of the above property areas for the File Server.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 73

File Server Manipulation Subprofile

Throughout this subprofile, the term File Server will be synonymous for “ComputerSystem with
Dedicated[]="FileServer”. The term virtual File Server describes a File Server that has its “USAGE” property set to
“Virtual File Server”. A non-virtual (physical) File Server cannot have its “USAGE” property set to “Virtual File
Server”.

The profile models a File Server from a “read only” perspective and a “configuration” perspective. The read only
perspective defines the objects and attributes that describe a File Server instance. The configuration perspective
defines the permitted actions on the File Server for creating, deleting, and modifying instances. By providing these
two perspectives, this profile takes the place of having two separate profiles.

74

6.2.2

6.2.2.1

Instance Diagrams

File Server classes and associations (read-only view)
Figure 8 illustrates the constructs that are involved in defining a File Server. This summarizes the “read only” view

of the classes and associations for this subprofile.

File Server Manipulation Subprofile

Figure 8 - File Server Classes and Associations (Read only view)

CIFSEettingData
(Conditional

FileServer Manipulation

Enatiled
Charset MFSSettingData
UseTCPONk (Canditional)
METBIQSMame Enabled
WINSIP Charset
AuthenticationDomain M airurTCP Connections MESSettingData DS EettingData
Authenticationf ode Part {Canditionaly (Conditional
| =zekarbaros ; ; i
-) MontFSuid Darraintarme Daorrainfame
gﬁne%?gr?}#gosg;mckmg MontFSgid ServerlP DS ServerAddresszsl
ClientsCannectAnamy mou sk 8?1? Eenﬁgﬁg\':ﬁns
JainDarmainAnony rmaushy ¥
DarmainCantrollerlser
DarmainCantrollerP assword
CIFSDormainCorntrallar
ConcreteComponent
(Conditional)
. —— — FileServerCapabilties IPInterfaceSetting Data
FileSerrerCorfigurationCapabilities (Optional
FileSem arSettingsSuppartad
SynchronouskiethodsSupported]] CIFSSupported chﬁeedgesﬁpe
Agynchronoush ethodsSupported]) NFSSupported | Subreti sk
Ml SSupported IPvBPrefixLength
Dk ESupported yLAMID
FileServerSettings HetwarkVLANSupported MTU
(Conditional) ElernentCapabilities ElementS ettingDiata
HostLookupQrder o (Optionah
zerlogin Loakup Order ElernentCapabiliies et rksd LAR
MFSCIFSACcourtMapping {Conditional)
AccounthappingDomain VLAMD
T FileSererConfigurationService TransmissionSie
ElemertSettingData

(Optionah
SettingsDefineState il emberOfCollection
{Conditional HostedSemice (Conditional)
CamputerSy stem
—| Dedicated="FileServer Hosted deassPaint IF'F'rcl(tOugt?élir;%puint

(Cond(tional)
I <_> IPvAddress
r— ComponentCS IPvEAddress
HostedDependency Corrputersystem Subnethlask
{Optionah PrefixLength

BindsTo |
ComputerSystem —— |_(Cc:nd|t| analy
BmeEtrD TGP ProtocolEndpoint
4) Fartkurmber
S\,redemDevice—‘

The File Server is modeled as a ComputerSystem whose Dedicated property is set to “FileServer” (16). There are
two types of File Servers supported: Virtual File Servers and non-Virtual File Servers (which would be a physical
File Server).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 75

File Server Manipulation Subprofile

A Virtual File Server will have a HostedDependency association on another top level Computer System such as a
NAS Head or Self-Contained NAS for example. This top level ComputerSystem has a HostedService association
with FileServerConfigurationService, which provides the anchor point for the FileServerConfigurationCapabilities
and FileServerCapabilities. These capabilities identify the level of support for File Servers by an implementation.
For example, if the SynchronousMethodsSupported and AsynchronousMethodsSupported are empty or NULL,
then the implementation is a read-only implementation of the profile.

A File Server can also be the top level ComputerSystem. In that case, the Dedicated array would contain
“FileServer” and either “NAS Head” or “Self-contained NAS". In this case, the File Server would be considered a
non-Virtual File Server.

A Virtual File Server is hosted on a ComputerSystem. This may be a physical control unit or some other hardware
system that has the EthernetPort through which the File Server will serve files via CIFS and/or NFS. The
HostedDependency association is used to relate the Virtual File Server with the hosting ComputerSystem.

A non-Virtual File Server shall not have a HostedDependency association with another ComputerSystem. Instead,
if the File Server ComputerSystem is not the top level system, then it shall have a ComponentCS association with
the top level ComputerSystem.

FileServerSettings captures the settings of the File Server. It has ConcreteComponent associations with other
setting data that capture the File Server’s settings for CIFS, NFS, NIS, DNS, and its IP Interface(s). The minimal
implementation only needs to support the File Server ComputerSystem because the FileServerSettings is
conditionally supported. The FileServerCapabilities contains several booleans that tell a client the set of File Server
related features that an implementation supports. The conditional associations associated with FileServerSettings
are based on the values for these booleans.

The File Server has two separate associations with FileServerSettings. SettingsDefineState is used to represent
the current state of the File Server’s setting data while ElementSettingData is used to capture the setting data used
to initially create or modify the File Server. In the read-only case, there will be no ElementSettingData association.

Note: There is only an ElementSettingData between the IPInterfaceSettingData and the IPProtocolEndpoint.
The IPProtocolEndpoint has at most one IPInterfaceSettingData and it represents the settings used to
initially create or modify the IPProtocolEndpoint. Also note that multiple (CIFS or NFS)
ProtocolEndpoints may be bound to a single IPProtocolEndpoint.

The NISSettingData and DNSSettingData if present are used to resolve hosts and user names when
authenticating hosts and users.

The implementation can provide either a read-only view of the File Servers or may provide extrinsics for configuring
existing and/or new File Servers.

A client can determine if a read-only implementation is provided by inspecting the two
FileServerConfigurationCapabilities arrays SynchronousMethodsSupported and
AsynchronousmethodsSupported. If they are both empty or null, then the implementation is read-only.

76

6.2.2.2

File Server Manipulation Subprofile

File Server Configuration classes and associations

Hosted

;

ile Server Manipulation

File ServerConfigurationCapahbilities

CanConfigureCIFS
CanConfigureMNFS
CanConfigureMIs
CanCaonfigureDMNS
CanCaonfigureh etwo rkyLAR

SynchronoushkethodsSupported(]
Asynchronoush ethodsSupported(]

ElementCapahilities

FileServerCaonfigurationService

CreateFileServer()
M odifyFileServer()

Service

DeleteFileServer()
AddIPInterface()

kM odifylPlnterface()
DieletelPinterfacel)

ElementZapahilities

FileZerverCapahbilities

CreateGoalSettings()
FileServerSettingsSuppaorted
CIFSSupported
MFSZSupported
MISSupported
OMNSSupported
rMletworkLAMNSupported

MlZSettingData

CIF=SettingData

SettingsDefin
YalueRole

OMS SettingData

eCapahbilities
="Default”

MNESSettingData

IPInterface SettingData

FileServersettings

ComputerSystem

F—ComponentC3

ComputerSystem

Dedicated="FileServer"

Figure 9 - File Server Configuration classes and association

Figure 9 illustrates the constructs that are involved in configuring a File Server.

The top level ComputerSystem has a HostedService association with FileServerConfigurationService that defines
the extrinsics that can be used to manage a File Server. There are 3 methods for managing a File Server and 3
methods for managing additional IPInterfaces for a given File Server.

FileServerConfigurationCapabilities lists the extrinsics that can be called synchronously or asychronously. It is
associated with the FileServerConfigurationService via the ElementCapabilities association. It also has several
boolean properties that inform clients if the implementation is able to configure CIFS, NFS, NIS, DNS, and VLAN

Tagging.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

77

File Server Manipulation Subprofile

In addition to the set of booleans that indicate the set of File Server features supported by the implementation,
FileServerCapabilities also provides one method CreateGoalSettings that can be used to arrive at a set of viable
SettingData instances that can be used for creating or modifying a File Server. It also is associated with
FileServerConfigurationService via ElementCapabilities. It may have associations with SettingData instances that
reflect the Default settings for the File Server. The SettingsDefineCapabilities association (with
ValueRole="Default”) is used to capture these default SettingData instances.

Only Virtual File Servers can be created or deleted. Non-Virtual File Servers can have properties modified, but
cannot be deleted.

The extrinsic methods that create Virtual File Servers can take any combination of SettingData instances that are
used to instantiate the File Server. The implementation can remember these initial SettingData instances via the
ElementSettingData association between the File Server and FileServerSettings. After the File Server is created,
the SettingsDefineState association between the File Server and FileServerSettings defines the actual settings of
the File Server. Modifications to either a Virtual or non-Virtual File Server will be reflected in the SettingData
instances associated via the SettingsDefineState association. A non-Virtual File Server may not have SettingData
instances associated via the ElementSettingData association.

The FileServerConfigurationCapabilities instance contains several booleans that indicate if certain properties of the
File Server can be configured or modified. For those properties that cannot be configured/modified, attempting to
instantiate or modify them via a creation/modification extrinsic shall be an error.

If neither CIFSSettingData nor NFSSettingData are specified at creation time, and the implementation supports
either or both of them, then instances shall be created by the implementation based on the settings in
FileServerCapabilities. The “Enabled” property of the instances created will be set to “false”.

When a Virtual File Server is created or when it has additional IPInterfaces associated with it, an instance of
NetworkVLAN may be created if VLAN tagging should be associated with the IPInterface. NetworkVLAN instances
are associated with the specific IPProtocolEndpoint to capture the VLAN tag to be used when doing I/O on that IP
interface. The properties VLANid and MTU in IPInterfaceSettingData specify the values to use when creating the
NetworkVLAN instance.

6.2.3 Health and Fault Management Consideration

6.2.3.1 OperationalStatus for File Server ComputerSystem

This section describes the operational status for Virtual File Servers. Non-Virtual File Server operation status
information is covered in both the NAS Head and Self-Contained NAS Subprofiles.

A File Server's operational status will be influenced by the operational status of the ComputerSystem that is
hosting it via HostedDependency. For example, if the hosting ComputerSystem is “Stopped”, then the status of the
File Server will be “Stopped”. Providers must take this into account when formulating the status of the File Server.

Table 43 describes the operational status for File Server ComputerSystem.

Table 43 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description
2 “OK” The File Server is running with good status
3 “Degraded” The File Server is operating in a degraded mode. This could

be due to the health state of some component of the
ComputerSystem, due to load by other applications, or due to
the health state of backend or front-end network interfaces.

4 “Stressed” The File Server resources are stressed

78

File Server Manipulation Subprofile

Table 43 - Operational Status for File Server ComputerSystem

Primary OperationalStatus

Description

5 “Predictive Failure”

The File Server might fail because some resource or
component is predicted to fail

6 “Error” An error has occurred causing the File Server to become
unavailable. Operator intervention through SMI-S to restore
the service may be possible.

6 “Error” An error has occurred causing the File Server to become

unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error”

The File Server is not functioning. Operator intervention
through SMI-S will not fix the problem.

8 “Starting” The File Server is in process of initialization and is not yet
available operationally.

9 “Stopping” The File Server is in process of stopping, and is not available
operationally.

10 “Stopped” The File Server cannot be accessed operationally because it is

stopped -- if this did not happened because of operator
intervention or happened in real-time, the OperationalStatus

would have been “Lost Communication” rather than “Stopped”.

11 “In Service”

The File Server is offline in maintenance mode, and is not
available operationally.

13 “Lost Communications”

The File Server cannot be accessed operationally -- if this
happened because of operator intervention it would have been
“Stopped” rather than “Lost Communication”.

14 “Aborted” The File Server is stopped but in a manner that may have left it
in an inconsistent state.
15 “Dormant” The File Server is offline; and the reason for not being

accessible is unknown.

16 “Supporting Entity in Error”

The File Server is in an error state, or may be OK but not
accessible, because a supporting entity is not accessible.

6.2.4 Cascading Considerations

Not Applicable.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

79

File Server Manipulation Subprofile

6.3 Supported Profiles, Subprofiles, and Packages

Table 44 describes the supported profiles for File Server Manipulation.

Table 44 - Supported Profiles for File Server Manipulation

Profile Name Organization | Version Requirement | Description
Indication SNIA 15.0 Optional
Job Control SNIA 1.5.0 Optional

6.4 Methods of the Profile

This section describes each extrinsic method supported by this profile.

6.4.0.1 FileSystemCapabilities.CreateGoalSettings
This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed Settings.

The client shall pass six array elements in the TemplateGoalSettings parameter and six array elements in the
SupportedGoalSettings parameter. Each array element represents a configurable aspect of a FileServer. A given
array element in index “y” in TemplateGoalSettings will be of the same class/type as that in array element in index

y” in SupportedGoalSettings. As each array element in both parameters takes an EmbeddedInstance, this implies
that they do not exist in the provider’'s implementation but are the responsibility of the client to create and manage.

Any or all of the TemplateGoalSetting array elements may be the empty string to represent a NULL entry. This
method will return a default CIM_Settings subclass object in SupportedGoalSettings corresponding to each
TemplateGoalSettings array element that is an empty string.

If any of the TemplateGoalSettings array elements specify values that cannot be supported, this method shall
return an appropriate error and should return a best match in the corresponding SupportedGoalSettings array
element.

When providing Embeddedinstances as input for any of the SupportedGoalSettings array elements, the instance
should specify a previously returned CIM_Setting that the implementation could support. On output, this same
array element specifies a new CIM_Setting that the implementation can support. If the output array element is
identical to the input array element, both client and implementation may conclude that this is the best match for that
particular SupportedGoalSettings array element. If the output array elements do not match the corresponding
TemplateGoalSettings array elements and if any of the input SupportedGoalSettings array elements do not match
the output array elements provided in SupportedGoalSettings, then the method must return "Alternative Proposed".
If any of the output array elements are empty strings (representing the fact that no valid CIM_Setting could be
found), the method must return an “Failed”.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. As stated above, to assist the implementation in tracking the progress of the negotiation, the client may
pass previously returned values of SupportedGoalSettings array elements as new input values of
SupportedGoalSettings. The implementation may determine that a step has not resulted in progress if the input
and output values of any SupportedGoalSettings array elements are the same. A client may infer from the same
result that the TemplateGoalSettings array element(s) must be modified.

80

File Server Manipulation Subprofile

The array elements in TemplateGoalSettings and SupportedGoalSettings shall have the index -
Embeddedinstance mappings shown in Table 45.

Table 45 - Array Element Mappings for TemplateGoalSettings and SupportedGoalSettings

Array Indice Embeddedinstance

SNIA_FileServerSettings

SNIA_IPInterfaceSettingData

SNIA_CIFSSettingData

SNIA_NFSSettingData

SNIA_NISSettingData

a| bh|fw|N|[F]|O

CIM_DNSSettingData

SMI-S 1.6.0 Revision 5 SNIA Technical Position 81

File Server Manipulation Subprofile

Table 46 details of the method signature and return results.

Table 46 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name

Qualifier

Type

Description & Notes

TemplateGoalSettings|[]

IN

string

This contains an array of 6 elements, each of which
being an Embeddedinstance of a CIM_Setting
subclass.

Each of the array elements shall contain either an
empty string to represent a “NULL” entry, or shall
contain an EmbeddedInstance.

Each array element contains a specific CIM_Setting
subclass as follows:

0: Embeddedinstance ("SNIA_FileServerSettings")

1. EmbeddedInstance
("SNIA_IPInterfaceSettingData")

2: Embeddedinstance ("SNIA_CIFSSettingData")
3: Embeddedinstance ("SNIA_NFSSettingData")
4: Embeddedinstance ("SNIA_NISSettingData™)
5: Embeddedinstance ("CIM_DNSSettingData")

SupportedGoalSettings|]

INOUT

string

This contains an array of 6 elements, each of which
being an Embeddedinstance of a CIM_Setting
subclass.

On input, each of the array elements shall contain an
either an empty string to represent a “NULL” entry, or
shall contain an EmbeddedInstance. If it contains an
Embeddedinstance, then this instance specifies a
previously returned CIM_Setting that the
implementation could support. On output, it specifies a
new CIM_Setting that the implementation can support.

Each array element contains a specific CIM_Setting
subclass as follows:

0: Embeddedinstance ("SNIA_FileServerSettings")

1. EmbeddedInstance
("SNIA_IPInterfaceSettingData")

2: Embeddedinstance ("SNIA_CIFSSettingData")
3: Embeddedinstance ("SNIA_NFSSettingData")
4: Embeddedinstance ("SNIA_NISSettingData™)
5: Embeddedinstance ("CIM_DNSSettingData")

Normal Return

82

File Server Manipulation Subprofile

Table 46 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes

Status uint32 ValueMap{}, Values{}

"Success",

“Not Supported”,
“Unknown”,

"Failed",

"Timeout",

“Invalid Parameter”,
"Alternative Proposed"”

Error Returns

Invalid Property Value OUT, CIM_Error A single named property of an instance parameter
Indication (either reference or embedded) has an invalid value

Invalid Combination of OUT, CIM_Error An invalid combination of nhamed properties of an

Values Indication instance parameter (either reference or embedded)

has been requested.

6.4.0.2 Signature and Parameters of FileServerConfigurationService.CreateFileServer

This extrinsic creates a new FileServer. The method takes several “goal” parameters that represent different
configurable aspects of the FileServer. Each of these parameters can be NULL, an empty string, or will contain an
Embeddedinstance.

If a given parameter is NULL or an empty string, a default instance will be selected by the provider using the
corresponding element associated to the FileServerConfigurationService by the DefaultElementCapabilities
association. This element that is used will be returned in the parameter.

When creating a new FileServer, the client can decide to what degree the new FileServer will be configured by
providing the parameters of those aspects that should be configured. For example, to create a FileServer with a
minimum configuration, the client could provide just the ElementName. The newly created FileServer will take on
the configuration defaults as specified by the elements associated with FileServerService via the
SettingsDefineCapabilities association (with ValueRole="Default”). Later, the client may modify any of these default
settings via the ModifyFileServer and ModifylPInterface methods.

When creating a new FileServer, the client may associate a single IP Interface with the FileServer. If a client wishes
to associate more than one IP Interface with the FileServer, the AddIPInterface method should be used. It allows
the client to specify the additional IP information, Hosting ComputerSystem, and EthernetPort for the new IP
Interface.

A client may change an existing IP Interface by using the ModifylPInterface method. It allows the client to modify
the IP Interface, Hosting ComputerSystem, and/or EtheretPort.

Table 47 details the parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 83

File Server Manipulation Subprofile

Table 47 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes
ElementName IN string An end user relevant name for the File Server
being created. The value shall be stored in the
'ElementName' property for the created element.
This parameter shall not be NULL or the empty
string.
Job OUT, REF CIM_Concr | Reference to the job (may be null if job completed).
eteJob
TheElement OUT, REF CIM_Comp | The newly created FileServer.
uterSystem
FileServerSettings IN, OUT, El, | string Embeddedinstance ("SNIA_FileServerSettings")
NULL
allowed The FileServerSettings for the newly created
FileServer.
If NULL or the empty string, a default
FileServerSettings shall be used and returned on
output.
IPInterfaceSettingData IN,OUT, El, | string Embeddedinstance
NULL ("CIM_IPInterfaceSettingData")
allowed _ o
The IPInterfaceSettingData that specifies the IP
Interface that the FileServer will use for servicing
all CIFS and NFS requests.
If NULL or the empty string, a default
IPInterfaceSettingData shall be used and returned
on output.
CIFSSettingData IN,OUT, El, | string Embeddedinstance ("SNIA_CIFSSettingData")
NULL
allowed The CIFSSettingData that specifies the CIFS
settings for the FileServer being created.
If this is NULL, the FileServer shall not have CIFS
enabled and the resulting CIFSSettingData
instance created shall have its “Enabled” property
set to false. The CIFSSettingData instance will be
returned on output.
NFSSettingData IN,OUT, El, | string Embeddedinstance ("SNIA_NFSSettingData")
NULL
allowed The NFSSettingData that specifies the NFS

settings for the FileServer being created.

If this is NULL, the FileServer shall not have NFS
enabled and the resulting NFSSettingData instance
created shall have its “Enabled” property set to
false. The NFSSettingData instance will be
returned on output.

84

File Server Manipulation Subprofile

Table 47 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes
DNSSettingData IN, El, string Embeddedinstance ("CIM_DNSSettingData")
NULL
allowed The DNSSettingData that specifies the DNS
settings for the FileServer being created.
If this is NULL, the FileServer shall not have
access to a DNS server and a DNSSettingData
instance shall not be instantiated for the FileServer.
NISSettingData IN, El, string Embeddedinstance ("CIM_DNSSettingData")
NULL
allowed The NISSettingData that specifies the NIS settings
’ for the FileServer being created.
If this is NULL, the FileServer shall not have
access to a NIS server and a NISSettingData
instance shall not be instantiated for the FileServer.
NASComputerSystem IN, REF CIM_Comp | Either the NAS Head or Self-contained NAS
uterSystem | system that the FileServer shall be a component
system of.
HostingComputerSystem IN, REF CIM_Comp | The HostingComputerSystem identifies the
uterSystem | ComputerSystem that will host the FileServer.
EthernetPort IN, REF CIM_Ether | The EthernetPort identifies the hardware port that
netPort the File Server will use for IP mount requests.
Normal Return
Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property Value OuUT, CIM_Error A single named property of an instance parameter
Indication (either reference or embedded) has an invalid
value
Invalid Combination of OuT, CIM_Error An invalid combination of named properties of an
Values Indication instance parameter (either reference or embedded)
has been requested.

6.4.0.3

Signature and Parameters of FileServerConfigurationService.ModifyFileServer

This extrinsic modifies the settings for an existing FileServer. All settings except IPInterfaceSettingData, Hosting

ComputerSystem, and EthernetPort may be modified. To modify the

IPInterfaceSettingData, Hosting

ComputerSystem, and/or EthernetPort properties, use the ModifylPInterface extrinsic.

Table 48 details the parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

SMI-S 1.6.0 Revision 5

SNIA Technical Position 85

Table 48 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

86

File Server Manipulation Subprofile

Parameter Qualifier Type Description & Notes
Name
FileServer IN,OUT,REF | CIM_Comput | The FileServer that is to be modified.
erSystem
Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).
eJob
ElementName IN, NULL string An end user relevant name for the File Server
allowed being modified.
FileServerSettin | IN, NULL string Embeddedinstance ("SNIA_FileServerSettings")
gs allowed) -
If non-NULL, this specifies the new
FileServerSettings for the FileServer
If NULL, then the FileServerSettings of the
FileServer shall not be modified.
CIFSSettingDat | IN, NULL string Embeddedinstance ("SNIA_CIFSSettingData")
a allowed, . . :
IF non-NULL, this specifies the new CIFS settings
for the FileServer. If the “Enabled” property set to
false, CIFS will be disabled for the FileServer.
If NULL, then the CIFS setting of the FileServer
shall not be modified.
NFSSettingData | IN, NULL string Embeddedinstance ("SNIA_NFSSettingData")
allowed,) »)
IF non-NULL, this specifies the new NFS settings
for the FileServer. If the “Enabled” property set to
false, NFS will be disabled for the FileServer.
If NULL, then the NFS setting of the FileServer
shall not be modified.
DNSSettingData | IN, NULL string Embeddedinstance ("CIM_DNSSettingData")
allowed, . . :
IF non-NULL, this specifies the new DNS settings
for the FileServer.
If NULL, then the DNS setting of the FileServer
shall not be modified.
NISSettingData | IN, NULL string Embeddedinstance ("CIM_DNSSettingData")
allowed,

IF non-NULL, this specifies the new NIS settings
for the FileServer.

If NULL, then the NIS setting of the FileServer shall
not be modified.

Normal Return

File Server Manipulation Subprofile

Table 48 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter Qualifier Type Description & Notes

Name

Status uint32 "Job Completed with No Error",
"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter
Value Indication (either reference or embedded) has an invalid
value

Invalid OuUT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

CannotModify OUT, CIM_Error The FileServer is in a state in which it cannot be
Indication modified.

6.4.0.4 Signature and Parameters of FileServerConfigurationService.DeleteFileServer
This extrinsics deletes an existing FileServer.

Table 49 describes the parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer.

Table 49 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer

Parameter Qualifier Type Description & Notes
Name
FileServer IN,REF CIM_Comput | The FileServer that is to be deleted.
erSystem
Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).
eJob

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",

"Method Parameters Checked - Job Started"

Error Returns

CannotDelete OUT, CIM_Error The FileServer is in a state in which it cannot be
Indication deleted.

6.4.0.5 Signature and Parameters of FileServerConfigurationService.AddIPInterface

This extrinsic adds a new IPInterface to an existing FileServer. The FileServer will respond to requests issued to
this new IP address. The number of IP addresses that a FileServer can respond on is system dependent and the
use of CreateGoalSettings to verify a new IP address is recommended.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 87

File Server Manipulation Subprofile

Table 50 describes the parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface.

6.4.0.6

Table 50 - Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface

Values

Parameter Qualifier Type Description & Notes
Name
FileServer IN,OUT,REF | CIM_Comput | The FileServer to which the IPInterface will be
erSystem added.
Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).
eJob
IPInterfaceSettin | IN string Embeddedinstance
gData ("CIM_IPInterfaceSettingData")
The IPInterfaceSettingData that specifies the
settings of the IP Interface to be added to the
FileServer.
HostingComput | IN, REF CIM_Comput | The ComputerSystem that will host the File Server
erSystem erSystem for the new IP Interface
EthernetPort IN, REF CIM_Etherne | The EthernetPort identifies the hardware port that
tPort the File Server will use for mount requests on the
new IPAddress.
Normal Return
Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property | OUT, CIM_Error A single named property of an instance parameter
Value Indication (either reference or embedded) has an invalid
value
Invalid OuT, CIM_Error An invalid combination of named properties of an
Combination of Indication instance parameter (either reference or embedded)

has been requested.

Signhature and Parameters of FileServerConfigurationService.ModifylPInterface
This extrinsic modifies an existing IPInterface associated with a FileServer. The IPInterfaceSettingData, the

Hosting ComputerSystem, and/or the EthernetPort may be modified.

88

File Server Manipulation Subprofile

Table 51 describes the parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface.

Table 51 - Parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface

Parameter Qualifier Type Description & Notes
Name
FileServer IN,OUT,REF | CIM_Comput | The FileServer from which the IPInterface will be
erSystem modified.
IPInterfaceSettin | IN,REF SNIA_IPInter | The IPInterfaceSettingData that is to be modified.
gData faceSettingD o)))
ata This is used to identify which
IPInterfaceSettingData instance to modify.
Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).
eJob
NewlPInterface IN, NULL string Embeddedinstance
SettingData allowed ("CIM_IPInterfaceSettingData")
If non-NULL, the IPInterfaceSettingData that will
replace an existing IPInterfaceSettingData instance
in the FileServer.
If NULL, then the IPInterfaceSettingData will not be
modified.
HostingComput | IN, REF, CIM_Comput | If non-NULL, the new ComputerSystem that will
erSystem NULL erSystem host the IPInterface.
allowed)
If NULL, the current ComputerSystem hosting the
IPInterface will remain unchanged.
EthernetPort IN, REF, CIM_Etherne | If non-NULL, the EthernetPort identifies the new
NULL tPort hardware port for the IPInterface.
allowed . .
If NULL, the current EthernetPort setting will not be
changed.
Normal Return
Status uint32 "Job Completed with No Error",
"Failed"”,
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property | OUT, CIM_Error A single named property of an instance parameter
Value Indication (either reference or embedded) has an invalid
value
6.4.0.7 Signature and Parameters of FileServerConfigurationService.DeletelPInterface

This extrinsic deletes an existing IPInterface associated with a FileServer.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

89

File Server Manipulation Subprofile

Table 52 describes the parameters for Extrinsic Method FileServerConfigurationService.DeletelPInterface.

Table 52 - Parameters for Extrinsic Method FileServerConfigurationService.DeletelPInterface

Parameter Qualifier Type Description & Notes
Name
FileServer IN,OUT,REF | CIM_Comput | The FileServer from which the IPInterface will be
erSystem deleted.
IPInterfaceSettin | IN,REF SNIA_IPInter | The IPInterfaceSettingData that is to be deleted.
gData faceSettingD o)))
ata This is used to identify which
IPInterfaceSettingData instance to delete from the
FileServer.
Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).
eJob

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter
Value Indication (either reference or embedded) has an invalid
value

6.5 Client Considerations and Recipes

Not defined in this standard. (Under consideration for a future standard.)

6.6 Registered Name and Version

File Server Manipulation version 1.5.0 (Component Profile)

CIM Schema Version: 2.18

90

File Server Manipulation Subprofile

6.7 CIM Elements

Table 53 describes the CIM elements for File Server Manipulation.

Table 53 - CIM Elements for File Server Manipulation

Element Name Requirement | Description

6.7.1 CIM_ConcreteComponent Conditional Conditional requirement: CIFS shares are

(FileServerSettings to CIFSSettingData) supported by the provider. Represents the
association between a FileServerSettings and
CIFSSettingData.

6.7.2 CIM_ConcreteComponent Conditional Conditional requirement: The DNSSettingData

(FileServerSettings to DNSSettingData) is supported by the provider. Represents the
association between a FileServerSettings and
DNSSettingData.

6.7.3 CIM_ConcreteComponent Conditional Conditional requirement: There is an instance

(FileServerSettings to IPInterfaceSettingData) of IPInterfaceSettingData. Represents the
association between a FileServerSettings and
IPInterfaceSettingData.

6.7.4 CIM_ConcreteComponent Conditional Conditional requirement: NFS Exports are

(FileServerSettings to NFSSettingData) supported by the provider. Represents the
association between a FileServerSettings and
NFSSettingData.

6.7.5 CIM_ConcreteComponent Conditional Conditional requirement: NIS (Network

(FileServerSettings to NISSettingData) Information System)is supported by the
provider. Represents the association between
a FileServerSettings and NISSettingData.

6.7.6 CIM_DNSSettingData Conditional Conditional requirement: The DNSSettingData
is supported by the provider. This element
represents the DNS setting data to be used by
a file server.

6.7.7 CIM_ElementCapabilities Mandatory This associates the File Server Configuration

(FileServerConfigurationService to Service to the Capabilities element that

FileServerCapabilities) represents the capabilities supported by all
File Servers.

6.7.8 CIM_ElementCapabilities Mandatory This associates the File Server Configuration

(FileServerConfigurationService to Service to the ConfigurationCapabilities

FileServerConfigurationCapabilities) element that represents the capabilities that it
supports.

6.7.9 CIM_ElementSettingData Optional Associates a File Server with the

(ComputerSystem FileServer to FileServerSettings that were used to initially

FileServerSettings) create the File Server.

6.7.10 CIM_ElementSettingData Optional The IPProtocolEndpoint associated with the

(IPInterfaceSettingData to IPInterfaceSettingData.

IPProtocolEndpoint)

6.7.11 CIM_HostedDependency Optional Associates a Virtual File Server to the
Computer System hosting it. This association
will not exist for non-Virtual File Servers.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 91

File Server Manipulation Subprofile

Table 53 - CIM Elements for File Server Manipulation

Element Name Requirement | Description

6.7.12 CIM_HostedService (Hosting Mandatory Associates the

Computer System to FileServerConfigurationService with the

FileServerConfigurationService) hosting computer system.

6.7.13 CIM_MemberOfCollection (The Conditional Conditional requirement: The NetworkVLAN is

IPProtocolEndpoint to NetworkVLAN.) supported by the provider. Associates an
IPProtocolEndpoint to NetworkVLAN.

6.7.14 CIM_NetworkVLAN Conditional Conditional requirement: The NetworkVLAN is
supported by the provider. This element
represents the virtual LAN (VLAN) tag settings
for an IP interface. In the context of a file
server, it represents the VLAN information.

6.7.15 CIM_SettingsDefineCapabilities Conditional Conditional requirement: Synchronous

(CIFSettingData) creation of a FileServer is supported or
Asynchronous creation of a FileServer is
supported. Associates CIFSSettingData with
FileServerCapabilities.

6.7.16 CIM_SettingsDefineCapabilities Conditional Conditional requirement: Synchronous

(DNSSettingData) creation of a FileServer is supported or
Asynchronous creation of a FileServer is
supported. Associates DNSSSettingData with
FileServerCapabilities.

6.7.17 CIM_SettingsDefineCapabilities Conditional Conditional requirement: Synchronous

(FileServerSettings) creation of a FileServer is supported or
Asynchronous creation of a FileServer is
supported. Associates FileServerSettings with
FileServerCapabilities.

6.7.18 CIM_SettingsDefineCapabilities Conditional Conditional requirement: Synchronous

(IPInterfaceSettingData) creation of a FileServer is supported or
Asynchronous creation of a FileServer is
supported. Associates IPInterfaceSettingData
with FileServerCapabilities.

6.7.19 CIM_SettingsDefineCapabilities Conditional Conditional requirement: Synchronous

(NFSSettingData) creation of a FileServer is supported or
Asynchronous creation of a FileServer is
supported. Associates NFSSSettingData with
FileServerCapabilities.

6.7.20 CIM_SettingsDefineCapabilities Conditional Conditional requirement: Synchronous

(NISSettingData) creation of a FileServer is supported or
Asynchronous creation of a FileServer is
supported. Associates NISSSettingData with
FileServerCapabilities.

6.7.21 CIM_SettingsDefineState Conditional Conditional requirement: The FileServer

(ComputerSystem FileServer to ComputerSystem has a FileServerSettings

FileServerSettings) associated with it. The FileServer's state
represented by its FileServerSettings.

92

File Server Manipulation Subprofile

Table 53 - CIM Elements for File Server Manipulation

Element Name

Requirement

Description

6.7.22 SNIA_CIFSSettingData Conditional Conditional requirement: CIFS shares are
supported by the provider. This class contains
the CIFS settings for the File Server.

6.7.23 SNIA_FileServerCapabilities Mandatory The capabilities of the File Server.

6.7.24 Mandatory This element represents the management

SNIA_FileServerConfigurationCapabilities Capabilities of the File Server Configuration
Service. If the two arrays of extrinsic methods
(SynchronousMethodsSupported and
AsynchronousMethodsSupported) are empty,
then the implementation is readonly.

6.7.25 SNIA_FileServerConfigurationService Mandatory The File Server Configuration Service
provides the methods to manipulate File
Servers.

6.7.26 SNIA_FileServerSettings Conditional Conditional requirement: The FileServer
ComputerSystem has a FileServerSettings
associated with it. This class contains the
settings for the File Server.

6.7.27 SNIA_IPInterfaceSettingData Optional This class contains the settings for single IP
interface.

6.7.28 SNIA_NFSSettingData Conditional Conditional requirement: NFS Exports are
supported by the provider. This class contains
the NFS settings for the File Server.

6.7.29 SNIA_NISSettingData Conditional Conditional requirement: NIS (Network
Information System)is supported by the
provider. This class contains the NIS settings
for the File Server.

SELECT * FROM CIM_InstCreation WHERE | Optional CQL -Creation of a File Server element.

Sourcelnstance ISA CIM_Computer_System

AND ANY

Sourcelnstance.CIM_Computer_System::Ded

icated[*] = 16

SELECT * FROM CIM_InstDeletion WHERE Optional CQL -Deletion of a File Server element.

Sourcelnstance ISA CIM_Computer_System
AND ANY
Sourcelnstance.CIM_Computer_System::Ded
icated[*] = 16

6.7.1

Created By: External
Modified By: Static
Deleted By: External

Requirement: CIFS shares are supported by the provider.

SMI-S 1.6.0 Revision 5

CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)

SNIA Technical Position 93

File Server Manipulation Subprofile

Table 54 describes class CIM_ConcreteComponent (FileServerSettings to CIFSSettingData).

Table 54 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to CIFSSettingData)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The CIFSSettingData.

6.7.2 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: The DNSSettingData is supported by the provider.

Table 55 describes class CIM_ConcreteComponent (FileServerSettings to DNSSettingData).

Table 55 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to DNSSettingData)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The DNSSettingData.

6.7.3 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: There is an instance of IPInterfaceSettingData.

Table 56 describes class CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData).

Table 56 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to IPInterfaceSettingData)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The IPInterfaceSettingData.

6.7.4 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)

94

File Server Manipulation Subprofile

Created By: External

Modified By: Static

Deleted By: External

Requirement: NFS Exports are supported by the provider.

Table 57 describes class CIM_ConcreteComponent (FileServerSettings to NFSSettingData).

Table 57 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to NFSSettingData)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The NFSSettingData.

6.7.5 CIM_ConcreteComponent (FileServerSettings to NISSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: NIS (Network Information System)is supported by the provider.

Table 58 describes class CIM_ConcreteComponent (FileServerSettings to NISSettingData).

Table 58 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings
to NISSettingData)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The NISSettingData.

6.7.6 CIM_DNSSettingData

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: The DNSSettingData is supported by the provider.

Table 59 describes class CIM_DNSSettingData.

Table 59 - SMI Referenced Properties/Methods for CIM_DNSSettingData

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the DNSSettingData.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 95

File Server Manipulation Subprofile

Table 59 - SMI Referenced Properties/Methods for CIM_DNSSettingData

Properties Flags Requirement | Description & Notes

DomainName Mandatory The DNS domain to use for looking up addresses.

DNSServerAddresse Mandatory The addresses of DNS servers to contact. The array

S specifies the order in which the DNS servers will be
contacted.

6.7.7 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 60 describes class CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities).

Table 60 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigu-
rationService to FileServerCapabilities)

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The File Server Configuration Service.
Capabilities Mandatory The File Server Capabilties element.

6.7.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 61 describes class CIM_ElementCapabilities (FileServerConfigurationService to
FileServerConfigurationCapabilities).

Table 61 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigu-
rationService to FileServerConfigurationCapabilities)

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The File Server Configuration Service.
Capabilities Mandatory The File Server Configuration Capabilties element.

6.7.9 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)

96

File Server Manipulation Subprofile

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 62 describes class CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings).

Table 62 - SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem
FileServer to FileServerSettings)

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The File Server ComputerSystem.
SettingData Mandatory The FileServerSettings.

6.7.10 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 63 describes class CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint).

Table 63 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSetting-
Data to IPProtocolEndpoint)

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The IPProtocolEndpoint.
SettingData Mandatory The IPInterfaceSettingData.

6.7.11 CIM_HostedDependency

Created By: Extrinsic: CreateFileServer
Modified By: Static

Deleted By: Extrinsic: DeleteFileServer
Requirement: Optional

SMI-S 1.6.0 Revision 5 SNIA Technical Position 97

File Server Manipulation Subprofile

Table 64 describes class CIM_HostedDependency.

Table 64 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement | Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File
Server ComputerSystem is a File Server and shall have
Dedicated=16 (File Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting
ComputerSystem may be the top level NAS
ComputerSystem or an Multiple Computer System (non-top
level) system.

6.7.12 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 65 describes class CIM_HostedService (Hosting Computer System to FileServerConfigurationService).

Table 65 - SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer Sys-
tem to FileServerConfigurationService)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The File Server Configuration Service.
Antecedent Mandatory The hosting ComputerSystem.

6.7.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: The NetworkVLAN is supported by the provider.

Table 66 describes class CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.).

Table 66 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEnd-
point to NetworkVLAN.)

Properties Flags Requirement | Description & Notes
Member Mandatory The IPProtocolEndpoint.
Collection Mandatory The NetworkVLAN.

98

File Server Manipulation Subprofile

6.7.14 CIM_NetworkVLAN

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: The NetworkVLAN is supported by the provider.

Table 67 describes class CIM_NetworkVLAN.

Table 67 - SMI Referenced Properties/Methods for CIM_NetworkVLAN

Properties Flags Requirement | Description & Notes
InstancelD Mandatory An opaque, unique id for the NetworkVLAN.
VLANId Mandatory The VLAN id that is to be associated with an IP interface.

The id shall be included in all IP packets being sent through
an IP interface.

TransmissionSize Mandatory The maximum transmission unit size that is associated with
an IP Interface.

6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a FileServer is
supported.

Table 68 describes class CIM_SettingsDefineCapabilities (CIFSettingData).

Table 68 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSetting-

Data)
Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The CIFSSettingData reference.

6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a FileServer is
supported.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 99

File Server Manipulation Subprofile

Table 69 describes class CIM_SettingsDefineCapabilities (DNSSettingData).

Table 69 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSetting-

Data)
Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The CIFSSettingData reference.

6.7.17 CIM_SettingsDefineCapabilities (FileServerSettings)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a FileServer is
supported.

Table 70 describes class CIM_SettingsDefineCapabilities (FileServerSettings).

Table 70 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServer-

Settings)
Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The FileServerSetting reference.

6.7.18 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a FileServer is
supported.

Table 71 describes class CIM_SettingsDefineCapabilities (IPInterfaceSettingData).

Table 71 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceS-
ettingData)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The IPInterfaceSettingData reference.

100

File Server Manipulation Subprofile

6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a FileServer is
supported.

Table 72 describes class CIM_SettingsDefineCapabilities (NFSSettingData).

Table 72 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSetting-

Data)
Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The NFSSettingData reference.

6.7.20 CIM_SettingsDefineCapabilities (NISSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a FileServer is
supported.

Table 73 describes class CIM_SettingsDefineCapabilities (NISSettingData).

Table 73 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSetting-

Data)
Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The NISSSettingData reference.

6.7.21 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)

Created By: External

Modified By: Static

Deleted By: External

Requirement: The FileServer ComputerSystem has a FileServerSettings associated with it.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 101

File Server Manipulation Subprofile

Table 74 describes class CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings).

Table 74 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem
FileServer to FileServerSettings)

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The File Server ComputerSystem.
SettingData Mandatory The FileServerSettings.

6.7.22 SNIA_CIFSSettingData

Created By: Extrinsic: CreateFileServer

Modified By: Extrinsic: ModifyCIFS

Deleted By: Extrinsic: DeleteFileServer
Requirement: CIFS shares are supported by the provider.

Table 75 describes class SNIA_CIFSSettingData.

Table 75 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the CIFSSettingData.

Enabled Mandatory This boolean indicates if CIFS is enabled on the File
Server.

Charset Optional Specifies the character set to be used by the File Server
when servicing CIFS Shares. The values are 0|1|2
(‘'Standard-ASCII'|'IBM-437','BM-850"). If absent, then
"Standard-ASCII" is assumed.

UseTCPOnly Optional This boolean if set to 'true’ allows only TCP transport
connections. If 'false', then both TCP and Netbios transport
connections are allowed. The default value is 'false’.

NETBIOSName Optional The NetBIOS name of the FileServer.

WINSIP Optional An array of IP Addresses of Windows Internet Name
Servers.

AuthenticationDomai Mandatory Name of CIFS domain to which the File Server is joined.

n Represents either the NTLM domain or the ActiveDirectory
domain.

AuthenticationMode Mandatory Specifies if authentication is to be performed against either
NTLM or ActiveDirectory domains. Valid values are ‘'NTLM'
or 'ActiveDirectory'.

UseKerberos Optional Determines how ActiveDirectory authentication is

performed. If 'true’, limit ActiveDirectory authentication to
use Kerberos. Otherwise do not limit to Kerberos only.

102

File Server Manipulation Subprofile

Table 75 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData

er

Properties Flags Requirement | Description & Notes

UseOpportunisticLoc Optional This boolean determines if opportunistic locking should be

king used by CIFS FileServer. If 'true’, enable opportunistic
locking.

SMBSigningOnly Optional This boolean determines if CIFS clients are allowed to
connect if they use SMB signing for security. If 'true’, then
require clients to use SMB signing. Otherwise, do not
require.

ClientsConnectAnony Optional This boolean dictates if the FileServer joins the CIFS

mously Domain Controller anonymously or if a user and password
are required. If 'true’, then join anonymously. Otherwise,
use DomainControllerUser and DomainControllerPassword
to join.

JoinDomainAnonymo Optional This boolean dictates if the FileServer joins the CIFS

usly Domain Controller anonymously or if a user and password
are required. If 'true’, then join anonymously. Otherwise,
use DomainControllerUser and DomainControllerPassword
to join.

DomainControllerUse Optional User name to use when the Fileserver joins the CIFS

r Domain Controller.

DomainControllerPas Optional Password to use when joining the CIFS Domain Controller.

sword

CIFSDomainControll Optional Name of the CIFS Domain Controller.

6.7.23 SNIA_FileServerCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 76 describes class SNIA_FileServerCapabilities.

Table 76 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unigue id for the FileServerCapabilities
element of a File Server Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

FileServerSettingsSu Mandatory Indicates if FileServerSettings is supported for the

pported

FileServer. FileServerSettings will be supported if the value
is "true".

SMI-S 1.6.0 Revision 5

SNIA Technical Position

103

File Server Manipulation Subprofile

Table 76 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities

Properties Flags Requirement | Description & Notes

CIFSSupported Mandatory Indicates if CIFS Shares are supported by the FileServer.
CIFS Shares will be supported if the value is "true".

NFSSupported Mandatory Indicates if NFS Exports are supported by the FileServer.
NFS Exports will be supported if the value is "true".

NISSupported Mandatory Indicates if NIS (Network Information System) is supported
by the FileServer. NIS will be supported if the value is
"true”.

DNSSupported Mandatory Indicates if DNS is supported by the FileServer. DNS will be
supported if the value is "true".

NetworkVLANSuppor Mandatory Indicates if network VLAN Tagging is supported by the

ted FileServer. VLAN tagging will be supported if the value is
"true”.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of

Settings that are a supported variant of the Settings passed
as embedded instances via IN parameters. The method
returns the supported Settings in OUT parameters, each
containing an array of embedded instances. Many of the IN
parameters are optional, and if left NULL result in NULL
being returned in the corresponding OUT parameters.

6.7.24 SNIA_FileServerConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 77 describes class SNIA_FileServerConfigurationCapabilities.

Table 77 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for this element representing the
capabilities of a File Server Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

SynchronousMethod | N Mandatory The Service supports a number of extrinsic methods -- this

sSupported property identifies the ones that can be called

synchronously. Note: A supported method shall be listed in
this property or in the AsynchronousMethodsSupported
property or both.

104

File Server Manipulation Subprofile

Table 77 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities

Properties Flags Requirement | Description & Notes

AsynchronousMetho | N Mandatory The Service supports a number of extrinsic methods -- this

dsSupported property identifies the ones that can be called
asynchronously. Note: A supported method shall be listed
in this property or in the SynchronousMethodsSupported
property or both.

CanConfigureCIFS Mandatory Indicates if the CIFS Settings can be configured. The
settings can be configured if the value is "true".

CanConfigureNFS Mandatory Indicates if the NFS Settings can be configured. The
settings can be configured if the value is "true".

CanConfigureNIS Mandatory Indicates if the NIS (Network Information Service) Settings
can be configured. The settings can be configured if the
value is "true".

CanConfigureDNS Mandatory Indicates if the DNS Settings can be configured. The
settings can be configured if the value is "true".

CanConfigureNetwor Mandatory Indicates if the network VLAN Tagging Settings can be

kVLAN configured. The settings can be configured if the value is

"true".

6.7.25 SNIA_FileServerConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 78 describes class SNIA_FileServerConfigurationService.

Table 78 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationService

Properties Flags Requirement | Description & Notes

ElementName Mandatory A user-friendly name for this Service.
SystemCreationClas Mandatory Key.

sName

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key.

CreateFileServer() Mandatory Create a new instance of File Server.
ModifyFileServer() Mandatory Modify an existing File Server. This is used to modify

FileServerSettings, CIFSSettingData, NFSSettingData,
DNSSettingData, or NISSettingData.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

105

File Server Manipulation Subprofile

Table 78 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationService

Properties Flags Requirement | Description & Notes

DeleteFileServer() Mandatory Delete an existing File Server.

AddIPInterface() Optional Add a new IPInterface to an existing File Server.

ModifylPInterface() Optional Modify an IPInterface associated with an existing File
Server.

DeletelPInterface() Optional Delete an IPInterface associated with an existing File
Server.

6.7.26 SNIA_FileServerSettings

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: The FileServer ComputerSystem has a FileServerSettings associated with it.

Table 79 describes class SNIA_FileServerSettings.

Table 79 - SMI Referenced Properties/Methods for SNIA_FileServerSettings

Properties Flags Requirement | Description & Notes
InstancelD Mandatory An opaque, unigue id for the FileServerSettings.
HostLookupOrder Optional Specifies the services and order to use them for host

lookup. An array of elements with these values: 'DNS','NIS',
'None', or 'UploadedFile'. 'UploadedFile' refers to the
uploaded file of host names.

UserLoginLookupOrd Optional Specifies the services and order to use them for user

er lookup. An array of elements with these values: 'DNS','NIS’,
'None', or 'UploadedFile'. 'file' 'UploadedFile’ refers to the
uploaded file of user passwords.

NFSCIFSAccountMa Optional Controls the mapping of accounts between NFS and CIFS.
pping Valid values are 'None', 'All', or 'Domain’. If 'None', then no
account mapping is performed. If 'All', then mapping is
done for all CIFS domains. If 'Domain’, then mapping is
done for the users in the CIFS domain specified in
AccountMappingDomain.

AccountMappingDom Optional If NFSCIFSAccountMapping = 'Domain’, then this property
ain will contain the name of the domain to use for NFS to CIFS
account mapping.

6.7.27 SNIA_IPInterfaceSettingData

Created By: Extrinsic: CreateFileServer | AddIPInterface

106

File Server Manipulation Subprofile

Modified By: Extrinsic: ModifylPInterface
Deleted By: Extrinsic: DeleteFileServer | DeletelPInterface

Requirement: Optional

Table 80 describes class SNIA_[PInterfaceSettingData.

Table 80 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData

Properties Flags Requirement | Description & Notes

IPAddress Mandatory The IPAddress that will be used by the File Server. This can
be either an IPv4 or IPv6 address.

AddressType Mandatory The IPAddress format. This can be either "IPv4" or "IPv6".

SubnetMask Mandatory The subnet mask that will be used by the File Server.

IPv6PrefixLength Conditional Conditional requirement: Required if the array property
SNIA_IPInterfaceSettingData.AddressType contains the
string \IPv6\".'If AddressType specifies IPv6, then this
specifies the prefix length for the IPv6 address in
IPAddress.

VLANId Optional If present contains the ID of the VLAN that this IP setting
will be associated with.

MTU Optional If present contains the maximum transmission unit to be

used for this IP setting. If not present, then the default of
1500 will be used.

6.7.28 SNIA_NFSSettingData

Created By: Extrinsic: CreateFileServer

Modified By: Extrinsic: ModifyNFS

Deleted By: Extrinsic: DeleteFileServer
Requirement: NFS Exports are supported by the provider.

Table 81 describes class SNIA_NFSSettingData.

Table 81 - SMI Referenced Properties/Methods for SNIA_NFSSettingData

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the NFSSettingData.

Enabled Mandatory This boolean indicates if NFS is enabled on the File Server.
Charset Optional Specifies the character set to be used by the File Server

when servicing CIFS Shares. The values are 0|1|2
(‘Standard-ASCII'TUTF8'|'IS0O-8859-1". If absent, then
'1SO-8859-1" is assumed.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 107

File Server Manipulation Subprofile

Table 81 - SMI Referenced Properties/Methods for SNIA_NFSSettingData

Properties Flags Requirement | Description & Notes

MaximumTCPConne Optional This specifies the number of concurrent TCP connections

ctions that are allowed for the NFS protocol. If set to 0, then TCP
will be disabled for NFS.

Port Optional The port the File Server listens for mount requests. If
absent, default to 2049.

NonNFSuid Optional User ID to use for requests from non-NFS access. If
absent, default to -1.

NonNFSgid Optional Group ID to use for requests from non-NFS access. If
absent, default to -1.

UseReservedPorts Optional This boolean specifies that the File Server will only allow
NFS mount requests from client machine TCP/IP ports less
than 1024. If 'true’, only allow mount requests from ports
less than 1024. Othewise, allow mount requests from any
client port.

OnlyRootChown Optional This boolean specifies if the root user is allowed to issue

chown (change ownership) requests. If 'true’, then only let
root user issue chown request. Otherwise, allow any user
to issue chown requests.

6.7.29 SNIA_NISSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: NIS (Network Information System)is supported by the provider.

Table 82 describes class SNIA_NISSettingData.

Table 82 - SMI Referenced Properties/Methods for SNIA_NISSettingData

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the NISSettingData.
DomainName Mandatory NIS Domain Name.

ServerlP Mandatory An array of IP Addresses IP Addresses of NIS Servers.

EXPERIMENTAL

108

File Server Manipulation Subprofile

SMI-S 1.6.0 Revision 5 SNIA Technical Position 109

File Server Manipulation Subprofile

110

File Storage Profile

STABLE

Clause 7: File Storage Profile

7.1 Description

7.1.1 Synopsis

Profile Name: File Storage (Component Profile)
Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.18

Related Profiles for File Storage: Not defined in this standard.

Central Class: N/A

Scoping Class: ComputerSystem

7.1.2 Overview

The File Storage Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this release
of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles.

7.1.3 Implementation

Figure 10 illustrates the mandatory and optional classes for the modeling of file storage for the profiles that support
filesystems. This profile is supported by the Self-contained NAS and the NAS Head Profiles.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 111

File Storage Profile

LecalFileSystem

HostedFileSystem

i. ComputerSystem File Storage
| | I Profile

I ResidezOnExtent
{Conditional)

-——-J

SystemDevice L

LogicalDisk |

Figure 10 - File Storage Instance

The File Storage Profile models the mapping of filesystems to LogicalDisks. For the NAS Head and Self-contained
NAS Profiles each filesystem shall be established on one LogicalDisk. The relationship between the
LocalFileSystem and the LogicalDisk is represented by the ResidesOnExtent association. This association is listed
as conditional on the parent profile being either the NAS Head or the Self-contained NAS Profile. The LogicalDisk
may be a LogicalDisk as defined in the Block Services Package or part of the parent profile.

The FileStorage Profile is a “read-only” profile. That is, the methods for creating, modifying or deleting a
LocalFileSystem are external to the File Storage Profile. The SMI-S prescribed way of performing these functions
are covered by the Filesystem Manipulation Profile.

7.2 Health and Fault Management Consideration

None.

EXPERIMENTAL

7.3 Cascading Considerations

In some cases, the parent profile does not implement Block Services Package. In this case, the parent profile
would implement a LogicalDisk that is “imported” from another profile (e.g., a Volume Management Profile). This
section discusses those cascading considerations.

7.3.1 Cascaded Resources

A File Storage profile may get its storage from the operating system (HDR Profile), a volume manager, an Array or
Storage Virtualizer. As such, there is a cascading relationship between the File Storage Profile and the profiles
(e.g., Volume Management Profiles) that provide the storage for the File Storage Profile. Figure 11 illustrates the
constructs to be used to model this cascading relationship.

112

File Storage Profile

LocalFileSystemn LocalFileSystem

ComputerSystem

.

File Storage Profile
Resides0nE xtent

ResidesC0nE xdent

Wolume Composition|Subprofile

System Device ——
LogicalDisk

—;

LogicalDisk

rame="Inemal hName"
Crtherldertifringinfo[]="05 X"

rMame="Internal Mame"

T
Bazedon
1

Com positeE stent

rEamenLBasedOj

LogicalDisk LogicalDisk

Mame="Internal M ame"
Otherldentitfingl nfo[1="0OS I*

—

Mam e="Intemal Name"
Otherldentifing Info[]="0S ™

Logicalldentity

Dependency

Logicalldentity

—Logicalldenti‘ty—I

MembenrD i ollection

I LogicalDisk ’

[Artual)
I_ Mame="03 I I

P em berO - ollection

Cascading Subprofile

SMlA_AllocatedResources

LogicalDisk 1
Ciirtual)

MemberofCollection

SMlL_RemoteResources

I Caomputersystem 1

[wirtual) l

hem berdfiZallection

I LogicalDisk 1

System Device

SAP AvailableF orE lem ent

irtusl)
l_ Mame="0% X" |

Rem oteServiceicoessPoint

MemberOfColledion

LogicalDisk v
Cirtual)

Figure 11 - Cascading File Storage

Figure 11 shows two filesystems (LocalFileSystem). Both reside on one LogicalDisk. But the LogicalDisk on the
right is a composite of lower level LogicalDisks. The storage that is imported from the remote profile are
LogicalDisks at the lowest level of the Filesystem Profile. So, in the first (left side) case, the Logicalldentity is
between the LogicalDisk on which the filesystem resides to the imported LogicalDisk (or StorageVolume). In the
second case (the right side) the Logicalldentity is between the “lowest level” LogicalDisks in Volume Composition
and the imported LogicalDisks (or StorageVolumes).

Note: Logicalldentity is an abstract class and would be subclassed by an implementation.

The ComputerSystem in the Filesystem Profile would be the computer system that hosts the filesystem. The
“Virtual” ComputerSystem is the top level ComputerSystem of the HDR, Volume Manager, Array or Storage
Virtualizer. There shall be a Dependency association between these computer systems. LogicalDisks (or
StorageVolumes) that are in use by the Filesystem Profile would have a MemberOfCollection association to the
SNIA_AllocatedResources collection. All the LogicalDisks (or StorageVolumes) that the Filesystem Profile can see

(including the ones that are allocated) would have a MemberOfCollection association to the
SNIA_RemoteResources instance.
SMI-S 1.6.0 Revision 5 SNIA Technical Position 113

File Storage Profile

The RemoteServiceAccessPoint associated to the virtual computer system via SAPAvailableForElement would be
information on the management interface for the HDR, Volume Manager, Array or Storage Virtualizer.

Table 83 provides the specific cascading information for cascading file storage.

Table 83 - Cascaded Storage

File Storage Leaf Profile Leaf Resource Association Notes
Resource
LogicalDisk Volume LogicalDisk Logicalldentity
Management or
HDR
LogicalDisk Array or Storage StorageVolume Logicalldentity
Virtualizer

7.3.2 Ownership Privileges

In support of the cascading File Storage, an implementation may assert ownership over the LogicalDisks (or
StorageVolumes) that they import. If the Volume Management implementation supports Ownership, the File
Storage implementation may assert ownership using the following Privileges:

= Activity - Execute
= ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool
« FormatQualifier - Method

Note: HDR does not support Block Storage Resource Ownership, so this cannot be supported if the
underlying profile is HDR.
7.3.3 Limitations on Cascading Subprofile

The File Storage Profile support for cascading places the following limitations and restrictions on the Cascading
Subprofile:

< Dependency - The Dependency may exist, even when there are no resources that are imported. This signifies
that the File Storage implementation has discovered the Volume Management or HDR Profile, but has no
access to any of their LogicalDisks.

EXPERIMENTAL

7.4 Supported Profiles, Subprofiles, and Packages

See section 7.1.1 for this information.

7.5 Methods of the Profile

7.5.1 Extrinsic Methods of the Profile

None

Note: The methods for defining the various mappings would be handled by the Filesystem Manipulation
Subprofile.

114

File Storage Profile

7.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

= Associators

= AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

e EnumeratelnstanceNames

7.6 Client Considerations and Recipes

None.

7.7 CIM Elements

Table 84 describes the CIM elements for File Storage.

Table 84 - CIM Elements for File Storage

Element Name Requirement | Description

7.7.1 CIM_ResidesOnExtent Conditional Conditional requirement: NAS Profiles require
that LocalFileSystems reside on one
LogicalDisk. or NAS Profiles require that
LocalFileSystems reside on one LogicalDisk.
Represents the association between a local
FileSystem and the underlying LogicalDisk
that it is built on.

7.7.1 CIM_ResidesOnExtent

Created By: External
Modified By: Static
Deleted By: External

Requirement: NAS Profiles require that LocalFileSystems reside on one LogicalDisk. or NAS Profiles require that
LocalFileSystems reside on one LogicalDisk.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 115

File Storage Profile

Table 85 describes class CIM_ResidesOnExtent.

Table 85 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement | Description & Notes

Dependent Mandatory The LocalFileSystem that is built on top of a LogicalDIsk.

Antecedent Mandatory The LogicalDIsk that underlies a LocalFileSystem.
STABLE

116

Filesystem Profile

STABLE

Clause 8: Filesystem Profile

8.1 Description

8.1.1 Synopsis

Profile Name: Filesystem (Component Profile)
Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.18

Table 86 describes the related profiles for Filesystem.

Table 86 - Related Profiles for Filesystem

Profile Name Organization | Version Requirement | Description
Indication SNIA 15.0 Mandatory

Experimental SNIA 1.5.0 Optional

Indication

Central Class: LocalFileSystem
Scoping Class: ComputerSystem

The Filesystem Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this release
of SMI-S, this includes the NAS Head and the Self-Contained NAS Profiles. A number of other profiles and
subprofiles make use of elements of the Filesystem Profile and will be referred to in this specification as
“filesystem-related profiles” -- these include but are not limited to the Filesystem Manipulation Subprofile, File
Export Subprofile, File Export Manipulation Subprofile, NAS Head Profile, and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are described
in Annex B (informative) State Transitions from Storage to File Shares.
8.1.2 Instance Diagrams

Figure 12 illustrates the mandatory, optional, and conditional classes for the modeling of filesystems for the profiles
that support filesystems. This profile is supported by the Self-contained NAS and the NAS Head Profiles. The
dashed box contains the elements that this profile supports -- the elements outside the dashed box depend on

SMI-S 1.6.0 Revision 5 SNIA Technical Position 117

other profiles

Filesystem Profile

or subprofiles for their maintenance (creation, deletion, and modification). There are

two

ComputerSysiem

SNIA_HostedShare

[SNIa_FieShare |

File Server

1 .

K]

] PathMame="usersimea”

ConcreteDependency
. (Cptional)

Dependency
[Conditicnialj

SHIA_SharedElement
SNI8_Localdccesstvaiable i i
LocalAccessPoint="fetcimnt™ Fie S?Etem s

{ Ciondificnalj 1

= LogicalFile

1 1

. | SHIA_LocalFileSystem 1!

LocalAccessDefinitionRequired
PathnameSeparatorSiring="1"

FileStorage

HostedDependancy
{Cplional)
5T |
" 1
ElementSettingData
{Optionaly

ElementSettingData
(Oyptional)

* -

1
SMIA_FileSystem Setting

SNI#_I.u:-c'aII',I-ﬂ--:u: esmbleFileSystemSetting |

. {Ciptional) [{ Optional)
| |
HostedFileSystem
-
ResidesOnExtent
1
ComputerSy s-t:rn Logicalfisk

. .I:'deS?}.-'ﬂem Host

Figure 12 - Filesystem Instance

ComputerSystems shown outside the box that represent different dedicated roles that could be performed by
different actual computers (or could be performed by a single computer).

A filesystem shall be represented in the model as an instance of LocalFileSystem. A LocalFileSystem instance
shall have a ResidesOnExtent association to a LogicalDisk (shown, but outside this profile). A client would
determine the size (in bytes) of a filesystem by inspecting the size of the LogicalDisk on which the LocalFileSystem
resides.

Note: The filesystem-related profiles build LocalFileSystems on a LogicalDisk(s). In the cases supported in
this release of SMI-S, one LocalFileSystem may be established on one LogicalDisk. In a future release,
more elaborate mappings may exist between FileSystems and one or more LogicalDisks.

The LocalFileSystem shall have a HostedFileSystem association to a ComputerSystem. Normally this will be the
top level ComputerSystem of the parent profile (typically one of the filesystem-related profiles such as the NAS
Head or the Self-Contained NAS Profile). However, if the Multiple Computer System Subprofile is implemented, the
HostedFileSystem may be associated to a component ComputerSystem. See Clause 30: Multiple Computer
System Subprofile in Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 5.

The LocalFileSystem element may also have an ElementSettingData association to the FileSystemSetting for that
filesystem. However, the FileSystemSetting and ElementSettingData are optional in this profile.

There may be zero or more FileShare elements associated to the LocalFileSystem element via the SharedElement
association. An implementation would be required to populate only those FileShare elements representing files (or
directories) that are exported using a supported file sharing protocol (such as CIFS or NFS). The path to the file or
directory from the root of the LocalFileSystem is specified by the FileShare.PathName property.

