
Storage Management Technical Specification,
Part 4 Block Devices

Version 1.6.1, Revision 6

Abstract: This SNIA Technical Position defines an interface between WBEM-capable clients and
servers for the secure, extensible, and interoperable management of networked storage.

This document has been released and approved by the SNIA. The SNIA believes that the
ideas, methodologies and technologies described in this document accurately represent
the SNIA goals and are appropriate for widespread distribution. Suggestions for revision
should be directed to http://www.snia.org/feedback/.

SNIA Technical Position

November 30, 2016

Revision History

Revision 1

Date
 1 December 2011

SCRs Incorporated and other changes
Block Services Package
 (SMIS-160-Addenda-Draft-SCR00003)
 - Updated Block Services with Storage Compression as Draft material
 (DRM-SMIS-SCR00226)
 - Updated Block Services with Disk Provisioning as Draft material

Masking and Mapping (SMIS-160-Addenda-Draft-SCR00002)
 - Updated the Masking and Mapping profile to add ElementName for SCSIProtocolController and
 add additional Operating Systems for StorageClientSettingData
 - Promoted the material to Experimental

Replication Services (SMIS-160-Addenda-Draft-SCR00006)
 - Updated Replication Services to support storage compression
 - Promoted the material to Experimental

Automated Storage Tiering Policy (SMIS-160-Addenda-Draft-SCR00001)
 - Added as a new profile as a specialization of the Automated Storage Tiering profile

Revision 2

Date
 27 August 2013

SCRs Incorporated and other changes
Block part number changed to Part 4, per ISO request change re SMI-S 1.5.
Array (SMIS-150-Eratta-SCR00051)
 - Fixed Group Masking and Mapping Profile name
AutoStorageTiering (SMIS-160-Addenda-Draft-SCR00019)
 - Updated Automated Storage Tiering Policy Profile: Clarify usage of ModifyStorageTierPolicyRule method
BlockServicesWithThinProvisioning
- Updates rolled forward from SMIS-150-Errata-SCR00040
CopyServices
 - Updates for SMIS-150-Errata-SCR00042
DiskDriveLite (SMIS-160-Addenda-Draft-SCR00016)
 - Added disk drive dependency to Disk Drive Lite Subprofile
GroupMaskingMapping (SMIS-150-Eratta-SCR0005)
 - Fixed Group Masking and Mapping Profile name
MappingMasking (SMIS-160-Addenda-Draft-SCR00012)
 - FixedElement Naming in Masking and Mapping
 - Corrected to make plural: DeviceAccesses values (Mantis 4208)
ReplicationServices(SMIS-160-Addenda-Draft-SCR00018)
 - Added support for TokenizedClone (ODX).
 - Allowed capabilities methods to accept a ReplicationSettingData parameter to refine the ReplicationType.
 - Added support to “attach” a target to an instance of SynchronizationAspect.
 - Synced up the signature of CreateSynchronizationAspect with the MOF.
 - Added the missing CreateListReplica to GetSupportedWaitForCopyState.

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 3

Comments

Editorial notes and DRAFT material are displayed.

Revision 3

Date

4 December 2013

SCRs Incorporated and other changes

Automated Storage Tiering Profile
- Material promoted to Experimental per SMIS-160-Addenda-Draft-SCR00013
- Promoted to Experimental per SMIS-160-Addenda-Draft-SCR00014 and
 SMIS-160-Addenda-Draft-SCR00019

Block Server Performance
- Added support for Rate Performance Data, promoted to Experimental per SMIS-160-Addenda-Draft-
SCR00020

Block Services Package
- Element Naming in Block Services Package promoted to Experimental per SMIS-160-Addenda-
 Draft-SCR00011
- Changes per MIS-160-Addenda-Draft-SCR00015, promoted to Experimental:
 - Clarification of StorageVolume – thinly versus fully provisioned
 - Creation of StorageVolumes from multiple StoragePools
 - TotalManagedSpace and elements with shared storage capacity
 - TotalManagedSpace and StoragePool’s metadata space
 - Resolution of extends returned by GetAvailableExtents for Pools from Volumes

Disk Drive Lite
- Added disk drive dependency to Disk Drive Lite Subprofile, promoted to Experimental per SMIS-160-
Addenda-Draft-SCR00016

Masking and Mapping
- Element Naming in Masking and Mapping promoted to Experimental per SMIS-160-Addenda-Draft-
SCR00012

Replication Services Profile
- Enhanced Replication Services for Storage Compression, promoted to Experimental per SMIS-160-
Addenda-Draft-SCR00004
- Enhancements promoted to Experimental per SMIS-160-Addenda-Draft-SCR00010
- Added support for TokenizedClone, promoted to Experimental per SMIS-160-Addenda-Draft-SCR00018
- Storage Compression, per SMIS-160-Addenda-Draft-SCR00003, SMIS-160-Addenda-Draft-SCR00004

Storage Virtualizer Profile
- Added extent dependency to Storage Virtualizer Profile, promoted to Experimental per SMIS-160-
Addenda-Draft-SCR00017

Comments

Editorial notes are displayed.

DRAFT material is hidden.

4

Revision 4

Date

25 February 2014

SCRs Incorporated and other changes

Replication Services Profile
- TSG-SMIS-SCR00315 -- Utilize Standard Messages for Alert Indications.

Comments

Editorial notes and DRAFT material are hidden.

Revision 5

Date

11 August 2014

SCRs Incorporated and other changes

Block Server Performance Subprofile
- SMIS-160-Errata-SCR00008 -- Update the Block Server Performance Profile to relax metric requirements

Masking and Mapping Profile
- OFFICIAL: SMIS-150-Errata-SCR00059.00 -- Adjusted requirements of ExposePaths and HidePaths to
facilitate specialization of Masking and Mapping Subprofile.

Annex: SMI-S Information Model
- CIM version updated to V2.41 per TSG ballot -- Correct CIM Schema Version in SMI-S.

Comments

Editorial notes and DRAFT material are hidden.

Revision 6

Date

11 October 2016

SCRs Incorporated and other changes

Block Services Package.
- Table 84, CIM_StorageVolume: Changed IdentifyingDescriptions to Conditional per Mantis 4538

Comments

Editorial notes and DRAFT material are hidden.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage
Management Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 5

USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no altera-
tion, and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License

Copyright (c) 2014-2016, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

6

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2016 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed
Management Task Force (DMTF). The CIM classes that are documented have been developed and
reviewed by both the SNIA and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

SMI-S 1.6.1 Revision 6 SNIA Technical Position 7

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and
promoting interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA)
organization.

CHANGES TO THE SPECIFICATION

Each publication of this specification is uniquely identified by a three-level identifier, comprised of a
version number, a release number and an update number. The current identifier for this specification is
version 1.2.0. Future publications of this specification are subject to specific constraints on the scope of
change that is permissible from one publication to the next and the degree of interoperability and
backward compatibility that should be assumed between products designed to different publications of
this standard. The SNIA has defined three levels of change to a specification:

• Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x.x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

• Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of
the specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

• Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.x.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

Maturity Level

In addition to informative and normative content, this specification includes guidance about the maturity
of emerging material that has completed a rigorous design review but has limited implementation in
commercial products. This material is clearly delineated as described in the following sections. The
typographical convention is intended to provide a sense of the maturity of the affected material, without
altering its normative content. By recognizing the relative maturity of different sections of the standard, an
implementer should be able to make more informed decisions about the adoption and deployment of
different portions of the standard in a commercial product.

This specification has been structured to convey both the formal requirements and assumptions of the
SMI-S API and its emerging implementation and deployment lifecycle. Over time, the intent is that all
content in the specification will represent a mature and stable design, be verified by extensive
implementation experience, assure consistent support for backward compatibility, and rely solely on
content material that has reached a similar level of maturity. Unless explicitly labeled with one of the
subordinate maturity levels defined for this specification, content is assumed to satisfy these
requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three
subordinate levels of implementation maturity that identify important aspects of the content’s increasing
maturity and stability. Each subordinate maturity level is defined by its level of implementation
experience, its stability and its reliance on other emerging standards. Each subordinate maturity level is
identified by a unique typographical tagging convention that clearly distinguishes content at one maturity
model from content at another level.

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

8

Experimental Maturity Level

No material is included in this specification unless its initial architecture has been completed and
reviewed. Some content included in this specification has complete and reviewed design, but lacks
implementation experience and the maturity gained through implementation experience. This content is
included in order to gain wider review and to gain implementation experience. This material is referred to
as “Experimental”. It is presented here as an aid to implementers who are interested in likely future
developments within the SMI specification. The contents of an Experimental profile may change as
implementation experience is gained. There is a high likelihood that the changed content will be included
in an upcoming revision of the specification. Experimental material can advance to a higher maturity level
as soon as implementations are available. Figure 1 is a sample of the typographical convention for
Experimental content.

Implemented Maturity Level

Profiles for which initial implementations have been completed are classified as “Implemented”. This
indicates that at least two different vendors have implemented the profile, including at least one provider
implementation. At this maturity level, the underlying architecture and modeling are stable, and changes
in future revisions will be limited to the correction of deficiencies identified through additional
implementation experience. Should the material become obsolete in the future, it must be deprecated in a
minor revision of the specification prior to its removal from subsequent releases. Figure 2 is a sample of
the typographical convention for Implemented content.

Stable Maturity Level

Once content at the Implemented maturity level has garnered additional implementation experience, it
can be tagged at the Stable maturity level. Material at this maturity level has been implemented by three
different vendors, including both a provider and a client. Should material that has reached this maturity
level become obsolete, it may only be deprecated as part of a minor revision to the specification. Material
at this maturity level that has been deprecated may only be removed from the specification as part of a
major revision. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. As a result, Profiles at or above the Stable
maturity level shall not rely on any content that is Experimental. Figure 3 is a sample of the typographical
convention for Implemented content

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

IMPLEMENTED

Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

SMI-S 1.6.1 Revision 6 SNIA Technical Position 9

.

Finalized Maturity Level

Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying
the requirements for the Stable maturity level, content at the Finalized maturity level must solely depend
upon or refine material that has also reached the Finalized level. If specification content depends upon
material that is not under the control of the SNIA, and therefore not subject to its maturity level
definitions, then the external content is evaluated by the SNIA to assure that it has achieved a
comparable level of completion, stability, and implementation experience. Should material that has
reached this maturity level become obsolete, it may only be deprecated as part of a major revision to the
specification. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. Over time, it is hoped that all specification
content will attain this maturity level. Accordingly, there is no special typographical convention, as there is
with the other, subordinate maturity levels. Unless content in the specification is marked with one of the
typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material

Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections
identified as “Deprecated” contain material that is obsolete and not recommended for use in new
development efforts. Existing and new implementations may still use this material, but shall move to the
newer approach as soon as possible. The maturity level of the material being deprecated determines how
long it will continue to appear in the specification. Implemented content shall be retained at least until the
next revision of the specialization, while Stable and Finalized material shall be retained until the next
major revision of the specification. Providers shall implement the deprecated elements as long as it
appears in the specification in order to achieve backward compatibility. Clients may rely on deprecated
elements, but are encouraged to use non-deprecated alternatives when possible.

Deprecated sections are documented with a reference to the last published version to include the
deprecated section as normative material and to the section in the current specification with the
replacement. Figure 4 contains a sample of the typographical convention for deprecated content.

STABLE

Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

DEPRECATED

Content that has been deprecated appears here.

DEPRECATED

Figure 4 - Deprecated Tag

10

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 11

Contents

Revision History ... 2
List of Figures .. 17
List of Tables.. 21
Foreword.. 43

1 Scope .. 45

2 Normative References... 47
2.1 Approved references... 47
2.2 References under development .. 47
2.3 Other references ... 47

3 Definitions, Symbols, Abbreviations, and Conventions ... 49

4 Array Profile... 51
4.1 Description .. 51
4.2 Health and Fault Management.. 53
4.3 Cascading Considerations .. 53
4.4 Supported Subprofiles and Packages... 53
4.5 Methods of the Profile ... 54
4.6 Use Cases... 55
4.7 Registered Name and Version .. 55
4.8 CIM Elements.. 56

5 Block Services Package .. 67
5.1 Description .. 67
5.2 Health and Fault Management Considerations ... 94
5.3 Cascading Considerations .. 96
5.4 Supported Profile, Subprofiles and Packages... 97
5.5 Methods of this Profile... 97
5.6 Client Considerations and Recipes ... 117
5.7 Registered Name and Version .. 145
5.8 CIM Elements.. 145

6 Block Storage Views Profile .. 189
6.1 Description .. 189
6.2 Health and Fault Management Consideration... 208
6.3 Cascading Considerations .. 208
6.4 Methods of the Profile ... 208
6.5 Client Considerations and Recipes ... 209
6.6 CIM Elements.. 212

7 Block Server Performance Subprofile ... 243
7.1 Description .. 243
7.2 Implementation.. 245
7.3 Health and Fault Management Considerations ... 268
7.4 Cascading Considerations .. 268
7.5 Supported Subprofiles and Packages... 268
7.6 Methods of the Profile ... 268
7.7 Client Considerations and Recipes ... 277
7.8 CIM Elements.. 304

8 CKD Block Services Profile ... 331
8.1 Description .. 331
8.2 Health and Fault Management Consideration... 333
8.3 Cascading Considerations .. 333

12

8.4 Supported Profiles, Subprofiles, and Packages.. 334
8.5 Methods of the Profile ... 334
8.6 Client Considerations and Recipes ... 334
8.7 Registered Name and Version .. 334
8.8 CIM Elements.. 334

9 Copy Services Subprofile .. 379
9.1 Description .. 379
9.2 Health and Fault Management Considerations ... 417
9.3 Cascading Considerations .. 418
9.4 Supported Subprofiles and Packages... 419
9.5 Methods of the Profile ... 419
9.6 Client Considerations and Recipes ... 437
9.7 CIM Elements.. 457

10 Disk Drive Subprofile ... 475

11 Disk Drive Lite Subprofile .. 477
11.1 Description .. 477
11.2 Health and Fault Management Considerations... 479
11.3 Cascading Considerations .. 482
11.4 Supported Profiles, Subprofiles and Packages... 482
11.5 Methods of this Profile... 482
11.6 Registered Name and Version .. 483
11.7 CIM Elements.. 483

12 Disk Sparing Subprofile ... 503
12.1 Description .. 503
12.2 Health and Fault Management Considerations... 510
12.3 Cascading Conjurations .. 510
12.4 Supported Subprofiles and Packages... 510
12.5 Methods of the Profile ... 510
12.6 Client Considerations and Recipes ... 514
12.7 Registered Name and Version .. 515
12.8 CIM Elements.. 515

13 Erasure Profile... 527
13.1 Description .. 527
13.2 Health and Fault Management Considerations... 529
13.3 Cascading Considerations .. 529
13.4 Supported Profiles, Subprofiles, and Packages.. 529
13.5 Methods of the Profile ... 529
13.6 Client Considerations and Recipes ... 530
13.7 Registered Name and Version .. 534
13.8 CIM Elements.. 534

14 Extent Composition Subprofile .. 539
14.1 Description .. 539
14.2 Health and Fault Management Considerations... 555
14.3 Cascading Considerations .. 555
14.4 Supported Subprofiles and Packages... 555
14.5 Methods of the Profile ... 555
14.6 Client Considerations and Recipes ... 556
14.7 Registered Name and Version .. 561
14.8 CIM Elements.. 562

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 13

15 LUN Creation Subprofile.. 573

16 Extent Mapping Subprofile .. 575

17 LUN Mapping and Masking Subprofile .. 577
17.1 Compatibility with SMI-S 1.0 clients. ... 577

18 Masking and Mapping Subprofile .. 579
18.1 Description .. 579
18.2 Health and Fault Management Considerations... 588
18.3 Cascading Considerations .. 588
18.4 Supported Subprofiles, and Packages.. 588
18.5 Methods of the Profile ... 588
18.6 Client Considerations and Recipes ... 601
18.7 Registered Name and Version .. 614
18.8 CIM Elements.. 614

19 Pool Manipulation Capabilities, and Settings Subprofile ... 633

20 Storage Server Asymmetry Profile .. 635
20.1 Description .. 635
20.2 Health and Fault Management Consideration... 643
20.3 Cascading Considerations .. 643
20.4 Supported Profiles, Subprofiles, and Packages.. 643
20.5 Methods of the Profile ... 643
20.6 Client Considerations and Recipes ... 644
20.7 Registered Name and Version .. 646
20.8 CIM Elements.. 646

21 Block Services Resource Ownership Subprofile ... 657
21.1 Description .. 657
21.2 Client Considerations and Recipes ... 662

22 Storage Virtualizer Profile.. 665
22.1 Description .. 665
22.2 Health and Fault Management.. 671
22.3 Storage Virtualizer Support for Cascading.. 671
22.4 Supported Subprofiles and Packages... 673
22.5 Methods of the Profile ... 674
22.6 Use Cases... 674
22.7 Registered Name and Version .. 675
22.8 CIM Elements.. 675

23 Volume Composition Profile .. 703
23.1 Description .. 703
23.2 Striped and Concatenated Composite Volumes ... 714
23.3 Health and Fault Management Consideration... 715
23.4 Cascading Considerations .. 715
23.5 Supported Profiles, Subprofiles, and Packages.. 716
23.6 Methods of the Profile ... 716
23.7 Client Considerations and Recipes ... 725
23.8 Registered Name and Version .. 730
23.9 CIM Elements.. 731

24 Volume Management Profile ... 737
24.1 Description .. 737
24.2 Health and Fault Management Considerations... 739
24.3 Cascading Considerations .. 739

14

24.4 Supported Subprofiles and Packages... 739
24.5 Methods of the Profile ... 740
24.6 Client Considerations and Recipes ... 740
24.7 Registered Name and Version .. 740
24.8 CIM Elements.. 740

25 Storage Element Protection SubProfile ... 749
25.1 Description .. 749
25.2 Health and Fault Management Consideration... 760
25.3 Cascading Considerations .. 760
25.4 Supported Profiles, Subprofiles, and Packages.. 760
25.5 Methods of the Profile ... 761
25.6 Client Considerations and Recipes ... 762
25.7 Registered Name and Version .. 766
25.8 CIM Elements.. 766

26 Replication Services Profile... 771
26.1 Description .. 771
26.2 Health and Fault Management Consideration... 799
26.3 Cascading Considerations .. 800
26.4 Mapping of Copy Services and Replication Services Properties and Methods 803
26.5 Methods of the Profile ... 804
26.6 Client Considerations and Recipes ... 840
26.7 Registered Name and Version .. 841
26.8 CIM Elements.. 841

27 Pools from Volumes Profile ... 875
27.1 Description .. 875
27.2 Block Services Enhancements.. 880
27.3 Health and Fault Management Considerations... 881
27.4 Cascading Considerations .. 881
27.5 Supported Profiles, Subprofiles, and Packages.. 881
27.6 Methods of the Profile ... 881
27.7 Client Considerations and Recipes ... 882
27.8 Registered Name and Version .. 885
27.9 CIM Elements.. 886

28 Group Masking and Mapping Profile ... 889
28.1 Description .. 889
28.2 Health and Fault Management Consideration... 897
28.3 Cascading Considerations .. 897
28.4 Methods of the Profile ... 897
28.5 Client Considerations and Recipes ... 901
28.6 Registered Name and Version .. 902
28.7 CIM Elements.. 902

29 Storage Relocation Profile... 927
29.1 Overview ... 927
29.2 Model .. 927
29.3 Implementation.. 928
29.4 Indications ... 930
29.5 Health and Fault Management Consideration... 931
29.6 Cascading Considerations .. 931
29.7 Mapping & Masking Considerations.. 931
29.8 Supported Profiles, Subprofiles, and Packages.. 932

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 15

29.9 Methods of the Profile ... 932
29.10 Client Considerations and Recipes ... 935
29.11 Registered Name and Version .. 961
29.12 CIM Elements.. 961

30 Thin Provisioning Profile.. 989
30.1 Description .. 989
30.2 Health and Fault Management Consideration... 992
30.3 Cascading Considerations .. 992
30.4 Supported Profiles, Subprofiles, and Packages.. 993
30.5 Methods of the Profile ... 993
30.6 Client Considerations and Recipes ... 994
30.7 Registered Name and Version .. 1007
30.8 CIM Elements.. 1007

31 Automated Storage Tiering Profile .. 1059
31.1 Description .. 1059
31.2 Methods of the Profile ... 1072
31.3 Client Considerations and Recipes ... 1077
31.4 CIM Elements.. 1078

32 Automated Storage Tiering Policy Profile.. 1099
32.1 Synopsis.. 1099
32.2 Description .. 1099
32.3 Implementation.. 1100
32.4 Methods .. 1104
32.5 Use Cases... 1109
32.6 CIM Elements.. 1110

Annex A (informative) SMI-S Information Model.. 1139

Annex B (informative) Registry of StorageExtent Definitions... 1141

16

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 17

List of Figures

Figure 1 - Experimental Maturity Level Tag ... 8

Figure 2 - Implemented Maturity Level Tag ... 8

Figure 3 - Stable Maturity Level Tag.. 9

Figure 4 - Deprecated Tag... 9

Figure 5 - Array Profile Instance Diagram.. 51

Figure 6 - Array Package Diagram .. 52

Figure 7 - Storage Capacity State.. 67

Figure 8 - StoragePool Manipulation Instance Diagram .. 69

Figure 9 - Capabilities Specific to a StoragePool... 70

Figure 10 - StorageVolume Creation Instance Diagram .. 77

Figure 11 - Storage Configuration.. 79

Figure 12 - StorageExtent Conservation - Step 1 .. 86

Figure 13 - StorageExtent Conservation - Step 2 .. 87

Figure 14 - StorageExtent Conservation - Step 3 .. 88

Figure 15 - Block Services Predefined FilterCollection .. 93

Figure 16 - Representative Block Service Instance Diagram... 117

Figure 17 - StoragePool Creation - Initial State ... 118

Figure 18 - StoragePool Creation - Step 1... 119

Figure 19 - StoragePool Creation - Step 2... 119

Figure 20 - StoragePool Creation - Step 3... 120

Figure 21 - StorageVolume Creation - Initial State .. 121

Figure 22 - StorageVolume Creation - Step 1.. 121

Figure 23 - StorageVolume Creation - Step 2.. 122

Figure 24 - StorageVolume Creation - Step 3.. 123

Figure 25 - Class diagram for managed element Block Storage View Classes............................... 192

Figure 26 - Class diagram for view associations.. 193

Figure 27 - Block Storage View Class Capabilities .. 194

Figure 28 - VolumeView and related associations... 195

Figure 29 - DiskDriveView and related associations.. 197

Figure 30 - MaskingMappingExposedDeviceView Association ... 200

Figure 31 - MaskingMappingView Association .. 201

Figure 32 - The MappingProtocolControllerView ... 202

Figure 33 - The StoragePoolView.. 204

Figure 34 - The ReplicaPairView ... 207

Figure 35 - Block Server Performance Subprofile Summary Instance Diagram.............................. 246

Figure 36 - Base Array Profile Block Server Performance Instance Diagram.................................. 249

Figure 37 - Base Storage Virtualizer Profile Block Server Performance Instance Diagram............. 251

Figure 38 - Base Volume Management Profile Block Server Performance Instance Diagram........ 253

Figure 39 - Multiple Computer System Subprofile Block Server Performance Instance Diagram ... 257

Figure 40 - Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram .. 258

Figure 41 - Extent Composition Subprofile Block Server Performance Instance Diagram 260

Figure 42 - Disk Drive Lite Subprofile Block Server Performance Instance Diagram 261

Figure 43 - Disk Drive Performance Data Rates.. 262

18

Figure 44 - SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram....................... 263

Figure 45 - Remote Mirrors Block Server Performance Instance Diagram...................................... 264

Figure 46 - Block Server Performance Manifest Collections.. 266

Figure 47 - Block Services Support for Count Key Data Storage .. 331

Figure 48 - Copy Services Discovery... 381

Figure 49 - Local Replica ... 385

Figure 50 - Multi-Level Local Replication... 386

Figure 51 - Multiple Snapshots Per Source Element ... 387

Figure 52 - SettingsDefineState Association ... 391

Figure 53 - SynchronizationAspect Instance ... 392

Figure 54 - State Transitions for Mirrors and Clones ... 400

Figure 55 - State Transitions for Snapshots and Migration.. 401

Figure 56 - CopyState Transitions ... 403

Figure 57 - Sample CopyState and ProgressStatus Transitions.. 409

Figure 58 - Fixed Space Consumption .. 413

Figure 59 - Variable Space Consumption .. 414

Figure 60 - Fixed Space Consumption .. 444

Figure 61 - Variable Space Consumption .. 445

Figure 62 - CIM Elements in the Disk Drive Model .. 478

Figure 63 - Disk Drive Dependency ... 481

Figure 64 - Drive Dependency and Pool Hierarchy.. 482

Figure 65 - Sparing Instance Diagram ... 503

Figure 66 - Variations of RS per Storage Element... 506

Figure 67 - Before Failure .. 508

Figure 68 - During Failure .. 508

Figure 69 - After Failure ... 509

Figure 70 - Model Elements ... 529

Figure 71 - Remaining Extents in Extent Composition... 541

Figure 72 - Volume Composition from General QOS Pool .. 543

Figure 73 - Single QOS Pool Composition (RAID Groups).. 544

Figure 74 - SIngle QOS Pool Composition - Two Concretes... 545

Figure 75 - Concatenation Composition .. 547

Figure 76 - RAID0 Composition ... 547

Figure 77 - RAID1 Composition ... 548

Figure 78 - RAID10 Composition ... 549

Figure 79 - RAID0+1 Composition ... 550

Figure 80 - RAID4, 5 Composition ... 551

Figure 81 - RAID 6, 5DP, 4DP ... 552

Figure 82 - RAID15 Composition ... 553

Figure 83 - RAID50 Composition ... 554

Figure 84 - RAID51 Composition ... 555

Figure 85 - Generic System with no Configuration Service ... 581

Figure 86 - Generic System with ControllerConfigurationService.. 581

Figure 87 - Relationship of Initiator IDs, Endpoints, and Logical Units .. 583

Figure 88 - StorageClientSettingData Model ... 586

Figure 89 - Entire Model .. 587

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 19

Figure 90 - Storage Asymmetry Class Hierarchy... 637

Figure 91 - Asymmetry with MCS .. 639

Figure 92 - Ports Do Not Failover, Healthy .. 640

Figure 93 - Ports Do Not Failover, Failed Controller .. 641

Figure 94 - Ports Failover, Healthy .. 642

Figure 95 - Ports Failover, Failed Controller .. 643

Figure 96 - Resource Ownership for Block Services ... 658

Figure 97 - ServiceAffectsElement Associations for ResourceOwnership....................................... 661

Figure 98 - AuthorizedPrivilege Associations for ResourceOwnership.. 662

Figure 99 - Storage Virtualizer Package Diagram.. 665

Figure 100 - Storage Virtualizer System Instance ... 667

Figure 101 - Dependency to Primordial StorageExtents.. 668

Figure 102 - Primordial Extent Dependency and Pool Hierarchy... 669

Figure 103 - Virtualizer, Cascading and Initiator Ports... 672

Figure 104 - Volume Composition Class Mode.. 704

Figure 105 - Example 1 Step 1 .. 707

Figure 106 - Example 1 Step 2 .. 708

Figure 107 - First Alternative Example - Before Composition .. 709

Figure 108 - First Alternative Example - After Composition ... 710

Figure 109 - Second Alternative Example - Before Composition.. 711

Figure 110 - Second Alternative Example - After Composition.. 712

Figure 111 - Example 2 - Before Composition... 713

Figure 112 - Example 2 - After Composition.. 714

Figure 113 - Striping and Concatenation ... 715

Figure 114 - Volume Management Instance Diagram ... 738

Figure 115 - Storage Element Protection Class Model .. 750

Figure 116 - Retention Time Line .. 754

Figure 117 - Protection State Transition DIagram ... 755

Figure 118 - Step 1 - Initial State ... 756

Figure 119 - Step 2 - Volume Set to Read-only ... 757

Figure 120 - Step 3 - Second Volume Set to Read-only .. 758

Figure 121 - Step 4 - Volume Set to Read/Write Disabled... 759

Figure 122 - Step 5 Volume Access Changed... 760

Figure 123 - Replication Services Discovery ... 774

Figure 124 - Local Replica ... 776

Figure 125 - Remote Replica ... 777

Figure 126 - Remote Replication over two Paths .. 778

Figure 127 - Expanded Remote Replica.. 779

Figure 128 - An instance of ReplicationEntity .. 780

Figure 129 - StorageSynchronized and ReplicationEntity ... 780

Figure 130 - Multi-hop Replication ... 781

Figure 131 - Group Instances .. 782

Figure 132 - Sequentially Consistent Example .. 783

Figure 133 - Associated Groups and Elements ... 784

Figure 134 - SettingsDefineState Association ... 785

Figure 135 - A new instance of SynchronizationAspect... 785

20

Figure 136 - SynchronizationAspect of a Group of elements .. 786

Figure 137 - SynchronizationAspect Instance ... 787

Figure 138 - One-to-Many Association .. 788

Figure 139 - CopyState Transitions ... 790

Figure 140 - Sample CopyState and ProgressStatus Transitions.. 792

Figure 141 - Fixed Space Consumption .. 796

Figure 142 - Variable Space Consumption .. 797

Figure 143 - Instance Diagram for Access to Leaf Resources... 800

Figure 144 - Instance of ServiceAccessPoint .. 801

Figure 145 - Replication Services support for Cascading.. 802

Figure 146 - Cascading and Replication Groups ... 803

Figure 147 - Class Model ... 876

Figure 148 - Before Pool Creation ... 877

Figure 149 - After Pool Creation .. 879

Figure 150 - After Pool Creation without Extent Composition.. 880

Figure 151 - Group Masking and Mapping Model.. 891

Figure 152 - Masking Groups .. 892

Figure 153 - Nested Masking Groups .. 893

Figure 154 - Nested Masking Group Example... 894

Figure 155 - Example ConsistentLogicalUnitNumber set to true ... 895

Figure 156 - Example ConsistentLogicalUnitNumber set to false.. 896

Figure 157 - Storage Relocation .. 928

Figure 158 - Relocate StorageVolume to local StoragePool ... 936

Figure 159 - Relocate StorageVolume to remote StoragePool.. 937

Figure 160 - Relocate StoragePool to local StoragePool .. 938

Figure 161 - Relocate StoragePool to remote StoragePool... 939

Figure 162 - Relocate StorageVolume to local StorageExtent group .. 940

Figure 163 - Relocate StorageVolume to remote StorageExtent group... 941

Figure 164 - Thin Provisioning Model .. 990

Figure 165 - RAID1 Capacity after Volume Creation ... 1005

Figure 166 - RAID1 Capacity with Thin Volume and RAID-at-Pool Approach............................... 1006

Figure 167 - RAID1 Capacity with Thin Volume and RAID-at-Volume Approach.......................... 1007

Figure 168 - Automated Storage Tiering Discovery... 1061

Figure 169 - Additional Automated Storage Tiering Components.. 1062

Figure 170 - Storage Tiering Model ... 1064

Figure 171 - Storage Tiering Model based on different pools .. 1065

Figure 172 - Storage Tiering based on StorageVolumes forming a StoragePool 1066

Figure 173 - Storage tiers based on QoS .. 1067

Figure 174 - StorageTiers based on Primordial StorageExtents.. 1068

Figure 175 - Two TierDomain Configuration.. 1070

Figure 176 - A volume associated to two storage tiers .. 1071

Figure 177 - Automated Storage Tiering Policy Discovery .. 1100

Figure 178 - Additional Tiering Policy Components... 1101

Figure 179 - PolicyTimePeriodCondition ... 1102

Figure 180 - ManagedElement Subject to Tiering ... 1103

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 21

List of Tables

Table 1 - Supported Profiles for Array ..53

Table 2 - CIM Elements for Array ...56

Table 3 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)........................57

Table 4 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System) ...58

Table 5 - SMI Referenced Properties/Methods for CIM_FilterCollection (Array Predefined FilterCollection).....58

Table 6 - SMI Referenced Properties/Methods for CIM_FilterCollection (Array ProfileSpecificLifecycleIndi-
cationFilterCollection) ..59

Table 7 - SMI Referenced Properties/Methods for CIM_HostedCollection (Array to ProfileSpecificLifecycle-
IndicationFilterCollection) ..59

Table 8 - SMI Referenced Properties/Methods for CIM_HostedCollection (Array to predefined FilterCollec-
tion)..59

Table 9 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapabil-
ities) ...60

Table 10 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Creation).....................60

Table 11 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Deletion)61

Table 12 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Array ProfileSpecificLifecycle-
IndicationFilterCollection to Array Filters)..62

Table 13 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Array Filters) ..62

Table 14 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)..63

Table 15 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for All
LUNs View)..63

Table 16 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)64

Table 17 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)64

Table 18 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogical-
Unit) ...65

Table 19 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController) ...65

Table 20 - Mapping: Supported Actions to Methods...73

Table 21 - Valid Values for StorageConfigurationCapabilities associated to a Pool ..75

Table 22 - SupportedStoragePoolFeatures Array ..76

Table 23 - SupportedStoragePoolFeatures Array ..76

Table 24 - RAID Mapping ...80

Table 25 - Meaning of Usage values ..83

Table 26 - Classes Required In Read-Only Implementation ..83

Table 27 - Standard Messages for Block Services Package..95

Table 28 - OperationalStatus for StoragePool..95

Table 29 - OperationalStatus for StorageVolume...96

Table 30 - OperationalStatus for LogicalDisk ...96

Table 31 - Supported Profiles for Block Services ...97

Table 32 - Values for applicable Goal properties..111

Table 33 - CIM Elements for Block Services ..145

Table 34 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)............151

Table 35 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)...151

Table 36 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageVolume or LogicalDisk) ..152

Table 37 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StoragePool)...152

22

Table 38 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System) ...153

Table 39 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService) ..153

Table 40 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool) ..153

Table 41 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageConfigurationService)...154

Table 42 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to concrete StoragePool) ..154

Table 43 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to primordial StoragePool) ..155

Table 44 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StoragePool)...155

Table 45 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StorageVolume or LogicalDisk) ..156

Table 46 - SMI Referenced Properties/Methods for CIM_ElementSettingData..156

Table 47 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService) ..157

Table 48 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool) ..157

Table 49 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Predefined Filter-
Collection)..158

Table 50 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services ProfileSpecificLife-
cycleIndicationFilterCollection) ..158

Table 51 - SMI Referenced Properties/Methods for CIM_HostedCollection (Block Services to ProfileSpecifi-
cLifecycleIndicationFilterCollection) ..158

Table 52 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indication-
Filters)..159

Table 53 - SMI Referenced Properties/Methods for CIM_HostedService ..159

Table 54 - SMI Referenced Properties/Methods for CIM_HostedStoragePool ..159

Table 55 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapabil-
ities) ...160

Table 56 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation).....................160

Table 57 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)161

Table 58 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)......162

Table 59 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)163

Table 60 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)....................163

Table 61 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManagedSpace)164

Table 62 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)165

Table 63 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)...............166

Table 64 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalSta-
tus)...167

Table 65 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk OperationalSta-
tus)...168

Table 66 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operation-
alStatus) ..168

Table 67 - SMI Referenced Properties/Methods for CIM_LogicalDisk ...169

Table 68 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Filter Collec-
tion to FilterCollection)...170

Table 69 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services ProfileSpecifi-
cLifecycleIndicationFilterCollection to Block Services Filters) ...171

Table 70 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 23

to Block Services Filters) ...171

Table 71 - SMI Referenced Properties/Methods for CIM_OwningJobElement ..171

Table 72 - SMI Referenced Properties/Methods for CIM_StorageCapabilities ..172

Table 73 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)174

Table 74 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)175

Table 75 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)177

Table 76 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService....................................178

Table 77 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)..179

Table 78 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty) ..180

Table 79 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ..181

Table 80 - SMI Referenced Properties/Methods for CIM_StorageSetting..182

Table 81 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints ..183

Table 82 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities................185

Table 83 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities185

Table 84 - SMI Referenced Properties/Methods for CIM_StorageVolume...185

Table 85 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Logi-
calDisk)..187

Table 86 - Related Profiles for Block Storage Views ..189

Table 87 - Discovery of the Volumes on an Array ..209

Table 88 - Discovery of the Disk Drives in a Primordial Pool ...209

Table 89 - Discover Volumes exposed on a (Target) Port..210

Table 90 - Discover (target port) redundancy for a Volume..210

Table 91 - Discover Volumes exposed to a Host Port ..210

Table 92 - Discover Mapping information for an array..211

Table 93 - Discover the Pool topology for an array ..211

Table 94 - Discover the Replica Pairs for an array ...212

Table 95 - CIM Elements for Block Storage Views...212

Table 96 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (StoragePoolView
to StoragePool)..217

Table 97 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (Volume to Stor-
agePoolView) ..218

Table 98 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (VolumeView to
StoragePool)..218

Table 99 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolViewView (PoolView to
PoolView) ..219

Table 100 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolViewView (VolumeView
to PoolView) ..219

Table 101 - SMI Referenced Properties/Methods for CIM_BasedOnView (ExtentOnDriveExtent)220

Table 102 - SMI Referenced Properties/Methods for CIM_BasedOnView (VolumeOnExtent)220

Table 103 - SMI Referenced Properties/Methods for CIM_ConcreteComponentView..221

Table 104 - SMI Referenced Properties/Methods for CIM_ContainerView ...221

Table 105 - SMI Referenced Properties/Methods for CIM_DiskDriveView..221

Table 106 - SMI Referenced Properties/Methods for CIM_DriveComponentViewView223

Table 107 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (View Capabilities)223

Table 108 - SMI Referenced Properties/Methods for CIM_ElementStatisticalDataView (DiskDriveView)224

Table 109 - SMI Referenced Properties/Methods for CIM_ElementStatisticalDataView (VolumeView)224

Table 110 - SMI Referenced Properties/Methods for CIM_ElementView (DiskDrive) ...225

Table 111 - SMI Referenced Properties/Methods for CIM_ElementView (StorageSetting).................................225

Table 112 - SMI Referenced Properties/Methods for CIM_ElementView (Volume) ..226

Table 113 - SMI Referenced Properties/Methods for CIM_ExtentComponentView ..226

24

Table 114 - SMI Referenced Properties/Methods for CIM_HostedStoragePoolView..226

Table 115 - SMI Referenced Properties/Methods for CIM_MappingProtocolControllerView227

Table 116 - SMI Referenced Properties/Methods for CIM_MaskingMappingExposedDeviceView.....................228

Table 117 - SMI Referenced Properties/Methods for CIM_MaskingMappingView..229

Table 118 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnitView230

Table 119 - SMI Referenced Properties/Methods for CIM_ReplicaPairView...230

Table 120 - SMI Referenced Properties/Methods for CIM_StoragePoolView ...233

Table 121 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (DiskDriveViews)......................235

Table 122 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (MappingProtocolController-
Views)..235

Table 123 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (ReplicaPairViews)...................236

Table 124 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (VolumeViews).........................236

Table 125 - SMI Referenced Properties/Methods for CIM_ViewCapabilities ..236

Table 126 - SMI Referenced Properties/Methods for CIM_VolumeView...237

Table 127 - SMI Referenced Properties/Methods for SNIA_DiskDriveView..239

Table 128 - Related Profiles for Block Server Performance ..243

Table 129 - Summary of Element Types by Profile ...254

Table 130 - Summary of Rate Element Types by Profile...255

Table 131 - Creation, Deletion and Modification Methods in Block Server Performance Subprofile268

Table 132 - Interval for rate statistics...276

Table 133 - Summary of Statistics Support by Element ..300

Table 134 - Cumulative and Rate Statistics Properties ...301

Table 135 - ElementType and RateElementType Properties ..302

Table 136 - Formulas and Calculations ...303

Table 137 - Block Server Performance Subprofile Supported Capabilities Patterns ...303

Table 138 - CIM Elements for Block Server Performance ...304

Table 139 - SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Cli-
ent defined collection)..307

Table 140 - SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Pro-
vider defined collection)...307

Table 141 - SMI Referenced Properties/Methods for CIM_BlockStatisticsCapabilities308

Table 142 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)309

Table 143 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)..............310

Table 144 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Client Defined) ..312

Table 145 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Provider De-
fined)..313

Table 146 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService..313

Table 147 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData315

Table 148 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...319

Table 149 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Back end Port Stats)319

Table 150 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Component System Stats) 320

Table 151 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Disk Stats)320

Table 152 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Extent Stats)......................321

Table 153 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Front end Port Stats)321

Table 154 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Logical Disk Stats).............321

Table 155 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Remote Copy Stats)322

Table 156 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Top Level System Stats) ...322

Table 157 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Volume Stats)....................323

Table 158 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)............................323

Table 159 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default).......................................324

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 25

Table 160 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)......................324

Table 161 - SMI Referenced Properties/Methods for CIM_HostedService ...324

Table 162 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined
collection) ..325

Table 163 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-defined col-
lection) ...325

Table 164 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-
tion)..326

Table 165 - SMI Referenced Properties/Methods for CIM_StatisticsCollection...326

Table 166 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsCapabilities327

Table 167 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Client Defined)327

Table 168 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Provider Support)............329

Table 169 - Supported Profiles for CKD Block Services..334

Table 170 - CIM Elements for CKD Block Services...334

Table 171 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)...........340

Table 172 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)...340

Table 173 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageVolume or LogicalDisk) ..341

Table 174 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StoragePool)...341

Table 175 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System) ...342

Table 176 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService) ..342

Table 177 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool) ..342

Table 178 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageConfigurationService)...343

Table 179 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to concrete StoragePool) ..343

Table 180 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to primordial StoragePool) ..344

Table 181 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the nam-
ing capabilities of the StoragePool) ...344

Table 182 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the nam-
ing capabilities of the StorageVolume or LogicalDisk) ..345

Table 183 - SMI Referenced Properties/Methods for CIM_ElementSettingData...345

Table 184 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService) ..346

Table 185 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool) ..346

Table 186 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Predefined Filter-
Collection)..347

Table 187 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services ProfileSpecificLife-
cycleIndicationFilterCollection) ..347

Table 188 - SMI Referenced Properties/Methods for CIM_HostedCollection (Block Services to ProfileSpecifi-
cLifecycleIndicationFilterCollection) ..348

Table 189 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indica-
tionFilters)..348

Table 190 - SMI Referenced Properties/Methods for CIM_HostedService ...348

Table 191 - SMI Referenced Properties/Methods for CIM_HostedStoragePool..349

Table 192 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

26

bilities) ...349

Table 193 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)350

Table 194 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)350

Table 195 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus).....351

Table 196 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)...................352

Table 197 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)353

Table 198 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManaged-
Space) ...354

Table 199 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)..............355

Table 200 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)356

Table 201 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalSta-
tus)...356

Table 202 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk Operational-
Status) ...357

Table 203 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operation-
alStatus) ..358

Table 204 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..359

Table 205 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Filter Collec-
tion to FilterCollection)...360

Table 206 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Profile-
SpecificLifecycleIndicationFilterCollection to Block Services Filters) ..361

Table 207 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Block Services Filters) ...361

Table 208 - SMI Referenced Properties/Methods for CIM_OwningJobElement..361

Table 209 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)362

Table 210 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)363

Table 211 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial).........365

Table 212 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService...................................366

Table 213 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete) ...367

Table 214 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty) ...368

Table 215 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...369

Table 216 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints..370

Table 217 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities...............371

Table 218 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities372

Table 219 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Log-
icalDisk) ...372

Table 220 - SMI Referenced Properties/Methods for SNIA_StorageCapabilities..373

Table 221 - SMI Referenced Properties/Methods for SNIA_StorageSetting ...375

Table 222 - SMI Referenced Properties/Methods for SNIA_StorageVolume ..377

Table 223 - Related Profiles for Copy Services...379

Table 224 - Comparing SyncTypes ...383

Table 225 - Alignment of SupportedSynchronizationType and SupportedReplicationType383

Table 226 - Alignment of SyncType/Mode and CopyType ..388

Table 227 - Alignment of CopyState and SyncState..389

Table 228 - Synchronization Operation Support Requirements ..395

Table 229 - SyncState Values ...397

Table 230 - CopyStates Values ...397

Table 231 - SyncMaintained and WhenSynced Properties ...399

Table 232 - Indications ..415

Table 233 - Copy Services Alert Indications..417

Table 234 - Copy Services Error Responses...418

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 27

Table 235 - Extrinsic Methods of StorageConfigurationService ..420

Table 236 - ModifySynchronization..420

Table 237 - CreateReplica Method..421

Table 238 - TargetPool Parameter for Delta Replicas ...422

Table 239 - Extrinsic Methods of ReplicationService...424

Table 240 - GetAvailableTargetElements Method...429

Table 241 - Extrinsic Methods of ReplicationServiceCapabilities ..431

Table 242 - SyncTypes..431

Table 243 - Modes...431

Table 244 - Local or Remote ...432

Table 245 - ReplicationTypes ..432

Table 246 - Features ...433

Table 247 - Operations ..433

Table 248 - Comparison of Similar Operations..435

Table 249 - SettingsDefineState Operations ...435

Table 250 - Thin Provisioning Features...436

Table 251 - Components ...436

Table 252 - Replica Specialization by CopyType ..437

Table 253 - Replica Specialization by SyncType/Mode...438

Table 254 - Patterns Supported for StorageReplicationCapabilities..445

Table 255 - Space Consumption Properties ..447

Table 256 - Space Consumption Properties, Fixed Pattern...447

Table 257 - CIM Elements for Copy Services..457

Table 258 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates ReplicationServi-
ceCapabilities and ReplicationService) ...460

Table 259 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates StorageReplica-
tionCapabilities and StorageConfigurationService) ...460

Table 260 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageConfigurationService)...460

Table 261 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StoragePool) ...461

Table 262 - SMI Referenced Properties/Methods for CIM_HostedService (Replication Service)461

Table 263 - SMI Referenced Properties/Methods for CIM_HostedService (Storage Configuration Service)461

Table 264 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage..462

Table 265 - SMI Referenced Properties/Methods for CIM_ReplicationService ...462

Table 266 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities463

Table 267 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData ..464

Table 268 - SMI Referenced Properties/Methods for CIM_SettingsDefineState ...465

Table 269 - SMI Referenced Properties/Methods for CIM_StorageCapabilities..466

Table 270 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities466

Table 271 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService...................................467

Table 272 - SMI Referenced Properties/Methods for CIM_StoragePool ...467

Table 273 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities................................468

Table 274 - SMI Referenced Properties/Methods for CIM_StorageSetting ...470

Table 275 - SMI Referenced Properties/Methods for CIM_StorageSynchronized ..471

Table 276 - SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between StorageExtent el-
ements)..472

Table 277 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect ..473

Table 278 - OperationalStatus For DiskDrive ..479

Table 279 - Enabled State ...480

28

Table 280 - CIM Elements for Disk Drive Lite..483

Table 281 - SMI Referenced Properties/Methods for CIM_ATAPort (Disk Drive Target ATA Port)485

Table 282 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Disk Drive target ATA Pro-
tocol Endpoint)...486

Table 283 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Primordial Pool) ...486

Table 284 - SMI Referenced Properties/Methods for CIM_BasedOn (Bottom Level BasedOn)487

Table 285 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Disk Extent to Primordial
Pool) ..487

Table 286 - SMI Referenced Properties/Methods for CIM_Container ...488

Table 287 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (ATA)............................488

Table 288 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (SCSI)488

Table 289 - SMI Referenced Properties/Methods for CIM_DiskDrive ...489

Table 290 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity..490

Table 291 - SMI Referenced Properties/Methods for CIM_FCPort (Disk Drive Target FC Port).........................490

Table 292 - SMI Referenced Properties/Methods for CIM_FilterCollection (Disk Drive Lite Predefined Filter-
Collection)..491

Table 293 - SMI Referenced Properties/Methods for CIM_FilterCollection (Disk Drive Lite ProfileSpecificLife-
cycleIndicationFilterCollection) ..491

Table 294 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to ProfileSpecificLifecy-
cleIndicationFilterCollection)..491

Table 295 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indica-
tionFilters)..492

Table 296 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Creation)492

Table 297 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Deletion)493

Table 298 - SMI Referenced Properties/Methods for CIM_MediaPresent...494

Table 299 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Disk Drive Lite Filter Collec-
tion to FilterCollection)...494

Table 300 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Disk Drive Lite Profile-
SpecificLifecycleIndicationFilterCollection to Disk Drive Lite Filters)...494

Table 301 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Disk Drive Lite Filters) ...495

Table 302 - SMI Referenced Properties/Methods for CIM_PhysicalPackage ...495

Table 303 - SMI Referenced Properties/Methods for CIM_ProtocolControllerAccessesUnit495

Table 304 - SMI Referenced Properties/Methods for CIM_Realizes ...496

Table 305 - SMI Referenced Properties/Methods for CIM_ResourcePoolDriveDependency..............................496

Table 306 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..497

Table 307 - SMI Referenced Properties/Methods for CIM_SASPort (Disk Drive Target SAS Port)497

Table 308 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath498

Table 309 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Disk Drive target SCSI
Protocol Endpoint) ...498

Table 310 - SMI Referenced Properties/Methods for CIM_SPIPort (Disk Drive Target Parallel SCSI Port)499

Table 311 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity ...499

Table 312 - SMI Referenced Properties/Methods for CIM_StorageElementDriveDependency500

Table 313 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Disk Drive Extent)..........500

Table 314 - SMI Referenced Properties/Methods for CIM_SystemDevice (Disk Drive System)501

Table 315 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port System)...................................501

Table 316 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)..................501

Table 317 - SMI Referenced Properties/Methods for SNIA_DiskDrive..502

Table 318 - Supported Methods to Method Mapping...507

Table 319 - Supported Profiles for Disk Sparing..510

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 29

Table 320 - CIM Elements for Disk Sparing...515

Table 321 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Spare to Storage
Pool) ..516

Table 322 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to LogicalDisk)517

Table 323 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to Pool)517

Table 324 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to StorageVolume)...517

Table 325 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...518

Table 326 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to Failover-
StorageExtentsCollection) ...518

Table 327 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to Redundan-
cySet) ..518

Table 328 - SMI Referenced Properties/Methods for CIM_HostedService (ComputerSystem to SpareConfig-
urationService) ..519

Table 329 - SMI Referenced Properties/Methods for CIM_IsSpare ..519

Table 330 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..520

Table 331 - SMI Referenced Properties/Methods for CIM_MemberOfCollection ..520

Table 332 - SMI Referenced Properties/Methods for CIM_Spared ...521

Table 333 - SMI Referenced Properties/Methods for CIM_StorageExtent (Spare) ...521

Table 334 - SMI Referenced Properties/Methods for CIM_StoragePool ...521

Table 335 - SMI Referenced Properties/Methods for CIM_StorageRedundancySet...522

Table 336 - SMI Referenced Properties/Methods for CIM_StorageVolume..523

Table 337 - SMI Referenced Properties/Methods for SNIA_FailoverStorageExtentsCollection..........................523

Table 338 - SMI Referenced Properties/Methods for SNIA_SpareConfigurationCapabilities524

Table 339 - SMI Referenced Properties/Methods for SNIA_SpareConfigurationService524

Table 340 - Erase Method ...530

Table 341 - CIM Elements for Erasure ..534

Table 342 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool......................................535

Table 343 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..535

Table 344 - SMI Referenced Properties/Methods for CIM_StoragePool ...535

Table 345 - SMI Referenced Properties/Methods for CIM_StorageVolume..536

Table 346 - SMI Referenced Properties/Methods for SNIA_ErasureCapabilities..536

Table 347 - SMI Referenced Properties/Methods for SNIA_ErasureService ..537

Table 348 - SMI Referenced Properties/Methods for SNIA_ErasureSetting ...537

Table 349 - Supported Common RAID Levels...546

Table 350 - CIM Elements for Extent Composition..562

Table 351 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Concrete Pool)...563

Table 352 - SMI Referenced Properties/Methods for CIM_AssociatedRemainingExtent (Pool to its remain-
ing extents) ..563

Table 353 - SMI Referenced Properties/Methods for CIM_BasedOn (Mid level BasedOn)564

Table 354 - SMI Referenced Properties/Methods for CIM_BasedOn (Top level BasedOn)................................564

Table 355 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Intermediate)............565

Table 356 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Component)565

Table 357 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn566

Table 358 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Pool Component to Con-
crete Pool) ...567

Table 359 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Remaining Extent to Pool)....567

Table 360 - SMI Referenced Properties/Methods for CIM_FilterCollection (Extent Composition Predefined
FilterCollection)..568

Table 361 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Extent
Composition IndicationFilters) ...568

30

Table 362 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Extent Composition Filter
Collection to FilterCollection)...568

Table 363 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Extent Composition Filters) ...569

Table 364 - SMI Referenced Properties/Methods for CIM_StorageExtent (Intermediate)...................................569

Table 365 - SMI Referenced Properties/Methods for CIM_StorageExtent (Pool Component)............................570

Table 366 - SMI Referenced Properties/Methods for CIM_StorageExtent (Remaining)570

Table 367 - SMI Referenced Properties/Methods for CIM_SystemDevice (Composite Extent System)571

Table 368 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)..................571

Table 369 - SCSIProtocolController Property Description ...585

Table 370 - ExposePath Use Cases..590

Table 371 - HidePaths Use Cases...593

Table 372 - Use Cases for ExposeDefaultLUs ...595

Table 373 - Use Cases for HideDefaultLUs...597

Table 374 - CIM Elements for Masking and Mapping..614

Table 375 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..616

Table 376 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject..617

Table 377 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...617

Table 378 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerCon-
figuirationService and ProtocolController) ...618

Table 379 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeMan-
agementService and AuthorizedPrivilege) ..618

Table 380 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwa-
reIDManagementService and StorageHardwareID)..618

Table 381 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwa-
reIDManagementService and SystemSpecificCollection) ...619

Table 382 - SMI Referenced Properties/Methods for CIM_ControllerConfigurationService................................619

Table 383 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to ControllerConfigurationService) ...620

Table 384 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to ProtocolController)..620

Table 385 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageHardwareID)...621

Table 386 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageHardwareIDManagementService)..621

Table 387 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to SystemSpecificCollection) ..621

Table 388 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolController-
MaskingCapabilities) ...622

Table 389 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSys-
tem and StorageClientSettingData)...622

Table 390 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and Stor-
ageClientSettingData) ...622

Table 391 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolCon-
troller and StorageClientSettingData)..623

Table 392 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardware-
ID and StorageClientSettingData) ...623

Table 393 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities624

Table 394 - SMI Referenced Properties/Methods for CIM_HostedCollection..624

Table 395 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService) ..624

Table 396 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService)...625

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 31

Table 397 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService)...625

Table 398 - SMI Referenced Properties/Methods for CIM_MemberOfCollection ..626

Table 399 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService626

Table 400 - SMI Referenced Properties/Methods for CIM_ProtocolController ..627

Table 401 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit ..627

Table 402 - SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities628

Table 403 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..629

Table 404 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData ..629

Table 405 - SMI Referenced Properties/Methods for CIM_StorageHardwareID...629

Table 406 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService630

Table 407 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..630

Table 408 - SMI Referenced Properties/Methods for SNIA_ProtocolControllerMaskingCapabilities631

Table 409 - SMI Referenced Properties/Methods for SNIA_StorageHardwareID ...631

Table 410 - SMI Referenced Properties/Methods for SNIA_StorageHardwareIDManagementService631

Table 411 - CIM Elements for Storage Server Asymmetry..646

Table 412 - SMI Referenced Properties/Methods for CIM_AsymmetricAccessibility ..649

Table 413 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (To Top-level ComputerSys-
tem) ...649

Table 414 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Load
Group) ...650

Table 415 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Port
Group) ...650

Table 416 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SATA Target Port Group)650

Table 417 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SB Target Port Group)..........651

Table 418 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SCSI Target Port Group)651

Table 419 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load
Group aggregating Storage Pools)..651

Table 420 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load
Group aggregating Storage Volumes)...652

Table 421 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (iSCSI Target Port Group)652

Table 422 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService...................................652

Table 423 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (StorageResource-
LoadGroup) ...653

Table 424 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (Target Port Group).........654

Table 425 - SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities654

Table 426 - Block Service Management Rights...658

Table 427 - Supported Profiles for Storage Virtualizer ..673

Table 428 - CIM Elements for Storage Virtualizer ...675

Table 429 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Primordial Pool) ...679

Table 430 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow).....................................680

Table 431 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System).....................680

Table 432 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Imported Extents to Primor-
dial Pool)..681

Table 433 - SMI Referenced Properties/Methods for CIM_Dependency (Systems) ...681

Table 434 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System) ...682

Table 435 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Virtualizer Predefined Fil-
terCollection) ...682

Table 436 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Virtualizer ProfileSpecifi-

32

cLifecycleIndicationFilterCollection) ..683

Table 437 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)683

Table 438 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)684

Table 439 - SMI Referenced Properties/Methods for CIM_HostedCollection (Storage Virtualizer to Profile-
SpecificLifecycleIndicationFilterCollection)..684

Table 440 - SMI Referenced Properties/Methods for CIM_HostedCollection (Storage Virtualizer to pre-
defined FilterCollection)...684

Table 441 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities) ...685

Table 442 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer LogicalPort
OperationalStatus)...685

Table 443 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Storage Vol-
ume OperationalStatus)...686

Table 444 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System Cre-
ation)..687

Table 445 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System Dele-
tion)..688

Table 446 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System Oper-
ationalStatus)...689

Table 447 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer FCPort
OperationalStatus)...690

Table 448 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer Storage
Volume OperationalStatus) ...691

Table 449 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer System
OperationalStatus)...692

Table 450 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (Shadow Storage Volume)...............692

Table 451 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)............693

Table 452 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Storage Virtualizer Filters) ...693

Table 453 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)..............693

Table 454 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Virtualizer Profile-
SpecificLifecycleIndicationFilterCollection to Storage Virtualizer Filters) ..694

Table 455 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)..694

Table 456 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for All
LUNs View)..695

Table 457 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)695

Table 458 - SMI Referenced Properties/Methods for CIM_ResourcePoolExtentDependency (PoolExtentDepe-
dency)..696

Table 459 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..696

Table 460 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)696

Table 461 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)697

Table 462 - SMI Referenced Properties/Methods for CIM_StorageElementExtentDependency (ElementExtent-
Dependency) ...697

Table 463 - SMI Referenced Properties/Methods for CIM_StorageExtent (Imported Extents)698

Table 464 - SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow)..698

Table 465 - SMI Referenced Properties/Methods for CIM_SystemDevice (Shadow StorageVolumes)..............700

Table 466 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogical-
Unit) ...700

Table 467 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController) 700

Table 468 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageExtent)...............701

Table 469 - SMI Referenced Properties/Methods for SNIA_AllocatedResources ...701

Table 470 - SMI Referenced Properties/Methods for SNIA_RemoteResources ...702

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 33

Table 471 - CompositionCharacteristics Property ...705

Table 472 - Supported Profiles for Volume Composition...716

Table 473 - Method Summary ...716

Table 474 - CreateOrModifyCompositeElement ..718

Table 475 - RemoveElementsFromElement..720

Table 476 - ReturnElementToElements...720

Table 477 - GetAvailableElements ..721

Table 478 - GetCompositeElements..722

Table 479 - GetSupportedStripeLengths ...723

Table 480 - GetSupportedStripeLengthRange ..724

Table 481 - GetSupportedStripeDepths...724

Table 482 - GetSupportedStripeDepthRange..725

Table 483 - CIM Elements for Volume Composition..731

Table 484 - SMI Referenced Properties/Methods for CIM_CompositeExtent ...731

Table 485 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn (Volume Composition)..732

Table 486 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...732

Table 487 - SMI Referenced Properties/Methods for CIM_ElementSettingData...732

Table 488 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
the ElementCompositionService) ..733

Table 489 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionCapabilities733

Table 490 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionService734

Table 491 - SMI Referenced Properties/Methods for CIM_StorageSetting ...735

Table 492 - SMI Referenced Properties/Methods for CIM_StorageVolume..736

Table 493 - Supported Profiles for Volume Management..739

Table 494 - CIM Elements for Volume Management...740

Table 495 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (LogicalDisk from Pool)741

Table 496 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)...........742

Table 497 - SMI Referenced Properties/Methods for CIM_ComputerSystem...742

Table 498 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...743

Table 499 - SMI Referenced Properties/Methods for CIM_ElementSettingData...743

Table 500 - SMI Referenced Properties/Methods for CIM_HostedStoragePool..743

Table 501 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..744

Table 502 - SMI Referenced Properties/Methods for CIM_StorageCapabilities..744

Table 503 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete) ...745

Table 504 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...746

Table 505 - SMI Referenced Properties/Methods for CIM_StorageSetting ...746

Table 506 - SMI Referenced Properties/Methods for CIM_SystemDevice..747

Table 507 - Properties for StorageProtectionCapabilities..750

Table 508 - Properties for StorageProtectionSetting ...751

Table 509 - Values for ProtectionControlled ..752

Table 510 - Values for Access...752

Table 511 - Values for InquiryProtection..752

Table 512 - Values for DenyAsCopyTarget ...752

Table 513 - Values for ProtectExpirationSpecified ..753

Table 514 - Values for RemainingProtectionTime ...753

Table 515 - Values for LUNMappingConfigurable ...753

Table 516 - Methods of the Storage Element Protection Profile..761

Table 517 - CIM Elements for Storage Element Protection ...766

Table 518 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...767

34

Table 519 - SMI Referenced Properties/Methods for CIM_HostedService ...767

Table 520 - SMI Referenced Properties/Methods for SNIA_ElementProtectionSettingData...............................767

Table 521 - SMI Referenced Properties/Methods for SNIA_StorageProtectionCapabilities................................768

Table 522 - SMI Referenced Properties/Methods for SNIA_StorageProtectionService768

Table 523 - SMI Referenced Properties/Methods for SNIA_StorageProtectionSetting769

Table 524 - Supported Profiles for Replication Services ...771

Table 525 - Key Classes..773

Table 526 - Comparing SyncTypes ...775

Table 527 - CopyStates Values ...789

Table 528 - Indications ..799

Table 529 - Extrinsic Methods for Group Management ...804

Table 530 - Extrinsic Methods for Replication Management ...804

Table 531 - Extrinsic Methods for Getting Supported Capabilities ..805

Table 532 - Selected CreateElementReplica optional parameters ..810

Table 533 - Selected CreateGroupReplica optional parameters ...812

Table 534 - Selected CreateListReplica optional parameters..814

Table 535 - SyncTypes..825

Table 536 - Modes...825

Table 537 - Local or Remote ...825

Table 538 - ReplicationTypes ..825

Table 539 - Features ...826

Table 540 - Group Features...828

Table 541 - Consistency ..830

Table 542 - Operations ..830

Table 543 - Comparison of Similar Operations..832

Table 544 - SettingsDefineState Operations ...833

Table 545 - Thin Provisioning Features...834

Table 546 - Components ...834

Table 547 - Default Consistency..835

Table 548 - Group Persistency ..835

Table 549 - Copy Methodologies...836

Table 550 - Target Element Suppliers ...836

Table 551 - ThinProvisioningPolicy..836

Table 552 - StorageCompressionPolicy ..837

Table 553 - Connection Features ..838

Table 554 - Storage Compression Features..838

Table 555 - Copy Services and Replication Services Methods Mapping ..840

Table 556 - CIM Elements for Replication Services ..841

Table 557 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...845

Table 558 - SMI Referenced Properties/Methods for CIM_GroupSynchronized...846

Table 559 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint)849

Table 560 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-
Point) ...850

Table 561 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)850

Table 562 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection) ...850

Table 563 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
ReplicationGroup)..851

Table 564 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)851

Table 565 - SMI Referenced Properties/Methods for CIM_HostedService ...852

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 35

Table 566 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)............852

Table 567 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to Re-
moteReplicationCollection)..852

Table 568 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)..............853

Table 569 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage elements to Re-
moteReplicationCollection)..853

Table 570 - SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection...................................853

Table 571 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint ...854

Table 572 - SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection...................................855

Table 573 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint855

Table 574 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage..856

Table 575 - SMI Referenced Properties/Methods for CIM_ReplicationEntity ..856

Table 576 - SMI Referenced Properties/Methods for CIM_ReplicationGroup ...857

Table 577 - SMI Referenced Properties/Methods for CIM_ReplicationService ...857

Table 578 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities859

Table 579 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData ..861

Table 580 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare864

Table 581 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and RemoteReplicationCollection)...865

Table 582 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationEntity) ..865

Table 583 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationGroup) ...865

Table 584 - SMI Referenced Properties/Methods for CIM_SettingsAffectSettings (Between Synchronization-
Aspect and child SynchronizationAspects)..866

Table 585 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup
and SynchronizationAspect)..866

Table 586 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and
SynchronizationAspect)...867

Table 587 - SMI Referenced Properties/Methods for CIM_SharedSecret...867

Table 588 - SMI Referenced Properties/Methods for CIM_StorageSynchronized ..867

Table 589 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect ..871

Table 590 - SMI Referenced Properties/Methods for SNIA_AllocatedResources ...873

Table 591 - SMI Referenced Properties/Methods for SNIA_RemoteResources ...873

Table 592 - CIM Elements for Pools from Volumes...886

Table 593 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume from Pool)......886

Table 594 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...887

Table 595 - SMI Referenced Properties/Methods for CIM_SystemDevice..887

Table 596 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities888

Table 597 - Supported Profiles for Group Masking and Mapping..889

Table 598 - Extrinsic Methods for Masking Group Management...897

Table 599 - Extrinsic Methods for Masking Views Management ...898

Table 600 - CIM Elements for Group Masking and Mapping...902

Table 601 - SMI Referenced Properties/Methods for CIM_AssociatedDeviceMaskingGroup.............................905

Table 602 - SMI Referenced Properties/Methods for CIM_AssociatedInitiatorMaskingGroup............................905

Table 603 - SMI Referenced Properties/Methods for CIM_AssociatedTargetMaskingGroup905

Table 604 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege..906

Table 605 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject..906

Table 606 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget ...907

Table 607 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerCon-
figuirationService and ProtocolController) ...907

36

Table 608 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeMan-
agementService and AuthorizedPrivilege) ..907

Table 609 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwa-
reIDManagementService and StorageHardwareID)..908

Table 610 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHardwa-
reIDManagementService and SystemSpecificCollection) ...908

Table 611 - SMI Referenced Properties/Methods for CIM_DeviceMaskingGroup ..909

Table 612 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to ControllerConfigurationService) ...909

Table 613 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to ProtocolController)..910

Table 614 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageHardwareID)...910

Table 615 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageHardwareIDManagementService)..910

Table 616 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to SystemSpecificCollection) ..911

Table 617 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolController-
MaskingCapabilities) ...911

Table 618 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSys-
tem and StorageClientSettingData)...912

Table 619 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and Stor-
ageClientSettingData) ...912

Table 620 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolCon-
troller and StorageClientSettingData)..912

Table 621 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardware-
ID and StorageClientSettingData) ...913

Table 622 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities913

Table 623 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities914

Table 624 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingService................................917

Table 625 - SMI Referenced Properties/Methods for CIM_HostedCollection..918

Table 626 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService) ..918

Table 627 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService)...918

Table 628 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService)...919

Table 629 - SMI Referenced Properties/Methods for CIM_InitiatorMaskingGroup..919

Table 630 - SMI Referenced Properties/Methods for CIM_MemberOfCollection ..920

Table 631 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService920

Table 632 - SMI Referenced Properties/Methods for CIM_ProtocolController ..921

Table 633 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit ..921

Table 634 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..922

Table 635 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between GroupMasking-
MappingService and MaskingGroup) ..922

Table 636 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData ..922

Table 637 - SMI Referenced Properties/Methods for CIM_StorageHardwareID...923

Table 638 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService923

Table 639 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..924

Table 640 - SMI Referenced Properties/Methods for CIM_TargetMaskingGroup...924

Table 641 - SMI Referenced Properties/Methods for SNIA_ProtocolControllerMaskingCapabilities925

Table 642 - SMI Referenced Properties/Methods for SNIA_StorageHardwareID ...925

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 37

Table 643 - SMI Referenced Properties/Methods for SNIA_StorageHardwareIDManagementService925

Table 644 - Supported Profiles for Storage Relocation ...932

Table 645 - CIM Elements for Storage Relocation ..961

Table 646 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (LogicalDisk to ConcreteJob) .964

Table 647 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StorageExtent to Concrete-
Job)..965

Table 648 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StoragePool to ConcreteJob)965

Table 649 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StorageVolume to Concrete-
Job)..965

Table 650 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StoragePool) ...966

Table 651 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageRelocationService) ...966

Table 652 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Relocation Predefined
FilterCollection)..966

Table 653 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Relocation ProfileSpecifi-
cAlertIndicationFilterCollection) ...967

Table 654 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to Storage Relocation
ProfileSpecificAlertIndicationFilterCollection) ..967

Table 655 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indica-
tionFilters)..967

Table 656 - SMI Referenced Properties/Methods for CIM_HostedService (StorageRelocationService to Com-
puterSystem) ...968

Table 657 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDiskRelocationEnd)968

Table 658 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDiskRelocationStart)969

Table 659 - SMI Referenced Properties/Methods for CIM_IndicationFilter (StoragePoolRelocationEnd)...........970

Table 660 - SMI Referenced Properties/Methods for CIM_IndicationFilter (StoragePoolRelocationStart)..........970

Table 661 - SMI Referenced Properties/Methods for CIM_IndicationFilter (VolumeRelocationEnd)971

Table 662 - SMI Referenced Properties/Methods for CIM_IndicationFilter (VolumeRelocationStart)972

Table 663 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..973

Table 664 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Storage Relocation Filters) ..974

Table 665 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Relocation Filter
Collection to FilterCollection)...975

Table 666 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Relocation Profile-
SpecificAlertIndicationFilterCollection to Storage Relocation Filters)..975

Table 667 - SMI Referenced Properties/Methods for CIM_OwningJobElement (StorageRelocationService to
ConcreteJob) ...975

Table 668 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)976

Table 669 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)978

Table 670 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial).........980

Table 671 - SMI Referenced Properties/Methods for CIM_StorageExtent (Relocatable)....................................981

Table 672 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete) ...982

Table 673 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial) ...983

Table 674 - SMI Referenced Properties/Methods for CIM_StorageRelocationService984

Table 675 - SMI Referenced Properties/Methods for CIM_StorageVolume..985

Table 676 - Supported Profiles for Thin Provisioning ..993

Table 677 - CIM Elements for Thin Provisioning ...1007

Table 678 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool).........1014

Table 679 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)...1015

Table 680 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-

38

bilities to StorageVolume or LogicalDisk) ..1015

Table 681 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StoragePool)...1016

Table 682 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System) ...1016

Table 683 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService) ..1016

Table 684 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool) ..1017

Table 685 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to StorageConfigurationService)...1017

Table 686 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to concrete StoragePool) ..1018

Table 687 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabili-
ties to primordial StoragePool) ..1018

Table 688 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the nam-
ing capabilities of the StoragePool) ...1018

Table 689 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the nam-
ing capabilities of the StorageVolume or LogicalDisk) ..1019

Table 690 - SMI Referenced Properties/Methods for CIM_ElementSettingData...1019

Table 691 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService) ..1020

Table 692 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool) ..1020

Table 693 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Predefined Filter-
Collection)..1021

Table 694 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services ProfileSpecificLife-
cycleIndicationFilterCollection) ..1021

Table 695 - SMI Referenced Properties/Methods for CIM_FilterCollection (Thin Provisioning Predefined Fil-
terCollection) ...1022

Table 696 - SMI Referenced Properties/Methods for CIM_FilterCollection (Thin Provisioning ProfileSpecifi-
cAlertIndicationFilterCollection) ...1022

Table 697 - SMI Referenced Properties/Methods for CIM_HostedCollection (Block Services to ProfileSpecifi-
cLifecycleIndicationFilterCollection) ..1022

Table 698 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection) ..1023

Table 699 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to Thin Provisioning
predefined IndicationFilters) ..1023

Table 700 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indica-
tionFilters)..1023

Table 701 - SMI Referenced Properties/Methods for CIM_HostedService ...1024

Table 702 - SMI Referenced Properties/Methods for CIM_HostedStoragePool..1024

Table 703 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities) ...1024

Table 704 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)1025

Table 705 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)1026

Table 706 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)...1026

Table 707 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation).................1027

Table 708 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)1028

Table 709 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManaged-
Space) ...1029

Table 710 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)............1030

Table 711 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)1031

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 39

Table 712 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalSta-
tus)...1031

Table 713 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Thin Provisioning Critical)1032

Table 714 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Thin Provisioning Threshold
Cleared)...1033

Table 715 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Thin Provisioning Warning)1034

Table 716 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk Operational-
Status) ...1035

Table 717 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operation-
alStatus) ..1035

Table 718 - SMI Referenced Properties/Methods for CIM_LogicalDisk ..1036

Table 719 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Filter Collec-
tion to FilterCollection)...1037

Table 720 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Profile-
SpecificLifecycleIndicationFilterCollection to Block Services Filters) ..1038

Table 721 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Block Services Filters) ...1038

Table 722 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Thin Provisioning Filters) ...1039

Table 723 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Thin Provisioning Filter Col-
lection to FilterCollection) ..1039

Table 724 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Thin Provisioning Profile-
SpecificAlertIndicationFilterCollection to Thin Provisioning Filters)...1039

Table 725 - SMI Referenced Properties/Methods for CIM_OwningJobElement..1040

Table 726 - SMI Referenced Properties/Methods for CIM_StorageCapabilities..1040

Table 727 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)1042

Table 728 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)1044

Table 729 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial).......1046

Table 730 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService.................................1047

Table 731 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete) ...1048

Table 732 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty) ...1049

Table 733 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)1050

Table 734 - SMI Referenced Properties/Methods for CIM_StorageSetting ...1051

Table 735 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints..1053

Table 736 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities.............1054

Table 737 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities1055

Table 738 - SMI Referenced Properties/Methods for CIM_StorageVolume..1055

Table 739 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Log-
icalDisk) ...1057

Table 740 - Related Profiles for Automated Storage Tiering ...1059

Table 741 - Key Classes..1060

Table 742 - SupportedFeatures...1072

Table 743 - SupportedTierFeatures...1072

Table 744 - Extrinsic Methods ...1073

Table 745 - CIM Elements for Automated Storage Tiering ..1078

Table 746 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting1079

Table 747 - SMI Referenced Properties/Methods for CIM_AssociatedElementTier..1081

Table 748 - SMI Referenced Properties/Methods for CIM_AssociatedResourcePool.......................................1082

Table 749 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (TierDomain to StorageTier)
1082

Table 750 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...1082

40

Table 751 - SMI Referenced Properties/Methods for CIM_HostedService ...1083

Table 752 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageExtents
comprising a tier) ...1083

Table 753 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StoragePools com-
prising a tier)..1083

Table 754 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageVolumes
comprising a tier) ...1084

Table 755 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies primordial Storage-
Extents comprising a tier) ..1084

Table 756 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
StorageTier)...1085

Table 757 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
TierDomain)...1085

Table 758 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between StorageT-
ierCapabilities and TierSettingData)..1085

Table 759 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between TierService-
Capabilities and TierSettingData)..1086

Table 760 - SMI Referenced Properties/Methods for CIM_StorageTier ..1086

Table 761 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities ...1088

Table 762 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)1090

Table 763 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)1091

Table 764 - SMI Referenced Properties/Methods for CIM_SystemComponent (TierDomain to ComputerSys-
tem) ...1093

Table 765 - SMI Referenced Properties/Methods for CIM_TierDomain ..1094

Table 766 - SMI Referenced Properties/Methods for CIM_TierService...1094

Table 767 - SMI Referenced Properties/Methods for CIM_TierServiceCapabilities ..1095

Table 768 - SMI Referenced Properties/Methods for CIM_TierSettingData..1097

Table 769 - Related Profiles for Automated Storage Tiering Policy...1099

Table 770 - Key Classes..1100

Table 771 - SupportedPolicyFeatures ...1104

Table 772 - Extrinsic Methods ...1105

Table 773 - Parameters for ModifyStorageTierPolicyRule...1107

Table 774 - CIM Elements for Automated Storage Tiering Policy ...1110

Table 775 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting1112

Table 776 - SMI Referenced Properties/Methods for CIM_AssociatedElementTier..1114

Table 777 - SMI Referenced Properties/Methods for CIM_AssociatedResourcePool.......................................1114

Table 778 - SMI Referenced Properties/Methods for CIM_AssociatedTierPolicy ...1114

Table 779 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (TierDomain to StorageTier)
1115

Table 780 - SMI Referenced Properties/Methods for CIM_ElementCapabilities ...1115

Table 781 - SMI Referenced Properties/Methods for CIM_ElementSettingData...1116

Table 782 - SMI Referenced Properties/Methods for CIM_HostedService ...1116

Table 783 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageExtents
comprising a tier) ...1116

Table 784 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StoragePools com-
prising a tier)..1117

Table 785 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageVolumes
comprising a tier) ...1117

Table 786 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies primordial Storage-
Extents comprising a tier) ..1118

Table 787 - SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod..1118

Table 788 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition....................................1118

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 41

Table 789 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierPolicySer-
vice and TierPolicyRule)..1119

Table 790 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
StorageTier)...1119

Table 791 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
TierDomain)...1120

Table 792 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between StorageT-
ierCapabilities and TierSettingData)..1120

Table 793 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between TierService-
Capabilities and TierSettingData)..1120

Table 794 - SMI Referenced Properties/Methods for CIM_StorageTier ..1121

Table 795 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities ...1122

Table 796 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)1124

Table 797 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)1126

Table 798 - SMI Referenced Properties/Methods for CIM_SystemComponent (TierDomain to ComputerSys-
tem) ...1128

Table 799 - SMI Referenced Properties/Methods for CIM_TierDomain ..1128

Table 800 - SMI Referenced Properties/Methods for CIM_TierPolicyRule..1129

Table 801 - SMI Referenced Properties/Methods for CIM_TierPolicyService ...1130

Table 802 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities1131

Table 803 - SMI Referenced Properties/Methods for CIM_TierPolicySetAppliesToElement1134

Table 804 - SMI Referenced Properties/Methods for CIM_TierPolicySettingData ..1135

Table B.1 Registry of StorageExtent Definitions ..1141

Table B.2 Example Valid Combinations of Extent Definitions..1145

Table B.3 Extent Combinations not defined in this Release of the Standard...1145

42

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 43

Foreword

The Block Devices part of the Storage Management Technical Specification contains the profiles for devices
that serve block storage. These devices include RAID arrays, Storage Virtualizers, host volume
managers, and disk drives. This part also contains supporting profiles, such as the Block Services
package.

Parts of this Standard

This standard is subdivided in the following parts:

• Storage Management Technical Specification, Part 1 Overview, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 5 Filesystems, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 6 Fabric, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 7 Host Elements, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 8 Media Libraries, 1.6.1 Rev 6

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the
Storage Networking Industry Association, 4360 ArrowsWest Drive, Colorado Springs, Colorado 80907,
U.S.A.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

44

 Scope

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 45

1 Scope

This Technical Specification defines an interface for the secure, extensible, and interoperable
management of a distributed and heterogeneous storage system. This interface uses an object-oriented,
XML-based, messaging-based protocol designed to support the specific requirements of managing
devices and subsystems in this storage environment. Using this protocol, this Technical Specification
describes the information available to a WBEM Client from an SMI-S compliant CIM WBEM Server.

1

2

3

4

5

6

Scope

46

 Normative References

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 47

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.1 Approved references

ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]

2.2 References under development

Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6

Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

DMTF WBEM URI Mapping Specification (DSP0207) 1.0.01 (preliminary)

2.3 Other references

DMTF DSP0214:2004 CIM Operations over HTTP

1

2

3

4

5

6

7

8

9

10

11

12

13

Normative References

48

 Definitions, Symbols, Abbreviations, and Conventions

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 49

3 Definitions, Symbols, Abbreviations, and Conventions

For the purposes of this document, the definitions, symbols, abbreviations, and conventions given in
Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6 apply.

1

2

3

Definitions, Symbols, Abbreviations, and Conventions

50

 Array Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 51

STABLE

4 Array Profile

4.1 Description

The Array Profile describes RAID array systems. The RAID systems supported by this profile are
standalone and use local disks to store the data. Systems that use external storage or a combination of
local and external storage are “Storage Virtualizers”. Systems that plug into backplanes or are on mother
boards should use 8 Host Hardware RAID Controller Profile in Storage Management Technical Specification,
Part 7 Host Elements, 1.6.1 Rev 6.

The model consists of multiple subprofiles and packages. The main component profiles are:

• The Array Profile contains a CIM_ComputerSystems object that represents the array as a whole. It is the top
level object for the profile.

• Block Services Package is the main part of the model. It contains the StorageExtents that represent the
physical storage, StoragePools that gather together the extents and supports allocation and QoS (Quality of
Service) settings, and StorageVolmes that represent the logical devices allocated from the pools.

• Target Ports component profile model the ports (e.g., Fibre Channel or iSCSI) through which the LUNs are
made available to hosts.

Figure 5: "Array Profile Instance Diagram" is a simplified instance diagram of an array

At the minimum, the Array Profile provides a high level read-only ‘view’ of an array. Clause 5: Block
Services Package includes the basic description of how storage is managed.

Figure 5 - Array Profile Instance Diagram

ComputerSystem

SCSIProtocolEndpoint

SCSIProtocolController

StorageVolume

SAPAvailableForElement

ProtocolControllerForUnitSystemDevice

One of the Target ports subprofiles

Block services package

HostedAccessPoint

SCSIProtocolControllerSCSIArbitraryLogicalUnit

SystemDevice

SCSIProtoolControllerForUnit SCSIProtoolControllerForUnit

ImplementationCapabilities

ElementCapabilities

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Array Profile

52

EXPERIMENTAL

The capabilities of the Array implementation are identified in an instance of
CIM_ImplementationCapabilities, which is associated to the top level Array ComputerSystem via
ElementCapabilities. This includes information on the capacity optimization techniques supported by the
Array.

EXPERIMENTAL

The various subprofiles indicated in Figure 6: "Array Package Diagram" cover other areas of functionality
like location, software/firmware versions, and access to the management interfaces of the array.

The base “Array” Profile only contains the CIM_ComputerSystem object representing the array. This
object is attached to the other subprofiles and packages through a set of associations.

The Block Services Package (see Clause 5: Block Services Package) supports configuration of the
storage using a QoS (Quality of Service) model. The model is further extended by the “Extent
Composition Subprofile” (see 14 Extent Composition Subprofile) to model the details of how the RAID

Figure 6 - Array Package Diagram

Location

Extent Composition

Disk Drive
Lite

LUN Mapping & Masking Service

Copy Services

Array Profile

Multiple
Computer

System

Access Points

Software

Job Control

Block Services Package

Device Credentials

PhysicalPackage Package

 HostedService

HostedService

ComputerSystemPackage

HostedAccessPoint

ComponentCS

BasedOn

ConcreteComponent

PhysicalElementLocation

InstalledSoftwareIdentity

OwningJobElement

Target Ports
HostedService

Block Server Performance

Initiator
Ports

Disk Sparing

Hosted
Access
Point

Replication
 Services

Thin Provisioning

Storage
Server

Asymmetry

HostedCollection

Storage
Element

Protection

Erasure

HostedCollection

HostedService

17

18

19

20

21

22

23

24

 Array Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 53

sets are composed. This subprofile supports the detailed configuration of storage by the selection of disk
drives and partitions that make-up the RAID sets.

Target Ports model the array ports that provide block data service to the host systems. These ports shall
be modeled.

The Generic Initiator Ports Profile (see 14 Generic Initiator Ports Profile) and the Disk Drive Lite
Subprofile (see 11 Disk Drive Lite Subprofile) are used to model the physical disk drives and how they are
attached to the array system. This part of the model is optional.

Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6, 30 Multiple Computer
System Subprofile models multiple controllers in a single array system. The model provides a way to
model failover and other redundant behavior of a multiple controller system. This subprofile is optional.

The Array Profile includes the “Copy Services” Subprofile to model and configure local and remote
snapshots, clones, mirrors, and other array based copying. The copy services will be enhanced in the
future to model remote replication. The enhancement is included as experimental in this version of SMI-S.
This part of the model is optional.

Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 31 Physical Package
Package describes the physical layout of the array and includes product identification information.

4.2 Health and Fault Management

Health and Fault management is described in the referenced subprofiles and packages.

4.3 Cascading Considerations

Not defined in this standard.

4.4 Supported Subprofiles and Packages

Table 1 describes the supported profiles for Array.

Table 1 - Supported Profiles for Array

Profile Name Organization Version Requirement Description

Access Points SNIA 1.3.0 Optional

Block Server Performance SNIA 1.6.1 Optional

Cluster SNIA 1.0.2 Optional Deprecated. See Multiple Computer System

Extra Capacity Set SNIA 1.0.2 Optional Deprecated. See Multiple Computer System

Disk Drive SNIA 1.0.2 Optional Deprecated. See Disk Drive Lite

Disk Drive Lite SNIA 1.6.0 Optional

Extent Mapping SNIA 1.0.2 Optional Deprecated. See Extent Composition

Extent Composition SNIA 1.6.0 Optional

Location SNIA 1.4.0 Optional

Software SNIA 1.4.0 Optional

Copy Services SNIA 1.5.0 Optional

Pool Manipulation
Capabilities and Settings

SNIA 1.02 Optional Deprecated. See Block Services

LUN Creation SNIA 1.0.2 Optional Deprecated. See Block Services

Device Credentials SNIA 1.3.0 Optional

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Array Profile

54

4.5 Methods of the Profile

None.

LUN Mapping and Masking SNIA 1.0.2 Optional Deprecated. See Masking and Mapping

Masking and Mapping SNIA 1.4.0 Optional

Group Masking and
Mapping

SNIA 1.5.0 Optional

Disk Sparing SNIA 1.5.0 Optional

Block Services SNIA 1.6.1 Mandatory

CKD Block Services SNIA 1.5.0 Optional Experimental.

Physical Package SNIA 1.5.0 Mandatory

Health SNIA 1.2.0 Mandatory

Multiple Computer System SNIA 1.2.0 Optional

Block Storage Views SNIA 1.6.0 Optional Experimental.

Volume Composition SNIA 1.5.0 Optional Experimental.

Job Control SNIA 1.5.0 Optional

Storage Element
Protection

SNIA 1.4.0 Optional Experimental.

Storage Server Asymmetry SNIA 1.4.0 Optional Experimental.

Erasure SNIA 1.2.0 Optional Experimental.

Thin Provisioning SNIA 1.6.0 Optional Experimental.

Replication Services SNIA 1.6.1 Optional Experimental.

Operational Power SNIA 1.5.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version 1.0.0

FC Target Ports SNIA 1.4.0 Support for at
least one is
mandatory.iSCSI Target Ports SNIA 1.6.0

SAS Target Ports SNIA 1.4.0 Experimental.

SB Target Ports SNIA 1.2.0

FC Initiator Ports SNIA 1.6.0

SAS Initiator Ports SNIA 1.4.0 Experimental.

ATA Initiator Ports SNIA 1.4.0 Experimental.

Backend Ports SNIA 1.0.2 Deprecated. See specific Initiator Ports

Indication SNIA 1.5.0 Support for at
least one is
mandatory.

Deprecated. See the SNIA Indications Profile

Indications SNIA 1.6.0 Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version 1.2.0

Table 1 - Supported Profiles for Array

Profile Name Organization Version Requirement Description

 Array Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 55

4.6 Use Cases

EXPERIMENTAL

4.6.1 Discover the Capacity Optimization Support in an Array

4.6.1.1 Summary

From a list of available Array devices, determine which devices support any capacity optimization
techniques.

4.6.1.2 Basic Course of Events

1) Administrator identifies an available array device.

2) Administrator determines if the array advertises implementation capabilities.

3) System responds with an implementation capabilities.

4) Administrator inspects the capacity optimization techniques supported by the array

4.6.1.3 Alternative Paths

none

4.6.1.4 Exception Paths

FAILED:

• The Array System does not report implementation capabilities

• The Array System reports implementation capabilities, but reports “none” for supported capacity
optimizations.

4.6.1.5 Triggers

Device selection for provisioning storage for an application.

4.6.1.6 Assumptions

The administrator has a list of candidate array system names for doing provisioning.

4.6.1.7 Preconditions

The systems are available.

EXPERIMENTAL

4.7 Registered Name and Version

Array version 1.6.0 (Autonomous Profile)

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Array Profile

56

4.8 CIM Elements

Table 2 describes the CIM elements for Array.

Table 2 - CIM Elements for Array

Element Name Requirement Description

4.8.1 CIM_ComputerSystem (Top Level System) Mandatory 'Top level' system that represents the whole array.
Associated to RegisteredProfile.

4.8.2 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Experimental. Associates the conformant Array
ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

4.8.3 CIM_FilterCollection (Array Predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

4.8.4 CIM_FilterCollection (Array
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental. This is a collection of Lifecycle
IndicationFilters defined by the Array Profile.

4.8.5 CIM_HostedCollection (Array to
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental.

4.8.6 CIM_HostedCollection (Array to predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

4.8.7 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

4.8.8 CIM_IndicationFilter (Array System Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
array system instance.

4.8.9 CIM_IndicationFilter (Array System Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the removal of a new
array system instance.

4.8.10 CIM_MemberOfCollection (Array
ProfileSpecificLifecycleIndicationFilterCollection to Array
Filters)

Optional Experimental. This associates the Array
ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Array Profile.

4.8.11 CIM_MemberOfCollection (Predefined Filter
Collection to Array Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Array predefined FilterCollection to the predefined
Filters supported by the Array.

4.8.12 CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)

Conditional Conditional requirement: Elements that are mandatory if
Masking and Mapping is not implemented.

4.8.13 CIM_ProtocolControllerForUnit (Storage volumes
for All LUNs View)

Conditional Conditional requirement: Elements that are mandatory if
Masking and Mapping is not implemented.

4.8.14 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU) Optional A SCSI Logical Unit that exists only for management of
the array.

75

76

77

78

79

80

 Array Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 57

4.8.1 CIM_ComputerSystem (Top Level System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The
RegisteredProfile instance shall have RegisteredName set to 'Array', RegisteredOrganization set to
'SNIA', and RegisteredVersion set to '1.6.0'.

Table 3 describes class CIM_ComputerSystem (Top Level System).

4.8.15 CIM_SCSIProtocolController (All LUNs View) Conditional Conditional requirement: Elements that are mandatory if
Masking and Mapping is not implemented.

4.8.16 CIM_SystemDevice (System to
SCSIArbitraryLogicalUnit)

Conditional Conditional requirement: Elements that are mandatory if
SCSIArbitraryLogicalUnit is instantiated. This association
links SCSIArbitraryLogicalUnit to the scoping system.

4.8.17 CIM_SystemDevice (System to
SCSIProtocolController)

Conditional Conditional requirement: Elements that are mandatory if
Masking and Mapping is not implemented. This
association links SCSIProtocolController to the scoping
system.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Addition of a new array instance. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 4.8.8 CIM_IndicationFilter (Array
System Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of an array instance. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 4.8.9 CIM_IndicationFilter (Array
System Deletion).

Table 3 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the array. Eg IP address.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory

IdentifyingDescriptions C Mandatory

OperationalStatus Mandatory Overall status of the array.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to operation as a storage
array. Values are 3 and 15.

Table 2 - CIM Elements for Array

Element Name Requirement Description

81

82

83

84

85

86
87

88

Array Profile

58

4.8.2 CIM_ElementCapabilities (ImplementationCapabilities to System)

Experimental. Associates the conformant Array ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 4 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

4.8.3 CIM_FilterCollection (Array Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. An Array
implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 5 describes class CIM_FilterCollection (Array Predefined FilterCollection).

4.8.4 CIM_FilterCollection (Array ProfileSpecificLifecycleIndicationFilterCollection)

Experimental. This is a collection of Lifecycle IndicationFilters defined by the Array Profile.

Requirement: Optional

PrimaryOwnerContact M Optional Contact a details for owner.

PrimaryOwnerName M Optional Owner of the array.

Table 4 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Array ComputerSystem that has
ImplementationCapabilities.

Table 5 - SMI Referenced Properties/Methods for CIM_FilterCollection (Array Predefined FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Array:Predefined'.

Table 3 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

89

90

91

92

93

94

95

96

97
98

99

100

101

 Array Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 59

Table 6 describes class CIM_FilterCollection (Array ProfileSpecificLifecycleIndicationFilterCollection).

4.8.5 CIM_HostedCollection (Array to ProfileSpecificLifecycleIndicationFilterCollection)

Experimental.

Requirement: Optional

Table 7 describes class CIM_HostedCollection (Array to
ProfileSpecificLifecycleIndicationFilterCollection).

4.8.6 CIM_HostedCollection (Array to predefined FilterCollection)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 8 describes class CIM_HostedCollection (Array to predefined FilterCollection).

4.8.7 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Table 6 - SMI Referenced Properties/Methods for CIM_FilterCollection (Array ProfileSpecificLifecycleIndi-
cationFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.13
CIM_FilterCollection (StaticFilterCollection).

CollectionName Mandatory The value of CollectionName shall be
'SNIA:Array:ProfileSpecificLifecycleIndicationFilterCollection'.

Table 7 - SMI Referenced Properties/Methods for CIM_HostedCollection (Array to ProfileSpecificLifecycle-
IndicationFilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the ProfileSpecificLifecycleIndicationFilterCollection for the
Array.

Antecedent Mandatory Reference to the 'Top level' Array System.

Table 8 - SMI Referenced Properties/Methods for CIM_HostedCollection (Array to predefined FilterCollec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Array.

Antecedent Mandatory Reference to the 'Top level' Array System.

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Array Profile

60

Requirement: Optional

Table 9 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

4.8.8 CIM_IndicationFilter (Array System Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new array
system instance. This would represent the addition of a controller computer system to the array. This is a
special case of the CIM_IndicationFilter (pre-defined) class as defined in the Indication Profile.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 10 describes class CIM_IndicationFilter (Array System Creation).

Table 9 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapabil-
ities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimiz
ations

Mandatory This array of strings lists the capacity optimization techniques that are
supported by the implementation. Valid string values are "none" |
"SNIA:Thin Provisioning" | "SNIA:Data Compression" | "SNIA:Data
Deduplication".

SupportedViews Mandatory This array of strings lists the view classes that are supported by the
implementation. Valid string values are "none" | "SNIA:VolumeView" |
"SNIA:DiskDriveView" | "SNIA:ExposedView" |
"SNIA:MaskingMappingView" | "SNIA:MappingProtocolControllerView" |
"SNIA:StoragePoolView" | "SNIA:ReplicaPairView" .

Table 10 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Array:SystemCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

118

119

120

121

122

123

124
125
126

127

128

129

130

131

132

 Array Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 61

4.8.9 CIM_IndicationFilter (Array System Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the removal of a new array
system instance. This would represent the removal of a controller computer system from the array. This is
a special case of the CIM_IndicationFilter (pre-defined) class as defined in the Indication Profile.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 11 describes class CIM_IndicationFilter (Array System Deletion).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_ComputerSystem.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 11 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Array:SystemDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_ComputerSystem.

Table 10 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Creation)

Properties Flags Requirement Description & Notes

133

134
135
136

137

138

139

140

141

142

Array Profile

62

4.8.10 CIM_MemberOfCollection (Array ProfileSpecificLifecycleIndicationFilterCollection to Array
Filters)

Experimental. This associates the Array ProfileSpecificLifecycleIndicationFilterCollection to the Filters
defined by the Array Profile.

Requirement: Optional

Table 12 describes class CIM_MemberOfCollection (Array
ProfileSpecificLifecycleIndicationFilterCollection to Array Filters).

4.8.11 CIM_MemberOfCollection (Predefined Filter Collection to Array Filters)

Experimental. This associates the Array predefined FilterCollection to the predefined Filters supported by
the Array.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 13 describes class CIM_MemberOfCollection (Predefined Filter Collection to Array Filters).

4.8.12 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 12 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Array ProfileSpecificLifecy-
cleIndicationFilterCollection to Array Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Array ProfileSpecificLifecycleIndicationFilterCollection.

Member Mandatory Reference to the IndicationFilters defined by the Array Profile.

Table 13 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Array Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Array predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Array.

Table 11 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Array System Deletion)

Properties Flags Requirement Description & Notes

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

 Array Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 63

Table 14 describes class CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View).

4.8.13 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 15 describes class CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View).

4.8.14 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 14 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI Arbitrary logical unit.

Table 15 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for All
LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block Services
StorageVolume).

159

160

161

162

163

164

165

166

167

168

169

170

Array Profile

64

Table 16 describes class CIM_SCSIArbitraryLogicalUnit (Arbitrary LU).

4.8.15 CIM_SCSIProtocolController (All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 17 describes class CIM_SCSIProtocolController (All LUNs View).

4.8.16 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if SCSIArbitraryLogicalUnit is instantiated.

Table 16 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifer.

ElementName Mandatory User-friendly name.

Name Mandatory

OperationalStatus Mandatory

Table 17 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

171

172

173

174

175

176

177

178

179

180

181

182

 Array Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 65

Table 18 describes class CIM_SystemDevice (System to SCSIArbitraryLogicalUnit).

4.8.17 CIM_SystemDevice (System to SCSIProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 19 describes class CIM_SystemDevice (System to SCSIProtocolController).

STABLE

Table 18 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogical-
Unit)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 19 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

183

184

185

186

187

188

189

Array Profile

66

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 67

STABLE

Clause 5: Block Services Package

5.1 Description

5.1.1 General

Many devices and applications provide their storage capacity to external devices and applications (block
consumers) through block-based I/O. This subprofile defines a standard expression of existing storage
capacity, the assignment of capacity to StoragePools, and allocation of capacity to be used by external
devices or applications.

A block is:

• The unit in which data is stored and retrieved on disk and tape devices.

• A unit of application data from a single information category that is transferred within a single sequence.

5.1.2 Storage Capacity States

Figure 7: "Storage Capacity State" illustrates the state of a block of storage.

Each block of capacity within a storage device or application has a state. StorageVolumes and
LogicalDisks, the storage elements described in this section, are distinct groupings of blocks. An
unconfigured storage device or application may not have its capacity organized into concrete
StoragePools. All blocks within that unconfigured device or application start in an unassigned state. Once
a block is a member of a concrete StoragePool, storage capacity can be assigned. Once a block is a
member of a storage element, like a StorageVolume or LogicalDisk, the storage capacity has been
allocated for use by a block consumer. Once a block is visible to one or more block consumers, that
capacity is exposed.

Figure 7 - Storage Capacity State

Unassigned Assigned

Allocated Exposed

Create concrete Pool

create storage element

Make
externally
visible

Start

End

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Block Services Package

68

5.1.3 StoragePools

5.1.3.1 General

A StoragePool is a storage element; its storage capacity has a given set of capabilities. Those
‘StorageCapabilities’ indicate the 'Quality of Service' requirements that can be applied to objects created
from the StoragePool.

A StoragePool is a mandatory part of modeling disk storage systems that support the Block Services
package. However, user manipulation of StoragePools is optional and may not be supported by all disk
storage systems. This profile defines the support required to expose functions for creating and modifying
StoragePools.

StoragePools are scoped relative to the ComputerSystem (indicated by the HostedStoragePool
association). Objects created from a StoragePool have the same Computer System scope.

Child objects (e.g., StorageVolumes, LogicalDisks, or StoragePools) created from a StoragePool are
linked back to the parent StoragePool using an AllocatedFromStoragePool association.

There are two properties of StoragePools that describe the size of the ‘underlying’ storage:

• TotalManagedStorage describes the total storage in the StoragePool.

• RemainingManagedStorage describes the storage currently remaining in the StoragePool.

The Usage property indicates if a storage pool is reserved for use by the array itself; or if the storage pool
is reserved for certain operations such as "Reserved for Local Replication Services".

5.1.3.2 Primordial StoragePool

A primordial StoragePool contains local and/or imported storage that is managed by the system. A
primordial StoragePool, by definition, shall never be allocated from any other StoragePool of that system.
At least one primordial StoragePool shall always exist on the block storage system.

The storage capacity is drawn directly or indirectly from a primordial StoragePool to create concrete
StoragePools. StorageVolumes and LogicalDisks are allocated from concrete StoragePools.

The sum of TotalManagedSpace attributes for all primordial StoragePools shall be equal to the total size
of the managed storage capacity of the storage system.

The sum of RemainingManagedSpace attributes for all primordial StoragePools shall be used to
determine the amount of capacity of the block storage system that is not assigned to concrete
StoragePools.

The primordial property shall be true for primordial StoragePools.

5.1.3.3 Concrete StoragePool

A concrete StoragePool is a type of StoragePool. This concrete StoragePool is the only type of
StoragePool created or modified by behaviors described in this package. A concrete StoragePool
subdivides the storage capacity available in a block server to enable creation or modification of
StorageVolumes and LogicalDisks. Concrete StoragePools can be used to assign capacity based on such
factors as QoS, cost per megabyte, or ownership of storage. A concrete StoragePool may aggregate the
capacity of one or many RAID groups or RAID ranks. A RAID group or rank may be created when the
StorageVolume or LogicalDisk is created.

5.1.4 Blocks, Metadata, and Capacity Reported

This subprofile uses the term metadata to signify the capacity drawn for the creation of stripes, data
copies, and similar items. The capacity removed for such constructs when creating storage elements, like
StoragePools, StorageVolumes, and LogicalDisks, is reported in the difference between the capacity of

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 69

the parent StoragePool and the capacity of the child storage element allocated from that parent. The
TotalManagedSpace property represents the capacity that may be used to create or expand child storage
elements. The RemainingManagedSpace property represents capacity left to create a new storage
element or expand an existing storage element. One may use this profile to calculate capacity used for
metadata.

There is likely to be a difference between a) the capacity calculated by adding up the capacity of all the
disks, as reported by the manufacturers, or by adding up the LUNs consumed by a block server, as
reported by the block server that exposes them, and b) the capacity that can be used to create other
storage organizations or constructs from this capacity, like StoragePools, StorageVolumes, and
LogicalDisks. This difference in capacity can be used for disk formatting, for example. The difference in
the capacity of the primordial StoragePool and the capacity used to produce the primordial StoragePool is
not reported through this subprofile.

5.1.5 StoragePool Management Instance Diagram

Figure 8 shows an instance diagram for StoragePool manipulation.

5.1.6 StoragePool, StorageVolume and LogicalDisk Manipulation

5.1.6.1 General

StorageVolumes are allocations of storage capacity that shall be exposed from a system through an
external interface. In the CIM class hierarchy, they are a subclass of a StorageExtent. In SCSI terms,
they are logical units.

LogicalDisks are the manifestations of the consumption of storage capacity on a general purpose
computer, i.e., a host, as revealed by the operating system or a Volume Manager. In the CIM class

Figure 8 - StoragePool Manipulation Instance Diagram

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

SystemDevice

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

DeleteStoragePool()

HostedService

StorageConfigurationCapabilities

ElementCapabilites

StorageSetting

ElementSettingData

StorageSettingsGeneratedFromCapabilities

AllocatedFromStoragePool

StorageSettingWithHints

StorageSettingsAssociatedToCapabilities

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Block Services Package

70

hierarchy, they are also a subclass of a StorageExtent. LogicalDisks are a mandatory part of modeling
host-based StorageVolume managers.

StorageVolumes and LogicalDisks are consumable storage capacity. These storage elements are the
only StorageExtents available to consumers of the block service and a block device.

However, creation or modification of StorageVolumes or LogicalDisks from StoragePools is optional and
may not be supported by a given disk storage system. This subprofile defines the support mandatory if
the storage system exposes functions for creating StorageVolumes from StoragePools.

EXPERIMENTAL

The Usage property indicates if a volume or a logical disk is reserved for a special purpose. For example,
a volume may be reserved for use by the array itself ("Reserved by the ComputerSystem"), or a volume
may have been “set aside” for use by the Migration Services, in which case the usage property of the
volume is set to " Reserved by Migration Services".

Figure 9 illustrates a situation where there are two StoragePools present in an implementation. The top
most StoragePool supports the same capabilities as is declared for the entire implementation. The bottom
most StoragePool supports the same capabilities as expressed by a different
StorageConfigurationCapabilities instance, but with an expanded set of capabilities. For example, the
implementation may generally support the creation of StoragePools from StoragePools, but the bottom
most StoragePool in the diagram does not.

Some implementations may impose conditions on when a StorageVolume may be deleted by a user. One
example of this is that the storage device may implement a rule that StorageVolumes may only be deleted
in the reverse order of creation. Under this rule, all StorageVolumes except the last one created would be
marked as not being able to be deleted. Some conditions where a StorgeVolume can not be deleted may

Figure 9 - Capabilities Specific to a StoragePool

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool
SystemDevice

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

DeleteStoragePool()

HostedService

StorageConfigurationCapabilities

Least Common Set

ElementCapabilites

StorageSetting

ElementSettingData

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

ElementCapabilities

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationCapabilities

LCS plus pool spec. cap.

ElementCapabilities

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 71

be related to the Usage property value of the StorageVolume. However this is determined by the
implementation.

To enable clients to know which volumes may be deleted, a new property, CanDelete, has been added to
SNIA_StorageVolume class. If SNIA_StorageVolume.CanDelete is null or set to true, then the client shall
be able to delete the volume, subject to any additional constraints that may be defined in the profiles that
would otherwise prevent the volume from being deleted. If SNIA_StorageVolume.CanDelete is set to
false, then any client attempt to delete the volume shall be denied (failed) by the implementation, even if
there are no constraints on that volume.

In the context of this profile, the value of CanDelete shall be determined by the implementation and shall
not be modifiable by the client. The reason is that there are implementation-specific rules that must be
followed and that clients are not allowed to change, even outside the SMI-S.

The value of CanDelete shall be set or cleared dynamically. For example, in the Pools from Volumes
case, if a volume that is contributing capacity to a pool is actively in use, it can not be deleted; however,
if the same volume that is no longer contributing capacity to a pool can be deleted. In other words, the
expectation is that the value of CanDelete shall change dynamically.

5.1.6.2 StoragePool Manipulation Methods

The StorageConfigurationService, in conjunction with the capacity grouping concept of a StoragePool,
allows SMI-S clients to configure StoragePools within block storage systems without specific knowledge
about the block storage system configuration. The service has the following StoragePool manipulation
methods:

• CreateOrModifyStoragePool: Create a StoragePool with a set of capabilities defined by the input
StorageSetting, with possible sources being other StoragePool(s) or StorageExtents. Or modify a
StoragePool to increase or decrease its capacity.

• DeleteStoragePool: Delete a StoragePool and return the freed-up storage to the underlying entities.

5.1.6.3 Storage Element Manipulation Methods

The StorageConfigurationService allows SMI-S clients to configure block storage systems with
StorageVolumes (ex. LUNs) without specific knowledge about the storage system capacity. The service
has the following methods for storage element manipulation:

• CreateOrModifyElementFromStoragePool: Create StorageVolume or LogicalDisk, possibly with a specific
StorageSetting, from a source StoragePool. Also modify a StorageVolume or LogicalDisk to increase or
decrease its capacity.

• CreateElementsFromStoragePools: Create one or more StorageVolumes or LogicalDisks in a single method
call, possibly with a specific StorageSetting, from StoragePools.

EXPERIMENTAL

• CreateOrModifyElementFromElements: Create a StorageVolume or LogicalDisk using ComponentExtents of
a parent and source StoragePool. Also alter the set of member StorageExtents of a StorageVolume or
LogicalDisk or change the consumption of an existing set of member StorageExtents.

• ReturnToStoragePool: Return an element previously created with CreateOrModifyElementFromStoragePool
to the originating StoragePool.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

Block Services Package

72

EXPERIMENTAL

• ReturnElementsToStoragePool: In a single method call, return one or more elements previously created with
CreateOrModifyElementFromStoragePool or CreateElementsFromStoragePools to the originating
StoragePool.

• To locate Pools, Volumes, or Logical Disks based on their current usage, use the method
StorageConfigurationService.GetElementsBasedOnUsage.

EXPERIMENTAL

5.1.6.4 Storage Capability Methods

The StorageCapabilities instances provide the ability to create and modify settings for use in
StorageVolume creation using the following methods (part of the StorageCapabilities class):

• CreateSetting: Creates a setting consistent with the StorageCapabilities, may be modified before use in
creating a StoragePool, StorageVolume, or LogicalDisk.

• GetSupportedStripeLengths and GetSupportedStripeLengthRange: Returns the possible stripe lengths for
that capability

• GetSupportedStripeDepths and GetSupportedStripeDepthRange: Returns the possible stripe depths for that
capability

• GetSupportedParityLayouts: Returns the possible parity layouts, rotated or non-rotated, for that capability.

See 5.5.3 for details on the associations from Setting to Capabilities.

5.1.6.5 Storage Element Size Retrieval

The StoragePool instances provide the ability to retrieve the possible sizes for the StorageVolume or
LogicalDisk creation or modification given a StorageSetting as a goal:

• GetSupportedSizes: Returns a list of discrete sizes, given a goal. Also can return the discontiguous capacity
in the StoragePool not yet assigned to a concrete StoragePool or allocated to a storage element.

• GetSupportedSizeRange: Returns the range of possible sizes, given a goal.

• GetAvailableExtents: Returns an array of StorageExtent references that matches a given goal and are
components of the StoragePool and are not already members of an existing consumable storage element,
child StoragePool, StorageVolume, or LogicalDisk.

5.1.7 Declaring Storage Configuration Options

If no StorageConfigurationService is present, then the implementation offers no standard configuration
capability (see section 5.1.4 "Blocks, Metadata, and Capacity Reported"). If the implementation includes
an instance of StorageConfigurationService, it shall also instantiate exactly one
StorageConfigurationCapabilities instance associated to the service, referred to as the Global
StorageConfigurationCapabilities. The global StorageConfigurationCapabilities shall identify the
capabilities of the implementation unless overridden by other provisions. For example, SMI-S does not
allow creation of StorageVolumes (or LogicalDisks) from Primordial StoragePools. So, even if the
StorageConfigurationCapabilities indicates that creation of StorageVolumes are supported, this is
overridden by the SMI-S rule that StorageVolumes (or LogicalDisks) shall not be created from Primordial
Pools.

The Global StorageConfigurationCapabilities defines the overall capabilities that are supported by the
implementation. This instance of StorageConfigurationService shall represent the methods and

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 73

capabilities of the entire implementation. The Global StorageConfigurationService instance shall state
what operation can be done at some time on some set of StoragePools, even if the implementation does
not permit some of these operations for some subset of all StoragePools. For example, if create volume is
allowed for some StoragePool, then the Global instance shall advise that the create volume operation is
supported.

EXPERIMENTAL

Each individual StoragePool may limit these capabilities using another instance of the
StorageConfigurationCapabilities associated to that StoragePool via ElementCapabilities. This instance
of StorageConfigurationCapabilities represents what configuration operations are permitted for that
StoragePool. The StoragePool specific instance of StorageConfigurationCapabilities shall not be
associated to the StorageConfigurationService also. If no StorageConfigurationCapabilities are
instantiated for a StoragePool, the client can assume that the Global StorageConfigurationCapabilities
apply.

EXPERIMENTAL

Table 20 defines how the SupportedSynchronousActions and SupportedAsynchonousActions array
values map to methods in the StorageConfigurationService class. The presence of an ‘Action’ from Table
20 in the SupportedSynchronousActions array indicates that the associated ‘SCS Method’ does not
produce a Job as a side-effect. Likewise, the presence of an ‘Action’ from Table 20 in the
SupportAsynchronousActions array indicates that the associated ‘SCS Method’ may produce a Job as a
side-effect and a client may use the Job to monitor the progress of the work being done. If an ‘Action”
may be present in both arrays, the implementation may or may not produce a Job as a side effect.

EXPERIMENTAL

When a StorageConfigurationCapabilities is associated to a StoragePool, the application of the capability
is in the context of the StoragePool to which the capabilities are associated. Table 20 also gives the
specific meanings of a supported actions in the context of the associated pool (“Pool x”).

EXPERIMENTAL

Table 20 - Mapping: Supported Actions to Methods

Action Associated to “Pool x” Meaning SCS Method

2 “Storage Pool Creation”,
4 “Storage Pool Modification”

“Pool x” may be used as the InPools parameter of
CreateOrModifyStoragePool

CreateOrModifyStoragePool

3 “Storage Pool Deletion“ “Pool x” may be used as the Pool parameter of
DeleteStoragePool

DeleteStoragePool

5 “Storage Element Creation“,
7 “Storage Element Modification“

“Pool x” may be used as the InPool parameter of
CreateOrModifyElementFromStoragePool

CreateOrModifyElementFromStorageP
ool

6 “Storage Element Return“ No meaning specified. ReturnToStoragePool

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

Block Services Package

74

The SupportedStorageElementTypes array declares what type of storage element may be created or
modified by this implementation. For example, support of the StoragePool methods
(CreateOrModifyStoragePool and DeleteStoragePool) implies support of creation or modification of
storage elements of type StoragePool.

12 “Storage Element from Element

Creation“
A Storage Element may be created from
StorageExtents that are components of "Pool x"
(the StorageExtents have a ConcreteComponent
or AssociatedComponentExtent association to
"Pool x").

CreateOrModifyElementFromElements

13 “Storage Element From Element

Modification“
"Pool x" may be used for Storage Element
modification using
CreateOrModifyElementFromElements. "Pool x"
would be TheElement parameter of the method
call.

14 "Element Usage Modification" No meaning specified. RequestUsageChange

15 "StoragePool Usage Modification" “Pool x” may be used as the TheElement
parameter of RequestUsageChange

22 “Multiple Storage Element Creation” “Pool x” may be used as the InPool parameter of
CreateElementsFromStoragePools

CreateElementsFromStoragePools

23 “Multiple Storage Element Return” No meaning specified. ReturnElementsToStoragePool

Table 20 - Mapping: Supported Actions to Methods

Action Associated to “Pool x” Meaning SCS Method

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 75

EXPERIMENTAL

When a StorageConfigurationCapabilities are associated to a StoragePool, the valid values of properties
differ between Concrete StoragePools and Primordial StoragePools. The valid values and their
interpretation are summarized in Table 21.

EXPERIMENTAL

Table 21 - Valid Values for StorageConfigurationCapabilities associated to a Pool

ConfigurationCapabilities
Property

Valid Values for Primordial
Pools

Valid Values for Concrete Pools

SupportedStorageElementTypes none “2” (StorageVolume) or “4” (LogicalDisk)

Experimental: If Thin Provisioning is supported then
the list also includes: "5"
(ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool) , "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool)

SupportedStoragePoolFeatures "2" (InExtents) or "3" (Single InPool)

NOTE: This is in reference to creation of
pools from the Primordial Pool.

"2" (InExtents), "3" (Single InPool), "5" (Storage
Pool QoS Change), "6" (Storage Pool Capacity
Expansion) or "7" (Storage Pool Capacity
Reduction)

NOTE: The first two values is in reference to
creation of pools from the Concrete Pool. The
second three are in reference to the associated pool
(e.g., expansion of the pool associated to this
capabilities).

SupportedStorageElementFeatur
es

none "3" (StorageVolume Creation) or "8" (LogicalDisk
Creation)

SupportedSynchronousActions "2" (Storage Pool Creation), "12"
(Storage Element from Element
Creation) or "15" (StoragePool Usage
Modification)

"2" (Storage Pool Creation), "3" (Storage Pool
Deletion), "4" (Storage Pool Modification), "5"
(Storage Element Creation), "12" (Storage Element
from Element Creation), "13" (Storage Element from
Element Modification) or 15" (StoragePool Usage
Modification), “22” (Multiple Storage Element
Creation), “23” (Multiple Storage Element Return),
“24” (Storage Element from Multiple Pools Creation)

SupportedAsynchronousActions "2" (Storage Pool Creation), "12"
(Storage Element from Element
Creation) or "15" (StoragePool Usage
Modification)

"2" (Storage Pool Creation), "3" (Storage Pool
Deletion), "4" (Storage Pool Modification), "5"
(Storage Element Creation), "12" (Storage Element
from Element Creation), "13" (Storage Element from
Element Modification) or 15" (StoragePool Usage
Modification), “22” (Multiple Storage Element
Creation), “23” (Multiple Storage Element Return),
“24” (Storage Element from Multiple Pools Creation)

SupportedStorageElementUsage none none

ClientSettableElementUsage none none

SupportedStoragePoolUsage any any

ClientSettablePoolUsage any any

233

234

235

Block Services Package

76

EXPERIMENTAL

The arrays SupportedStorageElementUsage and SupportedStoragePoolUsage express what usage
values apply to the storage elements types. That is, the storage element shall have one of the stated
usages.

The arrays ClientSettableElementUsage and ClientSettablePoolUsage express what usage values may
be manipulated by SMI-S Clients. That is, only storage elements of the given type may have their usage
change changed.

EXPERIMENTAL

The SupportedStoragePoolFeatures array declares what StoragePool behavior is supported, as shown in
Table 22.

EXPERIMENTAL

Support for 3 “Single InPools” is fully defined in this specification, but 4 “Multiple InPools” is not fully
defined and is considered experimental.

EXPERIMENTAL

The SupportedStorageElementFeatures array declares which special features the configuration methods
support, shown in Table 23.

Table 22 - SupportedStoragePoolFeatures Array

Supported StoragePool Behavior Explanation

2 “InExtents” A StoragePool may be created from StorageExtents.

3 “Single InPools”, 4 “Multiple InPools" A StoragePool may be the source of capacity for
StoragePool creation or modification, i.e., concrete
StoragePools may be created from other StoragePools.

5 "StoragePool QoS Change" A new setting may be used to modify the quality of service
of a StoragePool.

6 "StoragePool Capacity Expansion" A StoragePool may be expanded

7 "StoragePool Capacity Reduction" A StoragePool may be shrunk. This operation may be
destructive

Table 23 - SupportedStoragePoolFeatures Array

Supported Special Features Explanation

3 "StorageVolume Creation", 5 "StorageVolume
Modification"

The SMI-S implementation can create or modify
StorageVolumes respectively.

8 "LogicalDisk Creation", 9 "LogicalDisk Modification" The SMI-S implementation can create or modify
LogicalDisks respectively.

236

237

238

239

240

241

242

243

244

245

246

247

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 77

Support for 6 “Single InPools” is fully defined in this specification, but 7 “Multiple InPools” is not fully
defined and is considered experimental.

EXPERIMENTAL

The SupportedStoragePoolFeatures array indicates which storage elements may be manipulated by SMI-
S Clients and thereby which elements can be modified in the ways expressed by these features.

5.1.8 StorageVolume Creation Instance Diagram

Figure 10: "StorageVolume Creation Instance Diagram" shows an instance diagram from StorageVolume
creation.

6 "Single InPool", 7 "Multiple InPools" If a SMI-S implementation supports the creation or
modification of storage elements, then the implementation
shall support this creation or modification of concrete
StoragePools from either a single StoragePool only or
from multiple input StoragePools.

11 "Storage Element QoS Change", 12 "Storage Element
Capacity Expansion", 13 "Storage Element Capacity
Reduction

The SMI-S implementation can change the quality of
service, grow the capacity of a StorageVolume or
LogicalDisk, and shrink the capacity of a StorageVolume
or LogicalDisk respectively.

3 "StorageVolume Creation", 5 "StorageVolume
Modification"

The SMI-S implementation can create or modify
StorageVolumes respectively.

Figure 10 - StorageVolume Creation Instance Diagram

Table 23 - SupportedStoragePoolFeatures Array

Supported Special Features Explanation

StorageVolume

DurableName:
VPD pg 83 ID

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

AllocatedFromStoragePool

ComputerSystem

HostedStoragePool

StorageCapabilities

CreateSetting()

ElementCapabilities

AllocatedFromStoragePool

StorageSetting

SystemDevice

StorageConfigurationService

CreateOrModifyElementFrom StoragePool()
ReturnToStoragePool()

HostedService

StorageConfigurationCapabilities

ElementCapabilitesElementSettingData

248

249

250

251

Block Services Package

78

5.1.9 Backward Compatibility

This package is designed to be backward compatible with the “Pool Manipulation Capabilities, and
Settings” Subprofile and the “LUN Creation” Subprofile from SMI-S 1.0.x. These subprofiles are
deprecated. The Block Services package subsumes all the functionality from these subprofiles. However,
to maintain backward compatibility, implementations of this package produce RegisteredProfile instances
for these deprecated subprofiles as supporting SMI-S 1.0.3 with one exception. If the BlockServices
implementation produces LogicalDisks and not StorageVolumes, then advertising support for these
deprecated subprofiles is discouraged. If the implementation supports SLP and the deprecated subprofile
RegisteredProfile instances are produced, then these deprecated subprofiles shall be advertised via SLP.
See Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 40, "Server Profile".

EXPERIMENTAL

Since the Usage property on StoragePool, StorageVolume, or LogicalDisk did not exist in SMI-S 1.1 and
prior versions of SMI-S, the Usage property may be Null. A client may try to utilize a storage element that
is reserved for a restricted usage. In this case, the operation may fail because the supplied volume can
not be used for this purpose or as a target for the operation.

EXPERIMENTAL

IMPLEMENTED

SMI-S 1.3. added the ability for an implementation to have the configuration capabilities of a given
StoragePool to be more restrictive than what is permitted globally by that implementation. If a given
StoragePool cannot support an operation advised as permitted by the global
StorageConfigurationCapabilities, then the implementation shall advise clients that attempt the creation
or modification of storage elements that there is no capacity for these operations. In order the client that
support earlier version of SMI-S are not confused, the result of GetSupportSizes(),
GetSupportSizeRange(), and GetAvailableExtents() shall report no available capacity, in the form of no
sizes reports or no extents reports, for the StoragePools for which creation or modification operations are
not permitted. Previous to SMI-S 1.3., the "In Use" return value was not explained. With SMI-S 1.3., this
return code was defined. This code is used to communicate why a storage element may not be deleted.

IMPLEMENTED

5.1.10 Capacity Management

Capacity characteristics of storage systems vary greatly in cost and performance. Storage capacity may
need to be partitioned. StoragePools provide a means to aggregate this storage according to
characteristics determined by the storage administrator or by the factory when the storage system is
assembled.

A StoragePool is an aggregation of storage suitable for configuration and allocation or “provisioning”. A
StoragePool may be preformatted into a form (such as a RAID group) that makes StorageVolume
creation easier.

StoragePools can be drawn from a StoragePool; the result is indicated with the
AllocatedFromStoragePool association).

A StoragePool has a set of capabilities held in the StorageCapabilities class. These capabilities reflect
the configuration parameters that are possible for elements created from this StoragePool. The
StorageCapabilities define, in terms common across all storage system implementation, which

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 79

characteristics an administrator can expect from the storage capacity. These capabilities are expressed
in ranges. The storage implementation can delineate the capabilities and define the ranges of these
capabilities, as appropriate. Some implementations may require several narrowly defined capabilities,
while others may be more flexible.

The capabilities expressed by the storage system can change over time. The number of primordial
StoragePools can also change over time.

These storage capabilities are given the scope of the storage system when they are associated to the
StorageConfiguratonService or the scope of a single StoragePool when associated to same. The
capabilities expressed at the service scope are equal to the union of all primordial StoragePool
capabilities. The capabilities can also be given the scope of a concrete StoragePool.

The storage administrator has the choice of any capability expressed by the storage system. The
administrator should use this opportunity to partition the capacity. Once storage elements are drawn from
the StoragePool, the administrator can be assured that the elements produced will have the capabilities
previous defined.

The model allows for automation of the allocation process. An automaton can use the capabilities
properties to search across subsystems for storage providing desired capabilities and then create
StoragePools and/or storage elements as necessary. Inventories may be made of the capacity by
capabilities.

The model also provides a means by which some common characteristics of all available storage systems
can be inventoried and managed. Note that the storage system will differ in other significant ways, and
these characteristics can also be the basis for capacity pooling decisions. A sample configuration is
illustrated in Figure 11: "Storage Configuration".

Figure 11 - Storage Configuration

Cluster

StorageSystem

StorageConfigurationService

ConcreteJob

StoragePool

StorageVolume

AffectedJobElement

OwningJobElement

AffectedJobElement

Describes range of
capabilities of Pools/Volumes
that can be created
with the Service

StorageCapabilities

Element
Capabilities

HostedService

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

Block Services Package

80

See Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 26 Job Control
Subprofile for details on the usage of the StorageConfigurationJob, AssociatedStorageConfigurationJob,
and OwningJobElement associations.

The definition of storage capabilities intentionally avoids vendor specific details of StorageVolume
configuration such as RAID types. Although RAID types imply performance and availability levels, these
levels cannot be easily compared between vendor implementation—particularly in comparisons with
reliability of non-RAID storage (i.e., certain virtualization appliances). There are capabilities of reliability
and availability other than data redundancy. The StorageSetting class is provided by clients to describe
the desired configuration of the allocated storage. In general, the types of parameters exposed and
controlled via the StorageCapabilities/StorageSetting classes are:

• NSPOF (No Single Point of Failure). Indicates whether the StoragePool can support storage configured with
No Single Points of Failure within the storage system. This parameter does not include the path from the
system to the host.

• Data Redundancy. Describes the number of complete copies of data maintained. Examples include RAID5
where one copy is maintained and mirroring where two or more copies are maintained.

• Package Redundancy. Describes how many physical components (packages), such as disk drives, can fail
without data loss (including a spare, but not more than a single global spare). Examples include RAID5 with a
Package Redundancy of 1, RAID6 with 2, RAID6 with 2 global (to the system) spares would be 3.

• ExtentStripeLength. Describes the number of underlying StorageExtents across which data is striped in the
common striping-based storage organizations. Also the number of 'members' or 'columns'. For non-striped
organizations (e.g., mirror or JBOD), the ExtentStripeLength shall be 1.

• UserDataStripeDepth. Describes the number of bytes forming a stripe in common striping-based storage
organizations. The stripe is defined as the size of the portion of a stripe that lies on one StorageExtent.
ExtentStripeLength times UserDataStripeDepth yields the size of one stripe of user data.

• ParityLayout. Specifies whether a parity-based storage organization is using rotated or non-rotated parity.

Package Redundancy and Data Redundancy values associated to RAID levels are indicated in Table 24.

5.1.11 Mapping of RAID levels to Data Redundancy and Package Redundancy

Table 24 reflects available definitions of RAID levels.

Table 24 - RAID Mapping

RAID Level Package
Redundancy

Data
Redundancy

StorageExtent
Stripe
Length

User Data
Stripe Depth

Parity
Layout

JBOD 0 1 1 NULL NULL

0 (Striping) 0 1 2 to N1 Vendor Dependent NULL

1 1 2 - N 1 NULL NULL

10 1 2 - N 2 to N Vendor Dependent NULL

0+1 1 2 - N 2 to N Vendor Dependent NULL

3 or 4 1 1 3 to N Vendor Dependent 1

4DP 2 1 4 to N Vendor Dependent 1

5 (3/5)2 1 1 3 to N Vendor Dependent 2

6, 5DP3 2 1 3 to N Vendor Dependent 2

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 81

It is the nature of RAID technology that even though RAID levels are the same, the storage service
provided could differ, depending on the storage device implementations. Expressing the storage service
level provided in end-user terms relieves the SMI-S Client and end-user from having to know what RAID
Levels mean for a particular implementation. Instead, RAID level defines storage provided in storage-
level terms. If a single storage device implements RAID levels that have the same package redundancy
and data redundancy, the implementor should have the SMI-S Client differentiate via
StorageSettingsWithHints. Additionally, the SMI-S Provider author can predefine StorageCapabilities that
match best practice RAID Levels, including differentiation with StorageSettingWithHints when the
StorageVolume or LogicalDisk exists. In this case, the ElementName property is used to correlate
between the capability and device documentation. Alternatively, the capability may be expressed in
broader ranges for more flexible storage systems.

StorageSetting instances whose "ChangableType" property is “0”, “Fixed - Not Changeable”, (identifying
the StorageSettings which represent certain non-changeable sets of preset storage property data,
describing "fixed", or pre-defined Settings, corresponding to preset RAID levels), the Element name
should contain a string value from a comprehensive list of well-known RAID configuration names. The
ElementName string value should be the name of the RAID level, from this list, which most closely
describes the storage characteristics of the StorageSetting in question. This list of RAID level strings
includes, but is not limited to: "JBOD", "RAID0", "RAID1", "RAID0+1","RAID01E"," RAID10", RAID3",
RAID4", "RAID4DP", "RAID5", "RAID3/5", "RAID5DP", "RAID6", "RAID15", "RAID50", "RAID51". In
addition, the "Description" property of the pre-defined StorageSettings should (optionally) contain similar
RAID level information in a more free-form text format, including vendor-specific and/or value-added
annotations, for example: "RAID3, with spares", or "RAID5, 7D + 1P".

5.1.12 Storage Setting Associations to Storage Capabilities

A Storage Setting instance can be associated to its parent StorageCapabilities instance through either
the StorageSettingsAssociatedToCapabilities or StorageSettingsGeneratedFromCapabilities association
instances. The nature of the associated setting is different depending on the association instance used.

A Storage Setting associated via a StorageSettingsAssociatedToCapabilities instance shall not be
modifiable by the client (ChangeableType = 0 “Fixed - Not Changeable”). These types of settings are
used to define the possible configurations of StoragePools, StorageVolumes or LogicalDisks where the
number of possibilities are small because the capabilities of the device itself are likewise limited. When
an instance of a Capability class is created as a side effect of creating a concrete StoragePool, this type
of Storage Setting may also be created or an existing Storage Setting associated to this new Capabilities
instance as well. A client can use the StorageSettingsAssociatedToCapabilities association to find the
default goal for the Capabilities instance, using the DefaultSetting property. There shall be one default
per combination of a StoragePool instance, associated StorageCapabilities instances, and associated
StorageSetting instances.

15 2 2 - N 3 to N Vendor Dependent 2

50 1 1 3 to N Vendor Dependent 2

51 2 2 - N 3 to N Vendor Dependent 2

1.The character ‘N’ represents the variable for the total number of StorageExtents.
2. ‘3/5’ indicate RAID5 implementations that are sometimes called RAID5.
3.‘DP’ is double parity.

Table 24 - RAID Mapping

RAID Level Package
Redundancy

Data
Redundancy

StorageExtent
Stripe
Length

User Data
Stripe Depth

Parity
Layout

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

Block Services Package

82

A Storage Setting associated via a StorageSettingsGeneratedFromCapabilities instance may be modified
by a client (ChangeableType = 1 “Changeable - Transient” or Changeable = 2 “Changeable - Persistent”).
When a Setting is created from a Capabilities instance, it is transient (e.g., ChangeableType = 1), i.e., the
Setting instance may not remain for long. This Setting may be removed from the CIMOM after reboots or
after a set period of time. The client should create and use the Setting as soon as possible. Alternatively,
some implementations will allow the client to request that the Setting be retained. This request is made
by changing the ChangeableSettingType to 3 “Changeable - Persistent”. SMI-S does not define
normative behavior for the changing of the ChangeableType property.

EXPERIMENTAL

5.1.13 The Usage Property

The intended usage of storage elements and storage pools is specified in the Usage property of these
components. For the most part, the usage of these components is 2 "Unrestricted". However, a system
manager and/or a client may decide that certain storage elements are to be set aside for a specific
application. For example, a number of volumes are created for the sole purpose of being used for
Migration Services. In this case, the volumes are created using a storage setting with the
StorageElementInitialUsage of "Reserved by Migration Services". Alternatively, a client may request an
"Unrestricted" volume to be converted to "Reserved by Migration Services" by invoking the method
StorageConfigurationService.RequestUsageChange. The Provider shall honor the request if the client
has access to the storage element and the requested change is valid. The property ClientSettableUsage
indicates what usage values are valid for a given component.

The companion property OtherUsageDescription may be used to indicate a component’s usage that is not
covered by the usage value map. The Usage property value is this case shall be set to 1 “Other”.

The Usage and OtherUsageDescription properties are maintained by the Provider. Restricted values may
already exist for static elements that pre-exist when the Provider is discovered.

The Usage and OtherUsageDescription property values may change as a side effect of other method
calls, e.g. a StorageVolume that may have been a replica target candidate at one time, may no longer be
a replica target candidate once it is active as a replica target.

Storage elements that support the Usage property will also have a property called ClientSettableUsage.
This property indicates which usage values may be manipulated by a client using the method
StorageConfigurationService.RequestUsageChange.

Using the method StorageConfigurationService.GetElementsBasedOnUsage, clients are able to retrieve
storage elements and storage pools based on their current usage values. For example, a client can
retrieve all the volumes that are candidate to be used as a Local Replica Target. Using the same method
StorageConfigurationService.GetElementsBasedOnUsage with the criteria parameter set to 2 "Available
Only", clients are able to retrieve the available (i.e., not in use) storage elements and storage pools
based on their current usage value.

Some methods change the usage of a storage element. For example, a client supplies a volume to be
used as a target in the call to the method CreateReplica.

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 83

Table 25 describes some of the representative values of the Usage property (storage element refers to a
StorageVolume, LogicalDisk, or StoragePool):

EXPERIMENTAL

5.1.14 Read-Only Model Requirements

This package defines classes and behavior to express the assignment and allocation of storage capacity
and the mechanism for configuring the storage capacity. The expression of the assignment and allocation
of storage capacity through the StoragePool, StorageVolume, LogicalDisk and related associations is
mandatory. An implementation may also offer the configuration of one or more classes of storage
elements. The expression of the support for the configuration of storage is through the instantiation of the
StorageConfigurationService and its associated Global StorageConfigurationCapabilities. If an instance
of the StorageConfigurationService class is not provided, then a client can assume that no configuration
operations are supported. An implementation shall not provide an instance of the
StorageConfigurationService if none of the extrinsic methods of the service are supported.

If the implementation is only supporting read-only information about the capacity assignment and
allocation but does not offer modification of the capacity configuration, then that implementation is said
be a read-only implementation. In such a model, only classes listed in Table 26 are required. Classes not
explicitly listed are not required for read-only implementations.

Table 25 - Meaning of Usage values

Usage Value Description

Reserved by the ComputerSystem The storage element is used by the array itself for firmware, storage
processor software, etc.

Reserved for Local Replication Services The storage element is designated for activities related to the
CopyServices. For example, SNAP cache.

Local Replica Target The storage element is suitable to be used as replica target.

Element Component The StorageVolume or LogicalDisk is now acting as a
StorageExtent. In this case, the storage element no longer appears
in the list of these element types. Use the method
GetElementsBasedOnUsage to locate such storage elements.

Table 26 - Classes Required In Read-Only Implementation

Required Classes Reason for Requirement

StoragePool, StorageVolume and/or
LogicalDisk, HostedStoragePool and
AllocatedFromStoragePool

Reporting of unassigned, assigned, and allocated
capacity

StorageCapabilities and ElementCapabilities Reporting of storage pool capabilities

StorageSetting and ElementSettingData used is
associated to StorageVolume and LogicalDisk

Reporting of the capabilities of existing StorageVolumes
and LogicalDisks

SystemDevice Reporting the system to which a StorageVolume or
LogicalDisk is scoped

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

Block Services Package

84

5.1.15 StorageExtent Conservation

5.1.15.1 General

StorageExtent Conservation is the construct where the remaining capacity after the partial use of a
StorageExtent is itself represented as a StorageExtent, based on the antecedent StorageExtent. Note
that the StorageExtent class itself does not report the amount of capacity that is used by another
StorageExtent that draws capacity from it. In order to calculate the remaining space from a StorageExtent
model without StorageExtent Conservation, the client would have to calculate the existence of remaining
capacity through finding unused ranges of blocks as expressed by the StorageExtent’s BasedOn
associations.

This notion allows a client to use those remaining StorageExtents to determine the physical components
like disk drives and network ports that are associated to this remaining space in order to pick the
StorageExtent best suiting its needs for, for example, storage network redundancy or performance
history.

5.1.15.2 Requirements for the General use of StorageExtents

The general use of StorageExtents, which is optional for this subprofile, is subject to the following
requirements:

• Allocating capacity from a StoragePool shall not reduce the total size of the StoragePool.

• A given StorageExtent instance shall not be a component of more than one StoragePool. However, an given
block may be accounted for in the range of blocks represented by more than one StorageExtent instance. In
other words, a given block may be associated to more than one StoragePool.

• The use of all or some of the capacity of an StorageExtent directly, by passing the reference to the
StorageExtent in a method call, or indirectly, by passing the size of the desired storage element, shall result
in the creation of new StorageExtents that are components of the new StorageVolume or LogicalDisk.

• Any remaining capacity from the StorageExtent shall be represented by a new ComponentExtent of the
source StoragePool that is based on the partitioned StorageExtent. This StorageExtent is called a remaining
StorageExtent.

1) If the Size requested is smaller than the total consumable size of the StorageExtents or StoragePools,
then these resources are partially used. In this case, the model shall reflect what capacity was used and
what capacity remains of the StorageExtents or StoragePools passed as arguments to CreateOrModi-
fyStoragePool and CreateOrModifyElementFromElements methods.

2) Once the capacity represented by a remaining StorageExtent is used to assign or allocate capacity, the
remaining StorageExtent either shrinks in size or is removed from the model. A remaining StorageExtent
shall not be molded to have other StorageExtents based on it.

• A StorageExtent that was split or partially used may be made whole by the deletion of the storage element
whose creation or modification gave rise to the partial use of the StorageExtent in the first place.

Figure 12: "StorageExtent Conservation - Step 1", Figure 13: "StorageExtent Conservation - Step 2",
and Figure 14: "StorageExtent Conservation - Step 3" illustrate the use of StorageExtents to represent
the partitioning of a StorageExtent’s capacity. An implementation of this subprofile may also implement
14 Extent Composition Subprofile. Extent Conservation requires the instantiation of additional
ComponentExtents that represent remaining space. These ComponentExtents are in addition to those
modeled by the Extent Composition Subprofile. Available StorageExtents, including remaining space
StorageExtents, which meet specific goal requirements, are found using the GetAvailableExtents method
of the StoragePool.

The modeling of remaining StorageExtents is not within the scope of the Extent Composition Subprofile.
However, the recipes written for 14 Extent Composition Subprofile will tolerate these additional extents.
The modeling of free/unused extents is defined only in 5.1.15 StorageExtent Conservation.

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 85

Support of the GetAvailableExtents and CreateOrModifyElementFromElements methods are not required
by the Block Services package nor 14 Extent Composition Subprofile. An implementation may support the
representation of StorageVolume or LogicalDisk structure through 14 Extent Composition Subprofile but
not support these methods.

If an implementation supports the GetAvailableExtents and CreateOrModifyElementFromElements
methods and the Block Services Package, then it shall also implement 14 Extent Composition Subprofile.
See 5.5.3. Additionally, the implementation shall implement either both methods (if it implements one of
the methods) or neither method.

The most virtualized Storage Extents are those that have no dependent storage extents that are either
StorageVolumes or LogicalDisks. There are three associations that may represent the most virtualized
storage components of a StoragePool:

• ConcreteComponent

• AssociatedComponentExtent

• AssociatedRemainingExtent.

IMPLEMENTED

If there are StorageExtents associated to a StoragePool via ConcreteComponent, these StorageExtents
shall also be associated to the same StoragePool via AssociatedComponentExtent or
AssociatedRemainingExtent. The set of instances associated to this StoragePool via
ConcreteComponent shall equal the union of the sets of StorageExtents associated to the same
StoragePool via AssociatedComponentExtent and AssociatedRemainingExtent. The subset of
AssociatedRemainingExtent StorageExtents represents remaining capacity, as defined in preceding
paragraphs. These StorageExtents are remaining StorageExtents. The subset of
AssociatedComponentExtent StorageExtents represents capacity that has not yet been allocated, is
allocated in part, or is allocated in its entirety.

IMPLEMENTED

5.1.15.3 The Three Steps of StorageExtent Conservation

Figure 12: "StorageExtent Conservation - Step 1", Figure 13: "StorageExtent Conservation - Step 2",
and Figure 14: "StorageExtent Conservation - Step 3" show how StorageExtents are partitioned to
represent the partial usage of the capacity in the construction of a concrete StoragePool and a concrete
StorageVolume. For the purposes of illustration all the numbers in the figures are expressed in blocks
even though some of the class properties are in blocks and others are in bytes. The solid line box around
the elements in the diagram groups those classes that are defined in 14 Extent Composition Subprofile.

The initial state in Figure 12: "StorageExtent Conservation - Step 1" starts with a primordial StoragePool
that is realized by a primordial StorageExtent. This StorageExtent is part of the initial capacity of the
device or added to the device in a process defined outside of this subprofile. The process of assigning
capacity to a StoragePool and allocating capacity to a StorageVolume or LogicalDisk is defined inside of
this subprofile. To simplify the diagram, the StoragePool has only one ComponentExtent box that

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

Block Services Package

86

represents many StorageExtents. The “SUM_” prefix indicates that the size of the StorageExtents are a
summation. Both the StoragePool and StorageExtent start with 1000 blocks of storage capacity.

A concrete StoragePool is drawn from the primordial StoragePool in step 2, shown in Figure 13:
"StorageExtent Conservation - Step 2". Figure 13: "StorageExtent Conservation - Step 2" groups the
instances modeled using 14 Extent Composition Subprofile with a dark box. The concrete StoragePool
takes only half the capacity of the parent StoragePool. In this particular example, the metadata required
by the implementation is written to the storage after this step. Another StorageExtent is created to
represent the remaining capacity of the primordial StoragePool that was not used in the creation of the
concrete StoragePool. ConsumableBlocks remain constant after the creation of the StorageExtent as a
representation of the space actually available for use is other storage elements that are based on the
StorageExtent. The remaining space StorageExtent can be used for the creation of other
StorageVolumes or Logical Devices. If GetAvailableExtents were called on the primordial StoragePool at
this point, a reference to the remaining StorageExtent shall be returned. A reference to the original
primordial StorageExtent shall not be returned because the StorageExtent is entirely allocated.

Figure 12 - StorageExtent Conservation - Step 1

Primordial:
StoragePool

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

AssociatedComponentExtent
RemainingManagedSpace = 1000
TotalManagedSpace = 1000

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 87

Figure 14: "StorageExtent Conservation - Step 3" shows a StorageVolume creation. Figure 14:
"StorageExtent Conservation - Step 3" groups the instances modeled using 14 Extent Composition
Subprofile with a dark box. This particular implementation draws storage capacity for metadata (for its
own house-keeping) during the creation of the StorageVolume. Not shown is the case where the
metadata is drawn from capacity during the creation of the concrete StoragePool. A RAID1 stripe is
written over three StorageExtents. These StorageExtents are likely to be disk drives. Again, a remaining
StorageExtent is created to represent the capacity of the parent concrete StoragePool that is not used in
the creation of the StorageVolume. A call to the concrete StoragePool’s GetAvailableExtents method
yields a reference to the remaining StorageExtent.

Figure 13 - StorageExtent Conservation - Step 2

AssociatedComponentExtent

BasedOn

AssociatedComponentExtent

BasedOn

AllocatedFromStoragePool
SpaceConsumed = 500

AssociatedRemainingExtent

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Remaining:
StorageExtent (Remaining)

BasedOn

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Concrete:
StorageExtent (Intermediate)

ConsumableBlocks = 250
NumberOfBlocks = 250

Concrete:
CompositeExtent

(Composite Pool Component)

Primordial:
StoragePool

RemainingManagedSpace = 500
TotalManagedSpace = 1000

RemainingManagedSpace = 250
TotalManagedSpace = 250

Concrete:
StoragePool

Primordial:
StorageExtent

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

527

528

529

530

531

532

533

534

535

536

Block Services Package

88

In all cases, the TotalManagedSpace and RemainingSpace attributes reflect the total capacity and the
capacity that can be drawn from a StoragePool, respectively. In this figure, the metadata is drawn from
the capacity in the creation of the storage element.

• The capacity drawn by the metadata from the parent StoragePool is reflected by the sum of associated
AllocatedFromStoragePool.SpaceConsumed minus the StoragePool.TotalManagedSpace of the child
StoragePool.

• The capacity drawn by the metadata from each StorageVolume or LogicalDisk is reflected by
SpaceConsumed minus NumberOfBlocks times BlockSize.

5.1.16 Formulas For Calculating Capacity

These formulas define calculations that shall be valid in a conformant implementation:

Figure 14 - StorageExtent Conservation - Step 3

AssociatedComponentExtent

AllocatedFromStoragePool
SpaceConsumed = 30

BasedOn

BasedOn

AllocatedFromStoragePool
SpaceConsumed = 500

AssociatedRemainingExtent

AssociatedRemainingExtent

BasedOn

BasedOn

SUM_ConsumableBlocks = 220
SUM_NumberOfBlocks = 220

Remaining:
StorageExtent (Remaining)

ConsumableBlocks = 250
NumberOfBlocks = 250

Concrete:
CompositeStorageExtent

(Composite Pool Component)

SUM_ConsumableBlocks = 1000
SUM_NumberOfBlocks = 1000

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Remaining:
StorageExtent (Remaining)

Primordial:
StoragePool

RemainingManagedSpace = 500
TotalManagedSpace = 1000

BasedOn

Primordial:
StorageExtent

AssociatedComponentExtent

SUM_ConsumableBlocks = 500
SUM_NumberOfBlocks = 500

Concrete:
StorageExtent (Intermediate)

NumberOfBlocks = 30

StorageVolume

ConcretePool:
StoragePooll

RemainingManagedSpace = 220
TotalManagedSpace = 250

537

538

539

540

541

542

543

544

545

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 89

EXPERIMENTAL

• For StoragePools with StorageVolumes that do not share storage capacity
(StoragePool.ElementsShareSpace set to false or null) the RemainingManagedSpace plus
AllocatedFromStoragePool.SpaceConsumed from all of the StorageVolumes, LogicalDisks, and
StoragePools allocated from the StoragePool shall equal TotalManagedSpace.

NOTE Elements allocated from StoragePools used for delta replicas (snapshots) usually share storage capacity.

• A parent StoragePool’s TotalManagedSpace equals RemainingManagedSpace plus the sum of all related
AllocatedFromStoragePool SpaceConsumed.

• If 14 Extent Composition Subprofile is implemented:

1) The StoragePool’s TotalManagedSpace shall be equal to the sum of all the AssociatedComponentEx-
tent StorageExtent’s BlockSize times ConsumableBlocks minus the metadata space (Storage-
Pool.ReservedSpace) required by the StoragePool.

EXPERIMENTAL

2) Using the BasedOn association from the StoragePool’s component StorageExtents (found using Con-
creteComponent or AssociatedComponentExtent, or AssociatedRemainingExtent), the sum of the
Dependent StorageExtent’s NumberOfBlocks shall be equal to the ConsumableBlocks of the Antecedent
StorageExtent.

IMPLEMENTED

3) The StoragePool's RemainingManagedSpace shall be equal to the sum of BlockSize times Consum-
ableBlocks for the union of the following sets of StorageExtents:

a) The set of StorageExtents associated to the StoragePool via AssociatedComponentExtent where
each StorageExtent does not participate in an Antecedent relationship via one or more BasedOn
associated with either a StorageVolume or a LogicalDisk.

b) The set of StorageExtents associated to the StoragePool via AssociatedRemainingExtent.

IMPLEMENTED

EXPERIMENTAL

5.1.16.1 Capacity Usage for Compressed Volumes

If a fully provisioned volume is created with compression enabled, the nominal capacity is allocated by
the block server. And before the data is written onto the disk extent of the volume, it will be compressed
in memory first, then the data will be stored onto the extent allocated by the block server.

If a thin provisioned volume is created with compression enabled, a smaller value (referred to here as the
initial reserve capacity) is allocated. And before the data is written onto the disk extent of the volume, it
will be compressed in memory first, then new extents will be allocated by the block server according to

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

Block Services Package

90

the capacity after compression and the data will be stored onto the newly allocated extents. The capacity
consumption report is the same as the mechanism in thin provisioning profile.

EXPERIMENTAL

5.1.17 Storage Element Manipulation

The StorageConfigurationService class contains methods to allow creation, modification and deletion of
StorageVolumes or LogicalDisks. The capabilities of a StorageConfigurationService or StoragePool to
provide storage are indicated using the StorageCapabilities class. This class allows the Service or
StoragePool to advertise its capabilities (using implementation independent attributes) and a client to set
the attributes it desires.

EXPERIMENTAL

The primordial pool contains storage available to the storage system from physical devices or external
sources. The storage in the primordial pool may not be all the same. The CIM_DiskDrive class contains
properties that reflect these differences (DiskType, FormFactor, InterconnectType, InterconnectSpeed,
RPM, and Encryption). Together these properties define a quality of service (QOS) for disk storage.
Properties in CIM_StorageCapabilities are used to determine if these properties are supported and the
range of values supported. The CIM_StorageSetting class has the disk QOS properties to allow selection
and provisioning based on these properties. Pools and Volumes that are provisioned from storage with a
single disk QOS shall inherit the disk QOS and reflect that in their CIM_StorageSetting object.

EXPERIMENTAL

The concept of “hints” is included. Hints allow a client to provide general requirements to the system as to
how it expects to use the storage. Hints allow a client to provide extra information to “tune” a
StorageVolume or LogicalDisk. If a client chooses to supply these hints when creating a StorageVolume
or LogicalDisk, the StorageSystem can either use the hints to determine a matching configuration or
ignore them.

When creating a StorageVolume or LogicalDisk, a reference to an instance of StorageSetting is passed
as a parameter to the StorageConfigurationService.CreateOrModifyElementFromStoragePool,
CreateElementsFromStoragePools, or CreateOrModifyElementFromElements methods. This reference
provides a goal for that element.

The current ‘service level’ being achieved is reported via the StorageVolume or LogicalDisk class itself.
For example, data redundancy reported in the Setting associated to the storage element may be different
from the data redundancy reported in the storage element itself. This difference indicates that a copy of
the data is no longer available.

StorageVolumes or LogicalDisks are created from StoragePools via a StorageConfigurationService’s
CreateOrModifyElementFromStoragePool(), CreateElementsFromStoragePools() methods. A
StorageVolume creation operation takes time, and a Client needs to be aware that the operation is not
complete until the StorageVoume.OperationalStatus is OK. A Client may also monitor the progress of the
operation using the ConcreteJob class and its properties.

The name of a StorageVolume, LogicalDisk, or StoragePool can be changed. The existence of the
EnabledLogicalElementCapabilities instance associated to the storage element indicates that the storage
element can be named. If ElementNameEditSupported is set to TRUE, then the ElementName of the
associated storage element name can be modified. The MaxElementNameLen property indicates the
maximum supported ElementName length, and the ElementNameMask property provides the regular

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 91

expression that indicates the name limits; see Table 33, “CIM Elements for Block Services” for details for
this property.

Since the ElementNameMask can describe the maximum length of the ElementName, any length defined
in the regexp is in addition to the restriction defined in MaxElementNameLen (causing the smaller value
to be the maximum length).

The SupportedElementNameCodeSet property of the ImplementationCapabilities instance (associated to
top-level ComputerSystem) indicates the supported code set for the ElementName.

DEPRECATED

This model does not help in communicating whether or not the element name can be provided in the
creation or the modification of the storage element through these StorageConfigurationService methods
(if there are no existing storage elements of a given type):

• CreateOrModifyStoragePool()

EXPERIMENTAL

• CreateElementsFromStoragePools

EXPERIMENTAL

• CreateOrModifyElementFromStoragePool()

• CreateOrModifyElementFromElements()

First, there shall be a single EnabledLogicalElementCapabilities for each storage element type.

Note that the ElementType parameter of these methods requests the element to be created or modified.
There shall be a single mask for each storage element type. Each of these instances shall be associated
to the StorageConfigurationService via the ElementCapabilities association. Each of these
EnabledLogicalElementCapabilities instances may also be used to express the capabilities of storage
elements. The ElementNames of these EnabledLogicalElementCapabilities instances that define the
possibility of naming StoragePools, StorageVolumes, and LogicalDisks type shall be of the values of
"StoragePool Enabled Capabilities", "StorageVolume Enabled Capabilities", and "LogicalDisk Enabled
Capabilities" respectively. If the implementation supports the creation or modification of a given element
type and the modification of the name of the storage element, then it shall produce the aforementioned
EnabledLogicalElementCapabilities instances.

If a storage element's name is modifiable through one of the aforementioned
StorageConfigurationService methods, it shall also be modifiable through instance modification.
However, a storage element's name may be modifiable through instance modification, but may not be
modifiable through these service methods.

DEPRECATED

EXPERIMENTAL

To determine if the implementation supports supplying the ElementName during creation of a storage
element and to determine the supported methods to modify the ElementName of existing storage

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

Block Services Package

92

elements, invoke the method StorageConfigurationCapabilities.GetElementNameCapabilities -- see
section 5.5.5.1.

EXPERIMENTAL

EXPERIMENTAL

By default, storage elements are created with the 2 "Unrestricted" value for their Usage property. To
specify a different value for the Usage property, set the appropriate StorageExtentInitialUsage or
StoragePoolInitialUsage of the applicable StorageSetting before creating the storage element.
Subsequently, the Usage property can be modified by calling the
StorageConfigurationService.RequstUsageChange method.

EXPERIMENTAL

EXPERIMENTAL

5.1.18 Block Services Predefined Indications

If the Indications profile is supported by an implementation, there shall be an implementation of the
SNIA_IndicationConfigurationService and its associated SNIA_IndicationConfigurationCapabilities
associated to the ComputerSystem of the referencing profile associated with the Block Services package.
If the implementation supports predefined IndicationFilters or predefined IndicationFilterCollections this
shall be indicated in the SupportedFeatures property of the SNIA_IndicationConfigurationCapabilities. If a
value “3” is present, it means the implementation supports predefined IndicationFilters. If a value of “5” is
present, it means the implementation supports predefined IndicationFilterCollections.

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 93

Figure 15 illustrates classes that shall be populated by the Block Services Package if both “3” and “5” are
present in the SupportedFeatures property.

The SNIA_IndicationConfigurationService is hosted on the ComputerSystem for the referencing profile
associated to the Block Services component profile. The FilterCollection for block services is also hosted
on the same ComputerSystem. The block services FilterCollection is a member (MemberOfCollection) in
the FilterCollection of the referencing profile. The block Services FilterCollection has members which are
all the predefined IndicationFilters supported by the implementation. This shall include all Mandatory
IndicationFilters of the Block Services Package. But it should also include any IndicationFilter that has
been predefined by the implementation. This may include conditional, optional or vendor specific
IndicationFilters supported by the implementation.

The block services FilterCollection shall have the CollectionName “SNIA:Block Services:Predefined”.
Each of the predefined filters shall have the Name property as defined for the IndicationFilter. In
Figure 15 the name of the IndicationFilter (Storage Volume Creation) is “SNIA:Block
Services:StorageVolumeCreation”. For vendor specific IndicationFilters (not defined in this standard), the
Name of the filter would be of the form ORG_ID”:Block Services:”UNIQUE_ID, where ORGID is the
designation of the vendor that is providing the implementation.

EXPERIMENTAL

Figure 15 - Block Services Predefined FilterCollection

(See referencing profile)

ComputerSystem

(See Indications Profile)

SNIA_IndicationConfigurationService

SupportedFeatures = “3,5”
(See Indications Profile)

SNIA_IndicationConfigurationCapabilities

HostedService

ElementCapabilities

Name = “SNIA:Block Services:StorageVolumeCreation”

IndicationFilter (Storage Volume Creation)

(See referencing profile)

FilterCollection

HostedCollection

MemberOfCollection

CollectionName = “SNIA:Block Services:Predefined”

FilterCollection
(Block Services Predefined FilterCollection)

MemberOfCollection

HostedCollection

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

Block Services Package

94

EXPERIMENTAL

5.1.19 Storage Compression support in Block Services

Storage compression is an optional feature of Block Services. It may be applied to any element that can
hold data that may be compressed. That is, it may be applied to a storage volume or logical disk. This
may include thinly provisioned storage volumes or logical disks.

If the CIM_StorageConfigurationService has been implemented a client may determine whether or not an
implementation supports storage compression by inspecting the instance of the CIM_StorageCapabilities
associated to the CIM_StorageConfigurationService. If compression is supported, the
SupportedCompressionRates property shall be populated and shall not contain the value “1” (None). The
property shall contain any or all of “2” (High), “3” (Medium), “4” (Low) and/or “5” (Implementation
Decides).

5.1.19.1 Specifying Storage Compression on Volume Creation

A client may request that a storage volume that it is creating be compressed by the CompressionElement
property of the Goal parameter of CreateOrModifyElementFromStoragePool (or
CreateOrModifyElementsFromStoragePool). If the implementation allows it (see
CIM_StorageCapabilities.SupportedCompressionRates) the client may also specify the compression rate
to be used in the CompressionRate property of the Goal parameter.

If the CompressionRate property (See CIM_StorageSetting) is set to “1” (None), the volume is not
compressed. If the SupportedCompressionRates include “2” (High), “3” (Medium) or “4” (Low), the client
may select one of these in the CompressionRate property of the Goal parameter. The provider
implementation determines the algorithm to use for each of these (it is implementation specific).

Once a volume has been created, a client may determine that the volume is compressed by inspecting
the IsCompressed property in the CIM_StorageVolume (or CIM_LogicalDisk) instance that represents the
volume. If supported the implementation may also specify the compression rate used in the
CompressionRate property of the volume

5.1.19.2 StoragePools that support Compressed Elements

A client can determine if a StoragePool will support compressed elements by inspecting the
StorageCapabilities associated to the pool. If compression is supported, the
SupportedCompressionRates property shall be populated and shall not contain the value “1” (None). The
property shall contain any or all of “2” (High), “3” (Medium), “4” (Low) and/or “5” (Implementation
Decides).

EXPERIMENTAL

5.2 Health and Fault Management Considerations

The extrinsic methods should produce Errors (instances of CIM_Error) instead of some of the failure
return codes. CIM errors include parameter errors, hardware efforts, and time-out errors. See Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 25 Health Package for details.

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 95

EXPERIMENTAL

The standard messages specific to this profile are listed in Table 27. See Storage Management Technical
Specification, Part 2 Common Architecture, 1.6.1 Rev 6 8 Standard Messages for a description of standard
messages and the list of all standard messages.

EXPERIMENTAL

EXPERIMENTAL

5.2.1 StoragePool OperationalStatus

The StoragePool.OperationalStatus is optional, but required if the Storage Relocation profile is
implemented. The StoragePool.OperationalStatus contains the overall status of the storage pool,
summarized in Table 28.

EXPERIMENTAL

Table 27 - Standard Messages for Block Services Package

Message ID Message Name

MP17 Invalid property combination during instance creation or modification

DRM19 Stolen capacity

DRM20 Invalid extent passed

DRM21 Invalid deletion attempted

Table 28 - OperationalStatus for StoragePool

Primary
OperationalStatus

Subsidiary
OperationalStatus

Description

2 “OK” The storage pool is operational

2 “OK” 19 "Relocating” The storage pool is operational, but is undergoing relocation

3 "Degraded" The storage pool is operational, but at a lower quality of service
than requested

3 "Degraded" 19 "Relocating” The storage pool is operational, but at a lower quality of service
due to a relocation operation

6 "Error" The storage pool is in error

15 "Dormant" The storage pool is not operational

15 "Dormant" 19 "Relocating” The storage pool is not operational due to a relocation operation

716

717

718

719

720

721

722

Block Services Package

96

5.2.2 StorageVolume OperationalStatus

The StorageVolume.OperationalStatus contains the overall status of the volume, summarized in Table 29.

5.2.3 LogicalDisk OperationalStatus

The LogicalDisk.OperationalStatus contains the overall status of the logical disk, summarized in Table 30.

5.3 Cascading Considerations

Not defined in this standard.

Table 29 - OperationalStatus for StorageVolume

Primary
OperationalStatus

Subsidiary
OperationalStatus

Description

2 “OK” The storage volume is operational

2 “OK” 19 "Relocating The storage volume is operational, but is undergoing relocation

3 "Degraded" The storage volume is operational, but at a lower quality of service than
requested

3 "Degraded" 19 "Relocating The storage volume is operational, but at a lower quality of service due to a
relocation operation

6 "Error" The storage volume is in error

8 "Starting" The storage volume is starting

15 "Dormant" The storage volume is not operational

15 "Dormant" 19 "Relocating The storage volume is not operational due to a relocation operation

Table 30 - OperationalStatus for LogicalDisk

Primary
OperationalStatus

Subsidiary
OperationalStatus

Description

2 “OK” The logical disk is operational

2 “OK” 19 "Relocating The logical disk is operational, but is undergoing relocation

3 "Degraded" The logical disk is operational, but at a lower quality of service than
requested

3 "Degraded" 19 "Relocating The logical disk is operational, but at a lower quality of service due to a
relocation operation

6 "Error" The logical disk is in error

8 "Starting" The logical disk is starting

15 "Dormant" The logical disk is not operational

15 "Dormant" 19 "Relocating The logical disk is not operational due to a relocation operation

723

724

725

726

727

728

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 97

5.4 Supported Profile, Subprofiles and Packages

Table 31 describes the supported profiles for Block Services.

5.5 Methods of this Profile

5.5.1 Extrinsic Methods on StorageCapabilities

5.5.1.1 CreateSetting

CreateSetting is a method in StorageCapabilities and is invoked in the context of a specific
StorageCapabilities instance.

uint32 CreateSetting(
[In] uint16 SettingType,
[Out] CIM_StorageSetting REF NewSetting)

This method on the StorageCapabilities class is used to create a StorageSetting using the
StorageCapabilities as a template. The purpose of this method is to create a StorageSetting that is
associated directly with the StorageCapabilities on which this method is invoked and has properties set in
line with those StorageCapabilities. The contract defined by the StorageCapabilities shall constrain the
StorageSetting used as the Goal.

The StorageCapabilities associated with the StoragePool define what types of storage can be allocated.
The client shall determine what subset of the parent StoragePool capabilities to use, albeit a primordial
StoragePool or a concrete StoragePool. The StorageSetting provided to the StoragePool creation method
defines what measure of capabilities are desired for the following storage allocation. First, the client
retrieves a StorageSetting or creates and optionally modifies an existing StorageSetting. If no
satisfactory StorageSetting exists, then the client uses this method to create a StorageSetting.

The client has the option to have a StorageSetting generated with the default capabilities from the
StorageCapabilities. If a '2' (“Default”) is passed for the Setting Type parameter, the Max, Goal, and Min
setting attributes are set to the default values of the parent StorageCapabilities. Otherwise, with using ‘3’
(“Goal”), the new StorageSetting attributes are set to the related attributes of the parent
StorageCapabilities, e.g., Min to Min and Max to Max. The method CreateSetting should return a unique
instance of StorageSetting so that the ModifyInstance operation by one client shall not impact another
client’s instance of StorageSetting. This type of StorageSetting, newly created or already existing, is
associated to the StorageCapabilities via the GeneratedStorageSetting association.

Only a StorageSetting created in this manner may be modified or deleted by the client. The client uses
the NewSetting parameter to set the new StorageSetting to the values desired (using ModifyInstance or
SetProperties intrinsic methods).

The implementation shall not generate a Setting whose values fall outside of the range of the parent
Capabilities.

Table 31 - Supported Profiles for Block Services

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.6.0 Optional

729

730

731

732

733

734

735

736
737
738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

Block Services Package

98

The StorageSetting cannot be used to create storage that is more capable than the parent
StorageCapabilities. The ModifyInstance and SetProperties CIM Operations shall fail when the Setting
has a Max value greater (or a Min value less) than the parent StorageCapabilities.

If the storage device supports hints, then the new StorageSetting contains the default hint values for the
parent StorageCapabilities. The client can use these values as a starting point for hint modification (using
intrinsic methods).

StorageSetting instances associated with StorageVolume or LogicalDisk shall not be modified or deleted
directly.

Once this type of StorageSetting is used as the Goal for the creation or modification of a StoragePool, the
Goal setting properties are copied into a new StorageCapabilities instance. The new StorageCapabilities
instance is associated to the newly created or modified StoragePool. If the StoragePool was modified,
then the previous StorageCapabilities shall be removed. The new StorageCapabilities instance,
associated with the new StoragePool, should describe the parameters used in its creation or modification.

Once this type of StorageSetting is used as the Goal for the creation or modification of a StorageVolume
or LogicalDisk, the Goal StorageSetting shall be duplicated, with the exception of the instance keys. The
duplicate Setting is associated to the newly created or modified StoragePool, StorageVolume, or
LogicalDisk. The generated Setting may be removed thereafter. The new StorageSetting instance,
associated with the new storage element, should describe the parameters used in its creation or
modification.

The following set of methods (5.5.1.2, 5.5.1.3, and 5.5.1.4) can be implemented to allow a client to be
more specific about the configuration of the stripe length, stripe depth, and parity in a Setting. Thereby
the client can get specific RAID levels or quality of service characteristics.

The stripe length, stripe depth, and party extrinsic methods may be supported. These methods may be
supported in the content of one capabilities and not in another within the same implementation.
Sometimes the block striping is done as part of the creation of the concrete StoragePool, and sometimes
the block striping is done as part of the creation of a StorageVolume or LogicalDisk. There may be
implementations that allow striping to be done in both steps.

A client may use StorageSettingHints to imply desired striping (or other) characteristics are desired. The
striping and parity methods and properties may be used in combination with hints. The hints express a
ranking of preference. While the striping and parity methods and properties are much more explicit. When
the hints and the stripe and parity Settings properties are used in combination, the striping and parity
properties of the Setting are also considered hints, and the implementation may still create or modify the
StoragePool or storage element using its best effort.

This specification does not define how the ranking of hints relates to the exact nature of the StoragePool
or storage element created or the nature of their modification.

5.5.1.2 Getting Stripe Length

uint32 GetSupportedStripeLengths(
[Out] unint16 StripeLengths[])

This method is used to report discrete ExtentStripeLengths for StorageVolume, LogicalDisk, or
StoragePool creation. Some systems may support only discrete stripe lengths.

uint32 GetSupportedStripeLengthRange(
[Out] uint16 MinimumStripeLength,
[Out] uint16 MaximumStripeLength,
[Out] uint32 StripeLengthDivisor)

This method is used to report a range of possible ExtentStripeLengths for StorageVolume, LogicalDisk, or
StoragePool creation. Some systems may support only a range of sizes. This method reports the

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799
800

801

802

803
804
805
806

807

808

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 99

continuum of discrete sizes between the minimum and maximum as defined by intervals of the divisor
(e.g., if given a min of 10 and a max of 50, the discrete values would be 20, 30, 40, and 50).

Either method may be supported. Return codes are:

• 0, “Method completed OK”, means success.

• 1, “Method not supported”,

• 2, “Choices not available for this Capability.” Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the stripe length
has already been set in the parent StoragePool and may not be changed.

• 3, “Use [GetSupportedStripeLengths|GetSupportStripeLengthRange] instead”. This return code tells the
client that this stripe method is not supported, but the other stripe method is supported.

5.5.1.3 Getting Stripe Depth

uint32 GetSupportedStripeDepths(
[Out] uint64 StripeDepths)

This method is used to report discrete UserDataStripeDepths for StorageVolume, LogicalDisk, and
StoragePool creation. Some systems may support only discrete depth byte sizes.

uint32 GetSupportStripeDepthRange(
[Out] uint64 MinimumStripeDepth,
[Out] uint64 MaximumStripeDepth,
[Out] uint64 StripeDepthDivisor

This method is used to report a range of possible UserDataStripeDepths for StorageVolume, LogicalDisk,
or StoragePool creation. Some systems may support only a range of sizes. The method reports the
continuum of discrete sizes between the minimum and maximum as defined by intervals of the devisor
(e.g., if given a min of 10 and a max of 50, the discrete values would be 20, 30, 40, and 50).

Either method may be supported. Return codes are:

• 0, “Method completed OK”, means success.

• 1, “Method not supported”

• 2, “Choices not available for this Capability”. Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the stripe depth
has already been set in the parent StoragePool and may not be changed.

• 3, “Use [GetSupportedStripeDepths | GetSupportStripeDepthRange] instead”. This return code tells the client
that this stripe method is not supported, but the other stripe method is supported.

5.5.1.4 Getting Parity

uint32 GetSupportedParityLayouts(
[Out] ParityLayout[])

This method is used to return the type of parity, non-rotated or rotated, that the capability supports.

Return codes:

• 0, “Method completed OK” means success.

• 1, “Method not supported”

• 2. “Choice not available for this Capability.” Although the method may be supported by Capabilities in this
implementation, it is not supported for this Capability. Usually, this return code indicates that the parity has
already been set in the parent StoragePool and may not be changed.

809

810

811

812

813

814

815

816

817

818

819

820
821

822

823

824
825
826
827

828

829

830

831

832

833

834

835

836

837

838

839

840

841
842

843

844

845

846

847

848

849

Block Services Package

100

5.5.2 Intrinsic Methods on StorageSetting

The following Intrinsic write methods are supported on StorageSetting:

• DeleteInstance

• ModifyInstance

5.5.3 Extrinsic Methods on StorageConfiguration

5.5.3.1 The RAID characteristics of the new or modified StoragePool

This design supports the implementation choice of the application of RAID striping during either the
creation or modification of a StoragePool, StorageVolume, or LogicalDisk. Generally, without the
implementation of 14 Extent Composition Subprofile, a client cannot determine the storage elements that
are used to represent the RAID striping without at least one StorageVolume or LogicalDisk. Even if the
subprofile is supported, the client can make this determination only after each of the supported element
types are created.

Once each of the storage element types are created, the client can use the StorageExtents on which the
storage element is based to determine the RAID striping type applied. The RAID group is represented by
a CompositeStorageExtent instance.

If the ExtentStripeLength property is not supported by an implementation, this design does not provide for
interoperable behavior in the creation or modification of StoragePools, StorageVolumes, or LogicalDisks
to provide reference to member StorageExtents.

5.5.3.2 Element Naming

Several of the following methods allow a client to 1) specify a name for the storage element that is being
created or 2) change the name of a storage element being modified.

If the implementation supports the naming of storage elements, then the ElementName property reports
the name assigned to the storage element. If the implementation creates a name even when the client
does not specify one, then this element contains that system defined name. If the implementation does
not create a name for the storage element when the client does not specify a name, then this property
should be null. If the implementation does not support the naming of elements and the client provides a
value in the ElementName parameter of one of the following methods that specify an ElementName
parameter, then the implementation shall reject the method call.

EXPERIMENTAL

The possible ExtentStripeLengths, ExtentStripeDepths, and ParityLayouts for a given StorageCapabilities
may be fetched using these methods in that class:

• GetSupportedStripeLengths()

• GetSupportedStripeLengthRange()

• GetSupportedParityLayouts()

• GetSupportedStripeDepths()

• GetSupportedStripeDepthRange() methods

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 101

These methods are useful when the ExtentStripeLength, ExtentStripeDepth, and ParityLayout values in
the given instance of StorageCapabilities are expressed in a range, where the minimum and the
maximum are not equal.

EXPERIMENTAL

5.5.3.3 CreateOrModifyStoragePool

uint32 CreateOrModifyStoragePool(
[In] string ElementName
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In,out] Uint64 Size,
[In] string InPools[],
[In] string InExtents[],
[Out] CIM_StoragePool ref Pool);

This method is used to create a StoragePool from either a source StoragePool or a list of StorageExtents.
Any required associations (such as HostedStoragePool) are created in addition to the instance of
StoragePool. The parameters are as follows:

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter.

• Goal: This is the Service Level that the StoragePool is expected to provide. This may be a null value in which
case a default setting is used.

• Size: As an input this shall be the desired size of the StoragePool. It may be null, in which case all passed in
capacity (as specified by InExtents and InPools) shall be used to create the pool. If it is not possible to create
a StoragePool of at least the desired size, a return code of “Size not supported” shall be returned with size
set to the nearest supported size.

• InPools[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP0200 CIM
Operations over HTTP for format) to source StoragePools.

• InExtents[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP00200 CIM
Operations over HTTP for format) to source StorageExtents. An array of source StoragePools or an array of
source StorageExtents or both can be defined. See 5.1.15.

• TheElement: If the method completes without creating a Job, then the TheElement is the storage element
that is created. Otherwise, TheElement may or may not be Null. When the TheElement is NULL, then the
storage element created can be determined by using the Job model.

5.5.3.4 The CreateOrModifyStoragePool method and the primordial StoragePool

A client may pass a reference to a primordial StoragePool in order to be explicit in indicating from which
primordial StoragePool a concrete StoragePool needs to be created. If no StoragePool references are
passed in the creation of a StorageVolume or LogicalDisk, the implementation shall determine the parent
StoragePool based on the Goal and the Size.

A client may also pass a reference to a primordial StoragePool to express from what reserve to draw
capacity if the capacity needed is greater than the total capacity represented by the input StoragePools
and StorageExtents. Any capacity request, using the Size parameter, not satisfied by the referenced
StoragePools and StorageExtents is drawn from the primordial StoragePool referenced. If no primordial
StoragePool reference is passed and the capacity requested is greater than the referenced StoragePools
and StorageExtents, then the method shall fail with the “Size not supported” return code. The use of a
primordial StoragePool reference in this manner is not recommended, but the behavior is retained to
maintain backward compatibility. The client should align the size requested to what can be satisfied by
the concrete StoragePools and StorageExtents referenced.

885

886

887

888

889
890
891
892
893
894
895
896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

Block Services Package

102

A client should pass only concrete StoragePools when creating a StoragePool from several
StoragePools.

5.5.3.5 DeleteStoragePool

 uint32 DeleteStoragePool(
[Out] CIM_ConcreteJob ref Job,
[in] CIM_StoragePool ref Pool);

This method allows a client to delete a previously created StoragePool. All associations to the deleted
StoragePool are also removed as part of the action. In addition, the RemainingManagedStorage of the
associated parent primordial StoragePool will change accordingly.

NOTE This method will be denied (“Failed”) if there are any AllocatedFromStoragePool associations where the deleted
StoragePool is the Antecedent.

5.5.3.6 CreateOrModifyElementFromStoragePool

 uint32 CreateOrModifyElementFromStoragePool (
[In,
string ElementName
 Values {“StorageVolume”, “StorageExtent”,
 “LogicalDisk”, “FullyProvisionedStorageVolume”},
 ValueMap{“2”,”3”, “4”, “7” }]
Uint16 ElementType;
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In, Out] Uint64 Size,
[In] CIM_StoragePool ref InPool,
[In, Out] CIM_LogicalElement ref TheElement);

This method allows an element of a type specified by the enumeration ElementType to be created from
the input StoragePool. The parameters are:

• ElementType: This enumeration specifies what type of object to create.

The version of the standard recognizes: “2” (StorageVolume) or “4” (LogicalDisk)

EXPERIMENTAL

If Thin provisioning is supported, then the standard also recognizes: “5” (ThinlyProvisionedStorageVolume)
or "6” (ThinlyProvisionedLogicalDisk).

With ElementType of "2" for StorageVolume, implementation decides whether the created StorageVolume
would be thinly or fully provisioned. To request a fully provisioned StorageVolume, use "7" for the
ElementType, or “8” for fully provisioned LogicalDisk.

EXPERIMENTAL

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 26 Job Control Subprofile.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a subset of the
Capabilities available from the parent StoragePool. Goal may be a null value, in which case the default
Setting for the StoragePool is used.

930

931

932

933
934
935

936

937

938

939
940

941

942
943
944
945
946
947
948
949
950
951
952
953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 103

EXPERIMENTAL

This may include setting the CompressedElement property of the Goal for requesting storage compression
or setting the disk related properties (e.g., DiskType or InterconnectType) for provisioning by disk.

EXPERIMENTAL

• Size: As an input this shall be the desired size of the element. It may be null, in which case all passed in
capacity (as specified by InPool) shall be used to create the element. If it is not possible to create an element
of at least the desired size, a return code of “Size not supported” shall be returned with size set to the nearest
supported size.

• InPool: This shall contain the reference to the source StoragePool.

• TheElement:

• As Input: If the TheElement parameter is not null, then this method shall attempt to modify the reference
element. Otherwise, this method shall attempt to create a new element.

• As Output: If the method completes without creating a Job, then the TheElement is the storage element that
is created. Otherwise, TheElement may be NULL. When the TheElement is NULL, the storage element that
is created can be determined by using the Job model.

EXPERIMENTAL

5.5.3.7 CreateElementsFromStoragePools

 uint32 CreateElementsFromStoragePools (

 [In] string ElementNames[]

 [In] uint16 ElementType;

 [In] uint64 ElementCount,

 [Out] CIM_ConcreteJob ref Job,

 [In] CIM_SettingData ref Goal,

 [In, Out] Uint64 Size,

 [In] CIM_StoragePool REF InPools[],

 [Out] CIM_LogicalElement ref TheElements[]);

This method allows elements of a type specified by the enumeration ElementType to be created from the
input StoragePool. The parameters are:

• ElementNames: One or more user relevant names. The first entry is assigned to the first created element, the
second entry is assigned to the second element, and so on. If the number of entries in the ElementNames
array is not equal to the ElementCount, the method shall return an error. If ElementNames is null, system
assigns the element names.

• ElementType: This enumeration specifies what type of object to create. For example, “2” to create
StorageVolumes -- implementation decides thinly or fully provisioned, “5” to create thinly provisioned
StorageVolumes, or “7” to create fully provisioned StorageVolumes.

• ElementCount: Count of elements to create.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 26 Job Control Subprofile.

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

Block Services Package

104

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a subset of the
Capabilities available from the parent StoragePool. Goal may be a null value, in which case the default
Settings for the StoragePools is used.

• Size: As an input this shall be the desired size of the element. It may be null, in which case all passed in
capacity (as specified by InElements) shall be used to create the element. If it is not possible to create an
element of at least the desired size, a return code of “Size not supported” shall be returned with size set to
the nearest supported size.

• InPools: This array contains references to the source StoragePools. If not specified, system locates the
appropriate StoragePools if the property StorageConfigurationCapabilities.AutomaticPoolSelectionAllowed is
true.

• TheElements: If the method completes without creating a Job, then the TheElements are the storage
elements that are created successfully. Otherwise, TheElements may be NULL. When the TheElements are
NULL, the storage elements that are created can be determined by using the Job model.

Notes: If a job was created, there will be AffectedJobElement associations between the Job and each
created elements. The number of the AffectedJobElement associations is the number of the elements
created successfully.

If the method completes without creating a Job, references to the created elements are returned in the
TheElements parameter. If the number of elements created is less than the number of elements
requested, the return value of the method shall be 4098.

Generally, there will be one instance creation indication for each element created. However, some
implementations may treat the entire request as one transaction and only generate one instance creation
indication for all the elements created. See section 5.8.35

EXPERIMENTAL

5.5.3.8 CreateOrModifyElementFromElements

uint32 CreateOrModifyElementFromElements(
[In,
 Values {“Storage Volume”, “Storage Pool”,
 “Logical Disk”},
 ValueMap{”2”,”4”, “5”}]
unit16 ElementType,
[In, Out] CIM_ConcreteJob REF Job,
[In] CIM_ManagedElement REF Goal,
[In, Out] unit64 Size,
[In] CIM_StorageExtent REF InElements[],
[In, Out] CIM_LogicalElement REF TheElement);

The parameters are:

• ElementType: This enumeration specifies the type of object to create.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 26 Job Control Subprofile.

• Goal: This is the Service Level that the element is expected to provide. The Setting shall be a subset of the
Capabilities available from the parent StoragePool. Goal may be a null value, in which case the default
Setting for the StoragePool is used.

• Size: As an input, this is the desired size of the element. If it is not possible to create a StorageVolume of the
desired size, a return code of “Size not supported” is returned with size set to the nearest supported size.

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 105

• InElements: References to the StorageExtents to be used for the storage element creation or modification.
The referenced StorageExtents shall be ComponentExtents of a single StoragePool, a parent of new or
existing storage element. The parent StoragePool shall be a direct parent or an indirect parent, a
grandparent, of the storage element. The InElements parameter of the
CreateOrModifyElementFromElements() parameter is used to provide new StorageExtents to be used for this
storage element. Therefore, the use of the parameter in the reduction of capacity for TheElement is invalid.

• TheElement:

• As Input: If the TheElement parameter is not null, then this method shall attempt to modify the reference
element. Otherwise, this method shall attempt to create a new element.

• As Output: If the method completes without creating a Job, then the TheElement is the storage element that
is created. Otherwise, TheElement may be NULL. When the TheElement is NULL, the storage element
created can be determined by using the Job model.

5.5.3.9 ReturnToStoragePool

 uint32 ReturnToStoragePool (
[Out] CIM_ConcreteJob ref Job,
[In] CIM_LogicalElement ref TheElement);

This method allows a client to delete a previously created element such as a StorageVolume.

EXPERIMENTAL

If TheElement is a SNIA_StorageVolume and SNIA_StorageVolume.CanDelete is set to false, then
ReturnToStoragePool shall fail and shall return an error code of 6 (“In Use”) or 4 ("Failed").

EXPERIMENTAL

EXPERIMENTAL

5.5.3.10 ReturnElementsToStoragePool

uint32 ReturnElementsToStoragePool (

 [In] uint16 Options,

 [Out] CIM_ConcreteJob ref Job,

 [In] CIM_LogicalElement ref TheElements[]);

This method allows a client to delete a previously created elements such as StorageVolumes. The
parameters are:

• Options: This enumeration specifies what should happen if non-existent element is supplied. A value of “2”
requests the method to continue to delete the remaining elements that exist. A value of “3” requests the
method to return an error. If null, the method deletes the elements that do exist (same as “2”).

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 26 Job Control Subprofile.

• TheElements: An array containing the elements to be deleted.

EXPERIMENTAL

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062
1063
1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

Block Services Package

106

EXPERIMENTAL

5.5.3.11 RequestUsageChange

uint32 RequestUsageChange (
[In,
 ValueMap { "2", "3" },
 Values { "Set", "Modify \"Other\" description only"
}]
uint16 Operation,
[In] uint16 UsageValue,
[In[string OtherUsageDescription,
[Out] CIM_ConcreteJob ref Job,
[In] CIM_LogicalElement ref TheElement);

The parameters are:

• Operation: This specification defines the usage of the 2 “Set” value for the parameters, which means to set
the Usage to one of the possible usage values. This parameter is required.

• UsageValue: The usage value possible for the type of storage element, whose reference is passed to this
method. This parameter is required.

• OtherUsageDescription: Not defined this specification. This parameter is not required.

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter. See Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 26 Job Control Subprofile.

• TheElement: This requirement parameter contains a reference to the storage element whose usage is to be
changed.

If the storage element can not be changed to the requested usage because it is invalid to do so, then the
implementation shall return an invalid parameter error.

EXPERIMENTAL

5.5.3.12 Return Values

Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”, “6”, “..”, “4096”,”4097”},

 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”,“Failed”, “Invalid Parameter”, “In Use”,
“DMTF Reserved”, “Method parameters checked - job
started”, “Size not supported”}]

Only the following return codes shall be supported:

• 0 - “Job completed with no error”
The method has completed immediately with no errors (and with no asynchronous execution required).

• 1 - “Not Supported”
This method is not supported at this time.

• 3 - “Timeout” or 4 - “Failed”
The provider has problems accessing the hardware (or other implementation-specific reasons)‘. The provider
should return a standard message communicating the nature of the value rather than returning this code.

1082

1083

1084

1085

1086

1087

1088

1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116
1117
1118
1119

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 107

• 5 - “Invalid Parameter”
One or more of the parameters are invalid (invalid object paths, for instance). The provider should return a
standard message, communicating which parameters are invalid and why, rather then returning this code.

• 6 - "In Use"
The storage element is used for the basis for another storage element. For example, a client request that a
StoragePool be deleted, but that StoragePool is the basis for another storage element. This return code may
also indicate that the deletion of the specified storage element is not permitted because it is being used for
another reason. This reason may be that the StoragePool on which this method is called does not permit this
action. The reason may also be that the implementation does not allow this action for proprietary reasons.

• 4096 - “Method parameters checked - job started”
The method parameters have been checked, and the method is being executed asynchronously.

• 4097 - “Size not supported”
For a Create/Modify method, the requested size is not supported. The Size parameter and the size of the
storage element is set to the nearest supported and larger size.). Only the methods that create or modify
storage elements, other than their usage, shall return this code.

A vendor shall not extend the Value map to express vendor specific error situations not catered for by the
standard messages.

EXPERIMENTAL

5.5.3.13 GetElementsBasedOnUsage

uint GetElementsBasedOnUsage(
[In,
 ValueMap { "2", "3", "4", "5")
 Values { "StorageVolume","StorageExtent",
"StoragePool", "Logical Disk",}]
uint16 ElementType,
[In] uint16 Usage,
[In,
 ValueMap { "2", "3", "4" },
 Values { All","Available Only", "In Use Only" }]
uint16 Criterion,
[In] CIM_StoragePool ref ThePool,
[Out] CIM_ManagedSystemElement ref TheElements[]);

All input parameters are required. The parameters are:

• ElementType: This enumeration specifies the type of object to create.

• UsageValue: The usage value possible for the type of storage element as indicated by the ElementType
parameter.

• Criterion: Specifies whether to retrieve all elements - 2 “All”, available elements only - 3 “Available Only”, or
the elements that are in use - 4 “In Use Only”.

• ThePool: Limits the search for the elements that satisfy the criteria in this StoragePool only. If null, all
appropriate storage pools shall be included in the search.

• TheElements: Contains the array of references found to the storage element instances retrieved.

This method returns the following statuses:

• 0 - “Completed with No Error”:
The method has completed immediately with no errors

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159

1160

1161

1162

Block Services Package

108

• 1 - “Not Supported”
This method is not supported at this time.

• 3 - “Timeout” or 4 - “Failed”
The provider has problems accessing the hardware (or other implementation-specific reasons)‘. The provider
should return a standard message communicating the nature of the value rather than returning this code.

• 5 - “Invalid Parameter”
One or more of the parameters are invalid (invalid object paths, for instance). The provider should return a
standard message, communicating which parameters are invalid and why, rather then returning this code.

EXPERIMENTAL

5.5.4 Extrinsic Methods on StoragePool

5.5.4.1 General

The Extrinsic methods on StoragePool return sizes in units of bytes. These methods, each described in
this section, are:

• GetSupportedSizes

• GetSupportedSizeRange

• GetAvailableExtents

5.5.4.2 GetSupportedSizes

uint32 GetSupportedSizes(
[In] uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] uint64 Sizes[]);

The parameters are:

• ElementType: This enumeration specifies what type of object to create.