118

Filesystem Profile

Note: In order to support backward compatibility with the NAS Head and Self-contained NAS Profiles in
previous SMI-S releases, the class LogicalFile (shown outside the dashed box in the figure) and two
associations (ConcreteDependency outside the dashed box and FileStorage shown inside the dashed
box) must be supported. These duplicate the functionality provided by specifying FileShare.PathName,
at the cost of requiring that certain LogicalFiles, but not all, be surfaced.

EXPERIMENTAL

8.1.2.1 Local Access Requirement

In addition, if the property LocalFileSystem.LocalAccessDefinitionRequired is set to true, the filesystem must be
made exportable via a file server. In that case, there shall be a LocalAccessAvailable association from the
LocalFileSystem element to the file server ComputerSystem and, optionally, a
LocallyAccessibleFileSystemSettings element associated via an ElementSettingData association to the
LocalFileSystem. The LocallyAccessibleFileSystemSettings element is an instance of ScopedSettingData and is
associated to the file server ComputerSystem via a ScopedSetting association. The ScopedSetting association
indicates that this setting is constrained by the associated file server. The LocalAccessAvailable association is
required but conditional on LocalAccessDefinitionRequired being true, while the
LocallyAccessibleFileSystemSettings element and the ScopedSetting association are not required (i.e., optional).

Note: They are still conditional on LocalAccessDefinitionRequired being true, but in this version of SMI-S, that
is not represented in the XML file.

Since LocalAccessAvailable is an association, there can only be ONE instance per LocalFileSystem for each
FileServer. This is a common restriction. For each LocalAccessAvailable association, there should only be zero (if
optionally not implemented) or one (if optionally implemented) instances of LocallyAccessibleFileSystemSettings.

EXPERIMENTAL

EXPERIMENTAL

8.1.2.2 Directory Service Use

A filesystem needs to be supported by a directory service that resolves user and group identifiers (referred to as
UID, GID, or SID) to specific operational users and groups. The enumerated property
LocalFileSystem.DirectoryServiceUsage indicates the kind of support a filesystem requires from a directory service
-- the options include “Not Used”, “Optional”, and “Required”. If “Required”, the filesystem will be associated to a
computer system that provides infrastructure support for such identity resolution.

The directory service may be hosted by any ComputerSystem, but it must be accessible in real-time to the
ComputerSystem that makes the filesystem available to operational users -- this is either a file server
ComputerSystem (one may already be required if LocalFileSystem.LocalAccessDefinitionRequired is true, but it is
optional otherwise) or the ComputerSystem hosting the filesystem. The directory service may be “natively” hosted
on that ComputerSystem (file server or filesystem host) or may be identified by that ComputerSystem in some way.

The support relationship between a LocalFileSystem element and the ComputerSystem that identifies and uses
the directory service shall be represented by a Dependency association with the ComputerSystem element as the
Antecedent and the LocalFileSystem element as the Dependent.

In the instance diagram above, the Dependency association has been shown between the LocalFileSystem and a
file server ComputerSystem (with Dedicated[]="16"). A LocalFileSystem element shall only identify one
ComputerSystem for directory service access. In addition, the consistency of filesystem security implementation

SMI-S 1.6.0 Revision 5 SNIA Technical Position 119

Filesystem Profile

requires that all the file server ComputerSystems that make a filesystem locally available must use the same
directory service or use mutually consistent directory services.

EXPERIMENTAL

8.2 Health and Fault Management Consideration

The Filesystem Profile supports state information (e.g., OperationalStatus) on the following elements of the model:

= Local filesystems (See Table 97 - SMI Referenced Properties/Methods for CIM_LogicalFile)

8.2.1 OperationalStatus for Filesystems

Table 87 describes each filesystem OperationalStatus.

Table 87 - Filesystem OperationalStatus

Primary OperationalStatus Description
2 “OK” The filesystem has good status
3 “Degraded” The filesystem is operating in a degraded mode. This could be

due to the health state of the underlying storage being
degraded or in error.

4 “Stressed” The filesystem resources are stressed

5 “Predictive Failure” The filesystem might fail because some resource or
component is predicted to fail

6 “Error” An error has occurred causing the filesystem to become
unavailable. Operator intervention through SMI-S (managing
the LocalFileSystem) to restore the filesystem may be
possible.

6 “Error” An error has occurred causing the filesystem to become
unavailable. Automated recovery may be in progress.

7 “Non-recoverable Error” The filesystem is not functioning. Operator intervention
through SMI-S will not fix the problem.

8 “Starting” The filesystem is in process of initialization and is not yet
available operationally.

9 “Stopping” The filesystem is in process of stopping, and is not available
operationally.

10 “Stopped” The filesystem cannot be accessed operationally because it is
stopped -- if this did not happened because of operator
intervention or happened in real-time, the OperationalStatus
would have been “Lost Communication” rather than “Stopped”.

11 “In Service” The filesystem is offline in maintenance mode, and is not
available operationally.

13 “Lost Communications The filesystem cannot be accessed operationally -- if this
happened because of operator intervention it would have been

“Stopped” rather than “Lost Communication”.

120

Filesystem Profile

Table 87 - Filesystem OperationalStatus

Primary OperationalStatus

Description

14 “Aborted” The filesystem is stopped but in a manner that may have left it
in an inconsistent state.
15 “Dormant” The filesystem is offline; and the reason for not being

accessible is unknown.

16 “Supporting Entity in Error”

The filesystem is in an error state, or may be OK but not
accessible, because a supporting entity is not accessible.

8.3 Cascading Considerations

None.

8.4 Supported Profiles, Subprofiles, and Packages

See section 8.1.1 for this information.

8.5 Methods of the Profile

8.5.1 Extrinsic Methods of the Profile

None.

8.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

= Getlnstance

= Associators

= AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

e EnumeratelnstanceNames

8.6 Client Considerations: Use Cases

The following client use cases are supported by this profile:

= List existing filesystems hosted by the referencing profile (parent filesystem-related profile).

= Get FileSystemSettings for a filesystem

= Get the ComputerSystem that hosts a filesystem

« Get all file servers and access paths that have local access to this fileSystem

= Get the access path to this filesystem on the specified file server

SMI-S 1.6.0 Revision 5

SNIA Technical Position

121

Filesystem Profile

= Get the Local Access Settings for this FileSystem on the specified File Server
= Get the FileShares and shared file path of this filesystem on all file servers

= Get the FileShares and shared file path of this filesystem on the specified fileserver

EXPERIMENTAL
These use cases have been elaborated as prototype recipes in the following sections.

8.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile

// DESCRIPTION

// Goal: Locate all LocalFileSystems hosted on the top level

// ComputerSystem of the Filesystem Profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the top level ComputerSystem was previously
// discovered and is defined in the $System-> variable.

//

// FUNCTION ListFileSystems

// This function takes a given top level ComputerSystem and locates
// the LocalFileSystems which it hosts or are hosted by any component
// ComputerSystem.

// INPUT Parameters:

// System: A reference to the top level ComputerSystem of

// the Filesystem Profile.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: An array of reference(s) to the LocalFileSystems
// hosted by the top level ComputerSystem or component
// ComputerSystems. It returns NULL if it does not find
// any hosted LocalFileSystems.

sub CIMInstance[] ListFileSystems(REF CIM_ComputerSystem $System->) {

// Step 1. Locate the LocalFileSystems hosted directly by the

// top-level ComputerSystem of the Filesystem Profile.

#FSProps[] = {“CSCreationClassName”, “CSName”, “CreationClassName”,
“Name™, “OperationalStatus”, “CaseSensitive”, “CasePreserved”,
“MaxFileNameLength”, “FileSystemType”,
“MultipleDisksSupported”,

“LocalAccessDefinitionRequired™,
“PathNameSeparatorString” }
$Ffilesystems[] = Associators($System->,

“CIM_HostedFileSystem”,
“CIM_LocalFileSystem”,
“GroupComponent™,
“PartComponent”,

122

Filesystem Profile

false,
false,
#FSProps[1)

// Step 2. Locate all the component ComputerSystems of the top level
// ComputerSystem of the Filesystem Profile implementation.
// This assumes that the top level ComputerSystem of the Filesystem
// Profile is the same as the top level ComputerSystem of the
// Multiple Computer System Subprofile. This recipe does not
// check if this assumption is correct.
try {
REF CIM_ComputerSystem $ComponentSystems->[] =
AssociatorNames($System->,
“CIM_ComponentCS,
“CIM_ComputerSystem”,
“GroupComponent™,
“PartComponent’)

// Step 3. Locate the LocalFileSystems hosted by the component
// ComputerSystem and add to the list of found LocalFileSystems.
iT ($ComponentSystems->[] = null &&
$ComponentSystems->[].length > 0) {
REF CIM_FileSystem $ComponentFS[]
#fsCounter = $Ffilesystems[].length
for (#1 in $ComponentSystems->[]) {
$ComponentFS[] =
Associators($ComponentSystems->[#i],
“CIM_HostedFileSystem”,
“CIM_LocalFileSystem”,
“GroupComponent”,
“PartComponent”,
false,
false,
#FSProps[])
if ($ComponentFS[] !'= null && $ComponentFS[].-length > 0) {
for (#J in $ComponentFS->[]) {
$filesystems[#fsCounter] = $ComponentFS[#j]
#fsCounter++

}
} catch (CIMException $Exception) {

// ComponentCS may not be included in the model implemented at all if
// the Multiple Computer System Subprofile is not supported.
it ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

return $filesystems[]

SMI-S 1.6.0 Revision 5 SNIA Technical Position 123

8.6.2

Filesystem Profile

}
<ERROR! An unexpected failure occured>
}
return $filesystems[]
}
// MAIN

$HostedFileSystems[] = ListFileSystems($TopLevelComputerSystem->)

Get FileSystemSettings for a FileSystem

// DESCRIPTION
// Goal: Get the FileSystemSettings associated with a LocalFileSystem
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. A reference to the LocalFileSystem was previously
// discovered and is defined in the $fs-> variable.
// 2. There is only one setting for the file system
//
// FUNCTION GetFSSetting
// This function takes a given LocalFileSystem and returns the
// FileSystemSetting element that specifies its configuration.
// INPUT Parameters:
// fs: A reference to the LocalFileSystem .
// OUTPUT Parameters:
// setting: A reference to the FileSystemSetting element is returned.
// RESULT:
// Returns: Nothing
//
sub GetFSSetting(IN REF CIM_LocalFileSystem $fs,
OUT CIM_FileSystemSetting $setting)

{
//
// Get a reference to the FileSystemSetting associated with the
// LocalFileSystem (via ElementSettingData association)
$setting = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,
“ManagedElement™,
“SettingData)->[0];
}

8.6.3 Get the ComputerSystem that hosts a FileSystem

124

// DESCRIPTION

// Goal: Get the ComputerSystem that hosts a LocalFileSystem
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//
//
//
//
//
//
//
//
//
//
//

Filesystem Profile

FUNCTION GetFileSystemHost
This function takes a given LocalFileSystem and returns the
ComputerSystem that hosts it.
INPUT Parameters:
fs: A reference to the LocalFileSystem.
OUTPUT Parameters:
system: A reference to the hosting ComputerSystem is returned.
RESULT:
Returns: Nothing

sub GetFileSystemHost(IN REF CIM_LocalFileSystem $fs,

OUT CIM_ComputerSystem $system)

$system = Associators($fs,

“CIM_HostedFileSystem”,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent’)->[0];

// Retained for backward compatability with SMI-S 1.1
sub GetFSServer(IN REF CIM_FileSystem $fs,

}

OUT CIM_ComputerSystem $system)

GetFileSystemHost($fs, $system);

8.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem

// DESCRIPTION

//
//
//
//
//
//
//
//
//
//
//
7/
//
//
//
//
//
//

Goal: Get the file server ComputerSystems that access the
LocalFileSystem and the local access points on those
ComputerSystems

PRE-EXISTING CONDITIONS AND ASSUMPTIONS

1. A reference to the LocalFileSystem was previously
discovered and is defined in the $fs-> variable.

FUNCTION GetFileSystemServersAndPaths

This function takes a given LocalFileSystem and returns the
file server ComputerSystems that have local access to it
and the local access points on those ComputerSystems.

INPUT Parameters:

fs: A reference to the LocalFileSystem.

OUTPUT Parameters:

systems: An array of references to the file server ComputerSystems.
paths: An array of strings that are the local access points on the
corresponding file server

SMI-S 1.6.0 Revision 5 SNIA Technical Position

125

Filesystem Profile

// RESULT:
// Returns: Number of entries in the returned arrays.
//

sub uint32 GetFileSystemServersAndPaths(IN REF CIM_LocalFileSystem $fs,
OUT REF CIM_ComputerSystem $systems|[],
OUT string #paths[])

{
REF CIM_LocalAccessAvailable $assocs->[] = References($fs,
“SNIA_LocalAccessAvailable™,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent”);
#counter = O;
if ($assocs->[] '= null && $assocs->[]-length > 0) {
#count = $assocs->[].length;
for (#1 in $assocs->[]) {
$systems->[#counter] = $assocs->[#i].FileServer;
#paths->[#counter] = $assocs->[#i].LocalAccessPoints;
#counter++;
¥
¥
return #counter;
¥

8.6.5 Get the Access Path to this FileSystem on the specified File Server

// DESCRIPTION

// Goal: Get the local access point to this LocalFileSystem on the
// specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously
// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerPath

// This function takes a given LocalFileSystem and file server
// ComputerSystem that has access to the Ffilesystem and returns
// the local access point on that file server ComputerSystem.
// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: A string representing the local access path to the
// filesystem on the file server

//

126

Filesystem Profile

sub string GetFileSystemServerPath(IN REF CIM_FileSystem $fs,
IN REF CIM_ComputerSystem $server)

{
REF CIM_LocalAccessAvailable $assocs->[] = References($fs,
“SNIA_LocalAccessAvailable™,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent’™);
#path = “*;
if ($assocs->[]1 !'= null && $assocs->[]-length > 0) {
for (#i in $assocs->[]) {
if ($server == $assocs->[#i]-FileServer) {
#path = $assocs->[#i]-.LocalAccessPoint;
break;
}
}
¥
return #path;
}

8.6.6 Get the Local Access Settings for this FileSystem on the specified File Server

// DESCRIPTION

// Goal: Get the LocallyAccessibleFileSystemSetting for this

// LocalFileSystem on the specified file server ComputerSystem
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously
// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerAccessSettings

// This function takes a given LocalFileSystem and file server

// ComputerSystem that has access to the Ffilesystem and returns

// the LocallyAccessibleFileSystemSetting for that filesystem

// in the context of that file server ComputerSystem

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// setting: A reference to the SNIA_LocallyAccessibleFileSystemSetting

// RESULT:

// Returns: Nothing

// (Optionally) A string containing the setting as an Embeddedlnstance
//

sub GetFileSystemServerAccessSettings(IN REF CIM_FileSystem $fs,
IN REF CIM_ComputerSystem $server,

SMI-S 1.6.0 Revision 5 SNIA Technical Position 127

Filesystem Profile

OUT REF SNIA_LocallyAccessibleFileSystemSetting

setting)
{

REF SNIA LocallyAccessibleFileSystemSetting $settings->[] =
AssociatorNames($fs,
“CIM_ElementSettingData”,
“SNIA_LocallyAccessibleFileSystemSetting”,
“ManagedElement”,

“SettingData™);

$setting = NULL;

$settingEl = “;

ifT ($settings->[] = null && $settings->[]-length > 0) {

for (#1 in S$settings->[]) {
// Find the server that scopes this setting; assumes at least one is
returned
REF CIM_ComputerSystem scope = AssociatorNames($settings->[#i],
“CIM_ScopedSetting”,
“CIM_ComputerSystem™,
“ScopedSettingData,
“ManagedElement’)->[0];
if ($server == $scope) {
$setting = $settings->[#i];
$settingEl = $setting->Getlnstance();
break;
¥
}
} else {
// There is no setting => it is defaulted by the server and opaque to the
client
// Is this an Error?
#ERROR(“Cannot find LocallyAccessibleFileSystemSetting for
LocalFileSystem.”);
}
return $settingEl;
¥

8.6.7 Get the FileShares and shared File path of this FileSystem on all File Servers

// DESCRIPTION
// Goal: Get all the FileShare elements and filesystem-relative

// path to the shared file or directory of this LocalFileSystem
// on all file server ComputerSystems (that

// support local access to this LocalFileSystem)

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously
// discovered and is defined in the $fs-> variable.
//

// FUNCTION GetFileSystemServersSharesAndSharedPaths

128

Filesystem Profile

// This function takes a given LocalFileSystem and returns the

// FileShare elements that provide access to a file or directory

// of the filesystem. For each FileShare, this also returns

// the file server ComputerSystems that provides local access to

// it and the path to the shared file or directory relative to the

// filesystem.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// shares: An array of references to the FileShares that provide access.
// servers: An array of references to the file server ComputerSystems.

// dirpaths: An array of strings that are the filesystem-relative paths

// to the shared directory or file

// RESULT:

// Returns: Number of entries in the returned arrays.
//

sub uint32 GetFileSystemServersSharesAndSharedPaths(
IN REF CIM_FileSystem $fs,
OUT REF CIM_FileShare $shares[],
OUT string #dirpaths[],
OUT REF CIM_ComputerSystem $servers[])

{
REF CIM_FileShares $shares->[] = Associators($fs,
“CIM_SharedElement”,
“CIM_FileShare”,
“SystemElement”,
“SameElement™);
#counter = O;
if ($shares->[] '= null && $shares->[].length > 0) {
for (#i in $shares->[]) {
// A share must be hosted
$servers->[#counter] = AssociatorNames($shares->[#i],
“CIM_HostedShare™,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent”)->[0];
$assoc = References($shares->[#i],
“CIM_SharedElement™,
“CIM_FileSystem”,
“SameElement”,
“SystemElement”)->[0];
$dirpaths[#counter] = $assoc.PathName;
#counter++;
¥
}
return #counter;
¥

SMI-S 1.6.0 Revision 5 SNIA Technical Position 129

Filesystem Profile

8.6.8 Get the FileShares and shared File path of this FileSystem on the specified FileServer

// DESCRIPTION
// Goal: Get all the FileShare elements and filesystem-relative

// path to the shared file or directory of this LocalFileSystem
// on this File server ComputerSystem
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously
// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemSharesAndSharedPathsOnServer

// This function takes a given LocalFileSystem and returns the

// FileShare elements that provide access to a file or directory

// of the FileSystem. For each FileShare this also returns the

// file server ComputerSystem that supports local access to it

// and the filesystem-relative path to the shared file or directory.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// shares: An array of references to the FileShares that provide access.
// dirpaths: An array of strings that are the file system-relative paths

// to the shared directory or file

// RESULT:

// Returns: Number of entries in the returned arrays.
//

sub uint32 GetFileSystemSharesAndSharedPathsOnServer(
IN REF CIM_FileSystem $fs,
IN REF CIM_ComputerSystem $server,
OUT REF CIM_FileShare $shares[],
OUT string #dirpaths[])

REF CIM_FileShares $allshares->[] = Associators($fs,
“CIM_SharedElement™,
“CIM_FileShare”,
“SystemElement”,
“SameElement™);
#counter = 0O;
if ($allshares->[] != null && $allshares->[].length > 0) {
for (#i in $shares->[]) {
// A share must be hosted
$host = AssociatorNames($allshares->[#i],
“CIM_HostedShare™,
“CIM_ComputerSystem™,
“PartComponent”,

130

Filesystem Profile

“GroupComponent’)->[0];
// Is this share hosted by the server?
it ($host == $server) {
$assoc = References($allshares->[#i],
“CIM_SharedElement™,
“CIM_FileSystem”,
“SameElement”,
“SystemElement”)->[0];
$shares[#counter] = $allshares->[#i];
$dirpaths[#counter] = $assoc.PathName;
#counter++;

}

return #counter;

}
EXPERIMENTAL

8.7 CIM Elements

Table 88 describes the CIM elements for Filesystem.

Table 88 - CIM Elements for Filesystem

Element Name Requirement | Description
8.7.1 CIM_Dependency (Uses Directory Conditional Conditional requirement: Required if
Services From) LocalFileSystem.DirectoryServiceUsage is

either "Required" or "Optional". Associates a
ComputerSystem that indicates a directory
service that supports the dependent
LocalFileSystem.

8.7.2 CIM_ElementSettingData (FileSystem) Optional Associates a LocalFileSystem to its
FileSystemSetting element.

8.7.3 CIM_ElementSettingData (Local Access | Conditional Conditional requirement: Required if

Required) LocalFileSystem.LocalAccessDefinitionRequir

ed=true. Associates a LocalFileSystem to
LocallyAccessibleFileSystemSetting
elements, one for each file server that has
local access.

8.7.4 CIM_FileStorage Mandatory Associates a LogicalFile (or Directory) to the
LocalFileSystem that contains it. This is
provided for backward compatibility with
previous versions of SMI-S.

8.7.5 CIM_FileSystemSetting Optional This element represents the configuration
settings of a filesystem represented by a
LocalFileSystem.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 131

Filesystem Profile

Table 88 - CIM Elements for Filesystem

Element Name Requirement | Description
8.7.6 CIM_HostedDependency (Local Access | Conditional Conditional requirement: Required if
Required) LocalFileSystem.LocalAccessDefinitionRequir

ed=true. Associates a file server
ComputerSystem to the
LocallyAccessibleFileSystemSetting elements
that get scoping information from that file

server.
8.7.7 CIM_HostedFileSystem Mandatory Associates a LocalFileSystem to the
(LocalFileSystem) ComputerSystem that hosts it.

8.7.8 CIM_LocalFileSystem Mandatory Represents a filesystem in a Filesystem-

related profile.

8.7.9 CIM_LogicalFile Mandatory In an earlier release of SMI-S, the Filesystem-
related profiles made a limited set of
LogicalFiles (or Directory subclass) instances
visible (these were any file or directory that
was exported as a share. This element is
required by the profiles to maintain backward
compatibility for clients conforming to earlier
versions of SMI-S.

8.7.10 SNIA_LocalAccessAvailable Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a LocalFileSystem to a
file server ComputerSystem that can export
files or directories as shares.

8.7.11 SNIA_LocalFileSystem Optional Represents a filesystem in a Filesystem-
related profile.

8.7.12 Conditional Conditional requirement: Required if

SNIA_LocallyAccessibleFileSystemSetting LocalFileSystem.LocalAccessDefinitionRequir

ed=true. This element represents the
configuration settings of a LocalFileSystem
that can be made locally accessible (i.e., can
have a file or directory made accessible to
operational users) from a file server
ComputerSystem. This Setting provides
further details on the functionality supported
and the parameters of that functionality when
locally accessible.

132

F

ilesystem Profile

Table 88 - CIM Elements for Filesystem

Element Name

Requirement | Description

SELECT * FROM CIM_InstModification

WHERE Sourcelnstance ISA
CIM_LocalFileSystem AND

Mandatory Deprecated WQL -Change of Status of a
filesystem. Previousinstance is optional, but
may be supplied by an implementation of the

Sourcelnstance.OperationalStatus <> Profile.
Previousinstance.OperationalStatus
SELECT * FROM CIM_InstModification Optional CQL -Change of Status of a filesystem.

WHERE Sourcelnstance ISA
CIM_LocalFileSystem AND

Sourcelnstance.CIM_LocalFileSystem::Opera

tionalStatus <>

Previousinstance.CIM_LocalFileSystem::Ope

rationalStatus

Previousinstance is optional, but may be
supplied by an implementation of the Profile.

8.7.1 CIM_Dependency (Uses Directory Services From)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either "Required"” or "Optional".

Table 89 describes class CIM_Dependency (Uses Directory Services From).

Table 89 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services

From)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s)
that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other

security principal identities is supported by the antecedent
ComputerSystem.

8.7.2 CIM_ElementSettingData (FileSystem)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

SMI-S 1.6.0 Revision 5

SNIA

Technical Position 133

Filesystem Profile

Table 90 describes class CIM_ElementSettingData (FileSystem).

Table 90 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory The LocalFileSystem.

SettingData Mandatory The settings established on the LocalFileSystem when first
created or as modified.

8.7.3 CIM_ElementSettingData (Local Access Required)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 91 describes class CIM_ElementSettingData (Local Access Required).

Table 91 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access

Required)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.
SettingData Mandatory The local access settings of the LocalFileSystem, specified
when first created or established later.

8.7.4 CIM_FileStorage

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 92 describes class CIM_FileStorage.

Table 92 - SMI Referenced Properties/Methods for CIM_FileStorage

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile.
PartComponent Mandatory The LogicalFile contained in the LocalFileSystem.

8.7.5 CIM_FileSystemSetting

134

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Filesystem Profile

Table 93 describes class CIM_FileSystemSetting.

Table 93 - SMI Referenced Properties/Methods for CIM_FileSystemSetting

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A user-friendly name for this FileSystemSetting element.

ActualFileSystemTyp Mandatory This identifies the type of filesystem that this

e FileSystemSetting represents.

FilenameCaseAttribu Mandatory This specifies the support provided for using upper and

tes lower case characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin Mandatory This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

NumberOfObjectsMa Mandatory This is an array that specifies the maximum number of

X objects of the type specified by the corresponding entry in
ObjectTypes[].

NumberOfObjects Mandatory This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize Mandatory This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin Mandatory This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMax Mandatory This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[].

FilenameReservedC Optional This string or character array specifies the characters

haracterSet reserved (i.e., not allowed) for use in filenames of a
filesystem with this setting.

DataExtentsSharing Optional This specifies whether a filesystem with this setting
supports the creation of data blocks (or storage extents)
that are shared between files.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 135

Filesystem Profile

Table 93 - SMI Referenced Properties/Methods for CIM_FileSystemSetting

Properties Flags Requirement | Description & Notes

CopyTarget Optional This specifies that, if possible, support should be provided
for using a filesystem created with this setting as a target of
a Copy operation.

FilenameStreamFor Optional This is an array that specifies the stream formats (e.qg.,

mats UTF-8) supported for filenames by a filesystem with this
setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported
by a filesystem with this setting.

SupportedLockingSe Optional This array specifies the set of file access/locking semantics

mantics supported by a filesystem with this setting.

SupportedAuthorizati Optional This array specifies the kind of file authorization protocols

onProtocols supported by a filesystem with this setting.

SupportedAuthentica Optional This array specifies the kind of file authentication protocols

tionProtocols

supported by a filesystem with this setting.

8.7.6

Created By: External
Modified By: Static
Deleted By: External

CIM_HostedDependency (Local Access Required)

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 94 describes class CIM_HostedDependency (Local Access Required).

Table 94 - SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access

Required)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The ComputerSystem that provides the scope for the
LocallyAccessibleFileSystemSetting.

Dependent Mandatory The local access settings of the LocalFileSystem,
established when first created or as modified later, that is
dependent on some information provided by the file server
that is the scoping ComputerSystem.

8.7.7 CIM_HostedFileSystem (LocalFileSystem)

Created By: External

136

Modified By: Static
Deleted By: External

Requirement: Mandatory

Filesystem Profile

Table 95 describes class CIM_HostedFileSystem (LocalFileSystem).

Table 95 - SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The Computer System that hosts a LocalFileSystem.

PartComponent Mandatory The LocalFileSystem that represents the hosted filesystem.
8.7.8 CIM_LocalFileSystem

Created By: External
Modified By: External
Deleted By: External

Requirement: Mandatory

Table 96 describes class CIM_LocalFileSystem.

Table 96 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory The CIM class of the hosting ComputerSystem element.

me

CSName Mandatory The Name property of the hosting ComputerSystem
element.

CreationClassName Mandatory The CIM class of this LocalFileSystem element.

Name Mandatory A unique name for this LocalFileSystem element in the
context of the hosting ComputerSystem.

OperationalStatus Mandatory The current operational status of the filesystem
represented by this LocalFileSystem element.

Root Optional A path that specifies the "mount point" of the filesystem in
an unitary computer system that is both the host of the
filesystem and is the file server that makes it available.

BlockSize Optional The size of a block in bytes for certain filesystem types that
require a fixed block size when creating a filesystem.

FileSystemSize Optional The total current size of the filesystem in blocks.

AvailableSpace Optional The space available currently in the filesystem in blocks.

NOTE: This value is an approximation as it can vary
continuously when the filesystem is in use.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 137

Filesystem Profile

Table 96 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement | Description & Notes

ReadOnly Optional Indicates that this is a read-only filesystem that does not
allow modifications to contained files and directories.

EncryptionMethod Optional Indicates if files are encrypted by the filesystem
implementation and the method of encryption.

CompressionMethod Optional Indicates if files are compressed by the filesystem
implementation before being stored, and the methods of
compression.

CaseSensitive Mandatory Whether this filesystem is sensitive to the case of
characters in filenames.

CasePreserved Mandatory Whether this filesystem implementation preserves the case
of characters in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames by the filesystem
implementation.

MaxFileNameLength Mandatory The length of the longest filename supported by the
filesystem implementation.

FileSystemType Mandatory This is a string that matches
FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE:

This value is an approximation as it can vary continuously
when the filesystem is in use.

8.7.9 CIM_LogicalFile

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 97 describes class CIM_LogicalFile.

Table 97 - SMI Referenced Properties/Methods for CIM_LogicalFile

me

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory Class Name of the ComputerSystem that hosts the

me filesystem containing this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the
filesystem containing this file.

FSCreationClassNa Mandatory Class Name of the LocalFileSystem that represents the

filesystem containing this file.

138

Filesystem Profile

Table 97 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement | Description & Notes

FSName Mandatory The Name property of the LocalFileSystem that represents
the filesystem containing this file.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents
the file.

Name Mandatory The Name property of the LogicalFile that represents the
file.

ElementName Mandatory The pathname from the root of the containing

LocalFileSystem to this LogicalFile. The root of the
LocalFileSystem is indicated if this is NULL or the empty
string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of
directories from the root, the separator string is specified by
the SNIA_LocalFileSystem.PathNameSeparatorString

property.

8.7.10 SNIA_LocalAccessAvailable

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 98 describes class SNIA LocalAccessAvailable.

Table 98 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement | Description & Notes

LocalAccessPoint Optional The name used by the file server ComputerSystem to
identify the filesystem. Sometimes referred to as a mount-
point.

For many UNIX-based systems, this will be a qualified full
pathname.

For Windows systems this could also be the drive letter
used for the LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file
server ComputerSystem.

FileServer Mandatory The ComputerSystem that will be able to export shares
from this LocalFileSystem.

8.7.11 SNIA_LocalFileSystem

SMI-S 1.6.0 Revision 5 SNIA Technical Position 139

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Filesystem Profile

Table 99 describes class SNIA_LocalFileSystem.

Table 99 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

ge

Properties Flags Requirement | Description & Notes

LocalAccessDefinitio Mandatory This boolean property indicates whether or not this

nRequired LocalFileSystem must be made locally accessible
("mounted”) from a file server ComputerSystem before it
can be shared or otherwise made available to operational
clients.

PathNameSeparator Mandatory This indicates the string of characters used to separate

String directory components of a canonically formatted path to a
file from the root of the filesystem. This string is expected to
be specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we
make it possible for a client to parse a pathname into the
hierarchical sequence of directories that compose it.

DirectoryServiceUsa Optional This enumeration indicates whether the filesystem supports

security principal information and therefore requires
support from a file server that uses one or more directory
services. If the filesystem requires such support, there must
be a concrete subclass of Dependency between the
LocalFileSystem element and the specified file server
ComputerSystem. The values supported by this property
are:

"Not Used" indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

"Optional" indicates that the filesystem may support
security principal information. If it does, it will require
support from a directory service and the Dependency
association described above must exist.

"Required" indicates that the filesystem supports security
principal information and will require support from a
directory service. The Dependency association described
above must exist.

8.7.12 SNIA_ LocallyAccessibleFileSystemSetting

Created By: External
Modified By: External
Deleted By: External

140

Filesystem Profile

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 100 describes class SNIA _LocallyAccessibleFileSystemSetting.

Table 100 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for a
LocallyAccessibleFileSystemSetting.

ElementName

Mandatory

A user-friendly name for this
LocallyAccessibleFileSystemSetting element.

InitialEnabledState

Optional

InitialEnabledState is an integer enumeration that indicates
the enabled/disabled states initially set for a locally
accessible filesystem (LAFS). The element functions by
passing commands onto the underlying filesystem, and so
cannot indicate transitions between requested states
because those states cannot be requested. The following
text briefly summarizes the various enabled/disabled initial
states:

Enabled (2) indicates that the element will execute
commands, will process any queued commands, and will
gueue new requests.

Disabled (3) indicates that the element will not execute
commands and will drop any new requests.

In Test (7) indicates that the element will be in a test state.

Deferred (8) indicates that the element will not process any
commands but will queue new requests.

Quiesce (9) indicates that the element is enabled but in a
restricted mode. The element's behavior is similar to the
Enabled state, but it only processes a restricted set of
commands. All other requests are queued.

OtherEnabledState

Optional

A string describing the element's initial enabled/disabled
state when the InitialEnabledState property is set to 1
("Other"). This property MUST be set to NULL when
InitialEnabledState is any value other than 1.

FailurePolicy

Optional

An enumerated value that specifies if the operation to make
a filesystem locally accessible to a scoping
ComputerSystem should be attempted one or more times
in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by
the corresponding RetriesMax property of the setting.

RetriesMax

Optional

An integer specifying the maximum number of attempts that
should be made by the scoping ComputerSystem to make
a LocalFileSystem locally accessible. A value of '0’
specifies an implementation-specific default.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 141

Filesystem Profile

Table 100 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

RequestRetryPolicy

Optional

An enumerated value representing the policy that is
supported by the operational file server on a request to the
operational filesystem that either failed or left the file server
hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout
happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried
repeatedly until stopped.

TransmissionRetries
Max

Optional

An integer specifying the maximum number of
retransmission attempts to be made from the operational
file server to the operational filesystem when the
transmission of a request fails or makes the file server
hang. A value of '0' specifies an implementation-specific
default. This is only relevant if there is a transmission
channel between the file server and the underlying
filesystem.

RetransmissionTime
outMin

Optional

An integer specifying the minimum number of milliseconds
that the operational file server must wait before assuming
that a request to the operational filesystem has failed. '0'
indicates an implementation-specific default. This is only
relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions

Optional

An enumerated value that specifies if a local cache is
supported by the operational file server when accessing the
underlying operational filesystem.

BuffersSupport

Optional

An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for
accessing the underlying operational filesystem." If
supported, other properties will establish the level of
support. If the property is NULL or the empty array,
buffering is not supported.

ReadBufferSizeMin

Optional

An integer specifying the minimum number of bytes that
must be allocated to each buffer used for reading. A value
of '0' specifies an implementation-specific default.

ReadBufferSizeMax

Optional

An integer specifying the maximum number of bytes that
may be allocated to each buffer used for reading. A value of
'0' specifies an implementation-specific default.

WriteBufferSizeMin

Optional

An integer specifying the minimum number of bytes that
must be allocated to each buffer used for writing. A value of
'0' specifies an implementation-specific default.

WriteBufferSizeMax

Optional

An integer specifying the maximum number of bytes that
may be allocated to each buffer used for writing. A value of
'0' specifies an implementation-specific default.

142

Filesystem Profile

Table 100 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement | Description & Notes

AttributeCaching Optional An array of enumerated values that specify whether
attribute caching is (or is not) supported by the operational
file server when accessing specific types of objects from
the underlying operational filesystem. The object type and
the support parameters are specified in the corresponding
AttributeCachingObijects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

Object types contained by a filesystem that can be
accessed locally are represented by an entry in these
arrays. The entry in the AttributeCaching array can be 'On’,
'Off', or 'Unknown'. Implementation of this feature requires
support from other system components, so it is quite
possible that specifying '‘On' may still not result in caching
behavior. 'Unknown' indicates that the access operation will
try to work with whatever options the operational file server
and filesystem can support. In all cases,
AttributeCachingTimeMin and AttributeCachingTimeMax
provide the minimum and maximum time for which the
attributes can be cached. When this Setting is used as a
Goal, the client may specify 'Unknown’, but the Setting in
the created object should contain the supported setting,
whether 'On' or 'Off".

AttributeCachingObje Optional An array of enumerated values that specify the attribute
cts caching support provided to various object types by the
operational file server when accessing the underlying
operational filesystem. These", types represent the types of
objects stored in a filesystem -- files and directories as well
as others that may be defined in the future. The
corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object. 'None'
and 'All' cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither
'None' or 'All' are specified, the caching settings for other
objects are defaulted by the implementation. If 'Rest' is
specified, the entry applies to all known object types other
than the named ones. If 'Unknown' is specified it applies to
object types not known to this application (this can happen
when foreign filesystems are made locally accessible).

AttributeCachingTime Optional An array of integers specifying, in milliseconds, the

Min minimum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of '0" indicates an implementation-specific default.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 143

Filesystem Profile

Table 100 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement | Description & Notes
AttributeCachingTime Optional An array of integers specifying, in milliseconds, the
Max maximum time for which an object of the type specified by

the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of '0" indicates an implementation-specific default.

ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy
set on the operational filesystem and supported by the
operational file server when accessing it. '‘Read Only'
specifies that the access to the operational filesystem by
the operational file server is set up solely for reading.
'Read/Write' specifies that the access to the operational
filesystem by the operational file server is set up for both
reading and writing. 'Force Read/Write' specifies that
'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is
intended for use when the associated filesystem has been
made 'Read Only' by default, as might happen if it were
created to be the target of a Synchronization or Mirror
operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be
enforced on the operational filesystem by the operational
file server when accessing it. 'Enforce None' does not
enforce locks. 'Enforce Write' does not allow writes to
locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStar Optional An enumerated value that specifies if local access from the
t operational file server to the operational filesystem should
be enabled when the file server is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to
elements contained in the operational filesystem. The
provider is expected to surface this access using the CIM
privilege model.

144

Filesystem Profile

Table 100 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

ExecutePref

Optional

An enumerated value that specifies if support should be
provided on the operational file server for executing
elements contained in the operational filesystem accessed
through this local access point. This may require setting up
specialized paging or execution buffers either on the
operational file server or on the operational filesystem side
(as appropriate for the implementation). Note that this does
not provide any rights to actually execute any element but
only specifies support for such execution, if permitted.

RootAccessPref

Optional

An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access
by appropriately privileged System Administrative users on
the operational file server (‘root' or 'superuser’) to the
operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege
model.

Support for the privileged access might require setup at
both the operational file server as well as the operational
filesystem, so there is no guarantee that the request can be
satisfied.

STABLE

SMI-S 1.6.0 Revision 5

SNIA Technical Position 145

Filesystem Profile

146

Filesystem Manipulation Subprofile

EXPERIMENTAL

Clause 9: Filesystem Manipulation Subprofile

9.1 Description

9.1.1 Synopsis

Profile Name: Filesystem Manipulation (Component Profile)
Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.18

Table 101 describes the related profiles for Filesystem Manipulation.

Table 101 - Related Profiles for Filesystem Manipulation

Profile Name Organization | Version Requirement | Description
Job Control SNIA 1.5.0 Optional

Filesystem SNIA 1.4.0 Mandatory

Indication SNIA 1.5.0 Mandatory

Experimental SNIA 15.0 Optional

Indication

Volume Composition | SNIA 1.5.0 Optional

Central Class: FileSystemConfigurationService

Scoping Class: ComputerSystem

9.1.2 Overview

The Filesystem Manipulation Profile is a subprofile provides support for configuring and manipulating filesystems in
the context of filesystem profiles (currently consisting of the NAS Head and the Self-Contained NAS Profiles). A
number of other profiles and subprofiles make use of elements of the filesystem profiles and will be referred to in
this specification as “filesystem-related profiles” -- these include, but are not limited to, the Filesystem Subprofile,

File Export Subprofile, File Export Manipulation Subprofile, and NAS Head Profile.

The state transitions involved when an appropriate storage element is transformed into a filesystem are described

in Annex B (informative) State Transitions from Storage to File Shares.

SMI-S 1.6.0 Revision 5 SNIA Technical Position

147

Filesystem Manipulation Subprofile

9.1.3 Instance Diagrams

9.1.3.1 Filesystem Creation classes and associations

Figure 13 illustrate the constructs involved with creating a LocalFileSystem for a Filesystem Profile. This
summarizes the mandatory classes and associations for this subprofile. Specific areas are discussed in later
sections.

148

Filesystem Manipulation Subprofile

ComputerSystem
HoztedF ileSystem Dedicaed=24|25
Filesystemn Host
Filesystem Manipulation Subprofile HodedSenice
. o FileSystem CanfigurationService
FileSystem Capahilities ElementCapsbilities e i
FileSystemCapsbilities ElemertCapahilities SMIA_CregeFileSystem)
- Characteristics={"Default"} DelgeFileSystem)
AotualF leSystemT e SIS, ocd fFileSystem)
SupportedP roperties[]
SuppotedObjed T wpes(— I
CreateGod Setings() ElementCapakilties
GetR equiredStorageSize 0 |
Elam entC apabilties FileZystemConfigurstionCapakilities
(optioral))
. 1. AcusFileSystem TypesSupported]]
ettingsDefneC apshilties Symichronoush ethiods]
Asynchronousid ethods[]
Iritizl Lo kil ity
Filesystem=etting | LocallybooessbleF lesyeme apabilt es
FileSystem Setting (Optiona)
CredeGoal=ettingz0
See below T
Setting=DefineCapakilities
Lu:u::allon:essiblelFileSystemSeﬂing HostedD ependency]
[Optional) [optional)
V== 81 R
EletmentSettingData v
l—EIememSeﬁingDaha—| (Conditional)
Fi|ESYStEdeﬁI‘g LCIEE|Fi|ESYStEm LIICE"E,"AD:ESSiHE!:.i|ES§,’S‘tEmSE!ﬁing
(Conditional)
HostedD ependency
[Conditional
T Dependency
[onditional’)
; i Loca Acressdvail gble
l Filesystem Subprofile (ontional) I
] l _— - l
R esidestnE dent .
LFileStorage— LogicsFile
. . ComputerSystem
File Starage Subprofile
— SharedElemert | os:tedé e Dedcated=18
0 I ConcreteDependency File Server
NIDTﬁeeF»emE}lerﬁge oal [Optiorel)
LogjcalDisk StorageP ool File=hare
Block Services (Read-onky) File Export Subprofile Refarencing Profile
— '] —

Figure 13 - LocalFileSystem Creation Instance Diagram

If a filesystem-related profile supports the Filesystem Manipulation Subprofile, it shall have at least one instance of
the FileSystemConfigurationService. This service shall be hosted on the top level ComputerSystem of the

149

SMI-S 1.6.0 Revision 5 SNIA Technical Position

Filesystem Manipulation Subprofile

filesystem-related profile. The methods offered are SNIA_CreateFileSystem, SNIA_ModifyFileSystem, and
DeleteFileSystem.

Associated to the FileSystemConfigurationService (via ElementCapabilities) shall be one instance of
FileSystemConfigurationCapabilities that describes the capabilities of the service. It identifies the methods
supported, whether the methods support Job Control or not, the types of filesystems that are supported, and
whether or not the filesystem shall be made operationally available after creation.

For each type of filesystem that can be created, there shall be one FileSystemCapabilities element that defines the
range of capabilities supported for that particular filesystem type. An ElementCapabilities association links each
FileSystemCapabilities to the FileSystemConfigurationService. One of these FileSystemCapabilities may also be
identified as a default capability (by setting “Default” as one of the entries in the array property Characteristics of its
ElementCapabilities association). This default FileSystemCapabilities element is used when the client does not
specify a goal element when requesting the SNIA_CreateFileSystem method. The default FileSystemCapabilities
element implicitly indicates the default filesystem type to be used for creation.

For the convenience of clients a Filesystem Manipulation Profile may populate a set of “pre-defined”
FileSystemSettings for each of the FileSystemCapabilities. These shall be associated to the
FileSystemCapabilities via the SettingsDefineCapabilities association (the association must have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and the
SettingsDefineCapabilities.ValueRole property must include "Supported" as an entry) and shall be for the same
filesystem type as the associated capabilities element (same value for the ActualFileSystemType property in both
classes).

Note: That they are pre-defined and exist at all times does not imply that these FileSystemSettings must be
made persistent by the implementation -- rather it should be possible for the implementation to
regenerate them if requested, though a simple re-generating implementation may not necessarily
scale.

The FileSystemCapabilities element supports two methods: CreateGoalSettings and GetRequiredStorageSize.
These methods are described in detail in 9.5.1, "Extrinsic Methods of the Profile", but their basic function is to
establish at least one client-approved FileSystemSettings element (as a goal) and to determine the size of the
LogicalDisk required to support the desired filesystem.

CreateGoalSettings takes an array of embedded-instance SettingData elements as the input
TemplateGoalSettings and SupportedGoalSettings parameters and can generate an array of embedded-instance
SettingData elements as the output SupportedGoalSettings parameter. However, in this profile, SMI-S only uses a
single embedded-instance FileSystemSetting element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded-instance FileSystemSetting element as output
(SupportedGoalSettings). If a client supplies a NULL (or the empty string) FileSystemSetting as input to this
method, the returned FileSystemSetting embedded-instance shall be a default setting for the
ActualFileSystemType of the FileSystemCapabilities. If the input (the embedded-instance FileSystemSetting
element) is not NULL, the method may return a “best fit” to the requested setting. The client may iterate on this
method until it acquires a setting that suits its needs. This embedded-instance settings structure may be used
when the SNIA_CreateFileSystem or SNIA_ModifyFileSystem methods are invoked. The details of how iterative
negotiation can work are discussed in 9.5.1.1, "FileSystemCapabilities.CreateGoalSettings”. Note that the
FileSystemType remains unchanged in all of these interactions. It is an error if the client or server changes the
FileSystemType unilaterally.

Note: Itis not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back
mechanism is needed. This profile does not require negotiation -- an implementation may support only
a set of pre-defined correlated point settings that a client can preload and use without modification. The
implementation could also support only settings whose properties are selectable from an arithmetic
progression or from a fixed enumeration, so that the client may construct a goal setting that is
guaranteed to be supported without negotiation.

150

Filesystem Manipulation Subprofile

Note: That a client has obtained a goal setting supported by the implementation does not guarantee that a
create or modify request will succeed. Such a setting only specifies a supported static configuration not
that the current dynamic environment has the resources to implement a specific request.

After obtaining a goal FileSystemSetting, the next step is to determine the LogicalDisk size required to support the
FileSystemSetting. This is done by invoking the FileSystemCapabilities.GetRequiredStorageSize method of this
subprofile. The inputs are the embedded-instance FileSystemSetting structure and an embedded-instance
StorageSetting structure that describes the quality of service the client wants for the storage (e.g., data
redundancy, package redundancy, etc.). The method returns three numbers corresponding to the StorageSetting:
the expected size, the minimum size, and a maximum usable size. The client would use these numbers in
specifying or evaluating the appropriate LogicalDisk(s) on which to create the FileSystem. The method also returns
as output the actual StorageSetting used as an Embeddedinstance structure (assuming that these can be
substituted for the input StorageSetting).

Note: This profile recommends that GetRequiredStorageSize() be used only if a LocalFileSystem is to be
created on a single LogicalDisk. If the intent is to use more than one LogicalDisk for the
LocalFileSystem, this profile recommends using the SNIA_CreateFileSystem method to make the
implementation create or select the LogicalDisks to use.

< Armed with the FileSystem goal (the embedded-instance FileSystemSetting structure) and one or more
LogicalDisks, the client can now use the SNIA CreateFileSystem method to create the filesystem. The
SNIA_CreateFileSystem method creates a LocalFileSystem instance, and a new FileSystemSetting instance
as well as several necessary associations. These associations are:

= HostedFileSystem association between the LocalFileSystem and the ComputerSystem that hosts it
=« ResidesOnExtent association between the filesystem and one of the LogicalDisk(s) for the filesystem data

Note: Even when multiple LogicalDisks are created or used for the LocalFileSystem, only one LogicalDisk will
have the ResidesOnExtent association.

ElementSettingData to associate the filesystem to the FileSystemSetting defined for it

SNIA_CreateFileSystem allows LogicalDisks to be obtained from a number of StoragePools using an array of
embedded-instance StorageSettings. The SNIA_CreateFileSystem implementation must use the capabilities of the
StoragePools (and the associated StorageConfigurationService) to create the necessary LogicalDisks. The
LogicalDisks used for this purpose are returned as output values for the InExtents parameter.

If the property FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
SNIA_CreateFileSystem method provides the optional parameters for establishing local access ("mounting”) from
file server ComputerSystems, the LocalFileSystem.LocalAccessDefinitionRequired will be set to true and the
LocalFileSystem will need to be made locally accessible from the specified file server ComputerSystems. The
following elements are created:

= A LocalAccessAvailable association representing local access by a file server ComputerSystem to the
LocalFileSystem from within its namespace is created wusing the provided (or defaulted)
LocallyAccessibleFileSystemSetting parameter (as an Embeddedinstance parameter). This association goes
between the File Server ComputerSystem and the LocalFileSystem; its LocalAccessPoint property specifies
the local access point (or "mount-point") in the file server ComputerSystem.

= Aninstance of LocallyAccessibleFileSystemSetting is optionally created and associated to:
= The LocalFileSystem via an optional ElementSettingData association.

= The file server ComputerSystem via an optional HostedDependency (ScopedSetting) association (this
represents that a LocalFileSystem could be mounted on many file server ComputerSystems with different
"mount” parameters, so these parameters are specific to the pair of LocalFileSystem and file server
ComputerSystem).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 151

Filesystem Manipulation Subprofile

= For backward compatibility with previous releases of SMI-S:
= The root directory of the LocalFileSystem is represented as a LogicalFile
= A FileStorage association is created between the LogicalFile and the LocalFileSystem

The DeleteFileSystem method is straightforward -- it deletes the LocalFileSystem and the FileSystemSetting, and
the associations to those instances (HostedFileSystem, both ElementSettingData elements, ResidesOnExtent,
LocalAccessAvailable, and LocallyAccessibleFileSystemSetting). Any created LogicalFiles associated to the
LocalFileSystem via FileStorage will also be deleted as a side-effect of deleting the LocalFileSystem (so there is no
separate requirement necessary for backward compatibility). The implementation may delete the LogicalDisk(s),
however, this is not required by this profile. If the LogicalDisk(s) are not deleted, they become available for use in
another SNIA_CreateFileSystem operation.

The SNIA ModifyFileSystem method modifies an existing LocalFileSystem -- this requires a new
FileSystemSetting structure to be used as a goal. But not any FileSystemSetting structure will do -- the client must
use one created with the same FileSystemCapabilities.CreateGoalSettings method that would have been used to
create the filesystem, or an appropriate compatible FileSystemCapabilities instance. The CreateGoalSettings
method is used to establish a new FileSystemSetting goal (as with the original filesystem creation, it may be
necessary to iterate on the CreateGoalSettings method). Since only properties controlled by Settings can be
changed by SNIA_ ModifyFileSystem (i.e., the LogicalDisk(s) already created cannot be changed, though new
ones can be created and/or added), the effect of SNIA_ModifyFileSystem is to change some properties of the
LocalFileSystem or of the associated FileSystemSetting.

Note: Depending on what property is being modified, it may also be necessary to invoke the
GetRequiredStorageSize method to verify that the current LogicalDisk still supports the new goals.

9.1.3.11 Dependency on support for Locally Accessible Filesystem Capabilities

Both SNIA_CreateFileSystem and SNIA_ ModifyFileSystem need a LocallyAccessibleFileSystemSetting element
for each file server ComputerSystem. The client first obtains a LocallyAccessibleFileSystemCapabilities element
by following ElementCapabilities association from the FileSystemConfigurationService to a
LocallyAccessibleFileSystemCapabilities that is associated via ScopedCapabilities (HostedDependency) to the
File Server ComputerSystem.

Note: It is expected that there will only be one LocallyAccessibleFileSystemCapabilities element per file
server ComputerSystem. All the variability can be found by following SettingsDefineCapabilities to
LocallyAccessibleFileSystemSetting elements. It is a requirement that the
LocallyAccessibleFileSystemSettings that define the LocallyAccessibleFileSystemCapabilities be
associated via HostedDependency (ScopedSetting) to the same file server ComputerSystem as the
one indicated by the HostedDependency (ScopedCapabilities).

The client calls LocallyAccessibleFileSystemCapabilities.CreateGoalSettings() with the appropriate parameters.to
obtain an appropriate LocallyAccessibleFileSystemSetting element -- CreateGoalSettings can be used to negotiate
if necessary.

9.1.3.1.2 Dependency on support for Directory Services

A filesystem may support security principal identifiers associated with filesystem objects for access (typically, read/
write/execute) as well as for tracking usage (as would be needed for supporting user and/or group quotas). If the
filesystem supports such identifiers, it would requires support from a directory service for validating these identifiers
(relating them to accounts and other user-related information). Operationally, computer systems (and not
filesystems) are associated to directory services or configured for directory services. Directory service
configurations of computer systems are much more complex than needed or appropriate for filesystems. This
makes it easier to make the filesystem depend on a computer system, usually a file server, for providing access to
directory services for resolving security principal identifiers.

A filesystem that requires support from a directory service will have the property DirectoryServicesUsage of its
LocalFileSystem element set to "Required”. In that case, there shall be a Dependency association between the

152

Filesystem Manipulation Subprofile

LocalFileSystem element and a file server ComputerSystem.element (with Dedicated="16"). The associated file
server must be configured for access to directory services that it provides for the filesystem.

Note: If DirectoryServicesUsage is “Optional”, a client can look for the Dependency association to determine
if the filesystem supports security principal identifiers. This is not supported in this release of the profile.

9.1.3.1.3 Summary of this profile
This profile consists of the following classes, associations, and methods:

3) One LocallyAccessibleFileSystemCapabilities scoped to the file server ComputerSystem
4) ElementCapabilities association to the FileSystemConfigurationService

5) SettingsDefineCapabilities association to LocallyAccessibleFileSystemSetting

6) LocallyAccessibleFileSystemSetting for defining LocallyAccessibleFileSystemCapabilities

7) HostedDependency (ScopedSetting) association from the File Server ComputerSystem to LocallyAccessi-
bleFileSystemSetting

8) A HostedDependency association from the same file server ComputerSystem to the defined LocallyAccessi-
bleFileSystemCapabilities

9) LocallyAccessibleFileSystemCapabilities.CreateGoalSettings extrinsic method to create LocallyAccessible-
FileSystemSetting elements scoped to the file server ComputerSystem to use as Goals. Note that this
method is different from the method described as part of the FileSystemCapabilities element.

10) A Dependency association from the LocalFileSystem element to a file server ComputerSystem.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 153

Filesystem Manipulation Subprofile

9.1.3.2 Finding FileSystem Configuration Services, Capabilities and Pre-defined Settings

When creating a filesystem the first step is to determine what can be created. Figure 14 -, "Capabilities and
Settings for Filesystem Creation" illustrates an instance diagram showing the instances that shall exist for
supporting filesystem creation.

COMPLEErSyStEm

File System Manipulation Subprofile Capabilities/Setlings Hestessenace

FilESystinn Capatmbies

FileSydemC apamibes ElementCapabilnies FileSystem ConfigurationService

E|emeniC apahiities

ArhuaiFie Syshemn Type

SupgnredPropermas|]
SupportedCnject Types||
CredeCoaSemngs)

SNIA_CreasefilaSysem()
CeleteFil eSystem()
SNLA_ModityFieSystem)

GRS orageSres|)

’7:@: nisCiefine Capatilities

ElemerdCapabiliies

FlleSystemCanfiguratonCapahiities

AL I Sy S T PSS L poieay)
Syrehmnousethods])

! — — AsynichronousMethonds|)
FaSystemSetting l FlleSystemSeting LOCaMA 008 S3ILIE FIE Sy S SETng Initialsvaladity
| (Condilional) LocalaccessOpbons

ElementSetinghata

0N nat)
i ’ Sropedieting
| FlemertSetingData [Conationad)
SR Stopedtapahiliies r"“::'l':‘&iﬁ:.'.m
(opbiorEl) | |) !
LogcalDisk | LocaFilESystem | M pUTErSySEm | Lncaityhoressinl e ilesystem Capandine s
[Canational
ILu;ul.ﬂu.wu'.-uurmaunla:\';ulm I CreaenaSemngs() l

I
Locasrresstvailahie
{Optional)

ScopedSetting
(optional)

SettingsDefined apabiliies

ElementsefingData (Optional)

AlipcatedFrom StorageP ool

Shorage Seming ShoragePool

Figure 14 - Capabilities and Settings for Filesystem Creation

At least one FileSystemConfigurationService shall exist if the Filesystem Profile has implemented the Filesystem
Manipulation Subprofile. The instance(s) of this service can be found by following the HostedService association
filtering on the target class of FileSystemConfigurationService.

Note: If no service is found from the Top Level ComputerSystem, the client should look for component
computer systems that may be hosting the service. This is not recommended, but permitted.

An instance of the FileSystemConfigurationCapabilities shall be associated to the FileSystemConfigurationService
via the ElementCapabilities association. A client should follow this association (filtering on the result value of
"FileSystemConfigurationCapabilities") to inspect the configuration capabilities that are supported. The client would
choose between the filesystem types specified in the array property SupportedActualFileSystemTypes.

154

Filesystem Manipulation Subprofile

For each entry in the SupportedActualFileSystemTypes array, there shall be one instance of
FileSystemCapabilities with the same value for the ActualFileSystemType property that shall be associated to the
FileSystemConfigurationService using the ElementCapabilities association (filtering on the result value of
FileSystemCapabilities). This FileSystemCapabilities element shall specify the supported capabilities for that
ActualFileSystemType using a collection of FileSystemSettings. These FileSystemSettings shall be associated to
the FileSystemCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined FileSystemSettings that clients could use directly if desired.
The SettingsDefineCapabilities association from the FileSystemCapabilities to the pre-defined FileSystemSettings
shall have the PropertyPolicy property be "Correlated", the ValueRole property be "Supported" and the
ValueRange property be "Point". Other pre-defined combinations of property values may be specified by
FileSystemSettings whose SettingsDefineCapabilities association has the PropertyPolicy be "Independent",
ValueRole property be "Supported" and the ValueRange array property contain "Minimums", "Maximums", or
"Increment"” (see 9.5.1.1.1 for further details on the interpretation of the ValueRange property). These settings can
be used by the client to compose FileSystemSettings that are more likely to be directly usable.

9.2 Health and Fault Management Considerations

The key element of this profile is the FileSystemConfigurationService and the hosting ComputerSystem. The
operational status of the hosting ComputerSystem should possibly be part of the referring autonomous profile
(NAS Head or SC NAS), the Filesystem Subprofile or in the Multiple Computer System Subprofile.

9.2.1 OperationalStatus for FileSystemConfigurationService

9.2.2 OperationalStatus for LocalFileSystem

Table 102 describes the Operational status for LocalFileSystem.

Table 102 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description
2 “0OK” The filesystem has good status
2 “OK” 4 “Stressed” The filesystem resources are
stressed
2 “OK” 5 “Predictive Failure” The filesystem might fail

because some resource or
component is predicted to fail

2 “0OK” 16 “Supporting Entity in Error” The filesystem may be OK, but
is not accessible because a
supporting entity is not
accessible.

3 “Degraded” The filesystem is operating in a
degraded mode. This could be
due to the health state of the
underlying storage being
degraded or in error.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 155

Filesystem Manipulation Subprofile

Table 102 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description

6 “Error” An error has occurred causing
the filesystem to become
unavailable. Operator
intervention through SMI-S
(managing the LocalFileSystem)
to restore the filesystem may be
possible.

6 “Error” An error has occurred causing
the filesystem to become
unavailable. Automated
recovery may be in progress.

6 “Error” 7 “Non-recoverable Error” The filesystem is not functioning.
Operator intervention through
SMI-S will not fix the problem.

6 “Error” 16 “Supporting Entity in Error” The filesystem is in an error
state because a supporting
entity is not accessible.

8 “Starting” The filesystem is in process of
initialization and is not yet
available operationally.

9 “Stopping” The filesystem is in process of
stopping, and is not available
operationally.

10 “Stopped” The filesystem cannot be
accessed operationally because
it is stopped -- if this did not
happened because of operator
intervention or happened in real-
time, the OperationalStatus
would have been “Lost
Communication” rather than
“Stopped”.

11 “In Service” The filesystem is offline in
maintenance mode, and is not
available operationally.

13 “Lost Communications” The filesystem cannot be
accessed operationally -- if this
happened because of operator
intervention it would have been
“Stopped” rather than “Lost
Communication”.

156

Filesystem Manipulation Subprofile

Table 102 - LocalFileSystem OperationalStatus

Primary OperationalStatus

Secondary OperationalStatus

Description

14 “Aborted” The filesystem is stopped but in
a manner that may have left it in
an inconsistent state.

15 “Dormant” The filesystem is offline; and the

reason for not being accessible
is unknown.

9.3 Cascading Considerations

Not defined in this standard. (Under Consideration for a future standard.)

9.4 Supported Subprofiles and Packages

See 9.1.1 for this information.

95 Methods of the Profile

951

Table 103 details the filesystem manipulation methods that cause Instance Creation, Deletion or Modification.

Extrinsic Methods of the Profile

Table 103 - Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modifica-

tion
Method Created Instances Deleted Instances Modified Instances
FiIeS_ystemConfiguratio_n LocalFileSystem
Service.SNIA_CreateFile FileSystemSetting
System ElementSettingData
ResidesOnExtent
HostedFileSystem
LogicalDisk(s)
, StoragePool(s
StorageSetting(s) N/A Logic%IDisk((s))
LocalAccessAvailable(s)
LocallyAccessibleFileSyst
emsSetting(s)
ElementSettingData(s)
HostedDependency
Dependency
LocalFileSystem
FileSystemSetting
ElementSettingData
ResidesOnExtent
. i . HostedFileSystem
FileSystemConfiguration LocalAccessAvailable(s) N/A

Service.DeleteFileSystem

LocallyAccessibleFileSyst
emSetting(s)
ElementSettingData(s)
HostedDependency
Dependency

SMI-S 1.6.0 Revision 5

SNIA Technical Position

157

Table 103 - Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modifica-

Filesystem Manipulation Subprofile

tion
Method Created Instances Deleted Instances Modified Instances
(IF REQUESTED) (if Local Access is
LoglcaID|s_k(s) modified) . FileSystemSetting (if
. ' . StorageSetting(s) LocalAccessAvailable
FileSystemConfiguration . . . changed)
: P LocalAccessAvailable LocallyAccessibleFileSyst . .
Service.SNIA_ModifyFile : . . ResidesOnExtent (if
System LocaIIyAcceSS|pIeFlleSyst emSet.tmg added)
emSetting ElementSettingData(s)
ElementSettingData(s) HostedDependency
HostedDependency
F|IeSystemCapa@hUes.Cr N/A N/A N/A
eateGoalSettings
LocallyAccessibleFileSys
stemCapabilities.CreateG N/A N/A N/A
oalSettings
FileSystemCapabilities.G
etRequiredStorageSize N/A N/A N/A

9.5.1.1 FileSystemCapabilities.CreateGoalSettings

This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
FileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this method
to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
FileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and SupportedGoalSettings
are string arrays containing embedded instances of type FileSystemSetting. As such, these settings do not exist in
the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass previously
returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation
may determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are
the same. A client may infer from the same result that the TemplateGoalSettings must be modified.

9.5.1.11

It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges with respect to the filesystem or the filesystem host. During
negotiation, the client will show the current state to the user -- the SupportedGoalSettings received to date (either
the latest or some subset), the TemplateGoalSettings proposed (the most recent, but possibly more). But the
administrator needs a representation of what is available, possibly the range or sets of values that the different
setting properties can take. Some decisions are assumed to have been made already, such as the type of
filesystem to be created and the number of LogicalDisks to use and their StorageSettings. It is possible that the
LogicalDisks for use by this filesystem have already been designated by the user; if not, the StoragePool(s) from
which they will be created is already designated or will be selected by an independent process.