• Goal: The Service Level the element is expected to provide. The setting shall be a subset of the Capabilities
available from the parent StoragePool. Goal may be a null value, in which case the default Setting for the
StoragePool shall be used by the implementation.

• Sizes: An array containing all the possible sizes of an element in a creation or modification operation.

For a given Goal, this method returns discrete possible sizes of child elements, e.g., StoragePool,
StorageVolume or LogicalDisk, that can be created or modified using capacity from the StoragePool. If
the Goal is not supplied, the default Setting for the StoragePool shall be used by the implementation. This
method is used to return the sizes of contiguous ranges of blocks of the pool that can be used individually
or in combination with other extents to create or modify storage pool or storage elements. For example,
an implementation can use this method to return the sizes of disks, imported extents, or remaining
extents that can be used in the storage assignment operation. This method is also useful if the possible
sizes do not differ by a fixed size and thus cannot be reported by the GetSupportedSizeRange method. A
summation in this case is the integer resulting from the addition any of the elements. The summations of
the possible sizes shall not be returned from this method. The implementation should return the sizes of
unassigned or remaining component extents that are appropriate for that Goal.

For example, if the returned sizes in gigabytes are {10, 15, 17, 21}, the summations include {25, 27, 31,
32, 36, 63}. It is the responsibility of the client to calculate the summations.

Any one of the returned sizes or any one of the summations of the returns shall be acceptable by the
implementation as a possible size for a supported storage assignment using the element type and goal. If

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187
1188
1189
1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 109

the size of unassigned or remaining storage extents is repeated in this set of storage extents, the
repetition of size shall be reflected in the sizes returned. It is necessary to duplicate sizes so that the
client can calculate the summations.

If the implementation supports zero size StoragePools (aka an "empty" storage pool) or StorageVolumes,
the returned Sizes parameter will have an entry with the value of 0. For example, if the
GetSupportedSizes method is called with ElementType set to StoragePool, and an array of Sizes
containing [0, 20, 22, 25] is returned, it indicates it is possible to create a 0 size (i.e. an empty)
StoragePool, as well as other StoragePool sizes – namely 20, 22, and 25.

5.5.4.3 GetSupportedSizeRange

uint32 GetSupportedSizeRange(
[In] uint16 ElementType,
[In] CIM_StorageSetting ref Goal,
[Out] uint64 MinimumVolumeSize,
[Out] uint64 MaximumVolumeSize,
[Out] uint64 VolumeSizeDivisor);

• ElementType: This enumeration specifies what type of object to create.

• Goal: The service level the element is expected to provide. The Setting shall be a subset of the Capabilities
available from the parent StoragePool. Goal may be a null value, in which case the default Setting for the
StoragePool shall be used by the implementation.

• MinimumVolumeSize: The minimum size an element can take on either as a creation or modification
operation.

• MaximumVolumeSize: The maximum size an element can take on either as a creation of modification
operation

• VolumeSizeDivisor: The value used to determine sizes between MinimumVolumeSize and
MaximumVolumeSize.

This method is used to determine the possible sizes of child element, e.g., StoragePool, LogicalDisk, and
StorageVolume, that can be created or modified using capacity drawn from the StoragePool. This method
is useful when the number of possible sizes is so voluminous that reporting each discrete size would be
impractical. This method reports the continuum of discrete sizes between the minimum and maximum
size as defined by intervals of the divisor.

The range of possible values between the values reported by MinimumVolumeSize and
MaximumVolumeSize shall be defined as:

• next integer value greater than MinimumVolumeSize that is divisible by VolumeSizeDivisor

• next integer value less than MaximumVolumeSize that is divisible by VolumeSizeDivisor,

• and every integer in between these integers that is divisible by VolumeSizeDivisor.

The possible values returned from this method shall include the MinimumVolumeSize,
MaximumVolumeSize, and the range of values in between. Neither the MinimumVolumeSize nor the
MaximumVolumeSize are required to be divisible by the VolumeSizeDivisor. For example, if given a
MinimumVolumeSize of 10, a MaximumVolumeSize of 50, and VolumeSizeDivisor of 10, the possible size
values would be 10, 20, 30, 40, and 50.

A client can calculate the discrete sizes by calculating the ceiling of the MinimumVolumeSize or the floor
MaximumVolumeSize, then using one of these calculated values and the VolumeSizeDivisor to determine
the discrete possible values within the range.

For example, given

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221
1222
1223
1224
1225
1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

Block Services Package

110

MinimumVolumeSize = 35 GB
MaximumVolumeSize = 225 GB
VolumeSizeDivisor = 10 GB

ceiling(35/10) = 4
floor(225/10) = 22

 the next possible size after the minimum, 35, is 4 * VolumeSizeDivisor, or 40 GB.
 the next possible size after that is 5 * VolumeSizeDivisor, or 50 GB.
 the next possible size before the maximum, 225, is 22 * VolumeSizeDivisor, or 220 GB.

sizes = {35, 40, 50, 60 ... 210, 220, 225}

Any one of the returned sizes shall be acceptable by the implementation as a possible size for a
supported storage assignment using the element type and goal. The result size of the storage assignment
or allocation may be greater than the size requested by the client. The result size should be greater than
or equal to the requested size. The result size should be less than the next size greater than requested
size that is divisible by the VolumeSizeDivisor.

It is not required that there be a relationship between the sizes returned from this method and the
component extent sizes of the implementation as report by implementing the Extent Composition.

Both or either method may be supported by a storage subsystem, either as a decision made at
implementation time or as a variable that depends on the state of the StoragePool. For example, when a
StoragePool is first created allowing for possible sizes to be in 1024-byte blocks, the
GetSupportedSizeRange method should be used to report possible sizes. This example StoragePool
does not relocate blocks to avoid fragmentation of the capacity. As StorageVolumes or LogicalDisks are
drawn from and returned to the StoragePool, the capacity becomes fragmented. In this case, the
GetSupportedSizes method should be used to report the non-continuous regions of capacity that may be
used for element creation. There are storage systems that can allocate the StorageVolume or LogicalDisk
only in whole disks that need not be of uniform size; such storage systems support only the
GetSupportedSizes method.

Both methods may be supported at the same time and may report different values when discontiguous
and contiguous capacity is present in the StoragePool. In this case, the GetSupportSizes method is used
to report the fragments of available capacity. The remaining contiguous capacity is reported as the
largest element size possible. The GetSupportSizeRange is used to report element sizes that may be
drawn from the contiguous capacity.

If there is no notion of continuity as being a stable state of the system, e.g., capacity is continuously and
automatically being defragmented, the GetSupportSizeRange method should be used.

If the implementation supports zero size StoragePools (aka an "empty" storage pool) or StorageVolumes,
the returned MinimumVolumeSize parameter will have the value of 0.

5.5.4.3.1 Return Values

Each method has this set of return codes:

ValueMap {"0", "1", "2"},

Values {"Method completed OK", "Method not supported", "Use <the other method
name> instead"}]

If the above methods do not complete successfully, then either the methods are not supported or the
other method should be used. The GetSupportSizes method can notify the SMI-S client that it should use
the GetSupportSizeRanges instead; the GetSupportedSizeRange method can notify the SMI-S client that
it should use the GetSupportedSizes method instead.

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 111

5.5.4.3.2 GetAvailableExtents

uint32 GetAvailableExtents(
[In] CIM_StorageSetting REF Goal,
[Out] CIM_StorageExtent REF AvailableExtents[]);

This method is used to retrieve the available StorageExtents—ComponentExtents of the StoragePool—
that do not form the basis for StorageVolumes and LogicalDisks allocated from the StoragePool. If a
NULL is passed for a Goal, then all the available ComponentExtents of the StoragePool are returned.

The StorageExtent references returned from this method refer to a subset of the StorageExtents
associated to the StoragePool via ConcreteComponent, AssociatedComponentExtent, and
AssociatedRemainingExtent. The StorageExtents referenced by the output of this method may not equal
the set of Component StorageExtents because of any of the following reasons:

• The excluded StorageExtents may not be used with the Goal.

• The excluded StorageExtents may not be used for vendor-specific reasons.

• The excluded StorageExtents may not be used because of a usage restriction.

To get the available StorageExtents intended for a specific use, supply the Goal with the applicable
properties set to the appropriate values -- sample properties are: StorageExtentInitialUsage,
StoragePoolInitialUsage, ThinProvisionedPoolType, etc.

 Table 32 shows possible combinations for the values that can be supplied to get the available extents for
the intended use.

 Note, the returned extents may be a subclass of StorageExtent -- for example, StorageVolume.
StorageVolumes can be used to create storage pools according to the “Pools from Volumes” profile.

Table 32 - Values for applicable Goal properties

Intended Use StorageExtentIni
tialUsage

StoragePoolIn
itialUsage

ThinProvisionedPo
olType

Note

To create (or expand) an
Unrestricted StoragePool for Fully
Provisioned StorageVolumes

NULL (or 2) 2 NULL

To create (or expand) Unrestricted
StoragePool for Thinly
Provisioned StorageVolumes

NULL (or 2) 2 7 ThinlyProvisionedAllocat
edStoragePool

(Pools from Volumes)

To create (or expand) an
Unrestricted StoragePool for Fully
Provisioned StorageVolumes

14 2 NULL Returns available
StorageVolumes to use
to create such
StoragePool.

(Pools from Volumes)

To create (or expand) an
Unrestricted StoragePool for
Thinly Provisioned
StorageVolumes

14 2 7 ThinlyProvisionedAllocat
edStoragePool

Returns available
StorageVolumes to use
to create such
StoragePool.

(Pools from Volumes)

To create (or expand) a Delta
Replica StoragePool

19 4 NULL Returns available
StorageVolumes to use
to create such
StoragePool.

1291

1292

1293

1294
1295

1296

1297

1298

1299

1300

1301
1302
1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Block Services Package

112

This method is designed as a companion for the CreateOrModifyElementFromElements method. A client
may fetch the StoragePool’s available ComponentExtents and attempt to call
CreateOrModifyElementFromElement, or the client may use this method and have the agent provide the
available StorageExtents. However, note it is possible that even though a StorageExtent may appear to
be available from the implementation’s model, the implementation may not allow the StorageExtent to be
used for vendor specific reasons.

5.5.4.4 Return Values

Each method has this set of defined return codes:

 ValueMap {“0”, “1”, “2”, “3”, “4”, “5”},

 Values {“Job completed with no error”, “Not Supported”, “Unknown”,
“Timeout”, “Failed”, “Invalid Parameter”}]

• 0 - “Job completed with no error”
The method completes immediately with no errors (and with no asynchronous execution required)

• 1 - “Not Supported”
The implementation does not support the method.

• 5 - “Invalid Parameter”
One of the method parameters is incorrect (for instance invalid object paths).

• 3 - “Timeout” or 4 - “Failed”
The provider had problems accessing the hardware, or there were implementation-specific problems.

5.5.4.4.1 Storage Element Modification

Concrete StoragePools may be expanded, shrunk, or have their quality of service (QoS) changed (the
Goal parameter) by a client.

This package does not define how primordial StoragePools are modified (if they can be modified) within a
particular implementation.

The current capacity of a StoragePool is the value of the TotalManagedSpace property.

StorageVolumes and LogicalDisks may be expanded, shrunk, or have their quality of service (QoS)
changed (the Goal parameter) by a client.

The current capacity of the StorageVolume, LogicalDisk, or StorageExtent is the ConsumableBlocks
times the BlockSize.

(Pools from Volumes)

To create (or expand) a
StoragePool for Local Replica
Targets

20 6 NULL Returns available
StorageVolumes to use
to create such
StoragePool.

(Pools from Volumes)

To create (or expand) a
StoragePool for Remote Replica
Targets

21 7 NULL Returns available
StorageVolumes to use
to create such
StoragePool.

Table 32 - Values for applicable Goal properties

Intended Use StorageExtentIni
tialUsage

StoragePoolIn
itialUsage

ThinProvisionedPo
olType

Note

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330
1331

1332

1333

1334

1335

1336

1337

1338

1339

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 113

Storage elements are StoragePools, StorageVolumes, and LogicalDisks.

Return values are:

• 5 "StoragePool QoS Change,” 6 "StoragePool Capacity Expansion,” 7 "StoragePool Capacity Reduction"

Within SupportedStoragePoolFeatures array within the StorageConfigurationCapabilities instance, indicates
the types of StoragePool modification allowed.

• 11 "Storage Element QoS Change, 12 "Storage Element Capacity Expansion", and 13 "Storage Element
Capacity Reduction"

Within the SupportedStorageElementFeatures array within the StorageConfigurationCapabilities instance,
indicates the types of StorageVolume and LogicalDisk modifications allowed.

An implementation may support one or more of these options. If the implementation supports capacity
expansion or capacity reduction options and the QoS change option, then it shall support the capacity
change and the QoS change simultaneously in the modification of a given storage element.

A client can determine the resultant usable capacity to which a storage element may be changed by using
the GetSupportedSizes() and GetSupportedSizeRange() methods on the parent StoragePool. These
methods provide the possible storage capacity for new storage elements and for the modification of
existing storage elements given a QoS goal. To obtain a size to use for storage element modification, the
client simply select a size returned from the GetSupportedSizes() method or a size within the range
returned from GetSupportedSizeRange() method.

Generally, the attempted StoragePool modification shall be characterized as a storage capacity
expansion if the new capacity (the Size parameter) is greater than the current value of the
TotalManagedSpace property of the StoragePool to be modified. Likewise, the attempted StoragePool
modification shall be characterized as a storage capacity reduction if the desired new capacity (the Size
parameter) is less than the current value of the TotalManagedSpace property of the StoragePool to be
modified.

Generally, the attempted StorageVolume or LogicalDisk modification shall be characterized as a storage
capacity expansion if the new capacity (the Size parameter) is greater than its current capacity. Likewise,
the attempted StorageVolume or LogicalDisk modification shall be characterized as a storage capacity
reduction if the desired new capacity (the Size parameter) is less than its current capacity.

A storage element may also be modified by providing the references to component StorageExtents. The
list candidate component StorageExtents shall be provided through the execution of the
GetAvailableExtents() method on the parent StoragePool. For example, the SMI-S Client determines
which StorageExtents to use from the returned list based on their performance characteristics or their
relationship to network ports or primordial storage.

A StoragePool's capacity may be expandable by providing the references to existing component
StorageExtents of the StoragePool and additional references to component StorageExtents. A
StoragePool's capacity may be reducible by providing references to some, but not all, of the current
component StorageExtents of the StoragePool. If the summary of the capacity of the referenced input
StorageExtents is greater than the TotalManagedSpace of the StoragePool, then this action shall be
characterized as a capacity expansion. If this summary is less than the TotalManagedSpace of the
StoragePool, then this action shall be characterized as capacity reduction.

A StorageVolume's or LogicalDisk's capacity may be expandable by providing references to additional
component StorageExtents of the parent StoragePool. The capacity of a StorageVolume or LogicalDisk
shall not be reducible by providing references to StorageExtents.

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

Block Services Package

114

The capacity of storage elements that have only one member StorageExtent can only be reduced by
passing a reference to the existing member and specifying a capacity, using the Size parameter, that is
smaller than the current size of the storage element.

The specified Size parameter (in bytes), along with the specification of member StorageExtents, indicates
how much of the provided StorageExtents is to be used for the storage element. The specified size
represents the desired consumable capacity of the storage element. The capacity of the StorageExtent
may be equal to either the capacity drawn in its creation from a parent StorageExtent or StoragePool or to
the capacity that may be drawn from it in the creation of a dependent storage element. No direct
comparison may be made by the client between the desired capacity and the capacity of the
StorageExtents.

If the capacity desired is equal to the capacity of the storage element and the QoS is not altered, then the
implementation shall return no error and start no job.

If the capacity requested is larger than is consumable given a QoS (new or existing) from the referenced
StorageExtents or StoragePools, then that capacity shall be drawn from the parent primordial
StoragePool. The effect of passing a capacity less than the current capacity of the storage element shall
be to make available or free the capacity in the member StorageExtents to the difference between the
current capacity of the storage element and the new capacity of the storage element. The amount of
capacity freed depends on the virtualization (e.g., RAID method) employed in the previous configuration
of the storage element. An invalid parameter error shall be produced if the capacity in bytes passed is
less than the current capacity but greater than then the capacity realizable from the StorageExtents
referenced given a QoS. The size of a StorageExtent is the NumberOfBlocks times the BlockSize. The
capacity of the StorageExtents references can be calculated; it is the sum of the sizes of all
StorageExtents.

The number of StorageExtents desired, including existing and additional StorageExtents, for a
StorageElement minus the PackageRedundancy shall be equal to the ExtentStripeLength times the
DataRedundancy specified in the existing QoS goal. 14 Extent Composition Subprofile defines how to
determine the number of primordial StorageExtents used.

The quality of service (QoS) of a storage element may be modified. Generally, a QoS change indicates a
reorganization of computing resources to meet the new requirements—either additional or fewer
computing resources are used.

If the QoS is being modified, then clients may not be able to determine if desired size of the storage
element constitutes an expansion or reduction, as specified previously. Such a modification shall be non-
destructive to the data stored.

The QoS of a StoragePool shall not be changeable if that StoragePool has children storage elements.
However, the package redundancy of parental StoragePools may be changed by changing the number of
spare StorageExtents. See 12 Disk Sparing Subprofile.

In the totality of this design, a SMI-S Client may change one of the following:

• The QoS,

• The Size (capacity)

• The Size and the member StorageExtents

• Only the member StorageExtents.

A SMI-S Client may not change the QoS and the member StorageExtents. There is no mechanism for a
SMI-S Client to determine the quorum of StorageExtents for a given QoS if ExtentStripeLength is not
provided.

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 115

EXPERIMENTAL

5.5.5 Extrinsic Methods on StorageConfigurationCapabilities

5.5.5.1 GetElementNameCapabilities

This method indicates if ElementName can be specified as a part of invoking an appropriate method of
StorageConfigurationService to create a new element. Additionally, the returned data includes the
methods that can be used to modify the ElementName of existing storage elements.

 uint32 GetElementNameCapabilities(

 [IN,

 ValueMap { "2", "3", "4", "5", "6", "7", "..", "0x8000.." },

 Values { "StorageVolume", "StorageExtent",

 "LogicalDisk", "ThinlyProvisionedStorageVolume",

 "ThinlyProvisionedLogicalDisk", StoragePool",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 ElementType,

 [IN] CIM_ManagedElement REF Goal,

 [IN] CIM_StoragePool REF InPool,

 [OUT,

 ValueMap { "2", "3", "4", "5", "..", "32768..65535" },

 Values { "ElementName can be supplied during creation",

 "ElementName can be modified with InvokeMethod",

 "ElementName can be modified with ModifyInstance",

 "ElementName can be modified with SetProperty",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 SupportedFeatures[],

 [OUT] uint16 MaxElementNameLen,

 [OUT] string ElementNameMask);

The parameters are:

• ElementType: (required) This enumeration specifies the type of object.

• Goal: This optional parameter is a reference to an instance of the StorageSetting class. The StorageSetting
properties such as StorageExtentInitialUsage, StoragePoolInitialUsage, and ThinProvisionedPoolType
provide additional information (subtype) about the ElementType -- for example, elements reserved as “Delta
Replica Target” or storage pools to be used as “ThinlyProvisionedAllocatedStoragePool”. If the Goal is not
supplied, the returned naming convention applies to any nameable ElementType supported by the
implementation.

• InPool: This optional parameter is a reference to the storage pool where the element is intended to be
allocated from. If the InPool is not supplied, the returned naming convention does not account for the pool
that is used to allocate space for the Element.

• SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a storage element. For example, the value of "ElementName can be supplied
during creation" indicates the method such as CreateOrModifyElementFromStoragePool accepts the
ElementName when creating a new StorageVolume. An empty array indicates ElementNaming for
ElementType is not supported.

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

Block Services Package

116

• MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.

• ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

Notes:

The Goal and InPool parameters refer to the same references that will be supplied to the methods such
as CreateOrModifyElementFromStoragePool, CreateOrModifyStoragePool, etc.

The returned data is based on the ElementType and the supplied Goal and/or the InPool parameters. If
the Goal is not supplied, the returned naming convention applies to any nameable ElementType
supported by the implementation. If the InPool is not supplied, the returned naming convention does not
account for the pool that is used to allocate space for the Element.

The method returns the following statuses:

• 0 - “Completed with No Error”:
The method has completed immediately with no errors

• 1 - “Not Supported”
This method is not supported at this time.

• 3 - “Timeout” or 4 - “Failed”

• 5 - “Invalid Parameter”
One or more of the parameters are invalid (invalid object paths, for instance).

EXPERIMENTAL

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 117

5.6 Client Considerations and Recipes

5.6.1 Representative Instance Diagram

Figure 16: "Representative Block Service Instance Diagram" shows the classes and associations needed
to model a single StoragePool with two StorageVolumes.

5.6.2 Goals and Settings

A implementation may persist the properties of the Setting as they were when the Setting was used to
perform a configuration operation. However, the implementation may also construct the Setting given the
current quality of service provided. An implementation of this package should retain the properties of the
Setting as they were when the Setting was used as a Goal. For example, a client requests a package
redundancy 2, the implementation is restarted and therefore cannot retrieve; the implementation sets this
value to the current value of 1. Unless the client maintained the state of Setting as well, it will not be able
to detect the difference between the initial Setting state and the current state for package redundancy, in
the StorageVolume or LogicalDisk, for example.

If a client specifies a goal asking for no single point of failure, the implementation shall return an error if
the system is not capable of supporting that goal. However, if a client specifies that single points of failure
are allowed, the implementation may return storage that has potential single points of failure or it may
return storage that has no single points of failure. In other words, the system may return a storage that is
more capable than what the client has asked for.

Figure 16 - Representative Block Service Instance Diagram

SystemDevice

Single controller

ComputerSystem

Pool owned by one controller,
redundant access through the
other

StoragePool

HostedStoragePool

AllocatedFromStoragePool

Current state of volume

StorageSetting

Element
Setting

Element
Capabilities

Optional extension to publish
'hints' from the client for
 optimization

StorageSettingWithHints

SystemDevice

HostedService

ElementCapabilities

Describes range of
capabilities of the Service

StorageCapabilities

Element
Setting

AllocatedFromStoragePool

Describes range of
capabilities of the Pool

StorageCapabilities

StorageConfigurationService

LUN

StorageVolume

StorageVolume

LUN

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

Block Services Package

118

A client may request more data redundancy and package redundancy than what is required for the
particular RAID level. An implementation may provide more of these redundancies than is required for its
RAID levels. If allowed, the client request of additional data redundancy indicates that additional copies
of the data are requested. If allowed, the client request of additional package redundancy results in
additional drives, for example, being assigned to this storage element. The redundant package may be
overassigned (e.g., assigned as extra packages for more than one storage element), or it may be
dedicated. See 12 Disk Sparing Subprofile for details on modeling the sparing functionality itself. In other
words, these Goal properties can be used to assign additional copies of the data and redundancy at
creation or modification time of a StoragePool, StorageVolume, or LogicalDisk.

5.6.3 Representative StoragePool Creation Example

Figure 17: "StoragePool Creation - Initial State" shows the initial state of the block storage system, a
single primordial StoragePool that advertises its capabilities. The GetSupportedSizes() and
GetSupportedSizeRange() methods determine what sizes of StoragePools can be created from the
primordial StoragePool, given a goal StorageSetting. Alternatively, if the StoragePool is to be created
from StorageExtents, GetAvailableExtents() obtains a list of available ComponentExtents of the
StoragePool that also match the Goal.

Next, (Figure 18: "StoragePool Creation - Step 1") the client uses the CreateSetting method on the
StorageCapabilities instance to create an instance of a StorageSetting. This Setting object can be altered
as desired. If the block storage system supports StorageSettingWithHints, an instance of this subclass is
created rather than the StorageSetting superclass. Alternatively, the client can use one of the predefined
StorageSetting instances. Pre-existing Settings can be located by using the
StorageSettingsAssociatedToCapabilities association for factory or pre-defined settings or by using the
StorageSettingsGeneratedFromCapabilities class, where the StorageSetting.ChangeableType = “2”
(“Changeable - Persistent”); these Settings have been generated but were modified to persist.

Figure 17 - StoragePool Creation - Initial State

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 119

Once this generated Setting has been altered as required or, alternatively, a pre-defined Setting used,
the Goal Setting is passed as an argument to the CreateOrModifyStoragePool method in the
StorageConfigurationService. (Shown in Figure 19: "StoragePool Creation - Step 2").

Alternatively, the client can create the StoragePool by passing the Goal, the desired ComponentExtents,
and a “Pool” ElementType to CreateOrModifyElementFromElement. If a Size is passed as well, the size
shall be equal to or less than the consumable size (in blocks) of the desired ComponentExtents. The list
of available StorageExtents is best retrieved using the GetAvailableExtents() method. If the Size is less

Figure 18 - StoragePool Creation - Step 1

Figure 19 - StoragePool Creation - Step 2

ComputerSystem

dedicated[x]

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

HostedPool

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

FixedSetting:
StorageSetting

StorageSettingsAssociatedToCapabilities

StorageCapabilities

CreateSetting()

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool(NewSetting | FixedSetting)
CreateOrModifyElementFromElements(NewSetting | FixedSetting)

HostedService

NewSetting:
StorageSetting

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

StorageSettingGeneratedFromCapabilities

FixedSetting:
StorageSetting

StorageSettingAssociatedToCapabilities

1542

1543

1544

1545

Block Services Package

120

than the desired StorageExtents by less than the smallest StorageExtent passed, then one of the
StorageExtents is partitioned into used and free parts. See 5.1.15.

The StoragePool is then created, as shown in Figure 20: "StoragePool Creation - Step 3". If the
generated Setting was used as the Goal, then this temporary StorageSetting is replaced with an
equivalent object linked to the new StoragePool with ElementCapabilities. .

5.6.4 Representative example of StorageVolume or LogicalDisk Creation

Similarly to StoragePools, a client chooses a suitable source StoragePool by referencing the
StorageCapabilities objects and using the GetSupportedSizes() and GetSupportSizeRange() methods,
given a goal Setting. Alternatively, a client can retrieve the available ComponentExtents of the
StoragePool, given a goal StorageSetting, with the GetAvailableExtents() methods. The client may create
a StorageVolume or LogicalDisk by specifying a size, source StorageExtents, or a combination, as shown
in Figure 21: "StorageVolume Creation - Initial State".

Figure 20 - StoragePool Creation - Step 3

ComputerSystem

dedicated[x]

StorageCapabilities

CreateSetting()

ElementCapabilities

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromElements()

HostedService

NewPool:
StoragePool ElementCapabilities

NewCapability:
StorageCapabilities

Primordial:
StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvaillableExtents()

HostedPool

AllocatedFromStoragePool

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 121

Once a suitable StoragePool is found, a StorageSetting instance can be created using the CreateSetting
method on the StorageCapabilities object. See Figure 22: "StorageVolume Creation - Step 1". If a
suitable StorageSetting already exists, it can be used instead. Pre-existing Settings can be located by
using the StorageSettingsAssociatedToCapabilities association, for factory or pre-defined settings, or by
using the StorageSettingsGeneratedFromCapabilities where the StorageSetting.ChageableType = “2”
(“Changeable - Persistent”); these Settings have been generated but were modified to persist, as
illustrated in Figure 22: "StorageVolume Creation - Step 1". Another Setting already associated to a
storage element can be used as a goal, but it shall not be modifiable.

If a new Setting is created, it is linked back to the originating StorageCapabilities object until it is used as
an argument in a StorageConfiguration method. See Figure 23: "StorageVolume Creation - Step 2".
Alternatively, the client can create the StorageVolume or LogicalDisk, for example, by passing the Goal,
the desired ComponentExtents, and a ElementType to CreateOrModifyElementFromElement. If a Size is
passed as well, the size shall be equal to or less than the consumable size (in blocks) of the desired
ComponentExtents. The list of available StorageExtents is best retrieved using the GetAvailableExtents()

Figure 21 - StorageVolume Creation - Initial State

Figure 22 - StorageVolume Creation - Step 1

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

HostedPool

ElementCapabilities
StorageCapabilities

CreateSetting()

HostedService

FixedSetting:
StorageSetting

StorageCapabilities

CreateSetting()

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

StoragePool

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

ComputerSystem

dedicated[x]

HostedPool

ElementCapabilities

StorageSettingAssociatedToCapabilities

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

Block Services Package

122

method. If the Size is less than the desired StorageExtents by a size less than smallest StorageExtent
passed, then one of the StorageExtents is partitioned into used and free parts. See 5.1.15.

Once the StorageVolume has been created, the new or existing Setting is associated to the new storage
element using the ElementSettingData association. The new Setting and the Goal setting may not be the
very same instance. The client cannot assume that the instances are the same instance. See Figure 24:
"StorageVolume Creation - Step 3".

Figure 23 - StorageVolume Creation - Step 2

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool(NewSetting | FixedSetting)
CreateOrModifyElementFromElements(NewSetting | FixedSetting)

HostedService

GetSupportedSizes()
GetSupportSizeRange()
GetAvailableExtents()

StoragePool

HostedPool

ElementCapabilities

StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

StorageSettingsGeneratedFromCapabilities

FixedSetting:
StorageSetting

StorageSettingsAssociatedToCapabilities

1573

1574

1575

1576

1577

1578

1579

1580

1581

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 123

5.6.5 Summarize the StoragePools in a block storage system and verify the capacity reported

// DESCRIPTION

// This recipe retrieves and validates the total, remaining and consumed storage

// pool space on a block server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the device, CIM_ComputerSystem, of interested has

// previously been identified and defined in the $BlockServer-> variable.

// Step 1. Retrieve the storage pools on the device.

$Pools[] = Associators($BlockServer->,

"CIM_HostedStoragePool",

"CIM_StoragePool",

"GroupComponent",

"PartComponent",

false,

false,

{"TotalManagedSpace", "RemainingManagedSpace"})

// Step 2. Summarize the space consumed and available in each storage pool.

for (#i in $Pools[]) {

Figure 24 - StorageVolume Creation - Step 3

ComputerSystem

dedicated[x]

StorageConfigurationService

CreateOrModifyElementFromStoragePool()
CreateOrModifyElementFromElements()

HostedService

StoragePool

GetSupportedSizes()
GetSupportedSizeRange()

GetAvailableExtents()

HostedPool

ElementCapabilities
StorageCapabilities

CreateSetting()

NewSetting:
StorageSetting

NewVolume:
StorageVolume

AllocatedFromStoragePool

ElementSettingData

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

Block Services Package

124

 #totalSpace = $Pools[#i].TotalManagedSpace

 #remainingSpace = $Pools[#i].RemainingManagedSpace

 $Pool-> = $Pools[#i].getObjectPath()

 // Step 3. Retrieve the space consumed by each element allocated from the

 // storage pool.

 $Allocs[] = References($Pool->,

 "CIM_AllocatedFromStoragePool",

 "Antecedent",

 false,

 false,

 {"SpaceConsumed"})

 #allocSpace = 0

 for (#j in $Allocs[]) {

#allocSpace = #allocSpace + $Allocs[#j].SpaceConsumed

 }

 if (#totalSpace != #allocSpace + #remainingSpace) {

<ERROR! Device does not correctly represent capacity>

 }

}

5.6.6 Conditional: Create StoragePool and Storage Element on Block Server (e.g., Array or Vol-
ume Manager)

// DESCRIPTION

// The goal of this recipe is to create a storage element with the

// maximum capabilities of the block server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. The storage configuration service is supported indicating the

// storage configuration is permitted. This is the condition for the recipe.

// 2. A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 3. The settings for the new Storage Pool and Storage Volume or Logical Disk have

// following size:

// #RequestedSize = 10 * 1024 * 1024 * 1024 // 10 GB

// 4. #StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 5. #ElementType is set to the element to created

// See CreateOrModifyElementFromStoragePool.ElementType

// Function GetMostCapable

// Get the capabilities that have the maximum DataRedundancy and
PackageRedundancy

// Input:

// An array of StorageCapabilities instances associated to the StoragePool.

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640
1641

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 125

sub REF GetMostCapable($CapabilitiesOffered[])

{

<Sort the $CapabilitiesOffered[] so that the capability with the

 greatest DataRedundanctMax, PackageRedundancyMax, and

 NoSinglePointOfFailure in the last element in the array.

 NoSinglePointOfFailure == true is greater than

 NoSinglePointOfFailure == false

>

return $CapabilitiesOffered[$CapabilitiesOffered.length-1]

}

// Function PoolSizeAvailable

// A return value of 0 means that no size is available

sub unit64 PoolSizeAvailable($PoolToDrawFrom->,

$StorageSetting->, #RequestedSize, #RequestedElementType)

#ResultSize = 0

%InArguments[“ElementType”] = #RequestedElementType

%InArguments[“Goal”] = $StorageSetting->

#MethodReturn = InvokeMethod(

$PoolToDrawFrom->,

“GetSupportedSizes”,

%InArguments,

%OutArguments)

if(#MethodReturn == 0)

{

 // this method is supported

#SupportedSizes[] = %OutArguments[“Sizes”]

< Amend to the #SupportedSizes[] all possible combinations of

 summations of the values provided in the array >

#i = 0

#max = #SupportedSizes[].length

while(#i < #max && #RequestedSize > #ResultSize)

{

#ResultSize = #SupportedSizes[#i++]

}

if(#RequestedSize > #ResultSize)

{

// we did not find a size

#ResultSize = 0

}

}

 else if (#MethodReturn == 2)

{ // call GetSupportedSizeRange

#MethodReturn =

InvokeMethod(

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

Block Services Package

126

$PooltoDrawFrom->,

“GetSupportedSizeRange”,

%InArguments,

%OutArguments)

if(#MethodReturn != 1 && #MethodReturn != 2)

{

// this method is supported

#MaximumVolumeSize = %OutArguments[“MaximumVolumeSize”]

#MinimumVolumeSize = %OutArguments[“MinimumVolumeSize”]

#VolumeSizeDivisor = %OutArguments[“VolumeSizeDivisor”]

#ResultSize = 0 // Set default case

if(#RequestedSize >= #MinimumVolumeSize &&

 #RequestedSize <= #MaximumVolumeSize)

{

// Rounding up to next Size, which is dividable by Divisor

#ResultSize = (#RequestedSize + (#VolumeSizeDivisor -

(#RequestedSize MOD #VolumeSizeDivisor)))

}

}

}

return #ResultSize

}

// MAIN

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

<ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<ERROR! Storage Configuration is not supported.>

 }

}

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 127

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0]

$ServiceCapabilities[] = Associators(

$StorageConfigurationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,

false,

null)

// There should be only one StorageConfigurationCapabilities instance

#SupportsPoolCreation = contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedSynchronousActions[]) ||

contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

#PoolCreationProducesJob = contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[])

#SupportsElementCreation1 = contains(

5, // Storage Element Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsElementCreation2 = contains(

3, // StorageElementCreation

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementCreationProducesJob = contains(

5, // Storage Element Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[])

// If a storage element can not be created and that storage element is

// neither created synchronously or asynchronously, then fail the test

if (!#SupportedElementCreation2 &&

!(#SupportedElementCreation1 || #ElementCreationProducesJob))

{

<ERROR! The StoragePool can be created, but the

StorageElement creation is not supported.>

}

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find

// all the StoragePools from which storage elements might be created.

$StoragePools[] = Associators(

$BlockServer->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

Block Services Package

128

null,

null,

false,

false,

{“InstanceID”, “Primordial”})

// Step 3. For each StoragePool, follow the CIM_ElementCapabilities

// asociation to the StorageCapabilities of that pool. Compare the

// StorageCapabilities to the desired StorageSetting and find the

// best match.

$PoolToDrawFrom-> = null

for #i in $StoragePools[]

{

// See if this pool has its own StorageConfigurationCapabilities.

$PoolServiceCapabilities[] = Associators(

$StoragePools[#i]->,

ÒCIM_ElementCapabilitiesÓ,

 ÒCIM_StorageConfigurationCapabilitiesÓ,

null,

null,

false,

false,

null)

if($PoolServiceCapabilities[]-> != null) {

 #SupportsPoolCreation = contains(

 2, // Storage Pool Creation

 $PoolServiceCapabilities[0].SupportedSynchronousActions[]) ||

 contains(

 2, // Storage Pool Creation

 $PoolServiceCapabilities[0].SupportedAsynchronousActions[]))

 #PoolCreationProducesJob = contains(

 2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedAsyncronousActions[])

 #SupportsElementCreation1 = contains(

 5, // Storage Element Creation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 #SupportsElementCreation2 = contains(

 3, // StorageElementCreation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[])

 #ElementCreationProducesJob = contains(

 5, // Storage Element Creation

 $ServiceCapabilities[0].SupportedAsynchronousActions[])

if (!#SupportsPoolCreation &&

!#SupportsElementCreation2 &&

 !(#SupportedElementCreation1 || #ElementCreationProducesJob))

 {

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 129

 <ERROR! The StoragePool can be created, but the

 StorageElement creation is not supported.>

 } // end of if($PoolServiceCapabilities[]-> != null)

 else {

 // Continue with global instance of
StorageConfigurationCapabilities --

 // This Pool does not have StoragePool specific capabilities

 }

// If we can not create Storage Pool, then find a ‘concrete’

// Storage Pool from which to create a Storage Element

#UsePrimordial = false

if(#SupportsPoolCreation)

{

#UsePrimordial = true

#RequestedElementType = 2 // StoragePool

}

else

{

#RequestedElementType = #ElementType

}

if ($StoragePools[#i].Primodial == #UsePrimordial)

{

$CapabilitiesOffered[] = Associators(

$StoragePools[#i].getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = &GetMostCapable($CapabilitiesOffered[])

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

// Step 4. Determine if the selected pool has enough space for

// another pool.

// If the block server supports hints, then the Storage Setting returned

// will contain default hints

// Create a setting

%InArguments[“SettingType”] = 3 // Goal

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

1822

1823

1824

1825

1826

1827

1828
1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

Block Services Package

130

if (#ReturnValue != 0 || null)

{

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

// Determine the possible size, closest to the requested size

#PossibleSize = &PoolSizeAvailable(

$PoolToDrawFrom->,

$GeneratedStorageSetting->,

#RequestedSize

#RequestedElementType)

if(0 != #PossibleSize) // we found a size close to #RequestedSize

{ }

break;

}

else

{

// Cause failure if there are no more candidate Pools

$PoolToDrawFrom-> = NULL;

}

}

}

if ($PoolToDrawFrom-> == NULL)

{

<ERROR! Unable to find a suitable pool from which to create the storage
element >

}

// Step 5. Register for indications on configuration jobs

If(#PoolCreationProducesJob || #ElementCreationProducesJob)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter2)

}

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892
1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903
1904

1905

1906

1907

1908

1909

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 131

// Step 6. Create the Storage Pool

if(#SupportsPoolCreation)

{

%InArguments[“ElementName”] = NULL// we do not care what

// the name is

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

%InArguments[“InExtents”] = null

%InArguments[“Pool”] = null

%InArguments[“InPools”] = $PoolToDrawFrom->

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,

“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // Storage Pool was not created

<ERROR! Failed >

}

$PoolToDrawFrom-> = %OutArguments[“Pool”]

$PoolCreationJob-> = %OutArguments[“Job”]

if(#PoolCreationProducesJob && $PoolCreationJob-> != null)

 {

<Wait until the completion of the job

 using $PoolCreationJob-> as a filter>

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

}

$CapabilitiesOffered[] = Associators(

$PoolToDrawFrom->,

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

}

// Step 7. Create Storage Element.

%InArguments[“SettingType”] = 3 // “Goal”

1910
1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

Block Services Package

132

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

if (#ReturnValue != 0)

{

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

%InArguments[“ElementName”] = NULL

%InArguments[“ElementType”] = #ElementType

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

$InArguments[“InPool”] = $PoolToDrawFrom->

%InArguments[“TheElement”] = null

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,

“CreateOrModifyElementFromStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 || #ReturnValue != 4096)

{ // Method did not succeeded or succeeded but did not create a job

<ERROR! Failed >

}

else if(#ReturnValue == 0 ||

(#ReturnValue == 4096 && %OutArguments[“TheElement”] != null)))

{

$CreatedElement-> = %OutArguments[“TheElement”]

}

else // a Job was created and TheElement is null

{

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

<Once the ‘Job’ has completed successfully, see step 5, then

 follow the AffectedJobElement association from the ‘Job’ to

 retrieve the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#StorageElementClass,

null,

null,

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 133

false,

false,

null)

// Only one storage element will be created,

 $CreatedElement-> = $CreatedElement[0].getObjectPath()

}

5.6.7 Conditional: Expand Storage Element on Block Server

// DESCRIPTION

// In this recipe, we attempt to expand a LUN on an array by 50%.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. The storage configuration service is supported indicating the

// storage configuration is permitted. This is the condition for the recipe.

// 2. A reference to the CIM_ComputerSystem that represents the array

// $BlockServer->

// 3.A reference to the particular storage element we wish to expand.

// $ElementToExpand->

// 4. It is assumed that to expand a storage element there needs to be

// enough space available in the parent StoragePool to contain

// another copy of the storage element whose size is equal to the

// new size requested. This is especially the case if we were

// modifying the settings as well as the size.

// 5. #ElementClassName is set to the class name of the storage element be

modified.

// (e.g. CIM_StorageVolume or CIM_LogicalDisk)

// 6. #ElementType is set to the storage element to modified

// See CreateOrModifyElementFromStoragePool.ElementType

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

<ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

Block Services Package

134

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0]

$ServiceCapabilities[] = Associators(

$BlockServer->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,

false,

null)

// There should be only one StorageConfigurationCapabilities instance

#SupportsElementModification1 = contains(

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedSynchronousActions[]) ||

contains(

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsElementModification2 = contains(

5, // Storage Element Modification

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementModificationProducesJob = contains(

7, // Storage Element Modification

$ServiceCapabilities[0].SupportedAsynchronousActions[])

if(!#SupportedElementModification1 || !#SupportedElementModification2)

{

<EXIT: The ability to modify an existing Storage Element must be supported

 to continue.>

}

// Step 2. Read the current size of the Storage Element.

$StorageElement = GetInstance(

$ElementToExpand->,

false,

false,

false,

{“BlockSize”, “NumberOfBlocks”})

#PreviousSize = $StorageElement.BlockSize * $StorageElement.NumberOfBlocks

// Step 3. Follow the AllocatedFromStoragePool association from the

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 135

// storage element to find the pool from whence it came.

$Pools->[] = AssociatorNames(

$ElementToExpand->,

“CIM_AllocatedFromStoragePool”,

“CIM_StoragePool”,

null,

null)

// A Storage Element has only one Pool parent

$ParentPool-> = $Pools->[0]

// Step 4. Determine whether the desired space for which to expand the

// storage element exists within the pool.

$StorageSetting->[] = AssociatorNames(

$ElementToExpand->,

“CIM_ElementSettingData”,

“CIM_StorageSetting”,

null,

null)

$CurrentElementSetting-> = $StorageSetting->[0]

// Calculate the additional space needed

#SizeToExpand = 0.5 * #PreviousSize

// Calculate 150% of previous storage element size

#SizeToExpandTo = #PreviousSize + (0.5 * #PreviousSize)

#NewSizeAvailable =

@<Create Storage Pool and Storage Element on Block Server>

&PoolSizeAvailable(

$ParentPool->,

$CurrentElementSetting->,

#SizeToExpand,

#ElementType)

if (0 == #NewSizeAvailable)

{

<ERROR! Unable to proceed because the requested size is unavailable >

}

// Step 5. Register for indications on configuration jobs

If(#ElementModificationProducesJob)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133
2134

Block Services Package

136

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter2)

}

// Step 6. Modify the Storage Element

// If there is a Job produced, wait for Job completion

%InArguments[“ElementName”] = null// we do not care what the name is

%InArguments[“ElementType”] = #ElementType

%InArguments[“Goal”] = $CurrentElementSetting

%InArguments[“Size”] = #SizeToExpandTo

%InArguments[“InPool”] = $ParentPool->

%InArguments[“TheElement”] = $ElementToExpand->

#ReturnValue = InvokeMethod(

$StorageConfigurationService->

“CreateOrModifyElementFromStoragePool”

%InArguments

%OutArgument

)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // Method succeeded or validated arguments and started a job

<ERROR! Failed >

}

else if(#ReturnValue == 0)

{

$CreatedElement-> = %OutArguments[“TheElement”]

}

else // a Job was created and TheElement is null

{

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully

>

<Once the ‘Job’ has stopped, see step 4,then follow the

 AffectedJobElement association from the ‘Job’ to retrieve

 the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#ElementClassName,

null,

null,

false,

2135

2136

2137

2138

2139

2140
2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 137

false,

null)

// Only one Storage Element will be created,

 $CreatedElement-> = $CreatedElement[0].getObjectPath()

}

// Step 7. Check the value of the “Size” out parameter. See if it is

// equal to size expected. If so, we got what we asked for and we’re done.

#SizeExpandedTo = %OutArguments[“Size”]

if (#SizeExpandedTo == #SizeToExpandTo)

{

< indicate the storage element was successfully expanded >

}

else

{

if (#SizeExpandedTo <= #PreviousSize)

{

< indicate the storage element was not expanded >

}

else

{

< indicate the storage element was only partially expanded to
#SizeExpandedTo >

}

}

5.6.8 Conditional: Create Storage Element from Elements on Block Server

// DESCRIPTION

//

// This recipe demonstrates a use of “CreateOrModifyElementFromElements”;

// However the recipe is known to fail when an implementation also implements the
PoolsFromVolumes component profile.

//

// The goal of this recipe is to create a storage element with the maximum

// capabilities of the block server. If supported, the pool creation specifies

// the disk(s) to use as input rather than the size.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. The storage configuration service is supported indicating the

// storage configuration is permitted. This is the condition for the recipe.

// 2. A reference to a CIM_ComputerSystem Host is previously

// defined in the $Host-> variable

// 3. The references for input disks that are to be used for creating the pool

// are in $DisksForPool->[] array. All these must be associated to the

// primordial pool with CIM_ConcreteComponent association.

// On being transferred to a Concrete pool they will be disassociated from

// the primordial pool.

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203
2204

2205

2206

2207

2208

2209

2210

2211
2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

Block Services Package

138

// 4. The storage element will be created using available disks in the

// concrete returned by GetAvailableExtents.

// 5. The settings for the new Storage Pool and Logical Disk are defined in

// the following variables:

// #RequestedSize = 10 * 1024 * 1024 * 1024 // 10 GB

// 6. #StorageElementClass is set to the class name of the element being

// createdlike CIM_StorageVolume or CIM_LogicalDisk.

// 7. #ElementType is set to the element to created

// 2 - StorageVolume

// 4 - LogicalDisk

// See CreateOrModifyElementFromStoragePool.ElementType

// MAIN

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($Host->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

<ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

<ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// Associated with the system

$StorageConfigurationService-> = $Services->[0]

$ServiceCapabilities[] = Associators($StorageConfigurationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null,

null,

false,

false,

null)

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 139

// There should be only one StorageConfigurationCapabilities instance

#SupportsPoolCreation = contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

|| contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

#PoolCreationProducesJob = contains(2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[])

#SupportsElementCreation1 = contains(12, // Storage Element from Element Creation

$ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsElementCreation2 = contains(3, // LogicalDiskCreation

$ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementCreationProducesJob = contains(12, // Storage Element from Element
Creation

$ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsInExtents = contains(2, // InExtents

$ServiceCapabilities[0].SupportedStoragePoolFeatures[])

// If StorageExtent creation is not supported, the set of specific disks from

// which to allocate the StoragePool is not supported by the device.

if (!#SupportsInExtents) {

<EXIT: The StoragePool cannot be created from a specific set of disks.>

}

// If a storage element can not be created and that storage element is

// neither created synchronously or asynchronously, then fail the test

if (!#SupportedElementCreation2 &&

!(#SupportedElementCreation1 || #ElementCreationProducesJob)) {

<EXIT: The StoragePool can be created, but the

 storage element from element creation is not supported.>

}

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find

// all the StoragePools from which storage elements might be created.

$StoragePools[] = Associators($Host->,

“CIM_HostedStoragePool”,

“CIM_StoragePool”,

null,

null,

false,

false,

{“InstanceID”, “Primordial”})

// Step 3. For each StoragePool, follow the CIM_ElementCapabilities

// asociation to the StorageCapabilities of that pool. Compare the

// StorageCapabilities to the desired StorageSetting and find the

// best match.

$PoolToDrawFrom-> = null

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284
2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

Block Services Package

140

for (#i in $StoragePools[]) {

// If we can not create Storage Pool, then find a ‘concrete’

// Storage Pool from which to create a Storage Element

#UsePrimordial = false

if (#SupportsPoolCreation) {

#UsePrimordial = true

#RequestedElementType = 2 // StoragePool

} else {

#RequestedElementType = #ElementType

}

if ($StoragePools[#i].Primodial == #UsePrimordial) {

$CapabilitiesOffered[] = Associators(

$StoragePools[#i].getObjectPath(),

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = &GetMostCapable($CapabilitiesOffered[])

$PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

// Step 4. Determine if the selected pool has enough space for

// another pool. If the block server supports hints, then

// the StorageSetting returned will contain default hints

// Create a setting

%InArguments[“SettingType”] = 3 // Goal

#ReturnValue = InvokeMethod(

$StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

if (#ReturnValue != 0 || null) {

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

// Determine the possible size, closest to the requested size

#PossibleSize = &PoolSizeAvailable(

$PoolToDrawFrom->,

$GeneratedStorageSetting->,

#RequestedSize,

#RequestedElementType)

if (0 != #PossibleSize) {

// Located a size close to #RequestedSize

break;

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 141

} else {

// Cause failure if there are no more candidate Pools

$PoolToDrawFrom-> = NULL;

}

}

}

if ($PoolToDrawFrom-> == NULL) {

<ERROR! Unable to find a suitable pool from which to create the storage
element>

}

// Step 5. Register for indications on configuration jobs

if (#PoolCreationProducesJob || #ElementCreationProducesJob) {

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

WHERE SourceInstance ISA CIM_ConcreteJob

AND ANY SourceInstance.OperationalStatus[*] = 17

AND ANY SourceInstance.OperationalStatus[*] = 2 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

WHERE SourceInstance ISA CIM_ConcreteJob

AND ANY SourceInstance.OperationalStatus[*] = 17

AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be
created}&createIndication(#Filter2)

}

// Step 6. Create the Storage Pool

if (#SupportsPoolCreation) {

%InArguments[“ElementName”] = NULL// leave up to the device

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = null

%InArguments[“InExtents”] = $DisksForPool->[]

%InArguments[“Pool”] = null

$InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPools”] = $InPools->[]

#ReturnValue = InvokeMethod($StorageConfigurationService->,

“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if (#ReturnValue != 0 && #ReturnValue != 4096) {

// Storage Pool was not created

<ERROR! Failed>

}

$PoolToDrawFrom-> = %OutArguments[“Pool”]

$PoolCreationJob-> = %OutArguments[“Job”]

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368
2369

2370

2371

2372

2373

2374

2375

2376

2377

2378
2379

2380

2381

2382

2383

2384

2385
2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

Block Services Package

142

if (#PoolCreationProducesJob && $PoolCreationJob-> != null) {

<Wait until the completion of the job

 using $PoolCreationJob-> as a filter>

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully>

}

$CapabilitiesOffered[] = Associators($PoolToDrawFrom->,

“CIM_ElementCapabilities”,

“CIM_StorageCapabilities”,

null,

null,

false,

false,

null)

$StorageCapabilitiesOffered = $CapabilitiesOffered[0]

}

// Step 7. Call GetAvailableExtents to find available extents for creating

// the storage element.

%InArguments[“Goal”] = $GeneratedStorageSetting->

#ReturnValue = InvokeMethod($PoolToDrawFrom->,

“GetAvailableExtents”,

%InArguments, %OutArguments)

if (#ReturnValue != 1) {

// Not supported

<EXIT! Method not supported, can not finish this recipe>

} else if (#ReturnValue != 0) {

// Method did not succeeded or succeeded but did not create a job

<ERROR! Failed>

}

$DisksForElement->[] = %OutArguments[“AvailableExtents”]

// Step 8. Create Storage Element

%InArguments[“SettingType”] = 3 // “Goal”

InvokeMethod($StorageCapabilitiesOffered.getObjectPath(),

“CreateSetting”,

%InArguments,

%OutArguments)

if (#ReturnValue != 0) {

<ERROR! Unable to create storage setting >

}

$GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 143

%InArguments[“ElementName”] = NULL

%InArguments[“ElementType”] = #ElementType

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

$InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPool”] = $InPools->

%InArguments[“InElements”] = $DisksForElement->[]

%InArguments[“TheElement”] = null // Create new element

#ReturnValue = InvokeMethod($StorageConfigurationService->,

“CreateOrModifyElementFromElements”,

%InArguments, %OutArguments)

if (#ReturnValue != 0 && #ReturnValue != 4096) {

// Method did not succeeded or succeeded but did not create a job

<ERROR! Failed>

} else if (#ReturnValue == 0 ||

(#ReturnValue == 4096 && %OutArguments[“TheElement”] != null))) {

$CreatedElement-> = %OutArguments[“TheElement”]

} else // a Job was created and TheElement is null {

<Wait for indication from either filters defined in step 5

 If the indication states the Job is ‘Complete’ and ‘Error’

 then exit with error

 ERROR! Job did not complete successfully>

<Once the ‘Job’ has completed, see step 5, then follow the

 AffectedJobElement association from the ‘Job’ to retrieve

 the storage element that was created.>

$CreateElements[] = Associators(

$Job->, // Object Name coersed from %OutArguments[“Job”]

“CIM_AffectedJobElement”,

#StorageElementClass,

null,

null,

false,

false,

null)

// Only one LogicalDisk will be created,

$CreatedElement-> = $CreatedElements[0].getObjectPath()

}

5.6.9 Optional: Intentionally General a CIM Error

// DESCRIPTION

// Validate reporting an error/exception

// when InvokeMethod is called with an invalid parameter.

//

// This recipe intentionally supplies an invalid “ElementType”.

//

// This recipe attempts to optionally utilize properties of CIM_Error

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

Block Services Package

144

// if CIM_Error is implemented.

// 1. Insert an error

// 2. Catch the exception

// 3. Report the error

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a storage setting is previously defined

// in the $StorageSetting-> variable.

// 2.A size that is possible for the creation of a storage element

// is provided in the #PossibleSize,

// 3.A reference to Pool is previous defined in the $PoolToDrawFrom-> variable

// 4.A object paths for source input Pools is previous defined in the

// $InPools variable

// 5. A reference to the StorageConfigurationService is already defined

// in the StorageConfiguratonServivce-> variable

//

%InArguments[“ElementType”] = 1000 // Invalid ElementType

%InArguments[“Goal”] = $StorageSetting->

%InArguments[“Size”] = #PossibleSize

%InPools->[0] = $PoolToDrawFrom->

%InArguments[“InPool”] = $InPools->

%InArguments[“TheElement”] = null

try

{

 #ReturnValue = InvokeMethod(

 $StorageConfigurationService->,

 “CreateOrModifyElementFromStoragePool”,

 %InArguments, %OutArguments)

}

catch (CIM Exception $Exception) {

 // For SMI-S 1.1, optionally allow for implementation of CIM_Error.

 if($Exception.MessageID <> null) { // CIM_Error is implemented

 // For example

 if($Exception.MessageArguments[2] ==

 “CreateOrModifyElementFromStoragePool”) &&

 $Exception.MessageArguments[0] == “1” && // Second method parameter

 $Exception.MessageID = “MP5”)

 {

 <EXIT: Success -- CIM_Error is constructed properly>

 }

 else {

 <ERROR! Improperly constructed CIM_Error>

 }

 }

 else {

 <display, optional CIM_Error is not implemented>

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 145

 if($Exception.CIMStatusCode != CIM_ERR_INVALID_PARAMETER) {

 <ERROR! Improper CIM status code returned>

 }

 else {

 <EXIT: Success -- correct CIM status code reported>

 }

 }

}

if (#ReturnValue != CIM_ERR_INVALID_PARAMETER) { // 5 = Invalid parameter

 <ERROR! Invalid return value >

}

5.7 Registered Name and Version

Block Services version 1.6.1 (Component Profile)

CIM Schema Version: 2.34

5.8 CIM Elements

Table 33 describes the CIM elements for Block Services.

Table 33 - CIM Elements for Block Services

Element Name Requirement Description

5.8.1 CIM_AllocatedFromStoragePool (Pool from Pool) Mandatory AllocatedFromStoragePool.

5.8.2 CIM_AllocatedFromStoragePool (Volume or
LogicalDisk from Pool)

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. AllocatedFromStoragePool.

5.8.3 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StorageVolume or
LogicalDisk)

Optional Expressed the ability for the element to be named or have
its state changed.

5.8.4 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StoragePool)

Optional Expressed the ability for the element to be named or have
its state changed.

5.8.5 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Experimental. Associates the conformant Array
ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

5.8.6 CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService)

Optional Associates StorageCapabilities with
StorageConfigurationService. This StorageCapabilities
shall represent the capabilities of the entire
implementation.

5.8.7 CIM_ElementCapabilities (StorageCapabilities to
StoragePool)

Mandatory Associates StorageCapabilities with StoragePool. This
StorageCapabilities shall represent the capabilities of the
StoragePool to which it is associated.

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

Block Services Package

146

5.8.8 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities with
StorageConfigurationService.

5.8.9 CIM_ElementCapabilities
(StorageConfigurationCapabilities to concrete
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

5.8.10 CIM_ElementCapabilities
(StorageConfigurationCapabilities to primordial
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

5.8.11 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StoragePool)

Optional Deprecated. Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

5.8.12 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StorageVolume or LogicalDisk)

Optional Associates EnabledLogicalElementCapabilities with
StorageConfigurationService.

5.8.13 CIM_ElementSettingData Mandatory

5.8.14 CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Optional Deprecated. This class is used to express the naming and
possible requested state change possibilities for storage
elements.

5.8.15 CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Optional This class is used to express the naming and possible
requested state change possibilities for storage pools.

5.8.16 CIM_FilterCollection (Block Services Predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

5.8.17 CIM_FilterCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental. This is a collection of Lifecycle
IndicationFilters defined by the Block Services Profile.

5.8.18 CIM_HostedCollection (Block Services to
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental.

5.8.19 CIM_HostedCollection (System to predefined
IndicationFilters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

5.8.20 CIM_HostedService Conditional Conditional requirement: Support for
StorageConfigurationService.

5.8.21 CIM_HostedStoragePool Mandatory

5.8.22 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

5.8.23 CIM_IndicationFilter (Logical Disk Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
LogicalDisk instance.

Table 33 - CIM Elements for Block Services

Element Name Requirement Description

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 147

5.8.24 CIM_IndicationFilter (Logical Disk Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
LogicalDisk instance.

5.8.25 CIM_IndicationFilter (Logical Disk
OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

5.8.26 CIM_IndicationFilter (Storage Pool Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
StoragePool instance.

5.8.27 CIM_IndicationFilter (Storage Pool Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
StoragePool instance.

5.8.28 CIM_IndicationFilter (Storage Pool
TotalManagedSpace)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in
TotalManagedSpace for StoragePool instances.

5.8.29 CIM_IndicationFilter (Storage Volume Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
StorageVolume instance.

5.8.30 CIM_IndicationFilter (Storage Volume Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
StorageVolume instance.

5.8.31 CIM_IndicationFilter (Storage Volume
OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolume instances.

5.8.32 CIM_IndicationFilter (WQL Logical Disk
OperationalStatus)

Conditional Deprecated. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance for changes
in the OperationalStatus of LogicalDisk instances.

Table 33 - CIM Elements for Block Services

Element Name Requirement Description

Block Services Package

148

5.8.33 CIM_IndicationFilter (WQL Storage Volume
OperationalStatus)

Conditional Deprecated. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance for changes
in the OperationalStatus of StorageVolume instances.

5.8.34 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. A LogicalDisk is
allocated from a concrete StoragePool.

5.8.35 CIM_MemberOfCollection (Block Services Filter
Collection to FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Block Services predefined FilterCollection to the
FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

5.8.36 CIM_MemberOfCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection to Block
Services Filters)

Optional Experimental. This associates the Block Services
ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Block Services Profile.

5.8.37 CIM_MemberOfCollection (Predefined Filter
Collection to Block Services Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Block Services predefined FilterCollection to the
predefined Filters supported by the implementation.

5.8.38 CIM_OwningJobElement Conditional Conditional requirement: Support for Job Control profile.

5.8.39 CIM_StorageCapabilities Mandatory

5.8.40 CIM_StorageConfigurationCapabilities (Concrete) Conditional Conditional requirement: Support for the Storage
Relocation profile.

5.8.41 CIM_StorageConfigurationCapabilities (Global) Conditional Conditional requirement: Support for
StorageConfigurationService.

5.8.42 CIM_StorageConfigurationCapabilities (Primordial) Conditional Conditional requirement: Support for the Storage
Relocation profile.

5.8.43 CIM_StorageConfigurationService Optional

5.8.44 CIM_StoragePool (Concrete) Mandatory The concrete StoragePool. A concrete StoragePool shall
be allocated from another StoragePool. It shall be used
for allocating StorageVolumes and LogicalDisks as well
as other concrete StoragePools.

5.8.45 CIM_StoragePool (Empty) Optional An empty StoragePool is a special case of a StoragePool
(Concrete or Primordial) where the StoragePool contains
no capacity.

5.8.46 CIM_StoragePool (Primordial) Mandatory The primordial StoragePool. It is created by the provider
and cannot be deleted or modified. It cannot be used to
allocate any storage element other than concrete
StoragePools.

5.8.47 CIM_StorageSetting Mandatory

5.8.48 CIM_StorageSettingWithHints Optional

Table 33 - CIM Elements for Block Services

Element Name Requirement Description

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 149

5.8.49 CIM_StorageSettingsAssociatedToCapabilities Optional This class associates the StorageCapabilities with the
preset setting. Any StorageSetting instance associated
with this association shall work, unmodified, to create a
storage element. The preset settings should not change
overtime and represent possible settings for storage
elements are set of design time rather than runtime. All
StorageSetting instances linked with this association shall
have a ChangeableType of "0" ("Fixed - Not
Changeable").

5.8.50 CIM_StorageSettingsGeneratedFromCapabilities Conditional Conditional requirement: Support for
StorageConfigurationService. This class associates the
StorageCapabilities with the StorageSetting generated
from it via the CreateSetting method. StorageSettings
instances generated in this manner, as identified with this
association, may be removed from the model at any time
by the implementation if the ChangeableType of the
associated setting is set to "2" ("Changeable - Transient").
All StorageSettings associated with this class shall be
changeable, ChangeableType is "2" or "3". Some
implementations may permit the modification of the
ChangeableType property itself on StorageSetting
instances associated via this class. Provided this is
allowed, a client may change the ChangeableType to "3"
("Changeable - Persistent") to have this setting retained
either after generation of the instance or after its
modification by the client. The DefaultSetting property of
the StorageSetting instances linked with this association
is meaningless.

5.8.51 CIM_StorageVolume Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Representation of a virtual disk (for SCSI, a
logical unit). A StorageVolume is allocated from a
concrete StoragePool. See the "Standard Formats for
Logical Unit Names" section in the Storage Management
Technical Specification, Part 1 Common Architecture for
details on how to set Name, NameFormat, and
NameNamespace properties.

5.8.52 CIM_SystemDevice (System to StorageVolume or
LogicalDisk)

Mandatory Associates top level system from Array, Virtualizer, ... to
StorageVolume or LogicalDisk.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.26 CIM_IndicationFilter (Storage
Pool Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.27 CIM_IndicationFilter (Storage
Pool Deletion).

Table 33 - CIM Elements for Block Services

Element Name Requirement Description

Block Services Package

150

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Creation of StorageVolume, if the
StorageVolume storage element is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.29
CIM_IndicationFilter (Storage Volume Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Deletion of StorageVolume, if the
StorageVolume storage element is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.30
CIM_IndicationFilter (Storage Volume Deletion).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Deprecated WQL -Change of status of a
Storage Volume, if Storage Volume is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.33
CIM_IndicationFilter (WQL Storage Volume
OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatu
s

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of status of a Storage Volume,
if Storage Volume is implemented. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.31 CIM_IndicationFilter (Storage
Volume OperationalStatus).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Creation of
LogicalDisk, if the LogicalDisk storage element is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.23 CIM_IndicationFilter (Logical Disk Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deletion of
LogicalDisk, if the LogicalDisk storage element is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.24 CIM_IndicationFilter (Logical Disk Deletion).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deprecated
WQL -Change of status of LogicalDisk, if LogicalDisk is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.32 CIM_IndicationFilter (WQL Logical Disk
OperationalStatus).

Table 33 - CIM Elements for Block Services

Element Name Requirement Description

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 151

5.8.1 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 34 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

5.8.2 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 35 describes class CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. CQL -Change of
status of LogicalDisk, if LogicalDisk is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.25
CIM_IndicationFilter (Logical Disk OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace
<>
PreviousInstance.CIM_StoragePool::TotalManagedSpace

Mandatory CQL -Change of TotalManagedSpace. See section
Storage Management Technical Specification, Part 4
Block Devices, 1.6.1 Rev 6 5.8.28 CIM_IndicationFilter
(Storage Pool TotalManagedSpace).

Table 34 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory Antecedent references the parent pool from which the dependent pool is
allocated.

Dependent Mandatory

Table 35 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalDisk
from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Table 33 - CIM Elements for Block Services

Element Name Requirement Description

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

Block Services Package

152

5.8.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or Logi-
calDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 36 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageVolume or LogicalDisk).

5.8.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 37 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool).

5.8.5 CIM_ElementCapabilities (ImplementationCapabilities to System)

Experimental. Associates the conformant Array ComputerSystem to the CIM_ImplementationCapabilities supported by the implementation.

Created By: Static

Antecedent Mandatory

Dependent Mandatory

Table 36 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory A Storage Volume or Logical Disk.

Table 37 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with a storage pool.

ManagedElement Mandatory A reference to an instance of a StoragePool.

Table 35 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalDisk
from Pool)

Properties Flags Requirement Description & Notes

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 153

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 38 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

5.8.6 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 39 describes class CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService).

5.8.7 CIM_ElementCapabilities (StorageCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 40 describes class CIM_ElementCapabilities (StorageCapabilities to StoragePool).

Table 38 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to
System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Array ComputerSystem that has
ImplementationCapabilities.

Table 39 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 40 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

Block Services Package

154

5.8.8 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationSer-
vice)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 41 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

5.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 42 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete
StoragePool).

5.8.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 41 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabil-
ities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 42 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabil-
ities to concrete StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 155

Table 43 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial
StoragePool).

5.8.11 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)

Deprecated. Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying the capability to provide an
element name for storage pools.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 44 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StoragePool).

5.8.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or
LogicalDisk)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying the capability to provide an element
name for storage volumes or logical disks.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 43 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapabil-
ities to primordial StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 44 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with an instance of StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

2623

2624

2625

2626
2627

2628

2629

2630

2631

2632

2633

2634

2635

2636
2637

2638

2639

2640

2641

Block Services Package

156

Table 45 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk).

5.8.13 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 46 describes class CIM_ElementSettingData.

5.8.14 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)

Deprecated.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 45 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StorageVolume Enabled Capabilities" or "LogicalDisk
Enabled Capacilities" that is associated with an instance of
StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

Table 46 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced setting is a default
setting for the element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced setting is currently
being used in the operation of the element, or that this information is
unknown. Value shall be 0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The StorageSetting or StorageSettingWithHints that is associated with the
Storage Volume or Logical Disk.

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 157

Table 47 describes class CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService).

5.8.15 CIM_EnabledLogicalElementCapabilities (For StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 48 describes class CIM_EnabledLogicalElementCapabilities (For StoragePool).

Table 47 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should include one of the following
three values:

StoragePool Enabled Capabilities

StorageVolume Enabled Capabilities

LogicalDisk Enabled Capacilities.

ElementNameEditSupport
ed

Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

Table 48 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should be 'StoragePool Enabled
Capabilities'.

ElementNameEditSupport
ed

Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

2656

2657

2658

2659

2660

2661

2662

Block Services Package

158

5.8.16 CIM_FilterCollection (Block Services Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Block Services implementation shall indicate
support for predefined FilterCollections by the SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter
Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 49 describes class CIM_FilterCollection (Block Services Predefined FilterCollection).

5.8.17 CIM_FilterCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection)

Experimental. This is a collection of Lifecycle IndicationFilters defined by the Block Services Profile.

Requirement: Optional

Table 50 describes class CIM_FilterCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection).

5.8.18 CIM_HostedCollection (Block Services to ProfileSpecificLifecycleIndicationFilterCollec-
tion)

Experimental.

Requirement: Optional

Table 51 describes class CIM_HostedCollection (Block Services to
ProfileSpecificLifecycleIndicationFilterCollection).

Table 49 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Predefined Filter-
Collection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Block Services:Predefined'.

Table 50 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services ProfileSpecificLife-
cycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.13
CIM_FilterCollection (StaticFilterCollection).

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Block
Services:ProfileSpecificLifecycleIndicationFilterCollection'.

Table 51 - SMI Referenced Properties/Methods for CIM_HostedCollection (Block Services to ProfileSpecifi-
cLifecycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the ProfileSpecificLifecycleIndicationFilterCollection for the
Block Services Profile.

Antecedent Mandatory Reference to the 'Top level' System.

2663

2664
2665
2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 159

5.8.19 CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 52 describes class CIM_HostedCollection (System to predefined IndicationFilters).

5.8.20 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 53 describes class CIM_HostedService.

5.8.21 CIM_HostedStoragePool

Requirement: Mandatory

Table 54 describes class CIM_HostedStoragePool.

5.8.22 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static

Modified By: Static

Table 52 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indication-
Filters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Block Services.

Antecedent Mandatory Reference to the System of the referencing profile.

Table 53 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting computer system.

Dependent Mandatory The storage configuration service hosted on the computer system.

Table 54 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

Block Services Package

160

Deleted By: Static

Requirement: Optional

Table 55 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

5.8.23 CIM_IndicationFilter (Logical Disk Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new LogicalDisk instance. This would typically occur as
a result of an invocation of CreateOrModifyElementFromStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 56 describes class CIM_IndicationFilter (Logical Disk Creation).

Table 55 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedElementNameC
odeSet

Optional This property indicates the supported code set for the ElementName -- for
example, "Single Byte ASCII", "UTF-8", "ISO 8859-1", etc. See MOF for
details.

Table 56 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_LogicalDisk.

2699

2700

2701

2702

2703
2704

2705

2706

2707

2708

2709

2710

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 161

5.8.24 CIM_IndicationFilter (Logical Disk Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a LogicalDisk instance. This would typically occur as a
result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 57 describes class CIM_IndicationFilter (Logical Disk Deletion).

5.8.25 CIM_IndicationFilter (Logical Disk OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of LogicalDisk instances.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 57 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 56 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)

Properties Flags Requirement Description & Notes

2711

2712
2713

2714

2715

2716

2717

2718

2719

2720

2721

Block Services Package

162

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 58 describes class CIM_IndicationFilter (Logical Disk OperationalStatus).

5.8.26 CIM_IndicationFilter (Storage Pool Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StoragePool instance. This would typically occur
as a result of an invocation of CreateOrModifyStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 58 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

2722

2723

2724

2725

2726

2727

2728

2729
2730

2731

2732

2733

2734

2735

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 163

Table 59 describes class CIM_IndicationFilter (Storage Pool Creation).

5.8.27 CIM_IndicationFilter (Storage Pool Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StoragePool instance. This would typically occur as a
result of an invocation of DeleteStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 60 describes class CIM_IndicationFilter (Storage Pool Deletion).

Table 59 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StoragePool.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 60 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

2736

2737

2738
2739

2740

2741

2742

2743

2744

2745

Block Services Package

164

5.8.28 CIM_IndicationFilter (Storage Pool TotalManagedSpace)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in TotalManagedSpace for StoragePool instances. This would
typically occur as a result of an invocation of CreateOrModifyStoragePool that expands a StoragePool.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 61 describes class CIM_IndicationFilter (Storage Pool TotalManagedSpace).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StoragePool.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 61 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManagedSpace)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolTotalManagedSpace'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

Table 60 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)

Properties Flags Requirement Description & Notes

2746

2747
2748

2749

2750

2751

2752

2753

2754

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 165

5.8.29 CIM_IndicationFilter (Storage Volume Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StorageVolume instance. This would typically
occur as a result of an invocation of CreateOrModifyElementFromStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 62 describes class CIM_IndicationFilter (Storage Volume Creation).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace <>
PreviousInstance.CIM_StoragePool::TotalManagedSpace.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 62 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StorageVolume.

Table 61 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManagedSpace)

Properties Flags Requirement Description & Notes

2755

2756
2757

2758

2759

2760

2761

2762

2763

Block Services Package

166

5.8.30 CIM_IndicationFilter (Storage Volume Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StorageVolume instance. This would typically occur as
a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 63 describes class CIM_IndicationFilter (Storage Volume Deletion).

5.8.31 CIM_IndicationFilter (Storage Volume OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of StorageVolume instances.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 63 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 62 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)

Properties Flags Requirement Description & Notes

2764

2765
2766

2767

2768

2769

2770

2771

2772

2773

2774

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 167

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 64 describes class CIM_IndicationFilter (Storage Volume OperationalStatus).

5.8.32 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the OperationalStatus of LogicalDisk
instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 64 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalSta-
tus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus <>
PreviousInstance.CIM_StorageVolume::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

2775

2776

2777

2778

2779

2780

2781

2782
2783

2784

2785

2786

2787

2788

Block Services Package

168

Table 65 describes class CIM_IndicationFilter (WQL Logical Disk OperationalStatus).

5.8.33 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the OperationalStatus of StorageVolume
instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 66 describes class CIM_IndicationFilter (WQL Storage Volume OperationalStatus).

Table 65 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk OperationalSta-
tus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_LogicalDisk AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 66 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operational-
Status)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

2789

2790

2791
2792

2793

2794

2795

2796

2797

2798

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 169

5.8.34 CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 67 describes class CIM_LogicalDisk.

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageVolume AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 67 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

Table 66 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operational-
Status)

Properties Flags Requirement Description & Notes

2799

2800

2801

2802

2803

2804

Block Services Package

170

5.8.35 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)

Experimental. This associates the Block Services predefined FilterCollection to the FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 68 describes class CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
logical disk when the logical disk relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not compression is
being applied to the volume. When set to "true" the data is compressed.
When set to "false" the data is not compressed.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the volume and at what rate. The possible values are '1'
(None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the compresson is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

Table 68 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Filter Collec-
tion to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined FilterCollection.

Member Mandatory Reference to the Block Services predefined FilterCollection.

Table 67 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

2805

2806
2807

2808

2809

2810

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 171

5.8.36 CIM_MemberOfCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollec-
tion to Block Services Filters)

Experimental. This associates the Block Services ProfileSpecificLifecycleIndicationFilterCollection to the Filters defined by the Block Services
Profile.

Requirement: Optional

Table 69 describes class CIM_MemberOfCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection to Block Services Filters).

5.8.37 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)

Experimental. This associates the Block Services predefined FilterCollection to the predefined Filters supported by the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 70 describes class CIM_MemberOfCollection (Predefined Filter Collection to Block Services
Filters).

5.8.38 CIM_OwningJobElement

Conditional on support for Job Control profile.

Requirement: Support for Job Control profile.

Table 71 describes class CIM_OwningJobElement.

5.8.39 CIM_StorageCapabilities

Table 69 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Profile-
SpecificLifecycleIndicationFilterCollection to Block Services Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services
ProfileSpecificLifecycleIndicationFilterCollection.

Member Mandatory Reference to the IndicationFilters defined by the Block Services Profile.

Table 70 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Block Services Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Block Services
implementation.

Table 71 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory

2811

2812

2813
2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

Block Services Package

172

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 72 describes class CIM_StorageCapabilities.

Table 72 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In addition, the
user-friendly name can be used as a index property for a search or query.
(Note: ElementName does not have to be unique within a namespace) If
the capabilities are fixed, then this property should be used as a means for
the client application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6 (StoragePool or
StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports no single point
of failure. Values are: FALSE = does not support no single point of failure,
and TRUE = supports no single point of failure.

NoSinglePointOfFailureDef
ault

Mandatory Indicates the default value for the NoSinglePointOfFailure property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefa
ult

Mandatory PackageRedundancyDefault describes the default number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

2829

2830

2831

2832

2833

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 173

ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of members or
columns, a storage element will have when created or modified using this
capability. A NULL means that the setting of stripe length is not supported
at all or not supported at this level of storage element allocation or
assignment.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a storage element
will have when created or modified using this capability. A NULL means
that the setting of the parity is not supported at all or is not supported at
this level of storage element allocation or assignment.

UserDataStripeDepthDefa
ult

Optional UserDataStripeDepthDefault describes what the number of bytes forming
a stripe that a storage element will have when created or modified using
this capability. A NULL means that the setting of stripe depth is not
supported at all or not supported at this level of storage element allocation
or assignment.

AvailableDiskType Optional Experimental. Enumeration indicating the type of DiskDrives which may be
available. (0)Unknown, (1)Other, (2)Hard Disk Drive, (3)Solid State Drive,
(4)Hybrid.

AvailableFormFactor Optional Experimental. Enumeration indicating the drive physical size which may
be available. (0)Unknown, (1)Other, (2)Not Reported, (3)5.25 inch, (4)3.5
inch, (5)2.5 inch, (6)1.8 inch".

AvailablePortType Optional Deprecated.

AvailableInterconnectType Optional Experimental. Enumeration indicating the type of disk interconnections
which may be available. (0)Unknown, (1)other , (2)SAS, (3)SATA, (4)SAS/
SATA, (5)FC, (6)SOP.

AvailableInterconnectSpee
d

Optional Experimental. The speed of disk interconnections which are be available.
Values are in bits/second.

AvailableRPM Optional Experimental. The rotational speed of disk media which are be available.
Values are in rotations per minute. SSD devices shall report 0".

EncryptionSupported Optional Experimental. This property reflects support of the encryption feature
implemented by some disk drives.".

SupportedCompressionRa
tes

Optional Experimental. SupportedCompressionRates identifies the compression
rates that are supported by the implementation, "including '1' (None). If '1'
(None) is specified, then no other rate may be identified. If '1' (None) is not
specificed, then the values recognized are '2' (High), '3' (Medium), '4'
(Low) and/or '5' (Implementation Decides).

CreateSetting() Conditional Conditional requirement: Support for StorageConfigurationService.
Generate a setting to use as a goal for creating or modifying storage
elements.

GetSupportedStripeLength
s()

Optional List the possible discrete stripe lengths supported at this time of this
method's execution.

GetSupportedStripeLength
Range()

Optional List the possible stripe length ranges supported at the time of this
method's execution.

GetSupportedParityLayout
s()

Optional List the possible parity layouts supported at the time of this method's
execution.

GetSupportedStripeDepths
()

Optional List the possible stripe depths supported at the time of this method's
execution.

GetSupportedStripeDepth
Range()

Optional List the possible stripe depth ranges supported at the time of this method's
execution.

Table 72 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

Block Services Package

174

5.8.40 CIM_StorageConfigurationCapabilities (Concrete)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

Table 73 describes class CIM_StorageConfigurationCapabilities (Concrete).

Table 73 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3|5|6|7 (InExtents or Single InPool or Storage Pool QoS
Change or Storage Pool Capacity Expansion or Storage Pool Capacity
Reduction).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs. This version of the standard recognizes
"2" (Storage Pool Creation), "3" (Storage Pool Deletion), "4" (Storage Pool
Modification), "5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element Modification) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

SupportedStorageElement
Types

Mandatory Lists the type of storage elements that are supported by this
implementation. This version of the standard recognizes '2'
(StorageVolume) or '4' (LogicalDisk).

If thin provisioning is supported, then the following additional
ElementTypes are recognized: "5" (ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool), "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "3" (Storage Pool Deletion), "4" (Storage Pool
Modification), "5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element Modification) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

2834

2835

2836

2837

2838

2839

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 175

5.8.41 CIM_StorageConfigurationCapabilities (Global)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 74 describes class CIM_StorageConfigurationCapabilities (Global).

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().
Matches 3|8|14|15|16|17|18 (StorageVolume Creation or LogicalDisk
Creation or StorageVolume To StoragePool Relocation or StoragePool To
StoragePool Relocation or StorageVolume To StorageExtent Relocation or
StoragePool To StorageExtent Relocation LogicalDisk To StorageExtent
Relocation).

SupportedStorageElement
Usage

Optional Indicates the intended usage or any restrictions that may have been
imposed on supported storage elements.

ClientSettableElementUsa
ge

Optional Indicates the intended usage or any restrictions that may have been
imposed on the usage of client-settable elements.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

MaximumElementCreateC
ount

Optional Indicates the maximum number of elements that can be specified to be
created in a single method call. If 0 or null, there is no limit.

MaximumElementDeleteC
ount

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the maximum number of elements that can be deleted in a single
method call. If 0 or null, there is no limit.

MultipleElementCreateFea
tures

Optional Enumeration indicating features offered by the multiple element create
method. "2" (Single instance creation indication).

MultipleElementDeleteFeat
ures

Optional Enumeration indicating features offered by the multiple element delete
method. "2" (Continue on nonexistent element) or "3" (Return error on
nonexistent element).

GetElementNameCapabilit
ies()

Optional This method indicates if ElementName can be specified as a part of
invoking an appropriate method of StorageConfigurationService to create
a new element. Additionally, the returned data includes the methods that
can be used to modify the ElementName of existing storage elements.

Table 74 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

Table 73 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

2840

2841

2842

2843

2844

2845

Block Services Package

176

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3|5|6|7 (InExtents or Single InPool or Storage Pool QoS
Change or Storage Pool Capacity Expansion or Storage Pool Capacity
Reduction).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs.

SupportedStorageElement
Types

Mandatory Lists the type of storage elements that are supported by this
implementation. This version of the standard recognizes '2'
(StorageVolume) or '4' (LogicalDisk).

If thin provisioning is supported, then the following additional
ElementTypes are recognized: "5" (ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool), "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs.

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().
Matches 3|5|8|9|11|12|13|14|15|16|17|18 (StorageVolume Creation or
StorageVolume Modification or LogicalDisk Creation or LogicalDisk
Modification or Storage Element QoS Change or Storage Element
Capacity Expansion or Storage Element Capacity Reduction or
StorageVolume To StoragePool Relocation or StoragePool To StoragePool
Relocation or StorageVolume To StorageExtent Relocation or
'StoragePool To StorageExtent Relocation or LogicalDisk To
StorageExtent Relocation).

SupportedStorageElement
Usage

Optional Indicates the intended usage or any restrictions that may have been
imposed on supported storage elements.

ClientSettableElementUsa
ge

Optional Indicates the intended usage or any restrictions that may have been
imposed on the usage of client-settable elements.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

MaximumElementCreateC
ount

Optional Indicates the maximum number of elements that can be specified to be
created in a single method call. If 0 or null, there is no limit.

MaximumElementDeleteC
ount

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the maximum number of elements that can be deleted in a single
method call. If 0 or null, there is no limit.

MultipleElementCreateFea
tures

Optional Enumeration indicating features offered by the multiple element create
method. "2" (Single instance creation indication).

MultipleElementDeleteFeat
ures

Optional Enumeration indicating features offered by the multiple element delete
method. "2" (Continue on nonexistent element) or "3" (Return error on
nonexistent element).

Table 74 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 177

5.8.42 CIM_StorageConfigurationCapabilities (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

Table 75 describes class CIM_StorageConfigurationCapabilities (Primordial).

AutomaticPoolSelectionAll
owed

Optional If true, it indicates the implementation selects appropriate pools based on
other supplied parameters to create elements. For example, based on
supplied Goal.

GetElementNameCapabilit
ies()

Optional This method indicates if ElementName can be specified as a part of
invoking an appropriate method of StorageConfigurationService to create
a new element. Additionally, the returned data includes the methods that
can be used to modify the ElementName of existing storage elements.

Table 75 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3 (InExtents or Single InPool).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs. This version of the standard recognizes
"2" (Storage Pool Creation), "12" (Storage Element from Element
Creation) or "15" (StoragePool Usage Modification) or "17"
(StorageVolume To StoragePool Relocation) or "18" (StoragePool To
StoragePool Relocation) or "19" (StorageVolume To StorageExtent
Relocation) or "20" (StoragePool To StorageExtent Relocation) or "21"
(LogicalDisk To StorageExtent Relocation).

SupportedStorageElement
Types

Optional Lists the type of storage elements that are supported by this
implementation.

If thin provisioning is supported, the ElementTypes may include 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from Element Creation) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

Table 74 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

2846

2847

2848

2849

2850

2851

Block Services Package

178

5.8.43 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 76 describes class CIM_StorageConfigurationService.

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool(). This
version of the standard does not recognize any values for this property.
For Primordial pools, this shall not contain 3 (StorageVolume Creation), 5
(StorageVolume Modification), 8 (LogicalDisk Creation) or 9 (LogicalDisk
Modification) or 14 (StorageVolume To StoragePool Relocation) or 15
(StoragePool To StoragePool Relocation) or 16 (StorageVolume To
StorageExtent Relocation) or 17 (StoragePool To StorageExtent
Relocation) or 18 (LogicalDisk To StorageExtent Relocation).

SupportedStorageElement
Usage

Optional For Primordial StorageConfigurationCapabilities, this shall be NULL.

ClientSettableElementUsa
ge

Optional For Primordial StorageConfigurationCapabilities, this shall be NULL.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

Table 76 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

CreateOrModifyStoragePo
ol()

Optional Create (or modify) a StoragePool. A job may be created as well.

DeleteStoragePool() Optional Start a job to delete a StoragePool.

CreateOrModifyElementFr
omStoragePool()

Mandatory Create or modify a storage element. A job may be created as well.

CreateElementsFromStora
gePools()

Optional Experimental. Create one or more storage elements. A job may be created
as well.

Table 75 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

2852

2853

2854

2855

2856

2857

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 179

5.8.44 CIM_StoragePool (Concrete)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 77 describes class CIM_StoragePool (Concrete).

CreateOrModifyElementFr
omElements()

Optional Create or modify a storage element using component StorageExtents of
the Pool. A job may be created as well.

ReturnToStoragePool() Mandatory Release the capacity represented by this storage element back to the
Pool.

ReturnElementsToStorage
Pool()

Optional Experimental. Release the capacity represented by one or more storage
elements back to the Pool.

RequestUsageChange() Optional Allows a client to change the Usage for the element.

GetElementsBasedOnUsa
ge()

Optional Allows a client to retrieve elements for a specialized Usage.

Table 77 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

ElementsShareSpace Optional If true, it indicates elements allocated from the storage pool are sharing
space from the storage pool. For example, multiple snapshots "allocated"
from a storage pool, point to the same blocks of the storage pool. As
another example, elements utilizing de-duplication technology refer to a
shared copy of the data stored in the storage pool.

Table 76 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

2858

2859

2860

2861

2862

2863

Block Services Package

180

5.8.45 CIM_StoragePool (Empty)

An empty StoragePool is a special case of a StoragePool where the StoragePool contains no capacity. All properties are supported as defined
for the StoragePool (Concrete or Primordial), except that the empty StoragePool has TotalManagedSpace=0.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Optional

Table 78 describes class CIM_StoragePool (Empty).

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included in
the TotalManagedSpace of the storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded from
this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded from
this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in use
as supporting capacity for existing storage element.

Table 78 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and primordial
StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManagedSpace Mandatory

Usage Optional

OtherUsageDescription Optional

ClientSettableUsage Optional

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService.

Table 77 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

2864

2865
2866

2867

2868

2869

2870

2871

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 181

5.8.46 CIM_StoragePool (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 79 describes class CIM_StoragePool (Primordial).

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService.

GetAvailableExtents() Optional

Table 79 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included in
the TotalManagedSpace of the storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded from
this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded from
this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in use
as supporting capacity for existing storage element.

Table 78 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

2872

2873

2874

2875

2876

2877

Block Services Package

182

5.8.47 CIM_StorageSetting

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 80 describes class CIM_StorageSetting.

Table 80 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

2878

2879

2880

2881

2882

2883

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 183

5.8.48 CIM_StorageSettingWithHints

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 81 describes class CIM_StorageSettingWithHints.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

DiskType Optional Experimental. Enumeration indicating the type of DiskDrive wanted.
(0)Dont care, (1)Other, (2)Hard Disk Drive, (3)Solid State Drive, (4)Hybrid.

InterconnectType Optional Experimental. Enumeration indicating the type of disk interconnection
wanted.".

InterconnectSpeed Optional Experimental. The speed of disk interconnection wanted in bits/second.
Value of 0 means dont care.

FormFactor Optional Experimental. Enumeration indicating the physical size of drive wanted.".

RPM Optional Experimental. The rotational speed of disk media wanted. A value of
0xffffffff means dont care. A value of 0 specifies a SSD drive.

Encryption Optional Experimental. This property reflects support of the encryption feature
wanted.

PortType Optional Experimental.

CompressionRate Optional Experimental. CompressionRate Indicates the desired compression for a
storage element. The possible values are '1' (None), '2' (High), '3'
(Medium), '4' (Low) or '5' (Implementation Decides).

CompressedElement Optional Experimental. CompressedElement property indicates whether or not
compression of the element is being requested. When set to true,
compression is being requested. When set to false, compression is not
being requested.

Table 81 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory

DataRedundancyMin Mandatory

Table 80 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

2884

2885

2886

2887

2888

2889

Block Services Package

184

5.8.49 CIM_StorageSettingsAssociatedToCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

DataRedundancyMax Mandatory

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory

PackageRedundancyMax Mandatory

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional

ExtentStripeLengthMin Optional

ExtentStripeLengthMax Optional

ParityLayout Optional

UserDataStripeDepth Optional

UserDataStripeDepthMin Optional

UserDataStripeDepthMax Optional

StorageExtentInitialUsage Optional

StoragePoolInitialUsage Optional

DataAvailabilityHint Mandatory This hint is an indication from a client of the importance placed on data
availability. Values are 0=Don't Care to 10=Very Important.

AccessRandomnessHint Mandatory This hint is an indication from a client of the randomness of accesses.
Values are 0=Entirely Sequential to 10=Entirely Random.

AccessDirectionHint Mandatory This hint is an indication from a client of the direction of accesses. Values
are 0=Entirely Read to 10=Entirely Write.

AccessSizeHint Mandatory This hint is an indication from a client of the optimal access sizes. Several
sizes can be specified. Units("Megabytes").

AccessLatencyHint Mandatory This hint is an indication from a client how important access latency is.`
Values are 0=Don't Care to 10=Very Important.

AccessBandwidthWeight Mandatory This hint is an indication from a client of bandwidth prioritization. Values
are 0=Don't Care to 10=Very Important.

StorageCostHint Mandatory This hint is an indication of the importance the client places on the cost of
storage. Values are 0=Don't Care to 10=Very Important. A StorageVolume
provider might choose to place data on low cost or high cost drives based
on this parameter.

StorageEfficiencyHint Mandatory This hint is an indication of the importance placed on storage efficiency by
the client. Values are 0=Don't Care to 10=Very Important. A
StorageVolume provider might choose different RAID levels based on this
hint.

ChangeableType Mandatory

Table 81 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

2890

2891

2892

2893

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 185

Requirement: Optional

Table 82 describes class CIM_StorageSettingsAssociatedToCapabilities.

5.8.50 CIM_StorageSettingsGeneratedFromCapabilities

Created By: Extrinsic: CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 83 describes class CIM_StorageSettingsGeneratedFromCapabilities.

5.8.51 CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 84 describes class CIM_StorageVolume.

Table 82 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities

Properties Flags Requirement Description & Notes

DefaultSetting Mandatory This boolean designates the setting that will be used if the CreateSetting()
method is called with providing the NewSetting parameter. However, some
implementations may require that the NewSetting parameter be non null.
There may be only one default setting per the combination of
StorageCapabilities and associated StoragePool as associated through
ElementCapabilities.

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 83 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities

Properties Flags Requirement Description & Notes

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 84 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

Block Services Package

186

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Conditional Conditional Requirement: Mandatory if OtherIdentifyingInfo is provided

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

Table 84 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

 Block Services Package

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 187

5.8.52 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 85 describes class CIM_SystemDevice (System to StorageVolume or LogicalDisk).

STABLE

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted by a client
application.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
storage volume when the volume relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not compression is
being applied to the volume. When set to "true" the data is compressed.
When set to "false" the data is not compressed.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the volume and at what rate. The possible values are '1'
(None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the compression is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

Table 85 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Logi-
calDisk)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 84 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

2910

2911

2912

2913

2914

2915

Block Services Package

188

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 189

EXPERIMENTAL

Clause 6: Block Storage Views Profile

6.1 Description

6.1.1 Synopsis

Profile Name: Block Storage Views (Component Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.29

Table 86 describes the related profiles for Block Storage Views.

Central Class: CIM_ViewCapabilities

Scoping Class: CIM_ComputerSystem

Table 86 - Related Profiles for Block Storage Views

Profile Name Organization Version Requirement Description

Block Services SNIA 1.6.1 Conditional Conditional requirement: Required if the array
property
CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:VolumeView" (and the
Block Service Package is implemented).

Block Server Performance SNIA 1.6.1 Conditional

Disk Drive Lite SNIA 1.6.0 Conditional Conditional requirement: Required if the array
property
CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:DiskDriveView" (and
the Disk Drive Lite Profile is implemented).

Masking and Mapping SNIA 1.4.0 Conditional

Extent Composition SNIA 1.6.0 Conditional Conditional requirement: Required if the array
property
CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:VolumeView" and
Extent Composition is implemented.

Copy Services SNIA 1.5.0 Conditional Conditional requirement: Required if the array
property
CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:ReplicaPairlView"
(and the Copy Services Profile is implemented).

1

2

3

4

5

6

7

8

9

10

Block Storage Views Profile

190

6.1.2 Overview

This Profile specifies View Classes for the Array, Storage Virtualizer, Host Hardware RAID Controller and
Volume Management Profiles.

The view classes provide an optimization of retrieval of information provided by multiple (associated)
instances in a Profile. There is no support for update of view classes instances. Update of a view class
instance can only be accomplished by updating the base class instances from which the view is derived.

6.1.2.1 Goals of View Classes

6.1.2.1.1 Goals that View Classes are intended to address are

• Get more data in one call to CIM Server.

The CIM model for arrays and Storage Virtualizers involve a lot of classes and associations. The objective is to
allow discovery of the array model using View Classes with a reduction in the number of association traversals
required.

• Allow providers to optimize the Request.

In many cases, the data represented by a View Class is actually kept (and returned) by a device as one entity.
When the "normalized" CIM model is traversed many calls are made to retrieve that one entity. The provider
takes the data from the one entity and carves it up for each CIM request. In many cases this involves retrieving
the same entity multiple times. The objective is to allow a Provider to return the single entity in one SMI-S
request (for data that is typically kept together by the device).

6.1.2.1.2 Additional Goals

• Do more things in one call to CIM Server.

An example would be retrieval or discovery of model information with fewer calls. However, this goal also
extends to updating the CIM model (e.g., configuration actions). The View Classes are NOT intended to help in
the latter case. However, View Classes should facilitate access to underlying classes in support of
configuration operations.

It is important to note that the View Classes were based directly on experiences relating to the scalability and
performance of SMI-S real-world implementations. The focus is on improving performance in large
configurations (e.g. thousands of volumes and thousands of disk drives).

6.1.2.2 Specific Requirements and Objectives of View Classes

6.1.2.2.1 Pre-defined View Classes

In order to gain the desired performance advantage, it is felt that view classes would have to be pre-
defined (in SMI-S) to allow provider optimization of the requested information.

• Enable Associator Calls to View Class instances.

It should be possible to retrieve a View Class by an associators call to the class.

However, it is desired that the association should be clearly distinguished from existing associations on the
base classes.

• Enable Associator Calls from View Class instances.

It should be possible to get related classes (e.g., base classes) from the View Class by using associator calls.

Again, the associations used should be clearly distinguished from existing associations on the base classes.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 191

6.1.2.2.2 Specific Views requested

• Getting asset information

• Mix of StorageVolume with LUN Mapping & Masking

• Getting port information (with endpoints) or ports & volumes

• Hardware ID & StorageVolumes

• Disk drive view

• Volumes & Settings

• Extent Composition

• Privilege Hierarchy

• Hardware ID <-> StorageVolume

Most of these requests are addressed by this Profile.

• Allow View Classes to be used where real classes would

This certainly includes "read" intrinsics and as parameters of Extrinsics

However, at this time "Write" intrinsic support is deferred and use in Extrinsics (as IN or OUT parameters) is not
covered in this release of SMI-S.

6.1.2.2.3 Support Life Cycle Indications on View Classes

This requirement is being deferred for considered in a future release of SMI-S.

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Block Storage Views Profile

192

6.1.3 Class Diagram for Block Storage Views View Classes

Figure 25: "Class diagram for managed element Block Storage View Classes" illustrates the class
diagram for view classes that cover managed elements.

The view classes that represent managed elements (e.g., VolumeView and DiskDriveView) inherit from
CIM_View. CIM_StoragePoolView inherits directly from CIM_View, while the other managed element view
classes (e.g., VolumeView and DiskDriveView) are subclassed from CIM_LogicalDeviceView. The
ViewCapabilities inherits from CIM_Capabilities.

Figure 26: "Class diagram for view associations" shows the class diagram for view associations.

Figure 25 - Class diagram for managed element Block Storage View Classes

CIM_ManagedElement

CIM_ViewCapabilities

CIM_VolumeView

CIM_Capabilities CIM_StoragePoolView

CIM_MappingProtocolControllerView

CIM_ReplicaPairView

CIM_LogicalDeviceView

SNIA_DiskDriveView

CIM_DiskDriveView

CIM_View

66

67

68

69

70

71

72

73

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 193

There are five types of associations defined in Figure 26: "Class diagram for view associations":

• CIM_ElementView - This associates a managed element view to the base instances from which it is derived

• Bridge Associations - These are associations that bridge between the view of the model and related
instances in the normalized model. CIM_AllocatedFromStoragePoolView, CIM_BasedOnView,
CIM_ProtocolControllerForUnitView, CIM_ConcreteComponentView, CIM_ExtentComponentView,
CIM_ContainerView and CIM_ElementStatisticalDataView are examples of bridge associations

• Scoping Associations - These are special cases of bridge associations. They association a view instance
with the scoping system in the normalized model. CIM_SystemDeviceView and
CIM_HostedStoragePoolView are examples of scoping associations.

• Short cut Associations - These are go between two (or more) classes in the normalized model. The
normalized model is a more complicated network of associations. The short cut associations reduce the
association traversals needed to get between the normalized class instances. The

Figure 26 - Class diagram for view associations

CIM_SystemDeviceView

CIM_MaskingMappingExposedDeviceView CIM_MaskingMappingViewCIM_Dependency

CIM_ContainerView

CIM_ConcreteComponentView

CIM_BasedOnView

CIM_AllocatedFromStoragePoolViewView

CIM_ProtocolControllerForUnitView

CIM_ElementView

CIM_HostedStoragePoolView

CIM_AbstractComponent

CIM_AbstractProtocolControllerForDevice

CIM_AbstractElementAllocatedFromPool

CIM_AbstractElementStatisticalData

CIM_ElementStatisticalDataView

CIM_ExtentComponentView

CIM_AbstractBasedOn

CIM_DriveComponentViewView

CIM_AllocatedFromStoragePoolView

CIM_ViewOnSystem

74

75

76

77

78

79

80

81

82

Block Storage Views Profile

194

CIM_MaskingMappingExposedDeviceView and the MaskingMappingView are examples of short cut
associations.

• View Associations - These are associations between two views. These allow discovery by traversing view
classes. CIM_AllocatedFromStoragePoolViewView and CIM_DriveComponentViewView are examples of
view associations.

6.1.4 Implementation

6.1.4.1 View Class Capabilities

The implementation shall identify which view classes are implemented using a set of conditions. The
model for determining whether or not the Block Storage Views Profile is supported and which views are
supported is illustrated in Figure 27: "Block Storage View Class Capabilities".

First a client may determine whether or not a profile implementation has implemented any view classes
by looking for a RegisteredSubprofile with a RegisteredName of “Block Storage Views”. If this
RegisteredSubprofile exists then the profile supports some number of view classes.

Next a client would be able to determine which view classes are supported by an implementation by
following the ElementConformsToProfile to the top level system and then following the
ElementCapabilities from that system to the CIM_ViewCapabilities instance. There shall be one instance
of the CIM_ViewCapabilities class if the profile supports the Block Storage Views Subprofile. The
CIM_ViewCapabilities instance shall have an array of strings that identify the view classes that are
supported. For example, if the SupportedViews array includes the “SNIA:VolumeView” string, then the
VolumeView class shall be supported.

6.1.4.2 Storage Volume Views

6.1.4.2.1 CIM_VolumeView and related associations

Figure 28: "VolumeView and related associations" illustrates the CIM_VolumeView and related
associations.

Figure 27 - Block Storage View Class Capabilities

ComputerSystem:
Top level SystemRegisteredProfile

RegisteredName = ‘Array’ | “Storage Virtualizer”

RegisteredSubprofile

RegisteredName =
“Block Storage Views” ViewCapabilities

SupportedViews[] = “SNIA:VolumeView” |
“SNIA:DiskDriveView” |

“SNIA:MaskingMappingExposedDeviceView” |
“SNIA:MaskingMappingView” |

“SNIA:MappingProtocolControllerView” |
“SNIA:StoragePoolView” | “SNIA:ReplicaPairView”

ElementConformsToProfile

ElementCapabiliities

SubprofileRequiresProfile

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 195

The VolumeView is composed of information drawn from the following base classes:

• StorageVolume (or LogicalDisk)

• StorageSetting

• AllocatedFromStoragePool

• StoragePool

The keys for the VolumeView are the StorageVolume and StoragePool keys from the base StorageVolume
and StoragePool instances. There will be one instance of VolumeView for each instance of
StorageVolume if the StorageVolume is allocated from one StoragePool. If a StorageVolume is allocated
from multiple StoragePools (e.g., Composite Volumes), there will be one instance of StorageVolume for
each StoragePool from which the StorageVolume is allocated.

The information drawn from the AllocatedFromStoragePool association is the SpaceConsumed property.
The properties from all other base classes shall be supported, but may be null.

6.1.4.2.2 Mandatory, Conditional and Optional Properties of VolumeView

Properties that are mandatory in the mandatory base classes are mandatory in the VolumeView class.
Properties that are Conditional in the base classes are conditional in the VolumeView class. Properties
that are mandatory in optional (base) classes (CompositeExtent) are "conditional" in the VolumeView. If
an optional base class is not supported by the referencing profile (e.g., Array) implementation, these
properties of those classes shall be present, but shall be null.

Figure 28 - VolumeView and related associations

CompositeStorageExtent

StorageVolume
(or LogicalDisk)

BasedOn

StoragePool

AllocatedFromStoragePool

BlockStorageStatisticalData

ElementSettingData

StorageSetting

VolumeView

SVSystemCreationClassName
SVSystemName

SVCreationClassName
SVDeviceID

SVName
SVNameFormat
SVExtentStatus[]

SVOperationalStatus[]
SVBlockSize

SVNumberOfBlocks
SVConsumableBlocks

SVIsBasedOnUnderlyingRedundancy
SVNoSinglePointOfFailure

SVDataRedundancy
SVPackageRedundancy

SVDeltaReservation
SSInstanceID

SSElementName
SSNoSinglePointOfFailure
SSDataRedundancyMin
SSDataRedundancyMax
SSDataRedundancyGoal

SSPackageRedundancyMin
SSPackageRedundancyMax
SSPackageRedundancyGoal

SSChangeableType
AFSPSpaceConsumed

SPInstanceID
SPPoolID

ComputerSystem:
(referencing profile)

SystemDeviceView

AllocatedFromStoragePoolView

BasedOnView

SystemDevice

ElementView

ElementStatisticalData

ElementStatisticalDataView

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

Block Storage Views Profile

196

Properties in the base classes that are optional in the base class are optional in the VolumeView.

EXPERIMENTAL

The CIM_VolumeView includes the experimental SVCanDelete and SVIsComposite properties which are
picked up from the CanDelete and SVIsComposite properties of CIM_StorageVolume.

EXPERIMENTAL

6.1.4.2.3 Associations on VolumeView

The VolumeView is "read only." Access to base class instances on which the view is based can be
updated (e.g., StorageVolume and StorageSetting) from the CIM_VolumeView instance by accessing the
base instances via the ElementView association.

In addition to the VolumeView there are four associations that support association traversal to (or from)
instances of the VolumeView:

6.1.4.2.3.1 SystemDeviceView

From the scoping CIM_ComputerSystem instance a client will be able to find the VolumeView instances
associated to the ComputerSystem via the SystemDeviceView association. This will return the
VolumeViews that correspond to the StorageVolumes (or LogicalDisks) that would be found via
association traversal from the ComputerSystem to the StorageVolumes (or LogicalDisks) via the
SystemDevice association.

6.1.4.2.3.2 AllocatedFromStoragePoolView

From the VolumeView instance, the client can find the StoragePool instance by following the
AllocatedFromStoragePoolView association. Note that for one VolumeView instance, there may be one or
more StoragePools (that is, for Composite Volumes that draw from multiple StoragePools, there would be
multiple VolumeView instances that represent the composite volume).

6.1.4.2.3.3 BasedOnView

From the VolumeView instance, the client can find the StorageExtent(s) on which the StorageVolume (or
LogicalDisk) is based by following the BasedOnView.

Similarly, from a “top level” StorageExtent instance, a client can find the VolumeView instance(s) that are
based on that StorageExtent.

6.1.4.2.3.4 ElementStatisticalDataView

From the VolumeView instance, the client can find the BlockStorageStatisticalData instance for the
StorageVolume or LogicalDisk of the VolumeView by following the ElementStatisticalDataView
association.

6.1.4.3 Disk Drive Views

Figure 29: "DiskDriveView and related associations" illustrates the DiskDriveView class and related
associations.

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 197

The DiskDriveView is composed of information drawn from the following base classes:

• StorageExtent

• DiskDrive

• PhysicalPackage

• SoftwareIdentity (conditional)

• LogicalPort (Optional)

Figure 29 - DiskDriveView and related associations

Concrete
StorageExtent

Primordial=”false”

StorageExtent

Primordial=”true”
(See Disk Drive Lite)

DiskDrive

(See Disk Drive Lite)

PhysicalPackage

(See Disk Drive Lite)

MediaPresent

Realizes

Basedon

SoftwareIdentitty

(See Disk Drive Lite)

ElementSoftwareIdentity

StoragePool

(See Block Services)

ConcreteComponent

PhysicalPackage
(System)

(See Physical Package)

Container

DiskDriveView

SECreationClassName
SESystemCreationClassName

SESystemName
SEDeviceID
SEBlockSize

SENumberOfBlocks
SEConsumableBlocks

SEExtentStatus[]
SEOperationalStatus[]

DDCreationClassName
DDSystemCreationClassName

DDSystemName
DDDeviceID

DDName
DDOperationalStatus[]
DDLocationIndicator

PPCreationClassName
PPTag

PPManufacturer
PPModel

SIInstanceID
SIVersionString

ConcreteComponentView

ElementView

BasedonView

ContainerView

BlockStorageStatisticalData

(See Block Server Performance)

ElementStatisticalData

ElementStatisticalDataView

ComputerSystem

(See referencing profile)

SystemDeviceView

160

161

162

163

164

Block Storage Views Profile

198

The keys for the DiskDriveView are the keys of the DiskDrive base class. There will be one instance of
CIM_DiskDriveView for each instance of a Disk Drive (primordial).

6.1.4.3.1 Mandatory, Conditional and Optional Properties of DiskDriveView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in
mandatory base classes are mandatory in the DiskDriveView class. Properties that are conditional in a
base class are conditional in the DiskDriveView class. Properties that are mandatory in optional (base)
classes (BlockStorageStatisticalData and SoftwareIdentity) are also "conditional" in the DiskDriveView. If
an optional base class is not supported by the referencing profile (e.g., Array) implementation, these
properties of those classes shall be present but shall be null.

Properties in the base classes that are optional in the base class are optional in the DiskDriveView.

EXPERIMENTAL

The DiskDriveView includes an optional array property (LPPortType) to hold the PortTypes for the target
ports for the DiskDrive.

In addition to the CIM_DiskDriveView, this profile also defines a SNIA_DiskDriveView subclass of
CIM_DiskDriveView. The SNIA_DiskDriveView is derived from SNIA_DiskDrive, rather than
CIM_DiskDrive. The SNIA_DiskDriveView includes a DDDiskType, DDFormFactor and DDEncryption
properties which are picked up from the corresponding properties of SNIA_DiskDrive.

EXPERIMENTAL

6.1.4.3.2 Associations on DiskDriveView

The DiskDriveView is "read only." In order to support update of information in the DiskDriveView instance,
it would be necessary to update the class instances on which it is based. An association ElementView is
provided to the DiskDrive instance.

NOTE The ElementView association is only provided to base instances that can be modified.

In addition to the DiskDriveView there are 5 associations that support association traversal to (or from)
instances of the DiskDriveView:

6.1.4.3.2.1 ConcreteComponentView (mandatory if the DiskDriveView is implemented)

From a primordial StoragePool instance a client will be able to find the DiskDriveViews associated to the
StoragePool via the ConcreteComponentView. This will return the DiskDriveView instances that
correspond to the Disk Drive StorageExtents that would be found via association traversal from the
StoragePool to the StorageExtents via ConcreteComponent association.

Similarly, if the client has a DiskDriveView instance, the client can find the primordial StoragePool to
which the drive is assigned by following the ConcreteComponentView association from the DiskDriveView
instance to the StoragePool instance for the StoragePool that contains the Disk Drive StorageExtent.

6.1.4.3.2.2 ContainerView (mandatory if the DiskDriveView is implemented)

From a system chassis (or other higher level physical package) instance a client will be able to find the
DiskDriveViews associated to the PhysicalPackage instance via the ContainerView. This will return the
DiskDriveView instances that correspond to the Disk Drive PhysicalPackage that would be found via
association traversal from the system PhysicalPackage to the Disk Drive PhysicalPackage via Container
association.

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 199

Similarly, if the client has a DiskDriveView instance, the client can find the higher level system
PhysicalPackage instance in which the drive resides by following the ContainerView association from the
DiskDriveView instance to the PhysicalPackage instance for the higher level system physical package
that contains the Disk Drive physical package.

6.1.4.3.2.3 BasedOnView (mandatory if the DiskDriveView and Extent Composition are implemented)

From a concrete StorageExtent (e.g., CompositeExtent) instance from Extent Composition a client will be
able to find the DiskDriveViews associated to the StorageExtent instance via the BasedOnView. This will
return the DiskDriveView instances that correspond to the Disk Drive StorageExtent that would be found
via association traversal from a "most antecedent" concrete StorageExtent to the Disk Drive
StorageExtent via BasedOn association.

Similarly, if the client has a DiskDriveView instance, the client can find concrete StorageExtent
instance(s) that is (are) based on the drive by following the BasedOnView association from the
DiskDriveView instance to the StorageExtent instance(s) for the concrete storage extent(s) that is (are)
based on the Disk Drive storage extent.

6.1.4.3.2.4 SystemDeviceView (mandatory if the DiskDriveView is implemented)

From the ComputerSystem of the referencing profile a client will be able to find the DiskDriveViews
associated to the ComputerSystem via the SystemDeviceView. This will return the DiskDriveViews that
correspond to the DiskDrive instances that would be found via association traversal from the
ComputerSystem to the DiskDrive instances via SystemDevice.

Similarly, if the client has a DiskDriveView instance, the client can find the owning ComputerSystem by
following the SystemDeviceView association from the DiskDriveView instance to the ComputerSystem
instance for the ComputerSystem that scopes the DiskDrive instances.

6.1.4.3.2.5 ElementStatisticalDataView

From the DiskDriveView instance, the client can find the BlockStorageStatisticalData instance for the Disk
Drive StorageExtent of the DiskDriveView by following the ElementStatisticalDataView association.

6.1.4.4 Masking and Mapping Views

6.1.4.4.1 The MaskingMappingExposedDeviceView Association

Figure 30: "MaskingMappingExposedDeviceView Association" illustrates the
MaskingMappingExposedDeviceView Association.

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

Block Storage Views Profile

200

The MaskingMappingExposedDeviceView association is composed of information drawn from the
following base classes:

• SCSIProtocolController

• SAPAvailableForElement

• ProtocolControllerForUnit

The keys for the MaskingMappingExposedDeviceView are the references to the LogicalDevice (a
StorageVolume) and the reference to the SCSIProtocolEndpoint. There will be one instance of
MaskingMappingExposedDeviceView for each unique combination of StorageVolume and
SCSIProtocolEndpoint through which the volume is exposed (in a Masking and Mapping model).

6.1.4.4.1.1 Mandatory, Conditional and Optional Properties of
CIM_MaskingMappingExposedDeviceView Association

In addition to the references to StorageVolume and the SCSIProtocolEndpoint the
MaskingMappingExposedDeviceView association also carries the DeviceID of the SCSIProtocolController
and the DeviceNumber and DeviceAccess properties from the ProtocolControllerForUnit association.

The MaskingMappingExposedDeviceView is "read only." It would be used to do association traversal from
StorageVolumes to SCSIProtocolEndpoints that expose the Volumes.

6.1.4.4.2 MaskingMappingView Association

Figure 31: "MaskingMappingView Association" illustrates the MaskingMappingView Association.

Figure 30 - MaskingMappingExposedDeviceView Association

ComputerSystem:

(See referencing profile)

LogicalPort

(See Target Ports Profiles)

StorageVolume

(See Bllock Services)

CIM_MaskingMappingExposedDeviceView
SPCDeviceID

PCFUDeviceNumber
PCFUDeviceAccess

SystemDevice

SystemDevice

SCSIProtocolEndPoint

(See Masking and Mapping)

SCSIProtocolController

(See Masking and Mapping)

SAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 201

The MaskingMappingView association is a three way association that is composed of information drawn
from the following base classes:

• StorageHardwareID

• AuthorizedPrivilege

• SCSIProtocolController

• SCSIProtocolEndpoint

• ProtocolControllerForUnit

• LogicalDevice

The keys for the MaskingMappingView are the SHID reference, the SCSIProtocolEndpoint reference and
the LogicalDevice reference. There will be one instance of MaskingMappingView for each unique
combination of Storage Hardware ID (e.g., host), LogicalDeivce (e.g., StorageVolume) and
SCSIProtocolEndpoint (e.g., LogicalPort).

6.1.4.4.2.1 Mandatory, Conditional and Optional Properties of MaskingMappingView Association

In addition to the references to StorageHardwareID, LogicalDevice and the SCSIProtocolEndpoint the
MaskingMappingView association also carries their properties and the AuthorizedPrivilege properties,

Figure 31 - MaskingMappingView Association

ComputerSystem:

(See referencing profile)

LogicalPort

(See Target Ports profiles)

LogicalDevice

(See Masking and Mapping)

SystemDevice

SystemDevice

SCSIProtocolEndPoint

(See Target Ports Profile)

SCSIProtocolController

(See Masking and Mapping)

SAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation

AuthorizedPrivilege

(See Masking and Mapping)

StorageHardwareID

(See Masking and Mapping)

AuthorizedSubject

AuthorizedTarget

MaskingMappingView

SHIDStorageID
SHIDIDType
LDDeviceID

SPEPSystemCreationClassName
SPEPCreationClassName

SPEPSystemName
SPEPName
SPEPRole

APInstanceID
APPrivilegeGranted

APActivities[]
APElementName

SPCSystemCreationClassName
SPCCreationClassName

SPCSystemName
SPCDeviceID

PCFUDeviceNumber
PCFUDeviceAccess

The MaskingMapping view class is a three-way association

250

251

252

253

254

255

256

257

258

259

260

261

Block Storage Views Profile

202

DeviceID of the SCSIProtocolController and the DeviceNumber and DeviceAccess properties from the
ProtocolControllerForUnit association. Also, for the convenience to clients, identifying properties from the
LogicalDevice, StorageHardwareID and SCSIProtocolEndpoint are also pulled into the
MaskingMappingView. This allows a client to enumerate the MaskingMappingView association and get
the identifiers for the endpoints in the association.

The MaskingMappingView is "read only." It would be used to do associate the StorageHardwareIDs,
StorageVolumes to SCSIProtocolEndpoints.

EXPERIMENTAL

6.1.4.4.3 MappingProtocolControllerView

Figure 32 illustrates the elements involved in supporting the MappingProtocolControllerView.

The MappingProtocolControllerView is composed of information drawn from the following base classes:

• LogicalPort

• ProtocolEndpoint

Figure 32 - The MappingProtocolControllerView

ComputerSystem:

(See referencing profile)

LogicalPort

(See Target Ports Profiles)

LogicalDevice

(See Masking and Mapping)

SystemDevice

SystemDevice

ProtocolEndPoint

(See Target Ports Profiles)

ProtocolController

(See Masking and Mapping)

SAPAvailable
ForElement

ProtocolController
ForUnit

DeviceSAPImplementation

AuthorizedPrivilege

(See Masking and Mapping)

StorageHardwareID

(See Masking and Mapping)

AuthorizedSubject

AuthorizedTarget

MappingProtocolControllerView

PCSystemCreationClassName
PCCreationClassName

PCSystemName
PCDeviceID

SHIDInstanceID
SHIDStorageID

SHIDIDType
PEPSystemCreationClassName

PEPCreationClassName
PEPSystemName

PEPName
PEPProtocolIFType

PEPOtherTypeDescription
APInstanceID

APPrivilegeGranted
APActivities[]

APElementName
LPSystemCreationClassName

LPCreationClassName
LPSystemName

LPDeviceID
LPOperationalStatus
LPUsageRestriction

LPPortType

ElementView

ElementView

ProtocolControllerForUnitView
PCFUDeviceNumber
PCFUDeviceAccess

The Mapping Protocol Controller view class is Logical Device View

ElementView (Optional)

SystemDeviceView

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 203

• ProtocolController

• AuthorizedPrivilege

• StorageHardwareID

The keys for the MappingProtocolControllerView are the keys of the ProtocolEndpoint, ProtocolController
and StorageHardwareID base classes. There will be one instance of MappingProtocolControllerView for
each unique combination of those keys.

6.1.4.4.4 Mandatory, Conditional and Optional Properties of MappingProtocolControllerView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in
mandatory base classes are mandatory in the MappingProtocolControllerView class. Properties that are
conditional in a base class are conditional in the MappingProtocolControllerView class.

Properties in the base classes that are optional in the base class are optional in the
MappingProtocolControllerView.

6.1.4.4.5 Associations on MappingProtocolControllerView

The CIM_MappingProtocolControllerView is "read only." In order to support update of information in the
MappingProtocolControllerView instance, it would be necessary to update the class instances on which it
is based. An association ElementView is provided to the CIM_StorageHardwareID, CIM_LogicalPort and
CIM_ProtocolEndpoint instances.

NOTE The ElementView association is only provided to base instances that can be modified.

In addition to the MappingProtocolControllerView there are 2 associations that support association
traversal to (or from) instances of the MappingProtocolControllerView:

6.1.4.4.5.1 ProtocolControllerForUnitView (mandatory if the MappingProtocolControllerView is
implemented)

From a MappingProtocolControllerView instance a client will be able to find the CIM_LogicalDevices
associated to the MappingProtocolControllerView (ProtocolController) via the
ProtocolControllerForUnitView. This will return the LogicalDevice instances that correspond to the
ProtocolController of the MappingProtocolControllerView that would be found via association traversal
from the ProtocolController to the LogicalDevices via CIM_ProtocolControllerForUnit association.

6.1.4.4.5.2 SystemDeviceView (mandatory if the MappingProtocolControllerView is implemented)

From the CIM_ComputerSystem of the referencing profile a client will be able to find the
MappingProtocolControllerViews associated to the ComputerSystem via the SystemDeviceView. This will
return the MappingProtocolControllerViews that correspond to the CIM_ProtocolController instances that
would be found via association traversal from the ComputerSystem to the CIM_ProtocolController
instances via CIM_SystemDevice.

Similarly, if the client has a MappingProtocolControllerView instance, the client can find the scoping
ComputerSystem by following the SystemDeviceView association from the
MappingProtocolControllerView instance to the CIM_ComputerSystem instance for the ComputerSystem
that scopes the CIM_ProtocolController instances.

6.1.4.5 Storage Pool Views

6.1.4.5.1 StoragePoolView

Figure 33 illustrates the elements involved in supporting the StoragePoolView.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

Block Storage Views Profile

204

The StoragePoolView is composed of information drawn from the following base classes:

• StoragePool

• StorageCapabilities

• StorageConfigurationCapabilities (Optional)

• AllocatedFromStoragePool

The keys for the StoragePoolView are the keys of the StoragePool base class. There will be one instance
of StoragePoolView for each instance of a StoragePool.

Figure 33 - The StoragePoolView

StorageVolume
(or LogicalDisk)

(See Block Services)

StoragePool

(See Block Services)

AllocatedFromStoragePool

ElementCapabilities

StorageCapabilities

(See Block Services)

VolumeViewComputerSystem:

(See referencing profile)

SystemDeviceView

AllocatedFromStoragePoolView

SystemDevice

ElementView
Parent: StoragePool

(See Block Services)

AllocatedFromStoragePool

StoragePoolView

SPInstanceID
SPElementName

SPPoolID
SPTotalManagedSpace

SPRemainingManagedSpace
SPPrimordial
SCInstanceID

SCElementName
SCElementType

SCPackageRedundancyDefault
SCPackageRedundancyMin
SCPackageRedundancyMax
SCDataRedundancyDefault

SCDataRedundancyMin
SCDataRedundancyMax
AFSPSpaceConsumed

SCCInstanceID
SCCElementName

StoragePoolView

AllocatedFromStoragePoolViewView

AllocatedFromStoragePoolViewView

ElementView

AllocatedFromStoragePoolView

StorageConfigurationCapabilities

(See Block Services)

ElementCapabilities

DiskDriveView

StorageExtent

Primordial=true
(See Disk Drive Lite)

ConcreteComponent

ExtentComponentView

DriveComponentViewView

HostedStoragePoolView

AllocatedFromStoragePoolView

317

318

319

320

321

322

323

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 205

6.1.4.5.2 Mandatory, Conditional and Optional Properties of StoragePoolView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in
mandatory base classes are mandatory in the StoragePoolView class. Properties that are conditional in a
base class are conditional in the StoragePoolView class. Properties that are mandatory in optional (base)
classes (e.g., StorageConfigurationCapabilities) are "conditional" in the StoragePoolView. If an optional
base class is not supported by the implementation, these properties of those classes shall be present but
shall be null.

Properties in the base classes that are optional in the base class are optional in the StoragePoolView.

6.1.4.5.3 Associations on StoragePoolView

The StoragePoolView is "read only." In order to support update of information in the StoragePoolView
instance, it would be necessary to update the class instances on which it is based. An association
ElementView is provided to the CIM_StoragePool instance.

NOTE The ElementView association is only provided to base instances that can be modified.

In addition to the StoragePoolView there are 7 associations that support association traversal to (or from)
instances of the StoragePoolView:

6.1.4.5.3.1 AllocatedFromStoragePoolView (StoragePoolView to StoragePool)

This association is mandatory if the StoragePoolView is implemented.

From a StoragePoolView instance, the client can find the parent StoragePool to which the pool is
allocated from by following the AllocatedFromStoragePoolView association from the StoragePoolView
instance to the CIM_StoragePool instance for the StoragePool.

Similarly, if the client has a CIM_StoragePool instance a client will be able to find the StoragePoolViews
that are allocated from the StoragePool via the AllocatedFromStoragePoolView. This will return the
StoragePoolView instances that correspond to the StoragePools that would be found via association
traversal from the StoragePool to the StoragePool via the CIM_AllocatedFromStoragePool association.

6.1.4.5.3.2 AllocatedFromStoragePoolView (Volume to StoragePoolView)

This association is mandatory if the StoragePoolView is implemented.

From a CIM_StorageVolume (or CIM_LogicalDisk) instance, the client can find the StoragePoolView that
the volume is allocated from by following the AllocatedFromStoragePoolView association from the CIM
class (StorageVolume or LogicalDisk) to the appropriate StoragePoolView instance that corresponds to
the CIM_StoragePool instance the volume is allocated from.

Similarly, if the client has a StoragePoolView instance, the client will be able to find the
CIM_StorageVolumes (or CIM_LogicalDisks) that are allocated from that StoragePoolView by following
the AllocatedFromStoragePoolView association.

6.1.4.5.3.3 AllocatedFromStoragePoolViewView (VolumeView to StoragePoolView)

This association is mandatory if the StoragePoolView and the VolumeView are implemented.

From a VolumeView instance, the client can find the StoragePoolView that the volume is allocated from
by following the AllocatedFromStoragePoolViewView association from the VolumeView instance to the
appropriate StoragePoolView instance that corresponds to the CIM_StoragePool instance the volume is
allocated from.

Similarly, if the client has a StoragePoolView instance, the client will be able to find the VolumeViews for
volumes that are allocated from that StoragePoolView by following the
AllocatedFromStoragePoolViewView association.

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

Block Storage Views Profile

206

6.1.4.5.3.4 AllocatedFromStoragePoolViewView (StoragePoolView to StoragePoolView)

This association is mandatory if the StoragePoolView is implemented.

From a StoragePoolView instance, the client can find the parent StoragePoolView to which the pool is
allocated from by following the AllocatedFromStoragePoolViewView association from the
StoragePoolView instance to the StoragePoolView instance for the parent StoragePool.

Similarly, if the client has a StoragePoolView instance a client will be able to find the StoragePoolViews
that are allocated from the StoragePool via the AllocatedFromStoragePoolViewView. This will return the
StoragePoolView instances that correspond to the StoragePools that would be found via association
traversal from the StoragePool to the StoragePool via the CIM_AllocatedFromStoragePool association.

6.1.4.5.3.5 HostedStoragePoolView

This is mandatory if the StoragePoolView is implemented.

From the owning CIM_ComputerSystem a client will be able to find the StoragePoolViews associated to
the ComputerSystem via the HostedStoragePoolView. This will return the StoragePoolViews that
correspond to the CIM_StoragePool instances that would be found via association traversal from the
ComputerSystem to the CIM_StoragePool instances via CIM_HostedStoragePool.

Similarly, if the client has a StoragePoolView instance, the client can find the owning ComputerSystem by
following the HostedStoragePoolView association from the StoragePoolView instance to the
CIM_ComputerSystem instance for the ComputerSystem that scopes the CIM_StoragePool instances.

6.1.4.5.3.6 ExtentComponentView

This is mandatory if the StoragePoolView is implemented.

From a StoragePoolView instance, the client can find the pool component CIM_StorageExtent instances
for the extents that form the pool via the ExtentComponentView. This will return the StorageExtents that
correspond to the StoragePoolView instances that would be found via association traversal from the
CIM_StoragePool instance to CIM_StorageExtent instances via CIM_ConcreteComponent.

Similarly, if the client has a CIM_StorageExtent instance, the client can find the StoragePoolView by
following the ExtentComponentView association from the CIM_StorageExtent instance to the
StoragePoolView instance for the storage pool that has the CIM_StorageExtent as a pool component.

6.1.4.5.3.7 DriveComponentViewView

This association is mandatory if the StoragePoolView and the DiskDriveView are implemented.

From a StoragePoolView instance, the client will be able to find the DiskDriveViews for drives that are
components of that StoragePoolView by following the DriveComponentViewView association.

Similarly, if the client has a DiskDriveView instance, the client can find the StoragePoolView that the drive
is a component of by following the DriveComponentViewView association from the DiskDriveView
instance to the appropriate StoragePoolView instance that corresponds to the CIM_StoragePool instance
the drive is a component of.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 207

6.1.4.6 Replication Views

6.1.4.6.1 ReplicaPairView

Figure 34 illustrates the elements involved in supporting the ReplicaPairView.

The ReplicaPairView is composed of information drawn from the following base classes:

• StorageVolume (or LogicalDisk) for the Target

• StorageVolume (or LogicalDisk) for the Source

• StorageSynchronized

The keys for the ReplicaPairView are the keys of the target StorageVolume (or LogicalDisk) base class.
There will be one instance of ReplicaPairView for each instance of a target StorageVolume (or
LogicalDisk).

6.1.4.6.2 Mandatory, Conditional and Optional Properties of ReplicaPairView

The properties from base classes shall be supported, but may be null. Properties that are mandatory in
mandatory base classes are mandatory in the ReplicaPairView class. Properties that are conditional in a
base class are conditional in the ReplicaPairView class.

Properties in the base classes that are optional in the base class are optional in the ReplicaPairView.

6.1.4.6.3 Associations on ReplicaPairView

The ReplicaPairView is "read only." In order to support update of information in the ReplicaPairView
instance, it would be necessary to update the class instances on which it is based. An association
ElementView is provided to the CIM_StorageVolume instances (both source and target).

NOTE The ElementView association is only provided to base instances that can be modified.

In addition to the ReplicaPairView there is only one association that support association traversal to (or
from) instances of the ReplicaPairView:

Figure 34 - The ReplicaPairView

T a rg e t: S to ra g eV o lu m e
(o r L o g ica lD isk)

(S e e B lo ck S e rv ice s)

R e p lic a P a irV ie w

S V S o u rc e S y s te m C re a tio n C la s s N a m e
S V S o u rc e S y s tem N a m e

S V S o u rc e C re a tio n C la s s N a m e
S V S o u rc e D e v ic e ID

S V S o u rce N a m e
S V S o u rce N a m e F o rm a t
S V S o u rce E x te n tS ta tu s []

S V S o u rce O p e ra tio n a lS ta tu s []
S V S o urce B lo ckS ize

S V S o u rce N u m b e rO fB lo cks
S V S o u rce C o n su m a b le B lo cks

S S W h e nS yn ce d
S S S yn cM a in ta in e d

S S C o p yT yp e
S S S yn cS ta te

S S C o p yP r io rity
S S S yn cT yp e

S S M o d e
S S P ro g re ssS ta tu s

S V T a rg e tS y s te m C re a tio n C la s s N a m e
S V T a rg e tS y s te m N a m e

S V T a rg e tC re a tio n C la s s N a m e
S V T a rg e tD e v ic e ID

S V T a rg e tN a m e
S V T a rg e tN a m e F o rm a t
S V T a rg e tE x te n tS ta tu s []

S V T a rg e tO p e ra tio n a lS ta tu s []
S V T a rg e tB lo ckS ize

S V T a rg e tN u m b e rO fB lo cks
S V T a rg e tC o n su m a b le B lo cks

C o m p u te rS ys te m :

(S e e re fe re n c in g p ro file)

S y s te m D e v ic e V ie wS ys te m D e v ice

E le m e n tV ie w

S o u rce : S to ra g e V o lu m e
(o r L o g ica lD isk)

(S e e B lo ck S e rv ice s)

S to ra g e S y n c h ro n ize d

E le m e n tV ie w

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

Block Storage Views Profile

208

6.1.4.6.3.1 SystemDeviceView (ReplicaPairViews)

This is mandatory if the ReplicaPairView is implemented.

From the CIM_ComputerSystem of the referencing profile a client will be able to find the
ReplicaPairViews associated to the ComputerSystem via the SystemDeviceView. This will return the
ReplicaPairView instances that correspond to the CIM_StorageVolume (CIM_LogicalDisk) instances of
target volumes that would be found via association traversal from the ComputerSystem to the
CIM_StorageVolume (or CIM_LogicalDisk) instances via CIM_SystemDevice.

Similarly, if the client has a ReplicaPairView instance, the client can find the owning ComputerSystem by
following the SystemDeviceView association from the ReplicaPairView instance to the
CIM_ComputerSystem instance for the ComputerSystem that scopes the CIM_StorageVolume
(CIM_LogicalDisk) instances.

EXPERIMENTAL

6.2 Health and Fault Management Consideration

Health and Fault Management considerations are defined in terms of the base classes (no View Classes).
However, it should be noted that OperationalStatus of view classes shall be the same as the
OperationalStatus of the underlying CIM classes on which the view classes are defined.

6.3 Cascading Considerations

Not defined in this standard.

6.4 Methods of the Profile

6.4.1 Extrinsic Methods of the Profile

None

6.4.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

View classes are modified by creating, deleting and modifying the base classes from which they are
derived. The property values of View classes are derived from the property values of associated classes.
This profile does not specify the means to modify, create, or delete those classes. The base class
instances may be accessed from the view class instances via association traversal through the
ElementView association.

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 209

6.5 Client Considerations and Recipes

6.5.1 Use Cases

6.5.1.1 Discovery of the Volumes on an Array

Table 87 identifies the elements of the use case to discover the volumes on an Array.

6.5.1.2 Discovery of the Disk Drives in a Primordial Pool

Table 88 identifies the elements of the use case to discover the Disk Drives in a Primordial Pool.

Table 87 - Discovery of the Volumes on an Array

Use Case Element Description

Summary Given an Array ComputerSystem, find the volumes (and their relevant information) on the
system

Basic Course of Events 1. Find the top level system of an array (using ElementConformsToProfile)
2. Find the related Volumes (on that system, using SystemDeviceView)
3. Locate the Component ComputerSystems (using ComponentCS)
4. Find the related Volumes on each of those systems (using SystemDeviceView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:VolumeView”.

Postconditions Administrator has all Volumes, their Settings and what Pools they are allocated from.

Table 88 - Discovery of the Disk Drives in a Primordial Pool

Use Case Element Description

Summary Given an Array Primordial Pool, find the Disk Drives (and their information) that are its
components

Basic Course of Events 1. Find the related Disk Drives (in that pool, using ConcreteComponentView)

Alternative Paths 1a. Find all the disk drives on the system (using SystemDeviceView)

Exception Paths None

Triggers Need to build or refresh the Drive topology database for an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:DiskDriveView”.

Postconditions Administrator has all DiskDrives and related information (scoped by the Pool or System)

458

459

460

461

462

463

Block Storage Views Profile

210

6.5.1.3 Discover Volumes exposed on a (Target) Port

Table 89 identifies the elements of the use case to Discover Volumes exposed on a (Target) Port.

6.5.1.4 Discover (target port) redundancy for a Volume

Table 90 identifies the elements of the use case to discover (target port) redundancy for a Volume.

6.5.1.5 Discover Volumes exposed to a Host Port

Table 91 identifies the elements of the use case to discover Volumes exposed to a Host Port.

Table 89 - Discover Volumes exposed on a (Target) Port

Use Case Element Description

Summary Given an Array target port, find the volumes that are exposed through that port

Basic Course of Events 1. Find the ProtocolEndpoint(s) associated to the Port (using DSI)2. Find the related
Volumes (on that system, using MaskingMappingExposedDeviceView)

Alternative Paths None

Exception Paths None

Triggers Determine Volumes accessible through a port on an Array

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:MaskingMappingExposedDeviceView”.

Postconditions Administrator has all Volumes that depend on the port for access.

Table 90 - Discover (target port) redundancy for a Volume

Use Case Element Description

Summary Given an Array volume, find the target ports through which it can be accessed.

Basic Course of Events 1. Find the ProtocolEndpoints that support the volume (using
MaskingMappingExposedDeviceView)
2. Find the related target Ports (using DSI)

Alternative Paths None

Exception Paths None

Triggers Need to determine what target ports are available for accessing a volume

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:MaskingMappingExposedDeviceView”.

Postconditions Administrator has the ports through which the volume may be accessed.

Table 91 - Discover Volumes exposed to a Host Port

Use Case Element Description

Summary Given an host port (Storage HardwareID), find the volumes that are mapped to that host
port

Basic Course of Events 1. Find the Volumes mapped to the host port (MaskingMappingView)

Alternative Paths None

464

465

466

467

468

469

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 211

6.5.1.6 Discover the Mapping information for an array

Table 92 identifies the elements of the use case to discover the Mapping information for an array.

6.5.1.7 Discover the Pool topology for an array

Table 93 identifies the elements of the use case to discover the Pool topology for an array.

Exception Paths None

Triggers Need to build or refresh a topology database for host access to Array volumes

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:MappingMaskingView”.

Postconditions Administrator has all Volumes that are mapped to the host port.

Table 92 - Discover Mapping information for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the masking and mapping information.

Basic Course of Events 1. Find the target ports and host ports that are connected (Using SystemDeviceView to
MappingProtocolControllerView)
2. Find the Volumes for a ProtocolController (using ProtocolControllerForUnitView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for masking and mapping information for an
Array.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:MappingProtocolControllerView”.

Postconditions Administrator has all the Masking and Mapping information.

Table 93 - Discover the Pool topology for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the Pools on the system

Basic Course of Events 1. Find the Pools and their capabilities for the system (Using HostedPoolView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for pools in an Array.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:StoragePoolView”.

Postconditions Administrator has all the Pools and their capabilities information.

Table 91 - Discover Volumes exposed to a Host Port

Use Case Element Description

470

471

472

473

Block Storage Views Profile

212

6.5.1.8 Discover the Replica Pairs for an array

Table 94 identifies the elements of the use case to discover the Replica Pairs for an array.

6.5.2 Recipes

Not supported in this version of the standard.

6.6 CIM Elements

Table 95 describes the CIM elements for Block Storage Views.

Table 94 - Discover the Replica Pairs for an array

Use Case Element Description

Summary Given an Array ComputerSystem, find the Replica Pairs on the system

Basic Course of Events 1. Find the volume pairs for pairs on the array (Using SystemDeviceView to
ReplicaPairView)

Alternative Paths None

Exception Paths None

Triggers Need to build or refresh a topology database for Replicas in an Array.

Assumptions None

Preconditions The Array provider has implemented the Block Storage Views Profile and
ViewCapabilities.SupportedViews contains “SNIA:ReplicaPairView”.

Postconditions Administrator has all the Replicas that are defined in the Array.

Table 95 - CIM Elements for Block Storage Views

Element Name Requirement Description

6.6.1 CIM_AllocatedFromStoragePoolView
(StoragePoolView to StoragePool)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:StoragePoolView" (and the Block Service
Package is implemented).

This associates a CIM_StoragePoolView instance to a
CIM_StoragePool instance. This is required if the
CIM_StoragePoolView is implemented.

6.6.2 CIM_AllocatedFromStoragePoolView (Volume to
StoragePoolView)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:StoragePoolView" (and the Block Service
Package is implemented).

This associates a CIM_StorageVolume (or
CIM_LogicalDisk) instance to a CIM_StoragePoolView.
This is required if the CIM_StoragePoolView is
implemented.

6.6.3 CIM_AllocatedFromStoragePoolView (VolumeView
to StoragePool)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

This associates a CIM_VolumeView instance to a
CIM_StoragePool. This is required if the
CIM_VolumeView is implemented.

474

475

476

477

478

479

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 213

6.6.4 CIM_AllocatedFromStoragePoolViewView
(PoolView to PoolView)

Conditional Experimental. Conditional requirement: Required if the
array property CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:StoragePoolView" (and the
Block Service Package is implemented).

This associates a CIM_StoragePoolView instance to its
parent CIM_StoragePoolView instance that it is allocated
from.

6.6.5 CIM_AllocatedFromStoragePoolViewView
(VolumeView to PoolView)

Conditional Experimental. Conditional requirement: Required if the
array property CIM_ViewCapabilities.SupportedViews
contains the strings "SNIA:StoragePoolView" and
"SNIA:VolumeView" (and the Block Service Package is
implemented).

This associates a CIM_VolumeView instance to a
CIM_StoragePoolView instance that volume is allocated
from.

6.6.6 CIM_BasedOnView (ExtentOnDriveExtent) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" and Extent Composition is
implemented.

This associates a concrete CIM_StorageExtent instance
to a CIM_DiskDriveView instance. This is required if the
CIM_DiskDriveView and ExtentComposition are
implemented.

6.6.7 CIM_BasedOnView (VolumeOnExtent) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" and Extent Composition is
implemented.

This associates a CIM_VolumeView instance to a base
CIM_StorageExtent instance on which the volume is
based. This is required if the CIM_VolumeView and
ExtentComposition are implemented.

6.6.8 CIM_ConcreteComponentView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

The CIM_ConcreteComponentView associates the
CIM_DiskDriveView instance to the primordial
StoragePool to which the disk drive StorageExtent is
assigned. This is required if the CIM_DiskDriveView is
implemented.

6.6.9 CIM_ContainerView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

The CIM_ContainerView associates the
CIM_DiskDriveView instance to the higher level physical
package (e.g., System physical package) that contains
the physical package of the disk drive. This is required if
the CIM_DiskDriveView is implemented.

Table 95 - CIM Elements for Block Storage Views

Element Name Requirement Description

Block Storage Views Profile

214

6.6.10 CIM_DiskDriveView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

The CIM_DiskDriveView instance represents a Disk Drive
and its associated information. This is required if
CIM_ViewCapabilities.SupportedViews includes
"SNIA:DiskDriveView".

6.6.11 CIM_DriveComponentViewView Conditional Experimental. Conditional requirement: Required if the
array property CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:StoragePoolView" and
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is
implemented).

This associates a CIM_StoragePoolView instance to a
CIM_DiskDriveView instance that is a component of the
StoragePool.

6.6.12 CIM_ElementCapabilities (View Capabilities) Mandatory Associates the top level ComputerSystem to the
CIM_ViewCapabilities supported by the implementation.

6.6.13 CIM_ElementStatisticalDataView (DiskDriveView) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView",
CIM_BlockStatisticsCapabilities.ElementTypesSupported
contains "10" and Block Server Performance is
implemented.

This associates a CIM_DiskDriveView instance to the
CIM_BlockStorageStatisticalData instance for the Disk
Drive. This is required if the CIM_DiskDriveView and the
Block Server Performance Subprofile are implemented.

6.6.14 CIM_ElementStatisticalDataView (VolumeView) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView",
CIM_BlockStatisticsCapabilities.ElementTypesSupported
contains "8" and Block Server Performance is
implemented.

This associates a CIM_VolumeView instance to the
CIM_BlockStorageStatisticalData instance for the
StorageVolume (or LogicalDisk). This is required if the
CIM_VolumeView and the Block Server Performance
Subprofile are implemented.

6.6.15 CIM_ElementView (DiskDrive) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

This associates a CIM_DiskDriveView instance to a base
CIM_DiskDrive instance that can be modified. This is
required if the CIM_DiskDriveView is implemented.

6.6.16 CIM_ElementView (StorageSetting) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

This associates a CIM_VolumeView class instance to a
base CIM_StorageSetting class instance that can be
modified. This is required if the CIM_VolumeView is
implemented.

Table 95 - CIM Elements for Block Storage Views

Element Name Requirement Description

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 215

6.6.17 CIM_ElementView (Volume) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

This associates a CIM_VolumeView instance to a base
CIM_StorageVolume (or CIM_LogicalDisk) instance that
can be modified. This is required if the CIM_VolumeView
is implemented.

6.6.18 CIM_ExtentComponentView Conditional Experimental. Conditional requirement: Required if the
array property CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:StoragePoolView" (and the
Block Service Package is implemented).

This associates a CIM_StoragePoolView instance to a
CIM_StorageExtent instance that is a component of the
StoragePool.

6.6.19 CIM_HostedStoragePoolView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:StoragePoolView" (and the Block Service
Package is implemented).

This associates a CIM_StoragePoolView instance to the
CIM_ComputerSystem instance that hosts the underlying
StoragePool.

6.6.20 CIM_MappingProtocolControllerView Conditional Experimental. Conditional requirement: Required if the
array property CIM_ViewCapabilities.SupportedViews
contains the string
"SNIA:MappingProtocolControllerView" (and the Masking
and Mapping Profile is implemented).

The CIM_MappingProtocolControllerView represents the
unique pairing of Host Ports and TargetPorts as
represented by a ProtocolController in the Masking and
Mapping profile of a block storage profile. This is required
if the CIM_ViewCapabilities.SupportedViews includes
"SNIA:MappingProtocolControllerView".

6.6.21 CIM_MaskingMappingExposedDeviceView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:MaskingMappingExposedDeviceView" (and
the Masking and Mapping Profile is implemented).

This view associates a Target SCSIProtocolEndpoint and
a LogicalDevice (e.g., StorageVolume). This is required if
the CIM_ViewCapabilities.SupportedViews includes
"SNIA:MaskingMappingExposedDeviceView".

6.6.22 CIM_MaskingMappingView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:MaskingMappingView" (and the Masking and
Mapping Profile is implemented).

This three way association associates a
CIM_LogicalDevice, CIM_StorageHardwareID and
CIM_SCSIProtocolEndpoint instances to each other and
derived from the Masking and Mapping subprofile model.
This is required if CIM_ViewCapabilities.SupportedViews
contains "SNIA:MaskingMappingView".

Table 95 - CIM Elements for Block Storage Views

Element Name Requirement Description

Block Storage Views Profile

216

6.6.23 CIM_ProtocolControllerForUnitView Conditional Experimental. Conditional requirement: Required if the
array property CIM_ViewCapabilities.SupportedViews
contains the string
"SNIA:MappingProtocolControllerView" (and the Masking
and Mapping Profile is implemented). Associates an
instance of MappingProtocolControllerView to a
LogicalDevice.

6.6.24 CIM_ReplicaPairView Conditional Experimental. Conditional requirement: Required if the
array property CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:ReplicaPairlView" (and the
Copy Services Profile is implemented). A view that
combines a source and target volume and the
StorageSynchronized between them.

6.6.25 CIM_StoragePoolView Conditional Experimental. Conditional requirement: Required if the
array property CIM_ViewCapabilities.SupportedViews
contains the string "SNIA:StoragePoolView" (and the
Block Service Package is implemented). A view that
combines StoragePool information with the
StorageCapabilities and StorageConfigurationCapabilities
for the StoragePool, as well as SpaceConsumed on its
parent pool.

6.6.26 CIM_SystemDeviceView (DiskDriveViews) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:DiskDriveView" (and the Disk Drive Lite
Profile is implemented).

This association links CIM_DiskDriveView instances to
the scoping system. This is required if the
CIM_DiskDriveView is implemented.

6.6.27 CIM_SystemDeviceView
(MappingProtocolControllerViews)

Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:MappingProtocolControllerView" (and the
Masking and Mapping Profile is implemented).

This association links
CIM_MappingProtocolControllerView instances to the
scoping system. This is required if the
CIM_MappingProtocolControllerView is implemented.

6.6.28 CIM_SystemDeviceView (ReplicaPairViews) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:ReplicaPairlView" (and the Copy Services
Profile is implemented).

This association links CIM_ReplicaPairView instances to
the scoping system. This is required if the
CIM_ReplicaPairView is implemented.

6.6.29 CIM_SystemDeviceView (VolumeViews) Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

This association links CIM_VolumeView instances to the
scoping system. This is required if the CIM_VolumeView
is implemented.

6.6.30 CIM_ViewCapabilities Mandatory The CIM_ViewCapabilities identifies the capabilities of the
implementation of view classes.

Table 95 - CIM Elements for Block Storage Views

Element Name Requirement Description

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 217

6.6.1 CIM_AllocatedFromStoragePoolView (StoragePoolView to StoragePool)

The CIM_AllocatedFromStoragePoolView instance is a view that is derived from the CIM_AllocatedFromStoragePool association between two
StoragePools. Note that if the StoragePoolView is allocated from multiple StoragePools there will be multiple AllocatedFromStoragePoolView
instances for the StoragePool. The CIM_AllocatedFromStoragePoolView is subclassed from CIM_AbstractElementAllocatedFromPool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 96 describes class CIM_AllocatedFromStoragePoolView (StoragePoolView to StoragePool).

6.6.2 CIM_AllocatedFromStoragePoolView (Volume to StoragePoolView)

The CIM_AllocatedFromStoragePoolView instance is a view that is derived from the CIM_AllocatedFromStoragePool association between the
StorageVolume or LogicalDisk (of the CIM_StorageVolume or CIM_LogicalDisk) and the StoragePoolView from which the StorageVolume (or
LogicalDisk) is allocated. Note that if the StorageVolume (or LogicalDisk) is allocated from multiple StoragePools there will be multiple
AllocatedFromStoragePoolView instances for the StorageVolume (or LogicalDisk). The CIM_AllocatedFromStoragePoolView is subclassed
from CIM_AbstractElementAllocatedFromPool.

Created By: External

Modified By: External

Deleted By: External

6.6.31 CIM_VolumeView Conditional Conditional requirement: Required if the array property
CIM_ViewCapabilities.SupportedViews contains the
string "SNIA:VolumeView" (and the Block Service
Package is implemented).

The CIM_VolumeView represents the storage
(LogicalDisks or StorageVolumes) of a block storage
profile. This is required if the
CIM_ViewCapabilities.SupportedViews includes
"SNIA:VolumeView".

6.6.32 SNIA_DiskDriveView Optional Experimental.

The SNIA_DiskDriveView instance represents a Disk
Drive and its associated information.

Table 96 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (StoragePoolView
to StoragePool)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePool by the StoragePoolView. This
value is the same as the AllocatedFromStoragePool.SpaceConsumed
value for the base CIM_StoragePool on the antecedent StoragePool.

Antecedent Mandatory The parent(s) StoragePool(s) from which the StoragePoolView is
allocated.

Dependent Mandatory The CIM_StorageVolume or CIM_LogicalDisk instance that is allocated
from the StoragePoolView. There is only one CIM_StorageVolume (or
CIM_LogicalDisk) instance for the combined StorageVolume (or
LogicalDisk) - StoragePool pair.

Table 95 - CIM Elements for Block Storage Views

Element Name Requirement Description

480

481
482
483

484

485

486

487

488

Block Storage Views Profile

218

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 97 describes class CIM_AllocatedFromStoragePoolView (Volume to StoragePoolView).

6.6.3 CIM_AllocatedFromStoragePoolView (VolumeView to StoragePool)

The CIM_AllocatedFromStoragePoolView instance is a view that is derived from the CIM_AllocatedFromStoragePool association between the
StorageVolume or LogicalDisk (of the CIM_VolumeView) and the StoragePool from which the StorageVolume (or LogicalDisk is allocated. Note
that if the StorageVolume (or LogicalDisk) is allocated from multiple StoragePools there will be multiple AllocatedFromStoragePoolView
instances for the StorageVolume (or LogicalDisk). The CIM_AllocatedFromStoragePoolView is subclassed from
CIM_AbstractElementAllocatedFromPool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 98 describes class CIM_AllocatedFromStoragePoolView (VolumeView to StoragePool).

6.6.4 CIM_AllocatedFromStoragePoolViewView (PoolView to PoolView)

Experimental. This CIM_AllocatedFromStoragePoolViewView is an association between a CIM_StoragePoolView instances and the
CIM_StoragePoolView instance that they are allocated from. . The CIM_AllocatedFromStoragePoolViewView is subclassed from
CIM_AbstractElementAllocatedFromPool.

Table 97 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (Volume to Stor-
agePoolView)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the StorageVolume (or
LogicalDisk). This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the base
CIM_StorageVolume on the antecedent StoragePool.

Antecedent Mandatory A StoragePoolView from which the StorageVolume (or LogicalDisk) is
allocated.

Dependent Mandatory The CIM_StorageVolume or CIM_LogicalDisk instance that is allocated
from the StoragePoolView. There is only one CIM_StorageVolume (or
CIM_LogicalDisk) instance for the combined StorageVolume (or
LogicalDisk) - StoragePool pair.

Table 98 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolView (VolumeView to
StoragePool)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePool by the StorageVolume (or
LogicalDisk). This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the base
CIM_StorageVolume on the antecedent StoragePool.

Antecedent Mandatory A StoragePool from which the StorageVolume of the CIM_VolumeView is
allocated.

Dependent Mandatory The CIM_VolumeView instance that is allocated from the StoragePool.
There is only one VolumeView instance for the combined StorageVolume
(or LogicalDisk) - StoragePool pair.

489

490

491
492
493
494
495

496

497

498

499

500

501

502

503
504
505
506
507

508

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 219

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 99 describes class CIM_AllocatedFromStoragePoolViewView (PoolView to PoolView).

6.6.5 CIM_AllocatedFromStoragePoolViewView (VolumeView to PoolView)

Experimental. This CIM_AllocatedFromStoragePoolViewView is an association between a CIM_VolumeView instances and the
CIM_StoragePoolView instance that the Volume is allocated from. . The CIM_AllocatedFromStoragePoolViewView is subclassed from
CIM_AbstractElementAllocatedFromPool.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the strings
"SNIA:StoragePoolView" and "SNIA:VolumeView" (and the Block Service Package is implemented).

Table 100 describes class CIM_AllocatedFromStoragePoolViewView (VolumeView to PoolView).

6.6.6 CIM_BasedOnView (ExtentOnDriveExtent)

The CIM_BasedOnView instance is a view that is derived from CIM_BasedOn between a concrete CIM_StorageExtent instance and the
primordial CIM_StorageExtent under it. The CIM_BaseOnView is subclassed from CIM_AbstractBasedOn.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" and Extent Composition is implemented.

Table 99 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolViewView (PoolView to
PoolView)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the StoragePoolView.
This value is the same as the
AllocatedFromStoragePool.SpaceConsumed value for the base
CIM_StoragePool on the antecedent StoragePool.

Dependent Mandatory The StoragePoolView instance that is allocated from the parent pool.

Antecedent Mandatory The StoragePoolView instance for a parent StoragePool.

Table 100 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePoolViewView (Vol-
umeView to PoolView)

Properties Flags Requirement Description & Notes

AFSPSpaceConsumed Mandatory The space consumed from the StoragePoolView by the VolumeView. This
value is the same as the AllocatedFromStoragePool.SpaceConsumed
value for the base CIM_StorageVolume (or CIM_LogicalDisk) on the
antecedent StoragePool.

Dependent Mandatory The VolumeView instance that is allocated from the pool.

Antecedent Mandatory The StoragePoolView instance for a parent StoragePool.

509

510

511

512

513

514

515
516
517

518

519

520

521

522
523
524

525

526

Block Storage Views Profile

220

Table 101 describes class CIM_BasedOnView (ExtentOnDriveExtent).

6.6.7 CIM_BasedOnView (VolumeOnExtent)

The CIM_BasedOnView instance is a view that is derived from CIM_BasedOn between the CIM_StorageVolume instance and the first
CIM_StorageExtent it is based on. The CIM_BaseOnView is subclassed from CIM_AbstractBasedOn.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" and Extent Composition is implemented.

Table 102 describes class CIM_BasedOnView (VolumeOnExtent).

6.6.8 CIM_ConcreteComponentView

The CIM_ConcreteComponentView instance is a view that is derived from the CIM_ConcreteComponent between the base CIM_StorageExtent
of the Disk Drive and its primordial CIM_StoragePool. The CIM_ConcreteComponentView is subclassed from CIM_AbstractComponent.

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 101 - SMI Referenced Properties/Methods for CIM_BasedOnView (ExtentOnDriveExtent)

Properties Flags Requirement Description & Notes

StartingAddress Optional This is derived from the BasedOn.StartingAddress.

EndingAddress Optional This is derived from the BasedOn.EndingAddress.

OrderIndex Optional When the association is used in a concatenation composition, indicates
the order in which the extents(and thus their block ranges) are
concatenated.

Antecedent Mandatory The CIM_DiskDriveView on which a concrete StorageExtent is based.

Dependent Mandatory The CIM_StorageExtent instance that is dependent on the
CIM_DiskDriveView.

Table 102 - SMI Referenced Properties/Methods for CIM_BasedOnView (VolumeOnExtent)

Properties Flags Requirement Description & Notes

StartingAddress Optional This is derived from the BasedOn.StartingAddress.

EndingAddress Optional This is derived from the BasedOn.EndingAddress.

OrderIndex Optional When the association is used in a concatenation composition, indicates
the order in which the extents(and thus their block ranges) are
concatenated.

Antecedent Mandatory The lower level StorageExtent on which the CIM_VolumeView
StorageVolume is based.

Dependent Mandatory The CIM_VolumeView instance.

527

528

529
530

531

532

533

534

535

536

537

538
539

540

541

542

543

544

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 221

Table 103 describes class CIM_ConcreteComponentView.

6.6.9 CIM_ContainerView

The CIM_ContainerView instance is a view that is derived from the CIM_Container between the base CIM_PhysicalPackage of the Disk Drive
and the CIM_PhysicalPackage of the ComputerSystem. The CIM_ContainerView is subclassed from CIM_AbstractComponent.

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 104 describes class CIM_ContainerView.

6.6.10 CIM_DiskDriveView

The CIM_DiskDriveView instance is a view that is derived from CIM_StorageExtent, CIM_MediaPresent, CIM_DiskDrive, CIM_Realizes,
CIM_PhysicalPackage, CIM_ElementSoftwareIdentity and CIM_SoftwareIdentity. The CIM_DiskDriveView is subclassed from CIM_View.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 105 describes class CIM_DiskDriveView.

Table 103 - SMI Referenced Properties/Methods for CIM_ConcreteComponentView

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The CIM_StoragePool to which the StorageExtent of the Disk Drive is
assigned.

PartComponent Mandatory A CIM_DiskDriveView instance that is assigned to the StoragePool.

Table 104 - SMI Referenced Properties/Methods for CIM_ContainerView

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The CIM_PhysicalPackage for the ComputerSystem instance that groups
the CIM_PhysicalPackage of the Disk Drive.

PartComponent Mandatory A CIM_DiskDriveView instance that includes CIM_PhysicalPackage
information for the CIM_DiskDrive.

Table 105 - SMI Referenced Properties/Methods for CIM_DiskDriveView

Properties Flags Requirement Description & Notes

SESystemCreationClassN
ame

Mandatory The SystemCreationClassName for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for the Disk
Drive.

SESystemName Mandatory The SystemName for the StorageExtent of the Disk Drive as reported in
the underlying primordial StorageExtent instance for the Disk Drive.

545

546

547
548

549

550

551

552

553

554

555

556
557

558

559

560

561

562

Block Storage Views Profile

222

SECreationClassName Mandatory The CreationClassName for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for the Disk
Drive.

SEDeviceID Mandatory The DeviceID for the StorageExtent of the Disk Drive as reported in the
underlying primordial StorageExtent instance for the Disk Drive.

SEBlockSize Mandatory The BlockSize for the StorageExtent of the Disk Drive as reported in the
underlying primordial StorageExtent instance for the Disk Drive.

SENumberOfBlocks Mandatory The NumberOfBlocks for the StorageExtent of the Disk Drive as reported
in the underlying primordial StorageExtent instance for the Disk Drive.

SEConsumableBlocks Mandatory The ConsumableBlocks for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for the Disk
Drive.

SEExtentStatus Mandatory The ExtentStatus for the StorageExtent of the Disk Drive as reported in the
underlying primordial StorageExtent instance for the Disk Drive.

SEOperationalStatus Mandatory The OperationalStatus for the StorageExtent of the Disk Drive as reported
in the underlying primordial StorageExtent instance for the Disk Drive.

DDSystemCreationClassN
ame

Mandatory The SystemCreationClassName for the Disk Drive as reported in the
underlying DiskDrive instance.

DDSystemName Mandatory The SystemName for the Disk Drive as reported in the underlying
DiskDrive instance.

DDCreationClassName Mandatory The CreationClassName for the Disk Drive as reported in the underlying
DiskDrive instance.

DDDeviceID Mandatory The DeviceID for the Disk Drive as reported in the underlying DiskDrive
instance.

DDName Mandatory The Name for the Disk Drive as reported in the underlying DiskDrive
instance.

DDOperationalStatus Mandatory The OperationalStatus for the Disk Drive as reported in the underlying
DiskDrive instance.

PPCreationClassName Mandatory The CreationClassName for the PhysicalPackage of the Disk Drive as
reported in the underlying PhysicalPackage instance for the Disk Drive.

PPTag Mandatory The Tag for the PhysicalPackage of the Disk Drive as reported in the
underlying PhysicalPackage instance for the Disk Drive.

PPManufacturer Mandatory The Manufacturer for the PhysicalPackage of the Disk Drive as reported in
the underlying PhysicalPackage instance for the Disk Drive.

PPModel Mandatory The Model for the PhysicalPackage of the Disk Drive as reported in the
underlying PhysicalPackage instance for the Disk Drive.

SIInstanceID Mandatory The InstanceID for the SoftwareIdentity of the Disk Drive as reported in the
underlying SoftwareIdentity instance for the Disk Drive.

SIVersionString Mandatory The VersionString for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

DDLocationIndicator Optional The LocationIndicator for the Disk Drive as reported in the underlying
DiskDrive instance.

PPSerialNumber Optional The SerialNumber for the PhysicalPackage of the Disk Drive as reported
in the underlying PhysicalPackage instance for the Disk Drive.

Table 105 - SMI Referenced Properties/Methods for CIM_DiskDriveView

Properties Flags Requirement Description & Notes

563

564

565
566

567

568

569

570

571

572

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 223

6.6.11 CIM_DriveComponentViewView

Experimental. The CIM_DriveComponentViewView is an association between a CIM_StoragePoolView instances and the CIM_DiskDriveView
instances for Disk Drives of the StoragePool. The CIM_DriveComponentViewView is subclassed from CIM_AbstractComponent.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" and "SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 106 describes class CIM_DriveComponentViewView.

6.6.12 CIM_ElementCapabilities (View Capabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 107 describes class CIM_ElementCapabilities (View Capabilities).

PPPartNumber Optional The PartNumber for the PhysicalPackage of the Disk Drive as reported in
the underlying PhysicalPackage instance for the Disk Drive.

SIManufacturer Optional The Manufacturer for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

SIBuildNumber Optional The BuildNumber for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

SIMajorVersion Optional The MajorVersion for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

SIRevisionNumber Optional The RevisionNumber for the SoftwareIdentity of the Disk Drive as reported
in the underlying SoftwareIdentity instance for the Disk Drive.

SIMinorVersion Optional The MinorVersion for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

LPPortType Optional Experimental. This is an array property that contains the PortTypes for the
target ports that may be used to access the disk drive.

Table 106 - SMI Referenced Properties/Methods for CIM_DriveComponentViewView

Properties Flags Requirement Description & Notes

PartComponent Mandatory The DiskDriveView instance.

GroupComponent Mandatory The StoragePoolView instance for a primordial StoragePool.

Table 107 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (View Capabilities)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ViewCapabilities.

ManagedElement Mandatory The top level ComputerSystem that has the ViewCapabilities.

Table 105 - SMI Referenced Properties/Methods for CIM_DiskDriveView

Properties Flags Requirement Description & Notes

573

574
575

576

577

Block Storage Views Profile

224

6.6.13 CIM_ElementStatisticalDataView (DiskDriveView)

The CIM_ElementStatisticalDataView is an association between a CIM_DiskDriveView instance and the CIM_BlockStorageStatisticalData
instance for the DiskDrive. The CIM_ElementStatisticalDataView is subclassed from CIM_AbstractElementStatisticalData.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView", CIM_BlockStatisticsCapabilities.ElementTypesSupported contains "10" and Block
Server Performance is implemented.

Table 108 describes class CIM_ElementStatisticalDataView (DiskDriveView).

6.6.14 CIM_ElementStatisticalDataView (VolumeView)

The CIM_ElementStatisticalDataView is an association between a CIM_VolumeView instance and the CIM_BlockStorageStatisticalData
instance for the StorageVolume (or LogicalDisk). The CIM_ElementStatisticalDataView is subclassed from
CIM_AbstractElementStatisticalData.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView", CIM_BlockStatisticsCapabilities.ElementTypesSupported contains "8" and Block
Server Performance is implemented.

Table 109 describes class CIM_ElementStatisticalDataView (VolumeView).

6.6.15 CIM_ElementView (DiskDrive)

The CIM_ElementView instance is an association between a CIM_DiskDriveView instance and a base CIM_DiskDrive instance on which the
view is based. This association is provided to accommodate update operations on the base CIM_DiskDrive instances, since the properties
cannot be updated in the view class. The CIM_ElementView is subclassed from CIM_Dependency.

Created By: External

Modified By: External

Deleted By: External

Table 108 - SMI Referenced Properties/Methods for CIM_ElementStatisticalDataView (DiskDriveView)

Properties Flags Requirement Description & Notes

Stats Mandatory The CIM_BlockStorageStatisticalData instance for the DiskDrive
(StorageExtent) instance.

ManagedElement Mandatory The CIM_DiskDriveView instance that has the
CIM_BlockStorageStatisticalData instance.

Table 109 - SMI Referenced Properties/Methods for CIM_ElementStatisticalDataView (VolumeView)

Properties Flags Requirement Description & Notes

Stats Mandatory The CIM_BlockStorageStatisticalData instance for the StorageVolume (or
LogicalDisk) instance.

ManagedElement Mandatory The CIM_VolumeView instance that has the
CIM_BlockStorageStatisticalDatainstance.

578

579

580

581

582

583

584

585

586
587

588

589

590

591

592

593

594

595

596
597
598

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 225

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 110 describes class CIM_ElementView (DiskDrive).

6.6.16 CIM_ElementView (StorageSetting)

The CIM_ElementView instance is an association between the CIM_VolumeView and the CIM_StorageSetting instance for the base
StorageVolume (or LogicalDisk) on which the view is based. This association is provided to accommodate update operations on the
CIM_StorageSetting instance (e.g., ModifyInstance), since the properties cannot be updated in the view class. The CIM_ElementView is
subclassed from CIM_Dependency.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 111 describes class CIM_ElementView (StorageSetting).

6.6.17 CIM_ElementView (Volume)

The CIM_ElementView instance is an association between a CIM_VolumeView instance and a base CIM_StorageVolume (or CIM_LogicalDisk)
instance on which the view is based. This association is provided to accommodate update operations on the base CIM_StorageVolume (or
CIM_LogicalDisk) instances, since the properties cannot be updated in the view class. The CIM_ElementView is subclassed from
CIM_Dependency.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 110 - SMI Referenced Properties/Methods for CIM_ElementView (DiskDrive)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The base CIM_DiskDrive instance on which the CIM_DiskDriveView
instance is based.

Dependent Mandatory The CIM_DiskDriveView instance that is based on the CIM_DiskDrive
instance.

Table 111 - SMI Referenced Properties/Methods for CIM_ElementView (StorageSetting)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The base CIM_StorageSetting instance on which the CIM_VolumeView
instance is based.

Dependent Mandatory The CIM_VolumeView instance that is based on the CIM_StorageSetting
instance.

599

600

601

602

603

604

605

606

607
608
609

610

611

612

613

614

615

616

617
618
619
620

621

622

623

624

625

Block Storage Views Profile

226

Table 112 describes class CIM_ElementView (Volume).

6.6.18 CIM_ExtentComponentView

Experimental. The CIM_ExtentComponentView is an association between a CIM_StoragePoolView instances and the CIM_StorageExtent
instances for the StoragePool. The CIM_ExtentComponentView is subclassed from CIM_AbstractComponent.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 113 describes class CIM_ExtentComponentView.

6.6.19 CIM_HostedStoragePoolView

The CIM_HostedStoragePoolView is an association between a CIM_StoragePoolView instances and the CIM_ComputerSystem instance for
the StoragePool. The CIM_HostedStoragePoolView is subclassed from CIM_ScopedView.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 114 describes class CIM_HostedStoragePoolView.

6.6.20 CIM_MappingProtocolControllerView

Experimental. The CIM_MappingProtocolControllerView instance is a view that is derived from CIM_ProtocolController,
CIM_StorageHardwareID, CIM_AuthorizedPrivilege, CIM_ProtocolEndPoint and CIM_LogicalPort, and their associations. The
CIM_MappingProtocolControllerView is subclassed from CIM_View.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

Table 112 - SMI Referenced Properties/Methods for CIM_ElementView (Volume)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The base CIM_StorageVolume (or CIM_LogicalDisk) instance on which
the CIM_VolumeView instance is based.

Dependent Mandatory The CIM_VolumeView instance that is based on the CIM_StorageVolume
(or CIM_LogicalDisk) instance.

Table 113 - SMI Referenced Properties/Methods for CIM_ExtentComponentView

Properties Flags Requirement Description & Notes

PartComponent Mandatory A reference to a StorageExtent.

GroupComponent Mandatory A reference to a StoragePoolView instance that contains the Extent.

Table 114 - SMI Referenced Properties/Methods for CIM_HostedStoragePoolView

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool view.

626

627

628
629
630
631

632

633

634

635

636

637

638

639
640

641

642

643

644

645
646

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 227

Table 115 describes class CIM_MappingProtocolControllerView.

Table 115 - SMI Referenced Properties/Methods for CIM_MappingProtocolControllerView

Properties Flags Requirement Description & Notes

PCSystemCreationClassN
ame

Mandatory The SystemCreationClassName as reported in the underlying
ProtocolController.

PCCreationClassName Mandatory The CreationClassName as reported in the underlying ProtocolController.

PCSystemName Mandatory The SystemName as reported in the underlying ProtocolController.

PCDeviceID Mandatory The DeviceID as reported in the underlying ProtocolController.

SHIDInstanceID Mandatory The InstanceID as reported in the underlying StorageHardwareID.

SHIDStorageID N Mandatory The StorageID as reported in the underlying StorageHardwareID.

SHIDIDType Mandatory The IDType as reported in the underlying StorageHardwareID.

PEPSystemCreationClass
Name

Mandatory The SystemCreationClassName as reported in the underlying
ProtocolEndpoint.

PEPCreationClassName Mandatory The CreationClassName as reported in the underlying ProtocolEndpoint.

PEPSystemName Mandatory The SystemName as reported in the underlying ProtocolEndpoint.

PEPName Mandatory The Name as reported in the underlying ProtocolEndpoint.

PEPProtocolIFType Mandatory The ProtocolIFType as reported in the underlying ProtocolEndpoint.

PEPOtherTypeDescription Mandatory The OtherTypeDescription as reported in the underlying ProtocolEndpoint.

PEPRole Mandatory The Role as reported in the underlying ProtocolEndpoint.

PEPConnectionType Mandatory The ConnectionType as reported in the underlying ProtocolEndpoint.

APInstanceID Mandatory The InstanceID as reported in the underlying AuthorizedPrivilege.

APPrivilegeGranted Mandatory The PrivilegeGranted as reported in the underlying AuthorizedPrivilege.

APActivities[] Mandatory The Activities[] as reported in the underlying AuthorizedPrivilege.

APElementName Optional The ElementName as reported in the underlying AuthorizedPrivilege.

LPSystemCreationClassN
ame

N Mandatory The SystemCreationClassName as reported in the underlying LogicalPort.
This may be NULL if the underlying LogicalPort is an Ethernet Port.

LPCreationClassName N Mandatory The CreationClassName as reported in the underlying LogicalPort. This
may be NULL if the underlying LogicalPort is an Ethernet Port.

LPSystemName N Mandatory The SystemName as reported in the underlying LogicalPort. This may be
NULL if the underlying LogicalPort is an Ethernet Port.

LPDeviceID N Mandatory The DeviceID as reported in the underlying LogicalPort. This may be
NULL if the underlying LogicalPort is an Ethernet Port.

LPOperationalStatus N Mandatory The OperationalStatus as reported in the underlying LogicalPort. This may
be NULL if the underlying LogicalPort is an Ethernet Port.

LPUsageRestriction N Mandatory The UsageRestriction as reported in the underlying LogicalPort. This may
be NULL if the underlying LogicalPort is an Ethernet Port.

LPPortType N Mandatory The PortType as reported in the underlying LogicalPort. This may be
NULL if the underlying LogicalPort is an Ethernet Port.

647

648

649

650

651
652
653

654

655

656

657

658

659

Block Storage Views Profile

228

6.6.21 CIM_MaskingMappingExposedDeviceView

The CIM_MaskingMappingExposedDeviceView instance is a view that is derived from CIM_SAPAvailableForElement,
CIM_SCSIProtocolController and CIM_ProtocolControllerForUnit. The CIM_MaskingMappingExposedDeviceView is not subclassed from
anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MaskingMappingExposedDeviceView" (and the Masking and Mapping Profile is implemented).

Table 116 describes class CIM_MaskingMappingExposedDeviceView.

6.6.22 CIM_MaskingMappingView

The CIM_MaskingMappingView instance is a view that is derived from CIM_StorageHardwareID, CIM_AuthorizedSubject,
CIM_AuthorizedPrivilege, CIM_AuthorizedTarget, CIM_SCSIProtocolController, CIM_SAPAvailableForElement, CIM_SCSIProtocolEndpoint,
CIM_ProtocolControllerForUnit and CIM_LogicalDevice. The CIM_MaskingMappingView is not subclassed from anything.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MaskingMappingView" (and the Masking and Mapping Profile is implemented).

Table 116 - SMI Referenced Properties/Methods for CIM_MaskingMappingExposedDeviceView

Properties Flags Requirement Description & Notes

SPCSystemCreationClass
Name

Mandatory The SystemCreationClassName for the SCSIProtocolController used with
the underlying SCSIProtocolController instance for the
SCSIProtocolEndpoint and StorageVolume.

SPCSystemName Mandatory The SystemName for the SCSIProtocolController used with the underlying
SCSIProtocolController instance for the SCSIProtocolEndpoint and
StorageVolume.

SPCCreationClassName Mandatory The CreationClassName for the SCSIProtocolController used with the
underlying SCSIProtocolController instance for the SCSIProtocolEndpoint
and StorageVolume.

SPCDeviceID Mandatory The DeviceID for the SCSIProtocolController used with the underlying
SCSIProtocolController instance for the SCSIProtocolEndpoint and
StorageVolume.

PCFUDeviceNumber Mandatory The DeviceNumber (LUN) for the StorageVolume when accessed through
the SCSIProtocolEndpoint as reported in the underlying
ProtocolControllerForUnit instance for the StorageVolume.

PCFUDeviceAccess Mandatory The DeviceAccess value for the StorageVolume when accessed through
the SCSIProtocolEndpoint as reported in the underlying
ProtocolControllerForUnit instance for the StorageVolume.

ProtocolEndpoint Mandatory The Target ProtocolEndpoint through which the LogicalDevice is exposed.

LogicalDevice Mandatory The LogicalDevice (e.g., StorageVolume) that is exposed through the
Target ProtocolEndpoint.

660

661
662
663

664

665

666

667

668

669

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 229

Table 117 describes class CIM_MaskingMappingView.

6.6.23 CIM_ProtocolControllerForUnitView

Experimental. The CIM_ProtocolControllerForUnitView instance is a view that associates a MappingProtocolControllerView and a
LogicalDevice. It is derived from the underlying ProtocolControllerForUnit association between the underlying ProtocolController and the
LogicalDevice. Note that if the LogicalDevice is associated to multiple ProtocolControllers the DeviceNumber (LU Number) may differ for each
MappingProtocolControllerView instance.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

Table 117 - SMI Referenced Properties/Methods for CIM_MaskingMappingView

Properties Flags Requirement Description & Notes

SHIDStorageID Mandatory The StorageID from the referenced CIM_StorageHardwareID instance.

SHIDIDType Mandatory The IDType from the referenced CIM_StorageHardwareID instance.

LDDeviceID Mandatory The DeviceID from the referenced CIM_LogicalDevice instance.

SPEPSystemCreationClas
sName

Mandatory The SystemCreationClassName from the referenced
CIM_SCSIProtocolEndpoint instance.

SPEPCreationClassName Mandatory The CreationClassName from the referenced CIM_SCSIProtocolEndpoint
instance.

SPEPSystemName Mandatory The SystemName from the referenced CIM_SCSIProtocolEndpoint
instance.

SPEPName Mandatory The Name from the referenced CIM_SCSIProtocolEndpoint instance.

SPEPRole Mandatory The Role from the referenced CIM_SCSIProtocolEndpoint instance.

APInstanceID Mandatory The InstanceID of the CIM_AuthorizedPrivilege instance.

APPrivilegeGranted Mandatory The PrivilegeGranted of the CIM_AuthorizedPrivilege instance.

APActivities Mandatory The Activities array of the CIM_AuthorizedPrivilege instance.

APElementName Optional The ElementName of the CIM_AuthorizedPrivilege instance.

SPCSystemCreationClass
Name

Mandatory The SystemCreationClassName of the CIM_SCSIProtocolController
instance.

SPCCreationClassName Mandatory The CreationClassName of the CIM_SCSIProtocolController instance.

SPCSystemName Mandatory The SystemName of the CIM_SCSIProtocolController instance.

SPCDeviceID Mandatory The DeviceID of the CIM_SCSIProtocolController instance.

PCFUDeviceNumber Mandatory The DeviceNumber (LUN) of the CIM_ProtocolControllerForUnit
association instance.

PCFUDeviceAccess Mandatory The DeviceAccess value of the CIM_ProtocolControllerForUnit
association instance.

StorageHardwareID Mandatory The CIM_StorageHardwareID instance that is associated to the
CIM_LogicalDevice and CIM_ProtocolEndpoint instances.

LogicalDevice Mandatory The CIM_LogicalDevice instance that is associated to the
CIM_StorageHardwareID and CIM_ProtocolEndpoint instances.

ProtocolEndpoint Mandatory The CIM_ProtocolEndpoint instance that is associated to the
CIM_StorageHardwareID and CIM_LogicalDevice instances.

670

671
672
673

674

675

676

677

678

679

Block Storage Views Profile

230

Table 118 describes class CIM_ProtocolControllerForUnitView.

6.6.24 CIM_ReplicaPairView

Experimental. The CIM_ReplicaView instance is a view that is derived from a source and target CIM_StorageVolume (or CIM_LogicalDisk) and
a CIM_StorageSynchronized association between them.

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:ReplicaPairlView" (and the Copy Services Profile is implemented).

Table 119 describes class CIM_ReplicaPairView.

Table 118 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnitView

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory The DeviceNumber as reported in the underlying
ProtocolControllerForUnit.

PCFUDeviceAccess Mandatory The DeviceAccess as reported in the underlying
ProtocolControllerForUnit.

Antecedent Mandatory The MappingProtocolControllerView Instance.

Dependent Mandatory The Storage Volume.

Table 119 - SMI Referenced Properties/Methods for CIM_ReplicaPairView

Properties Flags Requirement Description & Notes

SVSourceSystemCreation
ClassName

Mandatory The SystemCreationClassName as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceSystemName Mandatory The SystemName as reported in the underlying source StorageVolume (or
LogicalDisk).

SVSourceCreationClassN
ame

Mandatory The CreationClassName as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceDeviceID Mandatory An opaque identifier of the underlying source StorageVolume (or
LogicalDisk).

SVSourceName Mandatory The identifier for the underlying source StorageVolume (or LogicalDisk).

SVSourceNameFormat Mandatory The format of the identifier for the underlying source StorageVolume (or
LogicalDisk).

SVSourceNameNamespac
e

Mandatory The NameNamespace for the StorageVolume as reported in the
underlying source StorageVolume instance.

SVSourceExtentStatus Mandatory The ExtentStatus as reported in the underlying source StorageVolume (or
LogicalDisk).

SVSourceOperationalStatu
s

Mandatory The OperationalStatus as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceBlockSize Mandatory The BlockSize as reported in the underlying source StorageVolume (or
LogicalDisk).

SVSourceNumberOfBlock
s

Mandatory The number of blocks that make up the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourceConsumableBlo
cks

Mandatory The number of usable blocks in the volume as reported in the underlying
source StorageVolume (or LogicalDisk).

SVSourcePrimordial Mandatory This shall be Primordial='false'.

680

681
682
683
684

685

686

687

688

689
690

691

692

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 231

SVSourceIsBasedOnUnde
rlyingRedundancy

Mandatory Whether or not redundancy is supported for the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourceNoSinglePointOf
Failure

Mandatory Whether or not NoSinglePointOfFailure is supported for the volume as
reported in the underlying source StorageVolume (or LogicalDisk).

SVSourceDataRedundanc
y

Mandatory The DataRedundancy supported by the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourcePackageRedund
ancy

Mandatory The PackageRedundancy supported by the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourceDeltaReservatio
n

Mandatory The DeltaReservation supported by the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourceExtentDiscrimina
tor

Mandatory Experimental. The ExtentDiscriminator as reported in the underlying
source StorageVolume (or LogicalDisk).

SVSourceOtherIdentifyingI
nfo

Optional Other identifiers for the StorageVolume (or LogicalDisk) as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourceIdentifyingDescri
ptions

Optional The description of the other identifiers for the StorageVolume (or
LogicalDisk) as reported in the underlying source StorageVolume (or
LogicalDisk).

SVSourceElementName Optional The user friendly name for the underlying source StorageVolume (or
LogicalDisk).

SVSourceUsage Optional The Usage supported by the volume as reported in the underlying source
StorageVolume (or LogicalDisk).

SVSourceOtherUsageDes
cription

Optional The OtherUsageDescription supported by the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SVSourceClientSettableUs
age

Optional The ClientSettableUsage supported by the volume as reported in the
underlying source StorageVolume (or LogicalDisk).

SSWhenSynced Mandatory The WhenSynced as reported in the underlying StorageSynchronized
association between the source and target StorageVolumes (or
LogicalDisks).

SSSyncMaintained Mandatory The SyncMaintained as reported in the underlying StorageSynchronized
association between the source and target StorageVolumes (or
LogicalDisks).

SSCopyType Mandatory The CopyType as reported in the underlying StorageSynchronized
association between the source and target StorageVolumes (or
LogicalDisks).

SSSyncState Mandatory The SyncState as reported in the underlying StorageSynchronized
association between the source and target StorageVolumes (or
LogicalDisks).

SSCopyPriority Mandatory The CopyPriority as reported in the underlying StorageSynchronized
association between the source and target StorageVolumes (or
LogicalDisks).

SSSyncType Mandatory The SyncType as reported in the underlying StorageSynchronized
association between the source and target StorageVolumes (or
LogicalDisks).

SSMode Mandatory The Mode as reported in the underlying StorageSynchronized association
between the source and target StorageVolumes (or LogicalDisks).

Table 119 - SMI Referenced Properties/Methods for CIM_ReplicaPairView

Properties Flags Requirement Description & Notes

693

Block Storage Views Profile

232

SSProgressStatus Mandatory The ProgressStatus as reported in the underlying StorageSynchronized
association between the source and target StorageVolumes (or
LogicalDisks).

SVTargetSystemCreationC
lassName

Mandatory The SystemCreationClassName as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetSystemName Mandatory The SystemName as reported in the underlying target StorageVolume (or
LogicalDisk).

SVTargetCreationClassNa
me

Mandatory The CreationClassName as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetDeviceID Mandatory An opaque identifier of the underlying target StorageVolume (or
LogicalDisk).

SVTargetName Mandatory The identifier for the underlying target StorageVolume (or LogicalDisk).

SVTargetNameFormat Mandatory The format of the identifier for the underlying target StorageVolume (or
LogicalDisk).

SVTargetNameNamespac
e

Mandatory The NameNamespace for the StorageVolume as reported in the
underlying target StorageVolume instance.

SVTargetExtentStatus Mandatory The ExtentStatus as reported in the underlying target StorageVolume (or
LogicalDisk).

SVTargetOperationalStatu
s

Mandatory The OperationalStatus as reported in the underlying target StorageVolume
(or LogicalDisk).

SVTargetBlockSize Mandatory The BlockSize as reported in the underlying target StorageVolume (or
LogicalDisk).

SVTargetNumberOfBlocks Mandatory The number of blocks that make up the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetConsumableBloc
ks

Mandatory The number of usable blocks in the volume as reported in the underlying
target StorageVolume (or LogicalDisk).

SVTargetPrimordial Mandatory This shall be Primordial='false'.

SVTargetIsBasedOnUnderl
yingRedundancy

Mandatory Whether or not redundancy is supported for the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetNoSinglePointOf
Failure

Mandatory Whether or not NoSinglePointOfFailure is supported for the volume as
reported in the underlying target StorageVolume (or LogicalDisk).

SVTargetDataRedundancy Mandatory The DataRedundancy supported by the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetPackageRedund
ancy

Mandatory The PackageRedundancy supported by the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetDeltaReservation Mandatory The DeltaReservation supported by the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetExtentDiscriminat
or

Mandatory Experimental. The ExtentDiscriminator as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetOtherIdentifyingIn
fo

Optional Other identifiers for the StorageVolume (or LogicalDisk) as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetIdentifyingDescri
ptions

Optional The description of the other identifiers for the StorageVolume (or
LogicalDisk) as reported in the underlying target StorageVolume (or
LogicalDisk).

Table 119 - SMI Referenced Properties/Methods for CIM_ReplicaPairView

Properties Flags Requirement Description & Notes

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 233

6.6.25 CIM_StoragePoolView

Experimental. The CIM_StoragePoolView is a view that is derived from CIM_StoragePool, CIM_StorageCapabilities,
CIM_StorageConfigurationCapabilities, as well as the SpaceConsumed data from the CIM_AllocatedFromStoragePool (to its parent pool).

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:StoragePoolView" (and the Block Service Package is implemented).

Table 120 describes class CIM_StoragePoolView.

SVTargetElementName Optional The user friendly name for the underlying target StorageVolume (or
LogicalDisk).

SVTargetUsage Optional The Usage supported by the volume as reported in the underlying target
StorageVolume (or LogicalDisk).

SVTargetOtherUsageDesc
ription

Optional The OtherUsageDescription supported by the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

SVTargetClientSettableUs
age

Optional The ClientSettableUsage supported by the volume as reported in the
underlying target StorageVolume (or LogicalDisk).

Table 120 - SMI Referenced Properties/Methods for CIM_StoragePoolView

Properties Flags Requirement Description & Notes

SPInstanceID Mandatory The InstanceID as reported in the underlying StoragePool.

SPElementName Optional The ElementName as reported in the underlying StoragePool.

SPPoolID Mandatory The PoolID as reported in the underlying StoragePool.

SPRemainingManagedSpa
ce

Mandatory The RemainingManagedSpace as reported in the underlying StoragePool.

SPTotalManagedSpace Mandatory The TotalManagedSpace as reported in the underlying StoragePool.

SPPrimordial Mandatory The Primordial property as reported in the underlying StoragePool.

SPUsage Optional The Usage property as reported in the underlying StoragePool.

SPOtherUsageDescription Optional The OtherUsageDescription as reported in the underlying StoragePool.

SPClientSettableUsage Optional The ClientSettableUsage as reported in the underlying StoragePool.

SCInstanceID Mandatory The InstanceID as reported in the underlying StorageCapabilities
associated to the StoragePool.