Client Considerations

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified using FileSystemSettings -- these points can be
further qualified to indicate whether these are supported (or not), and even whether they represent some ideal
point in the space -- a "minimum®”, or a "maximum", or an "optimal” point. Other settings can provide ranges for

158

Filesystem Manipulation Subprofile

properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can be
specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client considers only the canned settings that are specified exactly. The canned settings are specified by the
FileSystemSettings that are associated to the FileSystemCapabilities via SettingDefinesCapabilities associa-
tion with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"
= SettingDefinesCapabilities.ValueRole = "Supported"
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the FileSystemSettings that are associated to
the FileSystemCapabilities via SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

SMI-S 1.6.0 Revision 5 SNIA Technical Position 159

Filesystem Manipulation Subprofile

9.5.1.1.2 Signature and Parameters of FileSystemCapabilities.CreateGoalSettings
Table 104 describes the parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings.

Table 104 - Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Parameter Qualifier Type Description & Notes
Name
TemplateGoalSe | IN string Embeddedinstance ("SNIA_FileSystemSetting")
ttings[]

TemplateGoalSettings is a string array containing
embedded instances of class FileSystemSetting, or
a derived class. This parameter specifies the
client’s requirements and is used to locate
matching settings that the implementation can
support.

SupportedGoalS | INOUT string Embeddedinstance("SNIA_FileSystemSetting")

ettings[] . . _ -
SupportedGoalSettings is a string array containing

embedded instances of class FileSystemSetting, or
a derived class. On input, it specifies a previously
returned set of Settings that the implementation
could support. On output, it specifies a new set of
Settings that the implementation can support. If the
output set is identical to the input set, both client
and implementation may conclude that this is the
best match for the TemplateGoalSettings that is
available.

If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method must
return "Alternative Proposed”.

If the output is NULL, the method must return an

“Failed”.
Normal Return
Status uint32 ValueMap{}, Values{}
"Success",
"Failed",
"Timeout",

"Alternative Proposed"”

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OUT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

9.5.1.2 GetRequiredStorageSize

This extrinsic method returns the minimum, expected, and maximum size for a LogicalDisk that would support a
filesystem specified by the input FileSystemGoal parameter. The caller may provide relevant settings of the

160

Filesystem Manipulation Subprofile

LogicalDisk via the ExtentSetting parameter. The minimum, maximum, and expected sizes are returned as output

parameters.

If the input FileSystemGoal is NULL, the implementation may return an error or use a default FileSystemSetting
associated with this FileSystemCapabilities element. The actual FileSystemSetting used is returned as an OUT

parameter.

If the input ExtentSetting parameter is NULL or is an empty array, the implementation may use a default
StorageSetting associated with the StorageConfigurationService hosted on the same ComputerSystem as the
FileSystemConfigurationService associated with this FileSystemCapabilities element. The actual StorageSetting

used is returned as an OUT parameter.

Note: The actual FileSystemSetting and StorageSetting used are being returned as OUT parameters. This is
a non-backward-compatible change from SMI-S 1.1.

9.5.1.21 Signature and Parameters of GetRequiredStorageSize

Table 105 describes the parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize.

Table 105 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter
Name

Qualifier

Type

Description & Notes

FileSystemGoal

INOUT, El

string

Embeddedinstance ("SNIA_FileSystemSetting")

FileSystemGoal is an Embedded Instance element
of class CIM_FileSystemSetting, or a derived
class, that specifies the settings for the FileSystem
to be created.

If NULL on input, a default for this
FileSystemCapabilities is used.

On output, this returns the actual
FileSystemSetting that was used.

ExtentSetting

INOUT, El

string

Embeddedinstance("CIM_StorageSetting™)

ExtentSetting is an Embedded Instance element of
class CIM_StorageSetting, or a derived class, that
specifies the settings for the LogicalDisk to be used
for building this FileSystem.

If NULL on input, a default StorageSetting will be
obtained from a StorageConfigurationService
hosted on the same ComputerSystem as this
FileSystemConfigurationService.

On output, this returns the actual StorageSetting
that was used.

If the output is NULL, the method must return an
“Failed”.

ExpectedSize

ouT

uint64

An integer that indicates the size of the storage
extent that this FileSystem is expected to need. An
entry value of 0 indicates that there is no expected
size.

MinimumSizeAc
ceptable

ouT

uint64

An integer that indicates the size of the smallest
storage extent that would support the specified
FileSystem. A value of 0 indicates that there is no
minimum size.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

161

Filesystem Manipulation Subprofile

Table 105 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter Qualifier Type Description & Notes
Name
MaximumSizeU | OUT uint64 An integer that indicates the size of the largest
sable storage extent that would be usable for the

specified FileSystem. A value of 0 indicates that
there is no maximum size.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout"

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter

Value Indication (either reference or embedded) has an invalid
value

Invalid OuUT, CIM_Error An invalid combination of named properties of an

Combination of Indication instance parameter (either reference or embedded)

Values has been requested.

9.5.1.3 LocallyAccessibleFileSystemCapabilities.CreateGoalSettings

This extrinsic method of the LocallyAccessibleFileSystemCapabilities class validates support for a caller-proposed
LocallyAccessibleFileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the
usage of this method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings
parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
LocallyAccessibleFileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
LocallyAccessibleFileSystemSetting. As such, these settings do not exist in the implementation but are the
responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate
error and should return a best match for a SupportedGoalSettings.

The client and the implementation engage in a negotiation process that may require iterative calls to this method.
To assist the implementation in tracking the progress of the negotiation, the client may pass previously returned
values of SupportedGoalSettings as the new input value of SupportedGoalSettings. The implementation may
determine that a step has not resulted in progress if the input and output values of SupportedGoalSettings are the
same. A client may infer from the same result that the TemplateGoalSettings must be modified.

9.51.3.1 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system" administrator,
or other entity with administrative privileges to the filesystem. During negotiation, the client will show the current
state to the user -- the SupportedGoalSettings received to date (either the latest or some subset), the
TemplateGoalSettings proposed (the most recent, but possibly more). But the administrator needs a representation
of what is available, possibly the range or sets of values that the different setting properties can take. Some

162

Filesystem Manipulation Subprofile

decisions are assumed to have been made already, such as whether the local access is read-only or the file server
that is going to access the filesystem.

The SettingsDefineCapabilities association from the selected Capabilities element provides the information for the
client to lay out these options. "Point" settings can be identified supported points in the space of properties -- these
points can be further qualified to indicate whether these are supported or not, or whether they represent some ideal
point in the space -- a "minimum", or a "maximum", or an "optimal" point. Other settings can provide ranges for
properties -- by specifying a minimum, a maximum, and an increment an arithmetic progression of values can be
specified (a continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real systems do not
continually vary the functionality they can support. Such variations do occur -- for instance, if a new PCMCIA card
is added to a running system -- and the best way for a client to be able to add these to the set of choices presented
to a user is to subscribe to indications on new Capabilities elements and new instances of
SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following two use
cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
LocallyAccessibleFileSystemSetting elements that are associated to the LocallyAccessibleFileSystemCapa-
bilities via SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"
= SettingDefinesCapabilities.ValueRole = "Supported"
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maximum for the
Setting properties. For example, these could be specified by the LocallyAccessibleFileSystemSetting ele-
ments that are associated to the LocallyAccessibleFileSystemCapabilities via SettingDefinesCapabilities
association with the following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"”
= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

Comparing the two CreateGoalSettings extrinsic methods of this profile, the
FileSystemCapabilities.CreateGoalSettings() can be significantly more complex than
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings(). The client can choose to implement a simpler
negotiation protocol for one -- this specification does not mandate the extent to which the client must use this
protocol.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 163

Filesystem Manipulation Subprofile

9.5.1.3.2 Signature and Parameters of CreateGoalSettings

Table 106 describes the parameters for Extrinsic Method
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings.

Table 106 - Parameters for Extrinsic Method
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings

Parameter Qualifier Type Description & Notes
Name
TemplateGoalSe | IN string Embeddedinstance
ttings[] ("SNIA_LocallyAccessibleFileSystemSetting™)

TemplateGoalSettings is a string array containing
embedded instances of class
LocallyAccessibleFileSystemSetting, or a derived
class. This parameter specifies the client’s
requirements that is used to locate matching
settings that the implementation can support.

SupportedGoalS | INOUT string Embeddedinstance("SNIA_LocallyAccessibleFileS
ettings[] ystemSetting")

SupportedGoalSettings is a string array containing
embedded instances of class
LocallyAccessibleFileSystemSetting, or a derived
class. On input, it specifies a previously returned
set of Settings that the implementation could
support. On output, it specifies a new set of
Settings that the implementation can support. If the
output set is identical to the input set, both client
and implementation may conclude that this is the
best match for the TemplateGoalSettings that is
available.

If the output does not match the input and the non-
NULL output does not match the non-NULL
TemplateGoalSettings, then the method must
return \"Alternative Proposed\".

If the output is NULL, the method must return an

“Failed”.
Normal Return
Status uint32 ValueMap{}, Values{}
"Success",
"Failed",
"Timeout",

"Alternative Proposed"”

Error Returns

Invalid Property | OUT, CIM_Error A single named property of an instance parameter
Value Indication (either reference or embedded) has an invalid
value

164

Filesystem Manipulation Subprofile

Table 106 - Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.Create-
GoalSettings (Continued)

Parameter Qualifier Type Description & Notes
Name
Invalid OUT, CIM_Error An invalid combination of nhamed properties of an
Combination of Indication instance parameter (either reference or embedded)
Values has been requested.

9.5.1.4 FileSystemConfigurationService.SNIA_CreateFileSystem

This extrinsic method creates a LocalFileSystem and returns it as the value of the parameter TheElement. The
desired settings for the LocalFileSystem are specified by the Goal parameter (a string-valued Embeddedinstance
object of class FileSystemSetting).

filesystem vendors differ in their models for creating a filesystem. Some vendors require that the storage element
already exist; others create the storage element at the same time as the filesystem. Some vendors require a local
access point ("mount-point") that supports defining a name or pathname that allows a file server to access the
filesystem; others do not require any such object (though it could be argued that they provide a default local access
mechanism). This extrinsic method supports variant mechanisms for specifying, at create time, storage element
creation as well as local access by a file server. The FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationServices contains the property BlockStorageCreationSupport that specifies support for
create-time storage element creation; the property LocalAccessibilitySupport that specifies support for local access
by a file server at creation; the property DirectoryServerParameterSupported that specifies support for specifying a
file server that provides access to a Directory Service (if enabled separately).

To support backward compatibility with previous releases of SMI-S, an instance of Directory (a derived class of
LogicalFile) is created representing the root directory of the newly created filesystem. This Directory element is
associated to the LocalFileSystem via FileStorage.

A FileSystemSetting element that represents the settings of the LocalFileSystem (either identical to the Goal or
equivalent) shall be associated via ElementSettingData to the LocalFileSystem. The implementation shall create a
new FileSystemSetting for this purpose.

The output parameter TheElement shall contain a reference to the newly created LocalFileSystem. Even if this
operation does not complete but creates a job, an implementation may return a valid reference in TheElement. If
the job fails subsequently, it is possible for this reference to become invalid.

95141 Specifying Storage Underlying the Filesystem
BlockStorageCreationSupport is an array of enumerated values that specifies if:

< An enumerated value that specifies whether the extrinsic methods may use an already existing LogicalDisk --
this is either required, optional, or not allowed. If "Not Allowed", the Pools and ExtentSettings parameters must
be used to create LogicalDisk(s) for this LocalFileSystem and the InExtents parameter must be NULL. If
"Optional”, either the Pools and ExtentSettings parameters or the InExtents parameter should be specified, but
not both. If "Required", on the InExtents parameter may be specified and the Pools and ExtentSettings
parameters must be NULL.

= (optional) An integer that specifies an upper limit to the number of storage elements that can be specified,
either as InExtents parameters or as Pools and ExtentSettings.

= (optional) An integer that specifies the number of distinct storage pools that the Pools parameters can specify -
- zero, if Pools is not supported or if there is no limit, and a specific number if there is a limit. In practice it is
expected that the value will be either zero or one.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 165

Filesystem Manipulation Subprofile

= (optional) A truth value represented as '0’ for false and '1’ for true that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating that a default setting is to be used).

The storage used for creating the LocalFileSystem is specified by the InExtents parameter that must be an array of
LogicalDisks. If InExtents is NULL and BlockStorageCreationSupport indicates that Pools are optional or required,
the parameter Pools must specify an array of StoragePools from which storage may be allocated -- the
requirements for the LogicalDisks allocated from this Pool is specified in the ExtentSettings array parameter. The
Pools may use an associated StorageConfigurationService. The LocalFileSystem is associated to one of the
LogicalDisk(s) via the ResidesOnExtent association. The other LogicalDisks extend the distinguished LogicalDisk
(as modeled by the Volume Composition Subprofile).

9.5.14.2 Specifying Local Access to the Filesystem

LocalAccessibilitySupport is an enumeration that specifies whether the implementation requires a local access
specification, or makes it optional (thus using a vendor default), or does not require one ("local access" does not
have a meaning for the vendor).

The LocalFileSystem shall be hosted on the same ComputerSystem as the FileSystemConfigurationService.

Note: The requirement that the LocalFileSystem have the same host as the Service is too restrictive but this
method can be extended in the future with a FileSystemHost parameter (implicitly NULL in 1.2).

If LocalAccess is supported, whether optional or required, this method supports specifying one file server
ComputerSystem (the reference parameter FileServer) that is given local access to this filesystem. If LocalAccess
is optional, the FileServer parameter may be NULL. The local access name on the FileServer is specified in the
LocalAccessPoint string parameter -- if the implementation uses pathnames, this will be formatted as a pathname
(directory names separated by the PathNameSeparatorString). The implementation could also use a differently
formatted local access name (for instance, a simple name). The settings to be used for this are specified in the
LocalAccessSetting, an Embeddedinstance element of class LocallyAccessibleFileSystemSetting.

Note: If a second file server ComputerSystem is to be given local access, the SNIA_ModifyFileSystem
method would be used.

Corresponding to the LocalAccessPoint parameter, a LocalAccessAvailable association instance and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

e The LocalAccessAvailable association goes between the FileServer parameter and the created
LocalFileSystem (TheElement parameter).

< The LocalAccessAvailable.LocalAccessPoints property is set to the value of the LocalAccessPoint string.

e The LocallyAccessibleFileSystemSetting element has an ElementSettingData association to the
LocalFileSystem (TheElement).

< The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

If LocalAccess is supported, the FileServer parameter should not be NULL.

Note: If it is NULL, the implementation may leave the filesystem operationally inaccessible -- however, this
can be corrected by calling the SNIA_ModifyFileSystem method. This is not an Error.

If LocalAccess is supported and the FileServer parameter is not NULL, the LocalAccessPoint string may be NULL
or the empty string. In this case, the LocalAccessSetting parameter should indicate the implementation-specific
default format. The default value that is used is returned as the OUT value of the LocalAccessPoint parameter. It is
an Error if the LocalAccessSetting parameter does not provide an appropriate default mechanism for constructing
a local access name.

166

Filesystem Manipulation Subprofile

The LocalAccessSetting parameter will return an Embeddedinstance of the LocallyAccessibleFileSystemSetting
actually used on output.

9.5.14.3 Specifying access to Directory Services

DirectoryServerParameterSupported is a property that specifies whether the filesystem must have access to a file
server that provides access to directory services so that security principal information may be supported. If the
newly created filesystem must be able to resolve such information, the DirectoryServer parameter must be
specified to the SNIA_CreateFileSystem method.

The DirectoryServer parameter specifies a file server ComputerSystem that is configured to access a directory
service that resolves security principal identifies (UIDs, GIDs, or SIDs) used by the filesystem. This profile does not
specify the configuration of any directory service (if there is one), any directory server, or the file server that is
specified by the DirectoryServer parameter. For operational efficiency reasons, this must be a file server since
security principal information such as usage and detection of threshold violations must happen in real-time.

If the DirectoryServer is required and is specified, an association, a concrete subclass of Dependency, shall be
surfaced between the newly created LocalFileSystem element (as Dependent) and the specified file server (as
Antecedent). The SNIA_CreateFileSystem method will return a reference to this file server as the return value of
the parameter. In this case, the LocalFileSystem.DirectoryServiceUsage property shall be set to “Supported”.

Any file server that is configured with write access to a filesystem must use the same or a compatible directory
service (effectively the same) as the file server indicated by the Dependency association.

9.5.2 Signature and Parameters of SNIA_CreateFileSystem

Table 107 describes the parameters for Extrinsic Method
FileSystemConfigurationService.SNIA_CreateFileSystem.

Table 107 - Parameters for Extrinsic Method FileSystemConfigurationSer-
vice.SNIA_CreateFileSystem

Parameter Qualifier Type Description & Notes
Name

ElementName IN string An end user relevant name for the FileSystem
being created. The value shall be stored in the
‘ElementName’ property for the created element.
This parameter shall not be NULL or the empty
string.

Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).
eJob

Goal IN, OUT, El string Embeddedinstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the
FileSystem. If NULL or the empty string, a default
FileSystemSetting shall be specified by the
FileSystemCapabiltiies element associated to the
FileSystemConfigurationService by the
DefaultElementCapabilities association. The actual
FileSystemSetting used is returned on output.

TheElement OUT, REF CIM_LocalFil | The newly created FileSystem.
eSystem

SMI-S 1.6.0 Revision 5 SNIA Technical Position 167

168

Filesystem Manipulation Subprofile

Table 107 - Parameters for Extrinsic Method FileSystemConfigurationSer-

vice.SNIA_CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
InExtents] IN, OUT, CIM_Logical | The LogicalDisk(s) on which the created
REF, NULL Disk FileSystem shall reside. If this is NULL, the Pools
allowed, and ExtentSettings parameters cannot be NULL
and are used to create LogicalDisk(s). The
LogicalDisk(s) actually used will be returned on
output.
Pools[] IN, REF, CIM_Storage | An array of concrete StoragePool elements
NULL Pool corresponding to the ExtentSettings parameter
allowed from which to create LogicalDisks in case the
InExtents parameter is NULL. If InExtents is not
NULL, this must be NULL.
ExtentSettings[] | IN, EI, NULL | string Embeddedinstance ("CIM_StorageSetting”)
Allowed An array of embedded StorageSetting structures
that specify the settings to use for creating
LogicalDisks if the InExtents parameter is NULL
and Pools is specified. Each LogicalDisk will be
created from the corresponding entry in Pools, so
each StorageSetting entry must be supported by
the capabilities of the corresponding Pools entry.
Sizes|] IN, OUT, uint64 An array of numbers that specifies the size in bytes
NULL of the LogicalDisks to be created corresponding to
Allowed the Pools and ExtentSettings parameters. The sum

of Sizes should be at least as much as (or greater
than) the FileSystem size needed.

Filesystem Manipulation Subprofile

Table 107 - Parameters for Extrinsic Method FileSystemConfigurationSer-

vice.SNIA_CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
FileServer IN, OUT, ComputerSy | A reference to a ComputerSystem element that will
REF, NULL stem access the created LocalFileSystem and is capable
Allowed of exporting the filesystem as a file share. The local

access point with respect to the file server is
specified by the LocalAccessPoint parameter. If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points are
supported but implementation-defaulted, the
corresponding entry in the LocalAccessPoint
parameter should be NULL or the empty string as
the LocalAccessPoint name is constructed as per
the vendor default algorithm. A
LocalAccessAvailable association is created
between the FileServer and the LocalFlleSystem.
The parameters for local access are specified by
the LocalAccessSetting parameter.

Since this filesystem has just been created, the
LocalAccessSetting can support Write privileges. If
the LocalAccessSetting entry is NULL or the empty
string, the implementation uses a default
associated with the
LocallyAccessibleFileSystemCapabilities
associated to the FileServer.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that a local access point is
required and FileServer is NULL, no
LocalAccessAvailable associations are created
and the filesystem may not be accessible. This
shall not cause an Error.

On output, this parameter contains a reference to
the actual FileServer that has access to the created
LocalFileSystem.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

169

170

Filesystem Manipulation Subprofile

Table 107 - Parameters for Extrinsic Method FileSystemConfigurationSer-

vice.SNIA_CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
LocalAccessPoi | IN, OUT, string A string to use as a pathname in the name space of
nt REF, NULL the file server ComputerSystem. The format of the
Allowed string is vendor-dependent and it should be

considered opaque from the client’s standpoint. It
could be interpreted as a hierarchical fully-qualified
name for the local access point (say in a Unix-
based operating environment), or it could be a
drive letter (as in a Windows operating
environment). A LocalAccessAvailable association
is created going between the new LocalFileSystem
and the FileServer parameter. The
LocalAccessAvailable.LocalAccessPoint property
will be set to this parameter.

The parameters for local access are specified by
the LocalAccessSetting parameter.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points are
required, then LocalAccessPoint shall not be NULL
or an empty string.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points can
be vendor-defaulted, then LocalAccessPoint can
be NULL or an empty string and the
implementation shall create a name using a
vendor-specific algorithm.

If
FileSystemConfigurationCapabilities.LocalAccessi
bilitySupport specifies that local access points
cannot be vendor-defaulted, then
LocalAccessPoint shall not be NULL and the
implementation shall not create a default
pathname. This is an Error.

On output, this parameter contains the actual
LocalAccessPoint used (including any name
created by vendor-default).

Filesystem Manipulation Subprofile

Table 107 - Parameters for Extrinsic Method FileSystemConfigurationSer-

vice.SNIA_CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
LocalAccessSett | IN, EI, OUT, string Embeddedinstance
ing NULL ("CIM_LocallyAccessibleFileSystemSetting™)
Allowed

An embedded LocallyAccessibleFileSystemSetting
element that specifies the settings to use to
establish a local access point. This element will be
used to create a LocalAccessAvailable association
and will be cloned to create a
LocallyAccessibleFileSystemSetting element that
is scoped via HostedDependency (ScopedSetting)
to the FileServer and associated via
ElementSettingData to the LocalFileSystem.

If a LocallyAccessibleFileSystemSetting entry is
NULL or the empty string, the implementation shall
use the default provided by the
LocallyAccessibleFileSystemCapabilities element
of the FileSystemConfigurationService that is
associated to the FileServer via CIM_Dependency.
The LocalAccessSetting may specify a Write
Privilege.

The LocalAccessSetting actually used is returned
as the OUT EmbeddedInstance parameter.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

171

172

Filesystem Manipulation Subprofile

Table 107 - Parameters for Extrinsic Method FileSystemConfigurationSer-

vice.SNIA_CreateFileSystem

Parameter
Name

Qualifier

Type

Description & Notes

DirectoryServer

IN, OUT,
NULL
Allowed

ComputerSy
stem

A reference to a ComputerSystem element that
has access to directory services. The newly
created filesystem can use it to support security
principal information associated with filesystem
objects, such as quotas for users and groups. This
is represented by providing a Dependency
association between the LocalFileSystem element
and the ComputerSystem indicated by this
parameter. The requirements for this parameter are
further specified by
FileSystemConfigurationCapabilities.DirectoryServ
erParameterSupported.

If DirectoryServerParameterSupported specifies
‘Not Used', or 'Supported, Defaulted to FileServer’,
or 'Supported, Defaulted to FileSystem host', it is
an Error if DirectoryServer is not NULL.

Otherwise, (i.e., if
DirectoryServerParameterSupported specifies
'Supported"), and if the DirectoryServer is not
NULL, the new filesystem will use the directory
services made available by the specified
DirectoryServer. If DirectoryServer is NULL, it will
be defaulted to the FileServer parameter. If the
FileServer parameter is also NULL, the
DirectoryServer will be defaulted to the host of the
newly created filesystem.

On output, this parameter contains a reference to
the actual DirectoryServer if one was established.

Normal Return

Status

uint32

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OuUT,
Indication

CIM_Error

A single named property of an instance parameter
(either reference or embedded) has an invalid
value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error

An invalid combination of named properties of an
instance parameter (either reference or embedded)
has been requested.

Filesystem Manipulation Subprofile

9.5.2.1 FileSystemConfigurationService.SNIA_ModifyFileSystem

This extrinsic method modifies a LocalFileSystem specified by the parameter TheElement. The desired settings for
the LocalFileSystem are specified by the Goal parameter (a string-valued Embeddedinstance object of class
FileSystemSetting).

As with SNIA_CreateFileSystem, the FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationService specifies support for some of the optional behaviors of this method.
BlockStorageCreationSupport indicates whether this method only uses previously existing storage elements or if it
can create them at the same time as modifying or creating the filesystem. In addition this can specify if additional
LogicalDisks can be added to the existing set of LogicalDisks and whether the implementation limits the number of
LogicalDisks underlying a filesystem. LocalAccessibilitySupport indicates whether the implementation requires
support for local access points (or if they are optional or not required at all).

This element shall have a FileSystemSetting use ActualFileSystemType property is supported by the
FileSystemConfigurationService (as specified by the SupportedActualFileSystemTypes property of the associated
FileSystemConfigurationCapabilities). The existing LogicalDisks used by the LocalFileSystem cannot be released
by this method, but this method may add LogicalDisks. These LogicalDisks may be specified by the InExtents
parameter (if that is either required or optional) or, if InExtents is NULL (if Pools are optional or required), the set of
LogicalDisks is not changed. New LogicalDisks may also be added by specifying an array of StoragePools in the
Pools parameter and an array of StorageSettings that can be used to create them.

If the operation would result in a change in the size of a filesystem, the ResidesOnExtent association shall be used
to determine how to implement the change. If the existing or additional LogicalDisk(s) specified, or any additional
LogicalDisks created, cannot support the goal size, an appropriate error value shall be returned, and no action
shall be taken. If the operation succeeds, the ResidesOnExtent association shall reference the same LogicalDisk
as before (however, the LogicalDisk will be built upon a larger number of underlying LogicalDisks, as modeled by
the Volume Composition Subprofile).

If the new Goal is different from the old FileSystemSetting element associated to the LocalFileSystem element,
then the implementation must change the setting properties of the LocalFileSystem. This may be accomplished by
modifying the old FileSystemSetting element directly, or by deleting it and then re-creating a new
FileSystemSetting element with the same Instanceld. Just like the old element, the new FileSystemSetting element
shall be associated to the LocalFileSystem element via an ElementSettingData association.

If local access is supported, whether optional or required, any change is specified by providing the FileServer
parameter (which shall be a reference to a ComputerSystem). If a FileServer is not being added to the set or
modified or removed from the set, the FileServer parameter may be NULL.

If the specified FileServer does not duplicate a ComputerSystem that has already been specified as having local
access, this method adds it to the set. The pathname is specified by the LocalAccessPoint string array parameter.
The settings to be used for these are specified in the LocalAccessSetting, an Embeddedinstance element of class
LocallyAccessibleFileSystemSetting.

If the specified FileServer duplicates a ComputerSystem that has already been specified as having local access,
this method either modifies the local access or removes it from the set. If the LocalAccessPoint parameter is NULL
or consists of an empty string, this call removes the FileServer from the set. If the LocalAccessPoint parameter is
not NULL but specifies the current path, then this call modifies the settings of the local access -- the new settings
are specified by the LocalAccessSetting parameter. If the LocalAccessPoint parameter is not NULL but specifies a
path other than the current path, then this call modifies the pathname as well as the settings. If this filesystem is in
operational use when such a request is made, the request may have to be suspended until the filesystem can be
put into an appropriate state for making the change.

The settings to be used for adding or modifying are specified by the LocalAccessSetting parameter, an
Embeddedinstance element of class LocallyAccessibleFileSystemSetting.

To add a local access point, a LocalAccessAvailable association and a LocallyAccessibleFileSystemSettings
element are created with the following properties and associations:

SMI-S 1.6.0 Revision 5 SNIA Technical Position 173

Filesystem Manipulation Subprofile

A LocalAccessAvailable association goes between the FileServer parameter and the LocalFileSystem
(TheElement parameter).

< A LocalAccessAvailable.LocalAccessPoint property is set to the LocalAccessPoint string.

< A LocallyAccessibleFileSystemSetting element with a ElementSettingData association to the LocalFileSystem
(TheElement parameter).

< The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

Note: The WaitTime and InUseOptions parameters are supported if the
FileSystemCapabilities.SupportedProperties includes the "RequireInUseOptions™” option.

Note: A client can identify all local access specifications for a filesystem by looking for the
LocalAccessAvailable association from the LocalFileSystem to a file server ComputerSystem and the
LocallyAccessibleFileSystemSetting associated to the LocalFileSystem via ElementSettingData and
the same file server ComputerSystem via HostedDependency (ScopedSetting).

9.5.3 Signature and Parameters of SNIA_ModifyFileSystem
Table 108 describes the parameters for Extrinsic Method
FileSystemConfigurationService.SNIA_ModifyFileSystem.

Table 108 - Parameters for Extrinsic Method FileSystemConfigurationSer-
vice.SNIA_ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name

ElementName [IN, OUT string An end user relevant name for the filesystem being modified. If NULL, the existing
TheElement.ElementName property is not changed. If not NULL, this parameter
will supply a new name for the Element parameter. The actual ElementName is
returned as the output value.

Job OUT, REF [CIM_Co |Reference to the job (may be null if job completed).
ncreteJo
b

Goal IN, OUT, El|string Embeddedinstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the filesystem specified by the
TheElement parameter. If NULL or the empty string, the settings for TheElement
will not be changed. If not NULL, this parameter will supply new settings that
replace or are merged with the current settings of TheElement.

TheElement |IN, REF CIM_Loc| The LocalFileSystem element to modify.

alFileSy
stem
InExtents] IN, OUT, CIM_Lo |The LogicalDisk(s) used to extend the current set of LogicalDisks used for the
REF, NULL | gicalDisk TheElement filesystem. If this is not NULL, the Pool and ExtentSettings must be
allowed, NULL. If both this and Pool are NULL, the current set will not be changed. The
current set of LogicalDisk(s) will be returned as the output.
Pools[] IN, REF, CIM_Sto | An array of concrete storage pools corresponding to the ExtentSettings array
NULL ragePool| parameter. These storage pools are used to create additional LogicalDisks to
allowed extend the TheElement filesystem. The InExtents parameter must be NULL and

the ExtentSettings parameter must not be NULL. Otherwise, the current set of
LogicalDisks is not changed.

174

Filesystem Manipulation Subprofile

Table 108 - Parameters for Extrinsic Method FileSystemConfigurationSer-

vice.SNIA_ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name
ExtentSettings | IN, El, string Embeddedinstance ("CIM_StorageSetting")
0 ,’:ILIJ LL d An array of embedded StorageSetting structures that specify the settings to use
owe for creating additional LogicalDisks for the TheElement filesystem. The InExtents
parameter must be NULL and Pools must be specified. Each LogicalDisk will be
created from the corresponding Pool, so each StorageSetting entry must be
supported by the capabilities of the corresponding Pool entry.
Sizes|] IN,NULL uint64 An array of numbers that specifies the size in bytes of the LogicalDisks to be
Allowed created corresponding to the ExtentSettings array parameter.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

175

Filesystem Manipulation Subprofile

Table 108 - Parameters for Extrinsic Method FileSystemConfigurationSer-
vice.SNIA_ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name
FileServer IN, OUT, REF A reference to a ComputerSystem element representing a file server.

REF,NULL | Comput
Allowed erSyste
m

If this parameter is NULL, no change is made to the local access configuration. If it
is not NULL, the change to the configuration consists of the following cases:

1.) If the FileServer does not already support local access to the TheElement, it
will be added and made capable of exporting the filesystem as file shares. The
local access point is specified by the LocalAccessPoint parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
local access points are vendor-defaulted, the corresponding entry in the
LocalAccessPoints parameter should be NULL or the empty string as the
LocalAccessPoint name is constructed by a vendor-default algorithm.

A LocalAccessAvailable association is created between the FileServer and the
TheElement. The parameters for local access are specified by the
LocalAccessSetting parameter, an EmbeddedInstance element of class
LocallyAccessibleFileSystemSetting.

If the LocalAccessSetting parameter is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities of the FileSystemConfigurationService
associated to the FileServer by HostedDependency (ScopedSetting). At most one
of the LocalAccessSettings entries for all the file server ComputerSystems that
provide local access to this filesystem shall specify an element with Write
Privileges.

2) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is NULL or a set of empty strings, this will remove
the FileServer from the configured set. If there are existing operational users of
the TheElement filesystem, they will need to be informed and the implementation
might have to wait to reach a consistent state before the request can be
completed.

3) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is the same as the current configuration, then this is
a request to change the settings but not the local access point. The
LocalAccessSetting parameter will specify the new setting. Depending on the
precise change, the filesystem may need to suspend operations. If there are
existing operational users of the filesystem, they will need to be informed and the
implementation might have to wait to reach a consistent state before the request
can be completed.

4) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is different from the current configuration, then this is
equivalent to removing local access and then restoring it with different settings. If
there are existing operational users of the filesystem, they will need to be informed
and the implementation might have to wait to reach a consistent state before the
request can be completed. Note that existing operational users will not be able to
reconnect as the share name may have changed.

176

Filesystem Manipulation Subprofile

Table 108 - Parameters for Extrinsic Method FileSystemConfigurationSer-

vice.SNIA_ModifyFileSystem

Parameter Qualifier
Name

Type

Description & Notes

LocalAccessP | IN, OUT,
oint REF, NULL
Allowed

string

A string to use as a pathname in the name space of the file server
ComputerSystem specified by the FileServer parameter. The format of the string
is vendor-dependent and it should be considered opaque to the client. It could be
interpreted as a hierarchical fully-qualified name for the local access point (say in
a Unix-based operating environment), or it could be a drive letter (as in a Windows
operating environment). A LocalAccessAvailable association is created going
between the TheElement and the FileServer. The
LocalAccessAvailable.LocalAccessPoint property will be set to the value of this
parameter.

The parameters for local access are specified by the LocalAccessSetting
parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
local access points are required, then LocalAccessPoint shall not be NULL or an
empty string if this is a new FileServer that does not have local access to
TheElement. This is an Error.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
local access points can be vendor-defaulted, then LocalAccessPoint can be NULL
or an empty string and the implementation shall create a name using a vendor-
specific algorithm.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
local access points cannot be vendor-defaulted, and this is a new FileServer that
does not have local access to TheElement, then LocalAccessPoint shall not be
NULL and the implementation shall not create a default pathname. This is an
Error.

On output, this parameter contains the actual LocalAccessPoint used (including
any name created by vendor-default).

LocalAccessS | IN, El,
etting OUT,NULL
Allowed

string

Embeddedinstance ("SNIA_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting element that specifies the
settings to use for establishing a local access point. Each entry will be used to
create or modify a LocalAccessAvailable association and will be cloned to create a
LocallyAccessibleFileSystemSetting element that is scoped via ScopedSetting (or
HostedDependency) to the file server ComputerSystem specified by the
FileServer parameter. The clone will be associated via ElementSettingData to the
LocalFileSystem.

If this parameter is NULL or the empty string, and a new value is needed, the
implementation shall use the default provided by the
LocallyAccessibleFileSystemCapabilities associated to the FileServer parameter.
The LocalAccessSetting actually used is returned as the OUT parameter.

InUseOptions |IN

uintl6

An enumerated integer that specifies the action to take if the filesystem is still in
operational use when this request is made. This option is only relevant if the
FileSystem needs to be made unavailable while the request is being executed.

WaitTime IN

uint32

An integer that indicates the time in seconds to wait before performing the request
on this filesystem. The combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence, then Execute Request.

Normal Return

SMI-S 1.6.0 Revision 5

SNIA Technical Position 177

Filesystem Manipulation Subprofile

Table 108 - Parameters for Extrinsic Method FileSystemConfigurationSer-
vice.SNIA_ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name
Status uint32 "Job Completed with No Error",
"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid OUT, CIM_Err | A single named property of an instance parameter (either reference or embedded)
Property Value| Indication |or has an invalid value

Invalid OuUT, CIM_Err | An invalid combination of named properties of an instance parameter (either
Combination |Indication |or reference or embedded) has been requested.

of Values

9.5.3.1 FileSystemConfigurationService.DeleteFileSystem

This is an extrinsic method that shall delete a LocalFileSystem specified by the parameter TheElement and delete
any associated elements and associations that are no longer needed. The deleted elements include the
LogicalFile/Directory and FileStorage, if they were surfaced; the LocalAccessAvailable association, the
LocallyAccessibleFileSystemSetting element and its associations, ElementSettingData, HostedDependency
(ScopedSetting); HostedFileSystem, ResidesOnExtent, and any associations that might be orphaned by the
deletion of TheElement. The LogicalDisk(s) that TheElement used shall be released but an implementation is not
required to delete or re-allocate it.

Note: The WaitTime and InUseOptions parameters are supported if the
FileSystemCapabilities.SupportedProperties includes the "RequirelnUseOptions" option.

9.5.4 Signature and Parameters of DeleteFileSystem.

Table 109 describes the parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem.

Table 109 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter Qualifier Type Description & Notes
Name
Job OUT, REF CIM_Concret | Reference to the job (may be null if job completed).
eJob
TheElement IN, REF CIM_LocalFil | The filesystem element to delete.
eSystem
InUseOptions IN uintl6 An enumerated integer that specifies the action to

take if TheElement is still in use when this request
is made. This option is only relevant if the
filesystem needs to be made unavailable while the
request is being executed.

WaitTime IN uint32 An integer that indicates the time in seconds to wait
before performing the request on TheElement
filesystem. The combination of InUseOptions = '4'
and WaitTime ='0' (the default) is interpreted as
'Wait (forever) until Quiescence, then Execute
Request.

178

Filesystem Manipulation Subprofile

Table 109 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

955

Values

Parameter Qualifier Type Description & Notes
Name
Normal Return
Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property | OUT, CIM_Error A single named property of an instance parameter
Value Indication (either reference or embedded) has an invalid
value
Invalid OuUT, CIM_Error An invalid combination of named properties of an
Combination of Indication instance parameter (either reference or embedded)

has been requested.

Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are

9.6

as follows:
Getlnstance

Associators

AssociatorNames

References

ReferenceNames

Enumeratelnstances

EnumeratelnstanceNames

Client Considerations and Recipes

EXPERIMENTAL

Conventions used in the NAS recipes:

SMI-S 1.6.0 Revision 5

When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is (often) used without further validation. Real code will need to be more robust.

SMI-S uses Values and Valuemap members as equivalent. In real code, client-side magic is required to
convert the integer representation into the string form given in the MOF.

Error returns using the CIM_Error mechanism are not explicitly handled -- the client must implement handlers
for these asynchronous returns.

These recipes do not show the details of negotiating a setting acceptable to both client and provider.

The recipes do not show the details of managing a Job if a method returns after setting one up.

SNIA Technical Position

179

Filesystem Manipulation Subprofile

All the recipes show very simple examples of the operations that should be supported. Some recipes have
been simplified so that they would not even be minimally useful to a real client, but only show how more
complete functionality would be implemented.

In the Filesystem Manipulation Profile recipes, the following subroutines are used (and provided here as forward
declarations):

9.6.

180

sub CreateGoal (

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $goalSetting,

INOUT String $supportedFileSystemSetting);
// The above subroutine uses the $fscapability.CreateGoalSettings method
// to get the single $supportedFileSystemSetting used in these recipes.

sub GetRequiredStorageSize(

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $fssgoal,

IN String $ldSetting,

OUT uint64 $expectedsize,

OUT uint64 $minsize,

OUT uint64 $maxsize);
// The above subroutine uses the $fscapability.GetRequiredStorageSize
// method to get the single output size used in these recipes.

1 Creation of a FileSystem on a Storage Extent

//

// DESCRIPTION

// Goal: Create a LocalFilesystem on a LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of the created LocalFileSystem.
// 2. The client does not negotiate to get an acceptable setting but
// fails if one is not found

// 3. We do not use the FSCS to create a LogicalDisk from a StoragePool
// 4. We do not set up local access to a file server at this time

//

// FUNCTION CreateFileSystem

// This function takes a given ComputerSystem and LogicalDisk and

// constructs a filesystem that satisfies the requested property values.
// INPUT Parameters:

// hostsystem: A reference to the ComputerSystem.

// disk: A reference to the LogicalDisk on which to build the

// filesystem.
// desiredsize: An integer specifying the size of filesystem to
// build in bytes

// fsname: The string name of the filesystem
// fTilesystemtype: An integer enumeration of the filesystem type
// to construct

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Filesystem Manipulation Subprofile

otherpropertyname: An array of property names with corresponding
values in the otherpropertyvalue parameter.

otherpropertyvalue: An array of property values corresponding to the

names in the otherpropertyname parameter.
OUTPUT Parameters:

fs: A reference to the LocalFileSystem that is built by this
function.
job: A reference to a job created by the implementation if this
function will take a long time to complete.
RESULT:
Failure return consists of fs=NULL and job=NULL
NOTES
1. This recipe does not show how to use the LocalAccess functionality
to “mount” the file system to a mount-point of a file server.

sub CreateFileSystem(IN REF CIM_System $hostsystem,

IN REF CIM_LogicalDisk $disk,
IN uint64 $desiredsize,

IN String $fsname,

IN String $filesystemtype,

IN String $otherpropertyname[], // array of property names

IN String $otherpropertyvalue[], // corresponding array of

values
OUT REF CIM_FileSystem $fs,
OUT REF CIM_Job $job)

//

// Get the FileSystemConfigurationService of the NAS server using

// a HostedService association

//

$fsconfigurators->[] = Associators($hostsystem,
“CIM_HostedService”,

“CIM_FileSystemConfigurationService”,

“Antecedent”,
“Dependent”);

if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

// No FileSystemConfigurationService found -- error
$fs = NULL;

$job = NULL;

return;

}

$fsconfigurator = $fsconfigurators->[0];

//

// Find FSCapabilities that supports $filesystemtype

// as the ActualFileSystemType using ElementCapabilities
// association from FSConfigurationService.

//

SMI-S 1.6.0 Revision 5 SNIA Technical Position

181

182

/7/

Filesystem Manipulation Subprofile

There is only one Capability of a particular ActualFileSystemType

$capabilities->[] = Associators($fsconfigurator,

“CIM_ElementCapabilities”,
“CIM_FileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);

iT ($capabilities->[] == null || $capabilities->[].length == 0) {

}
#3

// No Capabilities found -- error
$fs = NULL;

$job = NULL;

return;

= 0;

while($capability = $capabilities->[#]]) {

}

if (($capability.ActualFileSystemType == $Ffilesystemtype) ||
(($Filesystemtype == NULL) && ($capability.lIsDefault))) {
if ($otherpropertyname->[] == NULL |] $otherpropertyname->[].length ==
11 I I
Contains(%capability.SupportedProperties, $otherpropertyname->[]))
{

// This Contains function is left to the client to implement
// found a matching capabilities element

//

break;

} else {

// Found capabilities element failed to match
$fs = NULL;
$job = NULL;

return;

¥
#Hj++;

$capability = $capabilities->[#j];

//

//

//
//
//
//
7/
//
//
//

IT $filesystemtype was NULL or empty string the default was returned
($filesystemtype == NULL || $Ffilesystemtype == “*)
$Filesystemtype = $capability.ActualFileSystemType;

At this point the $capability will be for $filesystemtype

Call FileSystemCapabilities.CreateGoalSettings(nullTemplate, Goal) to
get a seed goal for FileSystemSetting, or just use one of the provided
default settings associated with the FileSystemCapabilities via
SettingsDefineCapabilities.

The function used is CreateGoal instead of CreateGoalSettings
because the CreateGoalSettings method takes arrays

Filesystem Manipulation Subprofile

// as parameters and we only want to pass single-entry arrays
// The implementation details are left to the client.
$fssgoal = NULL;

CreateGoal ($capability, NULL, $fssgoal);

//

// Inspect Goal and modify properties as desired.

//

#i1 = 0;

while ($otherpropertyname[#i]) {
// funky syntax on left-hand side -- dot-operator on an a variable
$fssgoal .$otherpropertyname[#i] = $otherpropertyvalue[#i];
Hi++;

¥

//

// Call FSCSCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to get
// the next goal for FSSetting -- iterate until satisfied or give up
// (beware of infinite loops) Note: we don’t iterate here, just give
// up if we don’t get what we want.

//

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

CreateGoal ($capability, $fssgoal, $fssgoal2);

#i = 03
while ($otherpropertyname[#i]) {
//
// Note: this pseudocode doesn’t check to see i1If the property named
// in $otherpropertyname[#i] is an array. This additional level
// of horsing around is left as an exercise for the reader.

//
if ($fssgoal.$otherpropertyname[#i] '= $otherpropertyvalue[#i] {
{ return NULL; } // give up
}
}
//

// Call FileSystemCapabilities.GetRequiredStorageSize(Goal,

// DesiredUsableCapacity) to find out how large of a

// LogicalDisk is needed.

//

// GetRequiredStorageSize returns the maximum and minimum

// sizes that might be needed to satisfy the fssgoal2 request
// 1T the LogicalDisk in use for the filesystem cannot be grown

SMI-S 1.6.0 Revision 5 SNIA Technical Position 183

Filesystem Manipulation Subprofile

// upon demand, then it might be worth growing to $minsize (which
// would be optimistic); if there is any reason to believe that
// the user is underestimating what they will need, then it might
// be worth growing to $maxsize (pessimistic); in the normal case,
// plan to grow to $expectedsize.
//
$ldsetting = NULL;
$requiredsize = $capability.GetRequiredStorageSize(
$fssgoal2,
$ldsetting, // NULL input, returns

setting
$expectedsize,
$minsize,
$maxsize);
//
// If a disk of the required size is already available
// Call CreateFileSystem(Goal, LogicalDisk)
// else
// Create LogicalDisk (see StorageExtent recipes)
// Call CreateFileSystem(Goal, LogicalDisk)
//

if ($requiredsize > $disk.BlockSize * $disk.NumberOfBlocks) {
<CreateDisk>($requiredsize, $newdisk);
$disk = $newdisk;

}

$diskArray->[0] = $disk;

$status = $fsconfigurator.CreateFileSystem(

$fsname,

$job, // Job returned if necessary
$fssgoal2, // Filesystem Setting

$fs, // Filesystem returned
$diskArray->[], // LogicalDisk to use

NULL // No storagepools

NULL, // No settings to create LDs

NULL, // No size parameters

NULL, // No File server specified for Local Access
NULL, // No local access points provided
NULL // No local access settings

)

//

// not shown:

// 1) Managing the $job if it’s not NULL,

// 2) Looking at the status result to figure out what to do

// 3) Managing any CIM_Errors that get returned asynchronously.
//

return $fs;

184

Filesystem Manipulation Subprofile

}

9.6.2 Increase the size of a FileSystem

//

// DESCRIPTION

// Goal: Increase the size of a FileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// is also the host of the LocalFileSystem being modified.

// 2. The client does not negotiate to get an acceptable setting but
// fails if one is not found

// 3. Then desiredsize is greater than the current size

//

// FUNCTION CreateFileSystem

// This function takes a given LocalFileSystem and a desired

// increase in size in bytes and expands the size of the

// filesystem by at least the desired size.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// desiredsize: The desired size of the filesystem

// OUTPUT Parameters:

// job: A reference to a job created by the implementation if this

// function will take a long time to complete.
// RESULT:

// Success or Failure

// NOTES

// 1.

sub IncreaseFileSystemSize(IN REF CIM_FileSystem $fs,
IN REF uint64 $desiredsize,
OUT CIM_Job $job)

//
// Get a client-side copy of the FileSystemSetting
// associated with the CIM_FileSystem (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,
“ManagedElement”,
“SettingData’);
if ($settings ->[] == NULL || $settings ->[]-length == 0) {
// No FileSystemSetting found -- error
$job = NULL;
return;

SMI-S 1.6.0 Revision 5 SNIA Technical Position 185

Filesystem Manipulation Subprofile

}
// One of the settings must be marked IsCurrent -- if not, there is an error
#i1 = 0;

$setting = NULL;
while ($settings->[#i] 1= NULL) {
if ($settings->[#i]-1sCurrent) {
$setting = Getlnstance($settings->[#i]);

break;
}
Hi++;
}
if ($setting == NULL) {
$job = NULL;
return;
}

$fssnewgoal = $setting;

// Note that this syntax conflicts with earlier use of funky syntax for
// accessing properties. Also “add” method applied to an array-value
// changes the array in-place

$fssnewgoal .ObjectTypes->[]-add(“Bytes™);

$Ffssnewgoal .ObjectSizeMin->[].add($desiredsize);

// Get the FileSystemCapabilities element from the hosting NAS Server
//

// a) Get the ActualFileSystemType from the FileSystemSetting

//

$filesystemtype = $fssnewgoal .ActualFileSystemType;

//
// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$system = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent’)->[0];

//

// Get the FileSystemConfigurationService from the ComputerSystem

// via the HostedService association. There is exactly one,

// but check that one is found.

//

$fsconfigurators->[] = Associators($system,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,

186

Filesystem Manipulation Subprofile

“Dependent”);
if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {
// No FileSystemConfigurationService found -- error
$job = NULL;
return;

$fsconfigurator = $fsconfigurators->[0];

//

// Find FSCapabilities that supports $filesystemtype

// as the ActualFileSystemType using ElementCapabilities

// association from FSConfigurationService.

//

// There is only one Capability of a particular ActualFileSystemType

$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,
“CIM_FileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);

it ($capabilities->[] == null || $capabilities->[].length == 0) {

// No Capabilities found -- error
$job = NULL;
return;

}

#j = 0;

while($capability = $capabilities->[#j]) {
if ($capability._ActualFileSystemType == $filesystemtype)

break;
#j++;
}
if (#) == $capabilities->[].length) {
// No Capabilities for this filesystem type was found -- error
$job = NULL;
return;
} else
$capability = $capabilities->[#]];
//

// Call FileSystemCapabilities.GetRequiredStorageSize(NewGoal,
// DesiredUsableCapacity) to find out how large of a

// LogicalDisk is needed

//

// Changed from: $requiredsize =
$capabi lity.GetRequiredStorageSize($fssnewgoal,

$ldsetting = ““;
$requiredsize = GetRequiredStorageSize($capability,
$fssnewgoal,

SMI-S 1.6.0 Revision 5 SNIA Technical Position 187

188

//

Filesystem Manipulation Subprofile

$ldsetting, // Returns actual setting used
$disksize,

$diskminsize,

$diskmaxsize);

// Get Underlying LogicalDisk using ResidesOnExtent association

// There must be exactly one

//

$disk = Associators($fs,

//

“CIM_ResidesOnExtent”,
“CIM_LogicalDisk”,

“Dependent”,

“Antecedent)->[0];

// 1T disk is not large enough, increase size of underlying SE

//

$job = NULL;
if ($disksize < $disk.BlockSize * $disk.NumberOfBlocks) {

<increase size of logical disk, returning a job in $job if
necessary -- see storage extent recipes>

//
//
//
//
//
//

//
/7
//
//
//
//
//
//
//
//
//
//
//
//
7/
//
//

The Ffilesystem itself doesn’t need modification, so we’re done

This is NOT correct.

The

ModifyFileSystem method must be called

with the new file system setting so that the filesystem can be

modified as needed.

It isn’t clear what the call would be -- probably specify NULL for

the InExtents parameter and the desiredsize parameter would indicate
that the filesystem was being resized.
Operationally, the appended storage space would need to be formatted

as inodes and their inode numbers would need to be legitimized in
the filesystem meta-data.

The call would be

$fsconfigurator.ModifyFileSystem(

NULL,
$job,
$fssgoal,
$fs,

NULL,
NULL,
NULL,
$disksize,

//
//
//
//
//
//
//
//

Keep the old element name for the filesystem
return Job if created

Goal setting

filesystem

Don’t add any logicaldisks

No storage pools

No LogicalDisk settings

New LD size

}

//
//
//
//
//
//
//

Filesystem Manipulation Subprofile

NULL, // No File server for local access
NULL, // No Local access point name
NULL, // No Local access setting

NULL, // Default in use option

NULL, // Default wait time

)

9.6.3 Modify a FileSystem’s Settings

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

SMI-S 1.6.0 Revision 5

DESCRIPTION

Goal: Modify the settings and other properties of a LocalFileSystem

PRE-EXISTING CONDITIONS AND ASSUMPTIONS

1.

The ComputerSystem host of the FileSystemConfigurationService
will also be the host of the LocalFileSystem to be modified.

. The client does not negotiate to get an acceptable setting but

fails if one is not found.

- This recipe only shows how the number of supported objects

of a particular type is modified. The model can be easily
extended to other individual properties of the LocalFileSystem.

- The CreateFileSystem method uses an array of property names

and values and can be useful to show how ModifyFileSystem

may change many propertynames in a single call at the same time.

FUNCTION ModifyFileSystemObjectLimits
This function takes a given LocalFileSystem and a specification

of an object type (Ffile and/or directories) to be supported
and modifies the filesystem (increases its size) so that it
satisfies the newly requested size.

INPUT Parameters:
fs: A reference to the LocalFileSystem.
objecttype: The object type whose support is being modified

minobjects: The minimum number of objects of the specified

type to be supported.

maxobjects: The maximum number of objects of the specified

type to be supported.

expectedobjects: The client’s expectations of the number of

objects of the specified type to be supported.

OUTPUT Parameters:
objecttype: The object type whose support has being modified
minobjects: The minimum number of objects of the specified

type that will be supported by the implementation.

maxobjects: The maximum number of objects of the specified

type that will be supported by the implementation.

expectedobjects: The implementation’s expectations of the

number of objects of the specified type to be supported.

SNIA Technical Position

189

Filesystem Manipulation Subprofile

// job: A reference to the job implementing the ModifyFileSystem

// method, if necessary.

// RESULT:

// None

// NOTES

// 1. This recipe does not show how to specify multiple object
// types at the same time.

// 2. This recipe does not show how to change the local access
// setup (add or delete local access).

sub ModifyFileSystemObjectLimits(IN REF CIM_FileSystem $fs,
IN OUT uint64 $objecttype,
IN OUT uint64 $minobjects,
IN OUT uint64 $maxobjects,
IN OUT uint64 $expectedobjects,
OUT REF CIM_Job $job)

{
//
// Get a client-side copy of the FileSystemSetting
// associated with the CIM_FileSystem (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,
“ManagedElement”,
“SettingData™);
if ($settings ->[] == NULL]| $settings ->[]-length == 0) {
// No FileSystemSetting found -- error
$job = NULL;
return;
}
// One of the settings must be marked IsCurrent -- if not, there is an error
#i = 0;

$setting = NULL;
while ($settings->[#i] '= NULL) {
if ($settings->[#i].I1sCurrent) {
$setting = Getlnstance($settings->[#i]);
break;
}
#Hi++;
}
if ($setting == NULL) {
$job = NULL;
return;

}

$fssnewgoal = $setting;

190

Filesystem Manipulation Subprofile

// Get the FileSystemCapabilities element from the hosting NAS Server
//

// a) Get the ActualFileSystemType from the FileSystemSetting

//

$filesystemtype = $setting.ActualFileSystemType;

//
// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$system = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent”)->[0];

//
// Get the FileSystemConfigurationService from the ComputerSystem
// via the HostedService association. There is exactly one.
//
$fsconfigurators->[] = Associators($system,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent”);
if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {
// No FileSystemConfigurationService found -- error
$job = NULL;
return;

$fsconfigurator = $fsconfigurators->[0];

//
// Find FSCapabilities that supports $filesystemtype
// as the ActualFileSystemType using ElementCapabilities
// association from FSConfigurationService.
//
// There is only one Capability of a particular ActualFileSystemType
$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,
“CIM_FileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);
it ($capabilities->[] == null || $capabilities->[].length == 0) {
// No Capabilities found -- error
$job = NULL;

SMI-S 1.6.0 Revision 5 SNIA Technical Position 191

192

}
#3

Filesystem Manipulation Subprofile

return;

:O;

while($capability = $capabilities->[#j]) {

}
if

if ($capability._ActualFileSystemType == $filesystemtype)
break;
#Hj++;

(#J == $capabilities->[].length) {
$job = NULL:
return;

} else

//
//
//
//
#1

$capability = $capabilities->[#]];

Find the index in the object arrays that contains
the object type of interest

= 0;

while($typ = $fssnewgoal .ObjectTypes->[#i]) {

}
1/

//
//
if

/7
//
//

it ($typ == $objecttype)
{ break; }
Hi++;

if the specified type isn’t there, add it

($typ '= $objecttype) {
$fssnewgoal .ObjectTypes->[#i] = $objecttype;

modify the other params associated with the object type

$fssnewgoal .NumberOfObjectsMin->[#i] = $minobjects;
$fssnewgoal .NumberOfObjectsMax->[#i] = $maxobjects;
$Ffssnewgoal .NumberOfObjects->[#i] = $expectedobjects;

//
//
//
7/
//
//
//
//
//

Call FSCSCapabilities._CreateGoalSettings(Goal-N”, Goal-N) to get the next
goal for FSSetting -- iterate until satisfied or give up (beware
infinite loops) Note: we don’t iterate here, just give up.

The function used is CreateGoal instead of CreateGoalSettings
because the CreateGoalSettings method takes arrays

as parameters and we only want to pass single-entry arrays
The implementation details are left to the client.

}

Filesystem Manipulation Subprofile

CreateGoal ($capability, $fssnewgoal, $fssgoal2);

if

//
//
//

//
//
//
//

($fssgoal2._ActualFileSystemType != $filesystemtype) {
$job = NULL;
return;

Since this may increase the size of the file system it Is necessary to
pass in a new extent or a new logical disk or a pool that can provide
the storage.

call ModifyFileSystem (management of $job and any CIM_Error not
shown)

$fsconfigurator.ModifyFileSystem(

NULL, // Keep the old element name for the filesystem
$job, // return Job if created
$fssgoal2, // Goal setting

$fs, // FTilesystem

NULL, // Don’t add any logicaldisks
NULL, // No storage pools

NULL, // No LogicalDisk settings

NULL, // No LD sizes

NULL, // No File server for local access
NULL, // No Local access point name
NULL, // No Local access setting

NULL, // Default in use option

NULL, // Default wait time

)

return $fs;

9.6.4 Delete a FileSystem and return underlying StorageExtent

//
//
//
//
//
//
//
/7
//
//
7/
//
//

DESCRIPTION
Goal: Delete a filesystem and return underlying LogicalDisk
PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. The ComputerSystem host of the FileSystemConfigurationService
is also the host of the created LocalFileSystem.
2. The filesystem is built on a single LogicalDisk
3. The LogicalDisk is not automatically returned to a StoragePool
but is left allocated to the NAS Server and available for use
by a filesystem client.
4_ No job is needed

// FUNCTION DeleteFileSystem

SMI-S 1.6.0 Revision 5 SNIA Technical Position

193

Filesystem Manipulation Subprofile

// This function deletes a given LocalFileSystem and

// returns a reference to the LogicalDisk on which it resided
// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// disk: A reference to the LogicalDisk is returned.

// RESULT:

// Success or Failure

// NOTES

// 1. This recipe does not show how to clean up any local access
// or file shares that may have been set up for accessing the
// filesystem.

// 2. To “wipe” or zero out the filesystem, the client must either
// use client-level operations over a filesystem or FileShare
// prior to deleting the filesystem, or by vendor-specific

// operations on the LogicalDisk after deleting the filesystem.
//

sub DeleteFileSystem(IN REF CIM_FileSystem $fs, OUT REF CIM_LogicalDisk $disk)
{
//
// Get underlying LogicalDisk using ResidesOnExtent association
// In SMI-S 1.2. we assume that there will be exactly one
//
$disks->[] = Associators($fs,
“CIM_ResidesOnExtent™,
“CIM_LogicalDisk”,
“Dependent”,
“Antecedent”)->[0];
ifT ($disks->[]1 == null || $disks->[]-length == 0) {
// No LogicalDisk found -- error
$disk = NULL;
return;

+
$disk = $disks->[0];

//

// Get the NAS Server of the filesystem using

// a HostedFileSystem association. There should be

// exactly one filesystem host.

$hosts->[] = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem™,
“Antecedent”,
“Dependent™);

if ($hosts->[]1 == null || $hosts->[].length == 0) {

// No ComputerSystem found -- error

194

Filesystem Manipulation Subprofile

$disk = NULL;
return;

¥
$hostsystem= $hosts->[0];

//

// Get the FileSystemConfigurationService of the NAS server using

// a HostedService association

//

$fsconfigurators->[] = Associators($hostsystem,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent™);

if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

// No FileSystemConfigurationService found -- error
$fs = NULL;
$job = NULL;
return;
}
$fsconfigurator = $fsconfigurators->[0];
//
// Call DeleteFileSystem(FS) (error checking not shown)
//

$fsconfigurator.DeleteFileSystem($job, $fs);

return;

9.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem

//
// DESCRIPTION
// GOAL: Get a LocallyAccessibleFileSystemCapabilities from a

// filesystem host that is dependent on a specific file server
// and supports the properties specified in the array

// parameter $propertynames[].

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of any LocalFileSystem that will be
// made locally accessible using a capabilities element.
//

// FUNCTION GetLocallyAccessibleFileSystemCapabilities
// This function takes a filesystem host ComputerSystem and
// gets a capabilities element for making a filesystem

SMI-S 1.6.0 Revision 5 SNIA Technical Position 195

196

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Filesystem Manipulation Subprofile

locally accessible on a file server ComputerSystem.
INPUT Parameters:

hostsystem: A reference to the ComputerSystem that hosts
filesystems.

fileserver: A reference to the file server ComputerSystem that
provides local access to filesystems.

propertynames: An array of property names that the capabilities
element should support.

OUTPUT Parameters:
allcapabilities: An array of references to the capabilities
for local access on the file server.
RESULT:
Success or Failure
NOTES
1.

sub GetLocal lyAccessibleFileSystemCapabilities(

IN REF CIM_ComputerSystem $hostsystem,
IN REF CIM_ComputerSystem $fileserver,
IN String $propertynames[],

OUT REF SNIA_LocallyAccessibleFileSystemCapabilities $allcapabilities[])

//
// Get the FileSystemConfigurationService from the ComputerSystem
// $hostsystem via the HostedService association
//
$fsconfigurators->[] = Associators($hostsystem,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent”™);
#i1 = 0;
#k = 0; // the index for $allcapabilities.
while ($fsconfigurator = $fsconfigurators->[#i]) {
#Hi++;
//
// Find LocallyAccessibleFileSystemCapabilities that supports the
// file server using ElementCapabilities association from
// FSConfigurationService.
// 1f client does not care about the file server ($fileserver = NULL),
// return all the LocallyAccessibleFileSystemCapabilities that
// are associated to the FileSystemConfigurationService
// There is one and only one LocallyAccessibleFileSystemCapabilities
// for each server+FileSystemConfigurationService pair.
// The SupportedProperties property lists the supported setting
// properties.
//

Filesystem Manipulation Subprofile

$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,

“SNIA_LocallyAccessibleFileSystemCapabilities™,
“ManagedElement”,
“Capabilities™);
// Skip to next if empty

iT ($capabilities->[] == NULL ||$capabilities->[].length == 0) continue;

#j = 0;
while($capability = $capabilities—>[#j]) {
#Hj++;

if (propertyname == NULL || propertyname == ““ ||
Contains($capability.SupportedProperties, propertyname)) {
// If the server is null then skip the next step
if ($server = NULL) {
$capservers[] = Associators($capability,
“SNIA_ScopedCapability”,
“CIM_ComputerSystem™,
“Dependent™,
“Antecedent”);
if ($capservers == NULL || $capservers->[].length =1 ||
$server 1= S$capservers->[0])

continue;
}
$allcapabilities->[#k] = $capability;
#Hk++;
}
}
}
return;

9.6.6 Getthe Local Access Setting for a FileSystem on a File Server ComputerSystem

//
//
//
//
//
//
//
//
//
//
//
//
//
//

DESCRIPTION
GOAL: Get a LocallyAccessibleFileSystemSetting from a
filesystem host that is dependent on a specific file server

PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. The ComputerSystem host of the FileSystemConfigurationService
will also be the host of any LocalFileSystem that will be
made locally accessible using a capabilities element.

FUNCTION GetLocal lyAccessibleFileSystemSetting
This function takes a Filesystem host ComputerSystem and
gets a capabilities element for making a filesystem
locally accessible on a file server ComputerSystem.
INPUT Parameters:

SMI-S 1.6.0 Revision 5 SNIA Technical Position

197

198

//
//
//
//
//
//
//
//
//
//
//

Filesystem Manipulation Subprofile

filesystem: A reference to the LocalFileSystem that is to

be made locally accessible from a file server.
fileserver: A reference to the file server ComputerSystem that
provides local access to filesystems.
OUTPUT Parameters:
setting: An embedded instance of a LocallyAccessibleFileSystemSetting
that supports making the filesystem locally accessible.
RESULT:
Success or Failure
NOTES
1.

sub GetLocal lyAccessibleFileSystemSetting(

IN REF CIM_FileSystem $filesystem,
IN REF CIM_ComputerSystem $fileserver,
OUT String(“SNIA_LocallyAccessibleFileSystemSetting”) $setting)

// Does this fileserver have local access to this filesystem
// -- 1f not, there is no setting!
$localaccess->[] = ReferenceNames($filesystem,
“SNIA_LocalAccessAvailable™,
“FileSystem”);
if ($localaccess->[] == NULL || $localaccess->[].length == 0)
return;

//
// Get all the LocallyAccessibleFileSystemSettings
// associated with the CIM_FileSystem (via ElementSettingData
//
$assoc = References($filesystenm,
“CIM_ElementSettingData”,
“ManagedElement™);
if ($assoc->[] == NULL || $assoc->[]-length == 0) {
// This is an ERROR but for now we return with no results
return;

#i1 = 0;
while ($assoc->[#i] '= NULL) {
if ($assoc->[#i].IsCurrent) {
// Is this scoped to the fileserver?
$servers = Associators($assoc->[#i].SettingData,
“CIM_ScopedSetting”,
“CIM_ComputerSystem™”,
“Dependent™,
“Antecedent™);

if ($servers->[] !'= NULL && $servers->[].length = 0 && $servers->[0]

== $Ffileserver) {

Filesystem Manipulation Subprofile

$setting = Getlnstance($assoc->[#i].SettingData);
return;

3
Hi++;
}
$setting = NULL;

EXPERIMENTAL

9.6.7 Filesystem Manipulation Supported Capabilities Patterns

Table 110, “Filesystem Manipulation Supported Capabilities Patterns” lists the patterns that are formally recognized
by this version of the specification for determining capabilities of various NAS implementations:

Table 110 - Filesystem Manipulation Supported Capabilities Patterns

Supported Supported Supported Initial
ActualFileSystem Synchronous Asynchronous Availability
Types Methods Methods
Any none none none

SNIA_CreateFileSystem,
DeleteFileSystem,
Any SNIA_ModifyFileSystem, none Any
CreateGoalSettings,
GetRequiredStorageSizes

SNIA_CreateFileSystem,
DeleteFileSystem, Any
SNIA_ModifyFileSystem

CreateGoalSettings,

Any GetRequiredStorageSizes

9.7 CIM Elements

Table 111 describes the CIM elements for Filesystem Manipulation.

Table 111 - CIM Elements for Filesystem Manipulation

Element Name Requirement | Description
9.7.1 CIM_Dependency (Uses Directory Conditional Conditional requirement: Required if
Services From) LocalFileSystem.DirectoryServiceUsage is

either 'Required’ or 'Optional'. Associates a
ComputerSystem that indicates a directory
service that supports the dependent
LocalFileSystem.

9.7.2 CIM_ElementCapabilities (FS Mandatory In this subprofile, associates the Filesystem

Configuration Capabilities) Configuration Service to the Capabilities
element that represents the capabilities that it
supports.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 199

Filesystem Manipulation Subprofile

Table 111 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.7.3 CIM_ElementCapabilities (Local Access
Configuration Capabilities)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either ‘Local Access
Required, Defaulted' or 'Local Access
Required, Not Defaulted'.

In this subprofile, associates the Filesystem
Configuration Service to the Capabilities
instance that represents the capabilities for
Local Access that it supports.

9.7.4 CIM_ElementCapabilities (Non-Default)

Optional

In this subprofile, associates the Filesystem
Configuration Service to the
FileSystemCapabilities elements that
represent all the types of filesystems that are
not the default type of file system and can be
configured.

9.7.5 CIM_ElementSettingData (Attached to
Filesystem)

Optional

Associates a FileSystemSetting element to a
LocalFileSystem. One of these association
elements is created by
SNIA_CreateFileSystem when the
LocalFileSystem is first created.

The profile does not specify how other
instances of this association may be surfaced
by the implementation.

9.7.6 CIM_ElementSettingData (Local Access
Required)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access
Required, Not Defaulted'. Associates a
LocalFileSystem and the
LocallyAccessibleFileSystemSetting
elements.

9.7.7 CIM_HostedDependency (Attached to
File System)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a Local Access
configuration setting to the file server
ComputerSystem that provides the
operational scope for its functionality.

200

Filesystem Manipulation Subprofile

Table 111 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.7.8 CIM_HostedDependency (Predefined
Capabilities)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either ‘Local Access
Required, Defaulted' or 'Local Access
Required, Not Defaulted’. Associates a Local
Access Capabilities to the File Server that
provides the operational scope for its
functionality. All of the Settings associated to
the referenced Capabilities element must be
scoped by the same File Server
ComputerSystem. This scoping allows the
CreateGoalSetting method of the Capabilities
element to know which File Server provides
the scope for any Goal element that it creates.

9.7.9 CIM_HostedDependency (Predefined
Setting)

Optional

Associates a predefined
SNIA_LocallyAccessibleFileSystemSetting to
the file server ComputerSystem that provides
the operational scope for its functionality.

9.7.10 CIM_HostedFileSystem

Mandatory

Associates a LocalFileSystem to the
ComputerSystem that hosts it.

9.7.11 CIM_HostedService

Mandatory

In this subprofile, associates the Filesystem
Configuration Service to the hosting
ComputerSystem. This is expected to be the
top-level ComputerSystem of the parent
Filesystem Profile.

9.7.12 CIM_SettingsDefineCapabilities
(Predefined FS Settings)

Optional

These Setting elements provide detailed
information about the FileSystemSettings
supported by the associated
FileSystemCapabilities element.

9.7.13 CIM_SettingsDefineCapabilities
(Predefined Local Access Settings)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access
Required, Not Defaulted’. The Setting
elements that are associated to this
Capabilities element are scoped to the File
Server ComputerSystem that provides the
operational context for local access.

9.7.14 SNIA_ElementCapabilities (Default)

Optional

This entry represents the single default
FileSystemCapabilities element for the
Filesystem Configuration Service.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

201

Filesystem Manipulation Subprofile

Table 111 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.7.15 SNIA_FileSystemCapabilities

Mandatory

This element represents the Capabilities of
the Filesystem Configuration Service for
managing Filesystems. The Service can be
associated with multiple
FileSystemCapabilities elements, one per
ActualFileSystemType property value. For
each value that is in the array property
FileSystenConfigurationCapabilities.Supporte
dActualFileSystemTypes, there will be exactly
one corresponding FileSystemCapabilities
element with the matching
ActualFileSystemType property.

9.7.16
SNIA_FileSystemConfigurationCapabilities

Mandatory

This element represents the management
Capabilities of the Filesystem Configuration
Service.

9.7.17 SNIA_FileSystemConfigurationService

Mandatory

The Filesystem Configuration Service
provides the methods to manipulate file
systems.

9.7.18 SNIA_FileSystemSetting (Attached to
FileSystem)

Optional

This element represents the configuration
settings of a LocalFileSystem. One instance of
this class is created by the
SNIA_CreateFileSystem extrinsic method
when the LocalFileSystem was created.

This profile does not specify how other
instances of this class might be created.

9.7.19 SNIA_FileSystemSetting (Predefined
FS Settings)

Optional

This element represents sample configuration
settings usable for creating or modifying a
LocalFileSystem. It represents "predefined"
settings supported by the
FileSystemConfigurationService and is
associated with a FileSystemCapabilities
element by a SettingsDefineCapabilities
association. The
FileSystemSetting.ActualFileSystemType
property must specify the same value as the
associated
FileSystemCapabilities.ActualFileSystemType

property.

9.7.20 SNIA_LocalAccessAvailable

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. Associates a LocalFileSystem to a
File Server Computer System that can export
files or directories as shares.

9.7.21 SNIA_LocalFileSystem

Mandatory

Represents a LocalFileSystem hosted by and
made available through a ComputerSystem
(usually the top-level ComputerSystem of a
Filesystem Profile).

202

Filesystem Manipulation Subprofile

Table 111 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.7.22
SNIA_LocallyAccessibleFileSystemCapabilitie
s

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAcc
essibilitySupport is either ‘Local Access
Required, Defaulted' or 'Local Access
Required, Not Defaulted'. The element
represents the Local Access configuration
Capabilities of the File System Configuration
Service. This class provides a
CreateGoalSettings method that will return a
SNIA_LocallyAccessibleFileSystemSetting
element as an EmbedddInstance that may be
used for making a filesystem locally
accessible to a file server ComputerSystem
(by the methods SNIA_CreateFileSystem and
SNIA_ModifyFileSystem). Since the returned
Embeddedinstance setting element is an
instance of a ScopedSetting class, it must be
associated with a ComputerSystem via
ScopedSettingData when it is instantiated.

9.7.23
SNIA_LocallyAccessibleFileSystemSetting

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequir
ed=true. This element represents the
configuration settings of a LocalFileSystem
that has a contained file or directory that has
been made locally accessible from a file
server ComputerSystem. This Setting
provides further details on the functionality
supported and the parameters of that
functionality when locally accessible.

SELECT * FROM CIM_InstCreation WHERE
Sourcelnstance ISA SNIA_LocalFileSystem

Mandatory

CQL -Creation of a LocalFileSystem element.

SELECT * FROM CIM_InstModification
WHERE Sourcelnstance ISA
SNIA_LocalFileSystem

Mandatory

Modification of a LocalFileSystem element.

9.7.1

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

CIM_Dependency (Uses Directory Services From)

Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either 'Required’ or 'Optional'.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

203

Filesystem Manipulation Subprofile

Table 112 describes class CIM_Dependency (Uses Directory Services From).

Table 112 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services

From)
Properties Flags Requirement | Description & Notes
Antecedent Mandatory The ComputerSystem that indicates the directory service(s)

that support user, group and other security principal
identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other
security principal identities is supported by the antecedent
ComputerSystem.

9.7.2 CIM_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 113 describes class CIM_ElementCapabilities (FS Configuration Capabilities).

Table 113 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration

Capabilities)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The Filesystem Configuration Service.
Capabilities Mandatory The Filesystem Configuration Capabilities element.

9.7.3 CIM_ElementCapabilities (Local Access Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 114 describes class CIM_ElementCapabilities (Local Access Configuration Capabilities).

Table 114 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Con-
figuration Capabilities)

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The Filesystem Configuration Service.
Capabilities Mandatory The Filesystem Configuration Capabilities element.

204

Filesystem Manipulation Subprofile

9.7.4 CIM_ElementCapabilities (Non-Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 115 describes class CIM_ElementCapabilities (Non-Default).

Table 115 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default)

Properties Flags Requirement | Description & Notes
Capabilities Mandatory
ManagedElement Mandatory

9.7.5 CIM_ElementSettingData (Attached to Filesystem)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Optional

Table 116 describes class CIM_ElementSettingData (Attached to Filesystem).

Table 116 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to File-

system)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The LocalFileSystem element representing a filesystem.
SettingData Mandatory The configuration of the LocalFileSystem.

9.7.6 CIM_ElementSettingData (Local Access Required)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 205

Filesystem Manipulation Subprofile

Table 117 describes class CIM_ElementSettingData (Local Access Required).

Table 117 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access

Required)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.
SettingData Mandatory The local access settings of the LocalFileSystem, specified
on creation or modification.

9.7.7 CIM_HostedDependency (Attached to File System)

Created By: Extrinsic: SNIA_CreateFileSystem

Modified By: Extrinsic: SNIA_ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 118 describes class CIM_HostedDependency (Attached to File System).

Table 118 - SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File

System)
Properties Flags Requirement | Description & Notes
Antecedent Mandatory The Scoping File Server ComputerSystem.
Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

9.7.8 CIM_HostedDependency (Predefined Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 119 describes class CIM_HostedDependency (Predefined Capabilities).

Table 119 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabil-

ities)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The SNIA_LocallyAccessibleFileSystemCapabilities that is
scoped by the file server ComputerSystem.

206

Filesystem Manipulation Subprofile

9.7.9 CIM_HostedDependency (Predefined Setting)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 120 describes class CIM_HostedDependency (Predefined Setting).

Table 120 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

9.7.10 CIM_HostedFileSystem

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

Table 121 describes class CIM_HostedFileSystem.

Table 121 - SMI Referenced Properties/Methods for CIM_HostedFileSystem

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The ComputerSystem that hosts a LocalFileSystem. The
Dedicated property must be one of 24 (NAS Head), 25 (SC
NAS), 16 (File Server).

PartComponent Mandatory The hosted filesystem.

9.7.11 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SMI-S 1.6.0 Revision 5 SNIA Technical Position 207

Filesystem Manipulation Subprofile

Table 122 describes class CIM_HostedService.

Table 122 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement | Description & Notes
Dependent Mandatory The Filesystem Configuration Service.
Antecedent Mandatory The hosting ComputerSystem. This can be the top level

system or a component ComputerSystem of the Multiple
Computer System profile.

9.7.12 CIM_SettingsDefineCapabilities (Predefined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 123 describes class CIM_SettingsDefineCapabilities (Predefined FS Settings).

Table 123 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined
FS Settings)

Properties Flags Requirement | Description & Notes

PropertyPolicy Mandatory PropertyPolicy defines whether or not the non-null, non-key
properties of the associated FileSystemSetting element are
treated independently or as a correlated set.

ValueRole Mandatory ValueRole specifies the semantics of the non-null, non-key
properties of the associated FileSystemSetting element,
such as whether they are supported or unsupported, and if
supported, whether they are a default and/or an optimal
value or an average of some kind.

ValueRange Mandatory ValueRange specifies the semantics of the non-null, non-
key properties of the associated FileSystemSetting
element, such as whether they are point properties, or
whether they represent maximum or minimum values for
the properties. If some properties already have maximums
and/or minimums specified by another FileSystemSetting
instance, this could specify increments of the property
value that are supported.

GroupComponent Mandatory A Filesystem Capabilities element that is defined by a
collection of filesystem settings.

PartComponent Mandatory A filesystem setting that provides a point or a partial
definition for a Filesystem Capabilities element.

9.7.13 CIM_SettingsDefineCapabilities (Predefined Local Access Settings)

208

Created By: Static
Modified By: Static
Deleted By: Static

Filesystem Manipulation Subprofile

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 124 describes class CIM_SettingsDefineCapabilities (Predefined Local Access Settings).

Table 124 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined
Local Access Settings)

Properties

Flags

Requirement

Description & Notes

PropertyPolicy

Mandatory

PropertyPolicy defines whether or not the non-null, non-key
properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance are
treated independently or as a correlated set.

ValueRole

Mandatory

ValueRole specifies the semantics of the non-null, non-key
properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are supported or unsupported, and if
supported, whether they are a default and/or an optimal
value or an average of some kind.

ValueRange

Mandatory

ValueRange specifies the semantics of the non-null, non-
key properties of the associated
SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are point properties, or whether they
represent maximum or minimum values for the properties.
If some properties already have maximums and/or
minimums specified by another
SNIA_LocallyAccessibleFileSystemSetting instance, this
could specify increments of the property value that are
supported.

GroupComponent

Mandatory

A Capabilities element of the filesystem that is defined by a
collection of SNIA_LocallyAccessibleFileSystemSetting
elements, each being scoped to the File Server
ComputerSystem with which it can be used.

PartComponent

Mandatory

A SNIA_LocallyAccessibleFileSystemSetting that provides
a point or a partial definition for a
SNIA_LocallyAccessibleFileSystemCapabilities element.

9.7.14 SNIA_ElementCapabilities (Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

SMI-S 1.6.0 Revision 5

SNIA Technical Position 209

Filesystem Manipulation Subprofile

Table 125 describes class SNIA_ElementCapabilities (Default).

Table 125 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (Default)

Properties Flags Requirement | Description & Notes
Characteristics Optional

Capabilities Mandatory

ManagedElement Mandatory

9.7.15 SNIA_FileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 126 describes class SNIA_FileSystemCapabilities.

Table 126 - SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the FileSystemCapabilities
element of a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

ActualFileSystemTyp Mandatory This identifies the type of filesystem that this

e FileSystemCapabilities represents.

SupportedProperties Mandatory This is the list of configuration properties (of

FileSystemSetting) that are supported for specification at
creation time by this FileSystemCapabilities element.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of
FileSystemSettings that is a supported variant of an array
of FileSystemSettings passed in as an embedded IN
parameter. The method returns the supported
FileSystemSetting in an array of embedded OUT
parameters. This profile only supports arrays with a single

entry.
GetRequiredStorage Optional This extrinsic method supports determining the storage
Size() space requirements for a filesystem specified by the

combination of a FileSystemSetting and a StorageSetting.
The StorageSetting specifies the required redundancy,
multiple Logical Disk usage, and other storage mapping
considerations, while the FileSystemSetting transforms
client quality-of-service specifications to storage resource
requirements.

210

Filesystem Manipulation Subprofile

9.7.16 SNIA_FileSystemConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 127 describes class SNIA_FileSystemConfigurationCapabilities.

Table 127 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for this element representing the
capabilities of a Filesystem Configuration Service.

ElementName

Mandatory

A user-friendly name for this Capabilities element.

SupportedActualFile
SystemTypes

Mandatory

The Service can be associated with multiple Capabilities
elements, one per ActualFileSystemType property value.
This property lists all of the supported
ActualFileSystemTypes. Each entry in this array must have
exactly one corresponding FileSystemCapabilities element
with that entry as the value of the ActualFileSystemType

property.

SupportedSynchrono
usMethods

Mandatory

The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
synchronously. A supported method shall be listed in this
property or in the SupportedAsynchronousMethods
property or both.

SupportedAsynchron
ousMethods

Mandatory

The Service supports a number of extrinsic methods -- this
property identifies the ones that can be called
asynchronously. A supported method shall be listed in this
property or in the SupportedSynchronousMethods property
or both.

InitialAvailability

Mandatory

This property represents the state of availability of a
LocalFileSystem on initial creation using the
FileSystemConfigurationService associated with this
Capabilities element.

LocalAccessibilitySu
pport

Optional

This specifies whether a LocalFileSystem created or
modified by this FileSystemConfigurationService needs to
be made locally accessible at a local access point before a
file server ComputerSystem can make it available to
operational clients or for export as a share. This is typical of
some NAS and filesystem implementations. If not specified,
the default is "Local Access Not Required".

SMI-S 1.6.0 Revision 5

SNIA Technical Position 211

Filesystem Manipulation Subprofile

Table 127 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

BlockStorageCreatio
nSupport

Optional

BlockStorageCreationSupport is an ordered array of
enumerated values that place a number of restrictions on
the use of parameters for SNIA_CreateFileSystem and
SNIA_ModifyFileSystem.

1. The first entry is an enumerated value that specifies if an
already existing LogicalDIsk may be used -- this is either
required, optional, or not allowed. "Not Allowed" indicates
that the Pools and ExtentSettings parameters must be used
to create LogicalDisk(s) for this filesystem and the
InExtents parameter must be NULL. "Optional" indicates
that either the Pools and ExtentSettings parameters or the
InExtents parameter should be specified, but not both.
"Required" indicates that the InExtents parameter may be
specified and the Pools and ExtentSettings parameters
must be NULL.

2. (optional) An integer that specifies an upper limit to the
number of StorageElements that can be specified, either as
InExtents parameters or as Pools and ExtentSettings.

3. (optional) An integer that specifies the number of distinct
pools that the Pools parameters can specify -- zero, if Pools
is not supported or if there is no limit, and a specific number
if there is a limit. In practice we expect that the value will be
either zero or one.

4. (optional) A boolean value, represented by '0' for false
and '1' for true, that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating
that a default setting is to be used).

212

Filesystem Manipulation Subprofile

Table 127 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

DirectoryServerPara
meterSupported

Optional

This enumeration indicates support for the DirectoryServer
parameter to the extrinsic method
FileSystemConfigurationService.SNIA_CreateFileSystem()
. The options are:

‘Not Used' indicates that the filesystem does not support
security principal information associated with filesystem
objects. The LocalFileSystem will not be associated to a
DirectoryServer.

'Supported' indicates that the filesystem supports security
principal information associated with filesystem objects.
The LocalFileSystem will be associated to a directory
server ComputerSystem. And the DirectoryServer
parameter of SNIA_CreateFileSystem is required. If it is not
specified, it will be defaulted to the FileServer parameter in
the same call. If the FileServer parameter is also not
specified, the DirectoryServer parameter will be defaulted
to the host of the FileSystemConfigurationService.

'‘Supported, Defaulted to FileServer' indicates that the
filesystem supports security principal information
associated with filesystem objects. The LocalFileSystem
will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of SNIA_CreateFileSystem
is NOT supported, but is automatically defaulted to the
FileServer parameter of the same call. If the FileServer
parameter is not specified, the DirectoryServer parameter
will be defaulted to the host of the
FileSystemConfigurationService.

'‘Supported, Defaulted to FileSystem host' indicates that
the filesystem supports security principal information
associated with filesystem objects. The LocalFileSystem
will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of SNIA_CreateFileSystem
is NOT supported, but is automatically defaulted to the host
of the FileSystem created by SNIA_CreateFileSystem().

9.7.17 SNIA_FileSystemConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SMI-S 1.6.0 Revision 5

SNIA Technical Position 213

Filesystem Manipulation Subprofile

Table 128 describes class SNIA_FileSystemConfigurationService.

Table 128 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement | Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClas Mandatory The CIM Class name of the ComputerSystem hosting the

sName Service.

SystemName Mandatory The Name property of the ComputerSystem hosting the
Service.

CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

SNIA_CreateFileSyst Mandatory Creates a LocalFileSystem as specified by parameters and

em() Capabilities of the service and returns a reference to it. If
appropriate and supported, a Job may be created and a
reference to the Job will be returned.

SNIA_ModifyFileSyst Optional Modifies a LocalFileSystem indicated by a reference and

em() as specified by referenceparameters and Capabilities of the
service. If appropriate and supported, a Job may be
created and a reference to the Job will be returned.

DeleteFileSystem() Mandatory Deletes a LocalFileSystem indicated by reference. If

appropriate and supported, a Job may be created and a
reference to the Job will be returned.

9.7.18 SNIA_FileSystemSetting (Attached to FileSystem)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Requirement: Optional

Table 129 describes class SNIA_FileSystemSetting (Attached to FileSystem).

Table 129 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to File-

System)
Properties Flags Requirement | Description & Notes
InstancelD Mandatory An opaque, unigue id for a FileSystemSetting element.
ElementName Mandatory A client defined user-friendly name for this
FileSystemSetting element.
ActualFileSystemTyp Mandatory This identifies the type of filesystem that this
e FileSystemSetting represents.
DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)

that are shared between files.

214

Filesystem Manipulation Subprofile

Table 129 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to File-

System)

Properties

Flags

Requirement

Description & Notes

CopyTarget

Optional

This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttribu
tes

Mandatory

This specifies the support provided for using upper and
lower case characters in a filename.

ObjectTypes

Mandatory

This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin

Optional

This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by the
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMa
X

Optional

This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes|] that can be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjects

Optional

This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize

Optional

This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin

Optional

This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[] that will be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax

Optional

This is an array that specifies the maximum size of an
object of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by the
LocalFileSystem configured by this FileSystemSetting
element.

FilenameStreamFor
mats

Optional

This is an array that specifies the stream formats (e.g.,
UTF-8) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameFormats

Optional

This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by the LocalFileSystem
configured by this FileSystemSetting element.

FilenameLengthMax

Optional

This specifies the maximum length of a filename that will be
supported by the FileSystem configured by this
FileSystemSetting element.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 215

Filesystem Manipulation Subprofile

Table 129 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to File-

System)

Properties Flags Requirement | Description & Notes

FilenameReservedC Optional This string or character array specifies the characters

haracterSet reserved (i.e., not allowed) for use in filenames that will be
required by the FileSystem configured by this
FileSystemSetting element.

SupportedLockingSe Optional This array specifies the set of file access/locking semantics

mantics supported by the FileSystem configured by this
FileSystemSetting element.

SupportedAuthorizati Optional This array specifies the kind of file authorization protocols

onProtocols supported by the FileSystem configured by this
FileSystemSetting element.

SupportedAuthentica Optional This array specifies the set of file authentication protocols

tionProtocols

that can be supported by the FileSystem configured by this
FileSystemSetting element.

9.7.19 SNIA_FileSystemSetting (Predefined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 130 describes class SNIA_FileSystemSetting (Predefined FS Settings).

Table 130 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Set-

tes

tings)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A provider supplied user-friendly name for this
FileSystemSetting element.

ActualFileSystemTyp Mandatory This identifies the type of filesystem that this

e FileSystemSetting represents. It shall match the
corresponding property of FileSystemCapabilities.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents)
that are shared between files.

CopyTarget Optional This specifies if support should be provided for using the
created filesystem as a target of a Copy operation.

FilenameCaseAttribu Mandatory This specifies the support provided for using upper and

lower case characters in a filename.

216

Filesystem Manipulation Subprofile

Table 130 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Set-

tings)

Properties

Flags

Requirement

Description & Notes

ObjectTypes

Mandatory

This is an array that specifies the different types of objects
that this filesystem may be used to provide and provides
further details in corresponding entries in other attributes.

NumberOfObjectsMin

Optional

This is an array that specifies the minimum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by a
LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMa
X

Optional

This is an array that specifies the maximum number of
objects of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

NumberOfObjects

Optional

This is an array that specifies the expected number of
objects of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSize

Optional

This is an array that specifies the expected size of a typical
object of the type specified by the corresponding entry in
ObjectTypes[].

ObjectSizeMin

Optional

This is an array that specifies the minimum size of an object
of the type specified by the corresponding entry in
ObjectTypes[] that will be supportable by a
LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax

Optional

This is an array that specifies the maximum size of an
object of the type specified by the corresponding entry in
ObjectTypes[] that can be supported by a LocalFileSystem
configured by this FileSystemSetting element.

FilenameStreamFor
mats

Optional

This is an array that specifies the stream formats (e.qg.,
UTF-8) supported for filenames by a filesystem with this
setting.

FilenameFormats

Optional

This is an array that specifies the formats (e.g. DOS 8.3
names) supported for filenames by a filesystem with this
setting.

FilenameLengthMax

Optional

This specifies the maximum length of a filename supported
by a filesystem with this setting.

FilenameReservedC
haracterSet

Optional

This string or character array specifies the characters
reserved (i.e., not allowed) for use in filenames that will be
required by a filesystem with this setting.

SupportedLockingSe
mantics

Optional

This array specifies the set of file access/locking semantics
supported by a filesystem with this setting.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 217

Filesystem Manipulation Subprofile

Table 130 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Set-

tings)
Properties Flags Requirement | Description & Notes
SupportedAuthorizati Optional This array specifies the kind of file authorization protocols
onProtocols supported by a filesystem with this setting.
SupportedAuthentica Optional This array specifies the kind of file authentication protocols
tionProtocols supported by a filesystem with this setting.

9.7.20 SNIA_LocalAccessAvailable

Created By: Extrinsic: SNIA_CreateFileSystem

Modified By: Extrinsic: SNIA_ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 131 describes class SNIA _LocalAccessAvailable.

Table 131 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement | Description & Notes

LocalAccessPoint Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true. The
name used by the file server to identify the filesystem.
Sometimes referred to as a mount-point. For many UNIX-
based systems, this will be a qualified full pathname. For
Windows systems this could also be the drive letter used
for the LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file
server ComputerSystem.

FileServer Mandatory The file server ComputerSystem that will be able to export
shares from this LocalFileSystem.

9.7.21 SNIA_LocalFileSystem

The following properties of LocalFileSystem are defined by the MOF, but the way we model LocalFileSystem has
changed significantly. The setting/configuration properties are not supported using these properties, and so all of
these are "Not Supported”. The run-time properties will be supported by a statistics/performance profile and that

has yet to be defined.

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

218

Table 132 describes class SNIA_LocalFileSystem.

Filesystem Manipulation Subprofile

Table 132 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties

Flags

Requirement

Description & Notes

LocalAccessDefinitio
nRequired

Mandatory

This boolean property indicates whether or not a
LocalFileSystem with this FileSystemSetting must be made
locally accessible ("mounted") from a file server
ComputerSystem before it can be shared or otherwise
made available to operational clients.

PathNameSeparator
String

Mandatory

This indicates the string of characters used to separate
directory components of a canonically formatted path to a
file from the root of the filesystem. This string is expected to
be specific to the ActualFileSystemType and so is vendor/
implementation dependent. However, by surfacing it we
make it possible for a client to parse a pathname into the
hierarchical sequence of directories that compose it.

DirectoryServiceUsa
ge

Optional

This enumeration indicates whether the filesystem supports
security principal information and therefore requires
support from a file server that uses one or more directory
services. If the filesystem requires such support, there must
be a concrete subclass of Dependency between the
LocalFileSystem element and the specified file server
ComputerSystem. The values supported by this property
are:

'‘Not Used' indicates that the filesystem will not support
security principal information and so will not require support
from a directory service.

'‘Optional’ indicates that the filesystem may support
security principal information. If it does, it will require
support from a directory service and the Dependency
association described above must exist.

'Required' indicates that the filesystem supports security
principal information and will require support from a
directory service. The Dependency association described
above must exist.

CSCreationClassNa
me

Mandatory

The CIM class name of the hosting ComputerSystem.

CSName

Mandatory

The Name property of the hosting ComputerSystem.

CreationClassName

Mandatory

The CIM class name of the this element.

Name

Mandatory

A unique name for this LocalFileSystem in the context of
the hosting ComputerSystem.

EnabledState

Optional

Current state of enablement of the LocalFileSystem.

OtherEnabledState

Optional

Vendor-specific state of the LocalFileSystem indicated by
EnabledState = 1("Other").

SMI-S 1.6.0 Revision 5

SNIA Technical Position 219

Filesystem Manipulation Subprofile

Table 132 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement | Description & Notes

TimeOfLastStateCha Optional A timestamp indicating when the state was last changed.
nge

RequestedState Optional Not supported.

OperationalStatus Mandatory The current operational status of the LocalFileSystem.
Root Optional A path that specifies the "mount point" of the filesystem in

an unitary computer system that is both the host of the
filesystem and is the file server that makes it available.

BlockSize Mandatory The size of a block in bytes that the implementation used
as a fixed block size when creating this filesystem.

FileSystemSize Mandatory The total current size of the filesystem in blocks.

AvailableSpace Mandatory The space available currently in the filesystem in blocks.

ReadOnly Optional Indicates that this is a read-only filesystem that does not
allow modifications.

EncryptionMethod Optional Indicates if files are encrypted and the method of
encryption.

CompressionMethod Optional Indicates if files are compressed before being stored, and
the methods of compression..

CaseSensitive Optional Whether this filesystem is sensitive to the case of
characters in filenames.

CasePreserved Optional Whether this filesystem preserves the case of characters in
filenames when saving and restoring.

CodeSet Optional The codeset used in filenames.

MaxFileNameLength Optional The length of the longest filename supported by the
implementation.

ClusterSize Optional Not supported.

FileSystemType Optional This is a string that matches

FileSystemSetting.ActualFileSystemType property used to
create the filesystem.

Pragmatically, this property should be ignored.

NumberOfFiles Optional The actual current number of files in the filesystem. This
value is an approximation as it can vary continuously when
the filesystem is in use.

IsFixedSize Optional Indicates that the filesystem cannot be expanded or shrunk.

Resizelncrement Optional The size by which to increase the size of the filesystem
when requested.

RequestStateChange Optional Not supported.
0

220

Filesystem Manipulation Subprofile

9.7.22 SNIA_LocallyAccessibleFileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local Access
Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 133 describes class SNIA LocallyAccessibleFileSystemCapabilities.

Table 133 - SMI Referenced Properties/Methods for
SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the
SNIA_LocallyAccessibleFileSystemCapabilities associated
to a Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this
SNIA_LocallyAccessibleFileSystemCapabilities element.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 221

Filesystem Manipulation Subprofile

Table 133 - SMI Referenced Properties/Methods for
SNIA_LocallyAccessibleFileSystemCapabilities

Properties

Flags Requirement | Description & Notes

SupportedProperties

Mandatory An array of property names of the

supports.

2 'FailurePolicy'

3 'RetriesMax'

4 'InitialEnabledState’

5 'RequestRetryPolicy’'

6 'TransmissionRetriesMax’
7 'RetransmissionTimeout'
8 'CachingOptions'

9 'ReadBufferSize'

10 'WriteBufferSize'

11 'AttributeCaching'

12 'ReadWritePolicy'

13 'LockPolicy'

14 'EnableOnSystemStart’
15 'ReadWritePref'

16 'ExecutePref'

17 'RootAccessPref'.

222

LocallyAccessibleFileSystemSetting that this
SNIA_LocallyAccessibleFileSystemCapabilities element

Filesystem Manipulation Subprofile

Table 133 - SMI Referenced Properties/Methods for
SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement | Description & Notes
SupportedObjectsFor Optional If AttributeCaching is supported, this specifies the array of
AttributeCaching objects that can be set up for caching. A subset of these

entries will become the entries of the
AttributeCachingObjects property in the Setting.

These classes represent types of objects stored in a
filesystem implementation -- files and directories as well as
others that may be defined in the future. The corresponding
Setting properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object. ‘None
and 'All' cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is
interpreted as the default setting for all objects. If neither
'None' or 'All' are specified, the caching settings for other
objects are defaulted by the implementation. If 'Rest' is
specified, the entry applies to all known object types other
than the named ones. If 'Unknown' is specified it applies to
object types not known to this application (this can happen
when foreign file systems are mounted.

0 'Unknown'
1'None'

2 All

3 'Rest’

4 'File'

5 'Directory'.

9.7.23 SNIA_LocallyAccessibleFileSystemSetting

Created By: Extrinsic: SNIA_CreateFileSystem

Modified By: Extrinsic: SNIA_ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem or SNIA_ModifyFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 223

Filesystem Manipulation Subprofile

Table 134 describes class SNIA _LocallyAccessibleFileSystemSetting.

Table 134 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for a
LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this
LocallyAccessibleFileSystemSetting element.

InitialEnabledState Optional InitialEnabledState is an integer enumeration that indicates
the enabled/disabled states initially set for a locally
accessible filesystem (LAFS). The element functions by
passing commands onto the underlying filesystem, and so
cannot indicate transitions between requested states
because those states cannot be requested. The following
text briefly summarizes the various enabled/disabled initial
states:

'‘Enabled' (2) indicates that the element will execute
commands, will process any queued commands, and will
gueue new requests.

'‘Disabled’ (3) indicates that the element will not execute
commands and will drop any new requests.

'In Test' (7) indicates that the element will be in a test state.

'‘Deferred’ (8) indicates that the element will not process
any commands but will queue new requests.

'‘Quiesce’ (9) indicates that the element is enabled but in a
restricted mode. The element's behavior is similar to the
Enabled state, but it only processes a restricted set of
commands. All other requests are queued.

OtherEnabledState Optional A string describing the element's initial enabled/disabled
state when the InitialEnabledState property is set to 1
("Other"). This property MUST be set to NULL when
InitialEnabledState is any value other than 1.

FailurePolicy Optional An enumerated value that specifies if the operation to make
a FileSystem locally accessible to a scoping
ComputerSystem should be attempted one or more times
in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by
the corresponding RetriesMax property of the setting.

RetriesMax Optional An integer specifying the maximum number of attempts that
should be made by the scoping ComputerSystem to make
a filesystem locally accessible. A value of "0" specifies an
implementation-specific default.

224

Filesystem Manipulation Subprofile

Table 134 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

RequestRetryPolicy

Optional

An enumerated value representing the policy that is
supported by the operational file server on a request to the
operational filesystem that either failed or left the file server
hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout
happens, or, to try repeatedly. If the request can be
performed in the background, the request will be tried
repeatedly until stopped.

TransmissionRetries
Max

Optional

An integer specifying the maximum number of
retransmission attempts to be made from the operational
file server to the operational filesystem when the
transmission of a request fails or makes the file server
hang. A value of "0" specifies an implementation-specific
default. This is only relevant if there is a transmission
channel between the file server and the underlying
filesystem.

RetransmissionTime
outMin

Optional

An integer specifying the minimum number of milliseconds
that the operational file server must wait before assuming
that a request to the operational filesystem has failed. "0"
indicates an implementation-specific default. This is only
relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions

Optional

An enumerated value that specifies if a local cache is
supported by the operational file server when accessing the
underlying operational filesystem.

BuffersSupport

Optional

An array or enumerated values that specifies the buffering
mechanisms supported by the operational file server for
accessing the underlying operational filesystem." If
supported, other properties will establish the level of
support. If the property is NULL or the empty array,
buffering is not supported.

ReadBufferSizeMin

Optional

An integer specifying the minimum number of bytes that
must be allocated to each buffer used for reading. A value
of "0" specifies an implementation-specific default.

ReadBufferSizeMax

Optional

An integer specifying the maximum number of bytes that
may be allocated to each buffer used for reading. A value of
"0" specifies an implementation-specific default.

WriteBufferSizeMin

Optional

An integer specifying the minimum number of bytes that
must be allocated to each buffer used for writing. A value of
"0" specifies an implementation-specific default.

WriteBufferSizeMax

Optional

An integer specifying the maximum number of bytes that
may be allocated to each buffer used for writing. A value of
"0" specifies an implementation-specific default.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 225

Filesystem Manipulation Subprofile

Table 134 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement | Description & Notes

AttributeCaching Optional An array of enumerated values that specify whether
attribute caching is (or is not) supported by the operational
file server when accessing specific types of objects from
the underlying operational filesystem. The object type and
the support parameters are specified in the corresponding
AttributeCachingObijects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

Filesystem object types that can be accessed locally are
represented by an entry in these arrays. The entry in the
AttributeCaching array can be "On", "Off", or "Unknown".
Implementation of this feature requires support from other
system components, so it is quite possible that specifying
"On" may still not result in caching behavior. "Unknown"
indicates that the access operation will try to work with
whatever options the operational file server and filesystem
can support. In all cases, AttributeCachingTimeMin and
AttributeCachingTimeMax provide the minimum and
maximum time for which the attributes can be cached.
When this Setting is used as a Goal, the client may specify
"Unknown", but the Setting in the created object should
contain the supported setting, whether "On" or "Off".

AttributeCachingObje Optional An array of enumerated values that specify the attribute
cts caching support provided to various object types by the
operational file server when accessing the underlying
operational filesystem. These", types represent the types of
objects stored in a FileSystem -- files and directories as
well as others that may be defined in the future. The
corresponding properties, AttributeCaching,
AttributeCachingTimeMin, and AttributeCachingTimeMax
provide the supported features for the type of object.
"None" and "All" cannot both be specified; if either one is
specified, it must be the first entry in the array and the entry
is interpreted as the default setting for all objects. If neither
"None" or "All" are specified, the caching settings for other
objects are defaulted by the implementation. If "Rest" is
specified, the entry applies to all known object types other
than the named ones. If "Unknown" is specified it applies to
object types not known to this application (this can happen
when foreign file systems are mounted.

AttributeCachingTime Optional An array of integers specifying, in milliseconds, the

Min minimum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of "0" indicates an implementation-specific default.

AttributeCachingTime Optional An array of integers specifying, in milliseconds, the

Max maximum time for which an object of the type specified by
the corresponding AttributeCaching property must be
retained in the attribute cache. When used as a Goal, a
value of "0" indicates an implementation-specific default.

226

Filesystem Manipulation Subprofile

Table 134 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

ReadWritePolicy

Optional

An enumerated value that specifies the Read-Write policy
set on the operational filesystem and supported by the
operational file server when accessing it. '‘Read Only’
specifies that the access to the operational filesystem by
the operational file server is set up solely for reading.
'Read/Write' specifies that the access to the operational
filesystem by the operational file server is set up for both
reading and writing. 'Force Read/Write' specifies that
'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is
intended for use when the associated FileSystem has been
made 'Read Only' by default, as might happen if it were
created to be the target of a Synchronization or Mirror
operation.

LockPolicy

Optional

An enumerated value that specifies the Locking that will be
enforced on the operational filesystem by the operational
file server when accessing it. 'Enforce None' does not
enforce locks. 'Enforce Write' does not allow writes to
locked files. 'Enforce Read/Write' does not allow reads or
writes to locked files.

EnableOnSystemStar
t

Optional

An enumerated value that specifies if local access from the
operational file server to the operational filesystem should
be enabled when the file server is started.

ReadWritePref

Optional

An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about access to
elements contained in the operational filesystem. The
provider is expected to surface this access using the CIM
privilege model.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 227

Filesystem Manipulation Subprofile

Table 134 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

ExecutePref

Optional

An enumerated value that specifies if support should be
provided on the operational file server for executing
elements contained in the operational filesystem accessed
through this local access point. This may require setting up
specialized paging or execution buffers either on the
operational file server or on the operational filesystem side
(as appropriate for the implementation). Note that this does
not provide any rights to actually execute any element but
only specifies support for such execution, if permitted.

RootAccessPref

Optional

An instance of a CIM_Privilege, encoded as a string, that
expresses the client's expectations about privileged access
by appropriately privileged System Administrative users on
the operational file server ("root" or "superuser") to the
operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege
model.

Support for the privileged access might require setup at
both the operational file server as well as the operational
filesystem, so there is no guarantee that the request can be
satisfied.

EXPERIMENTAL

228

EXPERIMENTAL

Clause 10: Filesystem Performance Profile

10.1 Synopsis

Profile Name: Filesystem Performance (Component Profile)
Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.18

Table 135 describes the related profiles for Filesystem Performance.

Table 135 - Related Profiles for Filesystem Performance

Profile Name Organization | Version Requirement | Description

Filesystem SNIA 1.4.0 Conditional Conditional requirement: This is
mandatory if
SNIA_FileSystemStatisticsCapabilitie
s.ElementTypesSupported = "102"
(Local Filesystem statistics support).

File Export SNIA 1.5.0 Conditional Conditional requirement: This is
mandatory if
SNIA_FileSystemStatisticsCapabilitie
s.ElementTypesSupported = "103"
(Exported File Share statistics
support).

Generic Target Ports | SNIA 1.4.0 Conditional Conditional requirement: This is
mandatory if
SNIA_FileSystemStatisticsCapabilitie
s.ElementTypesSupported = "104"
(Exporting Port statistics support).

Note: Each of these subprofiles is mandatory if the element in question is to be metered. For example, in
order to keep statistics on exported file shares, it will be necessary for File Shares to be modeled
through the use of the File Export Subprofile.

Central Class: FileSystemStatisticsService

Scoping Class: ComputerSystem

10.2 Description

10.2.1 Overview

The Filesystem Performance Subprofile defines classes and methods for managing filesystem-related
performance information. It is a subprofile for use with autonomous profiles that directly support filesystems, which
in this release of SMI-S specifically includes the NAS Head and the Self-Contained NAS Profiles.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 229

Filesystem Performance Profile

One of the key SRM disciplines for managing storage is Performance Management. In order to manage
performance, a number of processes need to be in place, including the ability to measure the performance and
saturation points of components within the storage network.

There are currently no common statistics defined that can be used to manage multiple vendor filesystem-related
entities (such as File Servers) from a performance perspective. This subprofile defines specific measurements and
methods to make common statistics available to SRM applications regarding filesystem-related entities. Examples
of such statistics include:

= The read, write and other 1/O operation counts for a filesystem or a file share,
< The cumulative elapsed time required for the I/O operations to complete,
= The number of bytes transferred per unit of time.

Particular areas related to Performance Management that can make use of the statistics provided by the
Filesystem Performance Subprofile include:

= Filesystem utilization (e.g., "hot-spot" and trend analyses; tracking usage efficiency by monitoring response
times and I0PS/throughput rates; identifying over-utilization and contention that is leading to performance
degradation).

= Diagnostics and problem determination (e.g., identifying bottlenecks, "point(s) of pain", etc., especially at an
upper level within the overall "I/O operation stack").

= Tuning (e.g., determining allocation/reallocation of particular filesystems and/or file placements in the efforts to
meet overall performance goals and/or other Service Level Agreements; determining the impact of the
underlying storage and applicable network provisioning upon filesystem performance and utilization).

< Workload characterization (e.g., characterizing particular filesystem usage with possible correlation to
associated applications).

= Modeling and planning (e.g., enabling the use of empirical metrics as the input/basis for various modeling and
planning exercises related to filesystem and overall storage concerns).

Performance Measurement within the context of filesystems is the key deliverable that is the focus of this
subprofile. Of particular importance, the statistics provided by the Filesystem Performance Subprofile can help
facilitate a "top-down" approach within the areas noted above (i.e., by reflecting performance information that is
directly related to and seen by/at a "top-most" component within the overall /O operation processing stack).

Note: Performance analysis is broader than simply filesystems and related entities such as File Servers. Complete
analysis requires performance information from hosts, fabric and the underlying storage systems. Theses are (or
will be) addressed separately as part of the appropriate profiles (e.g., the Block Server Performance Subprofile,
which includes further discussion regarding Performance Management).

The Filesystem Performance Subprofile provides statistics, which are associated with fundamental elements that
can comprise a filesystem-related entity (such as a NAS Head or a Self-Contained NAS). These elements include:

« Filesystems
= Exported file shares
= Network-interface ports used to export file shares

In order to monitor and manage the aforementioned elements, it is necessary to identify performance counters for
each of these elements and to externalize an interface so that SRM applications can retrieve the counter values
when they so desire. The function of this subprofile is to support such SRM applications.

The Filesystem Performance Subprofile augments the profiles and subprofiles for those autonomous profiles within
this release of SMI-S that directly support filesystems. Instead of being an isolated subprofile, this subprofile adds

230

Filesystem Performance Profile

modeling constructs to existing profiles and subprofiles. Together these enhancements make up the Filesystem
Performance Subprofile (as would be registered in the Server Profile as a RegisteredSubprofile).

10.3 Implementation

10.3.1 Performance Additions Overview

Figure 15 provides an overview of the model. The shaded grey boxes show the new classes added by the
Filesystem Performance Subprofile.

Note: Not all properties defined for the statistics classes are shown within Figure 15. That is, there are additional
properties (both mandatory and optional) that are included within the statistical classes. These properties can be
found in 10.6 "CIM Elements".

SMI-S 1.6.0 Revision 5 SNIA Technical Position 231

Filesystem Performance Profile

SMIA_FilesygemStatisticsService

Name

RegigderedProfile

CreationClassName
Systemi ame

e
SubprofileRequiresProfile

SystemCreationC lassName
GetStatisticsCollectiond
Createt anifestCollection
AddOridodifyhd anifestd

|
IEIemeannforrrﬁToF'roﬂle

Frofile Registration Profilel

Rregisterad3 Ubprdfile
RegisteredMarme=]

‘Filesystern Performance”

Removeh anife st

HostedCollection

MerrberCfCollection

Aomocistedriiesysternstatisticei antfeg Coliection

ElementCapatilities HostedS ervice Cormutersystem StatisticsCallection
SMIA_FilesystermBtatistic s anifeg Collection
InstancelD
ElementName InstancelD
Sarplel rerval Elemertharme
ShIA_FilesystemStatisticsCapahilities TimeLastSarrpled | sDefault=True
InstancelD
ElementName W emberQfCollection
ElementsSuppotted]])]
Synchronoush ethodsSupp ort[) Filesystem Frofile
AgynchronoushiethodsSupported]) HostedFileSystem SMIA_Filesy derrStorageStatigic slData
ClockTickintersal : InstancelD
HostedAccessPaint LacalFilesystem Element Type=102
StatisticTime
— — Totalos
HostedShare
' —— —— —)
File Expaort Profile EldmentStatisticalD ata M ernberOfCollection

SMIA_FilesysternStorageStatisticalData

|78 MIA_SharedEle rment—
InstancelD

[chin Cilacuctomettctioliccd cmi g
| SMIA_FileSysemStatigtic shanifest

FileShare ElermertType=103 SHIA_FileSy semStatistic shanifest
StaticticTime
| TatallOs
= ElarmentStatisticalData

SAPAvalableF orElerment

ProtocolEndpoint

ShIA_Filesy sternStorageStatisticalD ata

™MFE or 'CIFS'

InstancelD
ElementType=104
StatisticTime
TotallOs

ShilA_FilesysternStorageStatisticshd anifest

InstancelD

ElerremstatisticalData—l

SMIA_Filesy stemSt atisticsManifestCollection

InstancelD
Elermenthame
IsDefault=F alse

ElermentType=102
I ricludeStatistic Time
IncludeTotallOs
IncludeReadl s
Includetirtel 05

ShIA_FilesystemBtorageStatistic st anifest

InstancelD
ElermentType="103
IncludeStatigicTime
InzludeTatallos

tt ermberOfC ollection

Figure 15 - Filesystem Performance Subprofile Summary Instance Diagram

Figure 15 shows a single instance of StatisticsCollection for the entire profile. The ComputerSystem (i.e., the "top
level" computer system depicted within the figure) is that of the autonomous profile (e.g., a NAS Head or a Self-

Contained NAS) which utilizes the Filesystem Performance Subprofile.

The StatisticsCollection is the anchor point from which all statistics being kept by the profile can be found. Statistics
are defined as a FileSystemStatisticalData class, instances of which hold the statistics for particular metered
elements (e.g., filesystems and file shares). The particular type of metered element is recorded in the instance of

FileSystemStatisticalData within the ElementType property.

232

Filesystem Performance Profile

All of the statistics instances are related to the elements that they meter via the ElementStatisticalData association
(e.g., FileSystemStatisticalData for a File Share can be found from the File Share by traversing the
ElementStatisticalData association).

All of the statistics instances kept within the profile are associated to the one StatisticsCollection instance. Access
to all of the statistics for the profile is through the StatisticsCollection. The StatisticsCollection has a
HostedCollection association to the "top level" computer system of the profile.

Note that statistics may be kept for a number of elements within the profile, including elements within subprofiles.
The particular elements that are metered are:

= Local filesystem. This provides a summary of all statistics for a particular filesystem (i.e., an instance of
LocalFileSystem). For example, all file read I/O operations (ReadlOs) directed to a particular filesystem. These
statistics are kept within the FileSystemStatisticalData instances, with one for each filesystem within the
system.

= Exported file share. This provides a summary of all statistics for a particular file share that is exported (i.e., an
instance of FileShare as described within the File Export Profile). For example, all file read I/O operations
(ReadlOs) directed to a particular file share that is exported to the network. These statistics are kept within the
FileSystemStatisticalData instances, with one for each FileShare within the system.

= Exporting port. This provides a summary of all statistics for a particular port through which a file share being
exported can be accessed (i.e., an instance of ProtocolEndpoint through which a FileShare can be accessed
as described within the File Export Profile). For example, all file read 1/0 operations (ReadlOs) directed to a
particular file share exporting port. These statistics are kept within the FileSystemStatisticalData instances,
with one for each file share exporting port within the system.

Finally, Figure 15 illustrates the FileSystemStatisticsService for Bulk retrieval of all the statistics data and the
creation of manifest collections. These methods (which are provided in a manner akin to that provided by the Block
Server Performance Subprofile) will be discussed later. They are shown here for completeness. Associated with
the FileSystemStatisticsService is a FileSystemStatisticsCapabilities instance that identifies the specific capabilities
implemented by the filesystem performance statistics support. Specifically, it includes an "ElementsSupported"”
property that identifies the elements for which statistics are kept; the FileSystemStatisticsCapabilities instance also
identifies the various retrieval mechanisms (e.g., Extrinsic, Association Traversal, Indications and/or Query) that
are implemented (i.e., supported) by the filesystem statistics support.

10.3.2 Summary of FileSystemStatisticsData support by Profile
Table 136 defines the Element Types (for FileSystemStatisticsData instances) that may be supported by profile.

Table 136 - Summary of Element Types by Profile

ElementType NAS Head Self-Contained NAS
Local filesystem YES YES
Exported File Share YES YES
Exporting Port YES YES

YES means that this specification defines the element type for the profile, but actual support by any given
implementation would be implementation dependent. NO means that this specification does not specify this
element type for the profile.

10.3.3 Profile Registration Profile Support for the Filesystem Performance Subprofile

At the top of Figure 15 there is a dashed box that illustrates a part of the Profile Registration Profile for the
autonomous profile (e.g., a NAS Head or a Self-Contained NAS) that utilizes the Filesystem Performance

SMI-S 1.6.0 Revision 5 SNIA Technical Position 233

Filesystem Performance Profile

Subprofile. The part illustrated represents the particulars for the Filesystem Performance Subprofile. If
performance support has been implemented, then there shall be a RegisteredSubprofile instance for the
Filesystem Performance Subprofile.

10.3.4 Default Manifest Collection

Associated with the instances of the StatisticsCollection shall be a provider-supplied (Default)
SNIA_FileSystemManifestCollection that represents the statistics properties that are kept by the profile. The
default manifest collection is indicated by the IsDefault property (=True) of the
SNIA_FileSystemManifestCollection. For each metered object (element) of the profile implementation, the default
manifest collection will have exactly one manifest that will identify which properties are included for that metered
object. If an object is not metered, then there shall not be a manifest for that element type. If an element type (e.g.,
Local filesystem) is metered, then there shall be a manifest for that element type.

10.3.5 Client Defined Manifest Collection

Manifest collections are either provider-supplied (SNIA_FileSystemManifestCollection.IsDefault=True) for the
profile implementation or client-defined collections (SNIA_FileSystemManifestCollection.IsDefault=False). Client-
defined collections are used to indicate the specific statistics properties that the client would like to retrieve using
the GetStatisticsCollection method. For a discussion of provider-supplied manifest collections, see 10.3.4.

Client-defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client-defined manifest collection is identified by the IsDefault property of the
collection set to False. For each element type of the filesystem statistics class (e.g., Local filesystem, exported file
share, etc.), a manifest can be defined that identifies which specific properties of the particular statistics class
element type are to be returned on a GetStatisticsCollection request. Each of the element types of the filesystem
statistics class may have no or one manifest in any given manifest collection. This is illustrated in Figure 15.

In Figure 15, manifest classes are defined for filesystems (LocalFileSystem) and exported file shares (FileShare).
Each property of the manifest is a Boolean that indicates whether the property is to be returned (true) or omitted
(false).

Multiple client-defined manifest collections can be defined in the profile. Consequently, different clients or different
client applications can define different manifests for different application needs. A manifest collection can
completely omit a whole set of statistics pertaining to a particular element type; for example, no ProtocolEndPoint
statistics (i.e., filesystem performance statistics associated with the element type of "Exporting Port", which
represents a port through which a File Share can be accessed from the network) are included within the client-
defined manifest collection shown in Figure 15. Since manifest collections are "client objects”, they are named
(ElementName) by the client for the client's convenience. The CIM server will generate an instance ID to uniquely
identify the manifest collection in the CIM Server.

Client-defined manifest collections are created using the CreateManifestCollection method. Manifests are added or
modified using the AddOrModifyManifest method. A manifest may be removed from the manifest collection by
using the RemoveManifests method.

Note: Use of manifest collections is optional with the GetStatisticsCollection method. If NULL for the manifest
collection is passed on input, then all statistics instances are assumed (i.e., all available statistics will be
returned).

10.3.6 Capabilities Support for Filesystem Performance Subprofile

There are two dimensions to determining what is supported with a Filesystem Performance Subprofile
implementation. First, there are the RegisteredSubprofiles supported by the autonomous profile (e.g., a NAS Head
or a Self-Contained NAS Profile) that utilizes the Filesystem Performance Subprofile. In order to support statistics
for a particular class of metered element, the corresponding object shall be modeled. So, if a NAS Head (for
example) has not implemented the File Export Subprofile, then it shall not implement the FileSystemStatisticalData
for "Exported File Share" in the Filesystem Performance Subprofile (and implementation of the File Export
Subprofile does not guarantee implementation of the FileSystemStatisticalData for exported file shares).

234

Filesystem Performance Profile

Both of these dimensions are captured in the FileSystemStatisticsCapabilities class instance. This class instance is
not created nor modified by Clients; rather, it is populated by the provider and has three properties of interest (as
discussed within the following sections). The second dimension is techniques supported for retrieving statistics and
manipulating manifest collections.

For the methods-supported properties described below (namely, SynchronousMethodsSupported and
AsynchronousMethodsSupported), any or all of the respective values can be missing (e.g., the arrays can be
NULL). If all of the methods supported are NULL, then manifest collections are not supported and neither
GetStatisticsCollection nor Query are supported for the retrieval of statistics. This leaves enumerations or
association traversals as the only methods for retrieving the statistics.

10.3.6.1 ElementsSupported

This property within the FileSystemStatisticsCapabilities class defines a list of element types for which statistical
data is available. For this release of SMI-S, the values of interest are "Local Filesystem”, "Exported File Share”,
and "Exporting Port".

To be a valid implementation of the Filesystem Performance Subprofile, at least one of the values listed for
ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can be
identified.

10.3.6.2 SynchronousMethodsSupported

This property within the FileSystemStatisticsCapabilities class defines the synchronous mechanisms that are
supported for retrieving statistics and for defining and modifying filters for statistics retrieval. For this release of
SMI-S, the values of interest are "Exec Query", "Indications”, "Query Collection”, "GetStatisticsCollection”,
"Manifest Creation", "Manifest Modification”, and "Manifest Removal".

10.3.6.3 AsynchronousMethodsSupported

This property within the FileSystemStatisticsCapabilities class defines the asynchronous mechanisms that are
supported for retrieving statistics. For this release of SMI-S, this should be NULL.

10.3.6.4 ClockTickInterval

An internal clocking interval for all timer counters kept in the system implementation, measured in microseconds
(i.e., the unit of measure in the timers, measured in microseconds). Time counters are considered to be
monotonically increasing counters that contain "ticks". Each tick represents one clock tick interval.

For example, if ClockTickinterval contained a value of 32, then each time counter tick would represent 32
microseconds.

10.3.7 Health and Fault Management Consideration

Not defined in this version of the specification.

10.3.8 Cascading Considerations

Not applicable

SMI-S 1.6.0 Revision 5 SNIA Technical Position 235

Filesystem Performance Profile

10.4 Methods of the Profile
10.4.1 Extrinsic Methods of the Profile

10.4.1.1 Overview

The methods supported by this subprofile are summarized in Table 137 and detailed within the sections that follow
it.

Table 137 - Creation, Deletion and Modification Methods in the Filesystem Performance Subpro-

file
Method Created Instances Deleted Instances Modified Instances
GetStatisticsCollection None None None
CreateManifestCollection FileSystemStatisticsManifest | None None

Collection

AssociatedFileSystemStatisti
csManifestCollection

AddOrModifyManifest FileSystemStatisticsManifest(| None FileSystemStatistics
subclass) Manifest(subclass)

MemberOfCollection

RemoveManifest None FileSystemStatistics None
Manifest(subclass)

MemberOfCollection

10.4.1.2 GetStatisticsCollection

This extrinsic method retrieves statistics in a well-defined bulk format. The set of statistics returned by this method
is determined by the list of element types passed into the method and the manifests for those types contained in
the supplied manifest collection. The statistics are returned through a well-defined array of strings that can be
parsed to retrieve the desired statistics as well as limited information about the elements that those metrics
describe.

GetStatisticsCollection(

[IN (false), OUT, Description(Reference to the job(shall be null in this
version of SMI-S.)]

CIM_ConcreteJdob REF Job,

[IN, Description(Element types for which statistics should be returned)

vValueMap { *"1'", 102", *103'", 104", *"..', ""Ox8000.." },

Values { "Other™, "Local Filesystem'”, "Exported File Share™, "Exporting Port",
"DMTF Reserved", "Vendor Specific" }]

uintlé ElementTypesl[],

[IN, Description ("An array of strings that specify the particular "Other"
element(s) when the ElementType property above includes
the ElementType value of 1 (i.e., "Other'™). Each
string within this array identifies a separate "Other™
element and duplicate string values are NOT allowed.

This property should be set to NULL when the
ElementType property does not include the value of

l _ ll)]
string OtherElementTypeDescriptions[],

236

Filesystem Performance Profile

[IN, Description(The manifest collection that contains the manifests which list
the metrics that should be returned for each element

type)]
SNIA_FileSystemStatisticsManifestCollection REF ManifestCollection,
[IN, Description(‘'Specifies the format of the Statistics output parameter')
ValueMap { "2" } ,
Values ("CSV")]
uintlé StatisticsFormat,
[OUT, Description(The statistics for all the elements as determined by the
Elements and ManifestCollection parameters)]
string Statistics[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported”, "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method
Reserved", "Method Parameters Checked - Job Started", "Element Not Supported”, "Statistics Format Not
Supported"”, "Method Reserved", "Vendor Specific"}

Note: In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This
method should always return NULL for the Job parameter.

If the ElementTypes[] array is empty, then no data is returned. If the ElementTypes[] array is NULL, then the
ElementTypes[] parameter is ignored and all data specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is NULL, then the
default manifest collection is used. (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

Note: The ElementTypes[] and ManifestCollection parameters may identify different sets of element types.
The effect of this will be for the implementation to return statistics for the element types that are in both
lists (that is, the intersection of the two lists). This intersection could be empty. In this case, no data will
be returned.

For the current version of SMI-S, the only recognized value for StatisticsFormat is "CSV". The method may support
other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstancelDs that may be used to correlate with
the FileSystemStatisticalData instances, a simple CSV format is sufficient and the most efficient human-readable
format for transferring bulk statistics. More specifically, the following rules constrain that format and define the
content of the String[] Statistics output parameter to the Get Statistics Collection() method:

= The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings will not exceed 64K bytes. And a single statistics record will not span Array
entries.

= There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:
= aline-feed character

= the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

= Each statistics record shall contain the InstancelD of the FileSystemStatisticalData instance, the value map
(number) of the ElementType of the metered object, and one value for each property that the relevant
FileSystemStatisticsManifest specifies as "true".

SMI-S 1.6.0 Revision 5 SNIA Technical Position 237

Filesystem Performance Profile

Each value in a record shall be separated from the next value by a Semi-colon (*;"). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record. A client reading a record it has received would ignore white-space between
values.

The InstancelD value is an opaque string that shall correspond to the InstancelD property from
FileSystemStatisticalData instance.

= For the convenience of client software that needs to be able to correlate InstancelDs between different
GetStatisticsCollection method invocations, the InstancelD for FileSystemStatisticalData instance shall be
unigue across all instances of the FileSystemStatisticalData class. It is not sufficient that InstancelD is unique
across subclasses of FileSystemStatisticalData.

The ElementType value shall be a decimal string representation of the Element Type number (e.g., "102" for
Local Filesystem). The StatisticTime shall be a string representation of DateTime. All other values shall be
decimal string representations of their statistical values.

Null values shall be included in records for which a statistic is returned (specified by the manifest or by a lack of
manifest for a particular element type) but there is no meaningful value available for the statistic. A NULL
statistic is represented by placing a semi-colon (;) in the record without a value at the position where the value
would have otherwise been included. A record in which the last statistic has a NULL value shall end in a semi-
colon (;).

The first three values in a record shall be the InstancelD, ElementType and StatisticTime values from the
FileSystemStatisticalData instance. The remaining values shall be returned in the order in which they are
defined by the MOF for the FileSystemStatisticsManifest class or subclass the record describes.