SCElementName Mandatory The ElementName as reported in the underlying StorageCapabilities
associated to the StoragePool.

SCElementType Mandatory The ElementType as reported in the underlying StorageCapabilities
associated to the StoragePool.

SCNoSinglePointOfFailure Mandatory The NoSinglePointOfFailure as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCNoSinglePointOfFailure
Default

Mandatory The NoSinglePointOfFailureDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCPackageRedundancyD
efault

Mandatory The PackageRedundancyDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

Table 119 - SMI Referenced Properties/Methods for CIM_ReplicaPairView

Properties Flags Requirement Description & Notes

694

695
696

697

698

Block Storage Views Profile

234

6.6.26 CIM_SystemDeviceView (DiskDriveViews)

Created By: External

SCPackageRedundancyMi
n

Mandatory The PackageRedundancyMin as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCPackageRedundancyM
ax

Mandatory The PackageRedundancyMax as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCDataRedundancyDefaul
t

Mandatory The DataRedundancyDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCDataRedundancyMin Mandatory The DataRedundancyMin as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCDataRedundancyMax Mandatory The DataRedundancyMax as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCExtentStripeLengthDefa
ult

Optional The ExtentStripeLengthDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

SCParityLayoutDefault Optional The ParityLayoutDefault as reported in the underlying StorageCapabilities
associated to the StoragePool.

SCUserDataStripeDepthD
efault

Optional The UserDataStripeDepthDefault as reported in the underlying
StorageCapabilities associated to the StoragePool.

AFSPSpaceConsumed Mandatory The SpaceConsumed as reported in the underlying
AllocatedFromStoragePool to this pool's parent pool.

SCCInstanceID N Mandatory The InstanceID as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCElementName N Mandatory The ElementName as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCSupportedStoragePoo
lFeatures

Mandatory The SupportedStoragePoolFeatures as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCSupportedStorageEle
mentTypes

Mandatory The SupportedStorageElementTypes as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCSupportedStorageEle
mentFeatures

Mandatory The SupportedStorageElementFeatures as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCSupportedSynchrono
usActions

Optional The SupportedSynchronousActions as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCSupportedAsynchrono
usActions

Optional The SupportedAsynchronousActions as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCSupportedStorageEle
mentUsage

Optional The SupportedStorageElementUsage as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCClientSettableElement
Usage

Optional The ClientSettableElementUsage as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCSupportedStoragePoo
lUsage

Optional The SupportedStoragePoolUsage as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

SCCClientSettablePoolUs
age

Optional The ClientSettablePoolUsage as reported in the underlying
StorageConfigurationCapabilities (if any) associated to the StoragePool.

Table 120 - SMI Referenced Properties/Methods for CIM_StoragePoolView

Properties Flags Requirement Description & Notes

699

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 235

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:DiskDriveView" (and the Disk Drive Lite Profile is implemented).

Table 121 describes class CIM_SystemDeviceView (DiskDriveViews).

6.6.27 CIM_SystemDeviceView (MappingProtocolControllerViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:MappingProtocolControllerView" (and the Masking and Mapping Profile is implemented).

Table 122 describes class CIM_SystemDeviceView (MappingProtocolControllerViews).

6.6.28 CIM_SystemDeviceView (ReplicaPairViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:ReplicaPairlView" (and the Copy Services Profile is implemented).

Table 121 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (DiskDriveViews)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this DiskDriveView instance.

PartComponent Mandatory The CIM_DiskDriveView instance that is a device on the computer system.

Table 122 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (MappingProtocolController-
Views)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this MappingProtocolControllerView
instance.

PartComponent Mandatory The CIM_MappingProtocolControllerView instance that is a device on the
computer system.

700

701

702

703

704

705

706

707

708

709

Block Storage Views Profile

236

Table 123 describes class CIM_SystemDeviceView (ReplicaPairViews).

6.6.29 CIM_SystemDeviceView (VolumeViews)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 124 describes class CIM_SystemDeviceView (VolumeViews).

6.6.30 CIM_ViewCapabilities

The CIM_ViewCapabilities instance defines the capabilities of an implementation support for CIM_ view classes. The CIM_ViewCapabilities is
subclassed from CIM_Capabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 125 describes class CIM_ViewCapabilities.

Table 123 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (ReplicaPairViews)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this ReplicaPairView instance.

PartComponent Mandatory The CIM_ReplicaPairView instance that is a device on the computer
system.

Table 124 - SMI Referenced Properties/Methods for CIM_SystemDeviceView (VolumeViews)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this VolumeView instance.

PartComponent Mandatory The CIM_VolumeView instance that is a device on the computer system.

Table 125 - SMI Referenced Properties/Methods for CIM_ViewCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the view class capability of an implementation.

ElementName Optional A provider supplied user-Friendly Name for this CIM_ViewCapabilities
element.

SupportedViews Mandatory This array of strings lists the view classes that are supported by the
implementation. Valid string values are "SNIA:VolumeView" |
"SNIA:DiskDriveView" | "SNIA:MaskingMappingExposedDeviceView" |
"SNIA:MaskingMappingView"|"SNIA:MappingProtocolControllerView" |
"SNIA:StoragePoolView" |"SNIA:ReplicaPairView" .

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 237

6.6.31 CIM_VolumeView

The CIM_VolumeView instance is a view that is derived from CIM_StorageVolume, CIM_ElementSettingData, CIM_StorageSetting,
CIM_AllocatedFromStoragePool and CIM_StoragePool. The CIM_VolumeView is subclassed from CIM_View.

Created By: External

Modified By: External

Deleted By: External

Requirement: Required if the array property CIM_ViewCapabilities.SupportedViews contains the string
"SNIA:VolumeView" (and the Block Service Package is implemented).

Table 126 describes class CIM_VolumeView.

Table 126 - SMI Referenced Properties/Methods for CIM_VolumeView

Properties Flags Requirement Description & Notes

SVSystemCreationClassN
ame

Mandatory The SystemCreationClassName for the underlying StorageVolume (or
LogicalDisk).

SVSystemName Mandatory The SystemName for the underlying StorageVolume (or LogicalDisk).

SVCreationClassName Mandatory The CreationClassName for the underlying StorageVolume (or
LogicalDisk).

SVDeviceID Mandatory An opaque identifier of the underlying StorageVolume (or LogicalDisk).

SVName Mandatory The identifier for the underlying StorageVolume (or LogicalDisk).

SVNameFormat Mandatory The format of the identifier for the underlying StorageVolume (or
LogicalDisk).

SVNameNamespace Mandatory The NameNamespace for the StorageVolume as reported in the
underlying StorageVolume instance.

SVExtentStatus Mandatory The ExtentStatus as reported in the underlying StorageVolume (or
LogicalDisk).

SVOperationalStatus Mandatory The OperationalStatus as reported in the underlying StorageVolume (or
LogicalDisk).

SVBlockSize Mandatory

SVNumberOfBlocks Mandatory The number of blocks that make up the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVConsumableBlocks Mandatory The number of usable blocks in the volume as reported in the underlying
StorageVolume (or LogicalDisk).

SVIsBasedOnUnderlyingR
edundancy

Mandatory Whether or not redundancy is supported for the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVNoSinglePointOfFailure Mandatory Whether or not NoSinglePointOfFailure is supported for the volume as
reported in the underlying StorageVolume (or LogicalDisk).

SVDataRedundancy Mandatory The DataRedundancy supported by the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVPackageRedundancy Mandatory The PackageRedundancy supported by the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVDeltaReservation Mandatory The DeltaReservation supported by the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVPrimordial Mandatory

SVExtentDiscriminator Mandatory Experimental.

728

729
730

731

732

733

734

735

736

737
738

739

740

741

742

743

744

Block Storage Views Profile

238

SSInstanceID Mandatory The InstanceID of the StorageSetting for the volume as reported in its
underlying StorageSetting.

SSElementName Mandatory The ElementName of the StorageSetting for the volume as reported in its
underlying StorageSetting.

SSNoSinglePointOfFailure Mandatory Whether or not NoSinglePointOfFailure was requested in the
StorageSetting for the volume as reported in its underlying StorageSetting.

SSDataRedundancyMin Mandatory The DataRedundancyMin value supported by the StorageSetting for the
volume as reported in its underlying StorageSetting.

SSDataRedundancyMax Mandatory The DataRedundancyMax value supported by the StorageSetting for the
volume as reported in its underlying StorageSetting.

SSDataRedundancyGoal Mandatory The DataRedundancyGoal supported by the StorageSetting for the
volume as reported in its underlying StorageSetting.

SSPackageRedundancyMi
n

Mandatory The PackageRedundancyMin value supported by the StorageSetting for
the volume as reported in its underlying StorageSetting.

SSPackageRedundancyM
ax

Mandatory The PackageRedundancyMax value supported by the StorageSetting for
the volume as reported in the underlying StorageSetting.

SSPackageRedundancyG
oal

Mandatory The PackageRedundancyGoal supported by the StorageSetting for the
volume as reported in its underlying StorageSetting.

SSChangeableType Mandatory The ChangeableType defined for the StorageSetting for the volume as
reported in the underlying StorageSetting.

AFSPSpaceConsumed Mandatory The SpaceConsumed from the StoragePool by the volume as reported in
its underlying AllocatedFromStoragePool association to the StoragePool.

SPInstanceID Mandatory The InstanceID of the StoragePool for the volume as reported in the
underlying StoragePool.

SPPoolID Mandatory The PoolID of the StoragePool for the volume as reported in the
underlying StoragePool.

SVOtherIdentifyingInfo Optional Other identifiers for the StorageVolume (or LogicalDisk) as reported in the
underlying StorageVolume (or LogicalDisk).

SVIdentifyingDescriptions Optional The description of the other identifiers for the StorageVolume (or
LogicalDisk) as reported in the underlying StorageVolume (or
LogicalDisk).

SVElementName Optional The user friendly name for the underlying StorageVolume (or LogicalDisk).

SVUsage Optional The Usage supported by the volume as reported in the underlying
StorageVolume (or LogicalDisk).

SVOtherUsageDescription Optional The OtherUsageDescription supported by the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVClientSettableUsage Optional The ClientSettableUsage supported by the volume as reported in the
underlying StorageVolume (or LogicalDisk).

SVCanDelete Optional Experimental. The CanDelete supported by the volume as reported in the
underlying StorageVolume.

SVIsComposite Optional Experimental. The IsComposite supported by the volume as reported in
the underlying StorageVolume.

SSExtentStripeLength Optional The ExtentStripeLength value supported by the StorageSetting for the
volume as reported in its underlying StorageSetting.

Table 126 - SMI Referenced Properties/Methods for CIM_VolumeView

Properties Flags Requirement Description & Notes

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 239

6.6.32 SNIA_DiskDriveView

Experimental. The SNIA_DiskDriveView instance is a view that is derived from CIM_StorageExtent, CIM_MediaPresent, SNIA_DiskDrive,
CIM_Realizes, CIM_PhysicalPackage, CIM_ElementSoftwareIdentity and CIM_SoftwareIdentity. The SNIA_DiskDriveView is subclassed from
CIM_DiskDriveView.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 127 describes class SNIA_DiskDriveView.

SSExtentStripeLengthMin Optional The ExtentStripeLengthMin value supported by the StorageSetting for the
volume as reported in its underlying StorageSetting.

SSExtentStripeLengthMax Optional The ExtentStripeLengthMax supported by the StorageSetting for the
volume as reported in its underlying StorageSetting.

SSParityLayout Optional The ParityLayout defined by the StorageSetting for the volume as reported
in its underlying StorageSetting.

SSUserDataStripeDepth Optional The UserDataStripeDepth value supported by the StorageSetting for the
volume as reported in its underlying StorageSetting.

SSUserDataStripeDepthMi
n

Optional The UserDataStripeDepthMin value supported by the StorageSetting for
the volume as reported in its underlying StorageSetting.

SSUserDataStripeDepthM
ax

Optional The UserDataStripeDepthMax value supported by the StorageSetting for
the volume as reported in its underlying StorageSetting.

SSStorageExtentInitialUsa
ge

Optional The StorageExtentInitialUsage value supported by the StorageSetting for
the volume as reported in its underlying StorageSetting.

SSStoragePoolInitialUsag
e

Optional

Table 127 - SMI Referenced Properties/Methods for SNIA_DiskDriveView

Properties Flags Requirement Description & Notes

SESystemCreationClassN
ame

Mandatory The SystemCreationClassName for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for the Disk
Drive.

SESystemName Mandatory The SystemName for the StorageExtent of the Disk Drive as reported in
the underlying primordial StorageExtent instance for the Disk Drive.

SECreationClassName Mandatory The CreationClassName for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for the Disk
Drive.

SEDeviceID Mandatory The DeviceID for the StorageExtent of the Disk Drive as reported in the
underlying primordial StorageExtent instance for the Disk Drive.

SEBlockSize Mandatory The BlockSize for the StorageExtent of the Disk Drive as reported in the
underlying primordial StorageExtent instance for the Disk Drive.

SENumberOfBlocks Mandatory The NumberOfBlocks for the StorageExtent of the Disk Drive as reported
in the underlying primordial StorageExtent instance for the Disk Drive.

Table 126 - SMI Referenced Properties/Methods for CIM_VolumeView

Properties Flags Requirement Description & Notes

745

746
747
748

749

750

Block Storage Views Profile

240

SEConsumableBlocks Mandatory The ConsumableBlocks for the StorageExtent of the Disk Drive as
reported in the underlying primordial StorageExtent instance for the Disk
Drive.

SEExtentStatus Mandatory The ExtentStatus for the StorageExtent of the Disk Drive as reported in the
underlying primordial StorageExtent instance for the Disk Drive.

SEOperationalStatus Mandatory The OperationalStatus for the StorageExtent of the Disk Drive as reported
in the underlying primordial StorageExtent instance for the Disk Drive.

DDSystemCreationClassN
ame

Mandatory The SystemCreationClassName for the Disk Drive as reported in the
underlying DiskDrive instance.

DDSystemName Mandatory The SystemName for the Disk Drive as reported in the underlying
DiskDrive instance.

DDCreationClassName Mandatory The CreationClassName for the Disk Drive as reported in the underlying
DiskDrive instance.

DDDeviceID Mandatory The DeviceID for the Disk Drive as reported in the underlying DiskDrive
instance.

DDName Mandatory The Name for the Disk Drive as reported in the underlying DiskDrive
instance.

DDOperationalStatus Mandatory The OperationalStatus for the Disk Drive as reported in the underlying
DiskDrive instance.

PPCreationClassName Mandatory The CreationClassName for the PhysicalPackage of the Disk Drive as
reported in the underlying PhysicalPackage instance for the Disk Drive.

PPTag Mandatory The Tag for the PhysicalPackage of the Disk Drive as reported in the
underlying PhysicalPackage instance for the Disk Drive.

PPManufacturer Mandatory The Manufacturer for the PhysicalPackage of the Disk Drive as reported in
the underlying PhysicalPackage instance for the Disk Drive.

PPModel Mandatory The Model for the PhysicalPackage of the Disk Drive as reported in the
underlying PhysicalPackage instance for the Disk Drive.

SIInstanceID Mandatory The InstanceID for the SoftwareIdentity of the Disk Drive as reported in the
underlying SoftwareIdentity instance for the Disk Drive.

SIVersionString Mandatory The VersionString for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

DDLocationIndicator Optional The LocationIndicator for the Disk Drive as reported in the underlying
DiskDrive instance.

DDDiskType Optional The DiskType for the Disk Drive as reported in the underlying DiskDrive
instance.

DDFormFactor Optional The FormFactor for the Disk Drive as reported in the underlying DiskDrive
instance.

DDEncryption Optional The Encryption for the Disk Drive as reported in the underlying DiskDrive
instance.

PPSerialNumber Optional The SerialNumber for the PhysicalPackage of the Disk Drive as reported
in the underlying PhysicalPackage instance for the Disk Drive.

PPPartNumber Optional The PartNumber for the PhysicalPackage of the Disk Drive as reported in
the underlying PhysicalPackage instance for the Disk Drive.

SIManufacturer Optional The Manufacturer for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

Table 127 - SMI Referenced Properties/Methods for SNIA_DiskDriveView

Properties Flags Requirement Description & Notes

751

752

753

 Block Storage Views Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 241

EXPERIMENTAL

SIBuildNumber Optional The BuildNumber for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

SIMajorVersion Optional The MajorVersion for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

SIRevisionNumber Optional The RevisionNumber for the SoftwareIdentity of the Disk Drive as reported
in the underlying SoftwareIdentity instance for the Disk Drive.

SIMinorVersion Optional The MinorVersion for the SoftwareIdentity of the Disk Drive as reported in
the underlying SoftwareIdentity instance for the Disk Drive.

LPPortType Optional This is an array property that contains the PortTypes for the target ports
that may be used to access the disk drive.

Table 127 - SMI Referenced Properties/Methods for SNIA_DiskDriveView

Properties Flags Requirement Description & Notes

Block Storage Views Profile

242

 Block Server Performance Subprofile

SMI-S 1.6.1 Revision 6 SNIA Technical Position 243

STABLE

7 Block Server Performance Subprofile

7.1 Description

7.1.1 Synopsis

Profile Name: Block Server Performance (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39.0

Table 128 describes the related profiles for Block Server Performance.

NOTE Each of these subprofiles is mandatory if the element in question is to be metered. For example, in order to keep statistics
on Disk Drives, it will be necessary for Disk Drives to be modeled.

Central Class: BlockStatisticsService

Scoping Class: ComputerSystem

7.1.2 Overview

The Block Server Performance Subprofile defines classes and methods for managing performance
information in block servers (e.g., Arrays, Storage Virtualizers and Volume Management). Not all of the
objects for which statistics are defined apply to all these profiles. For example, Storage Virtualizers don’t
have Disk Drives and Volume Management Profiles don’t have Ports. In these cases, the profile would not
support the statistics for the object that does not apply to it.

NOTE Performance analysis is broader than just Arrays, Storage Virtualizers and Volume Managers. Complete analysis requires
performance information from hosts and fabric. These are (or will be) addressed separately as part of the appropriate profiles.

Table 128 - Related Profiles for Block Server Performance

Profile Name Organization Version Requirement Description

Multiple Computer System SNIA 1.2.0 Optional

Extent Composition SNIA 1.6.0 Optional

SPI Target Ports SNIA 1.4.0 Optional

FC Target Ports SNIA 1.4.0 Optional

iSCSI Target Ports SNIA 1.6.0 Optional

DA Target Ports SNIA 1.4.0 Optional

SPI Initiator Ports SNIA 1.4.0 Optional

FC Initiator Ports SNIA 1.6.0 Optional

iSCSI Initiator Ports SNIA 1.2.0 Optional

Disk Drive Lite SNIA 1.6.0 Optional

Replication Services SNIA 1.6.1 Optional Experimental.

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19
20

Block Server Performance Subprofile

244

One of the key SRM disciplines for managing block servers (e.g., arrays) is Performance Management.
Currently, there are no common statistics defined that can be used to manage multiple vendor arrays from
a performance perspective. Some of the key tasks commonly performed in the discipline of Performance
Management are:

• Performance Capacity Planning,

• Performance Problem Isolation,

• Peak Window Analysis,

• Block server Workload Analysis,

• Block server Performance Tuning.

In order to manage performance, a number of processes need to be in place:

• Ability to measure the performance and saturation points of components within the storage network. This
subprofile describes the first increment of measurement, that of the storage system. Examples of this include:

• Read and Write I/O counts for a LUN or a disk,

• Number of Read and Write I/Os per second for a LUN or a disk,

• Number of blocks transferred per unit time,

• Cache hit ratios.

Both specific measurements and methods to make these measurements available to SRM applications
will be part of this subprofile.

• Ability to understand the relationship of facilities within the storage network and their relationship to the actual
application: This is provided by mapping functions which are described in this specification. Mapping
functions are listed within the specification today. As new objects (like cache which is currently not defined)
and new relationships between objects are defined, these parts of this specification will have to be upgraded.

• Ability to understand the status and configuration of the storage network components: There is some level of
this information within the SMI specification today, and there are expected future improvements to this area
that will be in future releases. Examples of this include:

• Cache status on or off for read or write cache,

• How much Cache is installed,

• Storage Volume (LUN) status, normal or degraded,

• Cache configuration parameters,

• LUN status,

• Error counts on a port.

Methods to be able to tune the configuration of a storage network component. This would include setting
RAID levels, setting stripe widths, setting cache tunable parameters, etc. This is an area for future
development. Given that there is a wide diversity of storage architectures, this may be an area where SMI
provides a framework and vendors supply the custom extensions required for their systems.

Performance Management is optimized when all four components are in place. Performance
Measurement is the key deliverable that is the focus of this subprofile.

Block storage devices usually have one or more of the following elements:

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 245

• Block Server (top level ComputerSystem),

• I/O Ports (e.g., FCPorts),

• Front-end Ports,

• Back-end Ports,

NOTE Port Statistics in block servers need to be coordinated with Port statistics in the Fabric Profile by applications. A mapping
between fabric statistics and block server statistics is identified in 7.7.7.

• Individual Controllers (ComponentCS),

• Front-end controller(s) (ComponentCS),

• Back-end controller(s) (ComponentCS),

• Exported Elements (e.g., Volumes or Logical Disks),

• Imported Elements (e.g., Extents with ConcreteComponent association to Pools),

• Disk Drives.

In order to monitor and manage these components, it is necessary to identify performance counters for
each of the above elements in the block server and externalize an interface to obtain these counters at
some SRM-determined periodicity. An SRM product will also need to be able to associate these counters
to the appropriate block server elements as defined in the appropriate SMI-S profiles in order to complete
the full picture of the performance analysis (e.g., what disks are part of this LUN and what other LUNs
have portions on this disk).

The function of this subprofile is to support the aforementioned SRM applications.

The Block Server Performance Subprofile augments the profiles and subprofiles for Arrays, Storage
Virtualizers and Volume Management Profiles. Instead of being an isolated subprofile, it adds modeling
constructs to existing profiles and subprofiles. Together these enhancements make up the Block Server
Performance Subprofile (as would be registered in the Server Profile as a RegisteredSubprofile).

EXPERIMENTAL

7.1.3 Performance Data Rate

Depending on the capabilities of the implementation, clients can directly retrieve the rate performance
data, for example, for a given start and end time, the number of Read and Write I/Os per second.

See the BlockStatisticsCapabilities.RateElementTypesSupported property.

EXPERIMENTAL

7.2 Implementation

7.2.1 Performance Additions Overview

Figure 35: "Block Server Performance Subprofile Summary Instance Diagram" provides an overview of
the model (independent of profiles and subprofiles). The new classes added by the Block Server
Performance Subprofile are the shaded grey boxes.

59

60

61

62

63
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Block Server Performance Subprofile

246

Figure 35 - Block Server Performance Subprofile Summary Instance Diagram

Server Profile

ComputerSystem

FCPort

StorageVolume

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=6

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
WriteIOs

ElementStatisticalData

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

MemberOfCollection

MemberOfCollection

HostedCollection

ComputerSystem ComputerSystem

ComponentCS

StorageExtent:
RAID Rank

StoragePool

AllocatedFromStoragePool

ConcreteComponent
BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

BlockStorageStatisticalData

ElementType=5

BlockStorageStatisticalData

ElementType=3

ElementStatisticalData

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

StorageExtent

ElementStatisticalData

DiskDrive

MediaPresent

BasedOn

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService
BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredProfile

RegisteredName=
 ‘Block Server Performance’

RegisteredSubprofile
SubprofileRequiresProfile

ElementConformsToProfile

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 247

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

What Figure 35 shows is a single instance of StatisticsCollection for the entire profile. This is the anchor
point from which all statistics being kept by the profile can be found. Block statistics are defined as a
BlockStorageStatisticalData class, instances of which hold the statistics for particular elements (e.g.,
StorageVolumes, ComputerSystems, Ports, Extents and Disk Drives). The type of element is recorded in
the instance of BlockStorageStatisticalData in the ElementType property.

All the statistics instances are related to the elements they meter via the ElementStatisticalData
association (e.g., BlockStorageStatisticalData for a StorageVolume can be found from the Volume by
traversing the ElementStatisticalData association).

All the statistics instances kept in the profile are associated to the one StatisticsCollection instance.
Access to all the statistics for the profile is through the StatisticsCollection. The StatisticsCollection has a
HostedCollection association to the “top level” computer system of the profile.

Note that statistics may be kept for a number of elements in the profile, including elements in subprofiles.
The elements that are metered are:

The top level ComputerSystem – This provides a summary of all statistics for the whole profile (e.g.,
ReadIOs are all read IOs handled by the array, storage virtualizer or volume manager).

Component ComputerSystems – This provides a summary of all statistics that derive from a particular
processor in the system cluster (e.g., all ReadIOs or ReadIOs per second handled by a particular
processor). These statistics are kept in BlockStorageStatisticalData instances (one for each component
computer system).

Port – This provides a summary of all the statistics that derive from a particular Port on the Array or
Storage Virtualizer (e.g., all ReadIOs or ReadIOs per second that go through the particular port). These
statistics are kept in BlockStorageStatisticalData instances (one for each Port in the system).

NOTE This element does not apply to the Volume Management Profile. Volume managers do not have front-end ports. The back-
end ports for volume managers are HBAs. Statistics for volume manager back end ports would be kept by the HBAs.

StorageVolume – (or LogicalDisk). This provides a summary of statistics for a particular StorageVolume
(or LogicalDisk). For example, all the ReadIOs (or ReadIOs per second) to the particular StorageVolume
(or LogicalDisk). These statistics are kept in BlockStorageStatisticalData instances (one for each
StorageVolume or LogicalDisk in the system).

StorageExtent – This provides a summary of statistics that derive from access to a particular
StorageExtent. Note: StorageExtent support is ONLY PROVIDED for extents with a ConcreteComponent
association to a concrete StoragePool. That is, this is not offered for intermediate extents. These
statistics are kept in BlockStorageStatisticalData instances (one for each Extent that is modeled in the
system).

SCSI Arbitrary Logical Units – This provides summary of statistics that derive from access to LUNs that
are not StorageVolumes (e.g., controller commands).

Remote Replica Groups – This provides summary of statistics that derive from access remote replica
volumes.

Finally, Figure 36: "Base Array Profile Block Server Performance Instance Diagram" illustrates the
BlockStatisticsService for Bulk retrieval of all the statistics data and creation of manifest collections.
These methods will be discussed later. They are shown here for completeness. Associated with the
BlockStatisticsService is a BlockStatisticsCapabilities instance that identifies the specific capabilities
implemented by the performance support. Specifically, it includes an “ElementsSupported” property that
identifies the elements for which statistics are kept and the various retrieval mechanisms that are
implemented (e.g., Extrinsic, Association Traversal, Indications and/or Query).

91
92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Block Server Performance Subprofile

248

EXPERIMENTAL

The BlockStatisticsCapabilities also includes a SupportedFeatures property for identifying specific
features of the implementation.

EXPERIMENTAL

7.2.2 Performance Additions to base Array Profile

Figure 36: "Base Array Profile Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if an Array only implemented the base Array Profile and the Block
Server Performance Subprofile. Only the StatisticsCollection, the BlockStorageStatisticalData instance
for the top level computer system, BlockStorageStatisticalData instances for front end ports and
BlockStorageStatisticalData instances for Storage Volumes would be supported.

Only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The actual
elements for which the statistics would be kept would be reported in the “ElementsSupported” property of
the BlockStatisticsCapabilities instance.

EXPERIMENTAL

For performance data rate, the method GetRateStatisticsCollection would be supported. The actual
elements for which the statistics would be kept would be reported in the “RateElementsSupported”
property of the BlockStatisticsCapabilities instance

EXPERIMENTAL

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 249

Figure 36 - Base Array Profile Block Server Performance Instance Diagram

Server Profile

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool

SystemDevice

HostedStoragePool

SystemDevice

ElementStatisticalData

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=6

StatisticTime
TotalIOs

KBytesTransferred

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
WriteIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName=’Array’

RegisteredProfile

RegisteredName=
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

DeviceSAPImplementation

SCSIProtocolEndpoint

SAPAvailableForElement

BlockStatisticsManifest

Block Server Performance Subprofile

250

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

7.2.3 Performance Additions to base Storage Virtualizer Profile

Figure 37: "Base Storage Virtualizer Profile Block Server Performance Instance Diagram" illustrates the
class instances that would be supported if a Storage Virtualizer only implemented the base Storage
Virtualizer Profile and the Block Server Performance Subprofile. Only the StatisticsCollection, the
BlockStorageStatisticalData instance for the top level computer system, BlockStorageStatisticalData
instances for front-end and back-end ports, BlockStorageStatisticalData instances for Storage Volumes
and BlockStorageStatisticalData for StorageExtents would be supported.

Only the GetStatisticsCollection method of the BlockStatisticsService would be supported. The actual
elements for which the statistics would be kept would be reported in the “ElementsSupported” property of
the BlockStatisticsCapabilities instance.

EXPERIMENTAL

For performance data rate, the method GetRateStatisticsCollection would be supported. The actual
elements for which the statistics would be kept would be reported in the “RateElementsSupported”
property of the BlockStatisticsCapabilities instance

EXPERIMENTAL

152
153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 251

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to

Figure 37 - Base Storage Virtualizer Profile Block Server Performance Instance Diagram

Server Profile

Dedicated[*]=’Storage Virtualizer’

ComputerSystem

LogicalPort

SCSIProtocolController

StorageVolume

StoragePool

ProtocolControllerForUnit

AllocatedFromStoragePool

AllocatedFromStoragePool

HostedStoragePool

ElementStatisticalData

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=6

StatisticTime
TotalIOs

KBytesTransferred

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
WriteIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName=’Storage Virtualizer’

RegisteredProfile

RegisteredName=
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

DeviceSAPImplementation

SCSIProtocolEndpoint

SAPAvailableForElement

SystemDevice

LogicalPort

StorageExtent

ConcreteComponent

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=7

StatisticTime
TotalIOs

BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

ElementStatisticalData

SystemDevice

BlockStatisticsManifest

Block Server Performance Subprofile

252

save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

7.2.4 Performance Additions to base Volume Management Profile

Figure 38: "Base Volume Management Profile Block Server Performance Instance Diagram" illustrates
the class instances that would be supported if the volume manager only implemented the base Volume
Management Profile and the Block Server Performance Subprofile. Only the StatisticsCollection, the
BlockStorageStatisticalData instance for the top level computer system, BlockStorageStatisticalData
instances for LogicalDisks (lower extents) and BlockStorageStatisticalData instances for LogicalDisks
(exported Logical Disks) would be supported.

168
169

170

171

172

173

174

175

176

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 253

Figure 38 - Base Volume Management Profile Block Server Performance Instance Diagram

Server Profile

ComputerSystem

LogicalDisk

StoragePool

AllocatedFromStoragePool

AllocatedFromStoragePool

HostedStoragePool

SystemDevice

ElementStatisticalData

ElementStatisticalData

MemberOfCollection

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
WriteIOs

BlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported[]
SynchronousMethodsSupport[]

AsynchronousMethodsSupported[]
ClockTickInterval

SupportedFeatures[]

ElementCapabilities

RegisteredName=’Volume Management'

RegisteredProfile

RegisteredName=
‘Block Server Performance’

RegisteredSubprofileSubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

LogicalDisk

ConcreteComponent

BlockStorageStatisticalData

InstanceID
ElementType=9
StatisticTime

TotalIOs
KBytesTransferred

ElementStatisticalData
BasedOn

BasedOn

SystemDevice

BlockStatisticsManifest

Block Server Performance Subprofile

254

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

7.2.5 Summary of BlockStorageStatisticsData support by Profile

Table 129 defines the Element Types (for BlockStorageStatisticalData instances) that may be supported
by profile.

YES means that this specification defines the element type for the profile. Actual support by any given
implementation would be implementation dependent. But the specification covers defining the element
type for the profile. NO means that this specification does not specify this element type for the profile.

EXPERIMENTAL

Table 130 defines the Rate Element Types (for BlockStorageStatisticalData instances) that may be
supported by profile

Table 129 - Summary of Element Types by Profile

ElementType Array Storage Virtualizer Volume Management

Computer System YES YES YES

Front-end Computer System YES YES YES

Peer Computer System YES YES YES

Back-end Computer System YES YES YES

Front-end Port YES YES NO

Back-end Port YES YES NO

Volume YES YES YES

Extent YES YES YES

Disk Drive YES YES NO

Arbitrary LUs YES YES NO

Remote Replica Group YES YES YES

177
178

179

180

181

182

183

184

185

186

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 255

EXPERIMENTAL

7.2.6 Server Profile Support for the Block Server Performance Subprofile

At the top of Figure 36: "Base Array Profile Block Server Performance Instance Diagram" is a dashed
box that illustrates a part of the Server Profile for the Array. A similar dashed box appears for Storage
Virtualizer and Volume Management Profiles. The part illustrated is the particulars for the Block Server
Performance Subprofile. If performance support has been implemented, then there shall be a
RegisteredSubprofile instance for the Block Server Performance Subprofile.

7.2.7 Default Manifest Collection

Associated with the instance of the StatisticsCollection shall be a provider supplied (Default)
CIM_BlockStatisticsManifestCollection that represents the statistics properties that are kept by the
profile. The default manifest collection is indicated by the IsDefault property (=True) of the
CIM_BlockStatisticsManifestCollection. For each metered object of the profile implementation the default
manifest collection will have exactly one manifest that will identify which properties are included for that
metered object. If a an object is not metered, then there shall not be a manifest for that element type. If
an element type (e.g., StorageVolume) is metered, then there shall be a manifest for that element type.

EXPERIMENTAL

Each default manifest in the default manifest collection identifies the statistics properties included by
default by the implementation. The CSVSequence property of the manifest shall identify the default
sequence in which the implementation will return statistics properties within each record for the
ElementType on a GetStatisticsCollection request. For each property included in the manifest by the
value “true” there should be an entry in the CSVSequence array identifying the
BlockStrorageStatisticalData property by name. The first three values of CSVSequence shall be

Table 130 - Summary of Rate Element Types by Profile

RateElementType Array Storage Virtualizer Volume Management

Computer System Rate YES YES YES

Front-end Computer System Rate YES YES YES

Peer Computer System Rate YES YES YES

Back-end Computer System Rate YES YES YES

Front-end Port Rate YES YES NO

Back-end Port Rate YES YES NO

Volume Rate YES YES YES

Extent Rate YES YES YES

Disk Drive Rate YES YES NO

Arbitrary LUs Rate YES YES NO

Remote Replica Group Rate YES YES YES

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

Block Server Performance Subprofile

256

"InstanceID", "ElementType" and "StatisticsTime" to allow correlation of the Manifest with the CSV record
based on the ElementType.

EXPERIMENTAL

EXPERIMENTAL

For performance data rate, each default manifest in the default manifest collection identifies the rate
statistics properties included by default by the implementation. The CSVRateSequence property of the
manifest shall identify the default sequence in which the implementation will return statistics properties
within each record for the RateElementType on a GetRateStatisticsCollection request. For each property
included in the manifest by the value “true” there should be an entry in the CSVRateSequence array
identifying the BlockStrorageStatisticalData property by name. The first four values of CSVRateSequence
shall be "InstanceID", "RateElementType", "RateIntervalStartTime", and “RateIntervalEndTime” to allow
correlation of the Manifest with the CSV record based on the RateElementType.

EXPERIMENTAL

7.2.8 Performance Additions applied to Multiple Computer Systems

Figure 39: "Multiple Computer System Subprofile Block Server Performance Instance Diagram"
illustrates the class instances that would be supported if an Array, Storage Virtualizer or Volume
Management Profile also implemented the Multiple Computer System Subprofile (and the Block Server
Performance Subprofile). In this case, additional BlockStorageStatisticalData instances would exist for
the component computer systems, as well as the top level computer system.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Front-end
Computer System”, “Back-end Computer System” and/or “Peer Computer System”.

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 257

NOTE Support for both the Multiple Computer System Subprofile and the Block Server Performance Subprofile does not imply
support for statistics at the Component Computer System level. This support is ONLY implied by the “ElementsSupported” property
of the BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

Figure 39 - Multiple Computer System Subprofile Block Server Performance Instance Diagram

ComputerSystem
(Front-end)

ComputerSystem
Top level System

ComputerSystem
(Back-end)

ComponentCSComponentCS

ElementStatisticalData

BlockStorageStatisticalData

InstanceID
ElementType=3

StatisticTime
TotalIOs
ReadIOs
WriteIOs

BlockStorageStatisticalData

InstanceID
ElementType=5

StatisticTime
TotalIOs

MemberOfCollection

ElementStatisticalData

ElementStatisticalData

HostedCollection

BlockStorageStatisticalData

InstanceID
ElementType=2

StatisticTime
TotalIOs

KBytesTransferred

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

226
227
228

229
230

Block Server Performance Subprofile

258

7.2.9 Performance Additions to Backend Ports

Figure 40: "Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram"
illustrates the class instances that would be supported if an Array also implemented the Fibre Channel
Initiator Port Subprofile (and the Block Server Performance Subprofile). In this case, additional
BlockStorageStatisticalData instances would exist for the back-end ports, as well as the front-end ports.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Back-end
Ports”.

NOTE Support for both the Fibre Channel Initiator Port Subprofile and the Block Server Performance Subprofile DOES not imply
support for statistics at the Back-end Port level. This support is ONLY implied by the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

EXPERIMENTAL

In some systems a port may be either a front-end or backend port. In this standard such ports would have
a property that indicates that they serve both roles (UsageRestriction=’4’). When a port has a
UsageRestriction=’4’, then that port may have two BlockStorageStatisticalData records; one for the front-
end port role and one for the backend port role. However, it will only have one record if only one of the

Figure 40 - Fibre Channel Initiator Port Subprofile Block Server Performance Instance Diagram

StorageExtent

ComputerSystem

FCPort

UsageRestriction =
‘Back-end only’

StorageExtent

SCSIProtocolEndpointFCPort

UsageRestriction =
‘Back-end only’

DeviceSAPImplementation

SCSIInitiatorTargetLogicalUnitPath

StorageExtent

SCSIInitiatorTargetLogicalUnitPath
SCSIInitiatorTargetLogicalUnitPath

SystemDevice

ElementStatisticalData

BlockStorageStatisticalData

ElementType=7

MemberOfCollection

ElementStatisticalData

BlockStorageStatisticalData

ElementStatisticalData

HostedCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=7

StatisticTime
TotalIOs

SCSIProtocolEndpoint

DeviceSAPImplementation

231

232

233

234

235

236

237

238
239
240

241
242

243

244

245

246

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 259

port ElementTypes (6 or 7) is supported by the implementation. That is, if
BlockStatisticsCapabilities.ElementTypes contains 6, but not 7, then the BlockStorageStatisticalData shall
contain statistics for the front-end port role. If BlockStatisticsCapabilities.ElementTypes contains both 6
and 7, then there shall be two BlockStorageStatisticalData instances (one for the front-end port role and
one for the backend port role).

EXPERIMENTAL

7.2.10 Performance Additions to Extent Composition

Figure 41: "Extent Composition Subprofile Block Server Performance Instance Diagram" illustrates the
class instances that would be supported if an Array also implemented the Extent Composition Subprofile
(and the Block Server Performance Subprofile). In this case, BlockStorageStatisticalData instances would
exist for the Extents that are modeled.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Extents”.

NOTE The Storage Virtualizer and Volume Management Profiles would use the “Extents” statistics for Storage Volumes (or
LogicalDisks) that are imported instead of Disk extent statistics (since they do not have disk drives). Also note that an Array may
model both “Extents” and “Disks” extents.

247

248

249

250

251

252

253

254

255

256

257

258
259
260

Block Server Performance Subprofile

260

NOTE Support for both the Extent Composition Subprofile and the Block Server Performance Subprofile DOES not imply support
for statistics at the Extent level. This support is ONLY implied by the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

NOTE The low level extents represent Disk Drive Extents and they would not be part of the Storage Virtualizer or Volume
Management Profiles.

7.2.11 Performance Additions to Disk Drives

Figure 42: "Disk Drive Lite Subprofile Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if an Array also implemented the Disk Drive Lite (or Disk Drive)
Subprofile (and the Block Server Performance Subprofile). In this case, BlockStorageStatisticalData
instances would exist for each of the Disk Drives in the Array.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Disks”.

NOTE The Volume Management Profiles would NEVER show the “Disks” statistics. Also note that an Array or Storage Virtualizer
may model both “Extents” and “Disks”. Note: Support for both the Disk Drive Lite Subprofile and the Block Server Performance

Figure 41 - Extent Composition Subprofile Block Server Performance Instance Diagram

StorageVolume

CompositeStorageExtent

BasedOn

StoragePool

AllocatedFromStoragePool

ConcreteComponent

ElementStatisticalData

BlockStorageStatisticalData

ElementType=8

MemberOfCollectionElementStatisticalData

StatisticsCollection

InstanceID
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=9

StatisticTime
TotalIOs

KBytesTransferred

StorageExtent StorageExtent StorageExtent

CompositeExtentBasedOn

261
262
263

264
265

266
267

268

269

270

271

272

273

274
275

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 261

Subprofile DOES not imply support for statistics at the Disk Drive level. This support is ONLY implied by the
“ElementsSupported” property of the BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

Figure 43 shows performance data rates for Disk Drive.

Figure 42 - Disk Drive Lite Subprofile Block Server Performance Instance Diagram

StorageVolume or
StorageExtent

StorageExtent DiskDrive

PhysicalPackage

MediaPresent*

Realizes

*

Basedon

SoftwareIdentitty
DeviceSoftwareIdentity

StoragePool

ConcreteComponent

PhysicalPackage
(System)

Container

ElementStatisticalData

MemberOfCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=10

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs

276
277

278
279

280

Block Server Performance Subprofile

262

Figure 43 - Disk Drive Performance Data Rates

StorageVolume or
StorageExtent

StorageExtent DiskDrive

PhysicalPackage

MediaPresent*

Realizes

*

Basedon

SoftwareIdentitty
DeviceSoftwareIdentity

StoragePool

ConcreteComponent

PhysicalPackage
(System)

Container

ElementStatisticalData

MemberOfCollection

StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=21

RateIntervalStartTime
RateIntervalEndTime

TotalIOsRate
KBytesTransferredRate

ReadIOsRate

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 263

7.2.12 Performance Additions to SCSIArbitraryLogicalUnits (Controller LUNs)

Figure 44: "SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram" illustrates the class
instances that would be supported if an Array (or Storage Virtualizer) has Controller LUNs (e.g.,
SCSIArbitraryLogicalUnits). In this case, BlockStorageStatisticalData instances would exist for each of
the Controller LUNs (LogicalDevices or SCSIArbitraryLogicalUnits) supported by the Array (or Storage
Virtualizer).

NOTE There is no ElementStatisticalData association to any element. This is because the Controller LUNs are not actually part of
the Array or Storage Virtualizer Profiles. But the statistics may still be collected in and kept in BlockStorageStatisticalData instances
with ElementType=11.

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Arbitrary
LUs”.

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

Figure 44 - SCSIArbitraryLogicalUnit Block Server Performance Instance Diagram

ComputerSystem

MemberOfCollection

HostedCollection StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=11

StatisticTime
TotalIOs

KBytesTransferred

281

282

283

284

285

286

287
288
289

290

291

292
293

Block Server Performance Subprofile

264

EXPERIMENTAL

7.2.13 Performance Additions for Remote Mirrors

Figure 45: "Remote Mirrors Block Server Performance Instance Diagram" illustrates the class instances
that would be supported if an Array also implemented the Remote Mirroring of the Replication Services
Profile (and the Block Server Performance Subprofile). In this case, BlockStorageStatisticalData
instances would exist for non-volume (e.g., meta data) IO requests. In this case, the
BlockStorageStatisticalData instance is associated with the ConnectivityCollection instance that
represents the connection to the remote system. Note: Statistics attributed to the ConnectivityCollection
are control IOs between the mirroring arrays. Statistics that actually move data to the remote mirror are
attributed to the targeted StorageVolume (or logical disk).

The “ElementsSupported” property of the BlockStatisticsCapabilities instance would include “Remote
Replica Group”.

NOTE Support for both the Replication Services Profile and the Block Server Performance Profile DOES not imply support for
statistics at the Remote Replica Group level. This support is ONLY implied by the “ElementsSupported” property of the
BlockStatisticsCapabilities instance.

NOTE The properties listed for the statistics classes are the mandatory properties. Optional Properties are not listed in order to
save space in the diagram. Optional properties can be found in 7.8 "CIM Elements".

EXPERIMENTAL

7.2.14 Client Defined Manifest Collections

Manifest collections are either provider supplied (CIM_BlockStatisticsManifestCollection.IsDefault=True)
for the profile implementation or client defined collections
(CIM_BlockStatisticsManifestCollection.IsDefault=False) that indicate what statistics properties the client

Figure 45 - Remote Mirrors Block Server Performance Instance Diagram

ComputerSystem

(See referencing profile)

ConnectivityCollection

ConnectivityStatus: Up,
Down, Unknown

(See Replication Services)

ProtocolEndpoint

ProtocolIFType: TCP, HTTP,
Fibre Channel, Other

(See Replication Services)

ElementStatisticalData

HostedCollection
StatisticsCollection

InstanceID
ElementName
SampleInterval

TimeLastSampled

BlockStorageStatisticalData

InstanceID
ElementType=12

StatisticTime
TotalIOs

KBytesTransferred

HostedCollection

MemberOfCollection

HostedAccessPoint

HostedCollection

MemberOfCollection

294

295

296

297

298

299

300

301

302

303

304

305
306
307

308
309

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 265

would like to retrieve using the GetStatisticsCollection or GetRateStatisticsCollection method. For a
discussion of provider supplied manifest collections, see 7.2.7.

Client defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client defined manifest collection is identified by the IsDefault property
of the collection is set to False. For each block statistics class (e.g., Computer System, Volume, Disk,
etc.) a manifest can be defined which identifies which properties of the particular statistics class are to be
returned on a GetStatisticsCollection request. Each of the classes of block statistic may have 0 or 1
manifest in any given manifest collection.

EXPERIMENTAL

In addition to identifying which properties the client wants returned, the client may define the sequence in
which the properties are to be returned with the CSVSequence (or CSVRateSequence) property of the
manifest. Support for this function is conditional on BlockStatisticsCapabilities.SupportedFeatures
including the value ‘3’ (Client Defined Sequence). If the client does not set this property or sets it
improperly, the implementation shall set the value of CSVSequence (or CSVRateSequence) to NULL. If
the SupportedFeatures does not include the value ‘3’ the implementation will set the CSVSequence (and
CSVRateSequence) to NULL (implying the default sequence will be used).

EXPERIMENTAL

This is illustrated in Figure 46: "Block Server Performance Manifest Collections".

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Block Server Performance Subprofile

266

In this figure, manifest classes are defined for Volumes (StorageVolumes or LogicalDisks) and Disk
Drives. Each property of the manifest is a Boolean that indicates whether the property is to be returned
(true) or omitted (false).

Figure 46 - Block Server Performance Manifest Collections

BlockStorageStatisticalData

InstanceID
StatisticTime

TotalIOs
KBytesTransferred

IOTime
MaintOp
ReadIOs

StorageVolume

ElementStatisticalData

BlockStatisticsManifestCollection

InstanceID
ElementName

IsDefault=False

BlockStatisticsManifest

ElementType=8
StatisticTimeInclude

TotalIOsInclude
KBytesTransferredInclude

ReadIOsInclude
WriteIOsInclude
CSVSequence[]

StatisticsCollection

InstanceID
ElementName

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

BlockStorageStatisticalData

InstanceID
ElementType=8

StatisticTime
TotalIOs

KBytesTransferred
ReadIOs
WriteIOs

StorageExtent

ElementStatisticalData

BasedOn

BlockStatisticsManifest

ElementType=10
StatisticTimeInclude

TotalIOsInclude
KBytesTransferredInclude

ReadIOsInclude
CSVSequence[]

ComputerSystem

HostedCollectionBlockStatisticsService

Name
CreationClassName

SystemName
SystemCreationClassName

GetStatisticsCollection()
CreateManifestCollection()

AddOrModifyManifest()
RemoveManifest()

HostedService

BlockStatisticsCapabilities

InstanceID
ElementName

ElementsSupported []
SynchronousMethodsSupport []

AsynchronousMethodsSupported []
ClockTickInterval

SupportedFeatures []

ElementCapabilities

BlockStatisticsManifestCollection

InstanceID
ElementName
IsDefault=True

MemberOfCollection
AssociatedBlockStatisticsManifestCollection

MemberOfCollection

Server Profile
RegisteredProfile

RegisteredName=
 ‘Block Server Performance’

RegisteredSubprofile
SubprofileRequiresProfile

ElementConformsToProfile

BlockStatisticsManifest
MemberOfCollection

MemberOfCollection

330

331

332

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 267

Multiple client defined manifest collections can be defined in the profile. So different clients or different
client applications can define different manifests for different application needs. A manifest collection can
completely omit a whole class of statistics (e.g., no ComputerSystem statistics are shown in Figure 46:
"Block Server Performance Manifest Collections"). Since manifest collections are “client objects”, they
are named (ElementName) by the client for the client’s convenience. The CIM server will generate an
instance ID to uniquely identify the manifest collection in the CIM Server.

Client defined manifest collections are created using the CreateManifestCollection method. Manifests are
added or modified using the AddOrModifyManifest method. A manifest may be removed from the manifest
collection using the RemoveManifest method.

NOTE Use of manifest collections is optional with the GetStatisticsCollection or GetRateStatisticsCollection method. If NULL for
the manifest collection is passed on input, then all statistics instances are assumed.

7.2.15 Capabilities Support for Block Server Performance Subprofile

There are two dimensions to determining what is supported with a Block Server Performance Subprofile
implementation. First, there are the RegisteredSubprofiles supported by the Block server (Array, Storage
Virtualizer or Volume Management Profile). In order to support statistics for a particular class of metered
element, the corresponding object shall be modeled. So, if an Array has not implemented the Disk Drive
Lite (or Disk Drive) Subprofile, then it shall not implement the BlockStorageStatisticalData for Disk Drives
in the Block Server Performance Subprofile (and implementation of the Disk Drive Lite or Disk Drive
Subprofile does not guarantee implementation of the BlockStorageStatisticalData for disk drives).

Both of these dimensions are captured in the BlockStatisticsCapabilities class instance. This is populated
by the provider (not created or modified by Clients). The second dimension is techniques supported for
retrieving statistics and manipulating manifest collections.

7.2.15.1 ElementsSupported

The values of interest are “Computer System”, “Front-end Computer System”, “Peer Computer System”,
“Back-end Computer System”, “Front-end Port”, “Back-end Port”, “Volume”, “Extent”, “Disk Drive”,
“Arbitrary LUs”, “Remote Replica Group”

7.2.15.2 SynchronousMethodsSupported

The values of interest are ”Exec Query”, “Query Collection”, “GetStatisticsCollection”, “Manifest
Creation”, “Manifest Modification”, “Manifest Removal”, and "GetRateStatisticsCollection"

7.2.15.3 AsynchronousMethodsSupported

For the current version of the standard this should be NULL.

EXPERIMENTAL

7.2.15.4 SupportedFeatures

The values of interest are “none” and “Client Defined Sequence”.

EXPERIMENTAL

7.2.15.5 ClockTickInterval

An internal clocking interval for all timer counters kept in the subsystem, measured in microseconds (Unit
of measure in the timers, measured in microseconds). Time counters are monotonically increasing
counters that contain 'ticks'. Each tick represents one ClockTickInterval.

333

334

335

336

337

338

339

340

341

342
343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

Block Server Performance Subprofile

268

To be a valid implementation of the Block Server Performance Subprofile, at least one of the values listed
for ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can
be identified.

For the methods supported properties any or all of these values can be missing (e.g., the arrays can be
NULL). If all the methods supported are NULL, this means that manifest collections are not supported and
neither GetStatisticsCollection/GetRateStatisticsCollection nor Query are supported for retrieval of
statistics. This leaves enumerations or association traversals as the only methods for retrieving the
statistics.

7.3 Health and Fault Management Considerations

Not defined in this standard.

7.4 Cascading Considerations

Not applicable.

7.5 Supported Subprofiles and Packages

See section 7.1.1 for the list of supported profiles and packages.

7.6 Methods of the Profile

7.6.1 Extrinsic Methods of the Profile

7.6.1.1 Overview

The methods supported by this subprofile are summarized in Table 131, and detailed in the sections that
follow it.

7.6.1.2 GetStatisticsCollection

This method retrieves statistics in a well-defined bulk format. The set of statistics returned by this list is
determined by the list of element types passed in to the method and the manifests for those types
contained in the supplied manifest collection. The statistics are returned through a well-defined array of
strings that can be parsed to retrieve the desired statistics as well as limited information about the
elements that those metrics describe.

GetStatisticsCollection(

Table 131 - Creation, Deletion and Modification Methods in Block Server Performance Subprofile

Method Created Instances Deleted Instances Modified Instances

GetStatisticsCollection None None None

GetRateStatisticsCollection None None None

CreateManifestCollection BlockStatisticsManifestColle
ction

AssociatedBlockStatisticsM
anifestCollection

None None

AddOrModifyManifest BlockStatisticsManifest
(subclass)

MemberOfCollection

None BlockStatisticsManifest
(subclass)

RemoveManifest None BlockStatisticsManifest
(subclass)

MemberOfCollection

None

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 269

 [IN (false), OUT, Description(Reference to the job (shall be null in the current version of
SMI-S).)]

 CIM_ConcreteJob REF Job,

 [IN, Description(Element types for which statistics should be returned.)

ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "..", "32768..65535" },

 Values { "Unknown", "Reserved", “Computer System”, “Front-end Computer System”,

"Peer Computer System”, « Back-end Computer System” “Front-end Port”, “Back-end Port”,

“Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs” , “Remote Replica Group”,

"DMTF Reserved", "Vendor Specific" }]

 uint16 ElementTypes[],

 [IN, Description(The manifest collection that contains the manifests that list the metrics
that

should be returned for each element type.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description("Specifies the format of the Statistics output parameter.")

ValueMap { "2" },

 Values ("CSV")]

 Uint16 StatisticsFormat,

 [OUT, Description(The statistics for all the elements as determined by the Elements and

 ManifestCollection parameters.)]

 string Statistics[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Method Parameters Checked - Job Started", "Element Not Supported", “Statistics
Format Not Supported”, "Method Reserved", "Vendor Specific"}

NOTE In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This method should
always return NULL for the Job parameter.

If the ElementTypes[] array is empty, then no data is returned. If the ElementTypes[] array is NULL, then
all data specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is NULL,
then the default manifest collection is used (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

NOTE The ElementTypes[] and ManifestCollection parameters may identify different sets of element types. The effect of this will
be for the implementation to return statistics for the element types that are in both lists (that is, the intersection of the two lists).
This intersection could be empty. In this case, no data will be returned.

For the current version of SMI-S, the only recognized value for StatisticsFormat is “CSV”. The method
may support other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421
422

423

424

425

426

427

428
429
430

431

432

Block Server Performance Subprofile

270

Given a client has an inventory of the metered objects with Statistics InstanceIDs that may be used to
correlate with the BlockStorageStatisticalData instances, a simple CSV format is sufficient and the most
efficient human-readable format for transferring bulk statistics. More specifically, the following rules
constrain that format and define the content of the String[] Statistics output parameter to the
GetStatisticsCollection() method:

• The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings will not exceed 64K bytes. A single statistics record will not span Array
entries.

• There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:

• a line-feed character

• the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

• Each statistics record shall contain the InstanceID of the BlockStorageStatisticalData instance, the value map
(number) of the ElementType of the metered object and one value for each property that the relevant
BlockStatisticsManifest specifies as “true”.

• Each value in a record shall be separated from the next value by a Semi-colon (“;”). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record. A client reading a record it has received would ignore white-space
between values.

• The InstanceID value is an opaque string that shall correspond to the InstanceID property from
BlockStorageStatisticalData instance.

• For the convenience of client software, that need to be able to correlate InstanceIDs between different
GetStatisticsCollection method invocations, the InstanceID for BlockStorageStatisticalData instance shall be
unique across all instances of the BlockStorageStatisticalData class. It is not sufficient that InstanceID is
unique across subclasses of BlockStorageStatisticalData.

• The ElementType value shall be a decimal string representation of the Element Type number (e.g., “8” for
StorageVolume). The StatisticTime shall be a string representation of DateTime. All other values shall be
decimal string representations of their statistical values.

• NULL values shall be included in records for which a statistic is returned (specified by the manifest or by a
lack of manifest for a particular element type) but there is no meaningful value available for the statistic. A
NULL statistic is represented by placing a semi-colon (“;”) in the record without a value in the position the
value would have otherwise been included. A record in which the last statistic has a NULL value shall end in
a semi-colon (“;”).

DEPRECATED

• The first three values in a record shall be the InstanceID, ElementType and StatisticTime values from the
BlockStorageStatisticalData instance. The remaining values shall be returned in the order in which they are
defined by the MOF for the BlockStatisticsManifest class or subclass the record describes.

DEPRECATED

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 271

EXPERIMENTAL

• Use of the MOF for defining the sequence of statistics in a record has proven to be an unreliable means of
defining the sequence of statistics in each record. If the CSVSequence is non-NULL, then the sequence of
statistics will be defined by the sequence of entries in the CSVSequence array. The first three values in the
CSVSequence shall be "InstanceID", "ElementType" and "StatisticTime". All other elements of the
CSVSequence array may be in the order defined by the creator of the Manifest. If the CSVSequence is NULL
in the Default (provider) Manifest, then the rule in the previous bullet still applies.

EXPERIMENTAL

As an additional convention, a provider should return all the records for a particular element type in
consecutive String elements, and the order of the element types should be the same as the order in which
the element types were specified in the input parameter to GetStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 Volumes and 5 disks,
assuming that 6 statistics were specified in the BlockStatisticsManifest instance for both disks and
volumes. The sixth statistic is unavailable for volumes, and the fourth statistic is unavailable for disks:

<METHODRESPONSE NAME="GetStatisticsCollection">

<RETURNVALUE PARAMTYPE="uint32">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="Statistics" PARAMTYPE="string">

<VALUE.ARRAY>

<VALUE>

STORAGEVOLUMESTATS1;7;20040811133015.0000010-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS2;7;20040811133015.0000020-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS3;7;20040811133015.0000030-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS4;7;20040811133015.0000040-300;11111;22222;33333;44444;55555;

STORAGEVOLUMESTATS5;7;20040811133015.0000050-300;11111;22222;33333;44444;55555;

</VALUE>

<VALUE>

DISKSTATS1;9;20040811133015.0000100-300;11111;22222;33333;;55555;66666

DISKSTATS2;9;20040811133015.0000110-300;11111;22222;33333;;55555;66666

DISKSTATS3;9;20040811133015.0000120-300;11111;22222;33333;;55555;66666

DISKSTATS4;9;20040811133015.0000130-300;11111;22222;33333;;55555;66666

DISKSTATS5;9;20040811133015.0000140-300;11111;22222;33333;;55555;66666

</VALUE>

</VALUE.ARRAY>

</PARAMVALUE>

</METHODRESPONSE>

7.6.1.3 CreateManifestCollection

Creates a new manifest collection whose members serve as a filter for metrics retrieved through the
GetStatisticsCollection method.

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

Block Server Performance Subprofile

272

CreateManifestCollection(

 [IN, Description(The collection of statistics that will be filtered using the new

manifest collection.)]

 CIM_StatisticsCollection REF Statistics,

 [IN, Description(Client-defined name for the new manifest collection)]

 string ElementName,

 [OUT, Description(Reference to the new manifest collection.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection);

Error returns are:

{ "Ok", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method Reserved",
"Vendor Specific" }

7.6.1.4 AddOrModifyManifest

This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A
client supplies a manifest collection in which the new manifest collection will be placed or an existing
manifest will be modified, the element type of the statistics that the manifest will filter, and a list of
statistics that should be returned for that element type using the GetStatisticsCollection method.

AddOrModifyManifest(

 [IN, Description(Manifest collection that the manifest is or should be a member of.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description(The element type whose statistics the manifest will filter.)

ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "..", "32768..65535" },

 Values { "Unknown", "Reserved", “Computer System”, “Front-end Computer System”,

"Peer Computer System”, « Back-end Computer System” “Front-end Port”, “Back-end Port”,

“Volume”, “Extent”, “Disk Drive”, “Arbitrary LUs” , “Remote Replica Group”,

"DMTF Reserved", "Vendor Specific" }]

 uint16 ElementType,

 [IN, Description(The client-defined string that identifies the manifest created or modified
by this method.)]

 string ElementName,

 [IN, Description(The statistics that will be supplied through the GetStatisticsCollection
method.)]

 string StatisticsList[],

 [OUT, Description(The Manifest that is created or modified on successful execution of
the method.)]

 CIM_BlockStatisticsManifest REF Manifest);

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 273

Error returns are:

{ “Success”, "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method Reserved",
"Element Not Supported", "Metric not supported", "ElementType Parameter Missing", "Method
Reserved", "Vendor Specific" }

If the StatisticsList[] array is empty, then only InstanceID and ElementType will be returned when the
manifest is referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is
assumed

NOTE This would be the BlockStatisticsManifest from the default manifest collection.

EXPERIMENTAL

The sequence of properties identified in StatisticsList[] shall be used to fill in the CSVSequence array in
the manifest if BlockStatisticsCapabilities.SupportedFeatures includes the value ‘3’ (Client Defined
Sequence). Otherwise the CSVSequence array will be set to NULL.

EXPERIMENTAL

7.6.1.5 RemoveManifest

This is an extrinsic method that removes manifests from a manifest collection.

RemoveManifest(

 [IN, Description(Manifest collection from which the manifests will be removed.)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description(List of manifests to be removed from the manifest collection.)]

 CIM_BlockStatisticsManifest REF Manifests[]);

Error returns are:

{ “Success”, "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method
Reserved", "Manifest not found", "Method Reserved", "Vendor Specific" }

7.6.2 Intrinsic Methods of the Profile

NOTE Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection, BlockStorageStatisticalData,
MemberOfCollection or ElementStatisticalData.

7.6.2.1 DeleteInstance (of a CIM_BlockStatisticsManifestCollection)

This will delete the CIM_BlockStatisticsManifestCollection where IsDefault=False, the
CIM_AssociatedBlockStatisticsManifestCollection association to the StatisticsCollection and all manifests
collected by the manifest collection (and the MemberOfCollection associations to the
CIM_BlockStatisticsManifestCollection).

7.6.2.2 Association Traversal

One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the
individual Statistics following the MemberOfCollection association. This shall be supported by all
implementations of the Block Server Performance Subprofile and would be available to clients if the
provider does not support EXEC QUERY or GetStatisticsCollection approaches.

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566
567

568

569

570

571

572

573

574

575

576

577

Block Server Performance Subprofile

274

EXPERIMENTAL

7.6.2.3 CreateInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly
IndicationFilters)

CreateInstance would be required to establish subscriptions and ListenerDestinations for retrieval of
statistics via indications. Depending on the support in the profile, it may also be required to create the
IndicationFilter.

7.6.2.4 DeleteInstance (of a ListenerDestinationCIMXML, IndicationSubscription and possibly
IndicationFilters)

DeleteInstance would be required to delete subscriptions and ListenerDestinations that were defined for
retrieval of statistics via indications. Depending on the support in the profile, it may also be required to
delete the IndicationFilter.

7.6.2.5 ModifyInstance (of an IndicationFilter)

ModifyInstance may also be supported for modifying IndicationFilters, assuming the profile supports
client defined filters. It would not be supported for “pre-defined” filters.

7.6.2.6 EXEC QUERY

This is one of the ways of retrieving statistics.

7.6.2.7 GetInstance on QueryStatisticalCollection

This is yet another means of retrieving statistics. In this technique an instance of the
QueryStatisticalCollection class is created that defines a Query for statistics and the format in which the
query results are to be represented. The key properties of the QueryStatisticalCollection class are:

• Query - This is a query string that defines the statistics to be populated in the QueryStatisticalCollection
instance.

• QueryLanguage - This defines the query language that is used in the query. For the current version of SMI-S,
only CQL should be encoded.

• SelectedEncoding - This defines the encoding of the data that is to be populated in the
QueryStatisticalCollection instance. For the current version of SMI-S, this should be CSV (for Comma
Separated Values).

• SelectedNames - This is the list of statistics property names to be retrieved. These correspond to the Select
List of the Query. The encoding of these names is as defined by the SelectedEncoding (for the current
version of SMI-S, this would be CSV).

• SelectedTypes - This is the list of data types for the columns of the query result. Each data type specified
corresponds to a column in the SelectedValues property.

• SelectedValues - This is a table of values that correspond to the query results (for the query specified in the
Query property). The data types of the column of values are defined by SelectedTypes. The name of each
column in the table is defined by SelectedNames. The values are encoded as defined by SelectedEncoding
(i.e., CSV for the current version of SMI-S).

An example CQL query would be:

SELECT Stats.*

FROM CIM_BlockStorageStatisticalData Stats, CIM_QueryStatisticsCollection
QSC,

 CIM_MemberOfCollection MoC

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615
616

617

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 275

 WHERE ObjectPath(QSC) = ObjectPath(SELF)

 AND ObjectPath(QSC) = MoC.Collection

 AND ObjectPath(Stats) = MoC.Member

 AND CurrentDateTime() >=

 Stats.StatisticTime + Stats.SampleInterval

A client would define a QueryStatisticalCollection instance as means of specifying what the client wants.
This would be done with the CreateInstance intrinsic method. The client would delete such an instance
using the DeleteInstance method. If the client wishes to change the query, the client would use the
ModifyInstance intrinsic method.

Retrieving the data would be done via the GetInstance intrinsic. This would retrieve the
QueryStatisticalCollection instance, which includes the table of comma separated values which are the
statistics.

EXPERIMENTAL

EXPERIMENTAL

7.6.3 GetRateStatisticsCollection

This method retrieves rate statistics in a well-defined bulk format. The set of rate statistics returned by
this list is determined by the list of “rate element types” passed in to the method and the manifests for
those types contained in the supplied manifest collection. The rate statistics are returned through a well-
defined array of strings that can be parsed to retrieve the desired rate statistics as well as limited
information about the elements that those metrics describe.

GetRateStatisticsCollection(

 [IN (false), OUT, Description(Reference to the job (shall be null in the current version of SMI-S).)]

 CIM_ConcreteJob REF Job,

 [IN, Description(“Rate element types for which statistics should be returned.”)

ValueMap { "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", “23”, "..", "32768..65535" },

 Values { “Computer System Rate”, “Front-end Computer System Rate”,

"Peer Computer System Rate”, « Back-end Computer System Rate” “Front-end Port Rate”,

“Back-end Port Rate”,

“Volume Rate”, “Extent Rate”, “Disk Drive Rate”, “Arbitrary LUs Rate” , “Remote Replica Group
Rate”,

"DMTF Reserved", "Vendor Specific" }]

 uint16 RateElementTypes[],

 [IN, Description(“The manifest collection that contains the manifests that list the metrics that
 should be returned for each element type.”)]

 CIM_BlockStatisticsManifestCollection REF ManifestCollection,

 [IN, Description("Specifies the format of the Statistics output parameter.")

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

Block Server Performance Subprofile

276

ValueMap { "2" },

 Values ("CSV")]

 Uint16 StatisticsFormat,

 [IN, Description("The start time for the rate data interval. If not supplied, the
 returned data would be for the most recent interval.”)
 datetime RateIntervalStartTime,

 [IN, Description("The end time for the rate data interval. If not supplied, the
 returned data would be for the most recent interval.”)
 datetime RateIntervalEndTime,

 [OUT, Description(“The statistics for all the elements as determined by the Elements and
 ManifestCollection parameters.”)]

 string Statistics[]);

As an additional convention, a provider should return all the records for a particular element type in
consecutive String elements, and the order of the element types should be the same as the order in which
the element types were specified in the input parameter to GetRateStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 Volumes and 5 disks,
assuming that 6 statistics were specified in the BlockStatisticsManifest instance for both disks and
volumes. The sixth statistic is unavailable for volumes, and the fourth statistic is unavailable for disks:

<METHODRESPONSE NAME="GetRateStatisticsCollection">

<RETURNVALUE PARAMTYPE="uint32">

<VALUE>

0

</VALUE>

Table 132 - Interval for rate statistics

RateIntervalStartTime RateIntervalEndTime Results

Null Null RateIntervalStartTime is assigned to the first available
interval the implementation has, and RateIntervalEnd-
Time is assigned to the last available interval the imple-
mentation has, usually the current date time.

Specified Null RateIntervalEndTime is assigned to the current date time.
However if RateIntervalStartTime is greater than RateIn-
tervalEndTime, the output parameter Statistics will contain
an empty string.

Null Specified RateIntervalStartTime is assigned to the first available
interval the implementation has. However if RateInterval-
StartTime is greater than RateIntervalEndTime, the output
parameter Statistics will contain an empty string.

Specified Specified The returned data will be for the specified time period.

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 277

</RETURNVALUE>

<PARAMVALUE NAME="Statistics" PARAMTYPE="string">

<VALUE.ARRAY>

<VALUE>

STORAGEARRAYSTATSRATE1;13;20040811133015.0000010-300;20040811133515.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

STORAGEARRAYSTATSRATE2;13;20040811133515.0000020-300;20040811134015.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

STORAGEARRAYSTATSRATE3;13;20040811134015.0000030-300;20040811134515.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

STORAGEARRAYSTATSRATE4;13;20040811134515.0000040-300;20040811135015.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

STORAGEARRAYSTATSRATE5;13;20040811135015.0000050-300;20040811135515.0000010-
300;11111.1;22222.2;33333.3;44444.4;55555.5;

</VALUE>

<VALUE>

RDFDIRECOTRSTATSRATE1;15;20040811133015.0000100-300;20040811133515.0000200-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

RDFDIRECOTRSTATSRATE2;15;20040811133515.0000110-300;20040811134015.0000100-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

RDFDIRECOTRSTATSRATE3;15;20040811134015.0000120-300;20040811134515.0000100-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

RDFDIRECOTRSTATSRATE4;15;20040811134515.0000130-300;20040811135015.0000100-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

RDFDIRECOTRSTATSRATE5;15;20040811135015.0000140-300;20040811135515.0000100-
300;11111.1;22222.2;33333.3;44444.4;55555.5;66666.6

</VALUE>

</VALUE.ARRAY>

</PARAMVALUE>

</METHODRESPONSE>

For additional information, see the method GetStatisticsCollection in section 7.6.1.2

EXPERIMENTAL

7.7 Client Considerations and Recipes

7.7.1 Bulk Performance Statistics Gathering

// DESCRIPTION

//

// This recipe describes how to determine what elements are metered, what

// retrieval methods are supported and what statistics are kept for each

// metered element in Arrays, Storage Virtualizers or Volume Managers that

// support the Block Server Performance Subprofile and how to retrieve the

// statistical data.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

// 1. The names of the top-level ComputerSystem instances for Array, Storage

// Virtualizer, or Volume Manager implementations supporting the Block Server

// Performance Subprofile have previously been discovered via SLP and are known

676

677

678

679

680
681

682
683

684
685

686
687

688
689

690

691

692
693

694
695

696
697

698
699

700
701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

Block Server Performance Subprofile

278

// as $StorageSystems->[].

//

// Function GetNumStatsIncluded

//

// This function counts of the number of metrics that should be included in a

// statistics record built using the supplied BlockManifest instance.

//

sub GetNumStatsIncluded($BlockManifest) {

 #numIncluded = 0

 if ($BlockManifest.IncludeStatisticTime)

#numIncluded++

 if ($BlockManifest.IncludeTotalIOs)

#numIncluded++

 if ($BlockManifest.IncludeKBytesTransferred)

#numIncluded++

 if ($BlockManifest.IncludeIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeReadIOs)

#numIncluded++

 if ($BlockManifest.IncludeReadHitIOs)

#numIncluded++

 if ($BlockManifest.IncludeReadIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeReadHitIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeKBytesRead)

#numIncluded++

 if ($BlockManifest.IncludeWriteIOs)

#numIncluded++

 if ($BlockManifest.IncludeWriteHitIOs)

#numIncluded++

 if ($BlockManifest.IncludeWriteIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeWriteHitIOTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeKBytesWritten)

#numIncluded++

 if ($BlockManifest.IncludeIdleTimeCounter)

#numIncluded++

 if ($BlockManifest.IncludeMaintOp)

#numIncluded++

 if ($BlockManifest.IncludeMaintTimeCounter)

#numIncluded++

 return #numIncluded

}

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 279

// Function ValidateRecords

//

// This function validates the records of a set of statistics supplied in the

// Bulk Statistics Format defined in the Block Server Performance Subprofile.

// Every statistics record should contain an InstanceID, ElementType and the

// number of statistics indicated by the BlockManifest. This functional

// verifies that a non-empty InstanceID was specified and that the format of

// metrics populated is appropriate for the data type defined each supported

// metric. It also checks if the metrics are null, which could occur if a

// client included a metric in the BlockManifest used by the

// GetStatisticsCollection function that cannot be populated.

sub ValidateRecords(#BulkStatistics[],

$BlockManifests[],

$BSSDs[]) {

 for (#i in #BulkStatistics[]) {

// The function split() below parses the content of an element in

// #BulkStatistics[] into multiple sub-strings based on occurrences

// of carriage return. (i.e. “\n”)

#Records[] = #BulkStatistics[#i].split(“\n”)

for (#j in #Records[]) {

 // The function split() below further parses the content of an

 // element in #Records[] into multiple sub-strings based on

 // occurrences of semi-colon. The resulting elements contain (in

 // order) the InstanceID and ElementType properties followed by the

 // metrics supported.

 #RecordElements[] = #Records[#j].split(“;”)

 // Each element MUST contain at least InstanceID and ElementType.

 if (#RecordElements[].length < 2) {

<ERROR! Statistics Record does not contain InstanceID and/or

ElementType>

 }

 // The InstanceID in the record MUST match the InstanceID of a BSSD.

 $StatsData = null

 for (#k in $BSSDs[]) {

if ($BSSDs[#k]->InstanceID == #RecordElements[0]) {

 $StatsData = $BSSDs[#k]

 break

}

 }

 if ($StatsData == null) {

<ERROR! Statistics instance could not be found for record>

 }

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Block Server Performance Subprofile

280

 // The function Integer() below is used to convert a string

 // representation of an integer to an int value.

 #elementType = Integer(#RecordElements[1])

 if (#elementType != $StatsData.ElementType) {

<ERROR! ElementTypes for statistics record and instance do not

match>

 }

 // Get the BlockManifest that describes this record. If none exists

 // then the record does not contain a valid ElementType.

 $BlockManifest = &GetBlockManifestByType($BlockManifests[],

 #elementType)

 if ($BlockManifest == null) {

<ERROR! ElementType in Statistics Record not recognized>

 }

 // There MUST be two elements in the record (i.e. InstanceID and

 // ElementType) in addition to one element for each supported

 // metric.

 if (#RecordElements.length !=

 &GetNumStatsIncluded($BlockManifest) + 2) {

<ERROR! Statistics record does not contain the expected number

of metrics>

 }

 // All default manifests MUST contain StatisticTime

 if (!$BlockManifest.IncludeStatisticTime) {

<ERROR! Default manifest does not specify required property

value IncludeStatisticTime=true>

 }

 // The function Datetime() below is used to convert a string

 // representation of a DateTime value into a DateTime object

 #statisticTime = Datetime(#RecordElements[2])

 // Copy instance for local modification

 $Manifest = $BlockManifest

 // Validate the metrics in each record

 #CurrentProperty = 0

 #CurrentPropertyName = “Unknown”

 #k = 3

 while (#k < #RecordElements[].length) {

// The remaining record elements should be integral values

// Parse the next element in the record and save the relevant

// property from the BSSD instance (and its name for inclusion

// in error codes)

if ($Manifest.IncludeTotalIOs) {

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 281

 #CurrentProperty = $StatsData.TotalIOs

 #CurrentPropertyName = “TotalIOs”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeTotalIOs = false

} else if ($Manifest.IncludeKBytesTransferred) {

 #CurrentProperty = $StatsData.KBytesTransferred

 #CurrentPropertyName = “KBytesTransferred”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeKBytesTransferred = false

} else if ($Manifest.IncludeIOTimeCounter) {

 #CurrentProperty = $StatsData.IOTimeCounter

 #CurrentPropertyName = “IOTimeCounter”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeIOTimeCounter = false

} else if ($Manifest.IncludeReadIOs) {

 #CurrentProperty = $StatsData.ReadIOs

 #CurrentPropertyName = “ReadIOs”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeReadIOs = false

} else if ($Manifest.IncludeReadHitIOs) {

 #CurrentProperty = $StatsData.ReadHitIOs

 #CurrentPropertyName = “ReadHitIOs”

 // Avoid double-checking for inclusion of this metric

 $Manifest.IncludeReadHitIOs = false

} else if ($Manifest.IncludeReadIOTimeCounter) {

 #CurrentProperty = $StatsData.ReadIOTimeCounter

 #CurrentPropertyName = “ReadIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeReadIOTimeCounter = false

} else if ($Manifest.IncludeReadHitIOTimeCounter) {

#CurrentProperty = $StatsData.ReadHitIOTimeCounter

#CurrentPropertyName = “ReadHitIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeReadHitIOTimeCounter = false

} else if ($Manifest.IncludeKBytesRead) {

#CurrentProperty = $StatsData.KBytesRead

#CurrentPropertyName = “KBytesRead”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeKBytesRead = false

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

Block Server Performance Subprofile

282

} else if ($Manifest.IncludeWriteIOs) {

#CurrentProperty = $StatsData.WriteIOs

#CurrentPropertyName = “WriteIOs”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteIOs = false

} else if ($Manifest.IncludeWriteHitIOs) {

#CurrentProperty = $StatsData.WriteHitIOs

#CurrentPropertyName = “WriteHitIOs”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteHitIOs = false

} else if ($Manifest.IncludeWriteIOTimeCounter) {

#CurrentProperty = $StatsData.WriteIOTimeCounter

#CurrentPropertyName = “WriteIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteIOTimeCounter = false

} else if ($Manifest.IncludeWriteHitIOTimeCounter) {

#CurrentProperty = $StatsData.WriteHitIOTimeCounter

#CurrentPropertyName = “WriteHitIOTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeWriteHitIOTimeCounter = false

} else if ($Manifest.IncludeKBytesWritten) {

#CurrentProperty = $StatsData.KBytesWritten

#CurrentPropertyName = “KBytesWritten”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeKBytesWritten = false

} else if ($Manifest.IncludeIdleTimeCounter) {

#CurrentProperty = $StatsData.IdleTimeCounter

#CurrentPropertyName = “IdleTimeCounter”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeIdleTimeCounter = false

} else if ($Manifest.IncludeMaintOp) {

#CurrentProperty = $StatsData.MaintOp

#CurrentPropertyName = “MaintOp”

// Avoid double-checking for inclusion of this metric

$Manifest.IncludeMaintOp = false

} else if ($Manifest.IncludeMaintTimeCounter) {

#CurrentProperty = $StatsData.MaintTimeCounter

#CurrentPropertyName = “MaintTimeCounter”

// Avoid double-checking for inclusion of this metric

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 283

$Manifest.IncludeMaintTimeCounter = false

}

if (#CurrentPropertyName != “Unknown”) {

 #CurrentElement = Integer(#RecordElements[#k])

 if (#statisticTime == $BlockStats.StatisticTime) {

 // record and instance property should be equal

 if (#CurrentElement != #CurrentProperty) {

 <ERROR! Record Element inconsistent with BSSD

 property #CurrentPropertyName>

 }

 } else if (#statisticTime > $BlockStats.StatisticTime) {

 // record should be >= instance property

 if (#CurrentElement < #CurrentProperty) {

 <ERROR! Record Element inconsistent with BSSD property

 #CurrentPropertyName. The counter may have

 rolled back to 0>

 }

 } else {

 // record should be <= instance property

 if (#CurrentElement > #CurrentProperty) {

 <ERROR! Record Element inconsistent with BSSD property

 #CurrentPropertyName. The counter may have

 rolled back to 0>

 }

 }

}

k++

 } // while (#k < #RecordElements[].length)...

} // for (#j in #Records[])

 } // for (#i in #BulkStatistics[])

}

// This function takes a container of BlockManifest instances and locates the

// instance that represents the specified element type. Null is returned if

// the specified instance cannot be located in the container.

sub CIMInstance GetBlockManifestByType($BlockManifests[], #elementType) {

 for (#i in $BlockManifests[]) {

if ($BlockManifests[#i].ElementType == #elementType) {

 return $BlockManifests[#i]

}

 }

 return null

}

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

Block Server Performance Subprofile

284

// MAIN

//

// 1. Loop through the top-level ComputerSystems and retrieve the

// hosted BlockStatisticsService.

for (#i in $StorageSystems->[]) {

 // Step 1. Retrieve the hosted BlockStatisticsService.

 $StorageSystem-> = $StorageSystems->[#i]

 $StatServices->[] = AssociatorNames($StorageSystem->,

 “CIM_HostedService”,

 “CIM_BlockStatisticsService”,

 “Antecedent”,

 “Dependent”)

 // There should be one and only one BlockStatisticsService.

 $StatService-> = $StatServices->[0]

 // Step 2. Retrieve the capabilities describing the BlockStatisticService.

 $StatCapabilities[] = Associators($StatService->,

 “CIM_ElementCapabilities”,

 “CIM_BlockStatisticsCapabilities”,

 “ManagedElement”,

 “Capabilities”,

 false,

 false,

 {“ElementTypesSupported”, “SynchronousMethodsSupported”})

 // There should be one and only one BlockStatisticsCapabilities.

 $Capabilities = $StatCapabilities[0]

 #SynchCollectionRetrieval = contains(4, // “GetStatisticsCollection”

 $Capabilities.SynchronousMethodsSupported)

 // Step 3. Locate the StatisticsCollection

 $StatCollections->[] = AssociatorNames($StorageSystem->,

 “CIM_HostedCollection”,

 “CIM_StatisticsCollection”,

 “Antecedent”,

 “Dependent”)

 // There should be one and only one StatisticsCollection.

 $StatCollection-> = $StatCollections->[0]

 // Step 4. Locate the default ManifestCollection

 $ManifestCollections[] = Associators($StatCollection->,

 “CIM_AssociatedBlockStatisticsManifestCollection”,

 “CIM_BlockStatisticsManifestCollection”,

 “Statistics”,

 “ManifestCollection”,

 false,

 false,

 {“IsDefault”})

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 285

 $DefaultManifestCollection = null

 for (#j in $ManifestCollections[]) {

if ($ManifestCollections[#j].IsDefault) {

 $DefaultManifestCollection = $ManifestCollections[#j]

 break

}

 }

 if ($DefaultManifestCollection == null) {

<ERROR! A default ManifestCollection MUST exist>

 }

 // Step 5. Locate the default BlockManifests which identify what statistical

 // data is supported for each element type. (e.g. disk, volume, etc.)

 #PropList = {“InstanceID”, “ElementName”, “ElementType”,

 “IncludeStatisticTime”, “IncludeTotalIOs”,

 “IncludeKBytesTransferred”, “IncludeIOTimeCounter”,

 “IncludeReadIOs”, “IncludeReadHitIOs”, “IncludeReadIOTimeCounter”,

 “IncludeReadHitIOTimeCounter”, “IncludeKBytesRead”,

 “IncludeWriteIOs”, “IncludeWriteHitIOs”,

 “IncludeWriteIOTimeCounter”, “IncludeWriteHitIOTimeCounter”,

 “IncludeKBytesWritten”, “IncludeIdleTimeCounter”, “IncludeMaintOp”,

 “IncludeMaintTimeCounter”}

 $DefaultBlockManifests[] = Associators(

 $DefaultManifestCollection.getObjectPath(),

 “CIM_MemberOfCollection”,

 “CIM_BlockStatisticsManifest”,

 “Collection”,

 “Member”,

 false,

 false,

 #PropList)

 // There MUST be one default Block Manifest for each element type supported.

 if ($Capabilities.ElementTypesSupported[].length

 != $DefaultBlockManifest[].length) {

<ERROR! Required default BlockManifests do not exist>

 }

 // Step 6. Traverse from the StatisticsCollection to the

 // BlockStorageStatisticalData. If SyncCollectionRetrieval is supported,

 // then this is necessary for validation of the Manifest data retrieved

 // through the GetStatisticsCollection method. If it is not supported,

 // then these instances must be used to retrieve the statistics directly.

 $BlockStats[] = Associators($StatCollection->,

 “CIM_MemberOfCollection”,

 “CIM_BlockStorageStatisticalData”,

 “Collection”,

 “Member”,

 false,

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

Block Server Performance Subprofile

286

 false,

 #PropList)

 if (#SynchCollectionRetrieval) {

// Step 7a. Retrieve the data specified by the default

// ManifestCollection in bulk.

%InArguments[“ElementTypes”] = $Capabilities.ElementTypesSupported[]

%InArguments[“ManifestCollection”] =

$DefaultManifestCollection.getObjectPath()

%InArguments[“StatisticsFormat”] = 2// “CSV”

#MethodReturn = InvokeMethod($StatService->,

“GetStatisticsCollection”,

%InArguments,

%OutArguments)

if (#MethodReturn == 0) {

 #Statistics[] = %OutArguments[“Statistics”]

 // Step 8. Parse the bulk statistical data retrieved to validate

 // the values (at least as much as is feasible)

 &ValidateRecords(#Statistics[], $DefaultBlockManifests[],

 $BlockStats[])

} else {

 <ERROR! Bulk statistical data retrieval failed>

}

 } else {

// Step 7b. Since bulk statistics retrieval is not supported, the

// statistical data must be retrieved directly.

for (#j in $BlockStats[]) {

 $BlockStat = $BlockStats[#j]

 $BlockManifest = GetBlockManifestByType($DefaultBlockManifests[],

 $BlockStat.ElementType)

 if ($BlockManifest == null) {

<ERROR! The required default BlockManifest does not exist for

this element type>

 }

 // Determine the supported statistical properties specified by

 // $BlockManifest, and retrieve the corresponding property values

 // for this element type from $BlockStat.

}

 }

}

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 287

EXPERIMENTAL

7.7.2 Building an Object Map of Metered Elements

// DESCRIPTION

//

// This recipe describes how to build a record of all metered object instances

// and a topology of how the instances are related. (e.g. volume mapping to

// disk drives, ports used to access volumes, etc.)

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

// 1. The name of a top-level ComputerSystem instance for an Array, Storage

// Virtualizer, or Volume Manager implementation supporting the Block Server

// Performance Subprofile has previously been discovered via SLP and is known

// as $StorageSystem->.

// 2. The element types that support performance statistics are known as

// #ElementTypes[] whose content is populated from the property value of

// CIM_BlockStatisticsCapabilities.ElementTypesSupported.

// 3. The performance statistics properties supported for each element type are

// know as #<ElementType>DataPropList[]. (e.g. #VolumeDataPropList[],

// #DiskDataPropList[], etc.) The content of the property lists is determine

// from the default instance of CIM_BlockStatisticsManifest for each element type.

// 4. The required properties for each element type are know as

// #<ElementType>PropList[]. (e.g. #VolumePropList[], #DiskDataPropList[], etc.)

// Function GetAssociatedStats

//

// This function retrieves the instance data of BlockStorageStatisticalData

// associated to the specified metered object. If there is no instance data

// associated, null is returned.

//

sub CIMInstance[] GetAssociatedStats(CIMObjectPath $MeteredObject->,

string[] #PropList) {

 $StatData[] = Associators($MeteredObject->,

“CIM_ElementStatisticalData”,

“CIM_BlockStorageStatisticalData”,

“ManagedElement”,

“Stats”,

false,

false,

#PropList)

 return $StatData[]

}

// This function retrieves the performance statistics of a CompositeExtent

// then recursively traverses the hierarchy beneath it.

sub void traverseComposition(REF $Composite->) {

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

Block Server Performance Subprofile

288

 // Retrieve the performance statistics of the Composite Extent.

 $CompositeExtentStatData[] = &GetAssociatedStats($Composite->,

 #ExtentDataPropList[])

 // There may not be BlockStorageStatisticalData for each and every level

 // of Composite Extents.

 if ($CompositeExtentStatData[] != null) {

$CompositeExtentStats = $CompositeExtentStatData[0]

 }

 // Retrieve the associations in which this Composite Extent is the

 // Dependent reference. The association instances retrieved should be

 // either BasedOn or CompositeExtentBasedOn.

 $Associations[] = References($Composite->,

 “CIM_BasedOn”,

 “Dependent”,

 false,

 false,

 NULL)

 // There must be one or more associations involving the Composite Extent

 // as the Antecedent reference.

 if ($Associations[] == null || $Associations[].length == 0) {

<EXIT! Required associations not found>

 }

 // Determine which association class was discovered.

 #AssocClass = “CIM_BasedOn”

 if ($Associations[0] ISA CIM_CompositeExtentBasedOn) {

#AssocClass = “CIM_CompositeExtentBasedOn”

 }

 // Retrieve the underlying Extents.

 $TargetExtents->[] = AssociatorNames($Composite->,

 #AssocClass,

 NULL,

 “Dependent”,

 “Antecedent”)

 // Examine the QOS of the current level’s Composite Extent

 $CompositeExtent = GetInstance($Composite->,

 false,

 false,

 false,

 {“IsConcatenated”, “ExtentStripeLength”})

 // For each underlying extent at this level, traverse the sub-tree it is

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 289

 // the sub-root of. If the extent is a CompositeExtent, then this is part

 // of a complex RAID level; recursively invoke the Composition Algorithm.

 // Otherwise it is just a regular StorageExtent and thus must be decomposed

 // from it’s Antecedent, so invoke the recursive Decomposition Algorithm.

 for (#i in $TargetExtents->[]) {

if ($TargetExtents->[#i] ISA CIM_CompositeExtent) {

 &traverseComposition($TargetExtents->[#i++])

 } else {

 &traverseDecomposition($TargetExtents->[#i++])

}

 }

}

// This function recursively traverses the hierarchy below a non-Composite

// StorageExtent.

sub void traverseDecomposition(REF $StartingExtent->) {

 // The Starting Extent is allocated partially or in full from the

 // Antecedent Extent, so a single BasedOn is expected.

 $TargetExtents[] = Associators($StartingExtent->,

 “CIM_BasedOn”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”,

 false,

 false,

 {“Primordial”})

 // Since the Starting Extent is allocated from the Antecedent, there must

 // be only one Antecedent.

 if ($TargetExtents[] == null || $TargetExtents[].length != 1) {

<ERROR! Extent allocated from multiple Antecedents>

 }

 $TargetExtent = $TargetExtents[0]

 if ($TargetExtent ISA CIM_CompositeExtent) {

// This is a Composite Extent representing a RAID Level. Since we

// encountered the Composite in a decomposition, it is the “top”

// extent in a pool and the Dependent/Antecedent relationship falls

// into one of the following scenarios:

//

// o The Starting Extent is a StorageVolume that is one-to-one with

// the Target Composite Extent.

//

// o The Starting Extent is a StorageVolume partially allocated from

// the Target Composite Extent, where the Composite is one-to-one

// with the Storage Pool which is a RAID Group.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

Block Server Performance Subprofile

290

//

// o The Starting Extent is a ComponentExtent of a Child Concrete

// pool and is partially allocated from the Target Composite Extent

// where the Composite is one-to-one with the parent RAID Group pool.

//

// Call the (recursive) function to analyze the sub-hierarchy

// composed by the Target Extent.

//

&traverseComposition($TargetExtent.getObjectPath())

 } else {

// Check here to see if we have reached the leaves of the hierarchy

if ($TargetExtent.Primordial == true) {

 // Recursion ends with each Primordial Extent.

 return

} else {

 // Since the Dependent was a regular StorageExtent, and not

 // Primordial, it must be decomposed from an Antecedent, so invoke

 // ourselves recursively.

 &traverseDecomposition($TargetExtent.getObjectPath())

}

 }

}

// This function locates the logical devices on the specified ComputerSystem

// and retrieves the supported statistical information. Note that the

// ComputerSystem specified may be a top-level, peer, front-end or back-end

// system.

sub void discoverSupportedDeviceStats(REF $System->) {

 // Retrieve all ports on the system.

 $Ports[] = Associators($System.getObjectPath(),

 “CIM_SystemDevice”,

 “CIM_LogicalPort”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #PortPropList[])

 if ($Ports[] != null && $Ports[].length > 0) {

// Determine if performance statistics are supported for any type of

// port.

#SupportsPortStats = contains(6, #ElementTypes[]) // “Front-end Port”

|| contains(7, #ElementTypes[])// “Back-end Port”

for (#j in $Ports[]) {

 if (#SupportsPortStats) {

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 291

// Retrieve the performance statistics of the system’s port.

$PortStatData[] = &GetAssociatedStats(

$Ports[#j].getObjectPath(),

#PortDataPropList[])

// NOTE: Performance statistics may not be supported for

// this particular type of port. (i.e. Front-end vs. Back-end)

if ($PortStatData[] != null && $PortStatData[].length > 0) {

 // There should be one and only one

 // BlockStorageStatisticalData.

 $PortStats[#j] = $PortStatData[0]

 // Determine the type of this port.

 #PortType[#j] = $PortStats.ElementType

}

 }

}

 }

 // Retrieve all volumes on the system.