As an additional convention, a provider should return all the records for a particular element type in consecutive
String elements, and the order of the element types should be the same as the order in which the element types
were specified in the input parameter to GetStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 local filesystems and 5 exported file
shares, assuming that 6 statistics were specified in the FileSystemStatisticsManifest instance for both local
filesystems and exported file shares. The sixth statistic is unavailable for local filesystems, and the fourth statistic is
unavailable for exported file shares:

238

<METHODRESPONSE NAME="'GetStatisticsCollection'>
<RETURNVALUE PARAMTYPE="'uint32'>

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="'Statistics"™ PARAMTYPE="'string'>
<VALUE.ARRAY>

<VALUE>

LOCALFILESYSTEMSTATS1;102;20060811133015.0000010-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS2;102;20060811133015.0000020-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS3;102;20060811133015.0000030-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS4;102;20060811133015.0000040-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS5;102;20060811133015.0000050-
300;11111;22222;33333;44444;55555;

Filesystem Performance Profile

</VALUE>
<VALUE>

EXPORTFILESHARESTATS1;103;20060811133015.0000100-
300;11111;22222;33333; ;55555 ;66666

EXPORTFILESHARESTATS2;103;20060811133015.0000110-
300;11111;22222;33333; ;55555 ;66666

EXPORTFILESHARESTATS3;103;20060811133015.0000120-
300;11111;22222;33333; ;55555;66666

EXPORTFILESHARESTATS4;103;20060811133015.0000130-
300;11111;22222;33333; ;55555;66666

EXPORTFILESHARESTATSS5;103;20060811133015.0000140-
300;11111;22222;33333; ;55555; 66666

</VALUE>
</VALUE.ARRAY>
</PARAMVALUE>
</METHODRESPONSE>

10.4.1.3 CreateManifestCollection

This extrinsic method creates a new manifest collection whose members serve as a filter for metrics retrieved
through the GetStatisticsCollection method.

CreateManifestCollection(

[IN, Description(The collection of statistics that will be filtered using the new
manifest collection)]

CIM_StatisticsCollection REF Statistics,

[IN, Description(Client-defined name for the new manifest collection)
string ElementName,

[OUT, Description(Reference to the new manifest collection)]
SNIA_FileSystemManifestCollection REF ManifestCollection);

Error returns are:

{ "Ok'™, "Not Supported", "‘Unknown™, "Timeout™, "Failed"”, "Invalid Parameter",
"Method Reserved™, *Vendor Specific" }

10.4.1.4 AddOrModifyManifest

This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A client
supplies a manifest collection within which the new manifest collection will be placed or an existing manifest will be
modified, the element type of the statistics that the manifest will filter, and a list of statistics that should be returned
for that element type using the GetStatisticsCollection method.

AddOrModifyManifest(
[IN, Description(Manifest collection that the manifest is or should be a member

of)]
SNIA_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(The element type whose statistics the manifest will Ffilter)
ValueMap { "1, 102", '103", 104", *_.", "0x8000.." },

Values { "Other"™, "Local Filesystem'", "Exported File Share"™, "Exporting Port",
"DMTF Reserved', "Vendor Specific" }]

uintlé ElementType,

SMI-S 1.6.0 Revision 5 SNIA Technical Position 239

Filesystem Performance Profile

[IN, Description ("A string describing the type of element when the ElementType
property above is set to 1 (i.e., "Other™). This
property should be set to NULL when the ElementType
property is any value other than 1.")]

string OtherElementTypeDescription,

[IN, Description(The client-defined string that identifies the manifest created or
modified by this method)

string ElementName,

[IN, Description(The statistics that will be included by the manifest filter; that
is, the statistics that will be supplied through the
GetStatisticsCollection method)

string StatisticsList[],

[OUT, Description(The Manifest that is created or modified on the successful
execution of this method)]

SNIA_FileSystemManifest REF Manifest);

Error returns are:

{ ""Success™, "Not Supported', *Unknown™, "Timeout™, "Failed", "Invalid Parameter",
"Method Reserved'™, "Element Not Supported”, "Metric not
supported”, "ElementType Parameter Missing", "'Method
Reserved", '"Vendor Specific" }

If the StatisticsList[] array is empty, then only InstancelD and ElementType will be returned when the manifest is
referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is assumed (i.e., all
supported properties will be included).

Note: This would be the FileSystemStatisticsManifest from the default manifest collection.

10.4.1.5 RemoveManifests
This is an extrinsic method that removes manifests from the manifest collection.

RemoveManifests(

[IN, Description(Manifest collection from which the manifests will be removed)]
SNIA_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(List of manifests to be removed from the manifest collection)
SNIA_FileSystemStatisticsManifest REF Manifest[]);

Error returns are:

{ "Success', "Not Supported™, "Unknown', *“Timeout"™, "Failed, "Invalid
Parameter', '"Method Reserved™, "Manifest not found",
"Method Reserved'", '"Vendor Specific" }

10.4.2 Intrinsic Methods of this Profile

Note: Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection,
FileSystemStatisticalData, MemberOfCollection or ElementStatisticalData.

10.4.2.1 Deletelnstance (of a FileSystemStatisticsManifestCollection)

This will delete the FileSystemStatisticsManifestCollection where IsDefault=False, the
AssociatedFileSystemStatisticsManifestCollection association to the StatisticsCollection and all manifests collected

240

Filesystem Performance Profile

by the manifest collection (and the MemberOfCollection associations to the
FileSystemStatisticsManifestCollection).

10.4.2.2 Association Traversal

One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the individual
Statistics following the MemberOfCollection association. This shall be supported by all implementations of the
Filesystem Performance Subprofile and would be available to clients if the provider does not support the EXEC
QUERY or GetStatisticsCollection approaches.

10.5 Use Cases

10.5.1 Summary of Statistics Support by Element

Not all statistics properties are kept for all elements. Table 138 illustrates the statistics properties that are kept for
each of the metered elements.

Table 138 - Summary of Statistics Support by Element

Statistic Property Local Exported File Exporting Other
Filesystem Share Port

StatisticTime

TotallOs

TotalBytesTransferred

ReadlOs

WritelOs

OtherlOs

MetadataReadlOs

MetadataWritelOs

TotallOTimeCounter

TotalldleTimeCounter

ReadlOTimeCounter

BytesRead

WritelOTimeCounter

BytesWritten

MetadataBytesRead

cjlo|jo|lo0o|j]O0O|O|O|OCO|]O|O|XM|WM|D|DW|W| D
cjlo|j]o|lo0|j]O0O|O|O|]OCO|O|O|XW|WM|D|DW|W| D
Z|Zz|zZ2|Z2|Z2|Z2|0|0|lZ2|Z2|Z2|Z2|Z2|0| 8| D
Z|lZz|zZ2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2| X8| D

MetadataBytesWritten

The legend is:
R - Required
O - Optional

N - Not specified

SMI-S 1.6.0 Revision 5 SNIA Technical Position 241

Filesystem Performance Profile

A complete list of definitions of the metered elements as defined by the ElementType property of
FileSystemStatisticalData is below:

< ElementType = 1 (Other) - This is used by the provider to specify a filesystem-related metered element other
than one explicitly declared (e.g., "Local Filesystem" below) within the list of element types supported by the
Filesystem Performance Subprofile in this release of SMI-S. If the ElementType is "Other", then information
describing the metered element should be provided in the "OtherElementTypeDescription" string property.

= ElementType = 102 (Local Filesystem) - This is a filesystem that would be a LocalFileSystem in the Filesystem
Profile. It is a target for 1/O operations that would include file I/O operations for storing and retrieving the
contents of a file maintained by the filesystem, 1/O operations directed to directories maintained by the
filesystem, and other I/O operations performed to manage the filesystem and its contents.

= ElementType = 103 (Exported File Share) - This is a FileShare in the File Export Subprofile; it is a file share
that is exported to a network.

= ElementType = 104 (Exporting Port) - This is a port through which a file share being exported can be
accessed. It is a ProtocolEndPoint through which a FileShare can be accessed as described within the File
Export Profile.

10.5.2 Formulas and Calculations

Table 4 identifies the set of statistics that are recommended for various elements associated with filesystems. Once
collected, these metrics can be further enhanced through the definition of formulas and calculations that create
additional "derived" statistics.

Table 139 defines a set of such derived statistics as pertain to a calculated time interval. These calculated statistics
are by no means the only possible derivations but serve as examples of commonly requested statistics.

Table 139 - Formulas and Calculations - Calculated Statistics for a Time Interval

New statistic Formula
Timelnterval delta StatisticTime
I/O rate delta TotallOs / Timelnterval
I/O average response time delta TotallOTimeCounter / delta TotallOs

Read average response time | delta ReadlOTimeCounter / delta ReadlOs

Write average response time | delta WritelOTimeCounter / delta WritelOs

Average Read Size delta BytesRead / delta ReadlOs
Average Write Size delta BytesWritten / delta WritelOs

% Read 100 * (delta ReadlOs / delta TotallOs)
% Write 100 * (delta WritelOs / delta TotallOs)

10.5.3 Filesystem Performance Supported Capabilities Patterns

The Filesystem Performance Subprofile in this release of SMI-S formally recognizes the Capabilities patterns
summarized in Table 140.

242

Filesystem Performance Profile

Table 140 - Filesystem Performance Subprofile Supported Capabilities Patterns

Element SynchronousMethods AsynchronousMethods
Supported Supported Supported
Any (at least one) NULL NULL
Any (at least one) Neither GetStatisticsCollection NULL
nor Exec Query
Any (at least one) GetStatisticsCollection NULL
Any (at least one) Any NULL
Any (at least one) Exec Query NULL
Any (at least one) GetStatisticsCollection, Exec NULL
Query
Any (at least one) "Manifest Creation", "Manifest NULL
Modification", and "Manifest
Removal”
Any (at least one) "Indications”, "Query Collection” | NULL

An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or neither. But if
the implementation supports GetStatisticsCollection, it shall support Synchronous execution.

If manifest collections are supported, then ALL three methods shall be supported (creation, modification and
removal).

10.5.4 Client Considerations and Recipes

Not defined in this version of the specification.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 243

Filesystem Performance Profile

10.6 CIM Elements

Table 141 describes the CIM elements for Filesystem Performance.

Table 141 - CIM Elements for Filesystem Performance

Element Name

Requirement

Description

10.6.1 CIM_ElementCapabilities

Mandatory

This associates the
FileSystemStatisticsCapabilities to the
FileSystemStatisticsService.

10.6.2 CIM_ElementStatisticalData (Exported
File Share Stats)

Conditional

Conditional requirement: This is mandatory if
SNIA_FileSystemStatisticsCapabilities.Eleme
ntTypesSupported = "103" (Exported File
Share statistics support).

This associates a FileSystemStatisticalData
instance to the exported File Share for which
the statistics are collected.

10.6.3 CIM_ElementStatisticalData (Exporting
Port Stats)

Conditional

Conditional requirement: This is mandatory if
SNIA_FileSystemStatisticsCapabilities.Eleme
ntTypesSupported = "104" (Exporting Port
statistics support).

This associates a FileSystemStatisticalData
instance to the exporting Port for which the
statistics are collected.

10.6.4 CIM_ElementStatisticalData (Local
Filesystem Stats)

Conditional

Conditional requirement: This is mandatory if
SNIA_FileSystemStatisticsCapabilities.Eleme
ntTypesSupported = "102" (Local Filesystem
statistics support).

This associates a FileSystemStatisticalData
instance to the local filesystem for which the
statistics are collected.

10.6.5 CIM_ElementStatisticalData (OTHER
Element Type Stats)

Conditional

Conditional requirement: This is mandatory if
SNIA_FileSystemStatisticsCapabilities.Eleme
ntTypesSupported = "1" (OTHER element
type statistics support).

This associates a FileSystemStatisticalData
instance to a provider-specified other element
for which the statistics are collected.

10.6.6 CIM_HostedCollection (Client Defined)

Conditional

Conditional requirement: Clients can create
manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported or Clients can
create manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Async
hronousMethodsSupported. This would
associate a client defined
FileSystemStatisticsManifestCollection to the
top level system for the profile (e.g., a NAS
Head).

244

Filesystem Performance Profile

Table 141 - CIM Elements for Filesystem Performance

Element Name

Requirement

Description

10.6.7 CIM_HostedCollection (Default) Mandatory This would associate a default
FileSystemStatisticsManifestCollection to the
top level system for the profile (e.g., a NAS
Head).

10.6.8 CIM_HostedCollection (Provider Mandatory This would associate the StatisticsCollection

Supplied) to the top level system for the profile (e.g.,
NAS Head).

10.6.9 CIM_HostedService Mandatory This associates the
FileSystemStatisticsService to the
ComputerSystem that hosts it.

10.6.10 CIM_MemberOfCollection (Member Conditional Conditional requirement: Clients can modify

of client defined collection) manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported. This would
associate Manifests to client-defined manifest
collections.

10.6.11 CIM_MemberOfCollection (Member of | Mandatory This would associate predefined Manifests to

predefined collection) the default manifest collection.

10.6.12 CIM_MemberOfCollection (Member Mandatory This would associate all filesystem statistics

of statistics collection) instances to the StatisticsCollection.

10.6.13 CIM_StatisticsCollection Mandatory This would be a collection point for all
filesystem statistics that are kept for metered
elements of a system that provides filesystem
support (such as a NAS Head or a Self-
Contained NAS).

10.6.14 Conditional Conditional requirement: Clients can create

SNIA_AssociatedFileSystemStatisticsManifes manifests as identified by

tCollection (Client defined collection) SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported. This is an
association between the StatisticsCollection
and a client defined manifest collection.

10.6.15 Mandatory This is an association between the

SNIA_AssociatedFileSystemStatisticsManifes StatisticsCollection and a provider supplied

tCollection (Provider defined collection) (predefined) manifest collection that defines
the filesystem statistics properties supported
by the profile implementation.

10.6.16 SNIA_FileSystemStatisticalData Mandatory The SNIA_FileSystemStatisticalData class

defines the filesystem statistics properties that
may be kept for a metered element of a
system that provides filesystem support (such
as a NAS Head or a Self-Contained NAS).
Examples of such metered elements include
LocalFileSystem (Local Filesystem) and
FileShare (Exported File Share).

SMI-S 1.6.0 Revision 5

SNIA Technical Position

245

Filesystem Performance Profile

Table 141 - CIM Elements for Filesystem Performance

Element Name

Requirement

Description

10.6.17 Mandatory This defines the statistics capabilities

SNIA_FileSystemStatisticsCapabilities supported by the implementation of the profile.

10.6.18 SNIA_FileSystemStatisticsManifest Conditional Conditional requirement: Clients can modify

(Client Defined) manifests as identified by
SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported. An instance of this
class defines the filesystem statistics
properties of interest to the client for one
element type.

10.6.19 SNIA_FileSystemStatisticsManifest Mandatory An instance of this class defines the

(Provider Support) filesystem statistics properties supported by
the profile implementation for one element
type.

10.6.20 Conditional Conditional requirement: Clients can create

SNIA_FileSystemStatisticsManifestCollection manifests as identified by

(Client Defined) SNIA_FileSystemStatisticsCapabilities.Synchr
onousMethodsSupported. An instance of this
class defines one client defined collection of
filesystem statistics manifests (one manifest
for each element type).

10.6.21 Mandatory An instance of this class defines the

SNIA_FileSystemStatisticsManifestCollection predefined collection of default filesystem

(Provider Defined) statistics manifests (one manifest for each
element type).

10.6.22 SNIA_FileSystemStatisticsService Mandatory This is a Service that provides (optional)

services of bulk statistics retrieval and
manifest set manipulation methods.

10.6.1 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,
SNIA_FileSystemStatisticsService) and their Capabilities (e.g., SNIA_FileSystemStatisticsCapabilities). Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of
the CIM_ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities
describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the
ManagedElement shall exist and provides the context for the Capabilities.

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

246

Filesystem Performance Profile

Table 142 describes class CIM_ElementCapabilities.

Table 142 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory The managed element (FileSystemStatisticsService).

Capabilities Mandatory The Capabilities instance associated with the
FileSystemStatisticsService.

10.6.2 CIM_ElementStatisticalData (Exported File Share Stats)

CIM_ElementStatisticalData is an association that relates an exported File Share to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics. ElementStatisticalData
describes the existence requirements and context for the FileSystemStatistics, relative to a specific File Share that
is being exported.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if SNIA_FileSystemStatisticsCapabilities.ElementTypesSupported = "103"
(Exported File Share statistics support).

Table 143 describes class CIM_ElementStatisticalData (Exported File Share Stats).

Table 143 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File
Share Stats)

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory A reference to an exported FileShare for which the
Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the
statistics for the exported FileShare.

10.6.3 CIM_ElementStatisticalData (Exporting Port Stats)

CIM_ElementStatisticalData is an association that relates an exporting Port to its statistics. This exporting Port is a
ProtoEndPoint through which a file share that is being exported can be accessed. Note that the cardinality of the
ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics. ElementStatisticalData
describes the existence requirements and context for the FileSystemStatistics, relative to a specific exporting Port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if SNIA_FileSystemStatisticsCapabilities.ElementTypesSupported = "104"
(Exporting Port statistics support).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 247

Filesystem Performance Profile

Table 144 describes class CIM_ElementStatisticalData (Exporting Port Stats).

Table 144 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port

Stats)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory A reference to a ProtocolEndPoint port for which the

Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the
statistics for the exporting Port.

10.6.4 CIM_ElementStatisticalData (Local Filesystem Stats)

CIM_ElementStatisticalData is an association that relates a local filesystem to its statistics. Note that the cardinality
of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics. ElementStatisticalData
describes the existence requirements and context for the FileSystemStatistics, relative to a specific local
filesystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if SNIA_FileSystemStatisticsCapabilities.ElementTypesSupported = "102" (Local
Filesystem statistics support).

Table 145 describes class CIM_ElementStatisticalData (Local Filesystem Stats).

Table 145 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesys-

tem Stats)
Properties Flags Requirement | Description & Notes
ManagedElement Mandatory A reference to a LocalFileSystem for which the Statistics
apply.
Stats Mandatory A reference to the FileSystemStatisticalData that hold the
statistics for the local filesystem.

10.6.5 CIM_ElementStatisticalData (OTHER Element Type Stats)

CIM_ElementStatisticalData is an association that relates a provider-specified other element to its statistics. This
other element is a filesystem-related managed element whose type is not explicitly declared within the list of
ElementTypesSupported values defined within SNIA_FileSystemStatisticsCapabilities. Information describing the
metered element in this case should also be provided in the
SNIA_FileSystemStatisticalData.OtherElementTypeDescription property for the referenced instance of the
FileSystemStatistics. Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality
mandates the instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to the specific metered element.

CIM_ElementStatisticalData is not subclassed from anything.

248

Filesystem Performance Profile

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if SNIA_FileSystemStatisticsCapabilities.ElementTypesSupported = "1" (OTHER
element type statistics support).

Table 146 describes class CIM_ElementStatisticalData (OTHER Element Type Stats).

Table 146 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element
Type Stats)

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory A reference to the provider-specified managed element for
which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the
statistics for the provider-specified managed element.

10.6.6 CIM_HostedCollection (Client Defined)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Filesystem Performance Subprofile, it is used to associate a client-defined
FileSystemStatisticsManifestCollections to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Clients can create manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or Clients can create manifests as
identified by SNIA_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported.

Table 147 describes class CIM_HostedCollection (Client Defined).

Table 147 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The top level ComputerSystem of the profile.
Dependent Mandatory A client defined FileSystemStatisticsManifestCollection.

10.6.7 CIM_HostedCollection (Default)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Filesystem Performance Subprofile, it is used to associate the default (provider-defined)
FileSystemStatisticsManifestCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

SMI-S 1.6.0 Revision 5 SNIA Technical Position 249

Filesystem Performance Profile

Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 148 describes class CIM_HostedCollection (Default).

Table 148 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The provider defined
FileSystemStatisticsManifestCollection.

10.6.8 CIM_HostedCollection (Provider Supplied)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Filesystem Performance Subprofile, it is used to associate the StatisticsCollection to the top
level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 149 describes class CIM_HostedCollection (Provider Supplied).

Table 149 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The top level ComputerSystem of the profile.
Dependent Mandatory The StatisticsCollection.

10.6.9 CIM_HostedService

CIM_HostedService is an association between a Service (SNIA_FileSystemStatisticsService) and the System
(ComputerSystem) on which the functionality resides. Services are weak with respect to their hosting System.
Heuristic: A Service is hosted on the System where the Filesystems or SoftwareFeatures that implement the
Service are located.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

250

Filesystem Performance Profile

Table 150 describes class CIM_HostedService.

Table 150 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The hosting System.
Dependent Mandatory The Service hosted on the System.

10.6.10 CIM_MemberOfCollection (Member of client defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in a client-defined manifest collection.

Created By: Extrinsic: AddOrModifyManifest
Modified By: Static
Deleted By: Extrinsic: RemoveManifests

Requirement: Clients can modify manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 151 describes class CIM_MemberOfCollection (Member of client defined collection).

Table 151 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client
defined collection)

Properties Flags Requirement | Description & Notes
Collection Mandatory A client defined manifest collection.
Member Mandatory The individual Manifest Instance that is part of the set.

10.6.11 CIM_MemberOfCollection (Member of predefined collection)

This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection.
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 152 describes class CIM_MemberOfCollection (Member of predefined collection).

Table 152 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-
defined collection)

Properties Flags Requirement | Description & Notes
Collection Mandatory The provider defined default manifest collection.
Member Mandatory The individual Manifest Instance that is part of the set.

10.6.12 CIM_MemberOfCollection (Member of statistics collection)

This use of MemberOfCollection is to collect all FileSystemStorageStatisticalData instances (in the
StatisticsCollection). Each association is created as a side effect of the metered object getting created.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 251

Filesystem Performance Profile

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 153 describes class CIM_MemberOfCollection (Member of statistics collection).

Table 153 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statis-
tics collection)

Properties Flags Requirement | Description & Notes

Collection Mandatory The collection of all filesystem statistics data instances.

Member Mandatory The individual filesystem statistics data Instance that is part
of the set.

10.6.13 CIM_StatisticsCollection

The CIM_StatisticsCollection collects all filesystem statistics kept by the profile. There is one instance of the
CIM_StatisticsCollection class and all individual metered element statistics can be accessed by using association
traversal (using MemberOfCollection) from the StatisticsCollection.

CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 154 describes class CIM_ StatisticsCollection.

Table 154 - SMI Referenced Properties/Methods for CIM_StatisticsCollection

Properties Flags Requirement | Description & Notes

InstancelD Mandatory

ElementName Mandatory

Samplelnterval Mandatory Minimum recommended polling/sampling interval for a

system that provides filesystem support (e.g., NAS Head or
Self-Contained NAS). It is set by the provider and cannot

be modified.
TimelLastSampled Mandatory Time statistics table by object was last updated (Time
Stamp in SMI 2.2 specification format).
Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.

252

Filesystem Performance Profile

10.6.14 SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

The SNIA_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
SNIA_FileSystemStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies. Client
defined manifest collections identify the Manifests (statistic properties) for retrieval of filesystem statistics.

SNIA_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.

There will be one instance of the SNIA_AssociatedFileSystemStatisticsManifestCollection class, for each client
defined manifest collection that has been created.

Created By: Extrinsic: CreateManifestCollection

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 155 describes class SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection).

Table 155 - SMI Referenced Properties/Methods for
SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

Properties Flags Requirement | Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection
applies.

ManifestCollection Mandatory A client defined manifest collection.

10.6.15 SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

The SNIA_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
SNIA_FileSystemStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it applies. The
default manifest collection defines the SNIA_FileSystemStatisticalData properties that are supported by the profile
implementation.

SNIA_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.

One instance of the SNIA_AssociatedFileSystemStatisticsManifestCollection shall exist for the default manifest
collection if the Filesystem Performance Subprofile is implemented.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SMI-S 1.6.0 Revision 5 SNIA Technical Position 253

Filesystem Performance Profile

Table 156 describes class SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection).

Table 156 - SMI Referenced Properties/Methods for
SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

Properties Flags Requirement | Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection
applies.

ManifestCollection Mandatory The default manifest collection.

10.6.16 SNIA_FileSystemStatisticalData

SNIA_FileSystemStorageStatisticalData is subclassed from CIM_StatisticalData.

Instances of this class will exist for each of the metered elements if the "ElementTypesSupported” property of the
SNIA_FileSystemStatisticsCapabilities indicates that the metered element is supported. For example, if "Local
Filesystem" is identified in the "ElementTypesSupported" property, then this indicates support for metering of the
local filesystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 157 describes class SNIA_FileSystemStatisticalData.

Table 157 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData

Properties Flags Requirement | Description & Notes

InstancelD Mandatory The InstancelD for a FileSystemStatisticalData instance
shall be unigue across all instances of the
FileSystemStatisticalData class.

StatisticTime Mandatory The time that the most recent measurement was taken,
relative to the object (managed element) where the
statistics were collected. (Time stamp in CIM 2.2
specification format).

ElementType Mandatory Defines the role that the metered element (object) played
for which this statistics record was collected. This value is
required AND the current version of SMI-S specifies the
following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}.

OtherElementTypeD Mandatory A string describing the type of element when the
escription ElementType property of this class (or any of its
subclasses) is set to 1 (i.e., "Other"). This property should
be set to NULL when the ElementType property is any
value other than 1.

254

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

TotallOs

Mandatory

The cumulative count of file I1/0O operations for the object,
including metadata 1/0O operations.

TotalBytesTransferre
d

Conditional

Conditional requirement: This property is required if the
ElementType is 102, 103, or 104. The cumulative count of
bytes transferred for all of the file I/O operations as defined
in "TotallOs" above.

Note: This is not specified for the "Other" ElementType.

ReadlOs

Conditional

Conditional requirement: This property is required if the
ElementType is 102 or 103. The cumulative count of file I/O
operations that were directed to the object and that
performed a transfer of data from the file contents.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

WritelOs

Conditional

Conditional requirement: This property is required if the
ElementType is 102 or 103. The cumulative count of file I/
O operations that were directed to the object and that
performed a transfer of data to the file contents.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

OtherlOs

Conditional

Conditional requirement: This property is required if the
ElementType is 102 or 103. The cumulative count of file I/
O operations that were directed to the object and that did
not perform a transfer of data either to or from the file
contents. This count excludes metadata I/ O operations
(both read and write). File "open", "close", and "lock" I/O

operations are examples of an "OtherlO" I/O operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataReadlOs

Optional

The cumulative count of file I/0O operations that were
directed to the object and that performed a read transfer of
metadata. "Get Attributes" and "Read Directory" I/O
operations are examples of a Metadata read 1/0O operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataWritelOs

Optional

The cumulative count of file 1/0 operations that were
directed to the object and that performed a write transfer of
metadata. "Set Attributes" I/0O operations are an example of
a Metadata write 1/0 operation.

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 255

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

TotallOTimeCounter

Optional

The cumulative elapsed I/O operation time (number of
ClockTickintervals) for all file I/O operations as defined in
"TotallOs" above. The 1/O operation response time is added
to this counter at the completion of each measured 1/0O
operation using ClockTickInterval units. The
TotallOTimeCounter value can be divided by the total
number of I/O operations (TotallOs) to obtain an 1/0O
operation average response time.

Note: This is not specified for the "Other" ElementType.

TotalldleTimeCounter

Optional

The cumulative elapsed idle time using ClockTickInterval
units. That is, the cumulative number of ClockTickIntervals
for all idle time within the object, with "idle time" being that
time during which no 1/O operations were being processed
by the object.

Note: This is not specified for the "Other" ElementType.

ReadlOTimeCounter

Optional

The cumulative elapsed 1/O operation time for all Read 1/0
operations (that is, the cumulative elapsed time for all Read
I/O operations as defined in "ReadlOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

BytesRead

Optional

The cumulative count of bytes read (that is, the cumulative
count of bytes transferred by all Read 1/O operations as
defined in "ReadlOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

WritelOTimeCounter

Optional

The cumulative elapsed I/O operation time for all Write 1/0
operations (that is, the cumulative elapsed time for all Write
I/O operations as defined in "WritelOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

BytesWritten

Optional

The cumulative count of bytes written (that is, the
cumulative count of bytes transferred by all Write 1/O
operations as defined in "WritelOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

MetadataBytesRead

Optional

The cumulative count of metadata bytes read (that is, the
cumulative count of bytes transferred by all Metadata read
I/O operations as defined in "MetadataReadlOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

256

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticalData

Properties Flags Requirement | Description & Notes
MetadataBytesWritte Optional The cumulative count of metadata bytes written (that is, the
n cumulative count of bytes transferred by all Metadata write

I/O operations as defined in "MetadataWritelOs" above).

Note: This is not specified for the "Exporting Port" and the
"Other" ElementTypes.

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
ElementName N Optional Not Specified in this version of the Profile.
Samplelnterval N Optional Not Specified in this version of the Profile.
StartStatisticTime N Optional Not Specified in this version of the Profile.
ResetSelectedStats() Optional Not Specified in this version of the Profile.

10.6.17 SNIA_FileSystemStatisticsCapabilities

An instance of the SNIA_FileSystemStatisticsCapabilities class defines the specific support provided with the
filesystem statistics implementation. Note: There would be zero or one instance of this class in a profile. There
would be none if the profile did not support the Filesystem Performance Subprofile. There would be exactly one
instance if the profile did support the Filesystem Performance Subprofile.

SNIA_FileSystemStatisticsCapabilities class is subclassed from CIM_Capabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 158 describes class SNIA_FileSystemStatisticsCapabilities.

Table 158 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory

ElementName Mandatory

ElementTypesSuppor Mandatory ValueMap { "1", "102", "103", "104" },
ted

Values {"Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}.

SynchronousMethod Mandatory This property is mandatory, but the array may be empty.
sSupported
ValueMap { "2", "3", "4", "5", "6", "7", "8"},

Values {"Exec Query", "Indications", "QueryCollection",
"GetStatisticsCollection”, "Manifest Creation", "Manifest

Modification”, "Manifest Removal" }.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 257

Filesystem Performance Profile

Table 158 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsCapabilities

Properties Flags Requirement | Description & Notes

AsynchronousMetho Optional Not supported in current version of SMI-S.

dsSupported

ClockTickinterval Mandatory An internal clocking interval for all timers in the subsystem,

measured in microseconds (Unit of measure in the timers,
measured in microseconds).

Time counters are monotonically increasing counters that
contain "ticks". Each tick represents one ClockTickInterval.
If ClockTicklInterval contained a value of 32 then each time
counter tick would represent 32 microseconds.

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
CreateGoalSettings() Optional Not Specified in this version of the Profile.

10.6.18 SNIA_FileSystemStatisticsManifest (Client Defined)

The SNIA_FileSystemStatisticsManifest class is a Concrete class that defines the
SNIA_FileSystemStorageStatisticalData properties that should be returned on a GetStatisticsCollection request.

SNIA_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.

In order for a client defined instance of the SNIA_FileSystemStatisticsManifest class to exist, all of the manifest
collection manipulation functions shall be identified in the "SynchronousMethodsSupported"” property of the
SNIA_FileSystemStatisticsCapabilities (FileSystemStatisticsCapabilities.SynchronousMethodsSupported = "6")
instance, AND a client must have created at least ONE instance of SNIA_FileSystemStatisticsManifestCollection.
Created By: Extrinsic: AddOrModifyManifest

Modified By: Extrinsic: AddOrModifyManifest

Deleted By: Extrinsic: RemoveManifests

Requirement: Clients can modify manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 159 describes class SNIA_FileSystemStatisticsManifest (Client Defined).

Table 159 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Client

Defined)
Properties Flags Requirement | Description & Notes
ElementName Mandatory A Client defined string that identifies the manifest.
InstancelD Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstancelD opaquely and
uniquely identifies an instance of this class.

258

Filesystem Performance Profile

Table 159 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Client

Defined)

Properties Flags Requirement | Description & Notes

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:
ValueMap {"1", "102", "103", "104"}
Values {"Other", "Local Filesystem”, "Exported File Share",
"Exporting Port"}.

OtherElementTypeD Mandatory A string describing the type of element when the

escription ElementType property of this class (or any of its
subclasses) is set to 1 (i.e., "Other"). This property should
be set to NULL when the ElementType property is any
value other than 1.

IncludeStatisticTime Mandatory

IncludeTotallOs Mandatory

IncludeTotalBytesTra Mandatory

nsferred

IncludeReadlOs Mandatory

IncludeWritelOs Mandatory

IncludeOtherlOs Mandatory

IncludeMetadataRea Mandatory

diOs

IncludeMetadataWrit Mandatory

elOs

IncludeTotallOTimeC Mandatory

ounter

IncludeTotalldleTime Mandatory

Counter

IncludeReadlOTimeC Mandatory

ounter

IncludeBytesRead Mandatory

IncludeWritelOTimeC Mandatory

ounter

IncludeBytesWritten Mandatory

IncludeMetadataByte Mandatory

sRead

IncludeMetadataByte Mandatory

sWritten

Caption N Optional Not Specified in this version of the Profile.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 259

Filesystem Performance Profile

Table 159 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Client

Defined)
Properties Flags Requirement | Description & Notes
Description N Optional Not Specified in this version of the Profile.
IncludeStartStatisticTi | N Optional Not Specified in this version of the Profile.
me

10.6.19 SNIA_FileSystemStatisticsManifest (Provider Support)

The SNIA_FileSystemStatisticsManifest class is a Concrete class that defines the SNIA_FileSystemStatisticalData
properties that are supported by the Provider. These Manifests are established by the Provider for the default
manifest collection.

SNIA_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.

At least one Provider supplied instance of the SNIA_FileSystemStatisticsManifest class shall exist, if the
Filesystem Performance Subprofile is supported.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 160 describes class SNIA_FileSystemStatisticsManifest (Provider Support).

Table 160 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Provider

Support)
Properties Flags Requirement | Description & Notes
ElementName Mandatory A Provider defined string that identifies the manifest in the

context of the Default Manifest Collection.

InstancelD Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstancelD opaquely and
uniquely identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}.

OtherElementTypeD Mandatory A string describing the type of element when the
escription ElementType property of this class (or any of its
subclasses) is set to 1 (i.e., "Other"). This property should
be set to NULL when the ElementType property is any
value other than 1.

IncludeStatisticTime Mandatory

IncludeTotallOs Mandatory

260

Filesystem Performance Profile

Table 160 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifest (Provider

Support)
Properties Flags Requirement | Description & Notes
IncludeTotalBytesTra Mandatory
nsferred
IncludeReadlOs Mandatory
IncludeWritelOs Mandatory
IncludeOtherlOs Mandatory
IncludeMetadataRea Mandatory
diOs
IncludeMetadataWrit Mandatory
elOs
IncludeTotallOTimeC Mandatory
ounter
IncludeTotalldleTime Mandatory
Counter
IncludeReadlOTimeC Mandatory
ounter
IncludeBytesRead Mandatory
IncludeWritelOTimeC Mandatory
ounter
IncludeBytesWritten Mandatory
IncludeMetadataByte Mandatory
sRead
IncludeMetadataByte Mandatory
sWritten
Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
IncludeStartStatisticTi | N Optional Not Specified in this version of the Profile.
me

10.6.20 SNIA_FileSystemStatisticsManifestCollection (Client Defined)

An instance of a client defined SNIA_FileSystemStatisticsManifestCollection defines the set of Manifests to be
used in the retrieval of filesystem statistics by the GetStatisticsCollection method.

SNIA_FileSystemStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

In order for a client defined instance of the SNIA_FileSystemStatisticsManifestCollection class to exist, then all the
manifest collection manipulation functions shall be identified in the "SynchronousMethodsSupported"” property of
the SNIA_FileSystemStatisticsCapabilities instance and a client must have created a Manifest Collection..

Created By: Extrinsic: CreateManifestCollection

SMI-S 1.6.0 Revision 5 SNIA Technical Position 261

Filesystem Performance Profile

Modified By: Static
Deleted By: Static

Requirement: Clients can create manifests as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 161 describes class SNIA_FileSystemStatisticsManifestCollection (Client Defined).

Table 161 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection
(Client Defined)

Properties Flags Requirement | Description & Notes
InstancelD Mandatory
ElementName Mandatory A client defined user-friendly name for the manifest

collection. It is set during creation of the Manifest Collection
through the ElementName parameter of the
CreateManifestCollection method.

IsDefault Mandatory Denotes whether or not this manifest collection is a
provider defined default manifest collection. For the client
defined manifest collections this is set to "false".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

10.6.21 SNIA_FileSystemStatisticsManifestCollection (Provider Defined)

An instance of a default SNIA_FileSystemStatisticsManifestCollection defines the set of Manifests that define the
properties supported for each ElementType supported for the implementation. It can also be used by clients in
retrieval of Filesystem statistics by the GetStatisticsCollection method.

SNIA_FileSystemStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

At least ONE SNIA_FileSystemStatisticsManifestCollection shall exist if the Filesystem Performance Subprofile is
implemented. This would be the default manifest collection that defines the properties supported by the
implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 162 describes class SNIA_FileSystemStatisticsManifestCollection (Provider Defined).

Table 162 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection
(Provider Defined)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory

ElementName Mandatory For the default manifest collection, this should be set to
"DEFAULT".

262

Filesystem Performance Profile

Table 162 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsManifestCollection
(Provider Defined)

Properties Flags Requirement | Description & Notes

IsDefault Mandatory Denotes whether or not this manifest collection is a
provider defined default manifest collection. For the default
manifest collection this is set to "true”.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

10.6.22 SNIA_FileSystemStatisticsService

The SNIA_FileSystemStatisticsService class provides methods for statistics retrieval and Manifest Collection
manipulation.

The SNIA_FileSystemStatisticsService class is subclassed from CIM_Service.

There shall be an instance of the SNIA_FileSystemStatisticsService, if the Filesystem Performance Subprofile is
implemented. It is not necessary to support any methods of the service, but the service shall be populated.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the SNIA_FileSystemStatisticsCapabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 163 describes class SNIA_FileSystemStatisticsService.

Table 163 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsService

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory

sName

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
ElementName N Optional Not Specified in this version of the Profile.
OperationalStatus N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 263

Filesystem Performance Profile

Table 163 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsService

Properties Flags Requirement | Description & Notes

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

OtherEnabledState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

Started N Optional Not Specified in this version of the Profile.

PrimaryOwnerName | N Optional Not Specified in this version of the Profile.

PrimaryOwnerContac | N Optional Not Specified in this version of the Profile.

t

GetStatisticsCollectio Conditional Conditional requirement: Clients can get statistics

n() collections using the GetStatisticsCollection as identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or Clients can get statistics collections using
the GetStatisticsCollection as identified by
SNIA_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported.Support for this method is conditional on
SNIA_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or
SNIA_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported containing '5' (GetStatisticsCollection). This
method retrieves all statistics kept for the profile as directed
by a manifest collection.

CreateManifestCollec Conditional Conditional requirement: Clients can create manifests as

tion()

identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or Clients can create manifests as identified
by
SNIA_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported.Support for this method is conditional on
SNIA_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or
SNIA_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported containing '6' (Manifest Creation). This
method is used to create client defined manifest
collections.

264

Filesystem Performance Profile

Table 163 - SMI Referenced Properties/Methods for SNIA_FileSystemStatisticsService

Properties Flags Requirement | Description & Notes
AddOrModifyManifes Conditional Conditional requirement: Clients can modify manifests as
t() identified by

SNIA_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or Clients can modify manifests as identified
by
SNIA_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported.Support for this method is conditional on
SNIA_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or
SNIA_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported containing ‘7' (Manifest Modification). This
method is used to add or modify filesystem statistics
manifests in a client defined manifest collection.

RemoveManifests() Conditional Conditional requirement: Clients can remove manifests as
identified by
SNIA_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or Clients can remove manifests as identified
by
SNIA_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported.Support for this method is conditional on
SNIA_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or
SNIA_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported containing '8' (Manifest Removal). This
method is used to remove a filesystem statistics manifest
from a client defined manifest collection.

RequestStateChange Optional Not Specified in this version of the Profile.
0

StopService() Optional Not Specified in this version of the Profile.
StartService() Optional Not Specified in this version of the Profile.

EXPERIMENTAL

SMI-S 1.6.0 Revision 5 SNIA Technical Position 265

Filesystem Performance Profile

266

Filesystem Quotas Profile

EXPERIMENTAL

Clause 11: Filesystem Quotas Profile

11.1 Synopsis

Profile Name: FileSystem Quotas (Component Profile)
Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.18

Table 164 describes the related profiles for FileSystem Quotas.

Table 164 - Related Profiles for FileSystem Quotas

Profile Name Organization | Version Requirement | Description
Filesystem SNIA 1.4.0 Mandatory

Indication SNIA 15.0 Mandatory

Experimental SNIA 1.5.0 Optional

Indication

Job Control SNIA 1.5.0 Optional

= Central Class: LocalFileSystem

= Scoping Class: ComputerSystem

11.2 Description

The Filesystem Quotas Profile is intended to provide management of quotas on the use of filesystem resources--
raw space and inodes especially--by the common filesystem principals. User, group and tree quotas are modeled.
Trees means directories (rooted directory hierarchy structures) within filesystems. Some systems allow quotas
only on directories that have some special distinguishing feature, others allow them on arbitrary directories.

Quota systems work by keeping statistics-in real time-on the space used by each monitored principal/container pair
e.g. a user and her home share. They then trigger events when filesystem writes cause the space used by the
principal to exceed some threshold. There are four common varieties of quota thresholds:

1. Hard. Hitting a hard quota threshold causes subsequent writes by the principal to the affected container to
fail. In POSIX, the error returned to the client is ENOSPC (no space). An indication is also thrown.

2. Soft. A soft threshold causes the system to issue a warning. Systems variously issue warnings via CLI,
SNMP traps, pop-up windows at the user station, audit log entries, email and other proprietary methods. This
profile provides required indications for this purpose.

3. Soft, with grace period. This type of quota is really a refinement of soft quotas. It functions like a soft quota
until the grace period expires, at which point it begins behaving like a hard quota.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 267

Filesystem Quotas Profile

4. Monitoring. When a monitoring quota is in effect, there are no thresholds, and no warnings are issued. This
type of quota is useful because the underlying system keeps track of the relevant usage statistics in real time
for all quotas. A monitoring quota permits an administrator to simply issue a command to print a quota report
instead of having to do a complete filesystem scan to get the usage information of interest.

In general, it is not possible to have a quota system that meets the above semantics without some level of access
to the data path. More loosely coupled systems may need to relax the semantics of the hard limit, for example, and
may not actually trigger an event until a file is closed, for example. This profile allows these semantic variations.

Some systems allow "default” quotas for users, groups and/or trees. A default user quota, by way of example, is
used for every user of the system who does not have a quota entry specific to them.

11.2.1 Tree Quotas

Tree quotas are quotas on directory trees with an identifiable root. Mounts and symlinks are not followed. In other
words, a directory which contains nothing but mount points and symbolic links may satisfy a very small quota, even
though the amount of data addressable by entries in the container is large.

Hard links are another matter. The policy is system-dependent, but a common behavior is that if a file or directory is
hard-linked in two separate trees with separate tree quotas, the space used is charged against both quotas.

Pure tree quotas apply no matter which principal does the writing. There are some caveats however.

» Root on some systems is not constrained by quotas.
» An entity with sufficient privilege may not be constrained by quotas on some systems (e.g. a Windows user
with BackupOperator privilege).

Some systems may support tree quotas only on directories with certain special characteristics. Directories may be
constrained to being top-level, for example. This profile does not specify a means for determining whether a given
directory may have a tree quota set on it.

11.2.2 User Quotas

User quotas are limits on how much space a principal with a given User ID can use. They may be either global or
restricted by namespace tree, as well as by filesystem.

11.2.3 Group Quotas

Group quotas set limits on how much all the members of a group with a given Group ID can use in the aggregate.
They are not, therefore, quotas which apply to each member of a group. This follows Unix usage. Group quotas
only work on systems which have the concept of a primary group id (PGID), as the system needs to know which
group to charge writes against. As NTFS does not have the concept of a primary group, it does not do group
guotas. (Note: There is a primary group field that can be discovered on a file in NTFS. This is for POSIX support,
however, and does not always contain anything meaningful)

Group quotas may be global or applicable to a given namespace tree and/or filesystem.

11.2.4 Container Boundaries

Quotas may be system-wide, or scoped to an individual filesystem. Not all systems support both of these, however,
so provision is made for both. The SupportedPrincipalTypes array in the FSQuotaCapabilities class distinguishes
between User, Group, Tree, User-Tree and Group-Tree quotas as follows:

» User Quotas and Group quotas are described in 11.2.2 and 11.2.3.

» A Tree Quota is a limit on the storage (or other limit such as number of inodes) used by a directory tree. This
guota is not specific to a user or a group but applies to all users and groups creating files and directories
within the tree.

* A User-Tree quota is a limit on the storage used by a user within a directory tree and is applied in parallel with
the Tree Quota (both must be satisfied).

268

Filesystem Quotas Profile

» A Group-Tree quota is a limit on the aggregate storage used by a group of users within a directory tree and is
applied in parallel with the Tree Quota (both must be satisfied).

If a Tree is configured with a Tree Quota as well as User-Tree and Group-Tree quotas, they must all be satisfied.

11.2.5 Quotatypes

Quotas are usually limits on disk space. Some systems, however, also support limits on the number of files and/or
directories.

11.2.6 Class design considerations

11.2.6.1 New Classes

This profile uses several new classes—FSDomainldentity, FSQuotaCapabilities, FSQuotaReportRecord,
FSQuotaConfigEntry, FSQuotaManagementService, and FSQuotalndication

11.2.6.1.1 FSDomainldentity

Due to the in-band nature of quota tracking, the identifier of the principal being managed needs to be small and
easily optimized. Traditional systems use Unix UIDs and GIDs, which are 32-bit quantities, or SIDs which are short
strings. To tie these into CIM, this new class is specified. Each instance contains a string with the UID, GID or SID,
respectively, in it, and enums for the type of domain and principal.

11.2.6.1.2 FSQuotaCapabilities

This Capabilities subclass lists the properties in a FSQuotaConfigEntry that are supported by the underlying
system. The client shall not attempt to set any properties which are not listed as supported in the instance of this
class associated to the service. It shall instead always populate unsupported properties with null.

There shall exist exactly one instance of this class per FSQuotaManagementService instance.

11.2.6.1.3 FSQuotaReportRecord

When running a quota report, the underlying system generally issues a text file, each line or group of lines
representing the status of a filesystem principal with respect to one quota configuration entry. There may be
hundreds of thousands of these records, and they are not keyed, meaning that there is no way to go back and fetch
any given one of them. Therefore FSQuotaReportRecord is derived from a new proposed abstract root class called
ReportRecord, which carries the Indication qualifier. Note that this qualifier does not mean that these classes are
subclasses of CIM_Indication. It's used because it's the only way, currently, to construct a class in CIM which does
not require a key.

11.2.6.1.4 FSQuotaConfigEntry

An FSQuotaConfigEntry instance represents a single quota entry supported by the system. For example, one
FSFQuotaConfigEntry instance may specify that on filesystem “foo,” in directory “/bar,” the user “joe” is restricted to
1GB of space, and should receive a warning at 0.97GB.

A quota entry has been defined as a complex of several classes and associations. If implementation experience
turns up performance considerations related to this, this design may need to be revisited.

Many systems do not support any method of identifying individual FSQuotaConfigEntry instances, as they simply
represent lines in a text file, and the underlying system may not care about duplicates or conflicts. However,
FSQuotaConfigEntry instances need to be modified; this corresponds to editing the corresponding line in the file.
Therefore, if the underlying system does not expose a key, one may be created by composing the PrincipallD
property, a unique reference to the FileSystem or ComputerSystem to which the entry applies (from the association
FSQuotaAppliesToElement), the TreeName property (if a tree quota), the measured quantity type (the
ResourceType property), the quota type (QuotaType property), and its default status (the Default property). An
implementation may expose the algorithm used to compose the key so that the client may decompose it, but this is
not required by this version of the profile. Upon creation of a new quota instance, clients shall verify that no quota

SMI-S 1.6.0 Revision 5 SNIA Technical Position 269

Filesystem Quotas Profile

with the same key already exists. Upon modification of an instance, clients shall modify all instances whose keys
match that instance key.

= PrincipallD: This indicates a user by the user’'s UID or SID, or a group by the group’s GID or SID, or it can be
the empty string. It is interpreted in the context of a directory service specified for the file server
ComputerSystem that is associated to the FileSystem by a Dependency association.

= InstancelD. This property is a unigue identifier for this FSQuotaConfigEntry. This property shall be unique in
the presence of multiple instances of ComputerSystem and FileSystem, and multiple properties of QuotaType,
Default, ResourceType and PrincipallD. It may be constructible by the client, but this profile does not specify
this format.

11.2.6.1.5 FSQuotaManagementService

The FSQuotaManagementService provides the interface to the underlying system for most operations which are
overtly related to quotas. There shall be at most one instance of a FSQuotaManagementService for each
underlying ComputerSystem.

11.2.6.1.6 FSQuotalndication

The FSQuotalndication class provides information about threshold crossing events, meaning that a quota has just
been exceeded.

11.2.7 Instance Diagram

Figure 16 shows the Filesystem Quotas instance diagram.

System ManagedElement
L = IdentityContext
HostedService FSQuotaAppliesToElement
FSQuotaManagementService FSDomainlde ntity
FSQuotaAppliesToPrincipal

FSQuotaReportRecord

X FSQuotaConfigEntry
ElementCapabilities FSQuotaAppliesToTree
FSQuotaCapabilities LogicalFile

=(directory)

Figure 16 - Filesystem Quotas Instance Diagram

11.3 Health and Fault Management Considerations

None currently applicable.

270

Filesystem Quotas Profile

11.4 Supported Profiles, Subprofiles, and Packages

See section 11.1 for this information.

11.5 Methods of the Profile

All profile methods are contained in the FSQuotaManagementService.

11.5.1 FindQuotaEntries

uint32 FindQuotaEntries(
IN string ldentityld,
IN ManagedElement REF Element,
IN string Tree,
IN uintl6é QuotaType,
OUT EmbeddedlInstance(*'SNIA_FSQuotaConfigEntry')string QuotaEntries[],

Given a combination of inputs, FindQuotaEntries() searches the quota entry database on the managed device for
guota entries that match, and returns a list. On systems that support it, long-running queries may return a job.

Possible quota entries are:
1) Identityld

Identityld is an optional string that can specify the UID, GID, or SID or can specify a pattern. The following rules
apply to Identityld:

a) If Identityld is NULL or the empty string, no identity-based quotas should be returned.
b) If IdentitylD is NULL, default quotas will be returned.
c) If Identityld is “*", this matches all identity-based quotas entries.

d) Identityld may also be a specific ID, or the prefix of an ID followed by "*". Standard prefix string matching
is used to determine which entries match in this case.

2) Element

Element is an optional reference to a ManagedElement (declared as CIM_ManagedElement REF Element). The
following rules apply to Element:

a) When a ComputerSystem is passed for Element, the returned entries may be default or other entries for
both the ComputerSystem and its contained FileSystems.

b) When a FileSystem is passed in for Element, only entries pertaining to that FileSystem shall be returned.
This may include default entries applicable to that FileSystem.

c) IfNULL is passed in for Element, the FSQuotaManagementService assumes that the ComputerSystem it
is hosted on is the Element.

Element is an optional reference to a ComputerSystem or a LocalFileSystem, but is declared as a reference to a
ManagedElement, which is the only common parent class.

3) Tree

Tree is an optional string that identifies a tree (or trees) contained within a filesystem. The following rules apply to
Tree:

a) A null or empty string indicates that no tree quota entries should be returned.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 271

Filesystem Quotas Profile

b) A “*tree parameter matches all tree quota entries defined within the filesystem(s) indicated by Element,
if any.

c) If Tree contains a path, it matches that path only. On some systems, this may result in multiple matches,
one for the same-named tree in each of several filesystems.

d) Prefix string matching may be used for the Tree parameter. E.g. the path "/x/y/*" will match tree quotas on
both "/x/y/m" and "/x/y/p".

4) QuotaType

QuotaType is an enumerated optional parameter that describes what type of quota entries should be returned. The
following rules apply to QuotaType:

a) NULL or Unknown matches any entry (i.e., it is a wildcard).
b) If Tree is specified, then entries which are pure tree quotas (not user-tree or group-tree) match.

c) If User-Tree or Group-Tree is specified, then only user-tree or group-tree quotas match.

11.5.2 DeleteQuotaEntry
uint32 DeleteQuotaEntry(IN string EntrylD);

This routine deletes a given quota entry from the managed device's quota entry database. Recall that the
ManagedElement’s name is specified as part of a QuotaEntry’s InstancelD, above. A CIMOM managing multiple
devices may use that to find which device to address when deleting the actual entry.

11.5.3 ModifyQuotaEntry

uint32 ModifyQuotaEntry(
IN string Entryld,
IN EmbeddedlInstance(*'SNIA_FSQuotaConfigEntry') string QuotaEntry,
OUT CIM_Job REF Job;

Given the InstancelD of an existing quota entry, ModifyQuotaEntry() replaces it with a new entry specified as an
Embeddedinstance.

11.5.4 AddQuotaEntry

uint32 AddQuotaEntry(
IN EmbeddedlInstance(*'SNIA_FSQuotaConfigEntry') string QuotaEntry,
OUT CIM_Job REF Job;
)
This routine adds a new quota entry to the quota entry database on the appropriate managed element.
The ConflictingEntriesUsage property in FSQuotaCapabilities (see Clause 11: "Filesystem Quotas Profile™) will

govern what happens if an entry already exists with the same combination of PrincipallD, ManagedElement,
TreeName, ResourceType, QuotaType, and Default.

11.5.5 GetQuotaReport

uint32 GetQuotaReport(
IN CIM_ManagedElement REF Element,
IN string Tree,
IN string User,

272

Filesystem Quotas Profile

IN Embeddedlnstance(*'SNIA_FSDomainldentity') string Group,
IN, OUT string Cursor,
IN, OUT uint64 NQuotas,
OUT CIM_Job REF Job,
OUT EmbeddedlInstance("'SNIA_FSQuotaReportRecord'™) string ReportRecs[];
)
This routine gets a quota report from a managed element. As there may be millions of records in this report, a

chunking mechanism is provided so that the client does not become overwhelmed by the quantity of data furnished
by the server.

The initial call to GetQuotaReport shall pass in NULL as a Cursor. Subsequent calls shall pass back the cursor
exactly as received from the server, without modification, as an indication of where to continue the report from.

Clients which do not wish to use the chunking mechanism may pass a number such as 2% - 1 in NQuotas.

On many systems, the initial phase of preparing a quota report may take some time. A job is returned in this case.

11.5.6 EnableQuotas

uint32 EnableQuotas(

IN Boolean OnOff,

IN CIM_ManagedElement element,

OUT CIM_Job REF Job

)

This routine turns quota management on or off on a given managed element. This routine shall always be
supported when the element is a CIM_ComputerSystem. On systems that support it, the ManagedElement may
alternatively be a filesystem. If an attempt is made to change the state on an unsupported ManagedElement, the
routine shall return an appropriate error (“Operation unsupported for individual MEs of this type”).

11.5.7 InitializeQuotas

uint32 InitializeQuotas(
IN CIM_ComputerSystem REF Server,
OUT CIM_Job REF Job);

Some systems require an explicit initialization step before quotas may be used. If this step takes some time, a job
shall be returned. Systems which do not require this step shall return “Success”.

11.6 Client Considerations and sample code

Because quota management capabilities vary so widely from device to device, clients must be prepared to receive
"unsupported" errors. These can be kept to a minimum by inspecting the QuotaCapabilities of the managed device.
See the QuotaGetCapabilities routine in 11.6.1.

There are five fundamental operations on quotas:

1. Initialize the quota management system

2. Turn quota tracking on or off

3. Add or modify a quota table entry

4. Read the quota table

5. Get a report on quota usage for one or all entries in the quota table

The QuotaManagementService class contains extrinsics for all of these things, so each task reduces to getting the
service instance and invoking the desired method.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 273

Filesystem Quotas Profile

The following example code is advisory.

EXPERIMENTAL

11.6.1 Common subroutines

In the Filesystem Quotas sample routines, the following subroutines are used (and declared inline here):

sub CIM_QuotaManagementService QuotaGetQMService(
IN REF CIM_System system);

services = Associators(systen,
"CIM_HostedService",
"CIM_QuotaManagementService",
"Antecedent",
""Dependent™,
false, false, NULL);

return services[0];

sub CIM_QuotaCapabilities QuotaGetCapabilities(
IN REF CIM_System system)

service = QuotaGetQMService(system);

caps = Associators(service,
"CIM_ElementCapabilities”,
"CIM_QuotaCapabilities",
"CIM_ManagedElement",
“"ManagedElement",
"Capabilities",
false, false, NULL);

return caps[0];
sub boolean QuotaSupportsPrincipalType(
IN REF CIM_System system,
IN uintl6é type)
capabilities = QuotaGetCapabilities(system);
for(i = 0; capabilities.SupportedPrincipalTypes[i] = NULL; ++) {

if (capabilities.SupportedPrincipalTypes[i] == type) {
return TRUE;

274

Filesystem Quotas Profile

by
return FALSE;

All of the following routines may return errors indicating that the supplied managed element is not supported. In
most cases this will be because the operation (e.qg. initializing quotas) is a system-wide operation, and cannot be

done on a per-filesystem basis.

EXPERIMENTAL

EXPERIMENTAL

11.6.2 Initialize quotas

sub uint_16 InitializeQuotas(
IN REF CIM_System system)

{
gms = QuotaGetQMService(system);
result = gms->InitializeQuotas(system, job);
//
// See the Job Control profile for information on
// handling the job if one is returned.
//
return result;
}

EXPERIMENTAL

EXPERIMENTAL

11.6.3 Enable or disable quota tracking

//
// enable or disable quotas
//
// See the mof for the EnableQuotas extrinsic for possible
// return values
//
sub uintl6 EnableQuotas(IN REF CIM_System system,
IN REF CIM_ManagedElement me,
IN boolean onoff)

gms = QuotaGetQMService(system);
result = gms->EnableQuotas(onoff, me, job);

//

SMI-S 1.6.0 Revision 5 SNIA Technical Position

275

Filesystem Quotas Profile

// See the Job Control profile for information on
// handling the job if one is returned.
//
return result;
¥
EXPERIMENTAL

EXPERIMENTAL

11.6.4 Add a quota entry

sub uintl6 AddQuotaEntry(IN REF CIM_System system,
IN REF CIM_ManagedElement me,
IN String tree,
IN REF CIM_Domainldentity principal,
IN uint64 hardlimit,
IN uint64 softlimit,
IN uint64 graceperiod,
IN boolean active,
IN string restype,
IN uintl6é quotatype,
IN REF logicalfile,
IN REF me,
IN boolean default)

service = QuotaGetQMService(system);
entry = Createlnstance(“SNIA_FSQuotaConfigEntry™);
entry->HardLimit = hardlimit;
entry->SoftLimit = softlimit;
entry->SoftLimitGracePeriod = graceperiod;
entry->Active = active;
switch (restype) {
case “Bytes”: entry->ResourceType 2;
3;
case “Directories”: entry->ResourceType = 4;
case “Filest+Directories”: entry->ResourceType = 5;

case “Files”: entry->ResourceType

case “Inodes”: entry->ResourceType = 6;
default: entry->ResourceType = 0;

}

switch (quotatype) {
case “User”: entry->QuotaType = 2;
case “Group”: entry->QuotaType = 3;
case “Tree”: entry->QuotaType = 4;
default: entry->QuotaType = O0;

}

if (principal = NULL) {
entry->PrincipallD = principal->PrincipallD;

276

Filesystem Quotas Profile

else

entry->PrincipallD = NULL;
iT (logicalfile '= NULL) {

entry->TreeName = logicalfile->Name;
else

entry->TreeName = NULL;
entry->ManagedElement = me;
entry->Default = default;
entry->InstancelD = NULL;

result = service->AddQuotaEntry(entry, job);

//

// analyse error, if there is one: the above code

// cannot return “1” or “37, so only “2” is left.

// And that means there’s already an identical

// entry, so declare victory and move on.

//

return result; // could return O, if you prefer

EXPERIMENTAL

EXPERIMENTAL

11.6.5 Delete a quota entry
//
// See the mof for the DeleteQuotaEntry extrinsic for possible
// return values
//
sub uintl6 DeleteQuotaEntry(IN REF CIM_System system,
IN string entryid,
OUT REF CIM_Job job)

{
service = QuotaGetQMService(system);
result = service->DeleteQuotaEntry(entryid);
return result;

¥

EXPERIMENTAL

SMI-S 1.6.0 Revision 5 SNIA Technical Position 277

Filesystem Quotas Profile

EXPERIMENTAL

11.6.6 Modify a quota entry

//
// There are many ways to modify a quota entry. Here are
// a couple examples
//
sub uintl6 ModifyQuotaHardLimit(IN REF CIM_System system,
IN string entryid,
IN uint64 newlimit)

service = QuotaGetQMService(system);

entry = Getlnstance(entryid);

entry->HardLimit = newlimit;

result = service->ModifyQuotaEntry(entryid, entry, job);
//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

sub uintl6 SpecificUserToDefault(IN REF CIM_System system,
IN string uid)

//

// change Alice’s quota to be the default for
// all users

//

service = QuotaGetQMService(system);

//
// Need to search through all the quota entry instances
// for the given uid.
//
ges[] = Enumeratelnstances(“SNIA_FSQuotaConfigEntry”,
true, false, false, false, “PrincipallD”);
foreach ge (ges[]) {
if (ge->PrincipallD == uid) {

ge->PrincipallD = NULL);

ge->Default = true;

return O;

}

return 1; // not found

278

Filesystem Quotas Profile

}
EXPERIMENTAL

EXPERIMENTAL

11.6.7 Read the quota entries

//
// Warning: on some systems, this may return 10’°s of
// thousands of entries

//
sub FSQuotaConfigEntry[] ReadQuotaEntries(IN REF CIM_System system)
{
service = QuotaGetQMService(system);
service->FindQuotaEntries(NULL, system, NULL, NULL, NULL,
ges[]1, job);
//
// See the Job Control profile for information on
// handling the job if one is returned.
//
return qes[];
¥

EXPERIMENTAL

EXPERIMENTAL

11.6.8 Get areport on quota usage
sub FSQuotaReportRecord[] GetQuotaReport(IN REF CIM_System system)

{
cursor = NULL;
service = QuotaGetQMService(system);
nrecs = 1000;
r = service->GetQuotaReport(system, NULL, NULL, NULL,
cursor, nrecs, job, recs[]):
<manage job>;
<do something with recs>;
while (r = “No more data™) {
r = service->GetQuotaReport(system, NULL, NULL, NULL,
cursor, nrecs, job, recs[]):
<manage job>;
<do something with recs>;
}
}
¥

SMI-S 1.6.0 Revision 5 SNIA Technical Position 279

EXPERIMENTAL

Filesystem Quotas Profile

11.7 CIM Elements

Table 165 describes the CIM elements for FileSystem Quotas.

Table 165 - CIM Elements for FileSystem Quotas

Element Name Requirement | Description

11.7.1 SNIA_FSDomainldentity Mandatory A small class containing the unique ID of a
user or group in a Unix or Windows domain.

11.7.2 SNIA_FSQuotaAppliesToElement Mandatory An association between a quota config entry
and a managed element.

11.7.3 SNIA_FSQuotaAppliesToPrincipal Mandatory An association between a quota config entry
and a filesystem principal entity.

11.7.4 SNIA_FSQuotaAppliesToTree Mandatory An association between a quota config entry
and a directory.

11.7.5 SNIA_FSQuotaCapabilities Mandatory The supported targets, quota types, resource
types and behaviors of the
FSQuotaManagementService associated to
this class instance.

11.7.6 SNIA_FSQuotaConfigEntry Mandatory A single quota entry in the configuration
database.

11.7.7 SNIA_FSQuotalndication Optional An indication specially referring to quota
events. Note that the threshold and current
value are passed in the parent class, in
ThresholdValue and ObservedValue.

11.7.8 SNIA_FSQuotaManagementService Mandatory Quota Management Service class.

11.7.9 SNIA_FSQuotaReportRecord Mandatory A class representing a single line in a quota
report generated by a call to the
QuotaReport() extrinsic of the
FSQuotaManagementService.