 $Volumes[] = Associators($System.getObjectPath(),

 “CIM_SystemDevice”,

 “CIM_StorageVolume”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #VolumePropList[])

 if ($Volumes[] != null && $Volumes[].length > 0) {

// Determine if performance statistics are supported for volume.

#SupportsVolumeStats = contains(8, #ElementTypes[])// “Volume”

for (#k in $Volumes[]) {

 if (#SupportsVolumeStats) {

// Retrieve the performance statistics of the volumes

$VolumeStatData[] = &GetAssociatedStats(

$Volumes[#k].getObjectPath(),

#VolumeDataPropList[])

// There should be one and only one BlockStorageStatisticalData.

$VolumeStats = $VolumeStatData[0]

 }

 // Retrieve the protocol controllers through which the volume is

 // visible.

 $ProtocolControllers[] = Associators($Volumes[#k].getObjectPath(),

 “CIM_ProtocolControllerForUnit”,

 “CIM_SCSIProtocolController”,

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

Block Server Performance Subprofile

292

 “Dependent”,

 “Antecedent”,

 false,

 false,

 #ProtocolControllerPropList[])

 if ($ProtocolControllers[] != null

&& $ProtocolControllers[].length > 0) {

for (#l in ($ProtocolControllers[]) {

 // Retrieve the protocol controller’s endpoint.

 $ProtocolEndpoints[] = Associators(

 $ProtocolControllers[#l].getObjectPath(),

 “CIM_SAPAvailableForElement”,

 “CIM_SCSIProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”,

 false,

 false,

 #ProtocolControllerPropList[])

 if ($ProtocolEndpoints[] != null) {

 for (#pe in (#ProtocolEndpoints[]) {

// There should be one and only one ProtocolEndpoint

$ProtocolEndpoint = $ProtocolEndpoints[#pe]

// Retrieve the ports that access this ProtocolEndpoint.

$AccessingPorts[] = Associators(

$ProtocolEndpoint.getObjectPath(),

“CIM_DeviceSAPImplementation”,

“CIM_LogicalPort”,

“Dependent”,

“Antecedent”,

false,

false,

#PortPropList[])

 }

}

 }

 // Determine if performance statistics are supported for Extents.

 #SupportsExtentStats = contains(9, #ElementTypes[])// “Extent”

 // NOTE: StorageExtents are investigated ONLY if performance

 // statistics are supported for “Extent” and/or “Disk Drive”.

 // Performance statistics support for “composite” StorageExtents

 // is indicated by the “Extent” capability. Performance statistics

 // support for “primordial” StorageExtents is indicated by the

 // “Disk Drive” capability.

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 293

 //

 // StorageExtents may not be present if the Extent Composition

 // Subprofile is not supported.

 if (#SupportsExtentStats) {

// Retrieve the StorageExtents that comprise the StorageVolume.

$ComponentExtents[] = Associators(

$Volumes[#k].getObjectPath(),

“CIM_BasedOn”,

“CIM_StorageExtent”,

“Dependent”,

“Antecedent”,

false,

false,

#ExtentPropList)

// Retrieve the performance statistics of the composite

// Storage Extent(s).

if ($ComponentExtents[] != null

&& $ComponentExtents[].length > 0) {

 &traverseComposition($ComponentExtents[0].getObjectPath())

}

 }

 // Determine if performance statistics are supported for Disk Drive.

 #SupportsDiskStats = contains(10, #ElementTypes[])// “Disk Drive”

 if (#SupportsDiskStats) {

// Retrieve the primordial StorageExtents to which the disk

// performance statistics will be associated.

$DiskExtents[] = &findPrimordials(

$Volumes[#k].getObjectPath())

if ($DiskExtents[] == null || $DiskExtents[].length == 0) {

 <ERROR! Required primordial StorageExtents not found>

}

for (#m in $DiskExtents[]) {

 $DiskExtentStatData[] = &GetAssociatedStats(

 $DisExtents[#m].getObjectPath(),

 #DiskDataPropList[])

 // There should be one and only one

 // BlockStorageStatisticalData.

 $DiskExtentStats = $DiskExtentStatData[0]

}

 }

}

 }

}

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

Block Server Performance Subprofile

294

// MAIN

//

// Step 1. Retrieve the performance statistics for the top-level system.

if (contains(2,// “Computer System”

#ElementTypes[]) {

 $TopSystemStatData[] = &GetAssociatedStats($StorageSystem->,

 #TopSystemDataPropList[])

 // There should be one and only one BlockStorageStatisticalData.

 $TopSystemStats = $TopSystemStatData[0]

}

// Step 2. Discover the logical devices on the top-level system and their

// related performance statistics

&discoverSupportedDeviceStats($StorageSystem->)

// Step 3. Retrieve the component systems in a multiple system device.

// NOTE: Traversing ComponentCS from the top-level system to its component

// systems will retrieve ALL component systems. In the case of a device that

// supports 2-tier redundancy, the relationship between the component systems

// (i.e. first redundancy tier) to the sub-component systems would be determined

// by investigating the ConcreteIdentity and MemberOfCollection relationships

// to a RedundancySet. See the Multiple Computer System Subprofile for more

// detail.

$ComponentSystems[] = Associators($StorageSystem->,

“CIM_ComponentCS”,

“CIM_ComputerSystem”,

“GroupComponent”,

“PartComponent”,

false,

false,

#ComponentSystemPropList[])

if ($ComponentSystems[] != null && $ComponentSystems[].length > 0) {

 // Step 4. Determine if performance statistics are supported for any type

 // of component system.

 #SupportsComponentSystemStats =

 contains(3, #ElementTypes[])// “Front-end Computer System”

 || contains(4, #ElementTypes[])// “Peer Computer System”

 || contains(5, #ElementTypes[])// “Back-end Computer System”

 for (#i in $ComponentSystems[]) {

$ComponentSystemPath = $ComponentSystems[#i].getObjectPath()

if (#SupportsComponentSystemStats) {

 // Step 5. Retrieve the performance statistics of the component

 // system.

 $ComponentSystemStatData[] = &GetAssociatedStats(

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 295

 $ComponentSystemPath,

 #ComponentSystemDataPropList[])

 // NOTE: Performance statistics may not be supported for this

 // particular type of component system. (i.e. Front-end vs.

 // Back-end vs. Peer Computer Systems)

 if ($ComponentSystemStatData[] != null

 && $ComponentSystemStatData[].length > 0) {

// There should be one and only one BlockStorageStatisticalData.

$ComponentSystemStats[#i] = $ComponentSystemStatData[0]

// Step 6. Determine the type of this component system.

#ComponentSystemType[#i] = $ComponentSystemStats.ElementType

 }

// Step 7. Discover the Topology of the component computer systems by

// finding the RedundancySet that each of the ComponentSystems belong

// to (if any), and the ComputerSystem that has a concrete identity

// relationship with that RedundancySet. The computer system that is

// one tier above the current component system is stored in an array

// of ParentComputerSystems, with each entry corresponding to the

// component system at the same index in the ComponentSystems array.

$RedundancySets->[] = AssociatorNames($ComponentSystemPath->,

“CIM_MemberOfCollection”,

“CIM_RedundancySet”,

“Member”,

“Collection”)

if(RedundancySets->[] != null && $RedundancySets->[].length > 0)

{

if($RedundancySets->[].length > 1)

{

<ERROR! Component System belongs to more than one Redundancy

Set>

}

$AggregateSystems->[] = AssociatorNames($RedundancySets->[0],

“CIM_ConcreteIdentity”,

“CIM_ComputerSystem”,

“SameElement”,

“SystemElement”)

if($AggregateSystems->[] == null ||

$AggregateSystems->[].length != 1)

{

<ERROR! Could not find Concrete Computer System for Redundancy

Set>

}

$ParentComputerSystems->[#i] = $AggregateSystems->[0]

}

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

Block Server Performance Subprofile

296

}

// Step 8. Discover the logical devices on the component system and

// their related performance statistics

&discoverSupportedDeviceStats($ComponentSystemPath->)

 }

}

EXPERIMENTAL

7.7.3 Retrieving Statistics for a Specific Volume

// DESCRIPTION

//

// This recipe describes how to retrieve the supported performance statistics

// for a specific set of StorageVolumes.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

// 1. The name of a top-level ComputerSystem instance for an Array, Storage

// Virtualizer, or Volume Manager implementation supporting the Block Server

// Performance Subprofile has previously been discovered via SLP and is known

// as $StorageSystem->.

// 2. A specific set of StorageVolumes is known as $StorageVolume->[].

//

// MAIN

//

// Step 1. Retrieve the hosted BlockStatisticsService.

$StatServices->[] = AssociatorNames($StorageSystem->,

 “CIM_HostedService”,

 “CIM_BlockStatisticsService”,

 “Antecedent”,

 “Dependent”)

// There should be one and only one BlockStatisticsService.

$StatService-> = $StatServices->[0]

// Step 2. Retrieve the capabilities describing the BlockStatisticService.

$StatCapabilities[] = Associators($StatService->,

 “CIM_ElementCapabilities”,

 “CIM_BlockStatisticsCapabilities”,

 “ManagedElement”,

 “Capabilities”,

 false,

 false,

 {“ElementTypesSupported”})

// There should be one and only one BlockStatisticsCapabilities.

$Capabilities = $StatCapabilities[0]

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 297

if !contains(8,// “Volume”

 $Capabilities.ElementTypesSupported) {

 <EXIT! StorageVolume performance statistics not supported>

}

// Step 3. Locate the default ManifestCollection

$ManifestCollections[] = Associators($StatCollection->,

 “CIM_AssociatedBlockStatisticsManifestCollection”,

 “CIM_BlockStatisticsManifestCollection”,

 “Statistics”,

 “ManifestCollection”,

 false,

 false,

 {“IsDefault”})

$DefaultManifestCollection = null

for #i in $ManifestCollections[] {

 if ($ManifestCollections[#i].IsDefault) {

$DefaultManifestCollection = $ManifestCollections[#i]

break

 }

}

if ($DefaultManifestCollection == null) {

 <ERROR! A default ManifestCollection MUST exist>

}

// Step 4. Locate the default BlockManifest which identifies the statistical

// data supported for StorageVolumes.

$VolumeManifest = null

string[] #PropList = {“ElementType”, “IncludeStatisticTime”, “IncludeTotalIOs”,

“IncludeKBytesTransferred”, “IncludeIOTimeCounter”, “IncludeReadIOs”,

“IncludeReadHitIOs”, “IncludeReadIOTimeCounter”,

“IncludeReadHitIOTimeCounter”, “IncludeKBytesRead”, “IncludeWriteIOs”,

“IncludeWriteHitIOs”, “IncludeWriteIOTimeCounter”,

“IncludeWriteHitIOTimeCounter”, “IncludeKBytesWritten”,

“IncludeIdleTimeCounter”, “IncludeMaintOp”, “IncludeMaintTimeCounter”}

$DefaultBlockManifests[] = Associators(

 $DefaultManifestCollection.getObjectPath(),

 “CIM_MemberOfCollection”,

 “CIM_BlockStatisticsManifest”,

 “Collection”,

 “Member”,

 false,

 false,

 #PropList)

for #i in $DefaultBlockManifests[] {

 if ($DefaultBlockManifests[#i].ElementType == 8) {

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

Block Server Performance Subprofile

298

$VolumeManifest = $DefaultBlockManifests[#i]

break

 }

}

if ($VolumeManifest == null) {

 <ERROR! Required default BlockManifest for StorageVolume not found>

}

// Step 5. Retrieve the performance statistics for each specified StorageVolume.

for (#i in $StorageVolume->[]) {

 $VolumeStatData[] = Associators($StorageVolume->[#i],

 “CIM_ElementStatisticalData”,

 “CIM_BlockStorageStatisticalData”,

 “ManagedElement”,

 “Stats”,

 false,

 false,

 null)

 // There should be one and only one BlockStorageStatisticalData.

 if ($VolumeStatData[] == null || $VolumeStatData[].length != 1) {

<ERROR! The required staticistics were not found>

 }

 $VolumeStats = $VolumeStatData[0]

 // Step 6. Extract the performance statistics supported by the

 // StorageVolume.

 if ($VolumeManifest.IncludeStatisticTime) {

#StatisticTime = VolumeStats.StatisticTime

 } else {

<ERROR! StatisticTime is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeTotalIOs) {

#TotalIOs = VolumeStats.TotalIOs

 } else {

<ERROR! TotalIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeKBytesTransferred) {

#KBytesTransferred = VolumeStats.KBytesTransferred

 } else {

<ERROR! KBytesTransferred is a required property for Volumes and

 should be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeIOTimeCounter) {

#IOTimeCounter = VolumeStats.IOTimeCounter

 }

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 299

 if ($VolumeManifest.IncludeReadIOs) {

#ReadIOs = VolumeStats.ReadIOs

 } else {

<ERROR! ReadIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeReadHitIOs) {

#ReadHitIOs = VolumeStats.ReadHitIOs

 } else {

<ERROR! ReadHitIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeReadIOTimeCounter) {

#ReadIOTimeCounter = VolumeStats.ReadIOTimeCounter

 }

 if ($VolumeManifest.IncludeReadHitIOTimeCounter) {

#ReadHitIOTimeCounter = VolumeStats.ReadHitIOTimeCounter

 }

 if ($VolumeManifest.IncludeKBytesRead) {

#KBytesRead = VolumeStats.KBytesRead

 }

 if ($VolumeManifest.IncludeWriteIOs) {

#WriteIOs = VolumeStats.WriteIOs

 } else {

<ERROR! WriteIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeWriteHitIOs) {

#WriteHitIOs = VolumeStats.WriteHitIOs

 } else {

<ERROR! WriteHitIOs is a required property for Volumes and should

 be set to “true” in the default BlockManifest>

 }

 if ($VolumeManifest.IncludeWriteIOTimeCounter) {

#WriteIOTimeCounter = VolumeStats.WriteIOTimeCounter

 }

 if ($VolumeManifest.IncludeWriteHitIOTimeCounter) {

#WriteHitIOTimeCounter = VolumeStats.WriteHitIOTimeCounter

 }

 if ($VolumeManifest.IncludeKBytesWritten) {

#KBytesWritten = VolumeStats.KBytesWritten

 }

 if ($VolumeManifest.IncludeIdleTimeCounter) {

#IdleTimeCounter = VolumeStats.IdleTimeCounter

 }

}

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

Block Server Performance Subprofile

300

7.7.4 Summary of Statistics Support by Element

Not all statistics properties are kept for all elements. Table 133 illustrates the statistics properties that are
kept for each of the metered elements.

Table 133 - Summary of Statistics Support by Element

The legend is:

R – Required

O – Optional

N – Not specified

Notice that there is a difference between the “front-end” port and “back-end” port elements. There is a
difference between the top level computer system (i.e., the Array, Storage Virtualizer or Volume
Management Profile) and the component computer systems. Furthermore, there can be variations in the
component computer systems. This is based on how component computer systems are configured. In
some cases, these computer systems are “front-end” and “back-end” controllers. In other subsystems,
they are “peer” controllers.

Statistic Property Top Level
Computer

System

Component
Computer

System
(Front-end)

Component
Computer

System
(Peer)

Component
Computer

System
(Back-end)

Front-
end Port

Back-
end Port

Volume
(LogicalDisk)

Composite
Extent

Disk

StatisticTime R R R R R R R R R

TotalIOs R R R R R R R R R

KBytes
Transferred

R O O O R O R R R

IOTimeCounter O O O O O O O N O

ReadIOs O R R N N N R N R

ReadHitIOs O O O N N N O N N

ReadIOTimeCounter O O O N N N O N O

ReadHitIO
TimeCounter

O O O N N N O N N

KBytesRead O O O O N N O N O

WriteIOs O R R N N N R N O

WriteHitIOs O O O N N N O N N

WriteIOTimeCounter O O O N N N O N O

WriteHitIO
TimeCounter

O O O N N N O N N

KBytesWritten O O O O N N O N O

IdleTimeCounter N N N O O N O O O

MaintOp N N N N N N N O O

MaintTime-
Counter

N N N N N N N O O

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 301

NOTE Controller LUNs (SCSIArbitraryLogicalUnits) and RemoteReplicaGroup are not shown in Table 133: Summary of Block
Statistics Support by Element. They only require StatisticTime, TotalIOs and KBytesTransferred. All other properties are not
SPECIFIED.

A complete list of definitions of the metered elements as defined by the ElementType property of
BlockStorageStatisticalData follows:

• ElementType = 2 (Computer System) - These are statistics for the whole Array (virtualizer or volume
manager).

• ElementType = 3 (Front-end Computer System) - This is the Computer System (controller) that provides the
support for receiving the IO from host systems. The Front-end function acts as an target of IO.

• ElementType = 4 (Peer Computer System) - This is a Computer System that acts as both a front-end and
back-end Computer System.

• ElementType = 5 (Back-end Computer System) - This is the Computer System (controller) that provides the
support for driving the IO to the back-end storage (disk drives or external volumes). The back-end function
acts as an initiator of IO.

• ElementType = 6 (Front-end Port) - A port in a disk array that connects the disk array (or Storage Virtualizer)
to hosts using the storage. The Front End port is usually connected to either the Peer Computer System
(controller) or to the Front-end Computer System (controller) in some Disk Arrays or Storage Virtualizers.

• ElementType = 7 (Back-end Port) - A port that can be inside the disk array housing that connects to the disk
drives. This is connected to either the Peer Computer system (controller) or to the Back-end Computer
System (controller) in some Disk Arrays or Storage Virtualizers.

• ElementType = 8 (Volume) - This is a Logical Unit that is the target of data IOs for storing or retrieving data.
This would be a StorageVolume for Arrays or Storage Virtualizers. It would be a LogicalDisk for Volume
Management Profiles.

• ElementType = 9 (Extent) - This is an intermediate Storage Extent. That is, it is not a Volume and it is not a
Disk Drive. An example of the use of an Extent would be a RAID rank that creates a logical storage extent
from multiple disk drives. In the case of Storage Virtualizers, this is used to represent the volumes that are
imported from Arrays.

• ElementType = 10 (Disk Drive) - This is a disk drive.

• ElementType = 11 (Arbitrary LUs) - This is a Logical Unit that is the target of “control” IO functions. The
Logical Unit does not contain data, but supports invocation of control functions in an Array or Storage
Virtualizer.

• ElementType = 12 (Remote Replica Group) - Replication requires a local disk array and a remote disk array
(in some “safe” location). The remote replica group is a group of disk drives in the remote disk array used to
replicated defined data from the local disk array.

EXPERIMENTAL

7.7.4.1 Cumulative and Rate StatisticsProperties

Table 134 shows the cumulative and the corresponding rate statistics properties.

Table 134 - Cumulative and Rate Statistics Properties

Cumulative Statistics Rate Statistics

TotalIOs TotalIOsRate

KBytesTransferred KByteTransferredRate

1679
1680
1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Block Server Performance Subprofile

302

7.7.4.2 ElementType and RateElementType Properties

Table 135 shows ElementType and the corresponding RateElementType properties:

EXPERIMENTAL

IOTimeCounter (not applicable)

ReadIOs ReadIOsRate

ReadHitIOs ReadHitIOsRate

ReadIOTimeCounter (not applicable)

ReadHitIOTimeCounter (not applicable)

KBytesRead KBytesReadRate

WriteIOs WriteIOsRate

WriteHitIOs WriteHitIOsRate

WriteIOTimeCounter (not applicable)

WriteHitIOTimeCounter WriteHitIOTimeCounterRate

KBytesWritten KBytesWrittenRate

IdleTimeCounter (not applicable)

MaintOp MaintOpRate

MaintTimeCounter (not applicable)

Table 135 - ElementType and RateElementType Properties

ElementType Value RateElementType Value

Computer System 2 Computer System Rate 13

Front-end Computer System 3 Front-end Computer System Rate 14

Peer Computer System 4 Peer Computer System Rate 15

Back-end Computer System 5 Back-end Computer System Rate 16

Front-end Port 6 Front-end Port Rate 17

Back-end Port 7 Back-end Port Rate 18

Volume 8 Volume Rate 19

Extent 9 Extent Rate 20

Disk Drive 10 Disk Drive Rate 21

Arbitrary LUs 11 Arbitrary LUs Rate 22

Remote Replica Group 12 Remote Replica Group Rate 23

Table 134 - Cumulative and Rate Statistics Properties

Cumulative Statistics Rate Statistics

1716

1717

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 303

7.7.5 Formulas and Calculations

Table 133 identifies the set of statistics that are recommended for the various storage components in the
array. These metrics, once collected, can be further enhanced through the definition of formulas and
calculations that create additional ‘derived’ statistics.

Table 136 defines a set of such derived statistics. They are by no means the only possible derivations but
serve as examples of the most commonly asked for statistics.

7.7.6 Block Server Performance Supported Capabilities Patterns

The Capabilities patterns summarized in Table 137 are formally recognized by the Block Server
Performance Subprofile of the current version of SMI-S

Table 136 - Formulas and Calculations

Calculated Statistics

New statistic Formula

TimeInterval delta StatisticTime

% utilization 100 * (delta StatisticTime - delta IdleTime)/ delta StatisticTime

I/O rate delta TotalIOs / delta StatisticTime

I/O response time delta IOTime / delta TotalIOs

Queue depth delta I/O rate * delta I/O response time

Service Time utilization / I/O rate

Wait Time Response Time - Service Time

Average Read Size delta KBytesRead / delta ReadIOs

Average Write Size delta KBytesWritten / delta WriteIOs

% Read 100 * (delta ReadIOs / delta TotalIOs)

% Write 100 * (delta WriteIOs / delta TotalIOs)

% Hit 100 * ((delta ReadHitIOs + delta WriteHitIOs) / delta TotalIOs)

Table 137 - Block Server Performance Subprofile Supported Capabilities Patterns

ElementSupported SynchronousMethods
Supported

AsynchronousMethods
Supported

Any (at least one) NULL NULL

Any (at least one) Neither GettatisticsCollection nor Exec Query NULL

Any (at least one) GetStatisticsCollection NULL

Any (at least one) Any NULL

Any (at least one) Exec Query NULL

Any (at least one) GetStatisticsCollection, Query NULL

Any (at least one) Exec Query NULL

Any (at least one) “Manifest Creation”, “Manifest Modification”, and “Manifest
Removal”

NULL

Any (at least one) “Indications”, “Query Collection” NULL

1718

1719

1720

1721

1722

1723

1724

1725

1726

Block Server Performance Subprofile

304

An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or
neither. But if the implementation supports GetStatisticsCollection, it will shall support Synchronous
execution.

If manifest collections are supported, then ALL three methods shall be supported (Creation, modification
and removal).

7.7.7 Correlation of Block Storage Statistics and Fabric Statistics

A client will see statistics for Block Storage which describe statistical information relative to block access.
This subprofile defines those statistics. But a client may also see statistics relative to networking activity
(e.g., Port statistics). This section describes which metrics can be correlated between block storage
statistics and port statistics.

7.8 CIM Elements

Table 138 describes the CIM elements for Block Server Performance.

Table 138 - CIM Elements for Block Server Performance

Element Name Requirement Description

7.8.1 CIM_AssociatedBlockStatisticsManifestCollection
(Client defined collection)

Conditional Conditional requirement: Clients can create manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. This is an association between the
StatisticsCollection and a client defined manifest
collection.

7.8.2 CIM_AssociatedBlockStatisticsManifestCollection
(Provider defined collection)

Mandatory This is an association between the StatisticsCollection
and a provider supplied (pre-defined) manifest collection
that defines the statistics properties supported by the
profile implementation.

7.8.3 CIM_BlockStatisticsCapabilities Mandatory This defines the statistics capabilities supported by the
implementation of the profile.

7.8.4 CIM_BlockStatisticsManifest (Client Defined) Conditional Conditional requirement: Clients can modify manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. An instance of this class defines the statistics
properties of interest to the client for one element type.

7.8.5 CIM_BlockStatisticsManifest (Provider Support) Mandatory An instance of this class defines the statistics properties
supported by the profile implementation for one element
type.

7.8.6 CIM_BlockStatisticsManifestCollection (Client
Defined)

Conditional Conditional requirement: Clients can create manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. An instance of this class defines one client
defined collection of block statistics manifests (one
manifest for each element type).

7.8.7 CIM_BlockStatisticsManifestCollection (Provider
Defined)

Mandatory An instance of this class defines the predefined collection
of default block statistics manifests (one manifest for each
element type).

7.8.8 CIM_BlockStatisticsService Mandatory This is a Service that provides (optional) services of bulk
statistics retrieval and manifest set manipulation methods.

7.8.9 CIM_BlockStorageStatisticalData Mandatory This is a Subclass of CIM_StatisticalData for Block
servers. It would be instantiated as specific block statistics
for particular components.

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 305

7.8.10 CIM_ElementCapabilities Mandatory This associates the BlockStatisticsCapabilities to the
BlockStatisticsService.

7.8.11 CIM_ElementStatisticalData (Back end Port Stats) Conditional Conditional requirement: Back end port statistics support.
This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "7".

This associates a BlockStorageStatisticalData instance to
the back end port for which the statistics are collected.

7.8.12 CIM_ElementStatisticalData (Component System
Stats)

Conditional Conditional requirement: Component Systems statistics
support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "3", "4" or "5".

This associates a BlockStorageStatisticalData instance to
the component ComputerSystem for which the statistics
are collected.

7.8.13 CIM_ElementStatisticalData (Disk Stats) Conditional Conditional requirement: Disk Drive statistics support.
This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "10".

This associates a BlockStorageStatisticalData instance to
the StorageExtent (Disk Drive) for which the statistics are
collected.

7.8.14 CIM_ElementStatisticalData (Extent Stats) Conditional Conditional requirement: Extent statistics support. This is
mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "9".

This associates a BlockStorageStatisticalData instance to
the StorageExtent (composite extent) for which the
statistics are collected.

7.8.15 CIM_ElementStatisticalData (Front end Port Stats) Conditional Conditional requirement: Front-end port statistics support.
This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "6".

This associates a BlockStorageStatisticalData instance to
the target port for which the statistics are collected.

7.8.16 CIM_ElementStatisticalData (Logical Disk Stats) Conditional Conditional requirement: Volume statistics support in
Volume Management Profiles. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "8", and the parent profile supports Logical Disks.

This associates a BlockStorageStatisticalData instance to
the volume for which the statistics are collected.

7.8.17 CIM_ElementStatisticalData (Remote Copy Stats) Conditional Conditional requirement: Remote Copy statistics support.
This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "12".

This associates a BlockStorageStatisticalData instance to
the remote copy service network for which the statistics
are collected.

Table 138 - CIM Elements for Block Server Performance

Element Name Requirement Description

Block Server Performance Subprofile

306

7.8.18 CIM_ElementStatisticalData (Top Level System
Stats)

Conditional Conditional requirement: Top level system statistics
support. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "2".

This associates a BlockStorageStatisticalData instance to
the Top Level ComputerSystem for which the statistics are
collected.

7.8.19 CIM_ElementStatisticalData (Volume Stats) Conditional Conditional requirement: Volume statistics support or
Referenced from Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer - StorageVolume is
mandatory. This is mandatory if
CIM_BlockStatisticsCapabilities.ElementTypesSupported
= "8", and the parent profile supports Storage Volumes.

This associates a BlockStorageStatisticalData instance to
the volume for which the statistics are collected.

7.8.20 CIM_HostedCollection (Client Defined) Conditional Conditional requirement: Clients can create manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported or . This would associate a client defined
BlockStatisticsManifestCollection to the top level system
for the profile (e.g., array).

7.8.21 CIM_HostedCollection (Default) Mandatory This would associate a default
BlockStatisticsManifestCollection to the top level system
for the profile (e.g., array).

7.8.22 CIM_HostedCollection (Provider Supplied) Mandatory This would associate the StatisticsCollection to the top
level system for the profile (e.g., array).

7.8.23 CIM_HostedService Mandatory This associates the BlockStatisticsService to the
ComputerSystem that hosts it.

7.8.24 CIM_MemberOfCollection (Member of client
defined collection)

Conditional Conditional requirement: Clients can modify manifests as
identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSu
pported. This would associate Manifests to client defined
manifest collections.

7.8.25 CIM_MemberOfCollection (Member of pre-defined
collection)

Mandatory This would associate pre-defined Manifests to default
manifest collection.

7.8.26 CIM_MemberOfCollection (Member of statistics
collection)

Mandatory This would associate all block statistics instances to the
StatisticsCollection.

7.8.27 CIM_StatisticsCollection Mandatory This would be a collection point for all Statistics that are
kept for a Block Server.

7.8.28 SNIA_BlockStatisticsCapabilities Optional Experimental. This is a subclass of
CIM_BlockStatisticsCapabilities that adds the
SupportedFeatures property.

7.8.29 SNIA_BlockStatisticsManifest (Client Defined) Optional Experimental. This is a subclass of
CIM_BlockStatisticsManifest that adds the CSVSequence
property.

7.8.30 SNIA_BlockStatisticsManifest (Provider Support) Optional Experimental. This is a subclass of
CIM_BlockStatisticsManifest that adds the CSVSequence
property.

Table 138 - CIM Elements for Block Server Performance

Element Name Requirement Description

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 307

7.8.1 CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection)

The CIM_AssociatedBlockStatisticsManifestCollection associates an instance of a CIM_BlockStatisticsManifestCollection to the instance of
CIM_StatisticsCollection to which it applies. Client defined manifest collections identify the Manifests (properties) for retrieval of block statistics.

CIM_AssociatedBlockStatisticsManifestCollection is not subclassed from anything.

There will be one instance of the CIM_AssociatedBlockStatisticsManifestCollection class, for each client defined manifest collection that has
been created.

Created By: Extrinsic: CreateManifestCollection

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 139 describes class CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection).

7.8.2 CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection)

The CIM_AssociatedBlockStatisticsManifestCollection associates an instance of a CIM_BlockStatisticsManifestCollection to the instance of
CIM_StatisticsCollection to which it applies. The default manifest collection defines the CIM_BlockStorageStatisticalData properties that are
supported by the profile implementation.

CIM_AssociatedBlockStatisticsManifestCollection is not subclassed from anything.

One instance of the CIM_AssociatedBlockStatisticsManifestCollection shall exist for the default manifest collection if the Block Server
Performance Subprofile is implemented.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 140 describes class CIM_AssociatedBlockStatisticsManifestCollection (Provider defined
collection).

7.8.3 CIM_BlockStatisticsCapabilities

An instance of the CIM_BlockStatisticsCapabilities class defines the specific support provided with the block statistics implementation. Note:
There would be zero or one instance of this class in a profile. There would be none if the profile did not support the Block Server Performance
Subprofile. There would be exactly one instance if the profile did support the Block Server Performance Subprofile.

CIM_BlockStatisticsCapabilities class is subclassed from CIM_Capabilities.

Table 139 - SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection (Cli-
ent defined collection)

Properties Flags Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection applies.

ManifestCollection Mandatory A client defined manifest collection.

Table 140 - SMI Referenced Properties/Methods for CIM_AssociatedBlockStatisticsManifestCollection
(Provider defined collection)

Properties Flags Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection applies.

ManifestCollection Mandatory The default manifest collection.

1739

1740
1741

1742

1743
1744

1745

1746

1747

1748

1749

1750

1751

1752
1753
1754

1755

1756
1757

1758

1759

1760

1761

1762

1763

1764

1765
1766
1767

1768

Block Server Performance Subprofile

308

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 141 describes class CIM_BlockStatisticsCapabilities.

7.8.4 CIM_BlockStatisticsManifest (Client Defined)

The CIM_BlockStatisticsManifest class is Concrete class that defines the CIM_BlockStorageStatisticalData properties that should be returned
on a GetStatisticsCollection request.

CIM_BlockStatisticsManifest is subclassed from CIM_ManagedElement.

In order for a client defined instance of the CIM_BlockStatisticsManifest class to exist, all the manifest collection manipulation functions shall be
identified in the "SynchronousMethodsSupported" property of the CIM_BlockStatisticsCapabilities

Table 141 - SMI Referenced Properties/Methods for CIM_BlockStatisticsCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

ElementTypesSupported Mandatory ValueMap { "0", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12" },

Values {"Unknown", "Computer System", "Front-end Computer System",
"Peer Computer System", "Back-end Computer System", "Front-end Port",
"Back-endPort", "Volume", "Extent", "Disk Drive", "Arbitrary LUs" ,
"Remote Replica Group"}.

RateElementTypesSupport
ed

Conditional Conditional requirement: This property is required if implementation
supports performance data rate. ValueMap { "0", "13", "14", "15", "16",
"17", "18", "19", "20", "21", "22", "23" },

Values {"Unknown", "Computer System Rate", "Front-end Computer
System Rate", "Peer Computer System Rate", "Back-end Computer
System Rate", "Front-end Port Rate", "Back-endPort Rate", "Volume
Rate", "Extent Rate", "Disk Drive Rate", "Arbitrary LUs Rate" , "Remote
Replica Group Rate"}.

SynchronousMethodsSupp
orted

N Mandatory This property is mandatory, but the array may be empty.

ValueMap { "2", "3", "4", "5", "6", "7", "8" },

Values {"Exec Query", "QueryCollection", "GetStatisticsCollection",
"Manifest Creation", "Manifest Modification", "Manifest Removal",
"GetRateStatisticsCollection" }.

AsynchronousMethodsSup
ported

Optional Not supported in current version of SMI-S.

ClockTickInterval Mandatory An internal clocking interval for all timers in the subsystem, measured in
microseconds (Unit of measure in the timers, measured in microseconds).

Time counters are monotonically increasing counters that contain "ticks".
Each tick represents one ClockTickInterval. If ClockTickInterval contained
a value of 32 then each time counter tick would represent 32
microseconds.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

CreateGoalSettings() Optional Not Specified in this version of the Profile.

1769

1770

1771

1772

1773

1774

1775
1776

1777

1778
1779

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 309

(BlockStatisticsCapabilities.SynchronousMethodsSupported = "5,6,7") instance, AND a client must have created at least ONE instance of
CIM_BlockStatisticsManifestCollection.

Created By: Extrinsic: AddOrModifyManifest

Modified By: Extrinsic: AddOrModifyManifest

Deleted By: Extrinsic: RemoveManifest

Requirement: Clients can modify manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 142 describes class CIM_BlockStatisticsManifest (Client Defined).

Table 142 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Client defined string that identifies the manifest.

InstanceID Mandatory The instance Identification. Within the scope of the instantiating
Namespace, InstanceID opaquely and uniquely identifies an instance of
this class.

ElementType Mandatory This value is required AND the current version of SMI-S specifies the
following values:

ValueMap {"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}

Values { "Computer System", "Front-end Computer System", "Peer
Computer System", "Back-endComputer System", "Front-end Port",
"Back-end Port", "Volume", "Extent", "Disk Drive", "Arbitrary LUs" ,
"Remote Replica Group"}.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCount
er

Mandatory

IncludeReadHitIOTimeCou
nter

Mandatory

IncludeKBytesRead Mandatory

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounte
r

Mandatory

IncludeWriteHitIOTimeCou
nter

Mandatory

IncludeKBytesWritten Mandatory

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

1780
1781

1782

1783

1784

1785

1786

1787

Block Server Performance Subprofile

310

7.8.5 CIM_BlockStatisticsManifest (Provider Support)

The CIM_BlockStatisticsManifest class is Concrete class that defines the CIM_BlockStorageStatisticalData properties that supported by the
Provider. These Manifests are established by the Provider for the default manifest collection.

CIM_BlockStatisticsManifest is subclassed from CIM_ManagedElement.

At least one Provider supplied instance of the CIM_BlockStatisticsManifest class shall exist, if the Block Server Performance Subprofile is
supported.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 143 describes class CIM_BlockStatisticsManifest (Provider Support).

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

IncludeStartStatisticTime N Optional Not Specified in this version of the Profile.

Table 143 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Provider defined string that identifies the manifest in the context of the
Default Manifest Collection.

InstanceID Mandatory The instance Identification. Within the scope of the instantiating
Namespace, InstanceID opaquely and uniquely identifies an instance of
this class.

ElementType Mandatory This value is required AND the current version of SMI-S specifies the
following values:

ValueMap {"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}

Values { "Computer System", "Front-end Computer System", "Peer
Computer System", "Back-endComputer System", "Front-end Port",
"Back-end Port", "Volume", "Extent", "Disk Drive", "Arbitrary LUs" ,
"Remote Replica Group"}.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCount
er

Mandatory

IncludeReadHitIOTimeCou
nter

Mandatory

IncludeKBytesRead Mandatory

Table 142 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

1788

1789
1790

1791

1792
1793

1794

1795

1796

1797

1798

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 311

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounte
r

Mandatory

IncludeWriteHitIOTimeCou
nter

Mandatory

IncludeKBytesWritten Mandatory

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

RateElementType Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23. This value is
required AND the current version of SMI-S specifies the following values:

ValueMap {"13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23"}

Values { "Computer System Rate", "Front-end Computer System Rate",
"Peer Computer System Rate", "Back-endComputer System Rate",
"Front-end Port Rate", "Back-end Port Rate", "Volume Rate", "Extent
Rate", "Disk Drive Rate", "Arbitrary LUs Rate" , "Remote Replica Group
Rate"}.

IncludeRateIntervalStartTi
me

Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeRateIntervalEndTi
me

Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeTotalIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeKBytesTransferred
Rate

Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeReadIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeReadHitIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeKBytesReadRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeWriteIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeWriteHitIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeKBytesWrittenRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeIdleTimeCounterRa
te

Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeMaintOpRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

Caption N Optional Not Specified in this version of the Profile.

Table 143 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

Block Server Performance Subprofile

312

7.8.6 CIM_BlockStatisticsManifestCollection (Client Defined)

An instance of a client defined CIM_BlockStatisticsManifestCollection defines the set of Manifests to be used in retrieval of Block statistics by
the GetStatisticsCollection method.

CIM_BlockStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

In order for a client defined instance of the CIM_BlockStatisticsManifestCollection class to exist, then all the manifest collection manipulation
functions shall be identified in the "SynchronousMethodsSupported" property of the CIM_BlockStatisticsCapabilities instance and a client must
have created a Manifest Collection..

Created By: Extrinsic: CreateManifestCollection

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 144 describes class CIM_BlockStatisticsManifestCollection (Client Defined).

7.8.7 CIM_BlockStatisticsManifestCollection (Provider Defined)

An instance of a default CIM_BlockStatisticsManifestCollection defines the set of Manifests that define the properties supported for each
ElementType supported for the implementation. It can also be used by clients in retrieval of Block statistics by the GetStatisticsCollection
method.

CIM_BlockStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

At least ONE CIM_BlockStatisticsManifestCollection shall exist if the Block Server Performance Subprofile is implemented. This would be the
default manifest collection that defines the properties supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Description N Optional Not Specified in this version of the Profile.

IncludeStartStatisticTime N Optional Not Specified in this version of the Profile.

Table 144 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Client Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A client defined user-friendly name for the manifest collection. It is set
during creation of the Manifest Collection through the ElementName
parameter of the CreateManifestCollection method.

IsDefault Mandatory Denotes whether or not this manifest collection is a provider defined
default manifest collection. For the client defined manifest collections this
is set to "false".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

Table 143 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

1799

1800
1801

1802

1803
1804
1805

1806

1807

1808

1809

1810

1811

1812

1813
1814
1815

1816

1817
1818

1819

1820

1821

1822

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 313

Table 145 describes class CIM_BlockStatisticsManifestCollection (Provider Defined).

7.8.8 CIM_BlockStatisticsService

The CIM_BlockStatisticsService class provides methods for statistics retrieval and Manifest Collection manipulation.

The CIM_BlockStatisticsService class is subclassed from CIM_Service.

There shall be an instance of the CIM_BlockStatisticsService, if the Block Server Performance Subprofile is implemented. It is not necessary to
support any methods of the service, but the service shall be populated.

The methods that are supported can be determined from the SynchronousMethodsSupported and AsynchronousMethodsSupported properties
of the CIM_BlockStatisticsCapabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 146 describes class CIM_BlockStatisticsService.

Table 145 - SMI Referenced Properties/Methods for CIM_BlockStatisticsManifestCollection (Provider
Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For the default manifest collection, this should be set to "DEFAULT".

IsDefault Mandatory Denotes whether or not this manifest collection is a provider defined
default manifest collection. For the default manifest collection this is set to
"true".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

Table 146 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

OperationalStatus N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

1823

1824

1825

1826

1827
1828

1829
1830

1831

1832

1833

1834

1835

Block Server Performance Subprofile

314

7.8.9 CIM_BlockStorageStatisticalData

The CIM_BlockStorageStatisticalData class defines the block statistics properties that may be kept for an metered element of the block storage
entity (such as a ComputerSystem, StorageVolume, Port or Disk Drive).

CIM_BlockStorageStatisticalData is subclassed from CIM_StatisticalData.

OtherEnabledState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

Started N Optional Not Specified in this version of the Profile.

PrimaryOwnerName N Optional Not Specified in this version of the Profile.

PrimaryOwnerContact N Optional Not Specified in this version of the Profile.

GetStatisticsCollection() Conditional Conditional requirement: Clients can get statistics collections using the
GetStatisticsCollection as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported. Support
for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported
containing '4' (GetStatisticsCollection). This method retrieves all statistics
kept for the profile as directed by a manifest collection.

GetRateStatisticsCollectio
n()

Conditional Conditional requirement: Clients can get statistics collections using the
GetRateStatisticsCollection as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported. Support
for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported
containing '8' (GetRateStatisticsCollection). This method retrieves all rate
statistics kept for the profile as directed by a manifest collection.

CreateManifestCollection() Conditional Conditional requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported. Support
for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported
containing '5' (Manifest Creation). This method is used to create client
defined manifest collections.

AddOrModifyManifest() Conditional Conditional requirement: Clients can modify manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported. Support
for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported
containing '6' (Manifest Modification). This method is used to add or
modify block statistics manifests in a client defined manifest collection.

RemoveManifests() Conditional Conditional requirement: Clients can remove manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported. Support
for this method is conditional on
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported
containing '7' (Manifest Removal). This method is used to remove a block
statistics manifest from a client defined manifest collection.

RequestStateChange() Optional Not Specified in this version of the Profile.

StopService() Optional Not Specified in this version of the Profile.

StartService() Optional Not Specified in this version of the Profile.

Table 146 - SMI Referenced Properties/Methods for CIM_BlockStatisticsService

Properties Flags Requirement Description & Notes

1836

1837
1838

1839

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 315

Instances of this class will exist for each of the metered elements if the 'ElementTypesSupported' property of the
CIM_BlockStatisticsCapabilities indicates that the metered element is supported. For example, 'Computer System' is identified in the
'ElementTypesSupported' property, then this indicates support for metering of the Top level computer system or 'Component Computer System'.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 147 describes class CIM_BlockStorageStatisticalData.

Table 147 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes

InstanceID Mandatory The InstanceID for BlockStorageStatisticalData instance shall be unique
across all instances of the BlockStorageStatisticalData class.

StatisticTime Mandatory Time statistics table by object was last updated (Time Stamp in CIM 2.2
specification format).

RateIntervalStartTime Optional The start time for the rate data interval. Rate indicates the number of data
points per second - for example, number of read I/Os per second.

RateIntervalEndTime Optional The end time for the rate data interval.

ElementType Mandatory This value is required AND current version of SMI-S specifies the following
values:

ValueMap {"0", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"}

Values { "Unknown", "Computer System", "Front-end Computer System",
"Peer Computer System", "Back-end Computer System", "Front-end Port",
"Back-end Port", "Volume", "Extent", "Disk Drive", "Arbitrary LUs" ,
"Remote Replica Group"}.

RateElementType Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23. This value is
required AND current version of SMI-S specifies the following values:

ValueMap {"0", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "24"}

Values { "Unknown", "Computer System Rate", "Front-end Computer
System Rate", "Peer Computer System Rate", "Back-end Computer
System Rate", "Front-end Port Rate", "Back-end Port Rate", "Volume
Rate", "Extent Rate", "Disk Drive Rate", "Arbitrary LUs Rate" , "Remote
Replica Group Rate"}.

TotalIOs Mandatory The cumulative count of I/Os for the object.

KBytesTransferred Conditional Conditional requirement: This property is required if the ElementType is 2,
6, 8, 9, 10, 11 or 12. The cumulative count of data transferred in KBytes
(1024bytes = 1KByte).

Note: This is mandatory for the Top level computer system, Front-end
Ports, Volumes, Extents, Disk Drives, ArbitraryLUs and Remote Replica
Groups, but is optional for the component computer systems and Back-
end Ports.

IOTimeCounter Optional The cumulative elapsed I/O time(number of Clock Tick Intervals) for all
cumulative I/Os as defined in "Total I/Os" above. I/O response time is
added to this counter at the completion of each measured I/O using
ClockTickInterval units. This value can be divided by number of IOs to
obtain an average response time.

Note: This is not SPECIFIED for CompositeExtents, ArbitraryLUs or
Remote Replica Groups..

1840
1841
1842

1843

1844

1845

1846

1847

Block Server Performance Subprofile

316

ReadIOs Conditional Conditional requirement: This property is required if the ElementType is 3,
4, 8 or 10. The cumulative count of all reads.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems, Volumes and Disk Drives, but it is optional for the Top
level computer system.

Note: This is not specified for Ports, CompositeExtents, "Back-end"
component computer systems, ArbitraryLUs or Remote Replica Groups..

ReadHitIOs Optional The cumulative count of all read cache hits (Reads from Cache).

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, DiskDrives, ArbitraryLUs or Remote Replica
Groups.

ReadIOTimeCounter Optional The cumulative elapsed time for all Read I/Os) for all cumulative Read I/
Os.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system, Volumes and Disk
Drives.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, ArbitraryLUs or Remote Replica Groups.

ReadHitIOTimeCounter Optional The cumulative elapsed time for all Read I/Os read from cache for all
cumulative Read I/Os.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system and Volumes.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, DiskDrives, ArbitraryLUs or Remote Replica
Groups.

KBytesRead Optional The cumulative count of data read in KBytes (1024bytes = 1KByte).

Note: This is optional for all ComputerSystems, Volumes, and Disk Drives.

Note: This is not specified for Ports, CompositeExtents, ArbitraryLUs or
Remote Replica Groups..

WriteIOs Conditional Conditional requirement: This property is required if the ElementType is 3,
4 or 8. The cumulative count of all writes.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems and Volumes, but it is optional for the Top level
computer system and Disk Drives.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, ArbitraryLUs or Remote Replica Groups.

WriteHitIOs Optional The cumulative count of Write Cache Hits (Writes that went directly to
Cache without blocking).

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, DiskDrives, ArbitraryLUs or Remote Replica
Groups.

WriteIOTimeCounter Optional The cumulative elapsed time for all Write I/Os for all cumulative Writes.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system and Volumes and
Disks Drives.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, ArbitraryLUs or Remote Replica Groups.

Table 147 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 317

WriteHitIOTimeCounter Optional The cumulative elapsed time for all Write I/Os written to cache for all
cumulative Write I/Os.

Note: This is optional for "Front-end" and "Peer" component
ComputerSystems and the Top level computer system and Volumes.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, DiskDrives, ArbitraryLUs or Remote Replica
Groups.

KBytesWritten Optional The cumulative count of data written in KBytes (1024bytes = 1KByte).

Note: This is optional for all ComputerSystems, Volumes and Disk Drives.

Note: This is not specified for Ports, CompositeExtents, ArbitraryLUs or
Remote Replica Groups.

IdleTimeCounter Optional The cumulative elapsed idle time using ClockTickInterval units
(Cumulative Number of Time Units for all idle time in the array).

Note: This is optional for "Back-end" component ComputerSystems, Front
end Ports, Volumes, Extents and Disk Drives.

Note: This is not specified for back-end Ports, Top level computer system,
"Front-end" and "Peer" component computer systems, ArbitraryLUs or
Remote Replica Groups.

MaintOp Optional The cumulative count of all disk maintenance operations (SCSI
commands such as: Verify, skip-mask, XOR read, XOR write-read, etc.)
This is needed to understand the load on the disks that may interfere with
normal read and write operations.

Note: This is optional for Extents and Disk Drives.

Note: This is not specified for ComputerSystems, Ports, Volumes,
ArbitraryLUs or Remote Replica Groups.

MaintTimeCounter Optional The cumulative elapsed disk maintenance time. maintenance response
time is added to this counter at the completion of each measured
maintenance operation using ClockTickInterval units.

Note: This is optional for Extents and Disk Drives.

Note: This is not specified for ComputerSystems, Ports, Volumes,
ArbitraryLUs or Remote Replica Groups.

TotalIOsRate Optional (real32) The count of I/Os per second for the object.

KBytesTransferred Conditional Conditional requirement: This property is required if the RateElementType
is 13, 17, 19, 20, 21, 22 or 23. (real32) The count of data transferred in
Kbytes per second (1024bytes = 1KByte).

Note: This is mandatory for the Top level computer system, Front-end
Ports, Volumes, Extents, Disk Drives, ArbitraryLUs and Remote Replica
Groups, but is optional for the component computer systems and Back-
end Ports.

ReadIOsRate Conditional Conditional requirement: This property is required if the RateElementType
is 14, 15, 19 or 21. (real32) The count of all reads per second.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems, Volumes and Disk Drives, but it is optional for the Top
level computer system.

Note: This is not specified for Ports, CompositeExtents, "Back-end"
component computer systems, ArbitraryLUs or Remote Replica Groups..

Table 147 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes

Block Server Performance Subprofile

318

ReadHitIOsRate Conditional Conditional requirement: This property is required if the RateElementType
is 14, 15 or 19. (real32) The count of all read cache hits (Reads from
Cache) per second.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems, and Volumes, but it is optional for the Top level
computer system.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, DiskDrives, ArbitraryLUs or Remote Replica
Groups.

KBytesReadRate Optional (real32) The count of data read in Kbytes per second (1024bytes =
1KByte).

Note: This is optional for all ComputerSystems, Volumes, and Disk Drives.

Note: This is not specified for Ports, CompositeExtents, ArbitraryLUs or
Remote Replica Groups..

WriteIOsRate Conditional Conditional requirement: This property is required if the RateElementType
is 14, 15 or 19. (real32) The cumulative count of all writes per second.

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems and Volumes, but it is optional for the Top level
computer system and Disk Drives.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, ArbitraryLUs or Remote Replica Groups.

WriteHitIOsRate Conditional Conditional requirement: This property is required if the RateElementType
is 14, 15 or 19. (real32) The count of Write Cache Hits per second (Writes
that went directly to Cache).

Note: This is mandatory for "Front-end" and "Peer" component
ComputerSystems and Volumes, but it is optional for the Top level
computer system.

Note: This is not specified for "Back-end" component computer systems,
Ports, CompositeExtents, DiskDrives, ArbitraryLUs or Remote Replica
Groups.

KBytesWrittenRate Optional (real32) The count of data written in Kbytes per second (1024bytes =
1KByte).

Note: This is optional for all ComputerSystems, Volumes and Disk Drives.

Note: This is not specified for Ports, CompositeExtents, ArbitraryLUs or
Remote Replica Groups.

MaintOpRate Optional (real32) The cumulative count of all disk maintenance operations per
second (SCSI commands such as: Verify, skip-mask, XOR read, XOR
write-read, etc).This is needed to understand the load on the disks that
may interfere with normal read and write operations.

Note: This is optional for Extents and Disk Drives.

Note: This is not specified for ComputerSystems, Ports, Volumes,
ArbitraryLUs or Remote Replica Groups.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

StartStatisticTime N Optional Not Specified in this version of the Profile.

ResetSelectedStats() Optional Not Specified in this version of the Profile.

Table 147 - SMI Referenced Properties/Methods for CIM_BlockStorageStatisticalData

Properties Flags Requirement Description & Notes

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 319

7.8.10 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,CIM_BlockStatisticsService) and their Capabilities (e.g.,
CIM_BlockStatisticsCapabilities). Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the
existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement shall exist and provides
the context for the Capabilities.

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 148 describes class CIM_ElementCapabilities.

7.8.11 CIM_ElementStatisticalData (Back end Port Stats)

CIM_ElementStatisticalData is an association that relates a back end port to its statistics. Note that the cardinality of the ManagedElement
reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the referenced
instance of BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative to a specific
back end port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Back end port statistics support.

Table 149 describes class CIM_ElementStatisticalData (Back end Port Stats).

7.8.12 CIM_ElementStatisticalData (Component System Stats)

CIM_ElementStatisticalData is an association that relates a component ComputerSystem to its statistics. Note that the cardinality of the
ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the
referenced instance of BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific component ComputerSystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Table 148 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element (BlockStatisticsService).

Capabilities Mandatory The Capabilities instance associated with the BlockStatisticsService.

Table 149 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Back end Port Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a back end port for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the Port.

1848

1849
1850
1851
1852
1853

1854

1855

1856

1857

1858

1859

1860

1861
1862
1863
1864

1865

1866

1867

1868

1869

Block Server Performance Subprofile

320

Deleted By: Static

Requirement: Component Systems statistics support.

Table 150 describes class CIM_ElementStatisticalData (Component System Stats).

7.8.13 CIM_ElementStatisticalData (Disk Stats)

CIM_ElementStatisticalData is an association that relates a StorageExtent (Disk Drive) to its statistics. Note that the cardinality of the
ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the
referenced instance of BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific StorageExtent of a Disk Drive.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Disk Drive statistics support.

Table 151 describes class CIM_ElementStatisticalData (Disk Stats).

7.8.14 CIM_ElementStatisticalData (Extent Stats)

CIM_ElementStatisticalData is an association that relates a StorageExtent (CompositeExtent) to its statistics. Note that the cardinality of the
ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the
referenced instance of BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific StorageExtent.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Extent statistics support.

Table 150 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Component System Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a component ComputerSystem for which the Statistics
apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the ComputerSystem.

Table 151 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Disk Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a Disk Drive StorageExtent for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the Disk Drive.

1870

1871

1872
1873
1874
1875

1876

1877

1878

1879

1880

1881

1882

1883
1884
1885
1886

1887

1888

1889

1890

1891

1892

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 321

Table 152 describes class CIM_ElementStatisticalData (Extent Stats).

7.8.15 CIM_ElementStatisticalData (Front end Port Stats)

CIM_ElementStatisticalData is an association that relates a target port to its statistics. Note that the cardinality of the ManagedElement
reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the referenced
instance of BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative to a specific
target port.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Front-end port statistics support.

Table 153 describes class CIM_ElementStatisticalData (Front end Port Stats).

7.8.16 CIM_ElementStatisticalData (Logical Disk Stats)

CIM_ElementStatisticalData is an association that relates a LogicalDisk to its statistics. Note that the cardinality of the ManagedElement
reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the referenced
instance of BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative to a specific
logical disk.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Volume statistics support in Volume Management Profiles.

Table 154 describes class CIM_ElementStatisticalData (Logical Disk Stats).

Table 152 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Extent Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a StorageExtent for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the StorageExtent.

Table 153 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Front end Port Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a target port for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the Port.

Table 154 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Logical Disk Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a LogicalDisk for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the LogicalDisk.

1893

1894
1895
1896
1897

1898

1899

1900

1901

1902

1903

1904

1905
1906
1907
1908

1909

1910

1911

1912

1913

1914

1915

1916
1917
1918
1919

1920

1921

1922

Block Server Performance Subprofile

322

7.8.17 CIM_ElementStatisticalData (Remote Copy Stats)

CIM_ElementStatisticalData is an association that relates a Network to its statistics. Note that the cardinality of the ManagedElement reference
is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the referenced instance of
BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative to a specific Network.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Remote Copy statistics support.

Table 155 describes class CIM_ElementStatisticalData (Remote Copy Stats).

7.8.18 CIM_ElementStatisticalData (Top Level System Stats)

CIM_ElementStatisticalData is an association that relates a top level ComputerSystem to its statistics. Note that the cardinality of the
ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the
referenced instance of BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative
to a specific ComputerSystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Top level system statistics support.

Table 156 describes class CIM_ElementStatisticalData (Top Level System Stats).

7.8.19 CIM_ElementStatisticalData (Volume Stats)

CIM_ElementStatisticalData is an association that relates a StorageVolume to its statistics. Note that the cardinality of the ManagedElement
reference is Min(1), Max(1). This cardinality mandates the instantiation of the CIM_ElementStatisticalData association for the referenced
instance of BlockStatistics. ElementStatisticalData describes the existence requirements and context for the BlockStatistics, relative to a specific
volume.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static

Modified By: Static

Table 155 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Remote Copy Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a Network (remote replication group) for which the Statistics
apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the Network.

Table 156 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Top Level System Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to the top level ComputerSystem for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the ComputerSystem.

1923

1924

1925

1926

1927
1928
1929

1930

1931

1932

1933

1934

1935

1936

1937
1938
1939
1940

1941

1942

1943

1944

1945

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 323

Deleted By: Static

Requirement: Volume statistics support or Referenced from Array - StorageVolume is mandatory or
Referenced from Storage Virtualizer - StorageVolume is mandatory.

Table 157 describes class CIM_ElementStatisticalData (Volume Stats).

7.8.20 CIM_HostedCollection (Client Defined)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a Collection that only has meaning
in the context of a System, and/or whose elements are restricted by the definition of the System. In the Block Server Performance Subprofile, it
is used to associate a client defined BlockStatisticsManifestCollections to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Clients can create manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported or .

Table 158 describes class CIM_HostedCollection (Client Defined).

7.8.21 CIM_HostedCollection (Default)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a Collection that only has meaning
in the context of a System, and/or whose elements are restricted by the definition of the System. In the Block Server Performance Subprofile, it
is used to associate the default BlockStatisticsManifestCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 157 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Volume Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a StorageVolume for which the Statistics apply.

Stats Mandatory A reference to the BlockStorageStatisticalData that hold the statistics for
the StorageVolume.

Table 158 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory A client defined BlockStatisticsManifestCollection.

1946

1947

1948
1949
1950
1951

1952

1953

1954

1955

1956

1957

1958

1959

1960
1961
1962

1963

1964

1965

1966

1967

1968

1969

Block Server Performance Subprofile

324

Table 159 describes class CIM_HostedCollection (Default).

7.8.22 CIM_HostedCollection (Provider Supplied)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a Collection that only has meaning
in the context of a System, and/or whose elements are restricted by the definition of the System. In the Block Server Performance Subprofile, it
is used to associate the StatisticsCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 160 describes class CIM_HostedCollection (Provider Supplied).

7.8.23 CIM_HostedService

CIM_HostedService is an association between a Service (CIM_BlockStatisticsService) and the System (ComputerSystem) on which the
functionality resides. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the
LogicalDevices or SoftwareFeatures that implement the Service are located.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 161 describes class CIM_HostedService.

7.8.24 CIM_MemberOfCollection (Member of client defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in a client defined manifest collection.

Table 159 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The provider defined BlockStatisticsManifestCollection.

Table 160 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The StatisticsCollection.

Table 161 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Service hosted on the System.

1970

1971
1972
1973

1974

1975

1976

1977

1978

1979

1980

1981
1982
1983

1984

1985

1986

1987

1988

1989

1990

1991
1992
1993

1994

1995

1996

1997

1998

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 325

Created By: Extrinsic: AddOrModifyManifest

Modified By: Static

Deleted By: Extrinsic: RemoveManifest

Requirement: Clients can modify manifests as identified by
CIM_BlockStatisticsCapabilities.SynchronousMethodsSupported.

Table 162 describes class CIM_MemberOfCollection (Member of client defined collection).

7.8.25 CIM_MemberOfCollection (Member of pre-defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 163 describes class CIM_MemberOfCollection (Member of pre-defined collection).

7.8.26 CIM_MemberOfCollection (Member of statistics collection)

This use of MemberOfCollection is to collect all BlockStorageStatisticalData instances (in the StatisticsCollection). Each association is created
as a side effect of the metered object getting created.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 162 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined
collection)

Properties Flags Requirement Description & Notes

Collection Mandatory A client defined manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.

Table 163 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-defined col-
lection)

Properties Flags Requirement Description & Notes

Collection Mandatory The provider defined default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
2017

2018

2019

Block Server Performance Subprofile

326

Table 164 describes class CIM_MemberOfCollection (Member of statistics collection).

7.8.27 CIM_StatisticsCollection

The CIM_StatisticsCollection collects all block statistics kept by the profile. There is one instance of the CIM_StatisticsCollection class and all
individual element statistics can be accessed by using association traversal(using MemberOfCollection) from the StatisticsCollection.

CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 165 describes class CIM_StatisticsCollection.

7.8.28 SNIA_BlockStatisticsCapabilities

Experimental. This is a subclass of CIM_BlockStatisticsCapabilities that adds the SupportedFeatures property.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 164 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-
tion)

Properties Flags Requirement Description & Notes

Collection Mandatory The default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.

Table 165 - SMI Referenced Properties/Methods for CIM_StatisticsCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SampleInterval Mandatory Minimum recommended polling interval for an array, storage virtualizer
system or volume manager. It is set by the provider and cannot be
modified.

TimeLastSampled Mandatory Time statistics table by object was last updated (Time Stamp in SMI 2.2
specification format).

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

2020

2021

2022

2023

2024
2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 327

Table 166 describes class SNIA_BlockStatisticsCapabilities.

7.8.29 SNIA_BlockStatisticsManifest (Client Defined)

Experimental. This is a subclass of CIM_BlockStatisticsManifest that adds the CSVSequence property.

Created By: Extrinsic: AddOrModifyManifest

Modified By: Extrinsic: AddOrModifyManifest

Deleted By: Extrinsic: RemoveManifest

Requirement: Optional

Table 167 describes class SNIA_BlockStatisticsManifest (Client Defined).

Table 166 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

ElementTypesSupported Mandatory

SynchronousMethodsSupp
orted

N Mandatory

AsynchronousMethodsSup
ported

Optional

ClockTickInterval Mandatory

SupportedFeatures Optional This is an array identifying features supported by the implementation. The
valid values are '2' (none) or '3' (Client Defined Sequence).

Table 167 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

ElementType Mandatory

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCount
er

Mandatory

IncludeReadHitIOTimeCou
nter

Mandatory

IncludeKBytesRead Mandatory

IncludeWriteIOs Mandatory

2038

2039

2040

2041

2042

2043

2044

2045

Block Server Performance Subprofile

328

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounte
r

Mandatory

IncludeWriteHitIOTimeCou
nter

Mandatory

IncludeKBytesWritten Mandatory

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

CSVSequence N Mandatory An array of strings that define a sequence of BlockStorageStatisticalData
property names. The sequence is the sequence that data is to be returned
on a GetStatisticsCollection request using this manifest. The first three
elements of this array should be "InstanceID", "ElementType" and
"StatisticsTime" to allow applications to match the ElementType of the
Manifest with the BlockStorageStatisticalData CSV record. For
BlockStatisticsManifest (Client Defined) this shall be the sequence desired
by the client.

RateElementType Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeRateIntervalStartTi
me

Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeRateIntervalEndTi
me

Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeTotalIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeKBytesTransferred
Rate

Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeReadIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeReadHitIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeKBytesReadRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeWriteIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeWriteHitIOsRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

IncludeKBytesWrittenRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

Table 167 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

 Block Server Performance Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 329

7.8.30 SNIA_BlockStatisticsManifest (Provider Support)

Experimental. This is a subclass of CIM_BlockStatisticsManifest that adds the CSVSequence property.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 168 describes class SNIA_BlockStatisticsManifest (Provider Support).

IncludeMaintOpRate Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23.

CSVRateSequence N Conditional Conditional requirement: This property is required if the
RateElementTypesSupported contains 13 through 23. An array of strings
that define a sequence of BlockStorageStatisticalData property names.
The sequence is the sequence that data is to be returned on a
GetRateStatisticsCollection request using this manifest. The first four
elements of this array should be "InstanceID", "RateElementType",
"RateIntervalStartTime" to allow applications to match the
RateElementType of the Manifest with the BlockStorageStatisticalData
CSV record. For BlockStatisticsManifest (Client Defined) this shall be the
sequence desired by the client.

Table 168 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

ElementType Mandatory

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeKBytesTransferred Mandatory

IncludeIOTimeCounter Mandatory

IncludeReadIOs Mandatory

IncludeReadHitIOs Mandatory

IncludeReadIOTimeCount
er

Mandatory

IncludeReadHitIOTimeCou
nter

Mandatory

IncludeKBytesRead Mandatory

IncludeWriteIOs Mandatory

IncludeWriteHitIOs Mandatory

IncludeWriteIOTimeCounte
r

Mandatory

Table 167 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

2046

2047

2048

2049

2050

2051

2052

Block Server Performance Subprofile

330

STABLE

IncludeWriteHitIOTimeCou
nter

Mandatory

IncludeKBytesWritten Mandatory

IncludeIdleTimeCounter Mandatory

IncludeMaintOp Mandatory

IncludeMaintTimeCounter Mandatory

CSVSequence N Mandatory An array of strings that define a sequence of BlockStorageStatisticalData
property names. The sequence is the sequence that data is to be returned
on a GetStatisticsCollection request using this manifest. The first three
elements of this array shall be "InstanceID", "ElementType" and
"StatisticsTime" to allow applications to match the ElementType of the
Manifest with the BlockStorageStatisticalData CSV record. For
BlockStatisticsManifest (Provider Support) this shall be the default
sequence provided by the provider.

Table 168 - SMI Referenced Properties/Methods for SNIA_BlockStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 331

EXPERIMENTAL

8 CKD Block Services Profile

8.1 Description

8.1.1 Overview

The CKD Block Services Profile models CKD (Count Key Data) storage of a block server storage system.
CKD storage is storage that is formatted to support Count and Key fields to support mainframe access.
CKD storage is at the StorageVolume level (which means the StorageVolume is access using single byte
FC protocols) or at the StoragePool level (that is, a StoragePool may be dedicated to holding CKD
StorageVolumes).

The CKD Block Services Profile is a component profile (subprofile) that provides a way for storage
profiles to model mainframe storage. With this support a client will be able to distinguish non-CKD
storage that is provided for non-CKD access from CKD storage that is provided for mainframe access.
This is an important distinction for management, since storage that is available to one (e.g., SCSI access)
is typically not usable by the other (e.g., mainframe access), although there are some devices that do
support sharing a volume across CKD and non-CKD hosts. Similarly, management functions for other
functions of block servers (e.g., masking and mapping) are somewhat different for CKD storage than non-
CKD storage. So, it is important for management applications to be aware of the distinctions.

The CKD Block Services requires and specializes the Block Services Package. That is, the functions of
the Block Services Package apply for CKD storage as well as non-CKD storage. The CKD Block Services
Profile extends the model for CKD storage.

8.1.2 Implementation

8.1.2.1 Block Services Support for CKD Storage

Some profile implementations may support Extended Count Key Data formatted storage. This support is
provided using existing classes, but adds some new properties as illustrated in Figure 47: "Block
Services Support for Count Key Data Storage".

Figure 47 - Block Services Support for Count Key Data Storage

S N I A _ S t o r a g e V o lu m e

N a m e
N a m e F o r m a t = ” 1 2 "

D a t a O r g a n i z a t i o n = ” C K D ”
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v i c e
E x t e n t T y p e = ” 4 "

S t o r a g e P o o l

A l l o c a t e d F r o m S t o r a g e P o o l

E l e m e n t S e t t i n g D a t a

S N I A _ S t o r a g e S e t t i n g

D a t a O r g a n i z a t i o n = ” C K D ”
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v i c e
E x t e n t T y p e = ” 4 "

C o m p u t e r S y s t e m :

S y s t e m D e v i c e

S N I A _ S t o r a g e C a p a b i l i t i e s

S u p p o r t e d D a t a O r g a n i z a t i o n s [] =
a n y t h i n g | “ C K D ”

S u p p o r t e d E x t e n t T y p e s []

E le m e n t C a p a b i l i t i e s

 L o g i c a lD i s k

N a m e
N a m e F o r m a t < “ 1 2 ”

D a t a O r g a n i z a t i o n = N U L L

E le m e n t S e t t i n g D a t a

S t o r a g e S e t t i n g

D a t a O r g a n i z a t i o n = N U L L

S y s t e m D e v i c e
S N I A _ S t o r a g e V o lu m e
(i n t e r m e d ia t e V o lu m e)

N a m e
N a m e F o r m a t < “ 1 2 ”

D a t a O r g a n i z a t i o n = ” C K D ”
C U I m a g e

S u b s y s t e m I D
E m u la t e d D e v i c e
E x t e n t T y p e = ” 3 "

O t h e r I d e n t i f y i n g I n f o = N E D

S y s t e m D e v i c e

S N I A _ S t o r a g e S e t t i n g

D a t a O r g a n i z a t i o n = ” C K D ”
C U I m a g e

S u b s y s t e m I D
E m u l a t e d D e v i c e
E x t e n t T y p e = ” 3 "

E le m e n t S e t t i n g D a t a

A l l o c a t e d F r o m S t o r a g e P o o l

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

CKD Block Services Profile

332

CKD storage may apply to StoragePools (via StorageCapabilities), StorageVolumes or LogicalDisks. CKD
storage is indicated by the DataOrganization property in StorageVolume and LogicalDisk classes. For
SMI-S the values of this property shall be “4” for CKD Volumes (or LogicalDisks). The capability of a
StoragePool to support either (or both) non-CKD or CKD volumes is indicated by the
SupportedDataOrganizations[] property of StorageCapabilities associated to the StoragePool.

DataOrganization can be specified on StorageSetting to indicate that an CKD Volume is desired on either
of the Volume creation methods. If this property is left as null, it will be set according to the StoragePool
that is being used. If the StoragePool supports both non-CKD and CKD storage, then the default will be to
create a non-CKD volume (or LogicalDisk) for backward compatibility. This property exists in
StorageVolume, LogicalDisk, and StorageSetting classes.

An additional difference between non-CKD and CKD Volumes are the NameFormats supported. For CKD
Volumes, the volumes follow a Node Element Descriptor (NED) format. For non-CKD volumes there are a
variety of formats that may be supported.

Certain instrumentation supports the use of a volume for both CKD and non-CKD hosts. These volumes
are called Intermediate volumes in this specification. A StorageVolume can be classified as non-CKD,
CKD, or both. The StorageVolume.DataOrganization property indicates the data format of the volume,
while the new StorageVolume ExtentType property indicates the type of host access allowed (CKD, non-
CKD, both). Since this volume is shared across CKD and non-CKD hosts, it has a different name for each
host. The Name property is used by Intermediate volumes for non-CKD hosts to provide for backwards
compatibility, and the OtherIdentifyingInfo[] and IdentifyingDescriptions[] holds the CKD name and format
information.

There is also a CUImage property on both the SNIA_StorageVolume and the SNIA_StorageSetting. In the
SB architecture and CKD access the CKD Volume has a “home” ProtocolController (in a Masking and
Mapping sense). This property is covered in more detail in (need a Masking and Mapping reference here).
But an CKD Volume cannot exist without an associated CUImage (ProtocolController). This is
accommodated by the CUImage property on StorageSetting. That is, on creation of an CKD Volume the
CUImage parameter is passed as part of the StorageSetting for the Volume being created. The CUImage
in the SNIA_StorageSetting is the CUImage requested and the CUImage in the SNIA_StorageVolume is
the CUImage assigned. CUImage is not supported for LogicalDisks.

A host can see more than 16 CU images by changing the SSID associated with the image. For example,
there can be two CU images with the same image number but with different SSIDs. Thus, the same CU
image numbers can be in use multiple times within the array and the host as long as each image has a
unique SubsystemID. The second CU image with the same number is known as a “split."

Mainframe systems use the SubsystemID to locate physical disk controllers, and all devices in the CU
image shall have the same SubsystemID. If the CU image that is specified does not exist yet, the
SubsystemID of the first device is used as the SubsystemID of the CU image. If the CU image already
exists and contains other devices (and thus a SubsystemID), the SubsystemIDs of the newly mapped
devices are changed to match the existing SubsystemID of the CU image.

8.1.2.2 Use Cases for CKD Storage

8.1.2.2.1 Summarize Pools and Capacities by SupportedDataOrganizations

Primordial StoragePools may be capable of supporting non-CKD, CKD or both non-CKD and CKD
storage. This can be determined by inspecting the SupportedDataOrganizations property of the
StorageCapabilities of the primordial StoragePool. If the property is NULL or not “4”, then the pool only
supports non-CKD storage and all concrete StoragePools allocated from this Primordial StoragePool shall
only support non-CKD storage. Similarly, if the property only identifies “4” (Count Key Data), then the pool
only supports CKD storage and all concrete StoragePools allocated from this primordial StoragePool shall
only support CKD storage.

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 333

If the StorageCapabilities.SupportedDataOrganizations property for primordial StoragePool identifies
both “4” (Count Key Data) and something else (including NULL), then the storage allocated from the pool
can be either non-CKD or CKD storage. It will be necessary to follow the AllocatedFromStoragePool
association to the concrete StoragePools above the primordial StoragePool. As the client moves up the
AllocatedFromStoragePool association, it would keep track of the SpaceConsumed value in the
AllocatedFromStoragePool. If all concrete StoragePools are also capable of both non-CKD and CKD
storage, then the primordial capacity of the storage is considered capable of supporting both non-CKD
and CKD Volumes (or LogicalDisks).

If, however, the client reaches a concrete StoragePool that is only capable of supporting non-CKD or CKD
storage, then the SpaceConsumed value by that StoragePool would be considered either non-CKD or
CKD. It may be necessary to “pro-rate” the SpaceConsumed value to determine the actual primordial
storage that has been allocated to non-CKD or CKD.

8.1.2.2.2 Find the Capacity of CKD Capable Storage

Building on the previous use case, a client would determine the capacity of primordial StoragePools that
are only CKD capable (that is, StorageCapabilities.SupportedDataOrganization = “4” and only “4”. This
capacity is dedicated to CKD storage.

Next the client would consider primordial StoragePools that are capable of both non-CKD and CKD
storage. The client would inspect the concrete StoragePools that are allocated from those primordial
StoragePools. If any are identified as CKD only, the SpaceConsumed property on the
AllocatedFromStoragePool will indicate the primordial storage that is dedicated to CKD.

If the concrete StoragePool just above the primordial StoragePool is also capable of supporting non-CKD
or CKD storage, divide the SpaceConsumed value by the TotalManagedSpace value of the concrete
StoragePool and save this “multiplier”.

The client would continue executing the previous step until it finds a concrete StoragePool that only
supports non-CKD storage. At this point, the client would multiply all the multipliers it has saved away to
derive the amount of primordial space that has been dedicated to non-CKD storage. This value would be
subtracted from the TotalManagedSpace value of the primordial StoragePool to determine the primordial
capacity available for CKD storage. The client would execute this logic on all upper level concrete
StoragePools that are identified as non-CKD only to get the remaining primordial capacity available for
CKD storage.

8.1.2.2.3 Create an CKD Volume

To create an CKD Volume (or LogicalDisk) a client would create a StorageSetting (or select a
SettingAssociated to Capabilities) with DataOrganization set to “4” and the CUImage set to a valid
CUImage value.

With the appropriate CKD Volume Setting the client would issue either
CreateOrModifyElementFromStoragePool or CreateOrModifyElementFromElements.

8.2 Health and Fault Management Consideration

No change for CKD.

8.3 Cascading Considerations

No change for CKD.

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

CKD Block Services Profile

334

8.4 Supported Profiles, Subprofiles, and Packages

Table 169 describes the supported profiles for CKD Block Services.

8.5 Methods of the Profile

All methods of the Block Services Package should work for CKD storage (subject to restrictions of
particular profile implementations).

8.6 Client Considerations and Recipes

No change for CKD.

8.7 Registered Name and Version

CKD Block Services version 1.5.0 (Component Profile)

CIM Schema Version: 2.13

Specializes SNIA Block Services version 1.6.1

8.8 CIM Elements

Table 170 describes the CIM elements for CKD Block Services.

Table 169 - Supported Profiles for CKD Block Services

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.6.0 Optional

Block Services SNIA 1.6.1 Mandatory

Table 170 - CIM Elements for CKD Block Services

Element Name Requirement Description

8.8.1 CIM_AllocatedFromStoragePool (Pool from Pool) Mandatory AllocatedFromStoragePool.

8.8.2 CIM_AllocatedFromStoragePool (Volume or
LogicalDisk from Pool)

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. AllocatedFromStoragePool.

8.8.3 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StorageVolume or
LogicalDisk)

Optional Expressed the ability for the element to be named or have
its state changed.

8.8.4 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StoragePool)

Optional Expressed the ability for the element to be named or have
its state changed.

8.8.5 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Experimental. Associates the conformant Array
ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 335

8.8.6 CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService)

Optional Associates StorageCapabilities with
StorageConfigurationService. This StorageCapabilities
shall represent the capabilities of the entire
implementation.

8.8.7 CIM_ElementCapabilities (StorageCapabilities to
StoragePool)

Mandatory Associates StorageCapabilities with StoragePool. This
StorageCapabilities shall represent the capabilities of the
StoragePool to which it is associated.

8.8.8 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities with
StorageConfigurationService.

8.8.9 CIM_ElementCapabilities
(StorageConfigurationCapabilities to concrete
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

8.8.10 CIM_ElementCapabilities
(StorageConfigurationCapabilities to primordial
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

8.8.11 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StoragePool)

Optional Deprecated. Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

8.8.12 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StorageVolume or LogicalDisk)

Optional Associates EnabledLogicalElementCapabilities with
StorageConfigurationService.

8.8.13 CIM_ElementSettingData Mandatory

8.8.14 CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Optional Deprecated. This class is used to express the naming and
possible requested state change possibilities for storage
elements.

8.8.15 CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Optional This class is used to express the naming and possible
requested state change possibilities for storage pools.

8.8.16 CIM_FilterCollection (Block Services Predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

8.8.17 CIM_FilterCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental. This is a collection of Lifecycle
IndicationFilters defined by the Block Services Profile.

8.8.18 CIM_HostedCollection (Block Services to
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental.

8.8.19 CIM_HostedCollection (System to predefined
IndicationFilters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

8.8.20 CIM_HostedService Conditional Conditional requirement: Support for
StorageConfigurationService.

8.8.21 CIM_HostedStoragePool Mandatory

8.8.22 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

Table 170 - CIM Elements for CKD Block Services

Element Name Requirement Description

131

132

CKD Block Services Profile

336

8.8.23 CIM_IndicationFilter (Logical Disk Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
LogicalDisk instance.

8.8.24 CIM_IndicationFilter (Logical Disk Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
LogicalDisk instance.

8.8.25 CIM_IndicationFilter (Logical Disk
OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

8.8.26 CIM_IndicationFilter (Storage Pool Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
StoragePool instance.

8.8.27 CIM_IndicationFilter (Storage Pool Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
StoragePool instance.

8.8.28 CIM_IndicationFilter (Storage Pool
TotalManagedSpace)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in
TotalManagedSpace for StoragePool instances.

8.8.29 CIM_IndicationFilter (Storage Volume Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
StorageVolume instance.

8.8.30 CIM_IndicationFilter (Storage Volume Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
StorageVolume instance.

8.8.31 CIM_IndicationFilter (Storage Volume
OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolume instances.

Table 170 - CIM Elements for CKD Block Services

Element Name Requirement Description

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 337

8.8.32 CIM_IndicationFilter (WQL Logical Disk
OperationalStatus)

Conditional Deprecated. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance for changes
in the OperationalStatus of LogicalDisk instances.

8.8.33 CIM_IndicationFilter (WQL Storage Volume
OperationalStatus)

Conditional Deprecated. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance for changes
in the OperationalStatus of StorageVolume instances.

8.8.34 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. A LogicalDisk is
allocated from a concrete StoragePool. This is required if
the parent profile supports LogicalDisks.

8.8.35 CIM_MemberOfCollection (Block Services Filter
Collection to FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Block Services predefined FilterCollection to the
FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

8.8.36 CIM_MemberOfCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection to Block
Services Filters)

Optional Experimental. This associates the Block Services
ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Block Services Profile.

8.8.37 CIM_MemberOfCollection (Predefined Filter
Collection to Block Services Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Block Services predefined FilterCollection to the
predefined Filters supported by the implementation.

8.8.38 CIM_OwningJobElement Conditional Conditional requirement: Support for Job Control profile.

8.8.39 CIM_StorageConfigurationCapabilities (Concrete) Conditional Conditional requirement: Support for the Storage
Relocation profile.

8.8.40 CIM_StorageConfigurationCapabilities (Global) Conditional Conditional requirement: Support for
StorageConfigurationService.

8.8.41 CIM_StorageConfigurationCapabilities (Primordial) Conditional Conditional requirement: Support for the Storage
Relocation profile.

8.8.42 CIM_StorageConfigurationService Optional

8.8.43 CIM_StoragePool (Concrete) Mandatory The concrete StoragePool. A concrete StoragePool shall
be allocated from another StoragePool. It shall be used
for allocating StorageVolumes and LogicalDisks as well
as other concrete StoragePools.

8.8.44 CIM_StoragePool (Empty) Optional An empty StoragePool is a special case of a StoragePool
(Concrete or Primordial) where the StoragePool contains
no capacity.

8.8.45 CIM_StoragePool (Primordial) Mandatory The primordial StoragePool. It is created by the provider
and cannot be deleted or modified. It cannot be used to
allocate any storage element other than concrete
StoragePools.

Table 170 - CIM Elements for CKD Block Services

Element Name Requirement Description

CKD Block Services Profile

338

8.8.46 CIM_StorageSettingWithHints Optional

8.8.47 CIM_StorageSettingsAssociatedToCapabilities Optional This class associates the StorageCapabilities with the
preset setting. Any StorageSetting instance associated
with this association shall work, unmodified, to create a
storage element. The preset settings should not change
overtime and represent possible settings for storage
elements are set of design time rather than runtime. All
StorageSetting instances linked with this association shall
have a ChangeableType of "0" ("Fixed - Not
Changeable").

8.8.48 CIM_StorageSettingsGeneratedFromCapabilities Conditional Conditional requirement: Support for
StorageConfigurationService. This class associates the
StorageCapabilities with the StorageSetting generated
from it via the CreateSetting method. StorageSettings
instances generated in this manner, as identified with this
association, may be removed from the model at any time
by the implementation if the ChangeableType of the
associated setting is set to "2" ("Changeable - Transient").
All StorageSettings associated with this class shall be
changeable, ChangeableType is "2" or "3". Some
implementations may permit the modification of the
ChangeableType property itself on StorageSetting
instances associated via this class. Provided this is
allowed, a client may change the ChangeableType to "3"
("Changeable - Persistent") to have this setting retained
either after generation of the instance or after its
modification by the client. The DefaultSetting property of
the StorageSetting instances linked with this association
is meaningless.

8.8.49 CIM_SystemDevice (System to StorageVolume or
LogicalDisk)

Mandatory Associates top level system from Array, Virtualizer, ... to
StorageVolume or LogicalDisk.

8.8.50 SNIA_StorageCapabilities Mandatory These Capabilities define the capabilities provided by a
CIM_StoragePool. This includes the capability to support
SCSI and/or CKD storage.

8.8.51 SNIA_StorageSetting Mandatory The SNIA_StorageSettings define the settings for a given
StorageVolume (or LogicalDisk). This includes the Setting
for whether or not the volume is SCSI or CKD.

8.8.52 SNIA_StorageVolume Conditional Conditional requirement: Referenced from either Array or
Storage Virtualizer - StorageVolume is mandatory. A
logical unit representing a virtual disk. A StorageVolume is
allocated from a concrete StoragePool. The
StorageVolume is enhanced for CKD.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.26 CIM_IndicationFilter (Storage
Pool Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.27 CIM_IndicationFilter (Storage
Pool Deletion).

Table 170 - CIM Elements for CKD Block Services

Element Name Requirement Description

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 339

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Creation of StorageVolume, if the
StorageVolume storage element is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.29
CIM_IndicationFilter (Storage Volume Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Deletion of StorageVolume, if the
StorageVolume storage element is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.30
CIM_IndicationFilter (Storage Volume Deletion).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Deprecated WQL -Change of status of a
Storage Volume, if Storage Volume is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.33
CIM_IndicationFilter (WQL Storage Volume
OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatu
s

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of status of a Storage Volume,
if Storage Volume is implemented. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.31 CIM_IndicationFilter (Storage
Volume OperationalStatus).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Creation of
LogicalDisk, if the LogicalDisk storage element is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.23 CIM_IndicationFilter (Logical Disk Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deletion of
LogicalDisk, if the LogicalDisk storage element is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.24 CIM_IndicationFilter (Logical Disk Deletion).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deprecated
WQL -Change of status of LogicalDisk, if LogicalDisk is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.32 CIM_IndicationFilter (WQL Logical Disk
OperationalStatus).

Table 170 - CIM Elements for CKD Block Services

Element Name Requirement Description

CKD Block Services Profile

340

8.8.1 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 171 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

8.8.2 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 172 describes class CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. CQL -Change of
status of LogicalDisk, if LogicalDisk is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.25
CIM_IndicationFilter (Logical Disk OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace
<>
PreviousInstance.CIM_StoragePool::TotalManagedSpace

Mandatory CQL -Change of TotalManagedSpace. See section
Storage Management Technical Specification, Part 4
Block Devices, 1.6.1 Rev 6 5.8.28 CIM_IndicationFilter
(Storage Pool TotalManagedSpace).

Table 171 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory Antecedent references the parent pool from which the dependent pool is
allocated.

Dependent Mandatory

Table 172 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Table 170 - CIM Elements for CKD Block Services

Element Name Requirement Description

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 341

8.8.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or Logi-
calDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 173 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageVolume or LogicalDisk).

8.8.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 174 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StoragePool).

8.8.5 CIM_ElementCapabilities (ImplementationCapabilities to System)

Experimental. Associates the conformant Array ComputerSystem to the CIM_ImplementationCapabilities supported by the implementation.

Created By: Static

Antecedent Mandatory

Dependent Mandatory

Table 173 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory A Storage Volume or Logical Disk.

Table 174 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with a storage pool.

ManagedElement Mandatory A reference to an instance of a StoragePool.

Table 172 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)

Properties Flags Requirement Description & Notes

133

134

135

136

137

138

139

140

141

142

143

144

145

146

CKD Block Services Profile

342

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 175 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

8.8.6 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 176 describes class CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService).

8.8.7 CIM_ElementCapabilities (StorageCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 177 describes class CIM_ElementCapabilities (StorageCapabilities to StoragePool).

Table 175 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Array ComputerSystem that has
ImplementationCapabilities.

Table 176 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 177 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 343

8.8.8 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationSer-
vice)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 178 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

8.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 179 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete
StoragePool).

8.8.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 178 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 179 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to concrete StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

CKD Block Services Profile

344

Table 180 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial
StoragePool).

8.8.11 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)

Deprecated. Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for
identifying the capability to provide an element name for storage pools.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 181 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StoragePool).

8.8.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or
LogicalDisk)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying
the capability to provide an element name for storage volumes or logical disks.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 180 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to primordial StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 181 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with an instance of StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 345

Table 182 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk).

8.8.13 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 183 describes class CIM_ElementSettingData.

8.8.14 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)

Deprecated.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 182 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StorageVolume Enabled Capabilities" or "LogicalDisk
Enabled Capacilities" that is associated with an instance of
StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

Table 183 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced setting is a default
setting for the element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced setting is currently
being used in the operation of the element, or that this information is
unknown. Value shall be 0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The StorageSetting or StorageSettingWithHints that is associated with the
Storage Volume or Logical Disk.

202

203

204

205
206

207

208

209

210

211

212

213

214

215
216

217

218

219

220

CKD Block Services Profile

346

Table 184 describes class CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService).

8.8.15 CIM_EnabledLogicalElementCapabilities (For StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 185 describes class CIM_EnabledLogicalElementCapabilities (For StoragePool).

Table 184 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should include one of the following
three values:

StoragePool Enabled Capabilities

StorageVolume Enabled Capabilities

LogicalDisk Enabled Capacilities.

ElementNameEditSupport
ed

Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

Table 185 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should be 'StoragePool Enabled
Capabilities'.

ElementNameEditSupport
ed

Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

221

222

223

224

225

226

227

228

229

230

231

232

233

234

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 347

8.8.16 CIM_FilterCollection (Block Services Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Block Services implementation shall indicate
support for predefined FilterCollections by the SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter
Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 186 describes class CIM_FilterCollection (Block Services Predefined FilterCollection).

8.8.17 CIM_FilterCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection)

Experimental. This is a collection of Lifecycle IndicationFilters defined by the Block Services Profile.

Requirement: Optional

Table 187 describes class CIM_FilterCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection).

8.8.18 CIM_HostedCollection (Block Services to ProfileSpecificLifecycleIndicationFilterCollec-
tion)

Experimental.

Requirement: Optional

Table 186 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Predefined Filter-
Collection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Block Services:Predefined'.

Table 187 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services ProfileSpecifi-
cLifecycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.13
CIM_FilterCollection (StaticFilterCollection).

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Block
Services:ProfileSpecificLifecycleIndicationFilterCollection'.

235

236

237

238

239

240

241

CKD Block Services Profile

348

Table 188 describes class CIM_HostedCollection (Block Services to
ProfileSpecificLifecycleIndicationFilterCollection).

8.8.19 CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 189 describes class CIM_HostedCollection (System to predefined IndicationFilters).

8.8.20 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 190 describes class CIM_HostedService.

8.8.21 CIM_HostedStoragePool

Requirement: Mandatory

Table 188 - SMI Referenced Properties/Methods for CIM_HostedCollection (Block Services to Profile-
SpecificLifecycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the ProfileSpecificLifecycleIndicationFilterCollection for the
Block Services Profile.

Antecedent Mandatory Reference to the 'Top level' System.

Table 189 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indica-
tionFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Block Services.

Antecedent Mandatory Reference to the System of the referencing profile.

Table 190 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting computer system.

Dependent Mandatory The storage configuration service hosted on the computer system.

242

243
244
245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 349

Table 191 describes class CIM_HostedStoragePool.

8.8.22 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 192 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

8.8.23 CIM_IndicationFilter (Logical Disk Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new LogicalDisk
instance. This would typically occur as a result of an invocation of
CreateOrModifyElementFromStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 191 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.

Table 192 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedElementNameC
odeSet

Optional This property indicates the supported code set for the ElementName -- for
example, "Single Byte ASCII", "UTF-8", "ISO 8859-1", etc. See MOF for
details.

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

CKD Block Services Profile

350

Table 193 describes class CIM_IndicationFilter (Logical Disk Creation).

8.8.24 CIM_IndicationFilter (Logical Disk Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a LogicalDisk
instance. This would typically occur as a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 194 describes class CIM_IndicationFilter (Logical Disk Deletion).

Table 193 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 194 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

278

279

280

281

282
283

284

285

286

287

288

289

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 351

8.8.25 CIM_IndicationFilter (Logical Disk OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of LogicalDisk instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 195 describes class CIM_IndicationFilter (Logical Disk OperationalStatus).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 195 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

Table 194 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)

Properties Flags Requirement Description & Notes

290

291
292

293

294

295

296

297

298

299

300

CKD Block Services Profile

352

8.8.26 CIM_IndicationFilter (Storage Pool Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StoragePool
instance. This would typically occur as a result of an invocation of CreateOrModifyStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 196 describes class CIM_IndicationFilter (Storage Pool Creation).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 196 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StoragePool.

Table 195 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)

Properties Flags Requirement Description & Notes

301

302

303

304

305

306

307

308
309

310

311

312

313

314

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 353

8.8.27 CIM_IndicationFilter (Storage Pool Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StoragePool
instance. This would typically occur as a result of an invocation of DeleteStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 197 describes class CIM_IndicationFilter (Storage Pool Deletion).

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 197 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StoragePool.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 196 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)

Properties Flags Requirement Description & Notes

315

316

317
318

319

320

321

322

323

324

CKD Block Services Profile

354

8.8.28 CIM_IndicationFilter (Storage Pool TotalManagedSpace)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in TotalManagedSpace
for StoragePool instances. This would typically occur as a result of an invocation of
CreateOrModifyStoragePool that expands a StoragePool.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 198 describes class CIM_IndicationFilter (Storage Pool TotalManagedSpace).

8.8.29 CIM_IndicationFilter (Storage Volume Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new
StorageVolume instance. This would typically occur as a result of an invocation of
CreateOrModifyElementFromStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Table 198 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManaged-
Space)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolTotalManagedSpace'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace <>
PreviousInstance.CIM_StoragePool::TotalManagedSpace.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

325

326
327

328

329

330

331

332

333

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 355

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 199 describes class CIM_IndicationFilter (Storage Volume Creation).

8.8.30 CIM_IndicationFilter (Storage Volume Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StorageVolume
instance. This would typically occur as a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 199 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

334

335
336

337

338

339

340

341

342

CKD Block Services Profile

356

Table 200 describes class CIM_IndicationFilter (Storage Volume Deletion).

8.8.31 CIM_IndicationFilter (Storage Volume OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of StorageVolume instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 201 describes class CIM_IndicationFilter (Storage Volume OperationalStatus).

Table 200 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 201 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalSta-
tus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

343

344
345

346

347

348

349

350

351

352

353

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 357

8.8.32 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 202 describes class CIM_IndicationFilter (WQL Logical Disk OperationalStatus).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus <>
PreviousInstance.CIM_StorageVolume::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 202 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk Operational-
Status)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskOperationalStatusWQL'.

Table 201 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalSta-
tus)

Properties Flags Requirement Description & Notes

354

355

356

357

358

359

360

361
362

363

364

365

366

367

CKD Block Services Profile

358

8.8.33 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolume instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 203 describes class CIM_IndicationFilter (WQL Storage Volume OperationalStatus).