11.7.10 SNIA_ReportRecord Mandatory An abstract keyless class proposed as the
root of a tree of report record classes.

SELECT * FROM SNIA_FSQuotalndication Mandatory Hard quota threshold crossed.

WHERE WhichLimit = 2

SELECT * FROM SNIA_FSQuotalndication Mandatory Soft quota threshold crossed.

WHERE WhichLimit = 3

11.7.1 SNIA_FSDomainldentity

280

Created By: Createlnstance_or_Static_or_External

Deleted By: Static

Requirement: Mandatory

Table 166 describes class SNIA_FSDomainldentity.

Filesystem Quotas Profile

Table 166 - SMI Referenced Properties/Methods for SNIA_FSDomainldentity

Properties Flags Requirement | Description & Notes

PrincipallD Mandatory The unique ID of a principal. This may be a UID, GID or a
SID.

DomainType Mandatory The type of domain the Principal belongs to. Possible
values are "Unknown", "Other", "Unix", and "Active
Directory".

PrincipalType Mandatory The type of Principal represented by this identity instance.

Possible values are "Unknown", "Other", "User" and
"Group".

11.7.2 SNIA_FSQuotaAppliesToElement

Created By: Createlnstance

Modified By: Extrinsic_or_External

Deleted By: Deletelnstance

Requirement: Mandatory

Table 167 describes class SNIA_FSQuotaAppliesToElement.

Table 167 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The managed element.
Dependent Mandatory The quota config entry.

11.7.3 SNIA_FSQuotaAppliesToPrincipal

Created By: Createlnstance

Modified By: Extrinsic_or_External

Deleted By: Deletelnstance

Requirement: Mandatory

SMI-S 1.6.0 Revision 5

SNIA Technical Position 281

Filesystem Quotas Profile

Table 168 describes class SNIA_FSQuotaAppliesToPrincipal.

Table 168 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The filesystem principal.
Dependent Mandatory The quota config entry.

11.7.4 SNIA_FSQuotaAppliesToTree

Created By: Createlnstance
Modified By: Extrinsic_or_External
Deleted By: Deletelnstance
Requirement: Mandatory

Table 169 describes class SNIA_FSQuotaAppliesToTree.

Table 169 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree

Properties Flags Requirement | Description & Notes
Antecedent Mandatory The filesystem directory tree.
Dependent Mandatory The quota config entry.

11.7.5 SNIA_FSQuotaCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 170 describes class SNIA_FSQuotaCapabilities.

Table 170 - SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique ID for the capabilities instance.

ElementName Mandatory A user-friendly name for the instance in the format
SystemName:ManagedElementName:Capabilities.

SupportedTargetType Mandatory The target types supported by the Service. Possible values

S are "ComputerSystem" and "FileSystem".

SupportedPrincipal Ty Mandatory An array of the types of Principal supported by the Service.

pes Possible values are "User", "Group", "User-tree", "Group-

tree" and "Tree".

282

Filesystem Quotas Profile

Table 170 - SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement | Description & Notes

ConflictingEntriesUsa Mandatory The behavior of the system when it encounters quota

ge entries with duplicate keys.

SupportedResourceT Mandatory An array of resource types that may have quotas placed on
ypes them by this Service. Possible values are"Unknown",

"Other", "Bytes", "Files", "Directories", "Files+Directories",
"Inodes" and "Blocks".

DefaultSupported Mandatory An array that indicates which resource types may have
default quotas set upon them by this Service. Possible
values are the same as for SupportedResourceTypes.

IsActiveSettingPerEn Mandatory Indicates whether quotas may be made active or inactive
trySupported per entry.

IsMonitoredSettingPe Mandatory Indicates whether quota monitoring may be turned on or off
rEntrySupported per entry.

IsGracePeriodSuppo Mandatory Indicates whether a grace period may be set on a quota. If
rted it can, then crossing over a soft threshold for more then the

period of time specified in the grace period effectively
converts the soft threshold to a hard limit, cutting off further
allocation of the resource.

11.7.6 SNIA_FSQuotaConfigEntry

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 171 describes class SNIA_FSQuotaConfigEntry.

Table 171 - SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry

Properties Flags Requirement | Description & Notes

InstancelD Mandatory A unique ID for the entry.

HardLimit Mandatory The hard limit for this quota.

SoftLimit Mandatory The soft limit for this quota.

SoftLimitGracePeriod Optional Length of the grace period, if any exists.

Active Optional Whether or not this quota is to be actively monitored. If
NULL, the system does not support activation of individual
quotas.

Monitor Mandatory Whether or not this is a monitor-only quota. If this is TRUE,
no enforcement of any kind is done.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 283

Filesystem Quotas Profile

Table 171 - SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry

Properties Flags Requirement | Description & Notes

ResourceType Mandatory The type of resource being managed.

QuotaType Mandatory The type of quota to create (user, group, etc.).

TreeName Mandatory Path of the tree over which this quota is applicable, if any.

PrincipallD Mandatory The user or group being constrained by this quota, if any.

FileSystem Mandatory A The name of the FileSystem, if any, over which this quota
is monitored.

Default Mandatory Whether or not this is a default quota.

11.7.7 SNIA_FSQuotalndication

Created By: External
Deleted By: Static
Requirement: Optional

Table 172 describes class SNIA_FSQuotalndication.

Table 172 - SMI Referenced Properties/Methods for SNIA_FSQuotalndication

Properties Flags Requirement | Description & Notes

IdentitylD Mandatory The InstancelD of the FSDomainldentity involved in
causing the event. If there is none, NULL shall be passed in
this property.

EntrylD Mandatory The InstancelD of the FSQuotaConfigEntry involved in
causing the event..

Path Mandatory The complete path of the tree involved in causing the event.
If there is none, NULL shall be passed in this property.

WhichLimit Mandatory Either "hard" or "soft".

ResourceType Mandatory "Bytes", "Files", "Directories","Files+Directories" or
"Inodes".

QuotaType Mandatory Either "user", "group" or "tree".

Limit Mandatory The limit set by the quota entry.

AmountUsed Optional Amount of resource actually used at the time the indication
was generated.

FileSystem Mandatory The Name of the FileSystem in which the event occurred.

11.7.8 SNIA_FSQuotaManagementService

Created By: Static

284

Filesystem Quotas Profile

Deleted By: Static
Requirement: Mandatory

Table 173 describes class SNIA_FSQuotaManagementService.

Table 173 - SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory

sName

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

FindQuotaEntries() Mandatory Retrieve one or more quota entries based on a set of input
criteria.

DeleteQuotaEntry() Mandatory Delete a specified quota entry.

ModifyQuotaEntry() Mandatory Modify a specified quota entry.

AddQuotaEntry() Mandatory Add a new quota entry.

GetQuotaReport() Mandatory Obtain a report on usage against the quota entries on a
system.

EnableQuotas() Mandatory Turn quota monitoring on or off.

InitializeQuotas() Mandatory Initialize the quota reporting system.

11.7.9 SNIA_FSQuotaReportRecord

Created By: Extrinsic
Deleted By: Static
Requirement: Mandatory

Table 174 describes class SNIA_FSQuotaReportRecord.

Table 174 - SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties Flags Requirement | Description & Notes

HardLimit Optional The hard threshold associated with this quota report record,
if any.

SoftLimit Optional The soft threshold associated with this quota report record,
if any.

SoftLimitGracePeriod Optional The grace period associated with the soft limit associated
with this report record, if any.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 285

Filesystem Quotas Profile

Table 174 - SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties Flags Requirement

Description & Notes

Active Optional

Whether the quota associated with this report record is
being actively enforced. If not, this indicates the quota is
being used for tracking purposes only.

Monitored Optional

Whether or not thresholds on this quota are being
monitored. If a system reports quotas that aren't being
monitored, this value may be false.

ResourceType Mandatory

The type of resource whose use is counted in this quota
report record.

QuotaType Mandatory

The type of Principal to which this quota applies. Possible
values are "Unknown", "Other", "User", "Group" and "Tree".

AmountUsed Mandatory

The amount of resource used by the combination of
Principal, Resource type, Tree, and ManagedElement
specified in the quota configuration entry that generated
this quota report record (and reported in other fields in the
record).

TreeName Optional

The URI of the filesystem tree upon which the quota was
set, if any.

PrincipallD Optional

The FSDomainldentity for the Principal associated with this
guota report record, if any.

FileSystem Optional

The name of the filesystem over which the quota entry that
generated the report record was placed, if any.

11.7.10 SNIA_ReportRecord

Created By: Static
Deleted By: Static
Requirement: Mandatory

EXPERIMENTAL

286

NAS Head Profile

STABLE
Clause 12: NAS Head Profile

12.1 Description

12.1.1 Synopsis

Profile Name: NAS Head (Autonomous Profile)
Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.28

Table 175 describes the related profiles for NAS Head.

Table 175 - Related Profiles for NAS Head

Profile Name Organization | Version Requirement | Description
Filesystem SNIA 1.4.0 Mandatory
File Storage SNIA 1.4.0 Mandatory
File Export SNIA 1.5.0 Mandatory
NAS Network Port SNIA 1.5.0 Mandatory
Experimental SNIA 1.5.0 Optional
Indication

Cascading SNIA 1.3.0 Optional
Access Points SNIA 1.3.0 Optional
Multiple Computer SNIA 1.2.0 Optional
System

Software SNIA 1.4.0 Optional
Location SNIA 1.4.0 Optional
Extent Composition SNIA 1.6.0 Optional
Filesystem SNIA 1.6.0 Optional
Manipulation

File Export SNIA 1.6.0 Optional
Manipulation

File Server SNIA 1.5.0 Optional
Manipulation

Filesystem SNIA 1.4.0 Optional
Performance

FileSystem Quotas SNIA 1.5.0 Optional

SMI-S 1.6.0 Revision 5 SNIA Technical Position

287

NAS Head Profile

Table 175 - Related Profiles for NAS Head

Profile Name Organization | Version Requirement | Description
Filesystem Copy SNIA 1.4.0 Optional
Services
Job Control SNIA 15.0 Optional
SPI Initiator Ports SNIA 1.4.0 Optional
FC Initiator Ports SNIA 1.6.0 Optional
Device Credentials SNIA 1.3.0 Optional
Operational Power SNIA 1.5.0 Optional Experimental.
Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version
1.0.0
Physical Package SNIA 15.0 Mandatory
Block Services SNIA 1.6.0 Mandatory
Health SNIA 1.2.0 Mandatory
Indication SNIA 1.5.0 Support for Deprecated.
. at least one :
Indications SNIA 1.6.0 is mandatory. Experimental.
Indications DMTF 1.2.0 Experimental. See DSP1054, version

1.2.0

Central Class: ComputerSystem

Scoping Class: ComputerSystem

12.1.2 Overview

The NAS Head Profile exports File elements (contained in a FileSystem) as FileShares. The storage for the
FileSystem is obtained from external SAN storage, for example, a Storage Array that exports Storage Volumes as
LUNSs. The storage array may also provide storage to other hosts or devices (or other NAS Heads), and the storage
on the array might be visible to other external management tools, and may be actively managed independently.

This profile models the necessary filesystem and NAS concepts and defines how the connections to the underlying
storage is managed. The details of how a Storage Array exports storage to the NAS Head is not covered in this

profile but is covered by the Array Profile.

The NAS Head Profile reuses a significant portion of Clause 22: Storage Virtualizer Profile in Storage Management
Technical Specification, Part 3 Block Devices, 1.6.0 Rev 5.

The NAS Head Profile and its subprofiles and packages are illustrated in Figure 17.

288

NAS Head Profile

NAS Network Indications
Ports !
SystermDevice
Device Credentials
HostedService
InstalledSoftwareldentity 7] NAS Head
FileE xp ort
HostedShale Manipulation
File Export HostedService [
QomputerSy stermPackage
Software File Server
Manipulation
Concieteldentity
File Storage
Component S SBIo_ck
ervices
PhysicalPackage Package “— Package
HpstedF ileSystem
. . — Filesystem -
Phvy sicalEled entLUT:at'rrJn
¥ Manipulation
FileSystem
Location OweningJobElernen
o i FSQuota)
Multiple Hostedf.cecessPoint Joh Control
Computersystem CascadifgDependency
ConcreteComponent
Access Points

1
Extent _|

Composition

Cascading

—

Initiator Ports

Figure 17 - NAS Head Profiles and Subprofiles

12.1.3 Implementation

12.1.3.1 Summary Instance Diagram

Figure 18 illustrates the mandatory classes for the NAS Head Profile. This figure shows all the classes that are
mandatory for the NAS Head Profile. Later diagrams will review specific sections of this diagram.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 289

NAS Head Profile

|____________________'I

MAS Metwork Forts P rovkec [Enid Po Int I
Profile
ProoollFType = 4200 | 4201 praP— I
l (NFS™ ar"CIFST) Dev ke T4 P mpkmen oy
Hos eolAcce ssPo it L I
______g_____________
e —— e T
r TapAvalkb EFoEkmert
File Export I
'-{II‘I‘.IaI FpIT"‘:gE” Profile FlkSlag I
comp Y5 EM Ll e |)
..I;.mh:“, HeBOSNAR HFS or CIFS —
E“““tﬁm'gnm SHIA_ExporkdF Sk ar Setiig I
I SHIE_Share dEE mext I
CONCRE D K2y
(For Backwarnd -:unpaﬂ:lllt-‘- J
— e m— — — —— . m— — | — — — — — — — —
iy, T W, N W, W, L W, W, N W N, W W W
r Hock (|D?|3¢ e iy
[t Te | ST E1]
| F || EE'H'STEI"I’I :Nl"‘._LDC-\?I||‘."."‘.Cﬁ$$ DB FleSys Elﬂ:?mlg
P rifila Log kalF Ik dzondtionab I
I (Dlre By
System Devke I
| FleSDacge EEm et g Data I
(For Backwakl Com patly Ik wonditoaah
-h:ns.lﬁ(l:ial I
I SIS LocalscoessAvaliab b
Cowditbiah .
FIE Sy tem Sa g
| SHI_LocalFkSyrEm E”'“f_flmlﬁ:l‘lnm— £ ptinal I
—_ e e o —— _—_——-—
— e E— E— — — — — e o — — —
File Storage |
Profile
I FesHesd nExkat I
Hos e dF IS m oonel How ak I
L_--_--_--_---‘-_--]
r—--—-- A S A T T A S G
Block Services Packange LogkalD kk SHragety
Ekme It?mlg Oats
L_Hosk dDepe aclency—] ol pre EyEEm - I

T
Al e oF rom Sorage P oo |

SHorageP ool Shragecapa ks

Al dF ram S orage P ool Ekme Capal It 5

SyremDevk= I
EkmeyCapabIRE s l I

:r."$.‘|l'l Dew b= ik (Ebrﬁ(ﬁ Pl
optiaral e e e m— — — T ——— —
optoaa
mpkme tatonapab ke s T T
Optioral SoREDEI
(Cpton al
linitistor P arts subprafile (optionan

e Taget

Protoco Contin Ik TForEs (IJDIIII |—D9'.' k2 SAP Inpkme IT:'ﬂIIIJ

Tangt
I P BoolEr dpalit Log bl i ath I
I ToElP oo mole T FCPart I
WERTT
l P HooolEr dpait viageRe |
-

Figure 18 - NAS Head Instance

290

NAS Head Profile

The NAS Head Profile closely parallels the Storage Virtualizer Profile in how it models storage. Storage is assigned
to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of holding local
filesystems of the NAS.

As with the Storage Virtualizer Profile, the NAS Head StoragePools have StorageCapabilities associated to the
StoragePools via ElementCapabilities. Similarly, LogicalDisks that are allocated from those StoragePools have
StorageSettings, which are associated to the LogicalDisk via ElementSettingData. StoragePools are hosted by a
ComputerSystem that represents the NAS “top level” system, and the StorageExtents have a SystemDevice
association to the “top level” ComputerSystem.

Note: As with Self-Contained NAS, the StoragePools may be hosted by a component ComputerSystem if the
Profile has implemented the Multiple Computer System Subprofile.

As with the Storage Virtualizer Profile, the “top level” ComputerSystem of the NAS Head does not (and typically
isn't) a real ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are
scoped.

A NAS Head may implement “Virtual File Servers” in addition to, or instead of, implementing File Servers in the Top
Level ComputerSystem or one of the Multiple Computer System ComputerSystems. A Virtual File Server shall
have a HostedDependency to either the top level NAS ComputerSystem or one of the Multiple Computer System
ComputerSystems. NOTE: A Virtual File Server shall not have a ComponentCS association to the top level NAS
ComputerSystem.

As with Storage Virtualizer Profile, the NAS Head draws its storage from an open SAN. That is, the actual disk
storage is addressable independent of the NAS Head. As a result, the NAS head shall model the Initiator ports and
the StorageExtents that it acquires from the SAN. The NAS Head supports at least one of the Initiator Ports
Subprofiles (the dashed box at the bottom of Figure 18) to effect the support for backend ports. The NAS Head
includes the Block Services Package to effect the logical storage management (the dashed box just above the
Initiator Ports dashed box in Figure 18).

Everything above the LogicalDisk is specific to NAS (and does not appear in the Storage Virtualizer Profile).
LocalFileSystems are created on the LogicalDisks, LogicalFiles within those LocalFileSystems are shared
(FileShare) through ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed boxes are from the required packages and subprofiles (as
indicated by the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with previous releases of SMI-S. It
represents a relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS profiles (NAS Head and Self-contained NAS) in the File
Storage Profile. In the NAS Head a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base NAS Head profile, the classes and associations shown in Figure 18 are automatically populated based
on how the NAS Head is configured. Client modification of the configuration (including configuring storage, creating
extents, local filesystems and file shares) are functions found in subprofiles of the NAS Head Profile.

EXPERIMENTAL

An instance of ImplementationCapabilities may be associated to the top level NAS Head ComputerSystem. This
Capabilities instance identifies the capacity optimization techniques supported by the implementation. An

SMI-S 1.6.0 Revision 5 SNIA Technical Position 291

NAS Head Profile

implementation may advertise that it supports “None”, "SNIA:Thin Provisioning”, "SNIA:Data Compression" or
"SNIA:Data Deduplication”.

EXPERIMENTAL

12.1.3.2 NAS Storage Model
Figure 19 illustrates the classes mandatory for modeling of storage for the NAS Head Profile.

ComputerSystem

SystemDevice Block Services Package I

SystemDaevice

StorageSetting

LogicalDisk
ElementSatting Data

hmladsmmga FPool

AllocatedFrom StorageF ool

SeragePool StorageCapabilities
ElementCapabilities 1

ConcreteCompanent

{Optional)
L N StorageExtent
Storage Extent Eptiunul';
(Optionalp |

Figure 19 - NAS Storage Instance

The NAS Head Profile uses most of the classes and associations used by the Storage Virtualizer Profile (including
those in the Block Services Package). In doing this, it leverages many of the subprofiles that are available for
Storage Virtualizer Profiles. The classes and associations shown in Figure 19 are the minimum mandatory for read
only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled, including the
HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the StoragePool. In addition,
for NAS Heads, which get their storage from a SAN, the StorageExtents that compose the primordial StoragePools
shall also be modeled with ConcreteComponent associations to the StoragePool to which they belong and they will
be primordial.

In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk shall
have an AllocatedFromStoragePool association to the StoragePool from which it is allocated. The LogicalDisk shall
have an ElementSettingData association to the settings that were used when the LogicalDisk was created.

For manipulation of Storage, see Clause 5: Block Services Package of Storage Management Technical
Specification, Part 3 Block Devices, 1.6.0 Rev 5. LogicalDisks are the ElementType that is supported for storage
allocation functions (e.g., CreateOrModifyElementFromStoragePool and ReturnToStoragePool), but the Block
Services methods for managing LogicalDisks are optional for the NAS Head Profile. The NAS Head Profile also

292

NAS Head Profile

supports (optionally) the Pool manipulation functions (e.g., CreateOrModifyStoragePool and DeleteStoragePool) of
the Block Services Package.

12.1.3.3 NAS Head Use of Filesystem Profile (Mandatory)

The NAS Head Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the NAS Head, the
Filesystem Profile shall be supported. See Clause 8: Filesystem Profile for details on this modeling.

12.1.3.4 NAS Head Use of File Storage Profile (Mandatory)

The NAS Head Profile uses the File Storage Profile for modeling of its file storage constructs. For the NAS Head,
the Filesystem Profile shall be supported. See Clause 7: File Storage Profile for details on the file storage
modeling.

12.1.3.5 NAS Head Use of File Export Profile (Mandatory)

The NAS Head Profile uses the File Export Profile for modeling of its file export constructs. For the NAS Head, the
File Export Profile shall be supported. See Clause 4: File Export Profile for details on this modeling.

12.1.3.6 NAS Head Use of NAS Network Ports Profile (Mandatory)

The NAS Head Profile uses the NAS Network Ports Profile for modeling of its file export constructs. For the NAS
Head, the NAS Network Ports Profile shall be supported. See Clause 14: NAS Network Port Profile for details on
this modeling.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 293

NAS Head Profile

EXPERIMENTAL

12.1.3.7 NAS Head Support of Cascading

Figure 20 illustrates the NAS Head support for cascading. Support for the Cascading Subprofile is optional (and
the Cascading Subprofile is experimental). It is provided here to illustrate stitching between the NAS Head and

Array or Storage Virtualizer Profiles.

ComputerSystem
Systembevice Block Services Package
LogicalDisk .
. StorageSetting
Hnstedlsmragepgm ElernentSettingData

AllocatedFromStoragePool

StoragePool StarageCapabilities
ElernentCapabilitie

Dependency
) ConcreteComponent
SystemDevice

StorageExtent

StorageBExtent

Cascading Subprofile
AllocatedResources Logicalldentity

RemoteResources

Logicalldentity

CDmputerSysTem
MemberOfCollection

[virtual)
I Storagevolurme 1
Mirtual)

SysternDevice | MemberOfCollection
Storage®olurme 1

SAP&y ailableF arElerment (virtual)

RermoteServiceAccessPoint

Figure 20 - NAS Head Cascading Support Instance

_

The lower dashed box in the figure illustrates the classes and associations of the Cascading Subprofile. The
dashed classes are virtual instances (copies cached from the Array or Storage Virtualizer Profile). The other
classes of the Cascading Subprofile represent NAS Head usage of those classes. For example, the collection

294

NAS Head Profile

AllocatedResources collects all the Array volumes that are used in StoragePools of the NAS Head. The
RemoteResources collection collects all volumes that the NAS Head has discovered (whether used or not).

The RemoteServiceAccessPoint is the URL of the management interface that the NAS Head uses for managing
the Array or Storage Virtualizer Profiles. This may or may not be an SMI-S Server URL.

EXPERIMENTAL

12.1.3.8 Indication Events

12.1.3.8.1 InstModification of ComputerSystem

EXPERIMENTAL

Table 176 identifies the standard OperationalStatus values and the events that are being indicated.

Table 176 - InstModification Events for ComputerSystem

New OperationalStatus Event / Correlated Indications

OK The top level NAS system is fully operational.

An Error in the Top Level NAS system was corrected and the
system is now fully functional.

Self test is complete and the NAS system is fully operational

Degraded The system is running but with limitations.

Error The system is experiencing an error and is not functional.

Stopped The system has been stopped.

No contact The system status cannot be determined, due to no response
from the system.

Starting The system is starting, but it not yet functional.

Stopping The system is stopping.

Lost communication The system status cannot be determined, due to communications
problems.

EXPERIMENTAL

12.1.3.8.2 InstModification of LogicalDisk

SMI-S 1.6.0 Revision 5 SNIA Technical Position 295

NAS Head Profile

EXPERIMENTAL
Table 177 identifies the standard OperationalStatus values and the events that are being indicated.

Table 177 - InstModification Events for LogicalDisk

New OperationalStatus Event / Correlated Indications
OK The logical disk is fully functional.
Degraded The logical disk is experiencing errors, but is still supporting data.

The Logical disk is rebuilding, so performance may suffer.

Error The logical disk has an error and is not usable.
Starting The logical disk is being brought online.
Dormant The logical disk is offline.

EXPERIMENTAL

EXPERIMENTAL
12.1.3.9 Bellwether Indications

12.1.3.9.1 Alertindication for ComputerSystem Bellwether

This Alertindication signals the change in status (OperationalStatus) of a ComputerSystem as a bellwether event. It
is supported by a standard message (MessagelD=FSM1). Table 178 shows the OperationalStatus values that may
signal that changes may have occurred in related elements (Implied Indications Inhibited).

296

NAS Head Profile

Table 178 - Bellwether Alertindication Events for ComputerSystem

New OperationalStatus

Implied Indications Inhibited

OK, Degraded, Error, Stopped

OperationalStatus changes to Elements with SystemDevice
associations to this ComputerSystem (LogicalDisks, ...)

OperationalStatus changes to Elements with HostedService
associations to this ComputerSystem
(FileSystemConfigurationService, FileExportService, ...)

OperationalStatus changes to FileSystems with
HostedFileSystem associations to this ComputerSystem.

OperationalStatus changes to StoragePools with
HostedStoragePool associations to this ComputerSystem.

OperationalStatus changes to ProtocolEndpoints with
HostedAccessPoint associations to this ComputerSystem.

OperationalStatus changes to FileShares with HostedFileShare
associations to this ComputerSystem.

No contact, Starting, Stopping,
Lost communication

None

12.1.3.9.2 Alertindication for LogicalDisk Bellwether

This Alertindication signals the change in status (OperationalStatus) of a LogicalDisk as a bellwether event. It is
supported by a standard message (MessagelD=FSM3). Table 179 shows the OperationalStatus values that may
signal that changes may have occurred in related elements (Implied Indications Inhibited).

Table 179 - Bellwether Alertindication Events for LogicalDisk

New OperationalStatus

Implied Indications Inhibited

OK, Degraded, Error, Stopped

OperationalStatus changes to FileSystems with ResidesOn
associations to this LogicalDisk.

Unknown

None

EXPERIMENTAL

12.2 Health and Fault Management Considerations

The NAS Head supports state information (e.g., OperationalStatus) on the following elements of the model:

SMI-S 1.6.0 Revision 5

SNIA Technical Position

297

NAS Head Profile

= Network Ports (See 14.4.1 "OperationalStatus for Network Ports™)

< Back-end Ports (See 17.3.3 "Health and Fault Management Considerations" in Storage Management
Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 5)

= ComputerSystems (See 25.1.5 Computer System Operational Status in Storage Management Technical
Specification, Part 2 Common Profiles, 1.6.0 Rev 5)

= FileShares that are exported (See 4.2.1 "OperationalStatus for FileShares")
= LocalFileSystems (See 8.2.1 "OperationalStatus for Filesystems™)

= ProtocolEndpoints (See 14.4.2 "OperationalStatus for ProtocolEndpoints")

EXPERIMENTAL

12.2.1 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 180.

Table 180 - Standard Messages used by NAS Head

Message ID Message Name
FSM1 ComputerSystem bellwether alert
FSM3 LogicalDisk bellwether alert

EXPERIMENTAL

EXPERIMENTAL

12.3 Cascading Considerations

The NAS Head is a cascading profile, but the Cascading Subprofile is Experimental in this release of SMI-S; see
Clause 24: Cascading Subprofile in Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0
Rev 5. As such, the Cascading Subprofile is defined as an optional subprofile. A NAS Head may cascade storage.
The cascading considerations for this are discussed in the following sections.

12.3.1 Cascading Resources for the NAS Head Profile

By definition, a NAS Head gets its storage from the network. As such, there is a cascading relationship between
the NAS Head Profile and the profiles (e.g., Array Profiles) that provide the storage for the NAS Head. Figure 20
illustrates the constructs to be used to model this cascading relationship.

e The NAS Head Cascaded Resources are Primordial StorageExtents (used to populate Primordial
StoragePools)

= The NAS Head obtains the storage for these from Array or Storage Virtualizer Profiles

= Each Primordial StorageExtent maps (via Concreteldentity) to a StorageVolume (from the Array or Storage
Virtualizer Profile).

298

NAS Head Profile

12.3.2 Ownership Privileges Asserted by NAS Heads

In support of the Cascading NAS Heads may assert ownership over the StorageVolumes that they import. If the
Array or Storage Virtualizer implementation supports Ownership, NAS Heads would assert ownership using the
following Privilege:

= Activity - Execute

= ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

« FormatQualifier - Method

12.3.3 NAS Head Limitations on use of the Cascading Subprofile

The NAS Head support for Cascading places the following limitations and restrictions on the Cascading Subprofile:

= The AllocationService is not supported. - Allocation is done as a side effect of assigning the extents to the
Primordial pool.

< CascadingDependency - The CascadingDependency may exist, even when there are no resources that are
imported. This signifies that the NAS Head has discovered the Array or Virtualizer, but has no access to any of
their volumes.

EXPERIMENTAL

12.4 Supported Subprofiles and Packages

See section 12.1.1 for this information.

12.5 Methods of the Profile

12.5.1 Extrinsic Methods of the Profile

None.

12.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

= Associators

= AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

< EnumeratelnstanceNames

Manipulation functions are supported in subprofiles of the profile.

12.6 Client Considerations and Recipes

Not defined in this version of the specification.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 299

12.7 CIM Elements

NAS Head Profile

Table 181 describes the CIM elements for NAS Head.

Table 181 - CIM Elements for NAS Head

Element Name

Requirement

Description

OperationalStatus Bellwether Alert)

12.7.1 CIM_ComputerSystem (Top Level Mandatory This declares that at least one computer

System) system entry will pre-exist. The Name
property should be the Unique identifier for the
NAS Head. Associated to RegisteredProfile.

12.7.2 CIM_ComputerSystem (Virtual File Optional This represents a Virtual File Server, if one

Server) exists.

12.7.3 CIM_ConcreteComponent Optional Represents the association between a
Primordial StoragePool and the underlying
StorageExtents that compose it.

12.7.4 CIM_ElementCapabilities Optional Experimental. Associates the top level NAS

(ImplementationCapabilities to Service) Head ComputerSystem to the
CIM_ImplementationCapabilities supported by
the implementation.

12.7.5 CIM_FilterCollection (NAS Head Conditional Experimental. Conditional requirement:

Predefined FilterCollection) Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

12.7.6 CIM_HostedCollection (NAS Head to Conditional Experimental. Conditional requirement:

predefined FilterCollection) Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

12.7.7 CIM_HostedDependency Optional Associates a Virtual File Server to the
Computer System hosting it. This is required if
a Virtual File Server exists.

12.7.8 CIM_ImplementationCapabilities Optional Experimental. The capabilities of the profile

(ImplementationCapabilities) implementation.

12.7.9 CIM_IndicationFilter (LogicalDisk Optional Experimental. This is the 'pre-defined’

CIM_IndicationFilter instance for the
bellwether alert for changes in the
OperationalStatus of LogicalDisk instances.

300

NAS Head Profile

Table 181 - CIM Elements for NAS Head

Element Name

Requirement

Description

12.7.10 CIM_IndicationFilter (LogicalDisk Optional Experimental. This is the 'pre-defined’

OperationalStatus) CIM_IndicationFilter instance for changes in
the OperationalStatus of LogicalDisk
instances.

12.7.11 CIM_lIndicationFilter (System Optional Experimental. This is the 'pre-defined'

OperationalStatus Bellwether Alert) CIM_IndicationFilter instance for the
bellwether alert for changes in the
OperationalStatus of System instances.

12.7.12 CIM_IndicationFilter (System Optional Experimental. This is the 'pre-defined'

OperationalStatus) CIM_IndicationFilter instance for changes in
the OperationalStatus of System instances.

12.7.13 CIM_LogicalDisk (LD for FS) Mandatory Represents the single Storage Extent on
which the NAS Head will build a
LocalFileSystem.

12.7.14 CIM_MemberOfCollection Conditional Experimental. Conditional requirement:

(Predefined Filter Collection to NAS Head Required if the Experimental Indication Profile

Filters) is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the NAS Head
predefined FilterCollection to the predefined
Filters supported by the NAS Head.

12.7.15 CIM_StorageExtent (Primordial Optional This StorageExtent represents the LUNs

Imported Extent) (StorageVolumes) imported from a storage
device to the NAS Head.

12.7.16 CIM_SystemDevice (Logical Disks) Mandatory This association links all LogicalDisks to the
scoping system.

12.7.17 CIM_SystemDevice (Storage Extents) | Conditional Conditional requirement: This is required if
primordial StorageExtents exist. This
association links all StorageExtents to the
scoping system.

SELECT * FROM CIM_InstModification Optional CQL -Change of Status of a NAS

WHERE Sourcelnstance ISA
CIM_ComputerSystem AND
Sourcelnstance.CIM_ComputerSystem::Oper
ationalStatus <>
Previouslnstance.CIM_ComputerSystem::Op
erationalStatus

ComputerSystem (controller).

Previousinstance is optional, but may be
supplied by an implementation of the Profile.

See 12.1.3.8.1 InstModification of
ComputerSystem.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

301

NAS Head Profile

Table 181 - CIM Elements for NAS Head

Element Name

Requirement

Description

SELECT * FROM CIM_Alertindication Optional CQL -This is a bellwether indication of a

WHERE OwningEntity="SNIA" and change of Status of a NAS ComputerSystem

MessagelD="FSM1" (controller) and related classes (LogicalDisks,
Services, ProtocolEndpoints, StoragePools,
FileShares and FileSystems).
See 12.1.3.9.1 Alertindication for
ComputerSystem Bellwether
Also see Storage Management Technical
Specification, Part 1 Common Architecture,
1.6.0 Rev 5 8.4.3.10 Message: System
OperationalStatus Bellwether.

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL -Change of Status of a NAS

WHERE Sourcelnstance ISA ComputerSystem (controller).

CIM_ComputerSystem AND . . .

Sourcelnstance.OperationalStatus <> Previousinstance is optional, but may be

PreviousInstance.OperationalStatus supplied by an implementation of the Profile.
See 12.1.3.8.1 InstModification of
ComputerSystem.

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL -Change of status of a

WHERE Sourcelnstance ISA LogicalDisk.

CIM_LogicalDisk AND) .)

Sourcelnstance.OperationalStatus <> Previousinstance is optional, but may be

PreviousInstance.OperationalStatus supplied by an implementation of the Profile.
See 12.1.3.9.2 Alertindication for LogicalDisk
Bellwether.

SELECT * FROM CIM_Alertindication Optional CQL -This is a bellwether indication of a

WHERE OwningEntity="SNIA" and change of status of a LogicalDisk.

MessagelD="FSM3" o ,)
See 12.1.3.9.2 Alertindication for LogicalDisk
Bellwether
Also see Storage Management Technical
Specification, Part 1 Common Architecture,
1.6.0 Rev 5 8.4.3.12 Message: LogicalDisk
OperationalStatus Bellwether.

SELECT * FROM CIM_InstModification Optional CQL -Change of status of a LogicalDisk.

WHERE Sourcelnstance ISA
CIM_LogicalDisk AND
Sourcelnstance.CIM_LogicalDisk::Operationa
[Status <>
Previousinstance.CIM_LogicalDisk::Operation
alStatus

Previousinstance is optional, but may be
supplied by an implementation of the Profile.

See 12.1.3.8.2 InstModification of LogicalDisk.

12.7.1 CIM_ComputerSystem (Top Level System)

Created By: Static

302

Modified By: External
Deleted By: Static

Requirement: Mandatory

NAS Head Profile

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile
instance shall have RegisteredName set to 'NAS Head', RegisteredOrganization set to 'SNIA’, and

RegisteredVersion set to '1.6.0'".

Table 182 describes class CIM_ComputerSystem (Top Level System).

Table 182 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement | Description & Notes

CreationClassName Mandatory The actual class of this object, e.g.,
Vendor_NASComputerSystem.

ElementName Mandatory User friendly name.

Name Mandatory Unique identifier for the NAS Head in a format specified by
NameFormat. For example, IP address or Vendor/Model/
SerialNo.

OperationalStatus Mandatory Overall status of the NAS Head. The standard values are 2
(OK), 3 (Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10
(Stopped), 12 (No contact) or 13 (Lost Communication).

NameFormat Mandatory Format for Name property.

PrimaryOwnerContac | M Optional Owner of the NAS Head.

t

PrimaryOwnerName | M Optional Contact details for owner.

Dedicated Mandatory This shall be a NAS Head (24).

OtherldentifyingInfo Mandatory An array of know identifiers for the NAS Head.

IdentifyingDescription Mandatory An array of descriptions of the Otherldentifyinginfo. Some

S of the descriptions would be "Ipv4 Address"”, "Ipv6 Address"
or "Fully Qualified Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 303

NAS Head Profile

Table 182 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement | Description & Notes
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

Roles N Optional Not Specified in this version of the Profile.
OtherDedicatedDesc | N Optional Not Specified in this version of the Profile.
riptions

ResetCapability N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

12.7.2 CIM_ComputerSystem (Virtual File Server)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 183 describes class CIM_ComputerSystem (Virtual File Server).

Table 183 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement | Description & Notes

Dedicated Mandatory A Virtual File Server is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the NAS Head's Virtual File Servers

(Eg Vendor/Model/SerialNo+FS+Number).

OperationalStatus Mandatory Overall status of the Virtual File Server. The standard
values are 2 (OK), 3 (Degraded), 6 (Error), 8 (Starting), 9
(Stopping), 10 (Stopped), 12 (No contact) or 13 (Lost
Communication).

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
ElementName Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.

304

NAS Head Profile

Table 183 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement | Description & Notes

RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

Roles N Optional Not Specified in this version of the Profile.
OtherDedicatedDesc | N Optional Not Specified in this version of the Profile.
riptions

ResetCapability N Optional Not Specified in this version of the Profile.
PrimaryOwnerContac | N Optional Not Specified in this version of the Profile.
t

PrimaryOwnerName | N Optional Not Specified in this version of the Profile.
OtherldentifyingInfo N Optional Not Specified in this version of the Profile.
IdentifyingDescription | N Optional Not Specified in this version of the Profile.
s

RequestStateChange Optional Not Specified in this version of the Profile.
0

12.7.3 CIM_ConcreteComponent

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 184 describes class CIM_ConcreteComponent.

Table 184 - SMI Referenced Properties/Methods for CIM_ConcreteComponent

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The Primordial StoragePool that is built from the
StorageExtent.

PartComponent Mandatory A StorageExtent that is part of a Primordial StoragePool.

12.7.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)

Experimental. Associates the top level NAS Head ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

Created By: Static
Modified By: Static

SMI-S 1.6.0 Revision 5 SNIA Technical Position 305

NAS Head Profile

Deleted By: Static
Requirement: Optional
Table 185 describes class CIM_ElementCapabilities (ImplementationCapabilities to Service).

Table 185 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCa-
pabilities to Service)

Properties Flags Requirement | Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The top level NAS Head ComputerSystem that has
ImplementationCapabilities.

12.7.5 CIM_FilterCollection (NAS Head Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A NAS Head
implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 186 describes class CIM_FilterCollection (NAS Head Predefined FilterCollection).

Table 186 - SMI Referenced Properties/Methods for CIM_FilterCollection (NAS Head Predefined
FilterCollection)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:NAS Head'.

12.7.6 CIM_HostedCollection (NAS Head to predefined FilterCollection)
Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5" (Predefined Filter Collections).

Table 187 describes class CIM_HostedCollection (NAS Head to predefined FilterCollection).

Table 187 - SMI Referenced Properties/Methods for CIM_HostedCollection (NAS Head to pre-
defined FilterCollection)

Properties Flags Requirement | Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the NAS
Head.

Antecedent Mandatory Reference to the top level System of the NAS Head.

306

12.7.7 CIM_HostedDependency

Created By: External
Modified By: Static
Deleted By: External

Requirement: Optional

Table 188 describes class CIM_HostedDependency.

NAS Head Profile

Table 188 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement | Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File
Server ComputerSystem is a File Server and shall have
Dedicated=16 (File Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting

ComputerSystem may be the top level NAS
ComputerSystem or an Multiple Computer System (non-top
level) system.

12.7.8 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Optional

Table 189 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

Table 189 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (Implemen-
tationCapabilities)

Properties Flags Requirement | Description & Notes
InstancelD Mandatory An opaque, unique id for the implementation capability of
an implementation.
ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.
SupportedCapacityO Mandatory This array of strings lists the capacity optimization
ptimizations techiques that are supported by the implementation. Valid
string values are "none" | "SNIA:Thin Provisioning" |
"SNIA:Data Compression" | "SNIA:Data Deduplication”.
SMI-S 1.6.0 Revision 5 SNIA Technical Position 307

NAS Head Profile

12.7.9 CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the bellwether alert for changes in the
OperationalStatus of LogicalDisk instances. This is a special case of the CIM_IndicationFilter (pre-defined) class
as defined in the Indication Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 190 describes class CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert).

Table 190 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk Operation-
alStatus Bellwether Alert)

Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:NAS
Head:LogicalDiskOperationalStatusBellwetherAlert'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_Alertindication WHERE
OwningEntity="SNIA" and MessagelD="FSM3".

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage

Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

308

NAS Head Profile

12.7.10 CIM_IndicationFilter (LogicalDisk OperationalStatus)

Experimental. This is the 'pre-defined’ CIM_IndicationFilter instance for changes in the OperationalStatus of
LogicalDisk instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in the
Indication Profile.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 191 describes class CIM_IndicationFilter (LogicalDisk OperationalStatus).

Table 191 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk Operation-

alStatus)
Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:NAS
Head:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_LogicalDisk AND
Sourcelnstance.CIM_LogicalDisk::OperationalStatus <>
Previousinstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 309

NAS Head Profile

12.7.11 CIM_IndicationFilter (System OperationalStatus Bellwether Alert)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the bellwether alert for changes in the
OperationalStatus of System instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as
defined in the Indication Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 192 describes class CIM_IndicationFilter (System OperationalStatus Bellwether Alert).

Table 192 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalSta-
tus Bellwether Alert)

Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:NAS
Head:SystemOperationalStatusBellwetherAlert'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_Alertindication WHERE
OwningEntity="SNIA" and MessagelD="FSM1".

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage

Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

310

NAS Head Profile

12.7.12 CIM_IndicationFilter (System OperationalStatus)

Experimental. This is the 'pre-defined’ CIM_IndicationFilter instance for changes in the OperationalStatus of
System instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in the Indication
Profile.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 193 describes class CIM_IndicationFilter (System OperationalStatus).

Table 193 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalSta-

tus)
Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-

defined).
Name Mandatory This shall be 'SNIA:NAS Head:SystemOperationalStatus'.
SourceNamespace N Optional Deprecated. See the SourceNamespace definition in

section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_ComputerSystem AND
Sourcelnstance.CIM_ComputerSystem::OperationalStatus

<>
Previousinstance.CIM_ComputerSystem::OperationalStatu
S.

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage

Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 311

NAS Head Profile

12.7.13 CIM_LogicalDisk (LD for FS)

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 194 describes class CIM_LogicalDisk (LD for FS).

Table 194 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory CIM Class of the NAS Head Computer System that is the

sName host of this LogicalDisk.

SystemName Mandatory Name of the NAS Head Computer System that hosts this
LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DevicelD Mandatory Opagque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for
LogicalDisks in a NAS Head. The standard values for this
are 2 (OK), 3 (Degraded), 6 (Error), 8 (Starting) or 15
(Dormant).

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17).
The standard values for this are 0 (Other), 1 (Unknown), 2
(None/Not Applicable), 3 (Broken), 4 (Data Lost), 5
(Dynamic Reconfig), 6 (Exposed), 7 (Fractionally Exposed),
8 (Partially Exposed), 9 (Protection Disabled), 10
(Readying), 11 (Rebuild), 12 (Recalculate), 13 (Spare in
Use), 14 (Verify In Progress) or 15 (In-Band Access
Granted).

Primordial Mandatory This represents a Concrete Logical Disk that is not
primordial.

Name Mandatory Identifier for a local LogicalDisk that will be used for a
filesystem; since this logical disk will be referenced by a
client, it must have a unique name. We cannot constrain
the format here, but the OS-specific format described in the
Block Services specification is not appropriate, so "Other"
is used.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the
NAS Head. This shall be coded as "1" ("other").

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

312

Table 194 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

NAS Head Profile

Properties Flags Requirement | Description & Notes

HealthState N Optional Not Specified in this version of the Profile.
EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

OtherldentifyingInfo N Optional Not Specified in this version of the Profile.
IdentifyingDescription | N Optional Not Specified in this version of the Profile.
s

AdditionalAvailability | N Optional Not Specified in this version of the Profile.
LocationIndicator N Optional Not Specified in this version of the Profile.
DataOrganization N Optional Not Specified in this version of the Profile.
Purpose N Optional Not Specified in this version of the Profile.
Access N Optional Not Specified in this version of the Profile.
ErrorMethodology N Optional Not Specified in this version of the Profile.
SequentialAccess N Optional Not Specified in this version of the Profile.
NameNamespace N Optional Not Specified in this version of the Profile.
OtherNameNamespa | N Optional Not Specified in this version of the Profile.
ce

OtherNameFormat N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

Reset() Optional Not Specified in this version of the Profile.

12.7.14 CIM_MemberOfCollection (Predefined Filter Collection to NAS Head Filters)

Experimental. This associates the NAS Head predefined FilterCollection to the predefined Filters supported by the

NAS Head.

Requirement: Required if the Experimental Indication Profile is supported and the

SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5" (Predefined Filter Collections).

SMI-S 1.6.0 Revision 5

SNIA Technical Position

313

NAS Head Profile

Table 195 describes class CIM_MemberOfCollection (Predefined Filter Collection to NAS Head Filters).

Table 195 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to NAS Head Filters)

Properties Flags Requirement | Description & Notes

Collection Mandatory Reference to the NAS Head predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the NAS
Head.

12.7.15 CIM_StorageExtent (Primordial Imported Extent)

Created By: Static_or_External
Modified By: External

Deleted By: External
Requirement: Optional

Table 196 describes class CIM_StorageExtent (Primordial Imported Extent).

Table 196 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported

Extent)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CreationClassName for the scoping system.

sName

SystemName Mandatory The System Name of the scoping system.

CreationClassName Mandatory CreationClassName indicates the name of the class or the
subclass.

DevicelD Mandatory An ID that uniquely names the StorageExtent in the NAS
Head.

BlockSize Mandatory The size (in bytes) of blocks.

NumberOfBlocks Mandatory The number of Blocks from the imported StorageVolume.

ExtentStatus Mandatory This shall contain ,A016,A6 (Imported).

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

Name Mandatory Deprecated. Identifier for a remote LUN on a storage array;
possibly, the array ID plus LUN Node WWN.

Primordial Mandatory The StorageExtent imported from an Array is considered
primordial in the NAS Head.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

314

NAS Head Profile

Table 196 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported

Extent)
Properties Flags Requirement | Description & Notes
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge
OtherldentifyingInfo N Optional Not Specified in this version of the Profile.
IdentifyingDescription | N Optional Not Specified in this version of the Profile.
s
AdditionalAvailability | N Optional Not Specified in this version of the Profile.
LocationIndicator N Optional Not Specified in this version of the Profile.
DataOrganization N Optional Not Specified in this version of the Profile.
Purpose N Optional Not Specified in this version of the Profile.
Access N Optional Not Specified in this version of the Profile.
ErrorMethodology N Optional Not Specified in this version of the Profile.
ConsumableBlocks N Optional Not Specified in this version of the Profile.
IsBasedOnUnderlyin | N Optional Not Specified in this version of the Profile.
gRedundancy
SequentialAccess N Optional Not Specified in this version of the Profile.
NoSinglePointOfFailu | N Optional Not Specified in this version of the Profile.
re
DataRedundancy N Optional Not Specified in this version of the Profile.
PackageRedundancy | N Optional Not Specified in this version of the Profile.
DeltaReservation N Optional Not Specified in this version of the Profile.
NameNamespace N Optional Not Specified in this version of the Profile.
OtherNameNamespa | N Optional Not Specified in this version of the Profile.
ce
OtherNameFormat N Optional Not Specified in this version of the Profile.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

315

NAS Head Profile

Table 196 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported

Extent)
Properties Flags Requirement | Description & Notes
RequestStateChange Optional Not Specified in this version of the Profile.
0
Reset() Optional Not Specified in this version of the Profile.

12.7.16 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 197 describes class CIM_SystemDevice (Logical Disks).

Table 197 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement | Description & Notes
GroupComponent Mandatory The Computer System that contains this device.
PartComponent Mandatory The LogicalDisk that is a part of a computer system.

12.7.17 CIM_SystemDevice (Storage Extents)

Created By: Extrinsic_or_External_or_Static

Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External

Requirement: This is required if primordial StorageExtents exist.

Table 198 describes class CIM_SystemDevice (Storage Extents).

Table 198 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The primordial StorageExtent that is imported to a
computer system in the NAS Head.

STABLE

316

Self-Contained NAS Profile

STABLE
Clause 13: Self-Contained NAS Profile

13.1 Description

13.1.1 Synopsis

Profile Name: Self-contained NAS System (Autonomous Profile)
Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.28

Table 199 describes the related profiles for Self-contained NAS System.

Table 199 - Related Profiles for Self-contained NAS System

Profile Name Organization | Version Requirement | Description
Filesystem SNIA 1.4.0 Mandatory
File Storage SNIA 1.4.0 Mandatory
File Export SNIA 1.5.0 Mandatory
NAS Network Port SNIA 1.5.0 Mandatory
Experimental SNIA 1.5.0 Optional
Indication

Access Points SNIA 1.3.0 Optional
Multiple Computer SNIA 1.2.0 Optional
System

Software SNIA 1.4.0 Optional
Location SNIA 1.4.0 Optional
Extent Composition SNIA 1.6.0 Optional
Filesystem SNIA 1.6.0 Optional
Manipulation

File Export SNIA 1.6.0 Optional
Manipulation

File Server SNIA 15.0 Optional
Manipulation

Filesystem SNIA 1.4.0 Optional
Performance

FileSystem Quotas SNIA 1.5.0 Optional
Filesystem Copy SNIA 1.4.0 Optional
Services

SMI-S 1.6.0 Revision 5 SNIA Technical Position

317

Self-Contained NAS Profile

Table 199 - Related Profiles for Self-contained NAS System

Profile Name Organization | Version Requirement | Description

Job Control SNIA 1.5.0 Optional

Disk Drive Lite SNIA 1.6.0 Optional

SPI Initiator Ports SNIA 1.4.0 Optional

FC Initiator Ports SNIA 1.6.0 Optional

iISCSI Initiator Ports SNIA 1.2.0 Optional

Device Credentials SNIA 1.3.0 Optional

Operational Power SNIA 1.5.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental.

Physical Package SNIA 1.5.0 Mandatory

Block Services SNIA 1.6.0 Mandatory

Health SNIA 1.2.0 Mandatory

Indication SNIA 1.5.0 Support for Deprecated.
— at least one -

Indications SNIA 1.6.0 is mandatory. Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version

1.2.0

Central Class: ComputerSystem

Scoping Class: ComputerSystem

13.1.2 Overview

The Self-contained NAS (SC NAS) Profile exports File elements (contained in a filesystem) as FileShares. The
storage for the filesystem is obtained from captive storage. In the simplest case, this could be a set of directly
connected disks, but it could also be a captive storage array that is not shared with any other hosts or devices
(though it could be visible to external management tools and even actively managed independently).

This profile models the necessary filesystem and NAS concepts and defines how the connections to the underlying
storage is managed. The details of how a directly attached set of disks is used by the SC NAS Profile is covered as
part of the Disk Drive or Disk Drive Lite Subprofile. The details of how an underlying Storage Array might export
storage to the SC NAS is not covered in this profile but is covered by Clause 4: Array Profile in Storage

Management Technical Specification, Part 3 Block Devices, 1.6.0 Rev 5.

The Self-Contained NAS Profile reuses a significant portion of Clause 4: Array Profile in Storage Management
Technical Specification, Part 3 Block Devices, 1.6.0 Rev 5.

318

Self-Contained NAS Profile

The Self-Contained NAS Profile and its subprofiles and packages are illustrated in Figure 21.

[

NAS Network

Pornts

SystemDevice

SystemDevice

1

InstalledSoftwarel dertity

eteldengity

conc

ComponentCs Software

ComputerSyste

Self-Contained NAS

—

Indications

HostedService

[1

E xperimental
Indications

1

1

PhysicalPackage Package

1

Multiple
Computer System

Pt sicalElementLocation

—

Location

[1

Fackage

HostedShare

—

File Export

—

File Storage

HostedF ileSystam

—

FileSystem

HostedA ccessP oint

ConcreteComponent

Cantainer

]

Initiator Ports

Extent
Compoesition

HasedOn

Disk Drive

Lite

1

Device Credentials

File Export
Manipulation

HostedS ervic

-

[]

File Server
Manipulation

Block
Pa

Services
ckage

1

QwningJobElement

Filesystem
Manipulation

Owningi.JobEle en

—

—

Access Points

FS

Quota

[]

Filesystem
Performance

Filesystem
Copy Sevices

Job Control

Figure 21 - Self-Contained NAS Profile and Subprofiles

13.1.3 Implementation

SMI-S 1.6.0 Revision 5

SNIA Technical Position

319

Self-Contained NAS Profile

13.1.3.1 Summary Instance Diagram

Figure 22 illustrates the mandatory classes of the Self-Contained NAS Profile. This figure shows all the classes
that are mandatory for the Self-contained NAS Profile. Later diagrams will review specific sections of this diagram.

--—-——--—-—_—q

MAS Network Port Profile I

I Protocol End Paint
. Metwark Port I
I Protocol FType= 4200 4201 | DevieeSAPImplementation
HFS" ar "CIFS™) I
Hosted AccessPaint L
—_-—_--—_—_—_-——_—_—
IF”E Export $AP #ail able ForBement I
“drtual File Sener Profile p—
ComputerSystem I
{Optional) Hiosted Share NF% or CIFS
I | I E'emems‘f“'“gnm & I, ExportedFile Share Setting I
Concrete Dependency SMIA_Shared Bement
l ['ona= J
N . T T T T S T T T T T "
LI} I N N S A NN BN NN S .
[Hasted Dependency I
FileSystem (Canditional)
|F‘ file I
- SHIA Locallyfeoessible File SystemSetting
Logical File (Conditional)
I (Directory) I
(Conditional)
Shistern Device I I
Husted Aciess Point .
Bement Setting Dat
File Storage (Conditional)
l [Canditional) I
fostedsha SHI4, Localfecess fomilable
I (Condional) I
|
I SNIA LocalFileSystem | by e 2| F|Ie%g§$;§§mng I
(Optional)
r N T A N T T T T T T —|
e d e Sk |F||e Storage |
Profile Resides OnBxtant
I (Conditional) |
L_--____-_-_--__J
ComputerSystern || : .
L HostedDepe ndency Block mervices Fackage
Lagical Cisk
EIernentSétﬁngEma Stora ge Setting
BemertCapabilitias L
Syetembevice —5
Alocated From $torage Pool
Implemeration Capabilitie:s
located FromStarage P ool Starage Paol
[
Elementt?pabllmes Storage Capabilities

Ha zted Sto rage Pool

Figure 22 - Self-Contained NAS Instance

320

Self-Contained NAS Profile

The Self-Contained NAS Profile closely parallels the Array Profile in how it models storage. Storage is assigned to
StoragePools and LogicalDisks are allocated from those storage pools for the purpose of holding local filesystems
of the NAS.

As with the Array Profile, the Self-contained NAS StoragePools have StorageCapabilities associated to the
StoragePools via ElementCapabilities. Similarly, LogicalDisks have StorageSettings, which are associated to the
LogicalDisk via ElementSettingData. StoragePools are hosted by a ComputerSystem that represents the NAS “top
level” system, and the LogicalDisks have a SystemDevice association to the “top level” ComputerSystem.

Note: As with Arrays, the StoragePools may be hosted by a component ComputerSystem if the profile has
implemented the Multiple Computer System Subprofile.

As with Arrays, the “top level” ComputerSystem of the Self-Contained NAS does not (and typically isn’t) a real
ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are scoped.

A Self-Contained NAS may implement “Virtual File Servers” in addition to, or instead of, implementing File Servers
in the Top Level ComputerSystem or one of the Multiple Computer System ComputerSystems. A Virtual File Server
shall have a HostedDependency to either the top level NAS ComputerSystem or one of the Multiple Computer
System ComputerSystems. NOTE: A Virtual File Server shall not have a ComponentCS association to the top level
NAS ComputerSystem.

Everything above the LogicalDisk is specific to NAS (and does not appear in the Array Profile). LocalFileSystems
are created on the LogicalDisks, LogicialFiles within those LocalFileSystems are shared (FileShare) through
ProtocolEndpoints associated with NetworkPorts.

Note: The classes and associations in the dashed boxes are from the required packages and subprofiles (as
indicated by the labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It represents a
relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS profiles (NAS Head and Self-contained NAS) in the File
Storage Profile. In the Self-contained NAS a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base Self-Contained NAS Profile, the classes and associations shown in Figure 22 are automatically
populated based on how the Self-Contained NAS is configured. Client modification of the configuration (including
configuring storage, creating extents, local filesystems and file shares) are functions found in subprofiles of the
profile.

EXPERIMENTAL

An instance of ImplementationCapabilities may be associated to the top level Self-contained NAS
ComputerSystem. This Capabilities instance identifies the capacity optimization techniques supported by the
implementation. An implementation may advertise that it supports “None”, "SNIA:Thin Provisioning”, "SNIA:Data
Compression” or "SNIA:Data Deduplication".

EXPERIMENTAL

SMI-S 1.6.0 Revision 5 SNIA Technical Position 321

Self-Contained NAS Profile

EXPERIMENTAL

13.1.3.2 Combination Profile Considerations

Some devices combine the function of an array with the function of a Self-contained NAS. There are a number of
approaches that may be used to model such a device. One way is to present two seemly independent profiles in
the SAN (e.g., Array and SC NAS). In this case, there may be duplication of instances. These duplicates would be
recognized by clients via correlated ids.

Another approach would be to use one, shared top level ComputerSystem that reflects both the SC NAS and the
Array in its ComputerSystem.Dedicated property. In this case, care must be taken to ensure the sharing of
instances between the profiles do not conflict with their respective profile definitions.

For more information on the rules for combination profiles, see section B.6 of Annex B (normative) Compliance
with the SNIA SMI Specification in Storage Management Technical Specification, Part 1 Common Architecture,
1.6.0 Rev 5.

EXPERIMENTAL

13.1.3.3 NAS Storage Model
Figure 23 illustrates the classes mandatory for modeling of storage for the Self-Contained NAS Profile.

ComputerSystem

Elock Services Package

StorageSetting
LogicalDisk ElementSettingData

SystemDevice

AllocatedFromStorageP ool

Stur:l_u:e Pool Storage Capabilties

ElementCapabilitias

HostedStorageP ool

Figure 23 - NAS Storage Instance

The Self-Contained NAS Profile uses most of the classes and associations defined in the Array Profile (including
those in the Block Services Package). In doing this, it leverages many of the subprofiles that are available for Array
profiles. The classes and associations shown in Figure 23 are the minimum mandatory classes and associations of
the Block Services Package for read only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled, including the
HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the StoragePool. In addition,
in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk shall have an

322

Self-Contained NAS Profile

AllocatedFromStoragePool association to the StoragePool from which it is allocated. And the LogicalDisk shall
have an ElementSettingData association to the settings that were used when the LogicalDisk was created.

Note: At this level, the model for storage is the same for both the Self-Contained NAS Profile and the NAS
Head Profile. In the case of the Self-contained NAS, storage for the StoragePools is drawn from Disk
Drives. Modeling of Disk Drives is Optional (See Clause 11: Disk Drive Lite Subprofile of Storage
Management Technical Specification, Part 3 Block Devices, 1.6.0 Rev 5).

For manipulation of Storage, see Clause 5: Block Services Package in the Storage Management Technical
Specification, Part 3 Block Devices, 1.6.0 Rev 5. For Self-Contained NAS, LogicalDisks are the ElementType that
is supported for storage allocation functions (e.g., CreateOrModifyElementFromStoragePool and
ReturnToStoragePool), but the Block Services methods for managing LogicalDisks are optional for the Self-
Contained NAS Profile. The Self-Contained NAS Profile also supports (optionally) the Pool manipulation functions
(e.g., CreateOrModifyStoragePool and DeleteStoragePool) of the Block Services Package.

13.1.3.4 Self-Contained NAS Use of Filesystem Profile (Mandatory)

The Self-Contained NAS Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the Self-
Contained NAS, the Filesystem Profile shall be supported. See Clause 8: Filesystem Profile for details on this
modeling.

13.1.3.5 Self-Contained NAS Use of File Storage Profile (Mandatory)

The Self-Contained NAS Profile uses the File Storage Profile for modeling of its file storage constructs. For the
Self-Contained NAS, the Filesystem Profile shall be supported. See Clause 7: File Storage Profile for details on the
file storage modeling.

13.1.3.6 Self-Contained NAS Use of File Export Profile (Mandatory)

The Self-Contained NAS Profile uses the File Export Profile for modeling of its file export constructs. For the Self-
Contained NAS, the File Export Profile shall be supported. See Clause 4: File Export Profile for details on this
modeling.

13.1.3.7 Self-Contained NAS Use of NAS Network Ports Profile (Mandatory)

The Self-Contained NAS Profile uses the NAS Network Ports Profile for modeling of its file export constructs. For
the Self-Contained NAS, the NAS Network Ports Profile shall be supported. See NAS Network Port Profile (Clause
14:) for details on this modeling.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 323

13.1.3.8 Indication Events

Self-Contained NAS Profile

13.1.3.8.1 InstModification of ComputerSystem

EXPERIMENTAL

Table 200 identifies the standard OperationalStatus values and the events that are being indicated.

Table 200 - InstModification Events for ComputerSystem

New OperationalStatus Event / Correlated Indications

OK The top level NAS system is fully operational.
An Error in the Top Level NAS system was corrected and the
system is now fully functional.
Self test is complete and the NAS system is fully operational

Degraded The system is running but with limitations.

Error The system is experiencing an error and is not functional.

Stopped The system has been stopped.

No contact The system status cannot be determined, due to no response
from the system.

Starting The system is starting, but it not yet functional.

Stopping The system is stopping.

Lost communication The system status cannot be determined, due to communications
problems.

EXPERIMENTAL

324

Self-Contained NAS Profile

13.1.3.8.2 InstModification of LogicalDisk

EXPERIMENTAL

Table 201 identifies the standard OperationalStatus values and the events that are being indicated.

Table 201 - InstModification Events for LogicalDisk

New OperationalStatus Event / Correlated Indications
OK The logical disk is fully functional.
Degraded The logical disk is experiencing errors, but is still supporting data.

The Logical disk is rebuilding, so performance may suffer.

Error The logical disk has an error and is not usable.
Starting The logical disk is being brought online.
Dormant The logical disk is offline.

EXPERIMENTAL

EXPERIMENTAL
13.1.3.9 Bellwether Indications

13.1.3.9.1 Alertindication for ComputerSystem Bellwether

This Alertindication signals the change in status (OperationalStatus) of a ComputerSystem as a bellwether event. It
is supported by a standard message (MessagelD=FSM1). Table 202 shows the OperationalStatus values that may
signal that changes may have occurred in related elements (Implied Indications Inhibited).

Table 202 - Bellwether Alertindication Events for ComputerSystem

New OperationalStatus Implied Indications Inhibited

OperationalStatus changes to Elements with SystemDevice
associations to this ComputerSystem (LogicalDisks, ...)

OperationalStatus changes to Elements with HostedService
associations to this ComputerSystem
(FileSystemConfigurationService, FileExportService, ...)

OperationalStatus changes to FileSystems with
HostedFileSystem associations to this ComputerSystem.

OperationalStatus changes to StoragePools with
HostedStoragePool associations to this ComputerSystem.

OK, Degraded, Error, Stopped OperationalStatus changes to ProtocolEndpoints with
HostedAccessPoint associations to this ComputerSystem.

OperationalStatus changes to FileShares with HostedFileShare
associations to this ComputerSystem.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 325

Self-Contained NAS Profile

Table 202 - Bellwether Alertindication Events for ComputerSystem

New OperationalStatus

Implied Indications Inhibited

No contact, Starting, Stopping,
Lost communication

None

13.1.3.9.2 Alertindication for LogicalDisk Bellwether

This Alertindication signals the change in status (OperationalStatus) of a LogicalDisk as a bellwether event. It is
supported by a standard message (MessagelD=FSM3). Table 203 shows the OperationalStatus values that may
signal that changes may have occurred in related elements (Implied Indications Inhibited).

Table 203 - Bellwether Alertindication Events for LogicalDisk

New OperationalStatus

Implied Indications Inhibited

OK, Degraded, Error, Stopped

OperationalStatus changes to FileSystems with ResidesOn
associations to this LogicalDisk.

Unknown

None

EXPERIMENTAL

13.2 Health and Fault Management Considerations

Self-Contained NAS supports state information (e.g., OperationalStatus) on the following elements of the model:

< Network Ports (See 14.4.1 "OperationalStatus for Network Ports")

= Back-end Ports (See 17.3.3 Health and Fault Management Considerations ofStorage Management Technical
Specification, Part 2 Common Profiles, 1.6.0 Rev 5)

e ComputerSystems (See 25.1.5 Computer System Operational Status of Storage Management Technical
Specification, Part 2 Common Profiles, 1.6.0 Rev 5)

= FileShares that are exported (See 4.2.1 OperationalStatus for FileShares)

« LocalFileSystems (See 8.2.1 OperationalStatus for Filesystems)

= ProtocolEndpoints (See 14.4.2 OperationalStatus for ProtocolEndpoints)

< DiskDrive (See 11.2 Health and Fault Management Considerations of Storage Management Technical
Specification, Part 3 Block Devices, 1.6.0 Rev 5)

326

Self-Contained NAS Profile

EXPERIMENTAL

13.2.1 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 204.

Table 204 - Standard Messages used by NAS Head

Message ID Message Name
FSM1 ComputerSystem bellwether alert
FSM3 LogicalDisk bellwether alert

EXPERIMENTAL

13.3 Cascading Considerations
Not Applicable.

13.4 Supported Subprofiles and Packages

See section 13.1.1 for this information.

13.5 Methods of the Profile

13.5.1 Extrinsic Methods of the Profile

None.

13.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

= Associators

< AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

< EnumeratelnstanceNames

Manipulation functions are supported in subprofiles of the profile.

13.6 Client Considerations and Recipes

Not defined in this version of the specification.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 327

Self-Contained NAS Profile

13.7 CIM Elements

Table 205 describes the CIM elements for Self-contained NAS System.

Table 205 - CIM Elements for Self-contained NAS System

Element Name

Requirement

Description

OperationalStatus)

13.7.1 CIM_ComputerSystem (Top Level Mandatory This declares that at least one computer

System) system entry will pre-exist. The Name
property should be the Unique identifier for the
Self-contained NAS System. Associated to
RegisteredProfile.

13.7.2 CIM_ComputerSystem (Virtual File Optional This represents a Virtual File Server, if one

Server) exists.

13.7.3 CIM_ElementCapabilities Optional Experimental. Associates the top level Self-

(ImplementationCapabilities to Service) contained NAS ComputerSystem to the
CIM_ImplementationCapabilities supported by
the implementation.

13.7.4 CIM_FilterCollection (Self-contained Conditional Experimental. Conditional requirement:

NAS Predefined FilterCollection) Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

13.7.5 CIM_HostedCollection (Self-contained | Conditional Experimental. Conditional requirement:

NAS to predefined FilterCollection) Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

13.7.6 CIM_HostedDependency Optional Associates a Virtual File Server to the
Computer System hosting it. This is required if
a Virtual File Server exists.

13.7.7 CIM_ImplementationCapabilities Optional Experimental. The capabilities of the profile

(ImplementationCapabilities) implementation.

13.7.8 CIM_lIndicationFilter (LogicalDisk Optional Experimental. This is the 'pre-defined'

OperationalStatus Bellwether Alert) CIM_IndicationFilter instance for the
bellwether alert for changes in the
OperationalStatus of LogicalDisk instances.

13.7.9 CIM_IndicationFilter (LogicalDisk Conditional Experimental. Conditional requirement:

Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3"' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of LogicalDisk instances.

328

Self-Contained NAS Profile

Table 205 - CIM Elements for Self-contained NAS System

Element Name

Requirement

Description

13.7.10 CIM_IndicationFilter (System Optional Experimental. This is the 'pre-defined’

OperationalStatus Bellwether Alert) CIM_IndicationFilter instance for the
bellwether alert for changes in the
OperationalStatus of System instances.

13.7.11 CIM_IndicationFilter (System Optional Experimental. This is the 'pre-defined'

OperationalStatus) CIM_IndicationFilter instance for changes in
the OperationalStatus of System instances.

13.7.12 CIM_LogicalDisk (Disk for FS) Mandatory Represents LogicalDisks used for building
LocalFileSystems.

13.7.13 CIM_MemberOfCollection Conditional Experimental. Conditional requirement:

(Predefined Filter Collection to Self-contained Required if the Experimental Indication Profile

NAS Filters) is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Self-
contained NAS predefined FilterCollection to
the predefined Filters supported by the Self-
contained NAS.

13.7.14 CIM_SystemDevice (Logical Disks) Mandatory This association links all LogicalDisks to the
scoping system.

SELECT * FROM CIM_InstModification Optional CQL -Change of Status of a NAS

WHERE Sourcelnstance ISA ComputerSystem (controller).

CIM_ComputerSystem AND)))

Sourcelnstance.CIM_ComputerSystem::Oper Previousinstance is optional, but may be

ationalStatus <> supplied by an implementation of the Profile.

Previouslnstance.CIM_ComputerSystem::Op

erationalStatus

SELECT * FROM CIM_Alertindication Optional CQL -This is a bellwether indication of a

WHERE OwningEntity="SNIA" and change of Status of a NAS ComputerSystem

MessagelD="FSM1" (controller) and related classes (LogicalDisks,
Services, ProtocolEndpoints, StoragePools,
FileShares and FileSystems).
See 13.1.3.9.1 Alertindication for
ComputerSystem Bellwether
Also see Storage Management Technical
Specification, Part 1 Common Architecture,
1.6.0 Rev 5 8.4.3.10 Message: System
OperationalStatus Bellwether.

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL -Change of Status of a NAS

WHERE Sourcelnstance ISA
CIM_ComputerSystem AND
Sourcelnstance.OperationalStatus <>
Previousinstance.OperationalStatus

ComputerSystem (controller).

Previousinstance is optional, but may be
supplied by an implementation of the Profile.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

329

Self-Contained NAS Profile

Table 205 - CIM Elements for Self-contained NAS System

Element Name

Requirement

Description

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL -Change of status of a

WHERE Sourcelnstance ISA LogicalDisk.

CIM_LogicalDisk AND) .)

Sourcelnstance.OperationalStatus <> PreviousInstance is optional, but may be

PreviousInstance.OperationalStatus supplied by an implementation of the Profile.
See 13.1.3.8.2 InstModification of LogicalDisk.

SELECT * FROM CIM_InstModification Optional CQL -Change of status of a LogicalDisk.

WHERE Sourcelnstance ISA . .)

CIM_LogicalDisk AND Previousinstance is optional, but may be

Sourcelnstance.CIM_LogicalDisk::Operationa supplied by an implementation of the Profile.

IStatus <> o _ See 13.1.3.8.2 InstModification of LogicalDisk.

Previousinstance.CIM_LogicalDisk::Operation

alStatus

SELECT * FROM CIM_Alertindication Optional CQL -This is a bellwether indication of a

WHERE OwningEntity="SNIA" and
MessagelD="FSM3"

change of status of a LogicalDisk.

See 13.1.3.9.2 Alertindication for LogicalDisk
Bellwether

Also see Storage Management Technical
Specification, Part 1 Common Architecture,
1.6.0 Rev 5 8.4.3.12 Message: LogicalDisk
OperationalStatus Bellwether.

13.7.1 CIM_ComputerSystem (Top Level System)

Created By: Static
Modified By: External
Deleted By: Static
Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile
instance shall have RegisteredName set to 'Self-contained NAS System’, RegisteredOrganization set to 'SNIA',

and RegisteredVersion set to '1.6.0".

Table 206 describes class CIM_ComputerSystem (Top Level System).

Table 206 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement | Description & Notes
CreationClassName Mandatory The actual class of this object, e.g.,

Vendor_NASComputerSystem.
ElementName Mandatory User-friendly name.

330

Self-Contained NAS Profile

Table 206 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement | Description & Notes

Name Mandatory Unique identifier for the Self-contained NAS System in a
format specified by NameFormat. For example, IP address
or Vendor/Model/SerialNo.

OperationalStatus Mandatory Overall status of the Self-contained NAS System. The
standard values are 2 (OK), 3 (Degraded), 6 (Error), 8
(Starting), 9 (Stopping), 10 (Stopped), 12 (No contact) or 13
(Lost Communication).

NameFormat Mandatory Format for Name property.

PrimaryOwnerContac | M Optional Owner of the Self-contained NAS System.

t

PrimaryOwnerName | M Optional Contact details for owner.

Dedicated Mandatory This shall indicate that this computer system is dedicated to
operation as a Self-contained NAS (25).

OtherldentifyingInfo Mandatory An array of know identifiers for the Self-contained NAS.

IdentifyingDescription Mandatory An array of descriptions of the Otherldentifyinginfo. Some

S of the descriptions would be "Ipv4 Address"”, "Ipv6 Address"
or "Fully Qualified Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc Optional Not Specified in this version of the Profile.

riptions

ResetCapability N Optional Not Specified in this version of the Profile.

RequestStateChange Optional Not Specified in this version of the Profile.

0

SMI-S 1.6.0 Revision 5 SNIA Technical Position 331

Self-Contained NAS Profile

13.7.2 CIM_ComputerSystem (Virtual File Server)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 207 describes class CIM_ComputerSystem (Virtual File Server).

Table 207 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement | Description & Notes

Dedicated Mandatory A Virtual File Server is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the Self-contained NAS System's
Virtual File Servers (Eg Vendor/Model/
SerialNo+FS+Number).

OperationalStatus Mandatory Overall status of the Virtual File Server. The standard
values are 2 (OK), 3 (Degraded), 6 (Error), 8 (Starting), 9
(Stopping), 10 (Stopped), 12 (No contact) or 13 (Lost
Communication).

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDesc | N Optional Not Specified in this version of the Profile.

riptions

ResetCapability N Optional Not Specified in this version of the Profile.

PrimaryOwnerContac | N Optional Not Specified in this version of the Profile.

t

332

Self-Contained NAS Profile

Table 207 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement | Description & Notes

PrimaryOwnerName | N Optional Not Specified in this version of the Profile.
OtherldentifyingInfo N Optional Not Specified in this version of the Profile.
IdentifyingDescription | N Optional Not Specified in this version of the Profile.
S

RequestStateChange Optional Not Specified in this version of the Profile.
0

13.7.3 CIM_ElementCapabilities (ImplementationCapabilities to Service)

Experimental. Associates the top level Self-contained NAS ComputerSystem to the
CIM_ImplementationCapabilities supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 208 describes class CIM_ElementCapabilities (ImplementationCapabilities to Service).

Table 208 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCa-
pabilities to Service)

Properties Flags Requirement | Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The top level Self-contained NAS ComputerSystem that
has ImplementationCapabilities.

13.7.4 CIM_FilterCollection (Self-contained NAS Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Self-contained
NAS implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 333

Self-Contained NAS Profile

Table 209 describes class CIM_FilterCollection (Self-contained NAS Predefined FilterCollection).

Table 209 - SMI Referenced Properties/Methods for CIM_FilterCollection (Self-contained NAS Pre-
defined FilterCollection)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Self-contained
NAS'.

13.7.5 CIM_HostedCollection (Self-contained NAS to predefined FilterCollection)

Experimental.
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 210 describes class CIM_HostedCollection (Self-contained NAS to predefined FilterCollection).

Table 210 - SMI Referenced Properties/Methods for CIM_HostedCollection (Self-contained NAS to
predefined FilterCollection)

Properties Flags Requirement | Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Self-
contained NAS.

Antecedent Mandatory Reference to the top level System of the Self-contained
NAS.

13.7.6 CIM_HostedDependency

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 211 describes class CIM_HostedDependency.

Table 211 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement | Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File
Server ComputerSystem is a File Server and shall have
Dedicated=16 (File Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting
ComputerSystem may be the top level NAS
ComputerSystem or an Multiple Computer System (non-top
level) system.

334

Self-Contained NAS Profile

13.7.7 CIM_ImplementationCapabilities (ImplementationCapabilities)
Experimental. The capabilities (features) of the profile implementation.
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 212 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

Table 212 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (Implemen-
tationCapabilities)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the implementation capability of
an implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityO Mandatory This array of strings lists the capacity optimization

ptimizations techiques that are supported by the implementation. Valid

string values are "none" | "SNIA:Thin Provisioning" |
"SNIA:Data Compression" | "SNIA:Data Deduplication”.

13.7.8 CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the bellwether alert for changes in the
OperationalStatus of LogicalDisk instances. This is a special case of the CIM_IndicationFilter (pre-defined) class
as defined in the Indication Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 213 describes class CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert).

Table 213 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk Operation-
alStatus Bellwether Alert)

Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 335

Self-Contained NAS Profile

Table 213 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk Operation-
alStatus Bellwether Alert)

Properties Flags Requirement | Description & Notes

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Self-contained
NAS:LogicalDiskOperationalStatusBellwetherAlert'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_Alertindication WHERE
OwningEntity="SNIA" and MessagelD="FSM3".

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage

Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

13.7.9 CIM_IndicationFilter (LogicalDisk OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
LogicalDisk instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in the
Indication Profile.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3" (Predefined Filters).

336

Self-Contained NAS Profile

Table 214 describes class CIM_IndicationFilter (LogicalDisk OperationalStatus).

Table 214 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk Operation-

alStatus)
Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Self-contained
NAS:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_LogicalDisk AND
Sourcelnstance.CIM_LogicalDisk::OperationalStatus <>
Previousinstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

13.7.10 CIM_IndicationFilter (System OperationalStatus Bellwether Alert)

Experimental. This is the 'pre-defined' CIM_lIndicationFilter instance for the bellwether alert for changes in the
OperationalStatus of System instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as
defined in the Indication Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

SMI-S 1.6.0 Revision 5 SNIA Technical Position 337

Self-Contained NAS Profile

Table 215 describes class CIM_IndicationFilter (System OperationalStatus Bellwether Alert).

Table 215 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalSta-
tus Bellwether Alert)

Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Self-contained
NAS:SystemOperationalStatusBellwetherAlert'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_Alertindication WHERE
OwningEntity="SNIA" and MessagelD="FSM1".

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage

Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

13.7.11 CIM_IndicationFilter (System OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
System instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in the Indication
Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

338

Self-Contained NAS Profile

Table 216 describes class CIM_IndicationFilter (System OperationalStatus).

Table 216 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalSta-

tus)
Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Self-contained
NAS:SystemOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_ComputerSystem AND
Sourcelnstance.CIM_ComputerSystem::OperationalStatus

<>
Previousinstance.CIM_ComputerSystem::OperationalStatu
S.

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage

Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

13.7.12 CIM_LogicalDisk (Disk for FS)

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

SMI-S 1.6.0 Revision 5 SNIA Technical Position 339

Self-Contained NAS Profile

Table 217 describes class CIM_LogicalDisk (Disk for FS).

Table 217 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory CIM Class of the Self-contained NAS System Computer

sName System that is the host of this LogicalDisk.

SystemName Mandatory Name of the Self-contained NAS System Computer System
that hosts this LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DevicelD Mandatory Opagque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for

LogicalDisks in a Self-contained NAS System. The
standard values for this are 2 (OK), 3 (Degraded), 6 (Error),
8 (Starting) or 15 (Dormant).

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17).
The standard values for this are 0 (Other), 1 (Unknown), 2
(None/Not Applicable), 3 (Broken), 4 (Data Lost), 5
(Dynamic Reconfig), 6 (Exposed), 7 (Fractionally Exposed),
8 (Partially Exposed), 9 (Protection Disabled), 10
(Readying), 11 (Rebuild), 12 (Recalculate), 13 (Spare in
Use), 14 (Verify In Progress) or 15 (In-Band Access

Granted).

Primordial Mandatory This represents a Concrete Logical Disk that is not
primordial.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the
Self-contained NAS System. This should be coded as "1"
("other").

Name Mandatory Identifier for a local LogicalDisk that will be used for a

filesystem; since this storage extent will be referenced by a
client, it needs to have a uniqgue name. We cannot
constrain the format here, but the OS-specific format
described in the Block Services specification is not
appropriate, so "Other" is used.

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.

340

Self-Contained NAS Profile

Table 217 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement | Description & Notes

EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

OtherldentifyingInfo N Optional Not Specified in this version of the Profile.
IdentifyingDescription | N Optional Not Specified in this version of the Profile.
s

AdditionalAvailability | N Optional Not Specified in this version of the Profile.
LocationIndicator N Optional Not Specified in this version of the Profile.
DataOrganization N Optional Not Specified in this version of the Profile.
Purpose N Optional Not Specified in this version of the Profile.
Access N Optional Not Specified in this version of the Profile.
ErrorMethodology N Optional Not Specified in this version of the Profile.
SequentialAccess N Optional Not Specified in this version of the Profile.
NameNamespace N Optional Not Specified in this version of the Profile.
OtherNameNamespa | N Optional Not Specified in this version of the Profile.
ce

OtherNameFormat N Optional Not Specified in this version of the Profile.
RequestStateChange Optional Not Specified in this version of the Profile.
0

Reset() Optional Not Specified in this version of the Profile.

13.7.13 CIM_MemberOfCollection (Predefined Filter Collection to Self-contained NAS Filters)

Experimental. This associates the Self-contained NAS predefined FilterCollection to the predefined Filters
supported by the Self-contained NAS.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 218 describes class CIM_MemberOfCollection (Predefined Filter Collection to Self-contained NAS Filters).

Table 218 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Self-contained NAS Filters)

Properties Flags Requirement | Description & Notes

Collection Mandatory Reference to the Self-contained NAS predefined
FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Self-
contained NAS.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 341

Self-Contained NAS Profile

13.7.14 CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 219 describes class CIM_SystemDevice (Logical Disks).

Table 219 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The Computer System that contains this device. This shall
be either the top level NAS system or a multiple computer
system non-top level system.

PartComponent Mandatory The LogicalDisk that is a part of a computer system.

STABLE

342

NAS Network Port Profile

STABLE
Clause 14: NAS Network Port Profile

14.1 Synopsis

Profile Name: NAS Network Port (Component Profile)
Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.18

Table 220 describes the related profiles for NAS Network Port.

Table 220 - Related Profiles for NAS Network Port

Profile Name Organization | Version Requirement | Description
Indication SNIA 15.0 Mandatory

Experimental SNIA 1.5.0 Optional

Indication

Central Class: CIM_ProtocolEndpoint

Scoping Class: CIM_ComputerSystem

14.2 Description

The NAS Network Port Profile models ProtocolEndpoints for file access (CIFS and NFS), TCP, IP and LAN
endpoints. It also models the Network port supported by the protocol endpoints. The methods for manipulating
these elements are covered by other profiles. This profile provides basic information in the NAS models for
addressing paths for accessing the NAS implementations for the purpose of data access (front-end ports).

14.3 Implementation

Figure 24 illustrates the classes for modeling of front end NetworkPorts for the NAS profiles.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 343

NAS Network Port Profile

1
| CompuierSystem |

MAS Metwaork Port
| NAS Ethernet Interface Package
NAS TCP Interface Package | ———
S — {See MAS Ethermn#l Inlerface Sectlon)
IFFrofocolEndPoin :
(Ciptional
i- (SeaMAS TEFEI‘IIHIT;EQ Saciion) g |
HostedAccessPalnl |
ElememZettingCrala
TCPProtocalEndPaint | (Optionsl)
{Chptianal) ItemigerorCollaction
S NEELEN——— pnditionaly
L ot F Ifﬂma:e b i] IPInterfaceSstingCata |Pim piementation
{Cpttonal) |
BindsTo Sl | IPAddrass
{Condiltanalj MatworkVLAN AddressType
{Optional) Subneth ask
IPvEPefiLengh
PratocolEndPoind LA VLANMIA
Transm lsslonSize MTU

| ProtocellF Type = 4200 | 4201
(MFS" ar "CIFS™)

Figure 24 - NAS Support for Front-end Network Ports

The ProtocolEndpoint for NFS or CIFS shall be present and shall be associated to a ComputerSystem via a
HostedAccessPoint association. It shall also be associated to one or more NetworkPort(s) via the
DeviceSAPImplementation.

EXPERIMENTAL

The NetworkVLAN and the SNIA IPInterfaceSettingData classes are optional. And their associations to the
IPProtocolEndpoint are conditional on the existence of these optional classes.

EXPERIMENTAL

For TCP/IP Interface modeling (which is optional) see section 14.3.1

For modeling of Network ports for NAS (which is mandatory) see section 14.3.2

14.3.1 The NAS TCP Interface

Figure 25 illustrates the classes for the optional modeling of TCP/IP protocol stack for the NAS profiles.

344

NAS Network Port Profile

ComputerSystem) MNAS Ethernet Interface Package
LANERdpaoint
{plional) |

MabworkPort |
[see NAS Elhernsl Inlerface packange |

| [see NAS Elhemet Interface package) |

MAS TCP Interface Package
EindsToLANMEndpoint
(Conditional)

HostedAccessPoint
(Conditional)

IPProtocolE ndPaint DravicaSAPImplamantation
[(Cphianal) (Conditional }

FrotocollFType = 400964097 2093

BindsTo
{Condiional)

‘ TCPProtocolEndPaint

{Cphicnal) Element>ettingData
{Cplional)
l FrotocollFType =4111
L ' a
BindsTa temberOfCollection
(Conditional) (Cenditionel)
- IPInterfacasathinglata
Protocol EndPaint | N?T:]Thr;lr:rll ITN (Cptional)
[See NAS Nelwork Porls) | 1 (e NAS Network Ports)
[Zee MAS Network Ports)

Figure 25 - Optional NAS TCP Interface Modeling

The modeling of the TCPProtocolEndpoint and IPProtocolEndpoint are optional. The associations from (to) those
classes are conditional on the existence of the classes. Like the NFS or CIFS ProtocolEndpoint, the
TCPProtocolEndpoint and IPProtocolEndpoint shall have HostedAccessPoint associations to some
ComputerSystem. Typically, this would be the same ComputerSystem that hosts the NetworkPort. However this is
not a requirement.

14.3.2 The NAS Ethernet Interface

Figure 26 illustrates the classes for the mandatory modeling of (front end) Network port for the NAS profiles.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 345

NAS Network Port Profile

| ComputerSystem | System Device

MAS Ethernet Interface Package

HostedfccassPaint

{Conditional) DeviceSAPImplementation NetwarkPort |

{Conditional) |

" LANEndpoint

HostedAccessPaint {Opticonal)

ProtocallFType = 1}6]9]15

DeviceSaPimplamentation

ProtocolEndPoint

| Protocol FType = 4200 | 4201
{MFS5" or "CIFS")

Figure 26 - Mandatory NAS Ethernet Port Modeling

The NetworkPort shall be modeled and shall have an SystemDevice association to a ComputerSystem. The
ComputerSystem in the diagram may be the top level system for the self-contained NAS or any of its component
computer systems. The ComputerSystem that hosts the NFS or CIFS ProtocolEndpoint need not be the same
ComputerSystem associated to the NetworkPort via its SystemDevice association.

The modeling of the LANEndpoint is optional. The associations from (to) this class are conditional on the existence
of the LANEndpoint. Like the NFS or CIFS ProtocolEndpoint, the LANEndpoint shall have HostedAccessPoint

associations to some ComputerSystem. Typically, this would be the same ComputerSystem that hosts the
NetworkPort. However this is not a requirement.

346

14.3.3 Indication Events

NAS Network Port Profile

14.3.3.1 InstModification of NetworkPort

EXPERIMENTAL

Table 221 identifies the standard OperationalStatus values and the events that are being indicated.

Table 221 - InstModification Events for NetworkPort

New OperationalStatus

Event / Correlated Indications

OK

An Error in the port was corrected and the Port is now online

The Port was enabled (and is online)

Self test is complete and the port is back online

Error

The port has been unplugged

The port is plugged in, but failed a self test

The port is dependent on another element that has failed (e.g., a
controller).

CORRELATED INDICATION: InstModification of
ComputerSystem

The port is not able to establish connections to remote system

Stopped

The port is implicitly disabled due to a physical condition in the
port

The port is implicitly disabled due to a logical errors encountered
on the port

The port was explicitly disabled by user action

The port was stopped due to a “parent” element (e.g., Controller)
being stopped.

CORRELATED INDICATION: InstModification of
ComputerSystem

In Service

The port is in self test by explicit user request

The port is in self test, due to errors encountered

EXPERIMENTAL

14.3.3.2 InstModification of ProtocolEndpoint

SMI-S 1.6.0 Revision 5

SNIA Technical Position

347

NAS Network Port Profile

EXPERIMENTAL
Table 222 identifies the standard OperationalStatus values and the events that are being indicated.

Table 222 - InstModification Events for ProtocolEndpoint

New OperationalStatus Event / Correlated Indications
OK ProtocolEndpoint is online
Error ProtocolEndpoint has a failure
Stopped ProtocolEndpoint is disabled
Unknown

EXPERIMENTAL

EXPERIMENTAL
14.3.4 Bellwether Indications

14.3.4.1 Alertindication for NetworkPort Bellwether

This Alertindication signals the change in status (OperationalStatus) of a NetworkPort as a bellwether event. It is
supported by a standard message (MessagelD=FSMO002). Table 223 shows the OperationalStatus values that may
signal that changes may have occurred in related elements (Implied Indications Inhibited).

Table 223 - Bellwether Alertindication Events for NetworkPort

New OperationalStatus Implied Indications Inhibited

OK, Error, Stopped OperationalStatus changes to ProtocolEndpoints with
DeviceSAPImplementation associations to this NetworkPort.

OperationalStatus changes to FileShares with
SAPAvailableForElement associations to a ProtocolEndpoint with
a DeviceSAPImplementation association to this NetworkPort.

InService, Unknown None

EXPERIMENTAL

14.4 Health and Fault Management Considerations

The NAS Network Port Profile supports state information (e.g., OperationalStatus) on the following elements of the
model:

= Network Ports (See 14.4.1 OperationalStatus for Network Ports)

= ProtocolEndpoints (See 14.4.2 OperationalStatus for ProtocolEndpoints)

348

NAS Network Port Profile

14.4.1 OperationalStatus for Network Ports

Table 224 defines the network port OperationalStatus values supported by this standard.

Table 224 - NetworkPort OperationalStatus

OperationalStatus Description
OK Port is online
Error Port has a failure
Stopped Port is disabled
InService Port is in Self Test
Unknown

14.4.2 OperationalStatus for ProtocolEndpoints

Table 224 defines the ProtocolEndpoint OperationalStatus values supported by this standard

Table 225 - ProtocolEndpoint OperationalStatus

OperationalStatus Description
OK ProtocolEndpoint is online
Error ProtocolEndpoint has a failure
Stopped ProtocolEndpoint is disabled
Unknown

EXPERIMENTAL

14.4.3 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 226.

Table 226 - Standard Messages used by NAS Head

Message ID

Message Name

FSM002

NetworkPort bellwether alert

EXPERIMENTAL

14.5 Cascading Considerations

Not Applicable.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

349

NAS Network Port Profile

14.6 Methods

14.6.1 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

« Associators

= AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

= EnumeratelnstanceNames

14.6.2 Extrinsic Methods of the Profile

None. For creation of ProtocolEndpoints, see Clause 5: File Export Manipulation Subprofile and Clause 6: File
Server Manipulation Subprofile.

14.7 Use Cases

Not defined in this version of the specification.

Documentation of discovery use cases will be considered in a future release.

14.8 CIM Elements
Table 227 describes the CIM elements for NAS Network Port.

Table 227 - CIM Elements for NAS Network Port

Element Name Requirement | Description

14.8.1 CIM_BindsTo (CIFS or NFS) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Associates a
CIFS or NFS ProtocolEndpoint to an
underlying TCPProtocolEndpoint. This is used
in the NAS profiles to support the TCP/IP
Network protocol stack.

14.8.2 CIM_BindsTo (TCP) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists. (See the TCP
Interface Section) Associates a
TCPProtocolEndpoint to an underlying
IPProtocolEndpoint. This is used in the NAS
Profiles to support the TCP/IP Network
protocol stack.

350

NAS Network Port Profile

Table 227 - CIM Elements for NAS Network Port

Element Name

Requirement

Description

14.8.3 CIM_BindsToLANEnNdpoint

Conditional

Conditional requirement: This is required if a
LANEnNdpoint exists. (See the TCP Interface
Section) Associates an IPProtocolEndpoint to
an underlying LANEndpoint in the NAS
Profiles (to support the TCP/IP Network
protocol stack).

14.8.4 CIM_DeviceSAPImplementation (CIFS
or NFS to NetworkPort)

Mandatory

Represents the association between a CIFS
or NFS ProtocolEndpoint and the NetworkPort
that it supports.

14.8.5 CIM_DeviceSAPImplementation
(LANEnNdpoint to NetworkPort)

Conditional

Conditional requirement: This is required if a
LANENdpoint exists. (See the Ethernet
Interface Section) Associates a logical front
end Port (a NetworkPort) to the LANEndpoint
that uses that device to connect to a LAN.

14.8.6 CIM_ElementSettingData
(IPInterfaceSettingData to
IPProtocolEndpoint)

Optional

The IPProtocolEndpoint associated with the
IPInterfaceSettingData.

14.8.7 CIM_HostedAccessPoint (CIFS or
NFS)

Mandatory

Represents the association between a CIFS
or NFS front end ProtocolEndpoint and the
Computer System that hosts it.

14.8.8 CIM_HostedAccessPoint (IP)

Conditional

Conditional requirement: This is required if an
IPProtocolEndpoint exists. (See the TCP
Interface Section) Represents the association
between a front end IPProtocolEndpoint and
the Computer System that hosts it.

14.8.9 CIM_HostedAccessPoint (LAN)

Conditional

Conditional requirement: This is required if a
LANEnNdpoint exists. (See the Ethernet
Interface Section) Represents the association
between a front end LANEndpoint and the
Computer System that hosts it.

14.8.10 CIM_HostedAccessPoint (TCP)

Conditional

Conditional requirement: This is required if a
TCPProtocolEndpoint exists. (See the TCP
Interface Section) Represents the association
between a front end TCPProtocolEndpoint
and the Computer System that hosts it.

14.8.11 CIM_IPProtocolEndpoint

Optional

(See the TCP Interface Section) Represents
the front-end ProtocolEndpoint used to
support the IP protocol services.

14.8.12 CIM_LANEnNdpoint

Optional

(See the Ethernet Interface Section)
Represents the front-end ProtocolEndpoint
used to support a Local Area Network and its
services.

14.8.13 CIM_MemberOfCollection (The
IPProtocolEndpoint to NetworkVLAN.)

Conditional

Conditional requirement: The NetworkVLAN
has been defined. Associates an
IPProtocolEndpoint to NetworkVLAN.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

351

NAS Network Port Profile

Table 227 - CIM Elements for NAS Network Port

Element Name Requirement | Description

14.8.14 CIM_NetworkPort Mandatory (See the Ethernet Interface Section)
Represents the front end logical port that
supports access to a local area network.

14.8.15 CIM_NetworkVLAN Optional This element represents the virtual LAN
(VLAN) tag settings for an IP interface. In the
context of a file server, it represents the VLAN
information.

14.8.16 CIM_ProtocolEndpoint (CIFS or NFS) | Mandatory Represents the front-end ProtocolEndpoint
used to support NFS and CIFS services.

14.8.17 CIM_SystemDevice (Network Ports) Mandatory (See the Ethernet Interface section) This
association links all NetworkPorts to the
scoping system. This is used to represent
both front end and back end ports.

14.8.18 CIM_TCPProtocolEndpoint Optional (See the TCP Interface Section) Represents
the front-end ProtocolEndpoint used to
support TCP services.

14.8.19 SNIA_IPInterfaceSettingData Optional This class contains the settings for single IP
interface.

SELECT * FROM CIM_InstModification Optional CQL -Change of Status of a Port.

WHERE Sourcelnstance ISA . . .

CIM_NetworkPort AND Prevpuslnstange is optlona!, but may be .

Sourcelnstance.CIM_NetworkPort::Operation supplied by an implementation of the Profile.

alStatus <> _ See 14.3.3.1 InstModification of NetworkPort.

Previousinstance.CIM_NetworkPort::Operatio

nalStatus

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL -Change of Status of a Port.

WHERE Sourcelnstance ISA . . .

CIM_NetworkPort AND Prevu_nuslnstanc_:e is opt|ona_l, but may be _

Sourcelnstance.OperationalStatus <> supplied by an implementation of the Profile.

Previousinstance.OperationalStatus See 14.3.3.1 InstModification of NetworkPort.

SELECT * FROM CIM_Alertindication Optional CQL -This is a bellwether indication of a

WHERE OwningEntity="SNIA" and change of Status of a Port and related classes

MessagelD="FSM002" (ProtocolEndpoints and FileShares).

See 14.3.4.1 AlertIndication for NetworkPort
Bellwether.

352

NAS Network Port Profile

Table 227 - CIM Elements for NAS Network Port

Element Name

Requirement

Description

SELECT * FROM CIM_InstModification Optional CQL -Change of Status of a ProtocolEndpoint
WHERE Sourcelnstance ISA . . .
CIM_ProtocolEndpoint AND Prevpuslnstange is optlona!, but may be .
Sourcelnstance.CIM_ProtocolEndpoint::Oper supplied by an implementation of the Profile.
ationalStatus <> - See 14.3.3.2 InstModification of
Pre_:wouslnstance.ClM_ProtocoIEndpomt..Ope ProtocolEndpoint.

rationalStatus

SELECT * FROM CIM_InstModification Mandatory Deprecated WQL -Change of Status of a

WHERE Sourcelnstance ISA
CIM_ProtocolEndpoint AND
Sourcelnstance.OperationalStatus <>
Previouslnstance.OperationalStatus

ProtocolEndpoint

Previouslnstance is optional, but may be
supplied by an implementation of the Profile.

See 14.3.3.2 InstModification of
ProtocolEndpoint.

14.8.1 CIM_BindsTo (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External

Requirement: This is required if a TCPProtocolEndpoint exists.

Table 228 describes class CIM_BindsTo (CIFS or NFS).

Table 228 - SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags

Requirement

Description & Notes

Dependent Mandatory

The ProtocolEndpoint that uses a lower level
ProtocolEndpoint for connectivity. The ProtocollFType shall
be 4200 (NFS) or 4201 (CIFS) in the referenced
ProtocolEndpoint.

Antecedent Mandatory

The TCPProtocolEndpoint that supports a CIFS or NFS
ProtocolEndpoint.

14.8.2 CIM_BindsTo (TCP)

Created By: External
Modified By: Static
Deleted By: External

Requirement: This is required if an IPProtocolEndpoint exists.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 353

NAS Network Port Profile

Table 229 describes class CIM_BindsTo (TCP).

Table 229 - SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint
for connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a
TCPProtocolEndpoint.

14.8.3 CIM_BindsToLANENdpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: This is required if a LANENndpoint exists.

Table 230 describes class CIM_BindsToLANEndpoint.

Table 230 - SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement | Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.
Dependent Mandatory A IPProtocolEndpoint.

Antecedent Mandatory A LANEndpoint.

14.8.4 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 231 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

Table 231 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS
to NetworkPort)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The ProtocolEndpont that supports on the NetworkPort.
The ProtocollFType shall be 4200 (NFS) or 4201 (CIFS) in
the referenced ProtocolEndpoint.

Antecedent Mandatory The NetworkPort supported by the Access Point.

354

NAS Network Port Profile

14.8.5 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

Created By: External

Modified By: Static

Deleted By: External

Requirement: This is required if a LANENndpoint exists.

Table 232 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

Table 232 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANENnd-
point to NetworkPort)

Properties Flags Requirement | Description & Notes

Dependent Mandatory A LANEnNdpoint that depends on a NetworkPort for
connecting to its LAN segment.

Antecedent Mandatory The Logical network adapter device that connects to a
LAN.

14.8.6 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 233 describes class CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint).

Table 233 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSetting-
Data to IPProtocolEndpoint)

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory The IPProtocolEndpoint.
SettingData Mandatory The IPInterfaceSettingData.

14.8.7 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

SMI-S 1.6.0 Revision 5 SNIA Technical Position 355

NAS Network Port Profile

Table 234 describes class CIM_HostedAccessPoint (CIFS or NFS).

Table 234 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the file server. The
ProtocollFType shall be 4200 (NFS) or 4201 (CIFS) in the
referenced ProtocolEndpoint.

Antecedent Mandatory The Computer System hosting this Access Point. In the

context of the NAS Profiles, these are always file servers
(Dedicated=16).

14.8.8 CIM_HostedAccessPoint (IP)

Created By: External
Modified By: Static
Deleted By: External

Requirement: This is required if an IPProtocolEndpoint exists.

Table 235 describes class CIM_HostedAccessPoaint (IP).

Table 235 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The IPProtocolEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

14.8.9 CIM_HostedAccessPoint (LAN)

Created By: External
Modified By: Static
Deleted By: External

Requirement: This is required if a LANEndpoint exists.

Table 236 describes class CIM_HostedAccessPoint (LAN).

Table 236 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The LANEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

14.8.10 CIM_HostedAccessPoint (TCP)

356

NAS Network Port Profile

Created By: External

Modified By: Static

Deleted By: External

Requirement: This is required if a TCPProtocolEndpoint exists.

Table 237 describes class CIM_HostedAccessPoint (TCP).

Table 237 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement | Description & Notes
Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.
Antecedent Mandatory The Computer System hosting this Access Point.

14.8.11 CIM_IPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 238 describes class CIM_IPProtocolEndpoint.

Table 238 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory (POSSIBLE NAS CONSTRAINT) The Format of the Name.

RequestedState Optional (DMTF Core/IP Interface).

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS
Head. The operational status of the PEP.

EnabledState Optional (DMTF Core/IP Interface).

OtherEnabledState Optional

TimeOfLastStateCha Optional

nge

SMI-S 1.6.0 Revision 5 SNIA Technical Position

357

NAS Network Port Profile

Table 238 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement | Description & Notes

Description Conditional Conditional requirement: Required if parent profile is NAS
Head. or Required if parent profile is a Self-contained NAS
System. This shall be the IP protocol endpoints supported
by the NAS Profiles.

ProtocollFType Mandatory 4096="1P v4", 4097="IP v6", and 4098 is both. (Note that
1="Other" is not supported).

IPv4Address Conditional Conditional requirement: This is required if an
ProtocollFType = 4096 or 4098. An IP v4 address in the
format "A.B.C.D".

IPv6Address Conditional Conditional requirement: This is required if an
ProtocollFType = 4097 or 4098. An IP v6 address.

SubnetMask Conditional Conditional requirement: This is required if an
ProtocollFType = 4096 or 4098. An IP v4 subnet mask in
the format "A.B.C.D".

PrefixLength Conditional Conditional requirement: This is required if an
ProtocollFType = 4097 or 4098. For an IPv6 address.

Caption Optional Not Specified in this version of the Profile.

ElementName N Optional (DMTF Core/IP Interface) Not Specified in this version of
the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.

n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.

orted

AddressOrigin N Optional (DMTF Core/IP Interface) Not Specified in this version of
the Profile.

RequestStateChange Optional Not Specified in this version of the Profile.

0

BroadcastReset() Optional Not Specified in this version of the Profile.

14.8.12 CIM_LANENdpoint

Created By: External
Modified By: External
Deleted By: External

358

Requirement: Optional

NAS Network Port Profile

Table 239 describes class CIM_LANEnNdpoint.

Table 239 - SMI Referenced Properties/Methods for CIM_LANENndpoint

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Conditional Conditional requirement: Required if parent profile is a Self-
contained NAS System. or Required if parent profile is NAS
Head. The unique name of the Protocol Endpoint.

NameFormat Conditional Conditional requirement: Required if parent profile is a Self-
contained NAS System. or Required if parent profile is NAS
Head. The Format of the Name.

RequestedState Optional A NAS Head option.

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS
Head. The operational status of the PEP.

EnabledState Optional A NAS Head option.

OtherEnabledState Optional A NAS Head option.

TimeOfLastStateCha Optional A NAS Head option.

nge

Description Conditional Conditional requirement: Required if parent profile is NAS
Head. This shall be the LAN protocol endpoints supported
by the NAS Head.

ProtocollFType Conditional Conditional requirement: Required if parent profile is a Self-
contained NAS System. or Required if parent profile is NAS
Head. LAN endpoints supported are:
1="Other",6="Ethernet CSMA/CD", 9="ISO 802.5 Token
Ring", 15="FDDI".

OtherTypeDescriptio Optional If the LAN endpoint is a vendor-extension specified by

n "Other" and a description.

LANID N Optional A unique id for the LAN segment to which this device is
connected. The value will be NULL if the LAN is not
connected.

MACAddress Mandatory (POSSIBLE NAS CONSTRAINT) Primary Unicast address
for this LAN device.

AliasAddresses Mandatory (POSSIBLE NAS CONSTRAINT) Other unicast addresses
supported by this device.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 359

NAS Network Port Profile

Table 239 - SMI Referenced Properties/Methods for CIM_LANENndpoint

Properties Flags Requirement | Description & Notes

GroupAddresses Mandatory (POSSIBLE NAS CONSTRAINT) Multicast addresses
supported by this device.

MaxDataSize Mandatory (POSSIBLE NAS CONSTRAINT) The max size of packet
supported by this LAN device.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional (DMTF Core/IP Interface) Not Specified in this version of
the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.

orted

RequestStateChange Optional Not Specified in this version of the Profile.

0

BroadcastReset() Optional Not Specified in this version of the Profile.

14.8.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: The NetworkVLAN has been defined.

Table 240 describes class CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.).

Table 240 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtoco-
I[Endpoint to NetworkVLAN.)

Properties Flags Requirement | Description & Notes
Member Mandatory The IPProtocolEndpoint.
Collection Mandatory The NetworkVLAN.

14.8.14 CIM_NetworkPort

Created By: External
Modified By: External
Deleted By: External

360

Requirement: Mandatory

NAS Network Port Profile

Table 241 describes class CIM_NetworkPort.

Table 241 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement | Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides
a network port.

OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Network Port.

SystemName Mandatory The name of the Computer System hosting the Network
Port.

CreationClassName Mandatory The CIM Class name of the Network Port.

DevicelD Mandatory A unique ID for the device (in the context of the hosting
System).

Speed Optional (Fabric/Extender).

MaxSpeed Optional (Fabric/Extender).

RequestedSpeed Optional

UsageRestriction Optional

PortType Optional (Fabric/Extender).

PortNumber Optional (Fabric/Extender) A unique number for the adapter in the
context of the hosting System.

PermanentAddress C Mandatory The hard-coded address of this port.

NetworkAddresses Conditional Conditional requirement: Required if parent profile is NAS
Head. An array of network addresses for this port.

LinkTechnology Optional (Fabric/Extender) 1="Other", 2="Ethernet", 3="IB", 4="FC",
5="FDDI", 6="ATM", 7="Token Ring", 8="Frame Relay",
9="Infrared", 10="BlueTooth", 11="Wireless LAN. The link
technology supported by this adapter.

OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by
this adapter.

FullDuplex Optional

AutoSense Optional

SupportedMaximumT Optional

ransmissionUnit

ActiveMaximumTrans Optional

missionUnit

Caption N Optional Not Specified in this version of the Profile.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

361

NAS Network Port Profile

Table 241 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement | Description & Notes

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

Name N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional (DMTF Core/IP Interface) Not Specified in this version of
the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState Optional (DMTF Core/IP Interface) Not Specified in this version of
the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.

nge

OtherldentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescription | N Optional Not Specified in this version of the Profile.

s

AdditionalAvailability | N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

OtherPortType N Optional Not Specified in this version of the Profile.

RequestStateChange Optional Not Specified in this version of the Profile.

0

Reset() Optional Not Specified in this version of the Profile.

14.8.15 CIM_NetworkVLAN

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: Optional

362

NAS Network Port Profile

Table 242 describes class CIM_NetworkVLAN.

Table 242 - SMI Referenced Properties/Methods for CIM_NetworkVLAN

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the NetworkVLAN.

VLANId Mandatory The VLAN id that is to be associated with an IP interface.
The id shall be included in all IP packets being sent through
an IP interface.

TransmissionSize Mandatory The maximum transmission unit size that is associated with
an IP Interface.

14.8.16 CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 243 describes class CIM_ProtocolEndpoint (CIFS or NFS).

Table 243 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateCha Optional

nge

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints
supported by the NAS Profiles.

ProtocollFType Mandatory This represents either NFS=4200 or CIFS=4201. Other
protocol types are specified in subclasses of
ProtocolEndpoint.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 363

NAS Network Port Profile

Table 243 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement | Description & Notes

Caption N Optional Not Specified in this version of the Profile.
ElementName N Optional Not Specified in this version of the Profile.
InstallDate N Optional Not Specified in this version of the Profile.
StatusDescriptions N Optional Not Specified in this version of the Profile.
HealthState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.
n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.
orted

RequestStateChange Optional Not Specified in this version of the Profile.
0

BroadcastReset() Optional Not Specified in this version of the Profile.

14.8.17 CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External

Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 244 describes class CIM_SystemDevice (Network Ports).

Table 244 - SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The Computer System that contains this device. This shall
be either the top level NAS system or a multiple computer
system non-top level system.

PartComponent Mandatory The NetworkPort that is a part of a computer system.

14.8.18 CIM_TCPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

364

NAS Network Port Profile

Table 245 describes class CIM_TCPProtocolEndpoint.

Table 245 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName Protocol Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol
Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Conditional Conditional requirement: Required if parent profile is a Self-
contained NAS System. or Required if parent profile is NAS
Head. The Format of the Name.

RequestedState Optional A NAS Head option.

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS
Head. The operational status of the PEP.

EnabledState Optional A NAS Head option.

OtherEnabledState Optional A NAS Head option.

TimeOfLastStateCha Optional A NAS Head option.

nge

Description Conditional Conditional requirement: Required if parent profile is NAS
Head. This shall be the TCP protocol endpoints supported
by the NAS Head.

ProtocollFType Mandatory 4111="TCP". Note that no other protocol type is supported
by this endpoint.

PortNumber Mandatory The number of the TCP Port that this element represents.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescriptio | N Optional Not Specified in this version of the Profile.

n

BroadcastResetSupp | N Optional Not Specified in this version of the Profile.

orted

RequestStateChange Optional Not Specified in this version of the Profile.

0

BroadcastReset() Optional Not Specified in this version of the Profile.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

365

NAS Network Port Profile

14.8.19 SNIA_IPInterfaceSettingData

Created By: Extrinsic: CreateFileServer | AddIPInterface
Modified By: Extrinsic: ModifylPInterface

Deleted By: Extrinsic: DeleteFileServer | DeletelPInterface
Requirement: Optional

Table 246 describes class SNIA_IPInterfaceSettingData.

Table 246 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData

Properties Flags Requirement | Description & Notes

IPAddress Mandatory The IPAddress that will be used by the File Server. This can
be either an IPv4 or IPv6 address.

AddressType Mandatory The IPAddress format. This can be either "IPv4" or "IPv6".

SubnetMask Conditional Conditional requirement: This is required if an

ProtocollFType = 4096 or 4098. The subnet mask that will
be used by the File Server.

IPv6PrefixLength Conditional Conditional requirement: This is required if an
ProtocollFType = 4097 or 4098. If AddressType specifies
IPv6, then this specifies the prefix length for the IPv6
address in IPAddress.

VLANId Optional If present contains the ID of the VLAN that this IP setting
will be associated with.

MTU Optional If present contains the maximum transmission unit to be
used for this IP setting. If not present, then the default of
1500 will be used.

STABLE

366

Host Filesystem Profile

EXPERIMENTAL

Clause 15: Host Filesystem Profile

15.1 Synopsis

Profile Name: Host Filesystem (Component Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.28

Table 247 describes the related profiles for Host Filesystem.

Table 247 - Related Profiles for Host Filesystem

Profile Name Organization | Version Requirement | Description

Filesystem SNIA 1.4.0 Mandatory

File Export SNIA 1.5.0 Optional

Access Points SNIA 1.3.0 Optional

Software SNIA 1.4.0 Optional

Filesystem SNIA 1.6.0 Optional

Manipulation

File Export SNIA 1.6.0 Optional

Manipulation

Filesystem SNIA 1.4.0 Optional

Performance

FileSystem Quotas SNIA 1.5.0 Optional

Filesystem Copy SNIA 1.4.0 Optional

Services

Job Control SNIA 1.5.0 Optional

Device Credentials SNIA 1.3.0 Optional

Health SNIA 1.2.0 Mandatory

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version

1.0.0

Indication SNIA 1.5.0 Support for Deprecated.
. at least one :

Indications SNIA 1.6.0 is mandatory. Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version

1.2.0

SMI-S 1.6.0 Revision 5

SNIA Technical Position

367

Host Filesystem Profile

Central Class: SNIA_FileSystemConfigurationService

Scoping Class: CIM_ComputerSystem

15.2 Description

15.2.1 Overview

The Host Filesystem Profile is a component profile of the Base Server (host system) Profile (see Clause 35: Base
Server Profile in the Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 5). All
references to ComputerSystem in the Host Filesystem Profile implies a single instance for a customer server or
storage system as defined in the Base Server Profile. See Annex B (informative) Host Profile Deployment
Guidelines in the Storage Management Technical Specification, Part 6 Host Elements, 1.6.0 Rev 5 for information
on the use of host profiles with Base Server profile.

A host filesystem is a filesystem that runs on an application host and gets its storage from a volume manager or
host operating systems (Host Discovered Resources) storage. The storage obtained is visible to external
management tools and they may share their storage with other host applications. For example, host filesystem
might go to a volume manager for its storage. The volume manager provides storage to the host filesystem, but
may also supply storage to other host applications (e.g., a DataBase manager) or to other host filesystems.

This profile defines how to model the host filesystem constructs, and how it reflects connections to and storage
from the volume manager or system below it.

368

Host Filesystem Profile

The Host Filesystem Profile reuses many profiles and packages used by the NAS profiles. This is illustrated in

Figure 27.
Base Server
] Experimental
HosteoFile System et Indicatians
ndications _l
| [Device Cradentals
HostedSerace
Host File System
HpstedSerace
File Expare
Hosted Sharyg Manipulation
File Expert
Installed=pitwarel denbiby
Concreteldentity | |
CorrponenCS
b Filesystem
Manipulation
HostedFileSystem
Software
CwmingJobElerment
Filesysoem
FlleSysrem Quotas
H-:-'stc-:fu:-:r:isP-:-lrrt _l
Multiple Job Control
CompurerSy srem Filesystem

Performance

Access Points File System

Copy Services

Figure 27 - Host Filesystem Profiles, Subprofiles and Package

SMI-S 1.6.0 Revision 5 SNIA Technical Position

369

Host Filesystem Profile

15.3 Implementation

15.3.1 Summary Instance Diagram

Figure 28 illustrates the mandatory classes for the host filesystem (and the Base Server). This figure shows all the
classes that are mandatory and some of the optional classes (identified) for the Host Filesystem Profile.

—— — — — — — —— — — — — — — — — ——
File Export I
Praofile (Optional)
I FileShare ExponadFieSharebetbng
HFS ar CIFS ElemzntSettingD ata I
I (Dplaoral)
I SharedE lernert
S |

———_——————_——_—q

| Filesystem

FProfile |
) HosteaDependenty |
[Canditional) |
SHIA_LocallyaccessibeFileSystem Setting I
H':'“E":'Sha"i {Condtional)
I ElementSettingD ata I
G endEianal) I
! L FileSyhtemSeting
| LocalF eSSy stem ElementSetingD ata (Dptional)
Chplicirsal)
SNIA_Locasccessivailable op } I
l i (C ongmonal) GetFilaP roperties
HostedFile Sy st I
| e e (—e——— e— — — — — —— — — — — — — —
- o ServiceamectsE emen
- LTn T ek I 2 - C 5
Computersystem [Fur'?,w-wml pnfiguaration C ag b itie |
Dedicabed="0" StorageExtent I SupportedFestures |
(S Bae Server)
SystembDevice

ExtertDiscriminabor = *SMILA Imported®
ExtentStatus o*16°

H oSS el & Frimordial="true [3 ElgmentC Apatingies
| FileSystemConfigurationSendce
ElementConfomsTaPrafile CHilesce
uUnguissce
RegisterndPaile | Registere s rone
Registereaiames"B ase S erver® Fegistensan armes Host Filesystem® ElementC-apabilfies
(See Profile Regisration Profie) (Gee Profibe Regstration Proiie) ElementC onform s ToP rod e

Implem entalionC apabilines]

FeferencedFrofile

Figure 28 - Host Filesystem Instance Diagram

The Host Filesystem Profile draws its storage from LogicalDisks provided by a volume manager or HDR profile.
The profile models the LogicalDisks that it gets from the underlying volume manager or HDR as StorageExtents.
The association between a LocalFileSystem and the StorageExtents it resides on is ResidesOnExtent.

The Base Server ComputerSystem may not be a real ComputerSystem. It is merely the ManagedElement upon
which all aspects of the host filesystem offering are scoped.

LocalFileSystems are created on the StorageExtents and files within those LocalFileSystems may be shared
(FileShare) with remote users. The Filesystem Profile is a required profile.

The host filesystem augments the definition of the LocalFileSystem defined in the Filesystem Profile by adding a
method (GetFileProperties). If this method is supported, the support shall be indicated in the
FileSystemCapabilities.SupportedFeatures property.

The host filesystem also includes a FileSystemConfigurationService and a FileSystemConfigurationCapabilities.
These are the augmented instances of those defined by the Filesystem Manipulation Profile. The Host Filesystem
extends these with methods (Quiesce and Unquiesce) and a property (SupportedFeatures). The Filesystem

370

Host Filesystem Profile

Manipulation Profile is optional, but the FileSystemConfigurationService and the
FileSystemConfigurationCapabilities are required by the Host Filesystem Profile. If the Filesystem Manipulation
Profile is not implemented, the Host Filesystem Profile shall implement these two classes as defined by this
profile.

EXPERIMENTAL

In addition to the FileSystemConfigurationCapabilities, an instance of ImplementationCapabilities may be
associated to the FileSystemConfigurationService. This Capabilities instance identifies the capacity optimization
techniques supported by the implementation. An implementation may advertise that it supports “None”,
"SNIA:Thin Provisioning”, "SNIA:Data Compression” or "SNIA:Data Deduplication".

EXPERIMENTAL

The classes and associations in the dashed boxes are from the subprofiles (as indicated by the labels on the
dashed boxes).

The SharedElement association between the FileShare and the LocalFileSystem is required if FileShares are
implemented (the File Export Profile).

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are only
shown here to illustrate where they would show up in the model should they be implemented.

In the base Host Filesystem Profile, the model is automatically populated based on how the host filesystem is
configured. Client modification of the configuration (including configuring storage, creating extents, local
filesystems and file shares) are functions found in subprofiles of the Host Filesystem Profile.

15.3.2 Host Filesystem Use of Filesystem Profile (Mandatory)

The Host Filesystem Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the host
filesystem, implementation of the Filesystem Profile is mandatory. See Clause 8: Filesystem Profile for details on
this modeling.

15.3.3 Host Filesystem Use of File Export Profile (Optional)

The Host Filesystem Profile uses the File Export Profile for modeling of its file export constructs. For the host
filesystem, implementation of the File Export Profile is optional. See Clause 4: File Export Profile for details on this
modeling.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 371

Host Filesystem Profile

15.3.4 Host Filesystem Support of Cascading

Figure 29 illustrates the host filesystem support for cascading. Support for some of the elements for cascading are
mandatory. The figure illustrates stitching between the Host Filesystem and the Volume Management or HDR
Profiles.

CoamputarSystam

|| Seq Base Sarver)

—

Systembievics Host Filesystem Profile

Storage Extent

Marmé="Intarnal Marms"

HestedCollaction

HostedCaollection

Drepandancy

Logicalldentity

Cascading Support

AlpcatedResources
Femote Fesources

Cormpuléersysbem 1
{Shadow) MermbarQ i ollachan

— —
Lesgicial Disk

(Shadow)

SyslemDevice R — Mermber fCollection
[D= Lo/

-

- . .y LagicalCisk
SaPAyvailableF orEkment | i

{Shadow)
ResmoteSenicadcoessPont r I

Figure 29 - Host Filesystem support for Cascading

A host filesystem gets its storage from the operating system (HDR Profile) or a volume manager. As such, there is
a cascading relationship between the Host Filesystem Profile and the profiles (e.g., Volume Management Profiles)
that provide the storage for the host filesystem. Figure 29, “Host Filesystem support for Cascading,” illustrates the
constructs to be used to model this cascading relationship.

= The Host Filesystem cascaded resources are StorageExtents (used to house filesystem data)

= The Host Filesystem obtains the storage for these from LogicalDisks in Volume Management or HDR
Profiles.

« Each StorageExtent used by the Host Filesystem maps (via Logicalldentity) to a LogicalDisk (from the
Volume Management or HDR Profile).

The embedded dashed box in the figure illustrates the classes and associations of the cascading support. The
dashed classes are shadow instances (copies cached from the Volume Management or HDR Profile). The other
classes of the cascading support represent Host Filesystem usage of those classes. For example, the collection

372

Host Filesystem Profile

AllocatedResources collects all the volume manager or HDR volumes that are used by the Host Filesystem. The
RemoteResources collection collects all LogicalDisks that the Host Filesystem has discovered (whether used or
not).

The Dependency between the Base Server ComputerSystem and the shadow ComputerSystem may exist, even
when there are no resources that are imported. This signifies that the Host Filesystem has discovered the Volume
Management or HDR Profile, but has no access to any of their LogicalDisks.

Note: The Base Server and Shadow ComputerSystems may represent the same system.

The RemoteServiceAccessPoint is the URL of the management interface that the Host Filesystem uses for
managing the volume manager or HDR support. This may or may not be an SMI-S Server URL.
15.3.5 Health and Fault Management Consideration

The Host Filesystem Profile supports state information (e.g., OperationalStatus and HealthState) on the following
elements of the model:

= ComputerSystems (See Clause 25: Health Package in Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 5)

= FileShares that are exported (See Clause 4: File Export Profile)

« LocalFileSystems (See Clause 8: Filesystem Profile)

15.4 Methods of the Profile

15.4.1 Extrinsic Methods of the Profile

None
15.4.2 Extrinsic Methods in the Filesystem Profile

15.4.2.1 GetFileProperties
uint32 GetFileProperties(

IN string DirectoryName,
IN, OUT string Handle,
IN, OUT uint64 NumberOfFiles,
IN (false), OUT EmbeddedlInstance('CIM_LogicalFile'™) string FileRecs[];
):
This method gets a set of file records from a filesystem. As there may be millions of records in this report, a

chunking mechanism is provided so that the client does not become overwhelmed by the quantity of data furnished
by the server.

The DirectoryName is an optional pathname for a directory to restrict the data returned. If this parameter is NULL,
then files are returned for all files in the filesystem.

The initial call to GetFileProperties shall pass in NULL as a Handle. Subsequent calls shall pass back the Handle
exactly as received from the server, without modification, as an indication of where to continue the report from.

The NumberOfFiles is the number of files returned in a block of FileRecs. If NULL the provider will supply a default
number (and put that number in the parameter as output).

SMI-S 1.6.0 Revision 5 SNIA Technical Position 373

Host Filesystem Profile

15.4.3 Extrinsic Methods in the Filesystem Manipulation Profile

15.4.3.1 QuiesceFileSystem
uint32 QuiesceFilesystem(

IN, Required CIM_Filesystem REF TheElement,

IN, OUT datetime TimeOut,

IN (false), OUT CIM_Job REF Job;

)
This method temporarily suspends write operations to the underlying storage extents of a filesystem specified by
TheElement.

The TimeOut parameter identifies how long the system is to hold the filesystem in a quiesced state. The default is
30 seconds. The purpose of the timeout is to prevent a filesystem from staying in a quiesced state due to an
application failure. That is, if the application does not do an unquiesce in the timeout period, the provider may
automatically do the unquiesce.

15.4.3.2 Unquiesce a Filesystem
uint32 UnquiesceFilesystem(

IN, Required CIM_Filesystem REF TheElement;
)
This method resumes write activity to the underlying storage extents of a filesystem specified by TheElement.

15.4.4 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

= Getlnstance

= Associators

< AssociatorNames

< References

< ReferenceNames

= Enumeratelnstances

< EnumeratelnstanceNames

15.5 Client Considerations and Recipes
15.5.1 Use Cases

15.5.1.1 Discovery of the Filesystem Volumes
Table 248 identifies the elements of the use case to discover the volumes on which a filesystem resides.

Table 248 - Discovery of the Filesystem Volumes

Use Case Element Description

Summary Given a Host Filesystem Profile, find the volumes (by their external
name) on which a filesystem resides

374

Host Filesystem Profile

Table 248 - Discovery of the Filesystem Volumes

Use Case Element Description

Basic Course of Events 1. Find the filesystem (using its name)
2. Find the related Volumes (that the filesystem is on)
3. Locate the external names of the volumes

Alternative Paths None

Exception Paths None

Triggers Discovery or rebuild of the filesystem configuration

Assumptions None

Preconditions The Base Server system of the profile has been discovered from profile

registration and ElementConformsToProfile.

Postconditions A list of volumes on which the filesystems exist.

15.5.1.2 Expansion of a Filesystem
Table 249 identifies the elements of the use case to increase the size of a filesystem.

Table 249 - Expansion of a Filesystem

Use Case Element Description
Summary Increase the size of the filesystem by a certain amount.
Basic Course of Events 1. Administrator identifies the filesystem and size to increase.
2. System responds operation is complete.
Alternative Paths None
Exception Paths Failure

2a. System responds that the filesystem cannot be extended. The
filesystem is left unchanged.

Invalid state: Filesystem state does not allow expansion.

2b. System cannot support the size increase requested (size too large)
2c. System cannot support expansion of a mounted filesystem

2d. System cannot support expansion given the current configuration of
partitions

2e. Filesystem is in a transient state that does not allow expansion

Triggers Business need to increase the size of the filesystem.

Assumptions None

Preconditions Administrator has permission and access for the operation.

Postconditions The filesystem size is at least the original size plus the requested
increment.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 375

Host Filesystem Profile

15.5.1.3 Replication of a Filesystem
Table 250 identifies the elements of the use case to create a point in time copy of a filesystem.

Table 250 - Replication of a Filesystem

Use Case Element

Description

Summary

Given a filesystem, create a point in time copy of the filesystem.

Basic Course of Events

1. Administrator identifies filesystem to copy.
2. Administrator signals that the copy should be created.
3. System responds that the copy is ready.

Alternative Paths

Specify Storage
la. Administrator identifies where (e.g., what storage extent) and
maximum space that may be used for the copy.

Exception Paths

Failed
3. System responds that the copy could not be created.

Triggers

Business need.

Assumptions

There is no requirement that the copy increases the fault tolerance of
the filesystem.

Preconditions

Filesystem available.

Postconditions

The copy is available.
The copy is self-consistent.

15.5.1.4 Quiesce a Filesystem

Table 251 identifies the elements of the use case to quiesce a filesystem.

Table 251 - Quiesce a Filesystem

Use Case Element

Description

Summary

Temporarily suspends write operations to the underlying storage
extents of a filesystem.

Basic Course of Events

1. Administrator identifies the filesystem.
2. System responds operation is complete.

Alternative Paths

Provide timeout
la. Administrator provides a maximum quiesce timeout.

Exception Paths

Failure

2a. System responds that the write operations to the filesystem cannot
be suspended. The filesystem has the same operational state as
before.

Filesystem already quiesced.