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_LogicalDisk AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 203 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operation-
alStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Table 202 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk Operational-
Status)

Properties Flags Requirement Description & Notes

368

369

370
371

372

373

374

375

376

377

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 359

8.8.34 CIM_LogicalDisk

LogicalDisks could be formatted as CKD disks. The Properties that are different from what is specified in
the Block Services Package are marked as (Overridden). Properties that are added are marked as
(Added). The class definition specializes the CIM_LogicalDisk definition in the Block Services profile.
Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most
column.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 204 describes class CIM_LogicalDisk.

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageVolume AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 204 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize (overridden) Mandatory The BlockSize would report the number of bytes in a cylinder.

NumberOfBlocks
(overridden)

Mandatory The number of blocks would be the number of cylinders.

ConsumableBlocks
(overridden)

Mandatory The number of usable cylinders.

Table 203 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operation-
alStatus)

Properties Flags Requirement Description & Notes

378

379
380
381

382

383

384

385

386

CKD Block Services Profile

360

8.8.35 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)

Experimental. This associates the Block Services predefined FilterCollection to the FilterCollection for the
autonomous profile (e.g., the Array FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 205 describes class CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection).

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
logical disk when the logical disk relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not compression is
being applied to the volume. When set to "true" the data is compressed.
When set to "false" the data is not compressed.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the volume and at what rate. The possible values are '1'
(None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the compresson is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

DataOrganization (added) Mandatory Supported value for SMI-S is "4" (Count Key Data). Values that are not "4"
are for non-CKD LogicalDisks. CKD LogicalDisks use "4".

Table 205 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Filter Col-
lection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined FilterCollection.

Member Mandatory Reference to the Block Services predefined FilterCollection.

Table 204 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

387

388
389

390

391

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 361

8.8.36 CIM_MemberOfCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollec-
tion to Block Services Filters)

Experimental. This associates the Block Services ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Block Services Profile.

Requirement: Optional

Table 206 describes class CIM_MemberOfCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection to Block Services Filters).

8.8.37 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)

Experimental. This associates the Block Services predefined FilterCollection to the predefined Filters
supported by the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 207 describes class CIM_MemberOfCollection (Predefined Filter Collection to Block Services
Filters).

8.8.38 CIM_OwningJobElement

Conditional on support for Job Control profile.

Requirement: Support for Job Control profile.

Table 208 describes class CIM_OwningJobElement.

Table 206 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Profile-
SpecificLifecycleIndicationFilterCollection to Block Services Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services
ProfileSpecificLifecycleIndicationFilterCollection.

Member Mandatory Reference to the IndicationFilters defined by the Block Services Profile.

Table 207 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Block Services Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Block Services
implementation.

Table 208 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory

392

393

394

395
396

397

398

399

400

401

402

403

404

405

406

407

408

CKD Block Services Profile

362

8.8.39 CIM_StorageConfigurationCapabilities (Concrete)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

Table 209 describes class CIM_StorageConfigurationCapabilities (Concrete).

Table 209 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3|5|6|7 (InExtents or Single InPool or Storage Pool QoS
Change or Storage Pool Capacity Expansion or Storage Pool Capacity
Reduction).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs. This version of the standard recognizes
"2" (Storage Pool Creation), "3" (Storage Pool Deletion), "4" (Storage Pool
Modification), "5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element Modification) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

SupportedStorageElement
Types

Mandatory Lists the type of storage elements that are supported by this
implementation. This version of the standard recognizes '2'
(StorageVolume) or '4' (LogicalDisk).

If thin provisioning is supported, then the following additional
ElementTypes are recognized: "5" (ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool), "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "3" (Storage Pool Deletion), "4" (Storage Pool
Modification), "5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element Modification) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

409

410

411

412

413

414

415

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 363

8.8.40 CIM_StorageConfigurationCapabilities (Global)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 210 describes class CIM_StorageConfigurationCapabilities (Global).

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().
Matches 3|8|14|15|16|17|18 (StorageVolume Creation or LogicalDisk
Creation or StorageVolume To StoragePool Relocation or StoragePool To
StoragePool Relocation or StorageVolume To StorageExtent Relocation or
StoragePool To StorageExtent Relocation LogicalDisk To StorageExtent
Relocation).

SupportedStorageElement
Usage

Optional Indicates the intended usage or any restrictions that may have been
imposed on supported storage elements.

ClientSettableElementUsa
ge

Optional Indicates the intended usage or any restrictions that may have been
imposed on the usage of client-settable elements.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

MaximumElementCreateC
ount

Optional Indicates the maximum number of elements that can be specified to be
created in a single method call. If 0 or null, there is no limit.

MaximumElementDeleteC
ount

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the maximum number of elements that can be deleted in a single
method call. If 0 or null, there is no limit.

MultipleElementCreateFea
tures

Optional Enumeration indicating features offered by the multiple element create
method. "2" (Single instance creation indication).

MultipleElementDeleteFeat
ures

Optional Enumeration indicating features offered by the multiple element delete
method. "2" (Continue on nonexistent element) or "3" (Return error on
nonexistent element).

GetElementNameCapabilit
ies()

Optional This method indicates if ElementName can be specified as a part of
invoking an appropriate method of StorageConfigurationService to create
a new element. Additionally, the returned data includes the methods that
can be used to modify the ElementName of existing storage elements.

Table 210 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

Table 209 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

416

417

418

419

CKD Block Services Profile

364

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3|5|6|7 (InExtents or Single InPool or Storage Pool QoS
Change or Storage Pool Capacity Expansion or Storage Pool Capacity
Reduction).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs.

SupportedStorageElement
Types

Mandatory Lists the type of storage elements that are supported by this
implementation. This version of the standard recognizes '2'
(StorageVolume) or '4' (LogicalDisk).

If thin provisioning is supported, then the following additional
ElementTypes are recognized: "5" (ThinlyProvisionedStorageVolume), "6"
(ThinlyProvisionedLogicalDisk), "7"
(ThinlyProvisionedAllocatedStoragePool), "8"
(ThinlyProvisionedQuotaStoragePool) or "9"
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs.

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().
Matches 3|5|8|9|11|12|13|14|15|16|17|18 (StorageVolume Creation or
StorageVolume Modification or LogicalDisk Creation or LogicalDisk
Modification or Storage Element QoS Change or Storage Element
Capacity Expansion or Storage Element Capacity Reduction or
StorageVolume To StoragePool Relocation or StoragePool To StoragePool
Relocation or StorageVolume To StorageExtent Relocation or
'StoragePool To StorageExtent Relocation or LogicalDisk To
StorageExtent Relocation).

SupportedStorageElement
Usage

Optional Indicates the intended usage or any restrictions that may have been
imposed on supported storage elements.

ClientSettableElementUsa
ge

Optional Indicates the intended usage or any restrictions that may have been
imposed on the usage of client-settable elements.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

MaximumElementCreateC
ount

Optional Indicates the maximum number of elements that can be specified to be
created in a single method call. If 0 or null, there is no limit.

MaximumElementDeleteC
ount

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the maximum number of elements that can be deleted in a single
method call. If 0 or null, there is no limit.

MultipleElementCreateFea
tures

Optional Enumeration indicating features offered by the multiple element create
method. "2" (Single instance creation indication).

MultipleElementDeleteFeat
ures

Optional Enumeration indicating features offered by the multiple element delete
method. "2" (Continue on nonexistent element) or "3" (Return error on
nonexistent element).

Table 210 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

420

421

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 365

8.8.41 CIM_StorageConfigurationCapabilities (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

Table 211 describes class CIM_StorageConfigurationCapabilities (Primordial).

AutomaticPoolSelectionAll
owed

Optional If true, it indicates the implementation selects appropriate pools based on
other supplied parameters to create elements. For example, based on
supplied Goal.

GetElementNameCapabilit
ies()

Optional This method indicates if ElementName can be specified as a part of
invoking an appropriate method of StorageConfigurationService to create
a new element. Additionally, the returned data includes the methods that
can be used to modify the ElementName of existing storage elements.

Table 211 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3 (InExtents or Single InPool).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs. This version of the standard recognizes
"2" (Storage Pool Creation), "12" (Storage Element from Element
Creation) or "15" (StoragePool Usage Modification) or "17"
(StorageVolume To StoragePool Relocation) or "18" (StoragePool To
StoragePool Relocation) or "19" (StorageVolume To StorageExtent
Relocation) or "20" (StoragePool To StorageExtent Relocation) or "21"
(LogicalDisk To StorageExtent Relocation).

SupportedStorageElement
Types

Optional Lists the type of storage elements that are supported by this
implementation.

If thin provisioning is supported, the ElementTypes may include 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from Element Creation) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

Table 210 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

422

423

424

425

426

427

CKD Block Services Profile

366

8.8.42 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 212 describes class CIM_StorageConfigurationService.

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool(). This
version of the standard does not recognize any values for this property.
For Primordial pools, this shall not contain 3 (StorageVolume Creation), 5
(StorageVolume Modification), 8 (LogicalDisk Creation) or 9 (LogicalDisk
Modification) or 14 (StorageVolume To StoragePool Relocation) or 15
(StoragePool To StoragePool Relocation) or 16 (StorageVolume To
StorageExtent Relocation) or 17 (StoragePool To StorageExtent
Relocation) or 18 (LogicalDisk To StorageExtent Relocation).

SupportedStorageElement
Usage

Optional For Primordial StorageConfigurationCapabilities, this shall be NULL.

ClientSettableElementUsa
ge

Optional For Primordial StorageConfigurationCapabilities, this shall be NULL.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

Table 212 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

CreateOrModifyStoragePo
ol()

Optional Create (or modify) a StoragePool. A job may be created as well.

DeleteStoragePool() Optional Start a job to delete a StoragePool.

CreateOrModifyElementFr
omStoragePool()

Mandatory Create or modify a storage element. A job may be created as well.

CreateElementsFromStora
gePools()

Optional Experimental. Create one or more storage elements. A job may be created
as well.

Table 211 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

428

429

430

431

432

433

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 367

8.8.43 CIM_StoragePool (Concrete)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 213 describes class CIM_StoragePool (Concrete).

CreateOrModifyElementFr
omElements()

Optional Create or modify a storage element using component StorageExtents of
the Pool. A job may be created as well.

ReturnToStoragePool() Mandatory Release the capacity represented by this storage element back to the
Pool.

ReturnElementsToStorage
Pool()

Optional Experimental. Release the capacity represented by one or more storage
elements back to the Pool.

RequestUsageChange() Optional Allows a client to change the Usage for the element.

GetElementsBasedOnUsa
ge()

Optional Allows a client to retrieve elements for a specialized Usage.

Table 213 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

ElementsShareSpace Optional If true, it indicates elements allocated from the storage pool are sharing
space from the storage pool. For example, multiple snapshots "allocated"
from a storage pool, point to the same blocks of the storage pool. As
another example, elements utilizing de-duplication technology refer to a
shared copy of the data stored in the storage pool.

Table 212 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

434

435

436

437

438

439

CKD Block Services Profile

368

8.8.44 CIM_StoragePool (Empty)

An empty StoragePool is a special case of a StoragePool where the StoragePool contains no capacity. All
properties are supported as defined for the StoragePool (Concrete or Primordial), except that the empty
StoragePool has TotalManagedSpace=0.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Optional

Table 214 describes class CIM_StoragePool (Empty).

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included in
the TotalManagedSpace of the storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded from
this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded from
this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in use
as supporting capacity for existing storage element.

Table 214 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and primordial
StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManagedSpace Mandatory

Usage Optional

OtherUsageDescription Optional

ClientSettableUsage Optional

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

Table 213 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

440

441
442

443

444

445

446

447

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 369

8.8.45 CIM_StoragePool (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 215 describes class CIM_StoragePool (Primordial).

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService.

GetAvailableExtents() Optional

Table 215 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included in
the TotalManagedSpace of the storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded from
this Pool.

Table 214 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

448

449

450

451

452

453

CKD Block Services Profile

370

8.8.46 CIM_StorageSettingWithHints

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 216 describes class CIM_StorageSettingWithHints.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded from
this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in use
as supporting capacity for existing storage element.

Table 216 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory

PackageRedundancyMax Mandatory

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional

ExtentStripeLengthMin Optional

ExtentStripeLengthMax Optional

ParityLayout Optional

UserDataStripeDepth Optional

UserDataStripeDepthMin Optional

UserDataStripeDepthMax Optional

StorageExtentInitialUsage Optional

StoragePoolInitialUsage Optional

DataAvailabilityHint Mandatory This hint is an indication from a client of the importance placed on data
availability. Values are 0=Don't Care to 10=Very Important.

Table 215 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

454

455

456

457

458

459

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 371

8.8.47 CIM_StorageSettingsAssociatedToCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 217 describes class CIM_StorageSettingsAssociatedToCapabilities.

8.8.48 CIM_StorageSettingsGeneratedFromCapabilities

Created By: Extrinsic: CreateSetting

Modified By: Static

AccessRandomnessHint Mandatory This hint is an indication from a client of the randomness of accesses.
Values are 0=Entirely Sequential to 10=Entirely Random.

AccessDirectionHint Mandatory This hint is an indication from a client of the direction of accesses. Values
are 0=Entirely Read to 10=Entirely Write.

AccessSizeHint Mandatory This hint is an indication from a client of the optimal access sizes. Several
sizes can be specified. Units("Megabytes").

AccessLatencyHint Mandatory This hint is an indication from a client how important access latency is.`
Values are 0=Don't Care to 10=Very Important.

AccessBandwidthWeight Mandatory This hint is an indication from a client of bandwidth prioritization. Values
are 0=Don't Care to 10=Very Important.

StorageCostHint Mandatory This hint is an indication of the importance the client places on the cost of
storage. Values are 0=Don't Care to 10=Very Important. A StorageVolume
provider might choose to place data on low cost or high cost drives based
on this parameter.

StorageEfficiencyHint Mandatory This hint is an indication of the importance placed on storage efficiency by
the client. Values are 0=Don't Care to 10=Very Important. A
StorageVolume provider might choose different RAID levels based on this
hint.

ChangeableType Mandatory

Table 217 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities

Properties Flags Requirement Description & Notes

DefaultSetting Mandatory This boolean designates the setting that will be used if the CreateSetting()
method is called with providing the NewSetting parameter. However, some
implementations may require that the NewSetting parameter be non null.
There may be only one default setting per the combination of
StorageCapabilities and associated StoragePool as associated through
ElementCapabilities.

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 216 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

460

461

462

463

464

465

CKD Block Services Profile

372

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 218 describes class CIM_StorageSettingsGeneratedFromCapabilities.

8.8.49 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 219 describes class CIM_SystemDevice (System to StorageVolume or LogicalDisk).

8.8.50 SNIA_StorageCapabilities

The SNIA_StorageCapabilities is subclassed from CIM_StorageCapabilities to add the
SupportedDataOrganizations property. The Properties that are different from what is specified in the
Block Services Package have descriptive text. NOTE: SCSI can be coded as NULL or any value other
than "4". The class definition specializes the CIM_StorageCapabilities definition in the Block Services
profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the
left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 218 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities

Properties Flags Requirement Description & Notes

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 219 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Log-
icalDisk)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

466

467

468

469

470

471

472

473

474

475

476

477

478

479
480
481
482

483

484

485

486

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 373

Table 220 describes class SNIA_StorageCapabilities.

Table 220 - SMI Referenced Properties/Methods for SNIA_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In addition, the
user-friendly name can be used as a index property for a search or query.
(Note: ElementName does not have to be unique within a namespace) If
the capabilities are fixed, then this property should be used as a means for
the client application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6 (StoragePool or
StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports no single point
of failure. Values are: FALSE = does not support no single point of failure,
and TRUE = supports no single point of failure.

NoSinglePointOfFailureDef
ault

Mandatory Indicates the default value for the NoSinglePointOfFailure property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefa
ult

Mandatory PackageRedundancyDefault describes the default number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of members or
columns, a storage element will have when created or modified using this
capability. A NULL means that the setting of stripe length is not supported
at all or not supported at this level of storage element allocation or
assignment.

487

CKD Block Services Profile

374

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a storage element
will have when created or modified using this capability. A NULL means
that the setting of the parity is not supported at all or is not supported at
this level of storage element allocation or assignment.

UserDataStripeDepthDefa
ult

Optional UserDataStripeDepthDefault describes what the number of bytes forming
a stripe that a storage element will have when created or modified using
this capability. A NULL means that the setting of stripe depth is not
supported at all or not supported at this level of storage element allocation
or assignment.

AvailableDiskType Optional Experimental. Enumeration indicating the type of DiskDrives which may be
available. (0)Unknown, (1)Other, (2)Hard Disk Drive, (3)Solid State Drive,
(4)Hybrid.

AvailableFormFactor Optional Experimental. Enumeration indicating the drive physical size which may
be available. (0)Unknown, (1)Other, (2)Not Reported, (3)5.25 inch, (4)3.5
inch, (5)2.5 inch, (6)1.8 inch".

AvailablePortType Optional Deprecated.

AvailableInterconnectType Optional Experimental. Enumeration indicating the type of disk interconnections
which may be available. (0)Unknown, (1)other , (2)SAS, (3)SATA, (4)SAS/
SATA, (5)FC, (6)SOP.

AvailableInterconnectSpee
d

Optional Experimental. The speed of disk interconnections which are be available.
Values are in bits/second.

AvailableRPM Optional Experimental. The rotational speed of disk media which are be available.
Values are in rotations per minute. SSD devices shall report 0".

EncryptionSupported Optional Experimental. This property reflects support of the encryption feature
implemented by some disk drives.".

SupportedCompressionRa
tes

Optional Experimental. SupportedCompressionRates identifies the compression
rates that are supported by the implementation, "including '1' (None). If '1'
(None) is specified, then no other rate may be identified. If '1' (None) is not
specificed, then the values recognized are '2' (High), '3' (Medium), '4'
(Low) and/or '5' (Implementation Decides).

SupportedDataOrganizatio
ns (added)

N Mandatory Supported values for SMI-S are "4" (Count Key Data) and anything else
(including NULL) for non-CKD volumes. CKD Volumes use "4".

SupportedExtentTypes
(added)

Mandatory Supported values for SMI-S are "2" ("Open"), "3" ("Intermediate") and "4"
("Mainframe"). CKD access is supported for either "3" or "4". Open
systems access is supported for either "2" or "3".

CreateSetting() Conditional Conditional requirement: Support for StorageConfigurationService.
Generate a setting to use as a goal for creating or modifying storage
elements.

GetSupportedStripeLength
s()

Optional List the possible discrete stripe lengths supported at this time of this
method's execution.

GetSupportedStripeLength
Range()

Optional List the possible stripe length ranges supported at the time of this
method's execution.

GetSupportedParityLayout
s()

Optional List the possible parity layouts supported at the time of this method's
execution.

GetSupportedStripeDepths
()

Optional List the possible stripe depths supported at the time of this method's
execution.

GetSupportedStripeDepth
Range()

Optional List the possible stripe depth ranges supported at the time of this method's
execution.

Table 220 - SMI Referenced Properties/Methods for SNIA_StorageCapabilities

Properties Flags Requirement Description & Notes

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 375

8.8.51 SNIA_StorageSetting

The SNIA_StorageSetting is subclassed from CIM_StorageSetting and is enhanced to add the
DataOrganization, CUImage, SubsystemID and EmulatedDevice properties. The Properties that are
different from what is specified in the Block Services Package have descriptive text. The class definition
specializes the CIM_StorageSetting definition in the Block Services profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 221 describes class SNIA_StorageSetting.

Table 221 - SMI Referenced Properties/Methods for SNIA_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

488

489
490
491
492

493

494

495

496

497

CKD Block Services Profile

376

8.8.52 SNIA_StorageVolume

The SNIA_StorageVolume is subclassed from CIM_StorageVolume and enhances that class to add the
DataOrganization, CUImage, SubsystemID and EmulatedDevice properties. Other properties have some
unique CKD considerations. The StorageVolume is listed as optional. The Properties that are different

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

DiskType Optional Experimental. Enumeration indicating the type of DiskDrive wanted.
(0)Dont care, (1)Other, (2)Hard Disk Drive, (3)Solid State Drive, (4)Hybrid.

InterconnectType Optional Experimental. Enumeration indicating the type of disk interconnection
wanted.".

InterconnectSpeed Optional Experimental. The speed of disk interconnection wanted in bits/second.
Value of 0 means dont care.

FormFactor Optional Experimental. Enumeration indicating the physical size of drive wanted.".

RPM Optional Experimental. The rotational speed of disk media wanted. A value of
0xffffffff means dont care. A value of 0 specifies a SSD drive.

Encryption Optional Experimental. This property reflects support of the encryption feature
wanted.

PortType Optional Experimental.

CompressionRate Optional Experimental. CompressionRate Indicates the desired compression for a
storage element. The possible values are '1' (None), '2' (High), '3'
(Medium), '4' (Low) or '5' (Implementation Decides).

CompressedElement Optional Experimental. CompressedElement property indicates whether or not
compression of the element is being requested. When set to true,
compression is being requested. When set to false, compression is not
being requested.

DataOrganization (added) Mandatory Supported value for CKD Volumes in SMI-S is "4" (Count Key Data). For
non-CKD Volumes the property is either NULL or any value other than "4".

ExtentType (added) Mandatory This property specifies extent type for host access. ("1"(=Other),
"2"(=Open), "3"(Intermediate), "4"(=Mainframe)).

CUImage (added) Conditional Conditional requirement: Required if
StorageSetting.DataOrganization=\4\'.'This property is the Node Element
Descriptor of the Control Unit Image (this property is required for CKD
StorageVolumes). It is not required for LogicalDisks.

SubsystemID (added) Optional This property is the Subsystem ID if the array or virtualizer supports
Subsystem IDs. If they are supported they would be required on volume
creation.

EmulatedDevice (added) Optional This string property specifies the specific device (e.g., 3380 or 3390) that
is emulated by the volume.

Table 221 - SMI Referenced Properties/Methods for SNIA_StorageSetting

Properties Flags Requirement Description & Notes

498

499
500
501
502
503

 CKD Block Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 377

from what is specified in the Block Services Package have descriptive text. The class definition
specializes the CIM_StorageVolume definition in the Block Services profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from either Array or Storage Virtualizer - StorageVolume is mandatory.

Table 222 describes class SNIA_StorageVolume.

Table 222 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name (overridden) CD Mandatory An Identifier for this volume.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Optional

NameFormat (overridden) Mandatory Format for Name property. For CKD Volumes, this shall be set to "12"
(NED).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize (overridden) Mandatory The BlockSize would report the number of bytes in a cylinder.

NumberOfBlocks
(overridden)

Mandatory The number of blocks would be the number of cylinders.

ConsumableBlocks
(overridden)

Mandatory The number of usable cylinders.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

504

505

506

507

508

CKD Block Services Profile

378

EXPERIMENTAL

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted by a client
application.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
storage volume when the volume relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not compression is
being applied to the volume. When set to "true" the data is compressed.
When set to "false" the data is not compressed.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the volume and at what rate. The possible values are '1'
(None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the compression is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

DataOrganization (added) Mandatory Supported value for CKD Storage Volumes in SMI-S is "4" (Count Key
Data). For non-CKD volumes the property is either NULL or any value
other than "4".

ExtentType (added) Mandatory This property specifies extent type for host access. ("1"(=Other),
"2"(=Open), "3"(Intermediate), "4"(=Mainframe)).

CUImage (added) Conditional Conditional requirement: Required if
StorageVolume.DataOrganization=\4\'.'This property is the Node Element
Descriptor of the Control Unit Image (this property is required for CKD
Volumes).

SubsystemID (added) Optional This property is the Subsystem ID if the array or virtualizer supports
Subsystem IDs. If they are supported they would be required on volume
creation.

EmulatedDevice (added) Optional This string property specifies the specific device (e.g., 3380 or 3390) that
is emulated by the volume.

Table 222 - SMI Referenced Properties/Methods for SNIA_StorageVolume

Properties Flags Requirement Description & Notes

 Copy Services Subprofile

SMI-S 1.6.1 Revision 6 SNIA Technical Position 379

STABLE

9 Copy Services Subprofile

9.1 Description

9.1.1 Synopsis

Profile Name: Copy Services (Component Profile)

Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.23

Table 223 describes the related profiles for Copy Services.

Central Class: N/A

Scoping Class: ComputerSystem

9.1.2 Overview

The Copy Services Subprofile is an optional subprofile for the Array, Virtualization and Volume Manager
Profiles.

The subprofile defines a management interface for local mirror management, local snapshot management
and clone management.

The subprofile specification uses terminology consistent with the SNIA dictionary of storage networking
except for the term clone. A clone is a fully copied replica the same size as the source element created
with the intent of becoming an independent element.

Two types of synchronization views are supported. A replica may be synchronized to the current view of
the source element or may be synchronized to a point-in-time view. Snapshots and clones always
represent a point-in-time view of the source element. A mirror can represent either a current view or a
point-in-time view as indicated by the synchronization state property of the association. A provider
maintains a stateful view of a source element as long as the source and replica association is maintained.
The synchronization view is modeled with a StorageSynchronized association. A client can determine the
type and state of the synchronized view by inspecting properties of the association instance.

EXPERIMENTAL

Two copy operation modes are supported -- synchronous and asynchronous. In the synchronous mode,
the write operations to the source elements are reflected to the target elements before signalling the host
that a write operation is complete. In the asynchronous mode, the host is signaled as soon as the write

Table 223 - Related Profiles for Copy Services

Profile Name Organization Version Requirement Description

Block Services SNIA 1.6.1 Mandatory

Job Control SNIA 1.5.0 Optional

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Copy Services Subprofile

380

operations to the source elements are complete; however, the writes to the target elements may take
place at a later time.

EXPERIMENTAL

The subprofile supports two types of storage elements. Replicas can be instances of StorageVolume or
LogicalDisk. The source and replica elements shall be the same element type. All of the instance
diagrams that follow show StorageVolume replicas but apply equally to LogicalDisk replicas.

A copy service for storage elements deploys some type of copy engine. Copy techniques for storage
elements include full background copy, copy-on-write and copy-on-read. Most aspects of copy engines
are opaque to clients. A provider may allow the client to manage the copy engine for background copy
operations. This optional capability is discussed in 9.6.9.

EXPERIMENTAL

The subprofile includes a variable space consumption model that a provider may use for delta replica
elements. Most storage elements receive a fixed allocation of space when the element is created and the
consumed space is a contiguous block set. Delta replicas may not receive any space allocation when
created and, subsequently, consume space one block at a time as the associated source element is
updated. The resulting block set for a delta replica is typically scattered throughout a container element
such as a storage pool.

Replication Services supports “copying” thinly provisioned elements. Unlike fully provisioned elements, a
thinly provisioned element has fewer actual allocated storage blocks than the advertised capacity of the
element.

The Replication Service generally relies on the implementation’s copy engine to perform the actual copy
operations. However, the profile can expose the “copy methodology” if that information is available.

EXPERIMENTAL

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 381

9.1.3 Copy Services Discovery

The extrinsic methods invoked to create and manage replicas are defined in the
StorageConfigurationService class shown in Figure 48.

EXPERIMENTAL

The single instance of the class ReplicationService and its methods provide the mechanism for creating
and managing replicas.

Figure 48 - Copy Services Discovery

ElementCapabilities

ComputerSystem

// Array

StorageConfigurationService

(Methods Deprecated)

HostedService

StorageConfigurationCapabilities

SupportedAsynchronousActions
SupportedSynchronousActions
SupportedStorageElementTypes
SupportedCopyTypes
InitialReplicationState

ElementCapabilities

ReplicationServiceCapabilities

SupportedReplicationTypes
SupportedStorageObjects
SupportedAsynchronousActions
SupportedSynchronousActions

Copy Services Instance

ReplicationService

HostedService

ElementCapabilities

StorageReplicationCapabilities

SupportedSynchronizationType
SupportedAsynchronousActions
SupportedSynchronousActions
InitialReplicationState
SupportedModifyOperations
ReplicaHostAccessibility
HostAccessibleState
LocalMirrorSnapshotSupported
MaximumReplicasPerSource
MaximumLocalReplicationDepth
InitialSynchronizationDefault
ReplicationPriorityDefault
LowSpaceWarningThresholdDefault
DeltaReplicaPoolAccess

49

50

51

52

53

Copy Services Subprofile

382

Replication Services relies on the Block Services Package for storage pool manipulations and capacity
related indications.

EXPERIMENTAL

9.1.4 Copy Services Capabilities

The Copy Services Subprofile enables a provider to deploy all of the modeled replication capabilities in a
single service instance. For example, one service instance may support local mirrors and delta
snapshots. A client discovers and analyzes each of these capabilities as shown in Figure 48: "Copy
Services Discovery".

EXPERIMENTAL

The StorageConfigurationService methods for performing copy functions are being deprecated, but the
StorageConfigurationCapabilities and ReplicationServiceCapabilities are not being deprecated. The
newer methods for performing copy functions are in the ReplicationService, which has its own
Capabilities class. Both the StorageConfigurationCapabilities and the ReplicationServiceCapabilities
would be associated to the StorageConfigurationService. This section discusses both sets of capabilities
and how they relate.

EXPERIMENTAL

9.1.4.1 Replication Policy

A provider exposes an instance of StorageReplicationCapabilities for each replication capabilities
supported. The CopyType property as defined in CIM_StorageSynchronized describes the replication
policies supported by the subprofile.

Async: Create and maintain an asynchronous mirror copy of the source.

Sync: Create and maintain a synchronous mirror copy of the source. Writes done to the source element
are reflected to the mirror before signalling the host that the write is complete. Used to maintain a copy
requiring guaranteed consistency during a recovery operation.

UnSyncAssoc: Creates an unsynchronized copy associated to the source element. This type of copy is
called a “snapshot” and represents a point-in-time image of the source element. Separate instances of
StorageReplicationCapabilities may be defined for full size snapshots and delta snapshots corresponding
to this CopyType value.

UnSyncUnAssoc: Creates an unsynchronized clone of the source element and does not maintain the
source association after completing the copy operation.

EXPERIMENTAL

In addition, an implementation may specify SyncTypes to describe the replication policy supported by the
profile. The following SyncTypes are defined:

Mirror: Creates and maintains a synchronized mirror copy of the source. Writes done to the source element
are reflected to the target element. The target element remains dependent on the source element.

Snapshot: Creates a point-in-time, virtual image of the source element. The target element remains
dependent on the source element. Snapshots are commonly known as delta replicas and contain
incrementally changed data as well as the pointers to the unchanged source element data.

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 383

Clone: Creates a point-in-time, independent, copy of the source element.

Synchronized replication indicates that updates to a source element are reflected to the target element.
The mode determines whether the target element is updated immediately, in the case of synchronous
mode, or some time later, in the case of asynchronous mode.

Table 224 compares the SyncTypes and the relationships between the source and target elements. It is a
quick reference for the clients to determine the appropriate SyncType for the intended target results.

With respect to "Relation of Target to Source," Dependent indicates the target element must remain
associated with the source element; Independent indicates the target element can exist without the
source element.

9.1.4.2 Modes

The mode controls when the write operations are performed. The following modes are defined:

Synchronous: The writer waits until the write operations are committed to both the source and target
elements; or to both the source element and a target related entity, such as pointer tables.

Asynchronous: The writer waits until the write operations are committed to the source elements only. In this
mode, there can be a delay before the write operations are committed to the target elements.

9.1.4.3 Alignment of SupportedSynchronizationType and SupportedReplicationType

The values for SupportedSynchronizationType (in StorageReplicationCapabilities) and
SupportedReplicationType (in ReplicationServiceCapabilities) should be aligned with each other. Table
225 the alignment of these properties.

Table 224 - Comparing SyncTypes

SyncType Relation of
Target to
Source

Updates to
Source

Reflected to
Target

Target
is Point-In-

Time
Copy

Target is self-
contained

Target is
Virtual copy
of Source

Target’s space
consumption

Mirror Dependent Yes No Yes-after Split/
Detach

No Same as source

Snapshot Dependent No Yes No Yes Much less than source

Clone Independent No Yes Yes No Same as source

Table 225 - Alignment of SupportedSynchronizationType and SupportedReplicationType

Supported
ReplicationType

Supported
Synchronization

Type

Notes

Synchronous Mirror
Local

Sync If an implementation supports the “Sync“ SupportedSynchronizationType, then
it should report that it supports a “Synchronous Mirror Local”
SupportedReplicationType

Asynchronous Mirror
Local

Async If an implementation supports the “Async“ SupportedSynchronizationType,
then it should report that it supports a “Asynchronous Mirror Local”
SupportedReplicationType

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Copy Services Subprofile

384

EXPERIMENTAL

9.1.4.4 Other Capabilities

The StorageReplicationCapabilities class defines informational properties with un-modifiable values that
guide a client using the various capabilities of the service. For example:

• Instance 1 defines the capability to create local mirrors. SupportedSynchronizationType is set to a value of
“Sync” and the AttachReplica method is the only method supported for mirror creation. The
InitialReplicationState is “Synchronized”.

• Instance 2 defines the capability to create snapshots. SupportedSynchronizationType is set to a value of
“UnSyncAssoc - Delta” and the CreateReplica method is the only method supported for snapshot creation.
The InitialReplicationState is “Idle”.

Further details concerning discovery and the use of capability properties are included in 9.6 "Client
Considerations and Recipes".

Synchronous Snapshot
Local

UnsyncAssoc - Full If an implementation supports the “UnsyncAssoc - Full“
SupportedSynchronizationType, then it may report that it supports a
“Synchronous Snapshot Local” SupportedReplicationType.

UnsyncAssoc - Delta If an implementation supports the “UnsyncAssoc - Delta“
SupportedSynchronizationType, then it may report that it supports a
“Synchronous Snapshot Local” SupportedReplicationType

Asynchronous
Snapshot Local

UnsyncAssoc - Full If an implementation supports the “UnsyncAssoc - Full“
SupportedSynchronizationType, then it may report that it supports a
“Asynchronous Snapshot Local” SupportedReplicationType

UnsyncAssoc - Delta If an implementation supports the “UnsyncAssoc - Delta“
SupportedSynchronizationType, then it may report that it supports a
“Asynchronous Snapshot Local” SupportedReplicationType

Synchronous Clone
Local

UnsyncUnassoc

If an implementation supports the “UnsyncUnassoc“
SupportedSynchronizationType, then it may report that it supports a
“Synchronous Clone Local” SupportedReplicationType

Asynchronous Clone
Local

If an implementation supports the “UnsyncUnassoc“
SupportedSynchronizationType, then it may report that it supports a
“Asynchronous Clone Local” SupportedReplicationType

Table 225 - Alignment of SupportedSynchronizationType and SupportedReplicationType

Supported
ReplicationType

Supported
Synchronization

Type

Notes

107

108

109

110

111

112

113

114

115

116

117

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 385

9.1.5 Replication modeling

Figure 49: "Local Replica" shows the basic model of a local replica.

A local replica is created by invoking either the CreateReplica or the AttachReplica extrinsic methods.
CreateReplica creates a new storage element in a storage pool. AttachReplica transforms an existing,
independent storage element into a replica. The new replica is the same element type as the source
element. Several associations are implicitly created for all replica elements. A StorageSynchronized
association shall be created if the new replica remains associated with its source element. A
SystemDevice association shall be created or shall already exist. An AllocatedFromStoragePool
association shall be created or shall already exist. An ElementSettingData association with an instance of
StorageSetting is created or shall already exist for the replica element. An optional BasedOn association
may exist if AttachReplica is invoked to transform an existing element into an associated replica.

EXPERIMENTAL

The CreateReplica method allows a client to delegate the selection of a target element location and
settings to the invoked provider. The client selects a source element for the replication operation and may
optionally choose to supply a storage pool location and storage settings or to let the provider make the
choices. The AttachReplica method allows a client to completely manage the source/target replication

Figure 49 - Local Replica

StorageVolume

// source

StorageVolume

// target
StorageSynchronized

ElementSettingData

AllocatedFromStoragePool

SystemDevice

BasedOn
(or sub-class)

ComputerSystem

// array

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Copy Services Subprofile

386

pairing. The client creates a new target element or selects an existing element to be used as the target.
Once the target element is prepared, the client invokes the AttachReplica method and the provider pairs
the source and target elements selected by the client. All providers shall support at least one of these two
methods.

EXPERIMENTAL

9.1.5.1 Multiple Replicas

The subprofile supports both multiple replicas per associated source element and multi-level replication.
Properties in StorageReplicationCapabilities allow the provider to indicate the maximum number of
replicas for one source element and the maximum depth for multi-level replication. Figure 50: "Multi-
Level Local Replication" show the basic model for local multi-level replication.

EXPERIMENTAL

If an implementation supports multi-hop replication, the supported features (obtained via the
GetSupportedFeatures method) will indicate “Multi-hop element replication”. Furthermore, the
implementation may need to know that the client is planning to add additional hops in subsequent
operations. In this case, the replication capabilities would indicate “Multi-hop requires advance notice”. In
response to this capability, the client in creating the first replica, must set the property
ReplicationSettingData.Multihop appropriately; see 9.7 "CIM Elements" for details on Multihop
specification. The capabilities method GetSupportedMaximum indicates the maximum number of hops
supported by the implementation.

EXPERIMENTAL

Figure 50 - Multi-Level Local Replication

StorageVolume

// level 1 source

StorageVolume

// mirror replica
// level 2 source

StorageSynchronized

Local multi-level replication

StorageVolume

// mirror replica
// level 3 source

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

StorageVolume

// snapshots

StorageSynchronized

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 387

9.1.5.2 Snapshots

Snapshots are created using CopyType “UnSyncAssoc” when either the CreateReplica or AttachReplica
extrinsic method is invoked. Snapshots may be created as full replicas or delta replicas. A provider
supporting delta replicas may enable several optional capabilities used with the variable space
consumption model described in 9.6 "Client Considerations and Recipes". A client uses these capabilities
to ensure sufficient but not excessive availability of space for groups of delta replicas. Action can be
taken by a client to prevent failure of delta replica elements caused by lack of consumable space.

Figure 51: "Multiple Snapshots Per Source Element" shows the basic model of snapshots created as
delta replicas.

9.1.6 Associations

Copy Services utilizes associations.

9.1.6.1 StorageSynchronized Association

This association relates the individual source and target elements. The association’s property SyncState
indicates the current state of the association. Some possible values of SyncState are Initialized or
Synchronized.

In addition to the SyncState, there are a number of other properties on the StorageSynchronized
Association. These include:

Figure 51 - Multiple Snapshots Per Source Element

AllocatedFromStoragePool

StoragePool

// Pool for delta replicas

StorageVolume

// source

Multiple delta snapshots per source element

StorageVolume

// snapshot

StorageVolume

// snapshot

StorageVolume

// snapshot

ReplicaPoolForStorage

StorageSynchronized

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

Copy Services Subprofile

388

• WhenSynced: This is the date/time of the creation of a point in time copy.

• SyncMaintained: This indicates whether synchronization is maintained.

• CopyType: This defines the type of (copy) association between source and target.

• ReplicaType: This is an informational property describing the type of replication.

EXPERIMENTAL

• CopyPriority: Priority of copy engine I/O relative to host I/O.

In addition, there are a number of other properties that are being added to the StorageSynchronized
Association. These include:

• WhenEstablished: Specifies when the association was established.

• WhenActivated: Specifies when the association was activated.

• WhenSuspended: Specifies when the association was suspended.

• SyncType: Type of association between source and target elements.

• Mode: Specifies when target elements are updated.

• RequestedCopyState: Indicates the last requested or desired state for the association.

• CopyState: indicates the current state of the association.

• ProgressStatus: Status of association between source and target groups.

• PercentSynced: Specifies the percent of the work completed to reach synchronization.

9.1.6.1.1 Alignment of StorageSynchronized Properties

The SyncType and mode properties and the CopyType property are related and their values should be
aligned as shown in Table 226.

Table 226 - Alignment of SyncType/Mode and CopyType

SyncType /
Mode

CopyType Notes

Mirror / Asynchronous Async If an implementation reports SyncType=”Mirror” and Mode=”Asynchronous”,
then it should report CopyType=”Async”.

Mirror / Synchronous Sync If an implementation reports SyncType=”Mirror” and Mode=”Synchronous”,
then it should report CopyType=”Sync”.

Snapshot /
Synchronous

UnsyncAssoc If an implementation reports SyncType=”Snapshot” and Mode=”Synchronous”
or Mode=”Asynchronous”, then it should report CopyType=”UnsyncAssoc”.

Snapshot /
Asynchronous

Clone / Synchronous UnsyncUnAssoc If an implementation reports SyncType=”Clone” and Mode=”Synchronous” or
Mode=”Asynchronous”, then it should report CopyType=”UnsyncUnAssoc”.

Clone / Asynchronous

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 389

The CopyState and ProgressStatus and SyncState properties are related and their values should be
aligned as shown in Table 227:

Table 227 - Alignment of CopyState and SyncState

CopyState /
ProgressStatus

SyncState Notes

Initialized /Completed Initialized If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report SyncState=”Initialized”.

Initialized / Preparing Prepare In Progress If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Preparing”, then it should report SyncState=”Prepare In
Progress”.

Prepared / Completed Prepared If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Completed”, then it should report SyncState=”Prepared”.

Unsynchronized /
Synchronizing

ResyncInProgress If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Synchronizing”, then it should report
SyncState=”ResyncInProgress”.

Synchronized /
Completed

Synchronized or Frozen If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Completed”, then it should report SyncState=”Synchronized”
or SyncState=”Frozen”.

Initialized / Completed PrepareInProgress If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report
SyncState=”PrepareInProgress”.

Prepared / Completed Prepared If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Completed”, then it should report SyncState=”Prepared”.

Prepared /
Synchronizing

ResyncInProgress If an implementation reports CopyState=”Prepared” and
ProgressStatus=”Synchronizing”, then it should report
SyncState=”ResyncInProgress”.

Unsynchronized /
Suspending

Quiesce In Progress If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Suspending”, then it should report SyncState=”Quiesce In
Progress”.

Unsynchronized /
Dormant

Quiesce In Progress If an implementation reports CopyState=”Unsynchronized” and
ProgressStatus=”Dormant”, then it should report SyncState=”Quiesce In
Progress”.

Synchronized /
Completed

Synchronized For mirrors, if an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Completed”, then it should report SyncState=”Synchronized”.

Synchronized /
Completed

Idle For snapshots, if an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Completed”, then it should report SyncState=”Idle” or
SyncState="Synchronized". See Notes.

Synchronized /
Suspending

Quiesce In Progress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Suspending”, then it should report SyncState=”Quiesce In
Progress”.

Synchronized /
Fracturing

Fracture In Progress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Fracturing”, then it should report SyncState=”Fracture In
Progress”.

Synchronized / Splitting Fracture In Progress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Splitting”, then it should report SyncState=”Fracture In
Progress”.

Synchronized / Failing
Over

RestoreInProgress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Failing Over”, then it should report
SyncState=”RestoreInProgress”.

186

187

Copy Services Subprofile

390

Synchronized /
Dormant

Quiesce In Progress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Dormant”, then it should report SyncState=”Quiesce In
Progress”.

Synchronized /
Initializing

Initialized If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Initializing”, then it should report SyncState=”Initialized”.

Fractured / Completed Fractured If an implementation reports CopyState=”Fractured” and
ProgressStatus=”Completed”, then it should report SyncState=”Fractured”.

Fractured / Resyncing ResyncInProgress If an implementation reports CopyState=”Fractured” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Split / Completed Fractured If an implementation reports CopyState=”Split” and
ProgressStatus=”Completed”, then it should report SyncState=”Fractured”.

Split / Resyncing ResyncInProgress If an implementation reports CopyState=”Split” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Suspended /
Completed

Quiesced If an implementation reports CopyState=”Initialized” and
ProgressStatus=”Completed”, then it should report SyncState=”Quiesced”.

Suspended / Resyncing ResyncInProgress If an implementation reports CopyState=”Suspended” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Broken /
Not Applicable

Broken If an implementation reports CopyState=”Broken” and ProgressStatus=”Not
Applicable”, then it should report SyncState=”Broken”.

Inactive / Completed Quiesced For mirrors, if an implementation reports CopyState=”Inactive” and
ProgressStatus=”Completed”, then it should report SyncState=”Quiesced”.

Inactive / Completed Idle For snapshots, if an implementation reports CopyState=”Inactive” and
ProgressStatus=”Completed”, then it should report SyncState=”Idle”.

Inactive / Resyncing ResyncInProgress If an implementation reports CopyState=”Inactive” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Aborted / Completed Quiesced For mirrors, if an implementation reports CopyState=”Aborted” and
ProgressStatus=”Completed”, then it should report SyncState=”Quiesced”.

Aborted / Completed Idle For snapshots, if an implementation reports CopyState=”Aborted” and
ProgressStatus=”Completed”, then it should report SyncState=”Idle”.

Failedover / Completed Fractured For mirrors, if an implementation reports CopyState=”Failedover” and
ProgressStatus=”Completed”, then it should report SyncState=”Fractured”.

Failedover / Completed Frozen For snapshots, if an implementation reports CopyState=”Failedover” and
ProgressStatus=”Completed”, then it should report SyncState=”Frozen”.

Synchronized / Failing
back

RestoreInProgress If an implementation reports CopyState=”Synchronized” and
ProgressStatus=”Failing back”, then it should report
SyncState=”RestoreInProgress”.

Skewed / Completed Initialized If an implementation reports CopyState=”Skewed” and
ProgressStatus=”Completed”, then it should report SyncState=”Initialized”.

Skewed / Resyncing ResyncInProgress If an implementation reports CopyState=”Skewed” and
ProgressStatus=”Resyncing”, then it should report
SyncState=”ResyncInProgress”.

Table 227 - Alignment of CopyState and SyncState

CopyState /
ProgressStatus

SyncState Notes

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 391

Notes:

1) SyncState will have a value of 0 when there is no direct mapping between CopyState/ProgressStatus.

2) It is possible to map a combination of CopyState/ProgressStatus to more than one possible SyncStates
– for example, SyncState=”Idle” or SyncState=”Synchronized”. In such cases, clients should check for
both possible values.

9.1.6.2 SettingsDefineState Association

The SettingsDefineState associates an element (e.g., a StorageVolume) to a SynchronizationAspect. An
instance of SynchronizationAspect includes properties for the date and time of the point-in-time copy and
a reference to the source element (see Figure 52). The association is particularly useful for Clones
(targets) and Snapshots (source) that do not have a StorageSynchronized association to another storage
element. In the case of Clones, the StorageSynchronized association is removed (generally, following the
provider’s restart) after the copy operation completes. As for Snapshots, it is possible to create a point-in-
time snapshot copy of an element, or a group of elements, without having a target element (using the
method CreateSynchronizationAspect). In this mode, the target elements are added at a later time (using
the method ModifySettingsDefineState).

SettingsDefineState may also be applied to Mirror targets; as such, the property
SynchronizationAspect.WhenPointInTime would have the date and time of when the mirror relationship
was fractured (or split).

In all cases, the SettingsDefineState association may not persist across the provider’s restarts.
Furthermore, an instance of a SynchronizationAspect shall be removed if the SourceElement is deleted.

Figure 53 is an instance diagram for a clone target element and its associated SynchronizationAspect
instance. Once the clone target element becomes synchronized, the StorageSynchronized association is
removed and the property SynchronizationAspect.SyncState has a value of “Operation Completed.”

Figure 52 - SettingsDefineState Association

StorageVolume

Source or Target Element

SynchronizationAspect

datetime WhenPointInTime
REF SourceElementSettingsDefineState

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

Copy Services Subprofile

392

EXPERIMENTAL

9.1.7 Durable Names and Correlatable IDs of the Profile

This is not applicable to local copy services. Normal Block Services Correlatable IDs apply for volumes
(or logical disks) managed by Copy Services.

Figure 53 - SynchronizationAspect Instance

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

StorageSynchronized

Before

SynchronizationAspect

// SyncStatus: Operation In Progress
// WhenPointInTime
// SourceElement ObjectPath

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

After

SynchronizationAspect

// SyncStatus: Operation Completed
// WhenPointInTime
// SourceElement ObjectPath

Once synchronization is reached, StorageSynchronized association is removed.

211

212

213

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 393

9.1.8 Accessibility to Created Elements

DEPRECATED

9.1.8.1 Using StorageConfigurationService Methods

The subprofile recommends that method providers for replica creation methods make all replica elements
and associations accessible when the method response is returned to the client. This includes the case
when the provider returns “job started” to the client. This allows the client to immediately monitor and
manage the replica, new associations to the replica and new associated elements.

If the provider returns “job completed”, all new elements and associations shall be accessible. If “job
started” is returned, new elements may not be immediately accessible. There are two cases the provider
should consider:

Case 1: a new element and new associations are created (CreateReplica).

If the provider returns a reference to the new element as a method output parameter, all new associations
shall also be accessible and AffectedJobElement shall now reference the new element for the returned
job reference. No instance creation indications need to be generated. If the provider does not return a
reference to the new element, an instance creation indication shall be generated when the new element is
accessible. When the job completes successfully, AffectedJobElement shall reference the new element.
The new element and all new associations shall be accessible when the instance creation indication is
generated or the job completes successfully, whichever occurs first. Instance creation indications are not
generated for new associations.

Case 2: a new association is created for an existing element (AttachReplica).

If the provider returns “job started”, AffectedJobElement already references the existing element and the
client may attempt to access the new StorageSynchronized association. If the new association is not
accessible, an instance creation indication for StorageSynchronized shall be generated when the
association is accessible. The new association shall be accessible when the instance creation indication
is generated or the job completes successfully, whichever occurs first.

For both cases, at the time an element or association is accessible to the client, all manageable element
and association properties have valid values.

DEPRECATED

EXPERIMENTAL

9.1.8.2 Using ReplicationService Methods

Not defined in this version of the standard.

EXPERIMENTAL

9.1.9 Completion of Long Operations

DEPRECATED

9.1.9.1 Using StorageConfigurationService Methods

The subprofile supports three ways of indicating the completion of long running operations when a replica
element is created or modified. This does not apply to a detach operation.

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Copy Services Subprofile

394

Option 1:

1) Provider returns “job completed” status.

2) SyncState value set to “… In Progress”.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady
state.

Option 2:

1) Provider returns “job started” status and REF to replica element.

2) SyncState value set to “… In Progress”.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady
state.

4) Instance modification when ConcreteJob ends.

Option 3:

1) Provider returns “job started” status but no REF to replica element.

2) Instance creation indication for StorageSynchronized when element is available. May indicate “… In
Progress” state or final state.

3) Instance modification or instance deletion indication when SyncState value changes to final, steady
state.

4) Instance modification when ConcreteJob ends.

Options 2 and 3 based on job control allow a provider to indicate “percent complete” for long operations
and report job failure information with an instance of Error.

Any option may be selected for un-associated replicas if the provider creates a temporary instance of
StorageSynchronized that is implicitly deleted when the replica is finished. If a temporary instance is not
created, then only options 2 and 3 may be selected and steps 2 and 3 are bypassed.

The ModifySynchronization detach operation and the ReturnToStoragePool method cause element and
association deletion. There are two ways to indicate completion of long delete operations.

Option 1:

Provider returns “job completed”. All affected elements and associations are no longer accessible. No
instance deletion indications should be generated.

Option 2:

1) Provider returns “job started” status. Client assumes elements and associations are no longer accessible.

2) An instance deletion indication is generated for StorageSynchronized for a detach operation or for a
replica element for a ReturnToStoragePool invocation. The element is successfully deleted when
either job completion occurs or the instance deletion indication is generated, whichever occurs first.

DEPRECATED

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 395

EXPERIMENTAL

9.1.9.2 Using ReplicationService Methods

There are two ways of indicating the completion of long running operations when a replica element is
created or modified:

Option 1: Generally, the long running operations are performed under the control of a job. The client can
monitor the progress of the job by polling the job’s status and percent complete, or by subscribing to job
related indications.

Option 2: Subscribe to receive to indications when the CopyState of StorageSynchronized changes.

Clients may utilize both options simultaneously. To avoid receiving many indications, it is recommended
for the clients to utilize indication queries that are constrained by the object path of the appropriate
replication association.

If replication operation was specified with a WaitForCopyState parameter, the job “waits” until at least the
CopyState is reached, at which point the job considers the operation complete. However, depending on
the specified WaitForCopyState, the copy engine may continue until a steady state is achieved. For
example, in the Figure 56, Inactive and Synchronized states are considered steady states; whereas
Initialized and Unsynchronized are transient states.

EXPERIMENTAL

9.1.10 State Management For Associated Replicas

Both mirror and snapshot replicas maintain stateful associations with source elements. The SyncState
property of a StorageSynchronized association identifies the state. All providers shall support the
deprecated ModifySynchronization extrinsic method that allows a client to manage the synchronization
state of an associated replica unless a provider only allows unassociated replicas. All of the modify
operations supported by the subprofile are classified as mandatory, optional or not supported by type of
replica. Mirror replicas are the only type of replica created for CopyType values “Sync” and “Async”.
Snapshot replicas are the only type of replica created for CopyType value “UnSyncAssoc”. Table 228
shows the classification.

Table 228 - Synchronization Operation Support Requirements

ModifySynchronization Operation Mirror Replicas Snapshot Replicas

Detach Mandatory Optional

Resync Mandatory Mandatory

Fracture Mandatory Not supported

Quiesce Optional Optional

Unquiesce Optional Not supported

Prepare Optional Optional

Unprepare Optional Optional

Restore Optional Optional

Start Copy Not supported Optional

Stop Copy Not Supported Optional

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

Copy Services Subprofile

396

All instances of StorageReplicationCapabilities shall indicate all mandatory operations plus all supported
optional operations in the value list assigned to the SupportedModifyOperations[] property. Undeployed
optional operations should be implemented as a stubbed “no operation” to ensure backward compatibility
with earlier versions of the subprofile. Modify operations perform the following actions:

Resync: Causes a fractured mirror replica to change from a point-in-time (PIT) view to a synchronized
mirror replica representing the current view of the source element. The provider can execute a full or
incremental copy as needed to realize a synchronized state. Causes a snapshot to be restarted as a new
PIT image with a new value assigned to WhenSynced. May release all space previously consumed by the
snapshot.

Fracture: Splits a synchronized mirror replica from its source element, changing the replica from a
current view of the source element to a PIT view.

Restore: Copies a fractured mirror or a snapshot to the source element. At the completion of the restore
operation, the source and replica represent the same PIT view. The Restore operation for each supported
CopyType can be implemented as an incremental restore or a full restore based on the capabilities of the
provider.

Detach: Removes the association between the source and replica elements. The StorageSynchronized
association is deleted. If the replica is still a valid PIT image, the provider sets OperationalStatus to “OK”.
If not a valid image but the storage element can be reused, the provider sets OperationalStatus to “Error”.
A Detach operation does not delete the replica element. A client should invoke ReturnToStoragePool if
the element is to be deleted following the Detach operation.

 Start Copy: Starts a background copy operation for a snapshot replica. At the completion of the copy
operation, the snapshot enters “Frozen” state.

Stop Copy: Stops a background copy operation for a snapshot replica. The snapshot state changes from
“Copy In Progress” to “Idle”.

Quiesce/Unquiesce: This operation has optional, vendor-specific behavior for mirror replicas that is
opaque to clients. The Quiesce operation stops the copy engine for snapshots and the snapshot no
longer consumes space. A snapshot is no longer a valid PIT image if the source element is updated after
the snapshot enters “Quiesced” state.

Prepare/Unprepare: This operation has optional, vendor-specific behavior for all replica types that may
also depend on the entry state. A prepare operation typically starts a copy engine if entered from
“Initialized” state.

Reset To Sync: Changes the CopyType value of a mirror replica from “Async” to “Sync”.

Reset To Async: Changes the CopyType value of a mirror replica from “Sync” to “Async”.

Reset To Sync Optional Not supported

Reset To Async Optional Not supported

Table 228 - Synchronization Operation Support Requirements (Continued)

ModifySynchronization Operation Mirror Replicas Snapshot Replicas

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 397

This information is summarized in Table 229.

EXPERIMENTAL

In addition, an implementation may maintain CopyState and ProgressStatus for a StorageSynchronized
relationship.

The CopyState property of the StorageSynchronized association identifies the state, while the
ProgressStatus property of the same association indicates the “status” of the copy operation to reach the
requested CopyState, which is indicated in the property RequestedSyncState. For example, CopyState
might have a value of “UnSynchronized”, while ProgressStatus might have a value of “Synchronizing”,
also known as “sync-in-progress”. In all cases, when creating a replica element, the desired SyncState is
Synchronized, which indicates the replica element has the same data as the source element. The
RequestedSyncState property will contain “Not Applicable” once the requested SyncState is achieved.

Use the method ReplicationServiceCapabilities.GetSupportedCopyStates to determine the possible
CopyStates. The CopyStates have been normalized in such a way that they may apply to all SyncTypes.

Table 230 describes the supported CopyStates.

Table 229 - SyncState Values

Synchronization State
(SyncState value)

Mirror Replicas Snapshot Replicas Required ModifySynchronization
Operations For Optional States

Initialized Optional Optional Prepare

Prepare In Progress Optional Optional

Prepared Optional Optional Unprepare

Resync In Progress Mandatory Mandatory

Synchronized Mandatory Not specified

Idle Not specified Mandatory

Quiesce In Progress Optional Optional Quiesce

Quiesced Optional Optional Quiesce

Fracture In Progress Mandatory Not specified

Fractured Mandatory Not specified

Copy In Progress Not specified Optional Start Copy

Frozen Not specified Mandatory

Restore In Progress Optional Optional Restore

Broken Optional Optional

Table 230 - CopyStates Values

CopyState value Description

Initialized The source and target elements are associated. The copy engine has not started -- no dataflow.

Prepared Initialization is completed, the copy engine has started, however, the data flow has not started.

Synchronized The “copy operation” is complete. The target element is an “exact replica” of the source element.

Unsynchronized Not all the source element data has been “copied” to the target element.

336

337

338

339

340

341

342

343

344

345

346

347

348

Copy Services Subprofile

398

EXPERIMENTAL

9.1.11 Reporting Time of Synchronization

All providers shall have access to a time service that allows the provider to assign a date/time value to
the WhenSynced property of StorageSynchronized at the time a replica becomes a valid PIT view of its
source element. The WhenSynced value for mirror replicas shall be non-null for the “Fractured” and
“Restore In Progress” synchronization states. The WhenSynced value for snapshot replicas shall be non-
null for any synchronization state allowing host access to the replica.

9.1.12 State Transition Rules

A provider shall enforce state transition rules for associated replicas. If a client initiates a
ModifySynchronization operation that causes a state transition violation, the provider returns an error
response of “Invalid State Transition”. The provider shall allow a client to bypass certain transitions
related to operations not supported by the provider. For example, a snapshot transition from “Idle” to
“Resync In Progress” is allowed if the provider does not support Quiesce and Prepare operations.

Synchronization states have the following behavior:

Initialized: A source element and replica element are associated and all implicitly created associations
are accessible. The copy engine has not started.

Synchronized: A mirror replica is fully copied and represents the current view of the source element.

Idle: A snapshot is accessible but not copied and represents a PIT view of the source element. A copy
engine is actively executing copy-on-write operations.

Fractured: A mirror element is split from its source element and is now a PIT view.

Fractured The target element was abruptly split from its source element
-- consistency is not guaranteed.

Split The target element was gracefully (or systematically) split from its source element
-- consistency is guaranteed.

Suspended Data flow between the source and target elements has stopped. Writes to source element are held until
the association is Resumed.

Broken Replica is not a valid view of the source element. OperationalStatus of replica may indicate an Error
condition. This state generally indicates an error condition such as broken connection.

Aborted The copy operation is aborted with the Abort operation. Use the Resync Replica operation to restart the
copy operation.

Failedover Reads and writes to/from the target element. Source element is not “reachable”.

Inactive Copy engine has stopped, writes to source element will not be sent to target element.

Skewed The target has been modified and is no longer synchronized with the source element or the point-in-
time view.

Mixed Applies to the SyncState of GroupSynchronized. It indicates the StorageSynchronized associations of
the elements in the groups have different SyncState values.

Table 230 - CopyStates Values (Continued)

CopyState value Description

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 399

Frozen: A snapshot is accessible and fully copied and represents a PIT view of the source element. The
copy engine is stopped.

Broken: A replica is not a valid view of the source element and OperationalStatus of the replica element
may have a value of “Error” if a repair action is necessary. The provider may allow access to a replica in
this state if indicated in HostAccesibleState[] of StorageReplicationCapabilities. The subprofile currently
does not specify how to recover from “Broken” state. A ModifySynchronization Detach operation may be
invoked to a replica in this state.

Values of the SyncMaintained and WhenSynced properties in a StorageSynchronized association are
maintained as shown in the Table 231. The table does not apply to CopyType “UnSyncUnAssoc”.

SyncMaintained “True” means that a copy engine is actively copying updated blocks from the source
element to the target element. “False” means either the copy engine is stopped or copying the target to
the source during “Restore In Progress” state. WhenSynced can contain two forms of a Date/Time value.
A non-null value indicates either the date/time a frozen image is created or the date/time that the source
element is completely copied to the target mirror element. The Fracture, Resync and Restore operations
for ModifySynchronization may cause the WhenSynced value to change.

Table 231 - SyncMaintained and WhenSynced Properties

Synchronization State SyncMaintained WhenSynced

Sync/Async UnSyncAssoc Sync/Async UnSyncAssoc

Initialized True or False True or False Null Date/Time frozen

Prepare In Progress True or False True or False Null Date/Time frozen

Prepared True or False True or False Null Date/Time frozen

Resync In Progress True or False True or False Null Date/Time frozen

Synchronized True Not specified Null or

D/T copy done

Null

Idle Not specified True or False Null Date/Time frozen

Quiesce In Progress True or False False Null or

D/T copy done

Null

Quiesced True or False False Null or

D/T copy done

Null

Fracture In Progress True or False Not specified Null or

D/T copy done

Null

Fractured False Not specified Date/Time frozen Null

Copy In Progress Not specified True or False Null Date/Time frozen

Frozen Not specified False Null Date/Time frozen

Restore In Progress False False Date/Time frozen Date/Time frozen

Broken False False Null Null

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

Copy Services Subprofile

400

9.1.13 State Transitions

Figure 54: "State Transitions for Mirrors and Clones" shows state transitions for mirrors and clones:

Figure 54 - State Transitions for Mirrors and Clones

Prepared

Synchronized

Initialized

Prepare
in

Progress

Resync
in

Progress

Quiesce in
Progress

Quiesced

Prepare

Resync

Unprepare

Prepare

Fractured

Restore
in

Progress

Restore

Fracture in
Progress

Fracture

Unquiesce

Quiesce

381

382

383

384

385

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 401

Figure 55: "State Transitions for Snapshots and Migration" shows state transitions for snapshots:

The preceding state diagrams for mirrors and snapshots use the following conventions:

• The state diagram is entered when any of the three replica creation methods is invoked. Exit occurs when a
ModifySynchronization Detach operation is invoked.

Figure 55 - State Transitions for Snapshots and Migration

P re p a re d

Id le

In itia lize d

F ro ze n

P re p a re
in

P ro g re ss

R e syn c
in

P ro g re ss

C o p y
in

P ro g re ss

R e s to re
in

P ro g re ss

Q u ie sce in
P ro g re ss

Q u ie sce d

P re p a re

R e syn c

R e s to re

R e s to re

Q u ie sce

S ta rt C o p y

Q u ie sce

U n p re p a re

P re p a re

S to p
C o p y

386

387

Copy Services Subprofile

402

• A transition from a steady state to an in progress state is shown by a solid arrow line and is initiated by a
ModifySynchronization operation other than Detach.

• An automatic transition from an in progress state to a steady state is shown by a dashed arrow line.

• Automatic exit occurs from an in progress state when cloning and migration operations have completed.

EXPERIMENTAL

Figure 56 shows the CopyState transitions. The dashed arrow lines represent automatic transitions. They
transition unconditionally when the target element is ready to move to the next state. The solid arrow
lines represent the transitions as the result of a requested operation (using, for example,
ModifyReplicaSynchronization). The label of the solid arrow line indicates the requested operation.

The “create” methods normally start with the Initialized state. However, it is possible to use the
WaitForCopyState parameter of the create method to force the CopyState to the Inactive or Prepared
state after the initialization is complete. In this case, CopyState will remain in Inactive or Prepared state
until such time a Modify method is used to Activate the synchronization.

388

389

390

391

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 403

Figure 56 - CopyState Transitions

Exit

Initialized

Unsynchronized

Fractured

Synchronized

Fracture

Inactive

Suspended

Suspend

Suspend

Activate

Resume

Split

Split

Failedover

Failover

Resync

Detach

Detach

ReturnToResourcePool

Deactivate

Entry

Exit

Deactivate

Exit

Detach

Resync

Failback

Create*Replica may
specify WaitForCopyState

= Inactive or Prepared
Note: Dashed arrow lines represent triggerless transition. They fire

unconditionally when target element is ready to move to the next state.

General flow: Initialized, Unsynchronized, Synchronized.

(Synchronized
Clone Target
Dissolves
Relationship)

Exit

Dissolve

Prepared

Activate

unprepare

SkewedResync

392

393

394

395

396

397

398

399

400

401

402

403

Copy Services Subprofile

404

9.1.13.1 Alignment of State Transitions

Both SyncState and the combination of CopyState and ProgressStatus should be reported and the values
need to be aligned. Table 227 addresses the basic alignment. This section provides more detail on the
state transitions and how they would be coded for both SyncState and CopyState.

• CopyState=”Initialized”, ProgressStatus=”Completed” (SyncState=“PrepareInProgress”)
If the InitialReplicationState=”Initialized”, then this state will exist. When the Initial state can be Initialized, this
is the state of a StorageSynchronized after it is created (or Unprepared). The association exists, but nothing
is going on (WhenSynced=NULL). With ModifyReplicaSynchronization an Initialized association is
automatically Prepared.
Note that it is also possible to get to the Initialized state by doing a ModifyReplicaSynchronization Unprepare
operation. This puts the association back in the Initialized state (which is then automatically progressed to the
next state).
From the Initialized state, the no ModifyReplicaSynchronization operations are supported.

• CopyState=”Prepared”, ProgressStatus=”Completed” (SyncState=”Prepared”)
If the InitialReplicationState=”Prepared” or an Initialized association has been successfully Prepared, then
this state will exist. The association exists, but nothing is going on (WhenSynced=NULL), but it is enabled for
a Resync operation.
From the “Prepared” state there are only operation supported is Activate. This is represented by:

• CopyState=”Prepared” and ProgressStatus=”Synchronizing” (SyncState=”ResyncInProgress”)

• CopyState=”Unsynchronized”, ProgressStatus=”Synchronizing” (SyncState=”ResyncInProgress”)
This CopyState is equivalent to a SyncState of “ResyncInProgress”. From the “Synchronized” state the only
operations supported are Suspend and Deactivate. How this gets reported as SyncState depends on how the
CopyState was achieved.

• With Suspend: When a client uses ModifyReplicaSynchronization with an Operation of “Suspend” the
association changes to CopyState=”Unsynchronized” with ProgressStatus=”Suspending”. The SyncState
should be set to “QuiesceInProgress”.

• With Deactivate: When a client uses ModifyReplicaSynchronization with an Operation of “Deactivate” the
association changes to CopyState=”Unsynchronized” with ProgressStatus=”Dormant”. The SyncState
should be set to “QuiesceInProgress”.

• CopyState=”Synchronized”, ProgressStatus=”Completed” (SyncState=”Synchronized“ or “Idle”)
The CopyState of “Synchronized” is an automatic transition from the Unsynchronized state. For mirrors, then
an implementation should report SyncState=”Synchronized”. For snapshots, the implementation should report
SyncState=”Idle” (or SyncState="Synchronized"). From the “Synchronized” state the operations supported
are: Suspend, Fracture, Split, Failover, Deactivate, Unprepare and Dissolve.

• With Suspend: When a client uses ModifyReplicaSynchronization with an Operation of “Suspend” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Suspending”. The SyncState
should be set to “QuiesceInProgress”.

• With Fracture: When a client uses ModifyReplicaSynchronization with an Operation of “Fracture” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Fracturing”. The SyncState should
be set to “Fracture In Progress”.

• With Split: When a client uses ModifyReplicaSynchronization with an Operation of “Split” the association
changes to CopyState=”Synchronized” with ProgressStatus=”Splitting”. The SyncState should be set to
“Fracture In Progress”.

• With Failover: When a client uses ModifyReplicaSynchronization with an Operation of “Failover” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Failing over”. The SyncState
should be set to “Restore In Progress”.

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 405

• With Deactivate: When a client uses ModifyReplicaSynchronization with an Operation of “Deactivate” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Dormant”. The SyncState should
be set to “QuiesceInProgress”.

• With Unprepare: When a client uses ModifyReplicaSynchronization with an Operation of “Unprepare” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Initializing”. The SyncState should
be set to “Initialized”.

• With Dissolve: The StorageSynchronized is deleted.

• CopyState=”Fractured”, ProgressStatus=”Completed” (SyncState=”Fractured“)
This CopyState is equivalent to a SyncState of “Fractured”. From the “Fractured” state the only operations
supported are: Resync and Detach.

• With Detach: The StorageSynchronized is deleted.

• With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Fractured” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Split”, ProgressStatus=”Completed” (SyncState=”Fractured“)
This CopyState is equivalent to a SyncState of “Fractured”. From the “Split” state the only operations
supported are: Resync and Detach.

• With Detach: The StorageSynchronized is deleted.

• With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Split” with ProgressStatus=”Resyncing”. The SyncState should be set to
“ResyncInProgress”.

• CopyState=”Suspended”, ProgressStatus=”Completed” (SyncState=”Quiesced“)
This CopyState is equivalent to a SyncState of “Quiesced”. From the “Suspended” state the only operation
supported is: Resume.

• With Resume: When a client uses ModifyReplicaSynchronization with an Operation of “Resume” the
association changes to CopyState=”Suspended” with ProgressStatus=”Resyncing”. The SyncState should
be set to “ResyncInProgress”.

• CopyState=”Broken”, ProgressStatus=”Not Applicable” (SyncState=”Broken“)
This CopyState is equivalent to a SyncState of “Broken”. From the “Broken” state the only operation
supported is Activate. Repair work must be done. When this is done, the association is put in the “Inactive”
state.

• With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Inactive” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Aborted”, ProgressStatus=”Completed” (SyncState=”Idle“ for snapshots and “Quiesced” for
mirrors)
This CopyState is equivalent to a SyncState of “Idle” for snapshots and “Quiesced” for mirrors. From the
“Aborted” state the only operation supported is Activate.

• With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Aborted” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Failedover”, ProgressStatus=”Completed” (SyncState=”Frozen“ for snapshots and ”Fractured“ for
mirrors)
This CopyState is equivalent to a SyncState of “Frozen” for snapshots and “Fractured” for mirrors. From the
“Failedover” state the only operations supported are: Failback and Detach.

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

Copy Services Subprofile

406

• With Failback: When a client uses ModifyReplicaSynchronization with an Operation of “Failback” the
association changes to CopyState=”Synchronized” with ProgressStatus=”Failing back”. The SyncState
should be set to “Restore In Progress”.

• With Detach: The association is deleted.

• CopyState=”Inactive”, ProgressStatus=”Completed” (SyncState=”Idle“ for snapshots and “Quiesced” for
mirrors)
This CopyState is equivalent to a SyncState of “Idle” for snapshots and “Quiesced” for mirrors. From the
“Inactive” state the only operation supported is: Activate.

• With Activate: When a client uses ModifyReplicaSynchronization with an Operation of “Activate” the
association changes to CopyState=”Inactive” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”.

• CopyState=”Skewed”, ProgressStatus=”Completed” (SyncState=”Initialized“)
This CopyState is equivalent to a SyncState of “Initialized”. That is, the association exists, but nothing else
can be said about it. From the “Skewed” state the only operation supported is: Resync.

• With Resync: When a client uses ModifyReplicaSynchronization with an Operation of “Resync” the
association changes to CopyState=”Skewed” with ProgressStatus=”Resyncing”. The SyncState should be
set to “ResyncInProgress”. NOTE: With ModifyReplicaSynchronization, Prepare is automatic.

• CopyState=”Mixed”, ProgressStatus=”Completed”
The mixed state only applies to group operations and should never show up on single source-target pairs.

Using the deprecated method ModifySynchronization, the SyncStates that are effected also need to be
reported in the CopyState and ProgressStatus properties. This is summarized by the following bullets:

• SyncState=”Initialized” (CopyState=”Initialized”, ProgressStatus=”Completed”)
This state would only exist if InitialReplicationState=”Initialized” or an ModifySynchronization Unprepare
operation is issued. The only ModifySynchronization operation supported is Prepare.

• With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the association
changes to SyncState=”PrepareInProgress”. This should be reported as CopyState=”Initialized” with
ProgressStatus=”Preparing”.

• SyncState=”Prepared” (CopyState=”Prepared”, ProgressStatus=”Completed”)
The only ModifySynchronization operations supported are Resync or Unprepare.

• With Resync: When a client uses ModifySynchronization with an Operation of “Resync” the association
changes to SyncState=”ResyncInProgress”. This should be reported as CopyState=”Prepared” with
ProgressStatus=”Synchronizing”.

• With Unprepare: When a client uses ModifySynchronization with an Operation of “Unprepare” the
association changes to SyncState=”Initialized”. This should be reported as CopyState=”Initialized” with
ProgressStatus=”Completed”.

• SyncState=”Synchronized” (CopyState=”Synchronized”, ProgressStatus=”Completed”)
This state only applies to mirrors. The only ModifySynchronization operation supported is Quiesce.

• With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the association
changes to SyncState=”QuiesceInProgress”. This should be reported as CopyState=”Synchronized” with
ProgressStatus=”Dormant”.

• SyncState=”Quiesced” (CopyState=”Suspended”, ProgressStatus=”Completed”)
The only ModifySynchronization operations supported are Fracture and Unquiesce for mirrors and Prepare
for snapshots.

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 407

• With Fracture: When a client uses ModifySynchronization with an Operation of “Fracture” the association
changes to SyncState=”FractureInProgress”. This should be reported as CopyState=”Suspended” with
ProgressStatus=”Fracturing”.

• With Unquiesce: When a client uses ModifySynchronization with an Operation of “Unquiesce” the
association changes to SyncState=”ResyncInProgress”. This should be reported as CopyState=”Suspended”
with ProgressStatus=”Resyncing”.

• With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the association
changes to SyncState=”PrepareInProgress”. This should be reported as CopyState=”Suspended” with
ProgressStatus=”Preparing”.

• SyncState=”Restore In Progress” (CopyState=”Synchronized”, ProgressStatus=”Failing over”)

• SyncState=”Idle” (CopyState=”Inactive”, ProgressStatus=”Completed”)
This state only applies to snapshots. The only ModifySynchronization operations supported are Quiesce,
Start Copy and Restore.

• With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the association
changes to SyncState=”QuiesceInProgress”. This should be reported as CopyState=”Inactive” with
ProgressStatus=”Dormant”.

• With Start Copy: When a client uses ModifySynchronization with an Operation of “Start Copy” the
association changes to SyncState=”Copy In Progress”. This should be reported as CopyState=”Inactive” with
ProgressStatus=”Synchronizing”. NOTE: This is a background copy.

• With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the association
changes to SyncState=”Restore In Progress”. This should be reported as CopyState=”Inactive” with
ProgressStatus=”Failing over”.

• SyncState=”Broken” (CopyState=”Broken”, ProgressStatus=”Completed”)
A broken association needs to be repaired. After the relationship is repaired, the association goes into its
InitialReplicationState.

• SyncState=”Fractured” (CopyState=”Fractured”, ProgressStatus=”Completed”)
This state only applies to mirrors. The only ModifySynchronization operations supported are Prepare and
Restore.

• With Prepare: When a client uses ModifySynchronization with an Operation of “Prepare” the association
changes to SyncState=”PrepareInProgress”. This should be reported as CopyState=”Fractured” with
ProgressStatus=”Preparing”.

• With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the association
changes to SyncState=”Restore In Progress”. This should be reported as CopyState=”Fractured” with
ProgressStatus=”Failing over”.

• SyncState=”Frozen” (CopyState=”Synchronized”, ProgressStatus=”Completed”)
This state only applies to snapshots. The only ModifySynchronization operations supported are Quiesce and
Restore.

• With Quiesce: When a client uses ModifySynchronization with an Operation of “Quiesce” the association
changes to SyncState=”QuiesceInProgress”. This should be reported as CopyState=”Synchronized” with
ProgressStatus=”Dormant”.

• With Restore: When a client uses ModifySynchronization with an Operation of “Restore” the association
changes to SyncState=”Restore In Progress”. This should be reported as CopyState=”Synchronized” with
ProgressStatus=”Failing over”.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

Copy Services Subprofile

408

9.1.13.2 Synchronized SyncState

Synchronized state for the Mirror and Clone SyncTypes indicates all data has been copied from the
source element to the target element. For the Snapshot SyncType, because the target element is a virtual
point-in-time view of the source element, the Synchronized CopyState indicates all the metadata
(pointers) for the snapshot have been created. Synchronization for the snapshots is achieved relatively
quickly.

Figure 57 shows a sampling of the CopyState transitions and the corresponding ProgressStatus changes.
In a steady state condition, for example, the CopyState has a value of “Synchronized”, and at the same
time the ProgressStatus has a value of “Completed”.

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 409

9.1.14 Accessibility to Associations and Elements

There are two cases that should be considered:

Case 1: The method completes successfully without returning a job. The created replication association
(StorageSynchronized for Mirror and Snapshot copy types) and the newly created target element shall be
accessible. The StorageSynchronized association between source and target elements for the Clone
copy type may not be accessible after synchronization is achieved; however, there will be a

Figure 57 - Sample CopyState and ProgressStatus Transitions

 R e s y n c in g

 C o m p le te d

 In itia liz in g

 D e ta c h in g

 F ra c tu r in g

 S yn c h ro n iz in g

 C o m p le te d

 C o m p le te d

L e g e n d :

P ro g re s s S ta tu s

In itia liz e d

U n s y n c h ro n iz e d

S y n c h ro n iz e d

F ra c tu re d

F ra c tu re

R e s y n c

E n try

E x itC o p y S ta te

D e ta ch

A u to m a tic
T ra n s itio n

O p e ra tio n

581

582

583

584

585

586

587

588

589

Copy Services Subprofile

410

SettingsDefineState association (if supported) between the newly copied target element and a
SynchronizationAspect instance.

Case 2: The method returns the status of “Job Started”. The AffectedJobElement association associates
the concrete job to the target element, unless there is no target element such as
CreateSynchronizationAspect or when the target element is deleted (ReturnToStoragePool). In this case,
the AffectedJobElement points to the source element. To ensure the replication association is accessible,
the CopyState of the association has to have at least reached the Initialized state. To guarantee
accessibility to associations and elements, specify the WaitForCopyState when issuing the method
CreateElementReplica.

EXPERIMENTAL

9.1.15 Host Access Restrictions

The Copy Services Subprofile does not provide any services for managing access to replicas. However,
replication services often restrict access to replicas for the following reasons:

1) Replicas have the same volume signature as their source element. Exposing both the source and replica
to the same host may cause problems with a duplicate volume signature.

2) Delta replicas created by embedded software elements such as a volume manager may be unavailable
for export to a secondary host.

The subprofile uses two properties in StorageReplicationCapabilities to indicate host access restrictions:

1) ReplicaHostAccessibility

2) HostAccessibleState[]

A provider may set values for these two properties indicating any host access restrictions imposed on
replicas. These restrictions apply to all replicas created with the same CopyType value. Access control
for a specific replica by a specific host is normally managed using services described in Clause 18:
Masking and Mapping Subprofile.

EXPERIMENTAL

Generally, exposing both the source and replica to the same host may cause problems due to a duplicate
volume signature. At a minimum, the signature of a replica must be changed before the replica is exposed
to the same host as the source element.

Managing host access to source and target elements can be managed by using services described in
Clause 18: Masking and Mapping Subprofile.

The method ReplicationServiceCapabilities.GetSupportedCopyStates for each CopyState additionally
returns information as to whether a replica is host accessible (boolean) for the given CopyState.

EXPERIMENTAL

590

591

592

593

594

595

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 411

EXPERIMENTAL

9.1.16 Settings, Specialized Elements and Pools for Replicas

A copy services provider shall support StorageSetting with the additional properties defined to manage
replica elements and replication operations. These properties are listed in the definition of StorageSetting
in this subprofile. This definition extends the basic list of required StorageSetting properties listed in the
Block Services Package. The CreateSetting method should return a REF to a StorageSetting instance
with all of the replication properties initialized to values consistent with the capabilities indicated in
StorageReplicationCapabilities. Many replication properties allow an initial value of “not applicable” if the
provider does not use the property. The provider sets the value lists for the
SupportedStorageElementUsage[] and SupportedStoragePoolUsage[] properties in
StorageConfigurationCapabilities to indicate which values of StorageSetting.StorageExtentInitialUsage
and StorageSetting.StoragePoolInitialUsage are supported by the provider.

A provider may require specialized pools to contain delta replicas, specialized elements as replica targets
and specialized elements as concrete components for delta replica pools. The provider may require the
client to manage creation of these specialized elements – this is explained in detail in 9.6 "Client
Considerations and Recipes". Alternatively, the provider may automatically create specialized pools and
elements and make them available for discovery by clients. In either case, the StorageExtentInitialUsage
and StoragePoolInitialUsage properties in StorageSetting shall be supported by the provider as part of
the goal parameter for pool/element creation methods.

Elements and pools specialized for Copy Services are located using the GetElementsBasedOnUsage
method described in Clause 5: Block Services Package.

When StorageExtentInitialUsage or StoragePoolInitialUsage is set in the goal parameter for an element
or pool creation method, the value acts as an additional parameter indicating a specialized element. The
provider ensures that the required element type is created and the Usage property value is set in the new
replica element or pool. Certain types of specialized replica elements can be provided by changing
existing elements using the RequestUsageChange method. The ClientSettableElementUsage[] value list
indicates the allowable modifications for a storage element and the ClientSettablePoolUsage[] value list
indicates the allowable modifications for a storage pool.

EXPERIMENTAL

9.1.17 Backward Compatibility

A copy services provider can maintain backward compatibility with a 1.0 copy services client. The
following conditions are necessary for backward compatibility:

1) The instance of StorageConfigurationCapabilities should set replication capability property values in the
same way indicated for a 1.0 copy services provider. A newer copy services client should ignore these prop-
erties and use StorageReplicationCapabilities instead.

EXPERIMENTAL

2) The provider should treat AttachReplica as an alias for CreateElementReplica.

EXPERIMENTAL

3) The provider should treat StorageSynchronized.SyncState values “Synchronized” and “Idle” as
equivalent for CopyType “UnSyncAssoc”.

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

Copy Services Subprofile

412

9.1.18 Mutually Exclusive Capabilities

Both StorageReplicationCapabilities and StorageConfigurationCapabilities contain the
SupportedSynchronousActions[] and SupportedAsynchronousActions[] properties. The provider shall not
include the value corresponding to an action in both properties. An action can run synchronously or
asynchronously but not both. An action indicated in one of the StorageConfigurationCapabilities
properties shall also be indicated in a corresponding instance of StorageReplicationCapabilities.

EXPERIMENTAL

9.1.19 Deleting the Target Elements

Mirror, Clone, and Snapshot target elements that are no longer in a synchronization association are
deleted using the StorageConfigurationService.ReturnToStoragePool method. However, the Snapshot
target elements that are in a synchronization association are deleted using the
ReplicationService.ModifyReplicaSynchronization (or ModifySynchronization) method with the “Return To
ResourcePool” operation parameter, which also removes the synchronization association.

9.1.20 Using StorageSettings for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this
class are used as the goal parameter for the methods of this profile. The extrinsic method
CIM_StorageCapabilities.CreateSetting is used to create a setting and the intrinsic method
ModifyInstance is used to adjust the properties of a created StorageSetting. See Clause 5: "Block
Services Package" for the details of creating and modifying a storage setting.

9.1.21 Finding and Creating Target Elements

The extrinsic method ReplicationService.GetAvailableTargetElements is used to locate the available
target elements for a given source and copy type. The implementation may also support creating target
elements if the appropriate target elements are not supplied and/or are not available. The implementation
may require the client to create specialized elements to be used as a target of a copy operation. The
specialized elements have a specific values in their Usage property. Certain types of specialized
elements can be provided by changing the Usage property of existing elements. Refer to Clause 5: "Block
Services Package" for creating (specialized) elements and modifying the Usage value of existing
elements.

Refer to 9.5.2.4.9 "GetDefaultReplicationSettingData" and 9.5.2.4.4 "GetSupportedFeatures" to
determine if the implementation automatically creates target elements, and if specialized elements are
required for the desired SyncType.

9.1.22 Using StoragePools for Replicas

Replicas are allocated from storage pools. The implementation may require specialized storage pools to
contain delta replicas (changed tracks of snapshots) or the “write intent log” files. The specialized storage
pools have a specific value in their Usage property, for example, “Reserved as a Delta Replica
Container“, “Reserved for Local Replication Services“, or “Reserved for Remote Replication Services”.

9.1.22.1 Delta Replica StoragePools

Depending on the implementation, the Snapshot targets may require a fixed space consumption or
variable space consumption. Refer to 9.5.2.4.4 "GetSupportedFeatures" to determine if specialized
storage pool are required.

There are three types of delta replica pool access:

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 413

• “Any” - specialized storage pools are not required for delta replicas. The implementation creates delta
replicas based on the fixed space consumption model and the client can select any storage pool as a
container.

• “Shared” - a single shared storage pool is the container for all delta replicas. This type of storage pool is
always preexisting and may be located with the GetElementBasedOnUsage method. The client may need to
add space to this type of storage pool.

• “Exclusive” - each source element requires an exclusive, special storage pool for associated delta replicas. If
the storage pool already exists, it is associated to the source element with a ReplicaPoolForStorage
association. If the storage pool does not exist, the client creates the storage pool.

“Multiple” - “multiple specialized, exclusive pools may exist or may be created.“

Figure 58 and Figure 59 show the fixed and variable space consumption for the Snapshot targets,
respectively. If the implementation supports fixed space consumption, the DeltaReservation properties
are set by the client to the appropriate values for a new snapshot. The values are set in the associated
StorageSetting element to be passed as a goal parameter to the CreateElementReplica method (or
CreateSynchronizationAspect method). For variable space consumption, there are no special properties
to set by the client.

Figure 58 - Fixed Space Consumption

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

SyncType = “Snapshot”

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Copy Services Subprofile

414

9.1.23 Thinly Provisioned Elements

Replication Services supports “copying” thinly provisioned elements. Depending on the underlying
implementation, it is possible to copy a thinly provisioned source element to a thinly provisioned target
element or alternatively to a fully provisioned target element. Other combinations may be advertised in
the capabilities.

If an implementation supports more than one combination of source and target provisioning, clients may
use the ReplicationSettingData parameter of the CreateElementReplica to request a specific
combination.

Refer to the capabilities for the allowable combinations supported by the implementation. See 9.5.2.4.7,
9.7.16, and 9.5.2.4.9.

9.1.24 Indication Events

Depending on the implementation, the Copy Services Profile generates a number of different alert and life
cycle indications, shown in Table 232. Clients decide what indications they wish to receive by subscribing
to the appropriate indications.

Figure 59 - Variable Space Consumption

StorageSynchronized

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M

StoragePool

// container element
// delta replica pool
TotalManagedSpace = S
RemainingManagedSpace = variable
LowSpaceWarningThreshold = T2
Usage =
 “Reserved as a Delta Replica Container”

AllocatedFromStoragePool

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M

SpaceConsumed = variable

SyncType = “Snapshot”

ReplicaPoolForStorage

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 415

EXPERIMENTAL

9.1.24.1 InstCreation on StorageSynchronized

This indication is triggered by any event that causes a StorageSynchronized association to be created.
This includes use of methods such as CreateElementReplica. But it may also be triggered by other
(external) events.

This indication is required of any conforming implementation of Copy Services.

9.1.24.2 InstDeletion on StorageSynchronized

This indication is triggered by any event that causes a StorageSynchronized association to be deleted.
This includes use of methods such as ModifyReplicaSynchronization with the “Detach” operation. But it
may also be triggered by other (external) events.

This indication is required of any conforming implementation of Copy Services.

DEPRECATED

9.1.24.3 InstModification on SyncState

This indication is triggered by any event that causes a SyncState change in any StorageSynchronized
association. This includes use of methods such as ModifyReplicaSynchronization. But it may also be
triggered by other (external) events.

Table 232 - Indications

Indication Source Of

CIM_InstCreation • New Job Creation

• New Target Element Creation

• New StorageSynchronized Association Creation

CIM_InstDeletion • Job Deletion

• Target Element Deletion (e.g. Snapshot)

• StorageSynchronized Association Deletion

CIM_InstModification • Job Progress and Status Changes

• Source and Target Elements Status Changes

• SyncState Changes

• ProgressStatus Changes

CIM_AlertIndication • StoragePool space consumption Alerts (especially by Snapshot targets).

• Error conditions, such as:

• StorageSynchronized State set to Broken.

719

720

721

722

723

724

725

726

727

728

729

730

731

732

Copy Services Subprofile

416

This indication is required of any conforming implementation of Copy Services.

This Indication is being deprecated in favor of the “qualified” InstModification on Copy State (see
9.1.24.4).

DEPRECATED

EXPERIMENTAL

9.1.24.4 Qualified InstDeletion on StorageSynchronized

This indication is triggered by any event that causes a specific client defined StorageSynchronized
association to be deleted. This includes use of methods such as ModifyReplicaSynchronization with the
“Detach” operation. But it may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.5 Qualified InstModification on CopyState

This indication is triggered by any event that causes a CopyState change in a specific client defined
StorageSynchronized association. This includes use of methods such as ModifyReplicaSynchronization.
But it may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.6 Qualified InstModification on ProgressStatus

This indication is triggered by any event that causes a ProgressStatus change in a specific client defined
StorageSynchronized association. This includes use of methods such as ModifyReplicaSynchronization.
But it may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.7 InstModification on ProgressStatus

This indication is triggered by any event that causes a ProgressStatus change in any
StorageSynchronized association. This includes use of methods such as ModifyReplicaSynchronization.
But it may also be triggered by other (external) events.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.8 AlertIndication on StorageSynchronized

This indication is triggered by any event that causes a CopyState change to “broken” in any
StorageSynchronized association. This is typically triggered by an external event.

This indication may be supported by any conforming implementation of Copy Services.

9.1.24.9 AlertIndication on StoragePool

This indication is triggered by any event that causes the remaining space in any StoragePool to dip below
its warning threshold. This could be triggered by any one of a number of events.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 417

This indication may be supported by any conforming implementation of Copy Services.

EXPERIMENTAL

9.2 Health and Fault Management Considerations

9.2.1 Health Indications

Certain capabilities of the subprofile use alert, instance modification and instance deletion indications for
health and fault management. In general, instance modification indications when the OperationalStatus
values of a replica element change may indicate a fault. Instance modification indications when
StorageSynchronized.SyncState automatically changes from any other value to “Broken” indicates a fault.
If delta replica pools are supported with warning thresholds, alert indications may be generated by the
provider when remaining space in a pool falls below a warning threshold or is completely consumed. The
information in the alert indications is described in Table 233, “Copy Services Alert Indications”.

EXPERIMENTAL

The Copy Services Subprofile generates alert indications, shown in Table 233, that allow monitoring of
dynamic space consumption by delta replica elements. All of the alert indications indicate an AlertType
value of “Device Alert” and an OwingEntity value of “SNIA”. Alerts are generated for CIM_StoragePool
elements to indicate that remaining consumable space is below a warning threshold percentage of total
space or that all space in the pool has been consumed. The LowSpaceWarningThreshold,
TotalManagedSpace and RemainingManagedSpace properties can be analyzed to determine an
appropriate response.

EXPERIMENTAL

EXPERIMENTAL

The profile uses indications to report health and fault management. In general, instance modification
indications are sent when changes in OperationalStatus and HealthState values of the following instances
indicate a fault condition:

• Source and Replica elements

In response to a fault indication, clients can follow the RelatedElementCausingError association between
the instance reporting the error and the faulted component.

Table 233 - Copy Services Alert Indications

AlertingManaged
Element

PerceivedSeverity ProbableCause ProbableCauseDescription

Storage pool Minor (4) Threshold Crossed
(52)

Pool at low space warning threshold:
 RemainingManagedSpace/
 TotalManagedSpace

Storage pool Major (5) Out of Memory
(33)

No remaining space in storage pool

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

Copy Services Subprofile

418

The profile also generates alert indications when the CopyState of a replication association transitions to
the Broken state.

The profile generates alert indications that allow monitoring of storage pool consumption by the replica
elements.

EXPERIMENTAL

9.2.2 Replication Error Messages

DEPRECATED

9.2.2.1 Storage Configuration Service Method Messages

The Copy Services Subprofile returns the error responses listed in Table 234 for the extrinsic methods
supported by the subprofile. The subprofile uses MessageID values defined in the common error registry
and the storage error registry.

DEPRECATED

EXPERIMENTAL

9.2.2.2 Replication Service Method Messages

Not defined in this version of the standard.