2b. System responds that the filesystem is already suspended. The
filesystem has the same operational state as before (and the request is
ignored - timeout not extended)

Triggers

Business need for the image of the filesystem on the underlying storage
extents to be complete and correct as of a known point in time.

376

Host Filesystem Profile

Table 251 - Quiesce a Filesystem

Use Case Element

Description

Assumptions

Any application that needs quiescing has been completed. (NOTE:
because provider cannot tell)

Preconditions

Administrator has permission and access for the operation.

Postconditions

The data residing on the underlying storage extents reflects the state of
the filesystem at some point in time between steps 1 and 2.

No write activity to the filesystem shall transfer to the underlying
storage extents.

All future write activity should be blocked.

15.5.1.5 Unquiesce a Filesystem

Table 252 identifies the elements of the use case to unquiesce a filesystem.

Table 252 - Unquiesce a Filesystem

Use Case Element

Description

Summary

Resume write activity to the underlying storage extents of a filesystem.

Basic Course of Events

1. Administrator identifies the filesystem
2. System responds operation is complete

Alternative Paths

None

Exception Paths

None

Triggers

Business need for the quiesce operation has completed.

Assumptions

None

Preconditions

Administrator has permission and access for the operation.

Postconditions

The selected filesystem is no longer quiesced.

15.5.1.6 Filesystem quiesce timeout

Table 253 identifies the elements of the use case when a quiesced filesystem times out.

Table 253 - Filesystem quiesce timeout

Use Case Element

Description

Summary

Resume write activity to the underlying storage extents of a filesystem
after a timeout

Basic Course of Events

1. System responds operation is complete.

Alternative Paths

None

Exception Paths

None

Triggers

The timeout has expired.

Assumptions

None

Preconditions

The filesystem is in a quiesced state.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 377

Host Filesystem Profile

Table 253 - Filesystem quiesce timeout

Use Case Element

Description

Postconditions

The selected filesystem is no longer quiesced.

15.5.1.7 Retrieve File Information

Table 254 identifies the elements of the use case retrieving file information from a filesystem.

Table 254 - Retrieve File Information

Use Case Element

Description

Summary

Get available information on files in a filesystem directory.

Basic Course of Events

1. Administrator identifies the filesystem and directory.
2. System responds

Alternative Paths

None

Exception Paths

Failure
2a. System responds that the directory identified was not found.
2b. System responds that the operation is not supported at this time

Triggers Business need for the information to support filesystem “information
lifecycle management” functions.
Assumptions The underlying filesystem supports the information being requested

Preconditions

Administrator has permission and access for the operation and the
operation is supported.

Postconditions

Once all data has been returned, a new operation must initiated to get
information about the files.

15.6 CIM Elements

Table 255 describes the CIM elements for Host Filesystem.

Table 255 - CIM Elements for Host Filesystem

Element Name

Requirement | Description

15.6.1 CIM_ComputerSystem (Shadow) Mandatory "Top level' system that represents a Volume

Manager or Host Discovered Resources.

15.6.2 CIM_Dependency (Systems)

Mandatory This associates the Volume Manager or Host
Discovered Resources System to the Host
Filesystem System.

15.6.3 CIM_ElementCapabilities (FS

Configuration Capabilities)

Mandatory Associates the Filesystem Configuration
Service to the Capabilities element that
represents the capabilities that it supports.

378

Host Filesystem Profile

Table 255 - CIM Elements for Host Filesystem

Element Name Requirement | Description

15.6.4 CIM_ElementCapabilities Optional Experimental. Associates the Host Filesystem

(ImplementationCapabilities to Service) configuration service to the
CIM_ImplementationCapabilities supported by
the implementation.

15.6.5 CIM_ElementConformsToProfile Mandatory Ties the FileSystemConfigurationService to

(FilesystemConfigurationService to Host the registered profile for Host Filesystem.

Filesystem RegisteredProfile)

15.6.6 CIM_FilterCollection (Host Filesystem Conditional Experimental. Conditional requirement:

Predefined FilterCollection) Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

15.6.7 CIM_HostedCollection (Allocated Mandatory This would associate the AllocatedResources

Resources) collection to the Base Server system for the
Host Filesystem.

15.6.8 CIM_HostedCollection (Host Conditional Experimental. Conditional requirement:

Filesystem to predefined FilterCollection) Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

15.6.9 CIM_HostedCollection (Remote Conditional Conditional requirement: This is required if

Resources) SNIA_RemoteResources is modeled. This
would associate the RemoteResources
collection to the Base Server system for the
Host Filesystem.

15.6.10 CIM_HostedService Mandatory Associates the Filesystem Configuration
Service to the Base Server ComputerSystem.

15.6.11 CIM_ImplementationCapabilities Optional Experimental. The capabilities of the profile

(ImplementationCapabilities) implementation.

15.6.12 CIM_IndicationFilter (Extent Conditional Experimental. Conditional requirement:

OperationalStatus) Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3"' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of StorageExtent instances.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

379

Host Filesystem Profile

Table 255 - CIM Elements for Host Filesystem

Element Name

Requirement

Description

15.6.13 CIM_IndicationFilter (System
OperationalStatus)

Conditional

Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='3"' (Predefined Filters). This
is the 'pre-defined' CIM_IndicationFilter
instance for changes in the OperationalStatus
of System instances.

15.6.14 CIM_LogicalDisk (Shadow)

Mandatory

A shadow instance of a LogicalDisk that is
imported to the Host Filesystem Profile.

15.6.15 CIM_LogicalFile

Optional

This is an output of the GetFileProperties
method on SNIA_LocalFileSystem. It is never
instantiated, but the output follows this format.

15.6.16 CIM_Logicalldentity (LogicalDisk)

Mandatory

Associates a Host Filesystem StorageExtent
to a shadow instance of an (imported)
LogicalDisk.

15.6.17 CIM_MemberOfCollection (Allocated
Resources)

Mandatory

This supports collecting LogicalDisks. This is
required to support the AllocatedResources
collection.

15.6.18 CIM_MemberOfCollection
(Predefined Filter Collection to Host
Filesystem Filters)

Conditional

Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Host
Filesystem predefined FilterCollection to the
predefined Filters supported by the Host
Filesystem.

15.6.19 CIM_MemberOfCollection (Remote
Resources)

Optional

This supports collecting all Shadow instances
of LogicalDisk that the Host Filesystem has
available to use. This is optional when used to
support the RemoteResources collection (the
RemoteResources collection is optional).

15.6.20 CIM_RemoteServiceAccessPoint
(Shadow)

Optional

CIM_RemoteServiceAccessPoint represents
the management interface to a Shadow
system.

15.6.21 CIM_ResidesOnExtent

Mandatory

Represents the association between a local
FileSystem and the underlying storage
extent(s) that it is built on.

380

Host Filesystem Profile

Table 255 - CIM Elements for Host Filesystem

Element Name

Requirement

Description

15.6.22 CIM_SAPAvailableForElement

Conditional

Conditional requirement: This is required if
CIM_RemoteServiceAccessPoint is modeled.
Represents the association between a
RemoteServiceAccessPoint and the Shadow
(Volume Manager or Host Discovered
Resources) System to which it provides
access.

15.6.23 CIM_ServiceAffectsElement

Mandatory

Associates the Filesystem Configuration
Service to the filesystems that the service
manages.

15.6.24 CIM_StorageExtent (Primordial
Imported Extent)

Mandatory

Used to represent the storage imported from
the OS (Host Discovered Resources) or
Volume Managers.

15.6.25 CIM_SystemDevice (LogicalDisks)

Mandatory

This association links shadow LogicalDisks
to the scoping (Shadow) system (of the
Volume Manager or Host Discovered
Resources). This is used to associate the
shadow LogicalDisks with the System that
manages them.

15.6.26 SNIA_AllocatedResources

Mandatory

This is a SystemSpecificCollection for
collecting LogicalDisks that are being used by
the Host Filesystem profile (e.g., LogicalDisks
that the filesystem is using).

15.6.27
SNIA_FileSystemConfigurationCapabilities

Mandatory

An extension of the
FileSystemConfigurationCapabilities defined
in the Filesystem Manipulation Profile.

15.6.28
SNIA_FileSystemConfigurationService

Mandatory

An extension of the Filesystem Configuration
Service that adds filesystem methods.

15.6.29 SNIA_LocalFileSystem

Mandatory

Represents an extention of the
LocalFileSystem defined in the Filesystem
Profile.

15.6.30 SNIA_RemoteResources

Optional

This is a SystemSpecificCollection for
collecting Logical Disks that may be allocated
by the Host Filesystem Profile (e.g.,
LogicalDisks that may be allocated to support
a filesystem).

SMI-S 1.6.0 Revision 5

SNIA Technical Position

381

Host Filesystem Profile

Table 255 - CIM Elements for Host Filesystem

Element Name Requirement

Description

SELECT * FROM CIM_InstModification Mandatory
WHERE Sourcelnstance ISA
CIM_ComputerSystem AND
Sourcelnstance.CIM_ComputerSystem::Oper
ationalStatus <>
Previousinstance.CIM_ComputerSystem::Op
erationalStatus

CQL -Change of Status of a ComputerSystem.
Previousinstance is optional, but may be
supplied by an implementation of the Profile.
See section 15.6.13 CIM_IndicationFilter
(System OperationalStatus).

SELECT * FROM CIM_InstModification Mandatory
WHERE Sourcelnstance ISA
CIM_StorageExtent AND
Sourcelnstance.CIM_StorageExtent::Operatio
nalStatus <>
Previousinstance.CIM_StorageExtent::Operat
ionalStatus

CQL -Change of status of a StorageExtent.
Previousinstance is optional, but may be
supplied by an implementation of the Profile.
See section 15.6.12 CIM_IndicationFilter
(Extent OperationalStatus).

15.6.1 CIM_ComputerSystem (Shadow)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 256 describes class CIM_ComputerSystem (Shadow).

Table 256 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)

Properties Flags Requirement | Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the shadow system. E.g., IP address.

ElementName Mandatory User friendly name.

OtherldentifyingInfo C Mandatory

IdentifyingDescription | C Mandatory

s

OperationalStatus Mandatory Overall status of the shadow system, as seen by the Host
Filesystem.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to
operation as a shadow system.

PrimaryOwnerContac | M Optional Contact a details for owner.

t

PrimaryOwnerName | M Optional Owner of the shadow system.

382

Host Filesystem Profile

15.6.2 CIM_Dependency (Systems)

CIM_Dependency is an association between a shadow System (Volume Manager or Host Discovered Resources)
and the Host Filesystem System (ComputerSystem). The specific nature of the dependency is determined by
associations between resources (StorageExtents) of the Host Filesystem system and resources (LogicalDisks) of
the shadow system.

CIM_Dependency is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 257 describes class CIM_Dependency (Systems).

Table 257 - SMI Referenced Properties/Methods for CIM_Dependency (Systems)

Properties Flags Requirement | Description & Notes

Antecedent Mandatory The Base Server System.

Dependent Mandatory The shadow System (system of the Volume Manager or
Host Discovered Resources).

15.6.3 CIM_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 258 describes class CIM_ElementCapabilities (FS Configuration Capabilities).

Table 258 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration

Capabilities)
Properties Flags Requirement | Description & Notes
Capabilities Mandatory The Filesystem Configuration Capabilities element.
ManagedElement Mandatory The Filesystem Configuration Service.

15.6.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)

Experimental. Associates the Host Filesystem configuration service to the CIM_ImplementationCapabilities
supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

SMI-S 1.6.0 Revision 5 SNIA Technical Position 383

Host Filesystem Profile

Table 259 describes class CIM_ElementCapabilities (ImplementationCapabilities to Service).

Table 259 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCa-
pabilities to Service)

Properties Flags Requirement | Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The host FileSystemConfigurationService that has
ImplementationCapabilities.

15.6.5 CIM_ElementConformsToProfile (FilesystemConfigurationService to Host Filesystem
RegisteredProfile)

The CIM_ElementConformsToProfile ties FileSystemConfigurationService to the registered profile for Host
Filesystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 260 describes class CIM_ElementConformsToProfile (FilesystemConfigurationService to Host Filesystem
RegisteredProfile).

Table 260 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Filesystem-
ConfigurationService to Host Filesystem RegisteredProfile)

Properties Flags Requirement | Description & Notes

ManagedElement Mandatory A FileSystemConfigurationService instance that represents
the Host Filesystem.

ConformantStandard Mandatory RegisteredProfile instance describing the Host Filesystem
profile.

15.6.6 CIM_FilterCollection (Host Filesystem Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Host Filesystem
implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5" (Predefined Filter Collections).

384

Host Filesystem Profile

Table 261 describes class CIM_FilterCollection (Host Filesystem Predefined FilterCollection).

Table 261 - SMI Referenced Properties/Methods for CIM_FilterCollection (Host Filesystem Pre-
defined FilterCollection)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Host
Filesystem'.

15.6.7 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Host Filesystem Profile, it is used to associate the Allocated Resources to the Base Server
Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 262 describes class CIM_HostedCollection (Allocated Resources).

Table 262 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement | Description & Notes
Antecedent Mandatory
Dependent Mandatory

15.6.8 CIM_HostedCollection (Host Filesystem to predefined FilterCollection)

Experimental.
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 263 describes class CIM_HostedCollection (Host Filesystem to predefined FilterCollection).

Table 263 - SMI Referenced Properties/Methods for CIM_HostedCollection (Host Filesystem to
predefined FilterCollection)

Properties Flags Requirement | Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Host
Filesystem.

Antecedent Mandatory Reference to the Base Server System.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 385

Host Filesystem Profile

15.6.9 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Host Filesystem Profile, it is used to associate the Remote Resources to the Base Server
Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_RemoteResources is modeled.

Table 264 describes class CIM_HostedCollection (Remote Resources).

Table 264 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement | Description & Notes
Antecedent Mandatory
Dependent Mandatory

15.6.10 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 265 describes class CIM_HostedService.

Table 265 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement | Description & Notes
Dependent Mandatory The Filesystem Configuration Service.
Antecedent Mandatory The Base Server ComputerSystem.

15.6.11 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

386

Host Filesystem Profile

Table 266 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

Table 266 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (Implemen-
tationCapabilities)

Properties Flags Requirement | Description & Notes

InstancelD Mandatory An opaque, unique id for the implementation capability of
an implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityO Mandatory This array of strings lists the capacity optimization

ptimizations techiques that are supported by the implementation. Valid

string values are "none" | "SNIA:Thin Provisioning" |
"SNIA:Data Compression" | "SNIA:Data Deduplication”.

15.6.12 CIM_IndicationFilter (Extent OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of
StorageExtent instances.This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in the

Indication Profile.
Created By: Static

Modified By: Static
Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3" (Predefined Filters).

Table 267 describes class CIM_IndicationFilter (Extent OperationalStatus).

Table 267 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Extent Operational Sta-

tus)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory See the SystemCreationClassName definition in section

sName Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Host
Filesystem:ExtentOperationalStatus'.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 387

Host Filesystem Profile

Table 267 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Extent Operational Sta-

tus)
Properties Flags Requirement | Description & Notes
SourceNamespace N Optional Deprecated. See the SourceNamespace definition in

section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_StorageExtent AND
Sourcelnstance.CIM_StorageExtent::OperationalStatus <>
Previousinstance.CIM_StorageExtent::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

15.6.13 CIM_IndicationFilter (System OperationalStatus)

Experimental. This is the 'pre-defined’ CIM_IndicationFilter instance for changes in the OperationalStatus of
System instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in the Indication
Profile.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3" (Predefined Filters).

Table 268 describes class CIM_IndicationFilter (System OperationalStatus).

Table 268 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalSta-

tus)
Properties Flags Requirement | Description & Notes
SystemCreationClas Mandatory See the SystemCreationClassName definition in section
sName Storage Management Technical Specification, Part 2

Common Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter
(pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

388

Host Filesystem Profile

Table 268 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalSta-

tus)

Properties Flags Requirement | Description & Notes

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

Name Mandatory This shall be 'SNIA:Host
Filesystem:SystemOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 5 42.8.3
CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
Sourcelnstance ISA CIM_ComputerSystem AND
Sourcelnstance.CIM_ComputerSystem::OperationalStatus
<>
Previouslnstance.CIM_ComputerSystem::OperationalStatu
S.

QueryLanguage Mandatory This shall be 'DMTF:CQL".

ElementName N Optional See the ElementName definition in section Storage

Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 5 42.8.3 CIM_IndicationFilter (pre-
defined).

15.6.14 CIM_LogicalDisk (Shadow)

A shadow instance of a remote LogicalDisk that is imported to the Host Fileystem profile. If the Host Fileystem has
access to the Volume Management or Host Discovered Resources profile, the data in this class should reflect what
the Host Filesystem obtains from that profile. If the Host Filesystem does not have access to the Volume
Management or Host Discovered Resources profile, then this should be filled out as best can be done.

The properties in this class table are the properties as defined by either Volume Management, Block Services or
Host Discovered Resources. If a property is optional in any of the three profiles, then it is defined as optional in the
Shadow LogicalDisk. The only exception to this rule is the ExtentDiscriminator, which is used by the Host
Filesystem profile to distinguish the LogicalDisk from other StorageExtents.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

SMI-S 1.6.0 Revision 5

SNIA Technical Position 389

Host Filesystem Profile

Table 269 describes class CIM_LogicalDisk (Shadow).

Table 269 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Shadow)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory

sName

SystemName Mandatory

CreationClassName Mandatory

DevicelD Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory Format for name.

ExtentStatus Optional

OperationalStatus Mandatory Value shall be 0|2]3]6|8|15 (Unknown or OK or Degraded or
Error or Starting or Dormant).

BlockSize Optional

NumberOfBlocks Optional The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Optional The number of blocks usable by consumers.

IsBasedOnUnderlyin Optional

gRedundancy

NoSinglePointOfFailu Optional

re

DataRedundancy Optional

PackageRedundancy Optional

DeltaReservation Optional

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti Optional Set when Usage value is "Other".

on

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Shadow'.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

390

Host Filesystem Profile

Table 269 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Shadow)

Properties Flags Requirement | Description & Notes

HealthState N Optional Not Specified in this version of the Profile.
EnabledState N Optional Not Specified in this version of the Profile.
OtherEnabledState N Optional Not Specified in this version of the Profile.
RequestedState N Optional Not Specified in this version of the Profile.
EnabledDefault N Optional Not Specified in this version of the Profile.
TimeOfLastStateCha | N Optional Not Specified in this version of the Profile.
nge

15.6.15 CIM_LogicalFile

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 270 describes class CIM_LogicalFile.

Table 270 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory Class Name of the ComputerSystem that hosts the

me filesystem containing this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the
filesystem containing this file.

FSCreationClassNa Mandatory Class Name of the LocalFileSystem that represents the

me filesystem containing this file.

FSName Mandatory The Name property of the LocalFileSystem that represents
the filesystem containing this file.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents
the file.

Name Mandatory The Name property of the LogicalFile that represents the
file.

ElementName Mandatory The pathname from the root of the containing

LocalFileSystem to this LogicalFile. The root of the
LocalFileSystem is indicated if this is NULL or the empty
string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of
directories from the root, the separator string is specified by
the SNIA_LocalFileSystem.PathNameSeparatorString

property.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 391

Host Filesystem Profile

Table 270 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement | Description & Notes

FileSize Optional Size of the File in bytes.

CreationDate Optional File's creation date.

LastModified Optional Time that the File was last modified.

LastAccessed Optional Time that the File was last accessed.

Readable Optional Boolean indicating that the File can be read.

Writeable Optional Boolean indicating that the File can be written.

Executable Optional Indicates the file is executable.

CompressionMethod Optional A free form string indicating the algorithm or tool used to
compress the LogicalFile.

EncryptionMethod Optional A free form string indicating the algorithm or tool used to
encrypt the LogicalFile.

InUseCount Optional The number of 'file opens' that are currently active against

the File.

15.6.16 CIM_Logicalldentity (LogicalDisk)

Associates local StorageExtent to a shadow instance of an (imported) LogicalDisk.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 271 describes class CIM_Logicalldentity (LogicalDisk).

Table 271 - SMI Referenced Properties/Methods for CIM_Logicalldentity (LogicalDisk)

Properties Flags Requirement | Description & Notes
SystemElement Mandatory This is a reference to the shadow (imported) LogicalDisk.
SameElement Mandatory This is a reference to the Host Filesystem StorageExtent

that maps to the shadow (imported) LogicalDisk.

15.6.17 CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow LogicalDisk instances (in the

AllocatedResources collection).

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

392

Host Filesystem Profile

Table 272 describes class CIM_MemberOfCollection (Allocated Resources).

Table 272 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated

Resources)
Properties Flags Requirement | Description & Notes
Member Mandatory
Collection Mandatory

15.6.18 CIM_MemberOfCollection (Predefined Filter Collection to Host Filesystem Filters)

Experimental. This associates the Host Filesystem predefined FilterCollection to the predefined Filters supported
by the Host Filesystem.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 273 describes class CIM_MemberOfCollection (Predefined Filter Collection to Host Filesystem Filters).

Table 273 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Host Filesystem Filters)

Properties Flags Requirement | Description & Notes

Collection Mandatory Reference to the Host Filesystem predefined
FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Host
Filesystem.

15.6.19 CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow LogicalDisk instances (in the RemoteResources
collection). Each association (and the RemoteResources collection, itself) is created through external means.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 274 describes class CIM_MemberOfCollection (Remote Resources).

Table 274 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote

Resources)
Properties Flags Requirement | Description & Notes
Member Mandatory
Collection Mandatory

SMI-S 1.6.0 Revision 5 SNIA Technical Position 393

Host Filesystem Profile

15.6.20 CIM_RemoteServiceAccessPoint (Shadow)

CIM_RemoteServiceAccessPoint is an instance that provides access information for accessing the actual Shadow
(Volume Manager or Host Discovered Resources) via a management interface.

CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 275 describes class CIM_RemoteServiceAccessPoint (Shadow).

Table 275 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory The CIM Class name of the Computer System hosting the

sName management interface.

SystemName Mandatory The name of the Computer System hosting the
management interface.

CreationClassName Mandatory The CIM Class name of the management interface.

Name Mandatory The unique name of the management interface.

15.6.21 CIM_ResidesOnExtent

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 276 describes class CIM_ResidesOnExtent.

Table 276 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement | Description & Notes
Dependent Mandatory The LocalFileSystem that is built on top of a storage extent.
Antecedent Mandatory A StorageExtent that underlies a LocalFileSystem.

15.6.22 CIM_SAPAvailableForElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_RemoteServiceAccessPoint is modeled.

394

Host Filesystem Profile

Table 277 describes class CIM_SAPAvailableForElement.

Table 277 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement | Description & Notes
ManagedElement Mandatory Shadow System.
AvailableSAP Mandatory

15.6.23 CIM_ServiceAffectsElement

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Requirement: Mandatory

Table 278 describes class CIM_ServiceAffectsElement.

Table 278 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement | Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the
element. The standard allows Other to support vendor
extensions. The standard values are 1 (Other) and 5
(Manages).

OtherElementEffects Optional A description of other element effects that this association

Descriptions might be exposing.

AffectedElement Mandatory The LocalFileSystem.

AffectingElement Mandatory The FileSystemConfigurationService.

15.6.24 CIM_StorageExtent (Primordial Imported Extent)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SMI-S 1.6.0 Revision 5

SNIA Technical Position

395

Host Filesystem Profile

Table 279 describes class CIM_StorageExtent (Primordial Imported Extent).

Table 279 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported

Extent)

Properties Flags Requirement | Description & Notes

SystemCreationClas Mandatory

sName

SystemName Mandatory

CreationClassName Mandatory

DevicelD Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

ExtentStatus Mandatory This shall contain the value '16' ('Imported’).

Primordial Mandatory This shall be 'true’.

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Pool Component' and 'SNIA:Imported'.

15.6.25 CIM_SystemDevice (LogicalDisks)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 280 describes class CIM_SystemDevice (LogicalDisks).

Table 280 - SMI Referenced Properties/Methods for CIM_SystemDevice (LogicalDisks)

Properties Flags Requirement | Description & Notes

GroupComponent Mandatory The Shadow Computer System that contains this
LogicalDisk.

PartComponent Mandatory The logical disk that is managed by a computer system.

15.6.26 SNIA_AllocatedResources

An instance of a default SNIA_AllocatedResources defines the set of LogicalDisks that are allocated and in use by
the Host Filesystem Profile.

SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the SNIA_AllocatedResources shall exist for a Host Filesystem Profile and shall be hosted
by one of its ComputerSystems (typically the top level ComputerSystem.

396

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Host Filesystem Profile

Table 281 describes class SNIA_AllocatedResources.

Table 281 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

or

Properties Flags Requirement | Description & Notes

InstancelD Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection
(e.g., Allocated LogicalDisks).

ElementType Mandatory The type of remote resources collected by the
AllocatedResources collection.
For this version of SMI-S, the only value supported is '7'
(LogicalDisk).

CollectionDiscriminat Mandatory An array of strings indicating the purposes of the collection

of elements. This shall contain 'SNIA:Imported Volumes'.

15.6.27 SNIA_FileSystemConfigurationCapabilities

An extension of the FileSystemConfigurationCapabilities defined in the Filesystem Manipulation Profile. For the
base definition of this class, see 9.7.16 SNIA_FileSystemConfigurationCapabilities.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 282 describes class SNIA_FileSystemConfigurationCapabilities.

Table 282 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement | Description & Notes
InstancelD Mandatory See the InstancelD property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.
ElementName Mandatory See the ElementName property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.
SupportedActualFile Mandatory See the SupportedActualFileSystemTypes property in
SystemTypes 9.7.16 SNIA_FileSystemConfigurationCapabilities.
SupportedSynchrono | N Mandatory See the SupportedSynchronousMethods property in 9.7.16
usMethods SNIA_FileSystemConfigurationCapabilities.
SupportedAsynchron | N Mandatory See the SupportedAsynchronousMethods property in
ousMethods 9.7.16 SNIA_FileSystemConfigurationCapabilities.

SMI-S 1.6.0 Revision 5

SNIA Technical Position 397

Host Filesystem Profile

Table 282 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement | Description & Notes
InitialAvailability Mandatory See the InitialAvailability property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.
LocalAccessibilitySu Optional See the LocalAccessibilitySupport property in 9.7.16
pport SNIA_FileSystemConfigurationCapabilities.
BlockStorageCreatio Optional See the BlockStorageCreationSupport property in 9.7.16
nSupport SNIA_FileSystemConfigurationCapabilities.
DirectoryServerPara Optional See the DirectoryServerParameterSupported property in
meterSupported 9.7.16 SNIA_FileSystemConfigurationCapabilities.
SupportedFeatures Mandatory This may be 'None', 'GetFileProperties' or 'Quiesce/

Unquiesce'.

15.6.28 SNIA_FileSystemConfigurationService

An extension of the Filesystem Configuration Service that adds filesystem methods. For the base definition of the
FileSystemConfigurationService see9.7.17 SNIA_FileSystemConfigurationService.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 283 describes class SNIA_FileSystemConfigurationService.

Table 283 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement | Description & Notes

ElementName Mandatory See the ElementName property in 9.7.17
SNIA_FileSystemConfigurationService.

SystemCreationClas Mandatory See the SystemCreationClassName property in 9.7.17

sName SNIA_FileSystemConfigurationService.

SystemName Mandatory See the SystemName property in 9.7.17
SNIA_FileSystemConfigurationService.

CreationClassName Mandatory See the CreationClassName property in 9.7.17
SNIA_FileSystemConfigurationService.

Name Mandatory See the Name property in 9.7.17
SNIA_FileSystemConfigurationService.

Quiesce() Conditional Conditional requirement: This is required if
SupportedFeatures includes \Quiesce/Unquiesce\'.'See the
method description in 15.4.3.1 QuiesceFileSystem.

Unquiesce() Conditional Conditional requirement: This is required if

SupportedFeatures includes \Quiesce/Unquiesce\'.'See the
method description in 15.4.3.2 Unquiesce a Filesystem.

398

15.6.29 SNIA_LocalFileSystem

Represents an extention of the LocalFileSystem defined in the Filesystem Profile. See 8.7.8 CIM_LocalFileSystem.

Created By: External
Modified By: External
Deleted By: External

Requirement: Mandatory

Table 284 describes class SNIA LocalFileSystem.

Host Filesystem Profile

Table 284 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement | Description & Notes

CSCreationClassNa Mandatory See the CSCreationClassName property in 8.7.8

me CIM_LocalFileSystem.

CSName Mandatory See the CSName property in 8.7.8 CIM_LocalFileSystem.

CreationClassName Mandatory See the CreationClassName property in 8.7.8
CIM_LocalFileSystem.

Name Mandatory See the Name property in 8.7.8 CIM_LocalFileSystem.

OperationalStatus Mandatory See the OperationalStatus property in 8.7.8
CIM_LocalFileSystem.

Root Optional See the Root property in 8.7.8 CIM_LocalFileSystem.

BlockSize Optional See the BlockSize property in 8.7.8 CIM_LocalFileSystem.

FileSystemSize Optional See the FileSystemSize property in 8.7.8
CIM_LocalFileSystem.

AvailableSpace Optional See the AvailableSpace property in 8.7.8
CIM_LocalFileSystem.

ReadOnly Optional See the ReadOnly property in 8.7.8 CIM_LocalFileSystem.

EncryptionMethod Optional See the EncryptionMethod property in 8.7.8
CIM_LocalFileSystem.

CompressionMethod Optional See the CompressionMethod property in 8.7.8
CIM_LocalFileSystem.

CaseSensitive Mandatory See the CaseSensitive property in 8.7.8
CIM_LocalFileSystem.

CasePreserved Mandatory See the CasePreserved property in 8.7.8
CIM_LocalFileSystem.

CodeSet Optional See the CodeSet property in 8.7.8 CIM_LocalFileSystem.

MaxFileNameLength Mandatory See the MaxFileNameLength property in 8.7.8
CIM_LocalFileSystem.

FileSystemType Mandatory See the FileSystemType property in 8.7.8

CIM_LocalFileSystem.

SMI-S 1.6.0 Revision 5

SNIA Technical Position

399

Host Filesystem Profile

Table 284 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement | Description & Notes

NumberOfFiles Optional See the NumberOfFiles property in 8.7.8
CIM_LocalFileSystem.

GetFileProperties() Conditional Conditional requirement: This is required if
SupportedFeatures includes \GetFileProperties\'.'See the
method description in 15.4.2.1 GetFileProperties.

15.6.30 SNIA_RemoteResources

An instance of a default SNIA_RemoteResources defines the set of shadow LogicalDisks that are available to be
used by the Host Filesystem Profile.

SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the SNIA_RemoteResources would exist and shall be hosted by the top level ComputerSystems
of the Host Filesystem Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 285 describes class SNIA_RemoteResources.

Table 285 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement | Description & Notes

InstancelD Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection
(e.g., Remote Logical Disks).

ElementType Mandatory The type of remote resources collected by the
RemoteResources collection. This shall be ‘7'
(LogicalDisk).

CollectionDiscriminat Mandatory An array of strings indicating the purposes of the collection

or of elements. This shall contain 'SNIA:Imported Volumes'.

EXPERIMENTAL

400

Annex A (informative) SMI-S Information Model

Annex A (informative) SMI-S Information Model

This standard is based on DMTF's CIM schema, version 2.29. The DMTF schema is available in the
machinereadable Managed Object Format (MOF) format. DMTF MOFs are simultaneously released both as an
"Experimental" and a "Final" version of the schema. This provides developers with early access to experimental
parts of the models. Both versions are available at

http://www.dmtf.org/standards/cim/cim_schema_v2290

Most SMI-S Profiles are primarily based on the DMTF Final MOFs. Content marked as “Experimental” or
“Implemented” may be based on DMTF’s Experimental MOFs. Some SMI-S Experimental Profiles may also use
classes with a SNIA _ prefix; MOFs from these classes are available from SNIA.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 457

http://www.dmtf.org/standards/cim/cim_schema_v2290

458

Annex B (informative) State Transitions from Storage to File Shares

Annex B (informative) State Transitions from Storage to File Shares

A filesystem is an abstract class that abstractly describes a hierarchical structuring of data into “files” contained
within a tree of “directories” with a single “root” directory. A LocalFileSystem is a concrete class derived from
FileSystem that implements it using one or more storage elements in which the storage element(s) has been
structured to contain information about multiple files organized into directories as well as the content of these files.
This internal organization of a LocalFileSystem, viz., what parts represent the components of files, what parts
constitute directories, what the names of these files and directories are, how they are organized into a hierarchy,
even the representation of the path to a file from the root directory through a sequence of sub-directories etc., is
called “metadata” and is stored persistently inside the storage element(s). In addition to metadata, the internal
organization contains information about ownership of files and directories, rights of users or other entities to access
files and directories, and other attributes of files and directories. This information is sometimes included in
metadata, but sometimes referred to independently as “attribute” information and is also stored persistently within
the storage element(s). Finally, the contents of files are also stored persistently in the storage element(s).

In filesystem-related profiles, the collection of storage elements used by a LocalFileSystem is called a
LogicalDisk(s). There are multiple formats (both open and proprietary) for structuring a LogicalDisk into a
LocalFileSystem—how the metadata, attributes, and content are stored and so on—that are referred to as the
“type” of the LocalFileSystem. The information about the type of the LocalFileSystem (and possibly variant
versions of the type) is also persistently stored in the LogicalDisk. The type of the LocalFileSystem in this and
related profiles is represented as the “FileSystemType”.

Note: The Volume Composition Subprofile describes how multiple LogicalDisks can be merged into a single
one. It is assumed that if more than one storage element is used, they are composed into a single
LogicalDisk using the Volume Composition Profile (see Clause 23: Volume Composition Profile in
Storage Management Technical Specification, Part 3 Block Devices, 1.6.0 Rev 5) or other profile that
similarly merges multiple storage elements into a single LogicalDisk.

A LocalFileSystem is not an autonomous entity but is a hosted component of a larger system, usually a
ComputerSystem. This is represented using the HostedFileSystem association between a ComputerSystem and
the LocalFileSystem. Since the LogicalDisk is a SystemDevice of a ComputerSystem, it is frequently the case that
the LocalFileSystem will be hosted by the same ComputerSystem, but this is not required. It is generally the case
that a LocalFileSystem will have an independent internal name that may be used to refer to it but it is not necessary
that the name be constructed independently of the name of the LogicalDisk or the name of the hosting
ComputerSystem. Some systems require that this internal name be globally unique, but others rely on the
unigueness of the LogicalDisk’s name or on other identifiers. In SMI-S, it is a requirement that a LocalFileSystem
have a unique Name property relative to the hosting ComputerSystem (Name being one of the key properties of
the FileSystem class).

The process by which an element of storage is finally made available as a FileShare is represented by Figure B.1.
The process begins with an unused LogicalDisk that is owned by, or has been allocated to, the ComputerSystem
for this purpose. The operation "Create a filesystem", converts an unused LogicalDisk to a LocalFileSystem—
Figure B.1 shows the name and the ComputerSystem that has a HostedFileSystem association to the
LocalFileSystem. The other details of the LocalFileSystem are skipped.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 459

LogicalDisk
Mame: fdevisdd

Create a file system

—

LocalFileSystem

ASS0OC(ResidesOnExtent): REF LD: dev/=d01

Mame: fdevifs

ASSOC{HostedFileSystem) REF % "FileSystem Host”
LocalA ccessDefinitionRequired: true|false
PathMameSeparatorString: 7

Make file system lacally accessible ?

If LocalAccessDefinitionRequired: true

P

LocalAccessAvailable

'l
f

/

FileServer. REF "FileServer1”
FileSystam: REF LF5:"/devifs1”

!

i
Export a file share
If LocalAccessDefinitlonRequired: false

LocalAccessPoint: “etc/mnt1™ !

e /
Export a file share i

— f.-f
_ -~ y

FileShare

ASSOC{HostedShare). REF “FileServer1”
ASS0C(SharedElemeant): REF: “fdevifs1”
FPathtame: “fusers/kamesh”

Mame: "HOMEDIR™

Figure B.1 - State Transitions From LogicalDisk to FileShare

Even after a LogicalDisk has been internally organized into a LocalFileSystem, it may not be usable by an
operational user. That's because the operational user needs a durable name (for referring to the LocalFileSystem)
that is persistently supported by the implementation. There are multiple ways in which this problem has been
solved. Since the LocalFileSystem must be hosted by a ComputerSystem and the LocalFileSystem has a unique
name, a Uniform Resource Indicator (URI) can be constructed that is relative to the hosting ComputerSystem.
However, an operational user needs to use an access path relative to the ComputerSystem that serves files to
them (i.e., relative to a File Server), and this may differ from the hosting ComputerSystem.

Traditionally (i.e., before URIs), a LocalFileSystem was assigned a name in a hierarchical name space maintained
by the File Server ComputerSystem. This assignment was called “mounting to” the name and the name was called
the “mount-point” of the filesystem. For historical and other reasons, the hierarchical name space most commonly
used for the purpose was based on the “root filesystem” of the File Server. This allowed a naming convention using
“file path names” for objects in the namespace that could be extended uniformly to the meta-data and content of

460

Annex B (informative) State Transitions from Storage to File Shares

the mounted filesystem (and would be represented in the SMI Specification as a property of a Capabilities
element).

If the hosting ComputerSystem and the File Server ComputerSystem are the same, or can be referenced using a
single identifier (for instance in a clustered computer system), or only one File Server can access a
LocalFileSystem, it is possible to make the Name of the LocalFileSystem be the same as the mount-point. In that
case, the act of “mounting to” the name is accomplished by default when the LocalFileSystem is created. But this
does not work for implementations that allow a LocalFileSystem hosted by one ComputerSystem to be assigned
differently named mount-points on multiple File Server ComputerSystems. The problem increases in complexity
when a File Server can have multiple network identities (through a multiplicity of IP addresses and multiple fully-
qualified domain names that map to each IP address).

Traditionally, Unix-based uni-processor systems have not made the Name of the LocalFileSystem the same as the
mount-point. But many specialized systems follow such a policy, so whether mounting is not managed explicitly
(because it is automatically specified by the name of the LocalFileSystem) or must be managed explicitly is a
feature of an implementation.

In addition to specifying a mount-point for a LocalFileSystem, a File Server would also assign system resources
needed for working with the LocalFileSystem. These include read and write buffers of appropriate capacity,
restrictions on reading or writing (needed for systems that allow multiple mounts of a LocalFileSystem), and other
implementation-dependent resources. The specification of these resources are explicity manageable by some
implementations and defaulted by others.

The terms “mount” and “mount-point” are also traditionally used for assigning a remote element (such as a shared
file) a name in the local name space of a ComputerSystem. These terms by themselves appeared to be too generic
for use in this specification, so the terms used are “make locally accessible” for “mount” and “local access point” for
“mount-point”. The resources to be allocated for mounting are specified by “local access settings”.

In SMI-S, a “locally accessible filesystem” is represented by providing an association, LocalAccessAvailable, from
the File Server to the LocalFileSystem. In addition to the key reference properties, this association provides the
LocalAccessPoint string array property that specifies the “local access point”. Referring back to Figure B.1, the
"Make a filesystem locally accessible" operation creates the LocalAccessAvailable association between the File
Server and the LocalFileSystem. This operation is supported in the Filesystem Manipulation Subprofile by
providing appropriate parameters to the CreateFileSystem and ModifyFileSystem extrinsic methods. The
LocalFileSystem element is not modified, but a new association is created. The LocalAccessPoint property
provides the access point (shown in the standard Unix format as “/etc/mnt1”).

Note: The intent behind implementing "Make a filesystem locally accessible” with CreateFileSystem and
ModifyFileSystem methods is that it is preferable not to distinguish between implementations that
implement a separate “Make Locally Accessible” function from those that do not.

The vendor implements this operation by providing the necessary parameters to the create and modify methods;
this has the benefit that the operation does not have to be exposed separately to the management client. However
all implementations that support multiple File Servers with independent names to access filesystems must support
LocalAccessAvailable as that is the only place where a file-server-specific name for the LocalFileSystem is
specified (by the LocalAccessPoint property). A vendor that provides accessibility by default might have a
FileSystem.Name property that also functions as a path name from each file server (in one sample
implementation), so it is likely that LocalAccessAvailable.LocalAccessPoint would be the same as the
LocalFileSystem.Name property. The property LocalFileSystem.LocalAccessDefinitionRequired is required to
indicate that this feature is used and that the client must examine that property to understand how a vendor
implements this model.

The creation of a file share and its behavior are detailed in the related File Export and File Export Manipulation
Subprofiles. Figure B.1 shows the "Export a file share" operation that creates a FileShare and an SharedElement
association. The FileShare provides a name “HOMEDIR” and is hosted by the File Server. The SharedElement
association links to the LocalFileSystem and also provides the pathname “/users/kamesh” to the specific user’s
home directory.

SMI-S 1.6.0 Revision 5 SNIA Technical Position 461

462

Note: Once a LocalFileSystem has been made locally accessible via a File Server, the File Server can share

its contents with remote operational users. The contents of such a filesystem can be shared all the way
from the root directory at the top of the hierarchy, or the contents of sub-tree below some contained
internal directory may be shared, or a specific file contained in the filesystem may be shared. When a
directory (root or otherwise) is shared, all files and sub-directories of that directory are automatically
also shared recursively. The semantics of sharing an individual file or directory are ultimately controlled
by the implementation of the filesystem, so sharing cannot violate the access rules specified internally
to the filesystem. In addition to specifying the object (file or directory) to be shared, the File Server may
specify the protocol to use for sharing and a correlatable name by which remote users can refer to the
shared object—the protocol, the unique server id, and the share name can be used to construct a URI
for the shared object. The base URI can be extended to construct a reference URI for files or
subdirectories within the shared object.

In SMI-S, there is a FileShare element created to represent the externally accessible share. This
element is associated via SharedElement to the LocalFileSystem. The FileShare element will provide
the PathName string property that specifies the shared object (the contained file or directory name).

	Revision History
	List of Tables
	List of Figures
	Foreword
	Clause 1: Scope
	Clause 2: Normative References
	2.1 General
	2.2 Approved references
	2.3 References under development
	2.4 Other references

	Clause 3: Definitions, Symbols, Abbreviations, and Conventions
	3.1 General
	3.2 Definitions

	Clause 4: File Export Profile
	4.1 Description
	4.1.1 Synopsis
	4.1.2 Overview
	4.1.3 Implementation

	4.2 Health and Fault Management Consideration
	4.2.1 OperationalStatus for FileShares

	4.3 Cascading Considerations
	4.4 Supported Profiles, Subprofiles, and Packages
	4.5 Methods of the Profile
	4.5.1 Extrinsic Methods of the Profile
	4.5.2 Intrinsic Methods of the Profile

	4.6 Client Considerations and Recipes
	4.6.1 List Existing FileShares on the system

	4.7 CIM Elements
	4.7.1 CIM_CIFSShare (Exported File Share)
	4.7.2 CIM_ConcreteDependency
	4.7.3 CIM_ElementSettingData (FileShare)
	4.7.4 CIM_ExportedFileShareSetting (Setting)
	4.7.5 CIM_FileShare (Exported File Share)
	4.7.6 CIM_HostedShare
	4.7.7 CIM_NFSShare (Exported File Share)
	4.7.8 CIM_SAPAvailableForElement
	4.7.9 CIM_SharedElement

	Clause 5: File Export Manipulation Subprofile
	5.1 Description
	5.1.1 Synopsis
	5.1.2 Overview
	5.1.3 Instance Diagrams

	5.2 Health and Fault Management Considerations
	5.2.1 OperationalStatus for FileExportService
	5.2.2 OperationalStatus for File Server ComputerSystem

	5.3 Cascading Considerations
	5.4 Supported Subprofiles and Packages
	5.5 Methods of the Profile
	5.5.1 Extrinsic Methods of the Profile
	5.5.2 Signature and Parameters of SNIA_ModifyExportedShare
	5.5.3 Signature and Parameters of ReleaseExportedShare
	5.5.4 Intrinsic Methods of the Profile

	5.6 Client Considerations and Recipes
	5.6.1 Creation of a FileShare for Export
	5.6.2 Modification of an Exported FileShare
	5.6.3 Removal of an Exported FileShare
	5.6.4 File Export Manipulation Supported Capabilities Patterns

	5.7 CIM Elements
	5.7.1 CIM_CIFSShare (Exported File Share)
	5.7.2 CIM_ConcreteDependency
	5.7.3 CIM_ElementCapabilities (FES Configuration)
	5.7.4 CIM_ElementSettingData (FileShare Setting)
	5.7.5 CIM_FileShare (Exported File Share)
	5.7.6 CIM_FileStorage (Subelement)
	5.7.7 CIM_HostedService
	5.7.8 CIM_HostedShare
	5.7.9 CIM_LogicalFile (Subelement)
	5.7.10 CIM_NFSShare (Exported File Share)
	5.7.11 CIM_SAPAvailableForElement
	5.7.12 CIM_ServiceAffectsElement
	5.7.13 CIM_SettingsDefineCapabilities (Pre-defined)
	5.7.14 CIM_SharedElement
	5.7.15 SNIA_ElementCapabilities (FES Capabilities)
	5.7.16 SNIA_ExportedFileShareCapabilities (FES Capabilities)
	5.7.17 SNIA_ExportedFileShareSetting (FileShare Setting)
	5.7.18 SNIA_ExportedFileShareSetting (Pre-defined)
	5.7.19 SNIA_FileExportCapabilities (FES Configuration)
	5.7.20 SNIA_FileExportService

	Clause 6: File Server Manipulation Subprofile
	6.1 Synopsis
	6.2 Description
	6.2.1 Overview
	6.2.2 Instance Diagrams
	6.2.3 Health and Fault Management Consideration
	6.2.4 Cascading Considerations

	6.3 Supported Profiles, Subprofiles, and Packages
	6.4 Methods of the Profile
	6.5 Client Considerations and Recipes
	6.6 Registered Name and Version
	6.7 CIM Elements
	6.7.1 CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)
	6.7.2 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)
	6.7.3 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)
	6.7.4 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)
	6.7.5 CIM_ConcreteComponent (FileServerSettings to NISSettingData)
	6.7.6 CIM_DNSSettingData
	6.7.7 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)
	6.7.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapabilities)
	6.7.9 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)
	6.7.10 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
	6.7.11 CIM_HostedDependency
	6.7.12 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)
	6.7.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)
	6.7.14 CIM_NetworkVLAN
	6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData)
	6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData)
	6.7.17 CIM_SettingsDefineCapabilities (FileServerSettings)
	6.7.18 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)
	6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData)
	6.7.20 CIM_SettingsDefineCapabilities (NISSettingData)
	6.7.21 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)
	6.7.22 SNIA_CIFSSettingData
	6.7.23 SNIA_FileServerCapabilities
	6.7.24 SNIA_FileServerConfigurationCapabilities
	6.7.25 SNIA_FileServerConfigurationService
	6.7.26 SNIA_FileServerSettings
	6.7.27 SNIA_IPInterfaceSettingData
	6.7.28 SNIA_NFSSettingData
	6.7.29 SNIA_NISSettingData

	Clause 7: File Storage Profile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Overview
	7.1.3 Implementation

	7.2 Health and Fault Management Consideration
	7.3 Cascading Considerations
	7.3.1 Cascaded Resources
	7.3.2 Ownership Privileges
	7.3.3 Limitations on Cascading Subprofile

	7.4 Supported Profiles, Subprofiles, and Packages
	7.5 Methods of the Profile
	7.5.1 Extrinsic Methods of the Profile
	7.5.2 Intrinsic Methods of the Profile

	7.6 Client Considerations and Recipes
	7.7 CIM Elements
	7.7.1 CIM_ResidesOnExtent

	Clause 8: Filesystem Profile
	8.1 Description
	8.1.1 Synopsis
	8.1.2 Instance Diagrams

	8.2 Health and Fault Management Consideration
	8.2.1 OperationalStatus for Filesystems

	8.3 Cascading Considerations
	8.4 Supported Profiles, Subprofiles, and Packages
	8.5 Methods of the Profile
	8.5.1 Extrinsic Methods of the Profile
	8.5.2 Intrinsic Methods of the Profile

	8.6 Client Considerations: Use Cases
	8.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile
	8.6.2 Get FileSystemSettings for a FileSystem
	8.6.3 Get the ComputerSystem that hosts a FileSystem
	8.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem
	8.6.5 Get the Access Path to this FileSystem on the specified File Server
	8.6.6 Get the Local Access Settings for this FileSystem on the specified File Server
	8.6.7 Get the FileShares and shared File path of this FileSystem on all File Servers
	8.6.8 Get the FileShares and shared File path of this FileSystem on the specified FileServer

	8.7 CIM Elements
	8.7.1 CIM_Dependency (Uses Directory Services From)
	8.7.2 CIM_ElementSettingData (FileSystem)
	8.7.3 CIM_ElementSettingData (Local Access Required)
	8.7.4 CIM_FileStorage
	8.7.5 CIM_FileSystemSetting
	8.7.6 CIM_HostedDependency (Local Access Required)
	8.7.7 CIM_HostedFileSystem (LocalFileSystem)
	8.7.8 CIM_LocalFileSystem
	8.7.9 CIM_LogicalFile
	8.7.10 SNIA_LocalAccessAvailable
	8.7.11 SNIA_LocalFileSystem
	8.7.12 SNIA_LocallyAccessibleFileSystemSetting

	Clause 9: Filesystem Manipulation Subprofile
	9.1 Description
	9.1.1 Synopsis
	9.1.2 Overview
	9.1.3 Instance Diagrams

	9.2 Health and Fault Management Considerations
	9.2.1 OperationalStatus for FileSystemConfigurationService
	9.2.2 OperationalStatus for LocalFileSystem

	9.3 Cascading Considerations
	9.4 Supported Subprofiles and Packages
	9.5 Methods of the Profile
	9.5.1 Extrinsic Methods of the Profile
	9.5.2 Signature and Parameters of SNIA_CreateFileSystem
	9.5.3 Signature and Parameters of SNIA_ModifyFileSystem
	9.5.4 Signature and Parameters of DeleteFileSystem.
	9.5.5 Intrinsic Methods of the Profile

	9.6 Client Considerations and Recipes
	9.6.1 Creation of a FileSystem on a Storage Extent
	9.6.2 Increase the size of a FileSystem
	9.6.3 Modify a FileSystem’s Settings
	9.6.4 Delete a FileSystem and return underlying StorageExtent
	9.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem
	9.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem
	9.6.7 Filesystem Manipulation Supported Capabilities Patterns

	9.7 CIM Elements
	9.7.1 CIM_Dependency (Uses Directory Services From)
	9.7.2 CIM_ElementCapabilities (FS Configuration Capabilities)
	9.7.3 CIM_ElementCapabilities (Local Access Configuration Capabilities)
	9.7.4 CIM_ElementCapabilities (Non-Default)
	9.7.5 CIM_ElementSettingData (Attached to Filesystem)
	9.7.6 CIM_ElementSettingData (Local Access Required)
	9.7.7 CIM_HostedDependency (Attached to File System)
	9.7.8 CIM_HostedDependency (Predefined Capabilities)
	9.7.9 CIM_HostedDependency (Predefined Setting)
	9.7.10 CIM_HostedFileSystem
	9.7.11 CIM_HostedService
	9.7.12 CIM_SettingsDefineCapabilities (Predefined FS Settings)
	9.7.13 CIM_SettingsDefineCapabilities (Predefined Local Access Settings)
	9.7.14 SNIA_ElementCapabilities (Default)
	9.7.15 SNIA_FileSystemCapabilities
	9.7.16 SNIA_FileSystemConfigurationCapabilities
	9.7.17 SNIA_FileSystemConfigurationService
	9.7.18 SNIA_FileSystemSetting (Attached to FileSystem)
	9.7.19 SNIA_FileSystemSetting (Predefined FS Settings)
	9.7.20 SNIA_LocalAccessAvailable
	9.7.21 SNIA_LocalFileSystem
	9.7.22 SNIA_LocallyAccessibleFileSystemCapabilities
	9.7.23 SNIA_LocallyAccessibleFileSystemSetting

	Clause 10: Filesystem Performance Profile
	10.1 Synopsis
	10.2 Description
	10.2.1 Overview

	10.3 Implementation
	10.3.1 Performance Additions Overview
	10.3.2 Summary of FileSystemStatisticsData support by Profile
	10.3.3 Profile Registration Profile Support for the Filesystem Performance Subprofile
	10.3.4 Default Manifest Collection
	10.3.5 Client Defined Manifest Collection
	10.3.6 Capabilities Support for Filesystem Performance Subprofile
	10.3.7 Health and Fault Management Consideration
	10.3.8 Cascading Considerations

	10.4 Methods of the Profile
	10.4.1 Extrinsic Methods of the Profile
	10.4.2 Intrinsic Methods of this Profile

	10.5 Use Cases
	10.5.1 Summary of Statistics Support by Element
	10.5.2 Formulas and Calculations
	10.5.3 Filesystem Performance Supported Capabilities Patterns
	10.5.4 Client Considerations and Recipes

	10.6 CIM Elements
	10.6.1 CIM_ElementCapabilities
	10.6.2 CIM_ElementStatisticalData (Exported File Share Stats)
	10.6.3 CIM_ElementStatisticalData (Exporting Port Stats)
	10.6.4 CIM_ElementStatisticalData (Local Filesystem Stats)
	10.6.5 CIM_ElementStatisticalData (OTHER Element Type Stats)
	10.6.6 CIM_HostedCollection (Client Defined)
	10.6.7 CIM_HostedCollection (Default)
	10.6.8 CIM_HostedCollection (Provider Supplied)
	10.6.9 CIM_HostedService
	10.6.10 CIM_MemberOfCollection (Member of client defined collection)
	10.6.11 CIM_MemberOfCollection (Member of predefined collection)
	10.6.12 CIM_MemberOfCollection (Member of statistics collection)
	10.6.13 CIM_StatisticsCollection
	10.6.14 SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)
	10.6.15 SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)
	10.6.16 SNIA_FileSystemStatisticalData
	10.6.17 SNIA_FileSystemStatisticsCapabilities
	10.6.18 SNIA_FileSystemStatisticsManifest (Client Defined)
	10.6.19 SNIA_FileSystemStatisticsManifest (Provider Support)
	10.6.20 SNIA_FileSystemStatisticsManifestCollection (Client Defined)
	10.6.21 SNIA_FileSystemStatisticsManifestCollection (Provider Defined)
	10.6.22 SNIA_FileSystemStatisticsService

	Clause 11: Filesystem Quotas Profile
	11.1 Synopsis
	11.2 Description
	11.2.1 Tree Quotas
	11.2.2 User Quotas
	11.2.3 Group Quotas
	11.2.4 Container Boundaries
	11.2.5 Quota types
	11.2.6 Class design considerations
	11.2.7 Instance Diagram

	11.3 Health and Fault Management Considerations
	11.4 Supported Profiles, Subprofiles, and Packages
	11.5 Methods of the Profile
	11.5.1 FindQuotaEntries
	11.5.2 DeleteQuotaEntry
	11.5.3 ModifyQuotaEntry
	11.5.4 AddQuotaEntry
	11.5.5 GetQuotaReport
	11.5.6 EnableQuotas
	11.5.7 InitializeQuotas

	11.6 Client Considerations and sample code
	11.6.1 Common subroutines
	11.6.2 Initialize quotas
	11.6.3 Enable or disable quota tracking
	11.6.4 Add a quota entry
	11.6.5 Delete a quota entry
	11.6.6 Modify a quota entry
	11.6.7 Read the quota entries
	11.6.8 Get a report on quota usage

	11.7 CIM Elements
	11.7.1 SNIA_FSDomainIdentity
	11.7.2 SNIA_FSQuotaAppliesToElement
	11.7.3 SNIA_FSQuotaAppliesToPrincipal
	11.7.4 SNIA_FSQuotaAppliesToTree
	11.7.5 SNIA_FSQuotaCapabilities
	11.7.6 SNIA_FSQuotaConfigEntry
	11.7.7 SNIA_FSQuotaIndication
	11.7.8 SNIA_FSQuotaManagementService
	11.7.9 SNIA_FSQuotaReportRecord
	11.7.10 SNIA_ReportRecord

	Clause 12: NAS Head Profile
	12.1 Description
	12.1.1 Synopsis
	12.1.2 Overview
	12.1.3 Implementation

	12.2 Health and Fault Management Considerations
	12.2.1 Standard Messages used by this Profile

	12.3 Cascading Considerations
	12.3.1 Cascading Resources for the NAS Head Profile
	12.3.2 Ownership Privileges Asserted by NAS Heads
	12.3.3 NAS Head Limitations on use of the Cascading Subprofile

	12.4 Supported Subprofiles and Packages
	12.5 Methods of the Profile
	12.5.1 Extrinsic Methods of the Profile
	12.5.2 Intrinsic Methods of the Profile

	12.6 Client Considerations and Recipes
	12.7 CIM Elements
	12.7.1 CIM_ComputerSystem (Top Level System)
	12.7.2 CIM_ComputerSystem (Virtual File Server)
	12.7.3 CIM_ConcreteComponent
	12.7.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	12.7.5 CIM_FilterCollection (NAS Head Predefined FilterCollection)
	12.7.6 CIM_HostedCollection (NAS Head to predefined FilterCollection)
	12.7.7 CIM_HostedDependency
	12.7.8 CIM_ImplementationCapabilities (ImplementationCapabilities)
	12.7.9 CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)
	12.7.10 CIM_IndicationFilter (LogicalDisk OperationalStatus)
	12.7.11 CIM_IndicationFilter (System OperationalStatus Bellwether Alert)
	12.7.12 CIM_IndicationFilter (System OperationalStatus)
	12.7.13 CIM_LogicalDisk (LD for FS)
	12.7.14 CIM_MemberOfCollection (Predefined Filter Collection to NAS Head Filters)
	12.7.15 CIM_StorageExtent (Primordial Imported Extent)
	12.7.16 CIM_SystemDevice (Logical Disks)
	12.7.17 CIM_SystemDevice (Storage Extents)

	Clause 13: Self-Contained NAS Profile
	13.1 Description
	13.1.1 Synopsis
	13.1.2 Overview
	13.1.3 Implementation

	13.2 Health and Fault Management Considerations
	13.2.1 Standard Messages used by this Profile

	13.3 Cascading Considerations
	13.4 Supported Subprofiles and Packages
	13.5 Methods of the Profile
	13.5.1 Extrinsic Methods of the Profile
	13.5.2 Intrinsic Methods of the Profile

	13.6 Client Considerations and Recipes
	13.7 CIM Elements
	13.7.1 CIM_ComputerSystem (Top Level System)
	13.7.2 CIM_ComputerSystem (Virtual File Server)
	13.7.3 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	13.7.4 CIM_FilterCollection (Self-contained NAS Predefined FilterCollection)
	13.7.5 CIM_HostedCollection (Self-contained NAS to predefined FilterCollection)
	13.7.6 CIM_HostedDependency
	13.7.7 CIM_ImplementationCapabilities (ImplementationCapabilities)
	13.7.8 CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)
	13.7.9 CIM_IndicationFilter (LogicalDisk OperationalStatus)
	13.7.10 CIM_IndicationFilter (System OperationalStatus Bellwether Alert)
	13.7.11 CIM_IndicationFilter (System OperationalStatus)
	13.7.12 CIM_LogicalDisk (Disk for FS)
	13.7.13 CIM_MemberOfCollection (Predefined Filter Collection to Self-contained NAS Filters)
	13.7.14 CIM_SystemDevice (Logical Disks)

	Clause 14: NAS Network Port Profile
	14.1 Synopsis
	14.2 Description
	14.3 Implementation
	14.3.1 The NAS TCP Interface
	14.3.2 The NAS Ethernet Interface
	14.3.3 Indication Events
	14.3.4 Bellwether Indications

	14.4 Health and Fault Management Considerations
	14.4.1 OperationalStatus for Network Ports
	14.4.2 OperationalStatus for ProtocolEndpoints
	14.4.3 Standard Messages used by this Profile

	14.5 Cascading Considerations
	14.6 Methods
	14.6.1 Intrinsic Methods of the Profile
	14.6.2 Extrinsic Methods of the Profile

	14.7 Use Cases
	14.8 CIM Elements
	14.8.1 CIM_BindsTo (CIFS or NFS)
	14.8.2 CIM_BindsTo (TCP)
	14.8.3 CIM_BindsToLANEndpoint
	14.8.4 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	14.8.5 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	14.8.6 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
	14.8.7 CIM_HostedAccessPoint (CIFS or NFS)
	14.8.8 CIM_HostedAccessPoint (IP)
	14.8.9 CIM_HostedAccessPoint (LAN)
	14.8.10 CIM_HostedAccessPoint (TCP)
	14.8.11 CIM_IPProtocolEndpoint
	14.8.12 CIM_LANEndpoint
	14.8.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)
	14.8.14 CIM_NetworkPort
	14.8.15 CIM_NetworkVLAN
	14.8.16 CIM_ProtocolEndpoint (CIFS or NFS)
	14.8.17 CIM_SystemDevice (Network Ports)
	14.8.18 CIM_TCPProtocolEndpoint
	14.8.19 SNIA_IPInterfaceSettingData

	Clause 15: Host Filesystem Profile
	15.1 Synopsis
	15.2 Description
	15.2.1 Overview

	15.3 Implementation
	15.3.1 Summary Instance Diagram
	15.3.2 Host Filesystem Use of Filesystem Profile (Mandatory)
	15.3.3 Host Filesystem Use of File Export Profile (Optional)
	15.3.4 Host Filesystem Support of Cascading
	15.3.5 Health and Fault Management Consideration

	15.4 Methods of the Profile
	15.4.1 Extrinsic Methods of the Profile
	15.4.2 Extrinsic Methods in the Filesystem Profile
	15.4.3 Extrinsic Methods in the Filesystem Manipulation Profile
	15.4.4 Intrinsic Methods of the Profile

	15.5 Client Considerations and Recipes
	15.5.1 Use Cases

	15.6 CIM Elements
	15.6.1 CIM_ComputerSystem (Shadow)
	15.6.2 CIM_Dependency (Systems)
	15.6.3 CIM_ElementCapabilities (FS Configuration Capabilities)
	15.6.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	15.6.5 CIM_ElementConformsToProfile (FilesystemConfigurationService to Host Filesystem RegisteredProfile)
	15.6.6 CIM_FilterCollection (Host Filesystem Predefined FilterCollection)
	15.6.7 CIM_HostedCollection (Allocated Resources)
	15.6.8 CIM_HostedCollection (Host Filesystem to predefined FilterCollection)
	15.6.9 CIM_HostedCollection (Remote Resources)
	15.6.10 CIM_HostedService
	15.6.11 CIM_ImplementationCapabilities (ImplementationCapabilities)
	15.6.12 CIM_IndicationFilter (Extent OperationalStatus)
	15.6.13 CIM_IndicationFilter (System OperationalStatus)
	15.6.14 CIM_LogicalDisk (Shadow)
	15.6.15 CIM_LogicalFile
	15.6.16 CIM_LogicalIdentity (LogicalDisk)
	15.6.17 CIM_MemberOfCollection (Allocated Resources)
	15.6.18 CIM_MemberOfCollection (Predefined Filter Collection to Host Filesystem Filters)
	15.6.19 CIM_MemberOfCollection (Remote Resources)
	15.6.20 CIM_RemoteServiceAccessPoint (Shadow)
	15.6.21 CIM_ResidesOnExtent
	15.6.22 CIM_SAPAvailableForElement
	15.6.23 CIM_ServiceAffectsElement
	15.6.24 CIM_StorageExtent (Primordial Imported Extent)
	15.6.25 CIM_SystemDevice (LogicalDisks)
	15.6.26 SNIA_AllocatedResources
	15.6.27 SNIA_FileSystemConfigurationCapabilities
	15.6.28 SNIA_FileSystemConfigurationService
	15.6.29 SNIA_LocalFileSystem
	15.6.30 SNIA_RemoteResources

	Annex A (informative) SMI-S Information Model
	Annex B (informative) State Transitions from Storage to File Shares