EXPERIMENTAL

9.3 Cascading Considerations

Not defined in this standard.

Table 234 - Copy Services Error Responses

MessageID Message Name

MP2 Operation Not Supported

MP3 Property Not Found

MP5 Parameter Error

MP11 Too Busy To Respond

MP17 Invalid Property Combination During Instance Modification

DRM20 Invalid Extent Passed

DRM24 Invalid State Transition

DRM25 Invalid SAP For Method

DRM26 Resource Not Available

DRM27 Resource Limit Exceeded

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 419

9.4 Supported Subprofiles and Packages

See 9.1.1 "Synopsis".

The Block Services Subprofile is a mandatory prerequisite for the Copy Services Subprofile. Clients
require methods and recipes from block services for the following purposes:

• Identify replica target candidates

• Identify extents and pools to be used as replica containers

• Create and delete replica container elements

• Create and delete replica target elements

• Create generated setting objects with additional properties required by the copy services subprofile.

Many classes and methods defined in Block Services are used in Copy Services without extensions or
additional properties. In this case, the classes and methods are not redefined in Copy Services.

The Job Control Subprofile is required if any of the copy services extrinsic methods run asynchronously
with created job elements.

Copy services defines instance indications and alert indications using required and optional properties
described in 42 Indication Profile.

9.5 Methods of the Profile

9.5.1 Intrinsic Methods of the Profile

The subprofile requires the provider to support the CreateInstance, GetInstance, ModifyInstance and
DeleteInstance intrinsic methods for certain optional capabilities of the subprofile.

9.5.2 Extrinsic Methods of the Profile

EXPERIMENTAL

9.5.2.1 Block Services Package

The profile is dependent on other extrinsic methods provided by the Block Services Package for storage
pool and storage element manipulations.

EXPERIMENTAL

DEPRECATED

9.5.2.2 StorageConfigurationService Methods

The Copy Services Subprofile is dependent on many of the extrinsic methods provided by block services.
The ReturnToStoragePool extrinsic method defined by block services is used to delete a replica element.
ReturnToStoragePool may receive an MP3 (property not found) error response for replica elements that
are implicitly deleted by a ModifySynchronization Detach operation.

All of the subprofile methods return one of three status codes or return an error response. The supported
status codes are:

• 0: Job completed with no error

• 1: Method not supported

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

Copy Services Subprofile

420

• 0x1000: Job started

Table 235 summarizes the extrinsic methods for replica creation and management in the
StorageConfigurationService.

9.5.2.2.1 ModifySynchronization Method

Table 236 lists and describes the ModifySynchronization Method.

“Detach” operation deletes the StorageSynchronized association. An instance deletion indication is
generated for this operation.

All ModifySynchronization operations are described in 9.1.8 Accessibility to Created Elements. If “job
completed” is returned and the replica association indicates an “… in progress” SyncState value, an
instance modification indication should follow when the replica enters its final, expected state. If “job
started” is returned, the replica association indicates an “… in progress” SyncState value. In this case,
two instance modification indications may follow. One should indicate the final SyncState value of the
replica association when the job completes with no error. The other should indicate job completion for the
instance of ConcreteJob.

Table 235 - Extrinsic Methods of StorageConfigurationService

Method Described in

ModifySynchronization() Table 236, “ModifySynchronization”

CreateReplica() Table 237, “CreateReplica Method”

AttachReplica() Not documented

Table 236 - ModifySynchronization

Method: ModifySynchronization

Errors: DRM24, MP2, DRM25

Parameters:

Qualifiers Name Type Description/Values

IN, REQ Operation uint16 Type of operation to modify the
replica:

2: Detach
3: Fracture
4: Resync
5: Restore
6: Prepare
7: Unprepare
8: Quiesce
9: Unquiesce
10: Reset to Sync
11: Reset to Async
12: Start Copy
13: Stop Copy

OUT Job ConcreteJob REF Returned if job started.

IN, REQ Synchronization StorageSynchronized REF Association to replica that is modified

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 421

StorageReplicationCapabilities.SupportedModifyOperations[] allows a client to verify that a specific
operation is supported by a provider.

9.5.2.2.2 CreateReplica Method

.Table 237 describes the CreateReplica Method.

Method notes:

• Creates a storage element of the same type as the source element.

• Creates a StorageSynchronized association”.

• Creates a SystemDevice association.

• Creates an AllocatedFromStoragePool association.

• Creates a StorageSetting instance with an ElementSettingData association.

• May create a BasedOn association.

• May create a ReplicaPoolForStorage association.

• All CopyType values may be supported.

If TargetPool is not supplied by the client, the provider response is implementation specific. For all
operations not using specialized delta replica pools, the behavior of the client follows these rules:

1) Provider may return MP5 message indicating that TargetPool is an invalid parameter. In this case, the client
should select a pool and retry the operation.

2) The provider will select a pool and proceed with the operation.

Table 237 - CreateReplica Method

Method: CreateReplica

Errors: DRM26, DRM27, DRM25, MP5

Parameters:

Qualifiers Name Type Description/Values

IN ElementName string Client-assigned, friendly name

OUT Job ConcreteJob REF

IN, REQ SourceElement LogicalElement REF

OUT TargetElement LogicalElement REF

IN TargetSettingGoal StorageSetting REF

IN TargetPool StoragePool REF

IN, REQ CopyType uint16 Copy type created:

2: Async
3: Sync
4: UnSyncAssoc
5: UnSyncUnAssoc

844

845

846

847

848

849

850

851

852

853

854

855

856

857

Copy Services Subprofile

422

If the TargetPool is supplied, the provider uses the requested pool except for the next special case. For
CopyType “UnSyncAssoc” creating a delta replica and DeltaReplicaPoolAccess values of “Shared” or
“Exclusive” are indicated by the provider, TargetPool should be managed by the client as shown in Table
238

If TargetSettingGoal is not supplied by the client, the provider generates a default StorageSetting element
for the replica. If TargetSettingGoal is supplied by the client, the provider will return an MP5 error
message if the goal is incompatible with the corresponding target pool. If “job started' is returned, a
Target Element reference may or may not be returned by the provider. 9.1.8 Accessibility to Created
Elements explains when a reference to the new replica element is available to the client.

9.5.2.2.3 AttachReplica

This method creates a StorageSynchronized relationship between two (existing) storage volumes. Once
the association is created the SyncState is set to “initialized”, “Prepared” or “Synchronized” as defined in
the StorageConfigurationCapabilities associated with the StorageConfigurationService. There is no
ConcreteJob created or returned on this method call (since the only action effected is the creation of the
association).

AttachReplica():

[In, Description (“A end user relevant name for the element being created. If NULL,
then a system supplied

default name can be used. The value will be stored in the

'ElementName' property for the created element”)]

string ElementName,

[In, Required, Description(“The source storage object.”)]

CIM_LogicalElement REF SourceElement,

[In, Required, Description(“Reference to the target storage element (i.e., the
replica).”)]

CIM_LogicalElement REF TargetElement,

[In, Required, Description(“CopyType describes the type of copy that will be made.
Values are:

Async: Create and maintain an asynchronous copy of the source.

Sync: Create and maintain a synchronized copy of the source.

UnSyncAssoc: Create an unsynchronized copy and maintain an association to the
source.

UnSyncUnAssoc: Create unassociated copy of the source element.”),

ValueMap {“2”, “3”, “4”, “5”, “.”, “0x8000..”},

Values {“Async”, “Sync”, “UnSyncAssoc”, “UnSyncUnAssoc”, “DMTF Reserved”, “Vendor
Specific”}]

Uint16 CopyType

Table 238 - TargetPool Parameter for Delta Replicas

DeltaReplicaPoolAccessvalue TargetPool supplied TargetPool not supplied

Shared Error with an MP5 message. The specialized pool
pre-exists and is always supplied by the provider.

Always the correct client action. The
provider locates the specialized pool.

Exclusive If the method invocation is creating the first delta
replica for the specified source element,
TargetPool is supplied by the client. The pool is
used by the provider and a ReplicaPoolForStorage
association is created as a side effect. If delta
replicas already exist for the source element, an
error with an MP5 message will be returned.

If the specified source element has a
ReplicaPoolForStorage association,
the provider uses this pool as the
container for a new delta replica. If
this association does not exist, an
error with an MP5 message is
returned.

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 423

[Out, IN(false), Description(“Reference to the job (may be null if job
completed).”)]

CIM_ConcreteJob REF Job,

7.3.3.8.8 Client Considerations

9.5.2.2.4 Additional Notes on StorageConfigurationService Methods

CreateReplica shall be provided if local replicas are supported. Replica target elements are deleted using
the ReturnToStoragePool method in block services. All associations and associated setting elements are
automatically deleted at the same time the element is deleted.

TargetElement candidates cannot have an existing SyncedElement role to a StorageSynchronized
association. The provider returns a DRM26 error message if the candidate is already in use as a replica
target element. Source elements may generally be associated with multiple replica targets. The provider
may return a DRM26 error in some cases if an element cannot serve as a replica source. The provider
may return a DRM27 error if the client attempts to create replication targets exceeding the provider
specified limits.

If the method returns “job completed”, the new StorageSynchronized association is accessible to the
client. If the method returns “job started”, the association may not be accessible. In this case, an instance
creation indication should be generated by the provider when the association is accessible.

If the provider supports replica modification, a Goal parameter may be passed by the client to change the
value of modifiable setting properties. The provider may ignore properties not relevant to replication
operations. The properties that may be supplied by the client include UseReplicationBuffer,
InitialSynchronization and ReplicationPriority.

DEPRECATED

EXPERIMENTAL

9.5.2.3 ReplicationService Methods

The ReplicationService has a number of extrinsic methods for replication management.

All of the ReplicationService extrinsic methods return one of the following status codes. Depending on the
error condition, a method may return additional error codes and/or throw an appropriate exception to
indicate the error encountered.

0: (Job) Completed with no error

1: Method not supported

4: Failed

5: Invalid Parameter

4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901
902

903

904

905

906

907

908
909

910

Copy Services Subprofile

424

Table 239 summarizes the extrinsic methods for replica creation and management in the
ReplicationService.

9.5.2.3.1 CreateElementReplica

 uint32 ReplicationService.CreateElementReplica(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) a new storage object which is a replica of
the specified source storage object (SourceElement). The parameters are as follows:

• ElementName: A end user relevant name for the element being created. If NULL, then a system supplied
name is used. The value will be stored in the 'ElementName' property for the created element.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously.

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• TargetElement:

• As an input, refers to a target element to use. If a target element is not supplied, the implementation may
locate or create a suitable target element. See 9.5.2.4.9.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

Table 239 - Extrinsic Methods of ReplicationService

Method Described in

CreateElementReplica Section 9.5.2.3.1

CreateSynchronizationAspect Section 9.5.2.3.2

ModifyReplicaSynchronization Section 9.5.2.3.3

ModifyListSynchronization Section 9.5.2.3.4

ModifySettingsDefineState Section 9.5.2.3.5

GetAvailableTargetElements Section 9.5.2.3.6

GetReplicationRelationships Section 9.5.2.3.7

911
912

913

914

915
916

917

918

919
920

921

922
923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 425

• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• Synchronization: Refers to the created association between the source and the target element. If a job is
created, this parameter may be NULL, unless the association is actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be NULL.

• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be NULL.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached. For example,
CopyState of Initialized means associations have been established, but there is no data flow. CopyState of
Synchronized indicates the replica is an exact copy of the source element. CopyState of UnSynchronized
means copy operation is in progress (see Table 230, “CopyStates Values,” for the CopyStates).

Method Notes:

• Creates a storage element of the same type as the source element.

• Creates a StorageSynchronized association.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target element.

• May create BasedOn and ReplicaPoolForStorage associations.

9.5.2.3.2 CreateSynchronizationAspect

 uint32 ReplicationService.CreateSynchronizationAspect(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElement,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SettingsDefineState REF SettingsState);

This method allows a client to create (or start a job to create) new instances of SynchronizationAspect
that are associated to the source element via the SettingsDefineState associations. This representation
may be of a form of pointers or a series of checkpoints that keep track of the source element data for the
created point-in-time.

This method does not include a target element, however, a target element can be added subsequently
using the ModifySettingsDefineState method.

The method creates individual associations between the source elements and the instances of
SynchronizationAspect.

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

Copy Services Subprofile

426

The parameters are as follows:

• ElementName: A end user relevant name. If NULL, then a system supplied default name can be used. The
value will be stored in the ElementName property of the created SynchronizationAspect.

• SyncType: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Mode: See 9.5.2.3.1: CreateElementReplica’s parameters.

• SourceGroup: This should be null for ungrouped copies.

• SourceElement: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Consistency: This should be null for ungrouped copies.

• ReplicationSettingData: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Job: See 9.5.2.3.1: CreateElementReplica’s parameters.

• SettingsState: Refers to the created association between the source element or group and the instance of the
SynchronizationAspect. If a job is created, this parameter may be NULL, unless the association is actually
formed.

Method Notes:

• May create an instance of SynchronizationAspect if an appropriate one does not exist already.

• May create ReplicaPoolForStorage associations.

9.5.2.3.3 ModifyReplicaSynchronization

 uint32 ReplicationService.ModifyReplicaSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

[IN] CIM_StorageSynchronized REF SyncPair[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

[OUT] CIM_SettingsDefineState REF SettingsState,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the synchronization association between
two storage objects. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: The reference to the replication association describing the elements relationship that is to
be modified.

• ReplicationSettingData: See 9.5.2.3.1: CreateElementReplica’s parameters.

• SyncPair[]: For operations on ungrouped elements, this parameter should be NULL.

• Job: See 9.5.2.3.1: CreateElementReplica’s parameters.

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 427

• SettingsState: Reference to the association between the source element and an instance of
SynchronizationAspect. This parameters applies to operations such as Dissolve, which dissolves the
Synchronized relationship, but causes the SettingsDefineState association to be created. Depending on the
implementation, Deactivate may also return a SettingsState.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See 9.5.2.3.1: CreateElementReplica’s parameters.

9.5.2.3.4 ModifyListSynchronization

uint32 ReplicationService.ModifyListSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) a list of synchronization associations
between two storage objects. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: An array of references to the replication association describing the elements relationship
that is to be modified. All elements of the this array shall of the same concrete class, i.e.,
StorageSynchronized, and shall have the same SyncType, the same Mode, and the Operation must be valid
for the ReplicationType -- SyncType, Mode.

• ReplicationSettingData: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Job: See 9.5.2.3.1: CreateElementReplica’s parameters.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See 9.5.2.3.1: CreateElementReplica’s parameters. All the supplied synchronization
associations must reach at least the specified CopyState before the method returns.

9.5.2.3.5 ModifySettingsDefineState

 uint32 ReplicationService.ModifySettingsDefineState(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SettingsDefineState REF SettingsState,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_SettingData REF TargetSettingGoal,

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

Copy Services Subprofile

428

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the SettingsDefineState association
between the storage objects and SynchronizationAspect. The modification could range from introducing
the target elements, which creates new StorageSynchronized associations, to dissolving the
SettingsDefineState associations all together.

With the Copy To Target operation, the supplied SettingsState is deleted since an “active”
Synchronization is created to associate the source and the target elements.

The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the related associations, for
example, Copy To Target, which initiates the copy operation from the point-in-time view to the supplied
targets.

• SettingsState: Refers to the associations between the source elements and the SynchronizationAspect
instances.

• TargetElement: If TargetElement is supplied, TargetGroup and TargetCount shall be NULL.

• As an input, if the point-in-time has only one source element, this parameter supplies the target element.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetGroup: For ungrouped elements, this shall be NULL.

• Synchronization: The reference to the replication association describing the element relationship.

• ReplicationSettingData: See CreateElementReplica’s parameters (9.5.2.3.1).

• Job: See CreateElementReplica’s parameters (9.5.2.3.1).

• TargetSettingGoal: See CreateElementReplica’s parameters (9.5.2.3.1).

• TargetPool: See CreateElementReplica’s parameters (9.5.2.3.1).

• WaitForCopyState: See CreateElementReplica’s parameters (9.5.2.3.1).

9.5.2.3.6 GetAvailableTargetElements Method

Since the rules for determining potential target volumes for a copy operation are not always
straightforward, due to vendor-specific conditions, e.g. RAID level, the number of extents which consist of
the StorageVolume, the type of storage array, and so on, it can be difficult for the client to know which
volumes can be used as copy targets for a given source volume. This makes it difficult for the user to
create a copy pair with the AttachReplica because he must know which volumes can be used for target
volume for a particular source volume, otherwise the request may fail. The GetAvailableTargetElements
method can be used to identify the potential target volumes for a copy operation.
GetAvailableTargetElements method takes the source volume and list of candidate pools and returns the
list of candidate target volumes for that source volume.

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 429

.Table 240 describes the GetAvailableTargetElements Method.

 uint32 ReplicationService.GetAvailableTargetElements(

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, Required] uint16 CopyType,

 [IN, Required] uint16 Mode,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [IN] CIM_ComputerSystem REF Systems[],

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPools[],

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_LogicalElement REF Candidates[]);

This method allows a client to get (or start a job to get) all of the candidate target elements for the
supplied source element. If a job is started, once the job completes, examine the AffectedJobElement
associations for candidate targets. The parameters are as follows:

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• CopyType: See CreateElementReplica’s parameters (9.5.2.3.1).

• Mode: See CreateElementReplica’s parameters (9.5.2.3.1).

• ReplicationSettingData: See CreateElementReplica’s parameters (9.5.2.3.1). The parameter is useful for
requesting a specific combination of thinly and fully provisioned elements.

Table 240 - GetAvailableTargetElements Method

Method: GetAvailableTargetElements

Errors: DRM25, DRM27, MP5, MP11

Parameters:

Qualifiers Name Type Description/Values

IN, REQ SourceElement LogicalElement REF The original source volume for the pair

IN TargetPool[] StoragePool REF The arrays of the pools to search for
target volumes. The method finds
candidate target volumes from the
available volumes in the specified
TargetPools.

This does include volumes with a
Usage property value of reserved for
copy target.

IN, REQ CopyType uint16 Copy type:

2: Async

3: Sync

4: UnSyncAssoc

5: UnSyncUnAssoc

6: Migrate

OUT Candidates[] LogicalElement REF The list of candidate target volumes

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

Copy Services Subprofile

430

• Systems[]: For local copies this parameter should be NULL.

• TargetSettingGoal: Desired target StorageSetting. If NULL, settings of the source elements shall be used.

• TargetPools[]: The storage pools for the target elements. If NULL, all storage pools are examined.

• Job: See CreateElementReplica’s parameters (9.5.2.3.1).

• Candidates[]: The list of the candidate target elements found.

9.5.2.3.7 GetReplicationRelationships

 uint32 ReplicationService.GetReplicationRelationships(

 [IN] uint16 Type,

 [IN] uint16 CopyType,

 [IN] uint16 Mode,

 [IN] uint16 SyncState,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationships known to
the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships. The parameters are as follows:

• Type: The type of synchronization relationships, for example, StorageSynchronized. If this parameter is not
supplied, all such relationships are retrieved.

• SyncType: See CreateElementReplica’s parameters (9.5.2.3.1). If this parameter is not supplied, all
SyncTypes are retrieved.

• Mode: See CreateElementReplica’s parameters (9.5.2.3.1). If this parameter is not supplied, all Modes are
retrieved.

• CopyState: Only retrieve synchronization relationships that currently this CopyState (see Table 230,
“CopyStates Values,”). If this parameter is not supplied, relationships are retrieved regardless of their current
CopyState.

• Job: See CreateElementReplica’s parameters (9.5.2.3.1).

• Synchronizations[]: An array of elements found.

9.5.2.4 ReplicationServiceCapabilities Methods

There are a number of extrinsic methods in the ReplicationServiceCapabilities that advertise the
implemented replication services capabilities.

All of the Profile extrinsic methods return one of the following status codes. Depending on the error
condition, a method may return additional error codes and/or throw an appropriate exception to indicate
the error encountered.

0: (Job) Completed with no error

1: Method not supported

4: Failed

5: Invalid Parameter

4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 431

Table 241 summarizes the extrinsic methods for replica creation and management in the
ReplicationService.

9.5.2.4.1 ConvertSyncTypeToReplicationType

uint32 ReplicationServiceCapabilities.ConvertSyncTypeToReplicationType(

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 LocalOrRemote,

 [OUT] uint16 SupportedReplicationTypes);

The majority of the methods in this class accept ReplicationType which represents a combination of
SyncType, Mode, and Local/Remote. This method accepts the supplied information and returns the
corresponding ReplicationType, which can be passed to other methods to get the additional capabilities.

Table 242, Table 243, Table 244, and Table 245 show the values for the
CovertSyncTypeToReplicationType parameters. These values also appear in the value maps in the
appropriate MOF files.

Table 241 - Extrinsic Methods of ReplicationServiceCapabilities

Method Described in

ConvertSyncTypeToReplicationType Section 9.5.2.4.1

ConvertReplicationTypeToSyncType Section 9.5.2.4.2

GetSupportedCopyStates Section 9.5.2.4.3

GetSupportedFeatures Section 9.5.2.4.4

GetSupportedOperations Section 9.5.2.4.5

GetSupportedSettingsDefineStateOperations Section 9.5.2.4.6

GetSupportedThinProvisioningFeatures Section 9.5.2.4.7

GetSupportedMaximum Section 9.5.2.4.8

GetDefaultReplicationSettingData Section 9.5.2.4.9

GetSupportedReplicationSettingData Section 9.5.2.4.10

Table 242 - SyncTypes

SyncType Value

Mirror 6

Snapshot 7

Clone 8

Table 243 - Modes

Mode Value

Synchronous 2

Asynchronous 3

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

Copy Services Subprofile

432

9.5.2.4.2 ConvertReplicationTypeToSyncType

 uint32 ReplicationServiceCapabilities.ConvertReplicationTypeToSyncType(

 [IN] uint16 ReplicationType,

 [OUT] uint16 CopyType,

 [OUT] uint16 Mode,

 [OUT] uint16 LocalOrRemote);

This method does the opposite of the method ConvertSyncTypeToReplicationType. This method
translates ReplicationType to the corresponding SyncType, Mode, and Local/Remote.

9.5.2.4.3 GetSupportedCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[],

 [OUT] boolean HostAccessible[]);

For a given ReplicationType, this method returns the supported CopyStates (Table 230) and a parallel
array to indicate whether for a given CopyState the target element is host accessible or not (true or false).

9.5.2.4.4 GetSupportedFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedFeatures(

Table 244 - Local or Remote

LocalOrRemote Value

Local 2

Remote 3

Table 245 - ReplicationTypes

SupportedReplicationType Value

Synchronous Mirror Local 2

Asynchronous Mirror Local 3

Synchronous Mirror Remote 4

Asynchronous Mirror Remote 5

Synchronous Snapshot Local 6

Asynchronous Snapshot Local 7

Synchronous Snapshot Remote 8

Asynchronous Snapshot Remote 9

Synchronous Clone Local 10

Asynchronous Clone Local 11

Synchronous Clone Remote 12

Asynchronous Clone Remote 13

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 433

 [IN] uint16 ReplicationType,

 [OUT] uint16 Features[]);

For a given ReplicationType, this method returns the supported features listed in Table 246.

9.5.2.4.5 GetSupportedOperations

 uint32 GetSupportedOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported Operations on a StorageSynchronized
association that can be supplied to the ModifyReplicaSynchronization method, as shown in Table 247.

Refer to Figure 56, “CopyState Transitions” for additional information.

Table 246 - Features

Feature Description

“Replication Groups” Elements in a replication group are supported in a replication
operation.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the service can
manage.

"Service suspends source I/O when necessary" Provider is able to suspend I/O to source elements before splitting
the target elements. Otherwise, the client needs to quiesce the
application before issuing the split command.

"Targets allocated from Any storage pool" Specialized storage pools are not required for the target elements,
as long as the pool is not reserved for special activities.

"Targets allocated from Shared storage pool" Targets are allocated from storage pools reserved for Copy
Services.

"Targets allocated from Exclusive storage pool" Targets are allocated from exclusive storage pools.

"Targets allocated from Multiple storage pools" Targets are allocated from multiple specialized, exclusive pools.

“Targets require reserved elements” The target elements must have a specific Usage value. For
example, reserved for "Local Replica Target" (mirror), reserved for
"Delta Replica Target" (Snapshot)., etc.

"Target is associated to SynchronizationAspect” The target element is associated to SynchronizationAspect via
SettingsDefineState. SynchronizationAspect contains the point-in-
time timestamp and the source element reference used to copy to
the target element.

"Source is associated to SynchronizationAspect” The source element is associated to SynchronizationAspect via the
SettingsDefineState association. SynchronizationAspect contains
the point-in-time information of the source data.

"Error recovery from Broken state Automatic", For example, if the connection between the source and target
elements is broken (CopyState = Broken), once the connection is
restored, the copy operation continues automatically. If the error
recovery is not automatic, it requires manual intervention to restart
the copy operation. Use ModifyReplicaSynchronization, with
Operation set to Resume.

Table 247 - Operations

Operation Description Special Consideration

“Abort” Abort the copy operation if it is possible.

"Activate Consistency" Enable consistency.

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

Copy Services Subprofile

434

“Activate” Activate an inactive StorageSynchronized association.

"AddSyncPair" Add source and target elements of a
StorageSynchronized association to the source and target
replication groups. The SyncType of the associations
must be the same.

"Deactivate Consistency" Disable consistency.

“Deactivate” Stop the copy engine. Writes to source element are
allowed.

Snapshot: Writes to target element after
point-in-time is created are lost (pointers
removed).

"Detach" Remove the association between the source and target
elements. Detach does not delete the target element.

“Dissolve” Dissolve the synchronization association between two
storage objects, however, the target element continues to
exist.

Snapshot: This operation also creates a
SettingsDefineState association between
the source element and an instance of
SynchronizationAspect if the
ReplicationType supports it.

"Failover" Enable the read and write operations from the host to the
target element. This operation useful for situations when
the source element is unavailable.

"Failback" Switch the read/write activities from the host back to
source element. Update source element from target
element with writes to target during the failover period.

"Fracture" Separate the target element from the source element.

"Resync Replica" Resynchronize a fractured target element.

"Restore from Replica" Copy a fractured target element to the source element.

"Resume" Continue the copy operation of a suspended (or Broken)
relationship.

To continue from the Broken state, the
problem should be corrected first before
requesting to resume.

"Reset To Sync" Change Mode to Synchronous.

"Reset To Async" Change Mode to Asynchronous.

“Return To StoragePool” Delete a Snapshot target.

"Reverse Roles" Switch the source and the target elements’ roles.

"Split" Separate the source and the target elements in a
consistent manner.

"Suspend" Stop the copy engine in such a way that it can be
resumed.

Table 247 - Operations

Operation Description Special Consideration

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 435

Table 248 compares the action of similar Operations.

9.5.2.4.6 GetSupportedSettingsDefineStateOperations

uint32 ReplicationServiceCapabilities.GetSupportedSettingsDefineStateOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported operations on a SettingsDefineState
association that can be supplied to the ModifySettingsDefineState method, shown in Table 249.

9.5.2.4.7 GetSupportedThinProvisioningFeatures

uint32 ReplicationServiceCapabilities.GetSupportedThinProvisioningFeatures(

Table 248 - Comparison of Similar Operations

Operations Description

Activate versus Resume Activate: Activates a StorageSynchronizes association
that has a CopyState of “Inactive.”

Resume: Resumes a StorageSynchronized association
that has a CopyState of “Suspended”.

Deactivate versus Suspend Deactivate: Stops the copy engine. In the case of
Snapshots, all writes to target element are deleted
(pointers to changed data are removed). While inactive,
writes to source element will not be committed to target
element once activated.

Suspend: Stops the copy engine. All writes to target
element are preserved. Once resumed, pending writes to
target element are committed.

Fracture versus Split Fracture: Source and target elements are separated
“abruptly.”

Split: Source and target elements are separated in an
orderly fashion. Consistency of target elements is
maintained.

Detach versus Dissolve Detach: The association between the source and target
element must be first Fractured/Split before it can be
Detached.

Dissolve: The association can have a CopyState of
Synchronized. Additionally, Dissolve can create a
SettingsDefineState association based on
GetSupportedFeatures (see 9.5.2.4.4) Capabilities.

Table 249 - SettingsDefineState Operations

SettingsDefineState
Operation

Description Special Consideration

"Activate Consistency" Enable consistency

"Deactivate Consistency" Disable consistency

"Delete" Remove the SettingsDefineState association. Instance of
SynchronizationAspect may also be deleted if it is not shared
with other elements.

"Copy To Target" Introduces the target elements and forms the necessary
associations between the source and the target elements
(i.e., StorageSynchronized).

1239

Copy Services Subprofile

436

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedThinProvisioningFeatures[]);

For a given ReplicationType this method returns the supported features related to thin provisioning.

A client can request a specific thin provisioning policy in the ReplicationSettingData parameter of the
appropriate method call.

9.5.2.4.8 GetSupportedMaximum

 uint32 ReplicationServiceCapabilities.GetSupportedMaximum(

 [IN] uint16 ReplicationType,

 [IN] uint16 Component,

 [OUT] uint64 MaxValue);

This method accepts a ReplicationType and a component, it then returns a static numeric value
representing the maximum number of the specified component that the service supports. A value of 0
indicates unlimited components of the given type. In all cases the maximum value is bounded by the
availability of resources on the computer system. If the information is not known, the method returns 7
which indicates "Information is not available".

Effectively, this method informs clients of the edge conditions.

Table 251 shows the list of components that can be specified.

Table 250 - Thin Provisioning Features

Feature Description

"Thin provisioning is not supported" The replication service does not distinguish between thinly and fully
provisioned elements. The service treats all elements as fully
provisioned elements.

"Zeros written in unused allocated blocks of target" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused.

"Unused allocated blocks of target are not initialized" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused.

Table 251 - Components

Component Description

"Number of target elements per source element" Maximum number of target elements per source element.

"Number of total source elements" Maximum number of total source elements supported by the service.

"Number of total target elements" Maximum number of total target elements supported by the source.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the service can
manage.

1240

1241

1242

1243

1244

1245

1246

1247

1248

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 437

9.5.2.4.9 GetDefaultReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetDefaultReplicationSettingData(

 [IN] uint16 ReplicationType,

 [OUT, EmbeddedObject]

 string DefaultInstance);

This method for a given ReplicationType returns the default ReplicationSettingData as an instance.

9.5.2.4.10 GetSupportedReplicationSettingData

Not defined in this version of the standard.

EXPERIMENTAL

9.6 Client Considerations and Recipes

9.6.1 Discovery of Copy support and Capabilities

A single instance of a Copy Services provider may support mirrors, snapshots and clones. A client follows
these steps to fully discover and understand all capabilities of the provider:

• Locate the hosted instance of StorageConfigurationService.

• Enumerate and get all of the informational capability objects associated with StorageConfigurationService

Block services shall be supported by the provider. The Copy Services Subprofile shall be registered by
the provider. The provider shall host one instance of StorageConfigurationService.

The properties of StorageConfigurationCapabilities and StorageReplicationCapabilities indicate precisely
how the provider supports each copy service feature. The client should find one instance of
StorageReplicationCapabilities for each SupportedSynchronizationType value supported by the provider.
StorageReplicationCapabilities can be specialized as shown in Table 252.

Each instance shows the client:

• Replica type supported (full or delta)

• Methods supported and ModifySynchronization operations supported

• Any restrictions on host access to replicas

• Upper limits such as maximum replicas for one source element

• Specialized features by CopyType

Table 252 - Replica Specialization by CopyType

SupportedSynchronizationTyp
e value

CopyType value Specialization

Async (2) Async (2) Asynchronous local mirror replication

Sync (3) Sync (3) Synchronous local mirror replication

UnSyncAssoc-Full (4) UnSyncAssoc (4) Full snapshots

UnSyncAssoc-Delta (5) UnSyncAssoc (4) Delta snapshots

UnSyncUnAssoc (6) UnSyncUnAssoc (5) Clone replication

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Copy Services Subprofile

438

Most of the properties in StorageReplicationCapabilities are optional. The client first analyzes
SupportedSynchronousActions[], SupportedAsynchronousActions[], SupportedModifyOperations[] and
SupportedSpecializedElements[]. Support for the remaining optional properties is conditional on the
values indicated for these properties.

EXPERIMENTAL

If the CIM_ReplicationService has been implemented, another set of methods and capabilities will also
exist -- the CIM_ReplicationServiceCapabilities. The client should find one instance of
ReplicationServiceCapabilities for each instance of hosted ReplicationService.
ReplicationServiceCapabilities can be specialized as shown in Table 253.

An instance of ReplicationServiceCapabilities shows the client:

• Methods supported and ModifyReplicaSynchronization operations supported, and

• Storage Objects (e.g., Volumes or LogicalDisks) supported

The client first analyzes SupportedSynchronousActions[], SupportedAsynchronousActions[] and
SupportedStorageObjects[]. Other features can be determined from the GetSupportedFeatures method of
the class.

EXPERIMENTAL

EXPERIMENTAL

9.6.2 Creating and Managing Replicas

In general, creating and managing replicas involves the following steps:

• Decide on the SyncType of replica (Mirror, Snapshot, Clone) and Mode (Synchronous, Asynchronous). See
9.1.4.1.

• Locate the hosted instance of ReplicationService. See 9.1.3.

• Locate the instance of ReplicationServiceCapabilities. Utilize its properties and methods to determine the
applicable capabilities offered by the implementation for the desired ReplicationType (includes SyncType and
Mode). See 9.1.4.

Table 253 - Replica Specialization by SyncType/Mode

SupportedReplicationType value SyncType/Mode value Specialization

Synchronous Mirror Local (2) Mirror (6) / Synchronous (2) Synchronous mirror

Asynchronous Mirror Local (3) Mirror (6) / Asynchronous (3) Asynchronous mirror

Synchronous Snapshot Local (6) Snapshot (7) / Synchronous (2) Synchronous Snapshot

Asynchronous Snapshot Local (7) Snapshot (7) / Asynchronous (3) Asynchronous Snapshot

Synchronous Clone Local (10) Clone (8) / Synchronous (2) Synchronous Clone

Asynchronous Clone Local (11) Clone (8) / Asynchronous (3) Asynchronous Clone

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 439

• Use the method ReplicationService.GetAvailableTargetElements to locate appropriate target elements.
Depending on the implementation, it is also possible to allow the service to locate target elements. See
9.5.2.3.6.

• Verify StoragePools have sufficient free capacity for the target elements. See 9.1.22.

• Invoke the appropriate extrinsic method of the ReplicationService to create a replica. See 9.5.2.3.1.

• Monitor the copy operation’s progress by examining the replication associations properties, or subscribe to
the appropriate indications -- including storage pool low space alert indications. See 9.1.6 and 9.1.24.

• Invoke the method ReplicationService.ModifyReplicaSynchronization to modify a replica. For example, “split”
a replica from its source element. See 9.5.2.3.3.

EXPERIMENTAL

9.6.3 Using StorageSetting for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this
class are used as goal parameters for many of the methods used by the subprofile. These instances are
serially reusable for a short sequence of operations ending with creation of a pool or an element. The
client should follow these steps:

1) Invoke CreateSetting with SettingType value “Goal” for a selected storage pool.

2) Set values for all of the properties used to create and manage replicas. These properties are listed
in the definition of StorageSetting in this subprofile. Property values can be changed by the Modify-
Instance intrinsic method. The SupportedStorageElementUsage[] and SupportedStoragePoolUs-
age[] properties in StorageConfigurationCapabilities indicates which values of
StorageExtentInitialUsage and StoragePoolInitialUsage are supported. Other replication properties
may have been returned to the client with an initial value of “not applicable”. The client should not
modify the value of any property with a value of “not applicable”.

3) The generated setting may initially be used one or more times as a goal parameter for the GetSup-
portedSizes and GetSupportedSizeRange methods. The setting may then be used once as a goal
parameter for a pool or element creation method.

4) When the client no longer needs the generated setting instance, invoke the DeleteInstance intrinsic
method.

9.6.4 Finding and Creating Target Elements

If a provider supports the AttachReplica method, the client finds or creates target elements eligible to
become replicas. A provider may restrict replica targets to a specialized set of elements if element usage
restrictions are supported as indicated in StorageConfigurationCapabilities. The client should follow these
steps:

Case1: If the instrumentation does not support GetAvailableTargetElements method.

1) Determine the required size of the target element. Use the size of the source element unless a delta replica is
created. If a delta replica is created, the size may be smaller than the associated source element.

2) Create a goal setting instance. Set StorageExtentInitialUsage to the correct value for the type of
specialized element needed by the client. Set other replication setting property values as desired.
Refer to 9.6.8 Creating and Managing Snapshots for guidelines on using delta reservation proper-
ties. Use this goal instance in all the remaining steps.

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

Copy Services Subprofile

440

3) Search for existing StorageVolume instances that can be used as replica targets. A client can invoke
the GetElementsBasedOnUsage method to locate available targets from existing elements. The cli-
ent is responsible for screening the candidates for the required size and settings values. The search
is always initiated on the system that will host the target element.

4) If no candidates exist, follow block services client considerations and recipes to create a new ele-
ment as the replica target. Target elements may be created in pools or from element types that a
provider supports as a component. As in step 2, set StorageExtentInitialUsage and all of the other
replication setting properties to the required values before creating a new element. If a virtual ele-
ment is created in a special delta replica pool (described in subsequent sections), the Size parame-
ter value should be omitted when the element is created.

EXPERIMENTAL

Case2: If the instrumentation supports GetAvailableTargetElements method.

1) Select the original volume.

2) Get the copy target candidates by using GetAvailableTargetElements.

3) Select one of the candidates.

4) Create pair by CreateElementReplica.

EXPERIMENTAL

EXPERIMENTAL

9.6.5 Creating and Managing Pools for Delta Replicas

A provider may require specialized pools as containers for delta replicas. Such a pool only contains delta
replicas based on the variable space consumption model explained below. The client should inspect the
values of StorageReplicationCapabilities.DeltaReplicaPoolAccess. Values are:

• “Any” – Specialized pools not required for delta replicas. The provider creates delta replicas based on the
fixed space consumption model and the client can select any pool as a container.

• “Shared” – a single shared pool is the container for all delta replicas. This type of pool is always preexisting
and may be located with the GetElementBasedOnUsage method. The client may need to add space to this
type of pool.

• “Exclusive” – each source element requires an exclusive, special pool for associated delta replicas. If the
pool already exists, it is associated to the source element with a ReplicaPoolForStorage association. If the
pool does not exist, the client creates the pool.

Delta replica pools are commonly created from or extended with component elements supplied by the
InExtents[] parameter of the CreateOrModifyStoragePool method. The provider consumes all of the space
in the supplied elements for this type of pool. All of the supplied elements should come from a single pool.
Preexisting component elements may be located using the GetElementsBasedOnUsage method with the
Usage parameter set to “Element Component”. New component elements may be created using a goal
parameter with StorageExtentInitialUsage set to “Element Component”. The component element type
shall be a type supported by the provider as indicated in SupportedStorageElementTypes[].

A client may increase the size of a preexisting shared pool by adding component elements. A common
practice would be to use multiple small elements of equal size. Selected component elements are passed

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 441

to the CreateOrModifyStoragePool method using the InExtents[] parameter. The new elements are
combined with any existing elements to increase the pool size.

A client may create new exclusive pools or increase the size of an existing exclusive pool. A new
exclusive pool is commonly created by supplying one component element that supplies the required pool
size. Later, the exclusive pool size is increased by supplying a Size parameter value indicating the
required new size of the pool. The provider determines how to increase the size. An exclusive delta
replica pool is automatically associated to a source element by the provider. A ReplicaPoolForStorage
association to the source element is created during the first CreateReplica operation that refers to the
pool.

If warning threshold alerts are supported, the client may invoke ModifyInstance to modify the value of
StoragePool.LowSpaceWarningThreshold. The pool size can be increased following a low space alert
indication.

If the provider requires a shared pool and only supports “Replica Attachment” as the method for creating
delta snapshots, then the shared pool shall be provisioned with virtual devices to be used as target
elements. The client should ensure that enough virtual devices exist to create the expected maximum
number of delta replicas. Some number of virtual devices may preexist. If the client creates virtual
devices, create a goal element for each virtual device with StorageExtentInitialUsage set to “Delta
Replica Target” and omit the Size parameter when invoking the element creation method. This type of
virtual device always has an initial SpaceConsumed value of zero and does not have a
StorageSynchronized association until AttachOrModifyReplica is subsequently invoked by the client.

Capacity management for a delta replica pool adheres to the capacity relationship formula specified in
Block Services, Extent Mapping and Extent Conservation. The standard capacity relationship is:

TotalManagedSpace = RemainingManagedSpace + SUM(SpaceConsumed)

where SpaceConsumed is a sum for all elements created in the pool. RemainingManagedSpace and
SpaceConsumed properties may have volatile values for a delta replica pool and the elements in the pool.
The provider shall maintain values for these properties that satisfy the formula. However, a client may
receive stale values when instance properties are retrieved in multiple operations. The stale values may
result in an unequal comparison when the capacity management relationship is checked. A client should
not expect to determine exactly how much space is consumed by a delta replica in a shared or exclusive
pool. If a snapshot service provider allows multiple snapshots to share a consumed block, only one
snapshot will count the block in its SpaceConsumed value. The most important capacity management role
for the client is to correctly size the delta replica pool. The sizing should be based on the maximum
number of snapshots retained in the pool and the expected space consumption per snapshot.

If the provider supports low space warning threshold alerts, the client should subscribe to these alert
indications. The client should maintain adequate pool capacity by either increasing the pool size or
deleting the oldest snapshots when an alert is received.

Extent mapping and extent conservation are not supported for elements created in a specialized delta
replica pool.

EXPERIMENTAL

9.6.6 Creating and Managing Mirrors

A mirror replica is the same size as the associated source element and is fully copied from the source
element. A provider may allow the mirror element to be a larger size than the source element. A full
background copy is normally initiated by the provider when a mirror replica is created. If the provider
defers the background copy, the client may need to initiate the copy at a later time.

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

Copy Services Subprofile

442

 A provider normally runs a copy engine that maintains a mirror as the current image of the associated
source element. The copy engine may operate in either synchronous or asynchronous mode. If the client
requests CopyType “Sync” when the replica is created, the copy engine runs in synchronous mode and
any write I/O operation to the source does not receive ending status until the write operation is also
completed for the mirror. If the client requests CopyType “Async”, the copy engine runs in asynchronous
mode and write I/O operations receive ending status when the operation completes for the source
element.

A mirror may be changed from a current image of the source element to a point-in-time image using a
fracture operation. A mirror in the “Fractured” state is called a split mirror. A mirror can also be converted
to an independent storage element by a “Detach” operation following a fracture operation. The detached
mirror is equivalent to a clone element created with a CopyType “UnSyncUnAssoc” request (discussed
below).

A local mirror target element is hosted on the same system as the source element. An operation to create
a mirror includes the following steps:

Step 1: search the target host using the GetElementsBasedOnUsage method with the Usage parameter
value set to “Local Replica Target”. The client can search the entire host or selected pools on the host.
The client interfaces to the host system for the source element if a local mirror is created. The client shall
provide a replica size value for the screening operation. Normally, this is the same size value as the
source element. Select a candidate volume based on best fit or some other appropriate filter. Proceed to
step 3 if a candidate is selected from existing elements.

Step 2: select a pool for creation of a new target element. For the pool being screened, access the
associated StorageCapabilities instance and invoke CreateSetting to generate a modifiable setting object
that is used as a goal parameter for one or more method invocations. Set StorageExtentInitialUsage to
either “Local Replica Target”. Invoke GetSupportedSizes or GetSupportedSizeRange and screen the pool
based on the target element size. If the pool does not support the required size, proceed to the next
candidate pool. If a candidate pool is found and CreateReplica will be used to create the new mirror,
proceed to step 3. Otherwise, the client may follow operations described in Clause 5: Block Services
Package to create a new replica target candidate. Note: a client may elect to bypass screening and
require a user to manually select a candidate pool or target element.

Step 3: invoke AttachReplica or CreateReplica to create a new mirror replica. If the provider returns “job
completed” status, the client can immediately access the StorageSynchronized association instance for
the new replica. If the provider returns “job started” status, the client may need to wait for accessibility to
the StorageSynchronized association as described in 9.1.10 State Management For Associated Replicas.
The client may need to initiate additional operations to bring the new replica to the required
synchronization state. If the provider supports an InitialReplicationState of “Initialized”, the copy engine
has not started a background copy operation and the client may invoke ModifySynchronization requesting
a “Prepare” or “Resync” operation as needed.

The ModifySynchronization method can be invoked to manage existing mirrors. The subprofile supports
the following operations:

1) Mirrors can be split from their associated source element using a “Fracture” operation. A split mirror is a
point-in-time image of the source element. The split mirror can be used as a source for a backup operation or
can be treated as a temporary clone. A split mirror can be changed back to a current image of the source ele-
ment using a “Resync” operation.

2) Mirrors can be converted to independent storage elements by a sequence of operations including
“Fracture” and “Detach”.

3) The source element can be restored from a mirror by invoking a “Restore” operation. This should
normally follow a client action that blocks host I/O to both the source element and all associated rep-
lica elements until the restore operation is completed.

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 443

4) A provider may support “ResetToSync” and “ResetToAsync” operations if availability and perfor-
mance QoS policies change over time. Invoke “ResetToSync” when availability QoS changes to a
higher priority than performance QoS. Invoke “ResetToAsync” when the reverse relationship occurs.

9.6.7 Creating a Clone and Redirected Restore Operations

A clone is a full size, fully copied local replica that becomes an independent storage element as soon as
the background copy operation is completed. A clone is usually created by invoking the AttachReplica or
CreateReplica methods with the CopyType parameter set to a value of “UnSyncUnAssoc”. Alternatively, a
clone may be created by detaching a split mirror or a frozen snapshot.

The provider shall automatically initiate a background copy operation when CopyType “UnSyncUnAssoc”
is requested by a client. If the provider deploys the method as an asynchronous operation, then the
provider may elect to create a temporary StorageSynchronized association that allows the client to
manage copy priority for the background copy operation. This temporary association should only indicate
a SyncState value of “Resync in progress” and the provider shall automatically delete the association
when the background copy operation is completed. The client can modify the value of CopyPriority while
the copy operation is in progress. The temporary association cannot be used for any other purpose and
the client shall never invoke ModifySynchronization against this type of association.

A provider may allow a frozen snapshot to be treated as a clone. The client observes that a replica
previously created with CopyType “UnSyncAssoc” has a SyncState value of “Frozen”. If the provider
supports the ModifySynchronization Start Copy operation, this operation may be invoked to bring the
replica from idle state to frozen state. The provider may allow copy priority to be managed as described in
9.6.9 "Managing Background Copy".

The clone is a point-in-time image of the source element. The client shall supply any needed date/time
value for the point-in-time because a guaranteed WhenSynced property value is not available for a clone
created by a CopyType “UnSyncUnAssoc” operation. A provider may create a clone as either a
synchronous or asynchronous operation. When the operation is completed, the client assumes the clone
is ready to manage as an independent element if the OperationalStatus property indicates a value of
“OK”.

The Restore operation for the ModifySynchronization method only allows restoration to the source
element associated with a replica. If a provider supports multi-level replication, a variation of clone
creation may be used to restore a replica to a redirected location. Invoke a replica creation method
supported by the provider passing a replica element as the source parameter and also indicate CopyType
“UnSyncUnAssoc”. The target may be a new element or an existing independent element.

EXPERIMENTAL

9.6.8 Creating and Managing Snapshots

Snapshot replicas are point-in-time images created with CopyType value “UnSyncAssoc”. Snapshots can
be created as full size replicas of a source element or as delta replicas of a source element. Snapshots
usually have lower space consumption and lower copy engine overhead than either split mirrors or clones
used as point-in-time images. Snapshots are only supported as local replicas hosted on the same storage
system as the associated source element. A provider defines only one instance of
StorageReplicationCapabilities for managing snapshots. This instance indicates one of two values for
SupportedSynchronizationType:

• Full size: SupportedSynchronizationType = “UnSyncAssoc-Full”

• Delta: SupportedSynchronizationType = “UnSyncAssoc-Delta”

Snapshot providers may deploy either a fixed space consumption model or a variable space consumption
model for snapshot replicas. A full size replica always uses a fixed space consumption model. A delta

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

Copy Services Subprofile

444

replica may use either a fixed or a variable model. Replica elements based on the variable model shall be
created in special pools for delta replicas. A provider indicates support for special pools by including the
value “Reserved as a Delta Replica Container” in
StorageConfigurationCapabilities.SupportedStoragePoolUsage[]. The replica
AllocatedFromStoragePool.SpaceConsumed property has a constant value for the fixed model and a
volatile, increasing value for the variable model. The RemainingManagedSpace property for the
corresponding pool has a volatile, decreasing value if the pool contains replicas based on the variable
model. Figure 60: "Fixed Space Consumption" and Figure 61: "Variable Space Consumption" show the
fixed and variable space consumption models for delta snapshots:

For full size snapshots, NumberOfBlocks and BlockSize indicate the actual size of the target element
which is as large or larger than the source element. For delta snapshots, NumberOfBlocks and BlockSize
have the same values as the associated source element. Delta reservation properties are only used for
snapshots created by the CreateReplica method using fixed space consumption.

Figure 60 - Fixed Space Consumption

StorageVolume

// delta replica
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool (required)

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

CopyType = “UnSyncAssoc”

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 445

The instances of StorageReplicationCapabilities for “UnSyncAssoc-Delta” and “UnSyncAssoc-Full” may
use the patterns detailed in Table 254.

The steps required to create a snapshot vary for each pattern. There are a number of common steps.

Figure 61 - Variable Space Consumption

Table 254 - Patterns Supported for StorageReplicationCapabilities

SupportedSynchronizati
onType

Supported…Actions[n] DeltaReplicaPoolAccess Space Consumption

UnSyncAssoc-Delta “Replica Attachment” Any pool or extent Fixed

UnSyncAssoc-Delta “Replica Creation” Any pool or extent Fixed

UnSyncAssoc-Delta “Replica Attachment” Shared or Exclusive Variable

UnSyncAssoc-Delta “Replica Creation” Shared or Exclusive Variable

UnSyncAssoc-Full “Replica Attachment” n/a Fixed

UnSyncAssoc-Full “Replica Creation” n/a Fixed

S to ra g e S y n c h ro n iz e d

S to ra g e V o lu m e

/ / d e lta re p l ic a
N u m b e rO fB lo c k s = N
B lo c k S iz e = M

S to ra g e P o o l

/ / c o n ta in e r e le m e n t
/ / d e lta re p lic a p o o l
T o ta lM a n a g e d S p a c e = S
R e m a in in g M a n a g e d S p a c e = v a r ia b le
L o w S p a c e W a rn in g T h re s h o ld = T 2
U s a g e =
 “R e s e rv e d a s a D e lta R e p lic a C o n ta in e r ”

A l lo c a te d F ro m S to ra g e P o o l

S to ra g e V o lu m e

/ / s o u rc e e le m e n t
N u m b e rO fB lo c k s = N
B lo c k S iz e = M

S p a c e C o n s u m e d = v a r ia b le

C o p y T y p e = “U n S y n c A s s o c ”

R e p l ic a P o o lF o rS to ra g e
(o p t io n a l)

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

Copy Services Subprofile

446

Step 1 the provider may limit the maximum number of replicas per source element. Verify that the limit is
not exceeded when a new replica is created. The provider may restrict snapshots to independent source
elements. If the source element is a replica, verify that the provider allows snapshots of local replicas.

Step 2: locate a candidate pool eligible to contain a new snapshot. This is a special pool if the
DeltaReplicaPoolAccess value is “Shared” or “Exclusive”. A shared, special pool is a preexisting element
supplied by the provider. The special pool may be populated with virtual devices that do not consume
space until the AttachReplica method is invoked at a later time. An exclusive, special pool is created the
first time a new delta replica is created for a source element that currently has no associated delta
replicas. The operation for locating or creating a special pool for delta replicas is described in 9.6.5
Creating and Managing Pools for Delta Replicas. If snapshots can be created in any pool, enumerate all
existing pool instances and begin screening the pools for eligibility. If snapshots are created by the
AttachReplica method, all existing storage elements in each candidate pool should be screened for
eligibility in a subsequent step.

Step 3: For the special pool or for the pool being screened, access the associated StorageCapabilities
instance and invoke CreateSetting to generate a modifiable setting object to be used as a goal parameter
for one or more method invocations. Set StorageExtentInitialUsage to either “Local Replica Target” for a
full snapshot or “Delta Replica Target” for a delta snapshot.

If the operation will use CreateReplica to create a delta snapshot using fixed space consumption, the
DeltaReservationMin, DeltaReservationGoal and DeltaReservationMax properties are set by the client to
appropriate values for a new delta replica. The values are set in the unassociated StorageSetting element
to be passed as a goal parameter to an extrinsic method. The client cannot modify the values of delta
reservation properties in a StorageSetting element associated to an existing storage element. The values
set by the client satisfy the relationship:

DeltaReservationMin <= DeltaReservationGoal <= DeltaReservationMax

as constrained by the provider. The client cannot decrease the value of DeltaReservationMin and cannot
increase the value of DeltaReservationMax returned by the provider. If the provider supports a fixed
space consumption model, the client estimates the fixed size of the delta replica as a percentage of the
source element size and the provider determines the actual size when the element is created.

Step 4: Skip this step if CreateReplica is used to create a delta replica with variable space consumption.
For all other cases, screen the candidate pool or the storage elements contained in the pool. If
AttachReplica is used to create a delta replica with variable space consumption, search the special delta
replica pool for a virtual storage element not in use as a replica target. For all fixed space consumption
cases, the client calculates a replica size value for the screening operation. Use the source element size
if a full snapshot replica is created. Use the DeltaReplicaMax percentage times the source element size if
a delta snapshot replica is created. The generated setting created in step 3 is used as the goal parameter
for the screening methods. Search existing volumes for replica target candidates as described in 9.6.4
Finding and Creating Target Elements if AttachReplica is used as the method to create the replica. Select
a returned volume based on best fit or some other appropriate filter. Invoke GetSupportedSizes or
GetSupportedSizeRange and verify that the replica size is supported by the candidate pool if
CreateReplica is used. Proceed to step 5 if an eligible candidate element is found. Otherwise, proceed to
the next candidate pool. If no candidates are located from existing pools, the client may follow recipes in
block services to create a new candidate pool or element. Omit the Size parameter whenever a virtual
replica element is created. Note: a client may elect to bypass screening and require a user to manually
select a candidate pool or target element.

Step 5: invoke AttachReplica or CreateReplica to create a new snapshot. The setting property values
from the goal parameter apply to the new replica. The provider determines which setting property values
from the goal parameter are copied to an existing setting instance when AttachReplica is invoked. If a
delta replica is created, the NumberOfBlocks and BlockSize values of the source element are assigned to
the target.

1539

1540

1541

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 447

The properties listed in Table 255 are used to monitor and manage space consumption for delta replicas
using a variable space consumption pattern.

The properties listed in Table 256 are used to monitor and manage space consumption for delta replicas
using a fixed space consumption pattern.

Two of the above properties have volatile values automatically changed by the provider when a delta
replica uses a variable space consumption model. SpaceConsumed increases and
RemainingManagedSpace decreases as the associated source element is updated. When a delta replica
consumes an additional block, SpaceConsumed increases by the value of BlockSize and
RemainingManagedSpace decreases by the value of BlockSize. If the replica uses a fixed space
consumption model, the values of these two properties are constant and change only when an extrinsic
method is invoked to create or modify the replica element. The value of SpaceConsumed at the instant
the delta replica is created is zero if no space is reserved or greater than zero if space is reserved. The
value of RemainingManagedSpace is decreased by the value of SpaceConsumed at the instant the
replica is created.

Table 255 - Space Consumption Properties

Delta Replica Property – Variable Space Consumption Value Modifiable

StorageExtent.NumberOfBlocks: valid for all elements. Same value as associated source element. constant no

StorageExtent.BlockSize: valid for all elements. Same value as associated source element. constant no

StoragePool.RemainingManagedSpace: valid for all pools. Value decreases by BlockSize each time
replica consumes a block in the pool.

volatile no

StoragePool.TotalManagedSpace: valid for all pools. constant no

StoragePool.LowSpaceWarningThreshold: valid for special delta replica pools if provider supports pool
warning thresholds. Value 0 to 100.

constant yes

AllocatedFromStoragePool.SpaceConsumed: valid for all elements. Value increases by BlockSize each
time replica consumes a block in the pool.

volatile no

Table 256 - Space Consumption Properties, Fixed Pattern

Delta Replica Property – FixedSpace Consumption Value Modifiable

StorageExtent.NumberOfBlocks: valid for all elements. Same value as associated source element. constant no

StorageExtent.BlockSize: valid for all elements. Same value as associated source element. constant no

StorageExtent.DeltaReservation: valid for target elements. Value set by CreateReplica method
providers for delta replicas.

constant no

StoragePool.RemainingManagedSpace: valid for all pools. Value decreases by fixed element size when
element is created.

constant no

StoragePool.TotalManagedSpace: valid for all pools. constant no

AllocatedFromStoragePool.SpaceConsumed: valid for all elements. Value set to fixed element size
when element is created.

constant no

StorageSetting.DeltaReservationMin: Value is % of source element size that is minimum fixed size.
Used only with CreateReplica method for delta replicas.

constant yes (goal)

StorageSetting.DeltaReservationMax: Value is % of source element size that is maximum fixed size.
Used only with CreateReplica method for delta replicas.

constant yes (goal)

StorageSetting.DeltaReservationGoal: Value is % of source element size that is the client goal for the
fixed size. Used only with CreateReplica method for delta replicas.

constant yes (goal)

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

Copy Services Subprofile

448

The ModifySynchronization method can be invoked to manage existing snapshots. The subprofile
supports the following operations:

1) A snapshot can be reused by invoking a “Resync” operation. This releases all of the space consumed by a
snapshot using the variable space consumption model. The WhenSynced property in StorageSynchronized
is reset to a new date/time value.

2) A “Detach” operation releases all of the space consumed by a snapshot using the variable space
consumption model. The detached target element can be reused for another purpose or deleted by
invoking the ReturnToStoragePool method. If the snapshot was not previously detached, invocation
of ReturnToStoragePool deletes the StorageSynchronized association.

3) Snapshot space consumption can be stopped by invoking a “Quiesce” operation. If the associated
source element is updated while the snapshot is in “Quiesced” state it is no longer a valid point-in-
time image.

4) The source element can be restored from a snapshot by invoking a “Restore” operation. This may
follow a client action that blocks host I/O to both the source element and all associated snapshot
elements until the restore operation is completed.

9.6.9 Managing Background Copy

Background copy is a full copy operation that copies all blocks from a source element to a replica
element. An initial background copy is normally started by a provider when a mirror or a clone is created.
Initial background copy is not normally started when a snapshot is created. A provider may allow a client
to initiate a deferred background copy. Management of background copy is an optional provider capability
indicated to a client for each supported CopyType value using properties in
StorageReplicationCapabilities. Deferred background copy for snapshots is supported if
SupportedModifyOperations[] includes “Start Copy” and “Stop Copy”. Deferred background copy for
mirrors is supported if InitialSynchronizationDefault has a value other than “Not Managed” or “Not
Applicable”. Copy priority can be managed for any CopyType if ReplicationPriorityDefault has a value
other than “Not Managed” or “Not Applicable”.

A ModifySynchronization Operation value of “Start Copy” or “Stop Copy” may be invoked for snapshots. A
“Start Copy” operation causes a snapshot to transition from “Idle” state to “Copy In Progress” state to
“Frozen” state. A “Stop Copy” operation causes a snapshot to transition from “Copy In Progress” state to
“Idle” state.

If initial background copy is not initiated when a mirror is created, a subsequent sequence of
ModifySynchronization operations that may include Prepare and Resync should start a background copy
operation.

The InitialSynchronization property in the goal parameter may be set to indicate whether or not an initial
background copy operation is initiated at the time a replica is created. The ReplicationPriority property in
the goal parameter may be set to override the default copy I/O rate priority.

A client may invoke ModifyInstance to modify the value of CopyPriority for a StorageSynchronized
association. This allows a client to manage the copy I/O rate and the priority of peer I/O operations
relative to host I/O operations. CopyPriority may be modified before or during a background copy
operation. Standard CopyPriority values are:

• Low – peer I/O is lower priority than host I/O

• Medium – peer I/O is the same priority as host I/O

• High – peer I/O is higher priority than host I/O

EXPERIMENTAL

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 449

EXPERIMENTAL

By default, replication service performs the copy operations in the background. In other words, the
methods such as CreateElementReplica, start the copy operation (or start a job) and return while the
copy operation is in progress. To perform a copy operation in the foreground, the method may specify the
WaitForCopyState of Synchronized, in which case the call will not return until the copy operation is
complete.

Alternatively, the methods CreateElementReplica may specify the WaitForCopyState of Inactive if the
ReplicationType supports it. In this case, the copy operation is not started until the inactive
synchronization is activated (using the ModifyReplicaSynchronization or ModifyListSynchronization
methods).

EXPERIMENTAL

9.6.10 Recipes

The recipes show how the extrinsic methods of the subprofile may be used. The ModifySynchronization
method is the only mandatory method of the subprofile. Instances of StorageReplicationCapabilities
indicate to the client which of the optional extrinsic methods are supported by a provider. If the provider
supports an extrinsic method, the corresponding recipe shows required behavior.

9.6.11 Replica Modification

This recipe shows how to use the mandatory ModifySynchronization method.

// NAME: Replica Modification

// FILE: CopyServicesSP_ModSync

//

// DESCRIPTION: The synchronization state of an associated replica target

// is modified by invocation of the ModifySynchronization extrinsic

// method. The client verifies that the requested operation is supported

// by the provider before the method is invoked. The client does not proceed

// if an invalid state transition is attempted.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $StgSync is a reference to a StorageSynchronized association to be

// modified. #Operation is the ModifySynchronization operation to be

// executed. If the operation completes successfully, the $StgSync

// instance is refreshed to get the current SyncState and WhenSynced

// values.

//

// Locate the instance of StorageConfigurationService to be used for

// method invocation. Locate the instance of StorageReplicationCapabilities

// to be used for validity checking.

//

$SourceVol = GetInstance (

 $StgSync.SystemElement,

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

Copy Services Subprofile

450

 false, false, false,

 {“SystemName”, “Usage”})

$TargetVol = GetInstance (

 $StgSync.SyncedElement,

 false, false, false,

 {“SystemName”, “Usage”})

$Host = Associators (

 $SourceVol->,

 “CIM_SystemDevice”,

 “CIM_ComputerSystem”,

 null, null, false, false, null)

$SCS = Associators (

 $Host->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null, null, false, false, null)

$L[] = Associators (

 $SCS->,

 “CIM_ElementCapabilities”,

 “CIM_StorageReplicationCapabilities”,

 null, null, false, false, null)

// Map StorageSynchronized.CopyType to

// StorageReplicationCapabilities.SupportedSynchronizationType.

#CT_to_SST_map = {2, 4, 6, 8, 9}

#CT = $StgSync.CopyType

#SST = #CT_to_SST_map[#CT] // 1st mapping step

if ($TargetVol.Usage == 12) {#SST++} // 2nd step -- delta snapshot

if ($TargetVol.SystemName != $SourceVol.SystemName) {#SST++}

 // 3rd step -- remote mirror

// finished with mapping

for #i in $L[]

{ // find the correct instance of StorageReplicationCapabilities

 if ($L[#i].SupportedSynchronizationType == #SST)

 {

 $SRC = $L[#i]

 break

 }

}

//

// Verify that the requested operation is supported by the provider.

//

if (!contains(#Operation, $SRC.SupportedModifyOperations[]))

{

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 451

<error: requested ModifySynchronization operation unsupported>

}

//

// Verify that StorageSynchronized.SyncState is in a valid state for

// entry to the state diagram for the requested operation. A client

// should construct a valid transition table for each provider. The

// following tables are based on state transition diagrams in the Copy

// Services subprofile specification. The tables are indexed by #Operation.

// Values in the table are:

// 0: Invalid value, will not match

// 1: Operation can start from any steady state

// 2-15: specific prerequsite SyncState values

// Most operations can start from one or two steady states.

//

#Detach = 2 // Detach operation can start from any state

// Cannot start other operations from “in progress” states

#InProgress[] = {3, 5, 7, 8, 10, 15}

#StartState_Mirror1 = {0, 0, 0, 9, 4, 13, 2, 4, 6, 9, 1, 1, 0, 0}

#StartState_Mirror2 = {0, 0, 0, 9, 4, 13, 13, 4, 6, 9, 1, 1, 0, 0}

#StartState_Snapshot1 = {0, 0, 0, 0, 4, 11, 2, 4, 11 ,0, 0, 0, 11, 15}

#StartState_Snapshot2 = {0, 0, 0, 0, 4, 14, 9, 4, 14 ,0, 0, 0, 11, 15}

#SS = $StgSync.SyncState

if (#Operation != #Detach) // Detach can start from any state

{

 if (contains(#SS, #InProgress[]))

 {

 <error: invalid state transition attempted>

 }

 if (#CT == 4) // Check snapshot state transitions

 {

 if ((#SS != #StartState_Snapshot1[#Operation]) &&

 (#SS != #StartState_Snapshot2[#Operation]))

 {

 <error: invalid state transition attempted>

 }

 } else // Check mirror state transitions

 {

 if ((#SS != #StartState_Mirror1[#Operation]) &&

 (#SS != #StartState_Mirror2[#Operation]) &&

 (#StartState_Mirror1[#Operation] != 1))

 {

 <error: invalid state transition attempted>

 }

 }

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Copy Services Subprofile

452

}

//

// Passed all validation checks. Invoke ModifySyncronization.

%InArguments[“Synchronization”] = $StgSync->

%InArgument[“Operation”] = #Operation

#r = InvokeMethod(

$SCS->,

“ModifySynchronization”,

%InArguments,

%OutArguments)

if (#r != 0 && #r != 4096)

{

<error: modify failed, stop recipe and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if ($Job.JobState != 7) // is it “Completed”?

{

<error: modify job failed, stop and examine CIM_Error>

}

}

if (#Operation != #Detach)

// if not “detach” get a fresh copy of StorageSynchronized

{

$StgSync = GetInstance(

$StgSync->,

false, false, false,

{“WhenSynced”, “SyncState”})

if (contains($StgSync.SyncState, #InProgress)) // In a transition?

{ // This is an optional wait for an instance mod indication

 // showing a steady state.

<wait for instance mod indication for $StgSync.SyncState>

$StgSync = GetInstance(// refresh to show steady state

$StgSync->,

false, false, false,

{“WhenSynced”, “SyncState”})

}

}

// Recipe complete -- $StgSync is now the StorageSynchronized association

// instance showing the final SyncState for the modify operation unless

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 453

// the operation was “detach”. If the operation is detach, the

// StorageSynchronized association was deleted.

9.6.12 Replica Creation Or Attachment

This recipe shows how to use the CreateReplica and the AttachOrModifyReplica methods.

// NAME: Replica Creation Or Attachment

// FILE: CopyServicesSP_CreateOrAttach

//

// DESCRIPTION: Create a new replica target element or attach an

// existing element eligible to be used as a replica target. The client

// performs a sequence of validation steps to ensure that the operation will

// succeed using the selected input elements.

// The recipe supports both the CreateReplica and the AttachOrModifyReplica

// extrinsic methods.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS:

//

// $SourceElement is the replication source and must be supplied.

// $TargetElement is an optional element selected as the replication target.

// If $TargetElement is supplied, the “attach” method will be invoked.

// If not, the “create” method will be invoked.

// $SCC is the instance of CIM_StorageConfigurationCapabilities

// controlling the recipe.

// $SRC is the instance of CIM_StorageReplicationCapabilities

// controlling the recipe.

// $SCS is the instance of CIM_StorageConfigurationService controlling

// the recipe.

// $TargetPool is an optional pool where a new replica is created.

// $TargetPool is not supplied if $TargetElement is supplied.

// $Goal is an optional instance of StorageSetting to be used as a goal

// parameter for a replica created in $TargetPool.

// $Pipe is an optional instance of ReplicationPipe that may be supplied

// for remote replication operations.

//

// Map StorageReplicationCapabilities.SupportedSynchronizationType value to the

// corresponding StorageSynchronized.CopyType value.

#SST_to_CT_map[] = {0, 0, 2, 2, 3, 3, 4, 4, 5, 6}

#SST = $SRC.SupportedSynchronizationType

#CT = #SST_to_CT_map[#SST]

// Create or Attach?

if ($TargetElement == null)

{ // Use CreateReplica

 if ((!contains(2, $SRC.SupportedAsynchronousActions[]) &&

 (!contains(2, $SRC.SupportedSynchronousActions[]))

 (

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

Copy Services Subprofile

454

 <error: replica creation not supported>

 }

 #attach = false

} else

(

 if ((!contains(4, $SRC.SupportedAsynchronousActions[]) &&

 (!contains(4, $SRC.SupportedSynchronousActions[]))

 (

 <error: replica attachment not supported>

 }

 #attach = true

}

// Tables for checking $TargetElement.Usage value

#AllUsage[] = {2, 8, 9, 10, 11, 12}

#RemoteUsage[] = {2, 9, 11}

#LocalUsage[] = {2, 8, 10}

#DeltaSnapshotUsage = 12

// Table for checking $TargetPool.Usage value

#PoolUsage[] = {0, 0, 6, 7, 6, 7, 6, 4, 6, 5}

if (#attach)

{ // validation checks for replica attachment

 $Refs[] = ReferenceNames(

 $TargetVol.getObjectPath(),

 “CIM_StorageSynchronized”,

 null)

 if ($Refs[].size() != 0) // element already a replica source or target

 {

 <error: invalid replication target element.

 }

 if ((#SST != 6) && (#SST != 7)) // Check size unless creating a snapshot

 {

 #SourceSize = $SourceElement.NumberOfBlocks * $SourceElement.BlockSize

 #TargetSize = $TargetElement.NumberOfBlocks * $TargetElement.BlockSize

 if (#TargetSize < #SourceSize)

 (

 <error: replication target element has insufficient size>

 }

 }

 if ((#SST != 3) && (#SST != 5))

 (// remote replication -- source and target must have different hosts

 if ($SourceVol.SystemName == $TargetVol.SystemName)

 {

 <error: target must be located on a remote host>

 }

 } else

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 455

 { // local replication -- source and target must have the same host

 if ($SourceVol.SystemName != $TargetVol.SystemName)

 {

 <error: target and source must be located on the same host>

 }

 }

 #Usage = $TargetElement.Usage

 if ((contains(#Usage, #AllUsage[]) && (#Usage != 2))

 { // continue unless Usage is “Unrestricted”

 if (#SST == 7) // Delta snapshot

 {

 if (#Usage != #SnapshotUsage)

 {

 <error: invalid usage restriction for target element>

 }

 } else

 {

 if ((#SST == 3) || (#SST == 5) // remote replica

 {

 if (!contains(#Usage, #RemoteUsage[]))

 {

 <error: invalid usage restriction for target element>

 }

 } else

 { // all local replica types except delta snapshots

 if (!contains(#Usage, #LocalUsage[]))

 {

 <error: invalid usage restriction for target element>

 }

 }

 }

 }

 if ($Pipe != null)

 {

 if ($Pipe.AggregationBehavior != 4)

 {

 <error: not a top-level replication pipe>

 }

 }

} else

{ // validation checks for replica creation

 if ($TargetPool != null)

 {

 #Usage = $TargetPool.Usage

 if ((#Usage != 2) && (#Usage != #PoolUsage[#SST]))

 {

 <error: invalid usage restriction for target pool>

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

Copy Services Subprofile

456

 }

)

} // completed all validation checks

// Invoke either AttachOrModifyReplica or CreateReplica

if (#Attach)

{

%InArguments[“SourceElement”] = $SourceElement->

%InArguments[“TargetElement”] = $TargetElement->

%InArguments[“CopyType”] = #CT

%InArguments[“ReplicationPipe”] = $Pipe

#r = InvokeMethod(

$SCS->,

“AttachOrModifyReplica”,

%InArguments,

%OutArguments)

} else

{

%InArguments[“SourceElement”] = $SourceElement->

%InArguments[“CopyType”] = #CT

%InArguments[“TargetSettingGoal”] = $Goal->

%InArguments[“TargetPool”] = $TargetPool->

#r = InvokeMethod(

$SCS->,

“CreateReplica”,

%InArguments,

%OutArguments)

}

if (#r != 0 && #r != 4096)

{

<error: replication method failed, stop and examine CIM_Error>

}

if (#r == 4096)

{

$Job-> = %OutArguments[“Job”]

<wait for instance modification indication for job completion>

$Job = GetInstance(

$Job->,

false, false, false, null)

if ($Job.JobState != 7) // “Completed”?

{

<error: replication job failed, stop and examine CIM_Error>

}

 if (!#Attach)

 {

$TL[] = Associators(

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 457

$Job->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

$TargetElement = $TL[0]

 }

} else

{

 if (!#Attach)

 {

$TargetElement-> = %OutArguments[“TargetElement”]

$TargetElement = GetInstance(

$TargetElement->,

false, false, false, null)

 }

}

if (#CT != 5) // not “UnSyncUnAssoc”

{ // locate new StorageSynchronized association for the target

$SL[] = References(

$TargetElement->,

“CIM_StorageSynchronized”,

“SyncedElement”,

false, false, null)

$StgSync = $SL[0]

)

// End of recipe. If successful, $TargetElement is the target replica

// instance and $StgSync is an instance of the StorageSynchronized

// association between $SourceElement and $TargetElement.

9.7 CIM Elements

Table 257 describes the CIM elements for Copy Services.

Table 257 - CIM Elements for Copy Services

Element Name Requirement Description

9.7.1 CIM_ElementCapabilities (Associates
ReplicationServiceCapabilities and ReplicationService)

Conditional Experimental. Conditional requirement: The
ReplicationService is implemented.

9.7.2 CIM_ElementCapabilities (Associates
StorageReplicationCapabilities and
StorageConfigurationService)

Mandatory

9.7.3 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities with
StorageConfigurationService.

9.7.4 CIM_ElementCapabilities
(StorageConfigurationCapabilities to StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

9.7.5 CIM_HostedService (Replication Service) Conditional Experimental. Conditional requirement: The
ReplicationService is implemented.

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

Copy Services Subprofile

458

9.7.6 CIM_HostedService (Storage Configuration
Service)

Mandatory

9.7.7 CIM_ReplicaPoolForStorage Optional Experimental. Associates special storage pool for
Snapshots (delta replicas) to a source element.

9.7.8 CIM_ReplicationService Optional Experimental. Base class for Replication Services.
Methods are described in the Extrinsic Methods clause.

9.7.9 CIM_ReplicationServiceCapabilities Conditional Experimental. Conditional requirement: The
ReplicationService is implemented. A set of properties
and methods that describe the capabilities of a replication
services provider.

9.7.10 CIM_ReplicationSettingData Optional Experimental. Contains special options for use by
methods of Replication Services.

9.7.11 CIM_SettingsDefineState Optional Experimental. Associates a storage object to an instance
of SynchronizationAspect.

9.7.12 CIM_StorageCapabilities Mandatory Base definition is in Block Services Package.

9.7.13 CIM_StorageConfigurationCapabilities Mandatory Base definition is in Block Services Package. Adds two
properties.

9.7.14 CIM_StorageConfigurationService Mandatory Base definition is in Block Services Package. Methods are
described in the Extrinsic Methods clause. The methods
of this Service are being Deprecated in favor of
CIM_ReplicationService methods.

9.7.15 CIM_StoragePool Mandatory Base definition is in Block Services Package.

9.7.16 CIM_StorageReplicationCapabilities Mandatory A set of properties that describe the capabilities of a copy
services provider.

9.7.17 CIM_StorageSetting Mandatory Base definition is in Block Services Package.

9.7.18 CIM_StorageSynchronized Conditional Experimental. Conditional requirement: The
ReplicationService is implemented. Associates replica
target element to source element. Property definitions and
descriptions are identical to those for LogicalDisk usage.

9.7.19 CIM_StorageSynchronized (Between
StorageExtent elements)

Mandatory Associates replica target element to a source element.

9.7.20 CIM_SynchronizationAspect Optional Experimental. Keeps track of the source of a copy
operation, even after StorageSynchronized is removed.
Also keeps track of point-in-time.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageSynchronized

Mandatory All instance creation indications for StorageSynchronized.

See 9.1.24.1 InstCreation on StorageSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized

Mandatory All instance deletion indications for StorageSynchronized.

See 9.1.24.2 InstDeletion on StorageSynchronized.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::SyncState
<>
PreviousInstance.CIM_StorageSynchronized::SyncState

Optional Deprecated. CQL -Synchronization state transition for a
replica association.

This Indication is being DEPRECATED.

See 9.1.24.3 InstModification on SyncState.

Table 257 - CIM Elements for Copy Services

Element Name Requirement Description

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 459

9.7.1 CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and ReplicationSer-
vice)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The ReplicationService is implemented.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.SyncState <>
PreviousInstance.SyncState

Mandatory Deprecated. Deprecated WQL -Synchronization state
transition for a replica association.

This Indication is being DEPRECATED.

See 9.1.24.3 InstModification on SyncState.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional CQL -Instance deletion indications for a specific
StorageSynchronized.

See 9.1.24.4 Qualified InstDeletion on
StorageSynchronized.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::CopyState
<>
PreviousInstance.CIM_StorageSynchronized::CopyState
AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional Experimental. CQL -Synchronization state transition for a
specific replica association.

See 9.1.24.5 Qualified InstModification on CopyState.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::ProgressStat
us <>
PreviousInstance.CIM_StorageSynchronized::ProgressSt
atus AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional Experimental. CQL -Progress status transition for a
specific replica association.

See 9.1.24.6 Qualified InstModification on
ProgressStatus.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::ProgressStat
us <>
PreviousInstance.CIM_StorageSynchronized::ProgressSt
atus

Optional Experimental. CQL -Progress status transition for replica
associations.

See 9.1.24.7 InstModification on ProgressStatus.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = "SNIA" AND AlertingManagedElement
ISA CIM_StorageSynchronized

Optional Experimental. Be notified when CopyState is set to
Broken.

See 9.1.24.8 AlertIndication on StorageSynchronized.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = "SNIA" AND AlertingManagedElement
ISA CIM_StoragePool

Optional Experimental. Remaining pool space either below
warning threshold set for the pool or there is no remaining
space in the pool.

See 9.1.24.9 AlertIndication on StoragePool.

Table 257 - CIM Elements for Copy Services

Element Name Requirement Description

Copy Services Subprofile

460

Table 258 describes class CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and
ReplicationService).

9.7.2 CIM_ElementCapabilities (Associates StorageReplicationCapabilities and StorageConfigu-
rationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 259 describes class CIM_ElementCapabilities (Associates StorageReplicationCapabilities and
StorageConfigurationService).

9.7.3 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationSer-
vice)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 260 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

Table 258 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates ReplicationSer-
viceCapabilities and ReplicationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 259 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Associates StorageReplica-
tionCapabilities and StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 260 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

2033

2034

2035

2036

2037

2038

2039

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 461

9.7.4 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 261 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool).

9.7.5 CIM_HostedService (Replication Service)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: The ReplicationService is implemented.

Table 262 describes class CIM_HostedService (Replication Service).

9.7.6 CIM_HostedService (Storage Configuration Service)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 263 describes class CIM_HostedService (Storage Configuration Service).

Table 261 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 262 - SMI Referenced Properties/Methods for CIM_HostedService (Replication Service)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Replication Service hosted on the System.

Table 263 - SMI Referenced Properties/Methods for CIM_HostedService (Storage Configuration Service)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Storage Configuration Service hosted on the System.

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

Copy Services Subprofile

462

9.7.7 CIM_ReplicaPoolForStorage

Experimental. Associates special storage pool for Snapshots (delta replicas) to a source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 264 describes class CIM_ReplicaPoolForStorage.

9.7.8 CIM_ReplicationService

Experimental. Base class for Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 265 describes class CIM_ReplicationService.

9.7.9 CIM_ReplicationServiceCapabilities

Experimental. This class defines all of the capability properties for the replication services.

Created By: Static

Modified By: Static

Table 264 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 265 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement Description & Notes

CreateElementReplica() Mandatory

CreateSynchronizationAsp
ect()

Optional

ModifyReplicaSynchroniza
tion()

Mandatory

ModifyListSynchronization(
)

Optional

ModifySettingsDefineState
()

Optional

GetAvailableTargetElemen
ts()

Optional

GetReplicationRelationshi
ps()

Optional

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 463

Deleted By: Static

Requirement: The ReplicationService is implemented.

Table 266 describes class CIM_ReplicationServiceCapabilities.

Table 266 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

SupportedReplicationType
s

Mandatory Enumeration indicating the supported CopyType/Mode/Local-or-Remote
combinations. Values:

 2: Synchronous Mirror Local

 3: Asynchronous Mirror Local

 6: Synchronous Snapshot Local

 7: Asynchronous Snapshot Local

 10: Synchronous Clone Local

11: Asynchronous Clone Local.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects. Values:

 2: StorageVolume

3: LogicalDisk.

SupportedAsynchronousA
ctions

N Mandatory Identify replication methods using job control. Values:

 2: CreateReplica

 4: CreateSynchronizationAspect

 5: ModifySynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

10: GetReplicationRelationships.

SupportedSynchronousAct
ions

N Mandatory Identify replication methods not using job control. Values:

 2: CreateReplica

 4: CreateSynchronizationAspect

 5: ModifySynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

10: GetReplicationRelationships.

ConvertSyncTypeToReplic
ationType()

Mandatory

ConvertReplicationTypeTo
SyncType()

Mandatory

GetSupportedCopyStates() Mandatory

GetSupportedFeatures() Mandatory

GetSupportedConsistency(
)

Optional

GetSupportedOperations() Mandatory

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

Copy Services Subprofile

464

9.7.10 CIM_ReplicationSettingData

Experimental. Contains special options for use by methods of Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 267 describes class CIM_ReplicationSettingData.

GetSupportedSettingsDefi
neStateOperations()

Optional

GetSupportedThinProvisio
ningFeatures()

Optional

GetSupportedMaximum() Optional

GetDefaultReplicationSetti
ngData()

Optional

GetSupportedReplicationS
ettingData()

Optional

Table 267 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

Pairing MN Optional Controls how source and target elements are paired. Values:

 2: Instrumentation decides

 3: Exact order

4: Optimum (If possible source and target elements on different adapters).

DesiredCopyMethodology MN Optional Request specific copy methodology. Values:

 1: Other

 2: Instrumentation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

8: Delta-Update.

TargetElementSupplier MN Optional If target elements are not supplied, this property indicates where the target
elements should come from. Values:

 1: Use existing elements

 2: Create new elements

 3: Use existing or Create new elements

4: Instrumentation decides.

Table 266 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

2096

2097

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 465

9.7.11 CIM_SettingsDefineState

Experimental. Associates a storage object to an instance of SynchronizationAspect.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 268 describes class CIM_SettingsDefineState.

9.7.12 CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

ThinProvisioningPolicy MN Optional If the target element is not supplied, this property specifies the
provisioning of the target element. Values:

 2: Copy thin source to thin target

 3: Copy thin source to full target

 4: Copy full source to thin target

 5: Provisioning of target same as source

 6: Target pool decides provisioning of target element

7: Implementation decides provisioning of target.

ConsistentPointInTime MN Optional If it is true, it means the point-in-time to be created at an exact time with no
I/O activities in such a way the data is consistent among all the elements
or the group.

DeltaUpdateInterval MN Optional If non-zero, it specifies the interval between the snapshots of source
element, for example, every 23 minutes (00000000002300.000000:000). If
zero or NULL, the implementation decides.

Multihop MN Optional This property applies to multihop copy operation. It specifies the number of
hops the starting source (or group) element is expected to be copied.
Default is 1.

Table 268 - SMI Referenced Properties/Methods for CIM_SettingsDefineState

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

Table 267 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

2098

2099

2100

2101

2102

2103

2104

Copy Services Subprofile

466

Table 269 describes class CIM_StorageCapabilities.

9.7.13 CIM_StorageConfigurationCapabilities

This class is only defined to maintain SMI-S 1.0 backward compatibility. This version of SMI-S indicate
copy services capabilities using instances of the StorageReplicationCapabilities class.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 270 describes class CIM_StorageConfigurationCapabilities.

Table 269 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

DeltaReservationMin Mandatory Refer to property descriptions for CIM_StorageSetting class.

DeltaReservationMax Mandatory

DeltaReservationDefault Mandatory Initial value for CIM_StorageSetting.DeltaReservationGoal.

Table 270 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities

Properties Flags Requirement Description & Notes

SupportedAsynchronousA
ctions

N Mandatory Identify replication methods using job control. Values:

 8: Replica Creation

 9: Replica Modification

10: Replica Attachment.

SupportedSynchronousAct
ions

N Mandatory Identify replication methods not using job control. Values:

 8: Replica Creation

 9: Replica Modification

10: Replica Attachment.

SupportedStorageElement
Types

Mandatory Storage element types that can be replicated. Values:

 2: Storage Volume

4: Logical Disk.

SupportedCopyTypes Mandatory CopyType values:

 2: Async

 3: Sync

 4: UnSyncAssoc

5: UnSyncUnAssoc.

InitialReplicationState Mandatory The initial SyncState when replica creation is completed. Values:

 2: Initialized

 3: Prepared

4: Synchronized.

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 467

9.7.14 CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 271 describes class CIM_StorageConfigurationService.

9.7.15 CIM_StoragePool

LowSpaceWarningThreshold only applies to specialized pools created as containers for delta replica
elements using dynamic, variable space consumption. The specialized pool is associated to either the
StorageConfigurationService or to a single replica source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 272 describes class CIM_StoragePool.

9.7.16 CIM_StorageReplicationCapabilities

This class defines all of the capability properties for a replication service. A provider must supply one
instance for each SupportedSynchronizationType value supported.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 271 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

ModifySynchronization() Mandatory Deprecated. This method is Deprecated in favor of
ReplicationService.ModifySynchronization.

CreateReplica() Optional Deprecated. This method is Deprecated in favor of
ReplicationService.CreateElementReplica.

AttachReplica() Optional Deprecated. This method is Deprecated in favor of
ReplicationService.CreateElementReplica.

Table 272 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

LowSpaceWarningThresho
ld

M Optional Experimental. Percentage of TotalManagedSpace triggering an alert
indication. When RemainingManagedSpace reaches or falls below this
percentage, the indication is generated.

2117

2118

2119
2120

2121

2122

2123

2124

2125

Copy Services Subprofile

468

Table 273 describes class CIM_StorageReplicationCapabilities.

Table 273 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Flags Requirement Description & Notes

SupportedSynchronization
Type

Mandatory Provider must supply one instance of this class for each supported value.
Values:

 2: Async

 3: Sync

 4: UnSyncAssoc-Full

 5: UnSyncAssoc-Delta

6: UnSyncUnAssoc.

SupportedAsynchronousA
ctions

N Mandatory Identify replication methods using job control. Values:

 2: Local Replica Creation

 4: Local Replica Modification

6: Local Replica Attachment.

SupportedSynchronousAct
ions

N Mandatory Identify replication methods not using job control. Values:

 2: Local Replica Creation

 4: Local Replica Modification

6: Local Replica Attachment.

InitialReplicationState Mandatory The initial SyncState when replica creation is completed. Values:

 2: Initialized

 3: Prepared

 4: Synchronized

5: Idle.

SupportedModifyOperation
s

Mandatory Identify ModifySynchronization operations supported for this CopyType.
Values:

 2: Detach

 3: Fracture

 4: Resync

 5: Restore

 6: Prepare

 7: Unprepare

 8: Quiesce

 9: Unquiesce

 10: Reset To Sync

 11: Reset To Async

 12: Start Copy

13: Stop Copy.

2126

2127

2128

2129

2130

2131

2132

2133
2134

2135

2136

2137

2138

2139

2140

2141
2142

2143

2144

2145

2146

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 469

ReplicaHostAccessibility Mandatory Host access restrictions. Values:

 2: Not accessible

 3: Any host may access

 4: Only accessible by the associated source element host

5: Accessible by hosts other than the source element host.

HostAccessibleState Mandatory Associated replicas are host accessible for these SyncState values:

 2: Initialized

 3: Prepare In Progress

 4: Prepared

 5: Resync In Progress

 6: Synchronized

 7: Fracture In Progress

 8: Quiesce In Progress

 9: Quiesced

 10: Restore In Progress

 11: Idle

 12: Broken

 13: Fractured

 14: Frozen

15: Copy In Progress.

LocalMirrorSnapshotSupp
orted

Conditional Conditional requirement: Local or remote mirrors supported. Only valid for
CopyType "Sync" and "Async":

 true: local mirror replicas can be snapshot source element

false: local mirrors cannot be snapshot source.

MaximumReplicasPerSour
ce

Mandatory Maximum replicas of all types allowed for one source element.

MaximumLocalReplication
Depth

Conditional Conditional requirement: Local or remote mirrors supported. Volume A
mirrors Volume B mirrors Volume C to this maximum allowable depth.

InitialSynchronizationDefa
ult

Conditional Conditional requirement: Managed background copy operations
supported. Refer to CIM_StorageSetting.InitialSynchronization.

ReplicationPriorityDefault Conditional Conditional requirement: Managed background copy operations
supported. Refer to CIM_StorageSetting.ReplicationPriority.

LowSpaceWarningThresho
ldDefault

Conditional Conditional requirement: Snapshots supported. Default value for
LowSpaceWarningThreshold. Percentage value between 0 and 100.

DeltaReplicaPoolAccess Conditional Conditional requirement: Snapshots supported. Indicates if a specialized
pool is required as a container for delta replicas. Values:

 2: Any pool may contain delta replicas

 3: Exclusive special pool per source element

4: Shared special pool for all source elements.

Table 273 - SMI Referenced Properties/Methods for CIM_StorageReplicationCapabilities

Properties Flags Requirement Description & Notes

2147

Copy Services Subprofile

470

9.7.17 CIM_StorageSetting

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 274 describes class CIM_StorageSetting.

9.7.18 CIM_StorageSynchronized

Experimental. Associates replica target element to source element. CIM_StorageSynchronized is
subclassed from CIM_StorageSynchronized.

Created By: Extrinsics: CreateReplica, AttachReplica, CreateElementReplica

Modified By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Requirement: The ReplicationService is implemented.

Table 274 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

DeltaReservationMin M Mandatory Minimum space reserved for a delta replica at time of creation. Value 0 to
100 is a percentage of the source element size.

DeltaReservationMax M Mandatory Maximum space reserved for a delta replica at time of creation. Value 0 to
100 is a percentage of the source element size.

DeltaReservationGoal M Mandatory Goal for space reserved for a delta replica at time of creation. Value 0 to
100 is a percentage of the source element size.

InitialSynchronization M Optional Experimental. Indicates that the source element should be fully copied to
the target element when a replica is created. Values:

 0: Not applicable

 1: Not managed

 2: Start copy operation

3: Do not start copy operation.

ReplicationPriority M Optional Experimental. Priority of copy engine I/O relative to host I/O. Values:

 0: Not applicable

 1: Not managed

0: Not managed

 2: Lower than host I/O

 3: Same as host I/O

4: Higher than host I/O.

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 471

Table 275 describes class CIM_StorageSynchronized.

Table 275 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

WhenEstablished N Optional Specifies when the association was established.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.

SyncType Mandatory Type of association between source and target elements. Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState Mandatory Indicates the last requested or desired state for the association. Values:

 6: Synchronized

 13: Fractured

 17: Split

 18: Inactive

 19: Suspended

20: FailedOver.

SyncState Mandatory State of association between source and target elements. See MOF for
the complete list and values.

ProgressStatus Mandatory Status of association between source and target groups. Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Synchronizing

 6: Resyncing

 7: Restoring

 8: Fracturing

 9: Splitting

 10: Failing over

 11: Failing back

12: Mixed.

PercentSynced N Optional Specifies the percent of the work completed to reach synchronization. For
synchronized associations (e.g. CopyType Mirror), while fractured, the
percent difference between source and target elements can derived by
subtracting PercentSynched from 100.

SyncedElement Mandatory

SystemElement Mandatory

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

Copy Services Subprofile

472

9.7.19 CIM_StorageSynchronized (Between StorageExtent elements)

Created By: Extrinsics: CreateReplica, AttachReplica, CreateElementReplica

Modified By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifySynchronization, ModifyReplicaSynchronization

Requirement: Mandatory

Table 276 describes class CIM_StorageSynchronized (Between StorageExtent elements).

Table 276 - SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between StorageExtent
elements)

Properties Flags Requirement Description & Notes

WhenSynced N Mandatory If the replica is a PIT image, this value is the date/time created.

SyncMaintained Mandatory Boolean indicating whether synchronization is maintained.

CopyType Mandatory Type of association between source and target. Values:

 2: Async

 3: Sync

 4: UnSyncAssoc

5: UnSyncUnAssoc.

ReplicaType Optional Informational property describing the type of replication. Values:

 0: Not specified

 2: Full Copy

 3: Before Delta

 4: After Delta

5: Log.

SyncState Mandatory State of the association between source and target. Values:

 2: Initialized

 3: PrepareInProgress

 4: Prepared

 5: ResyncInProgress

 6: Synchronized

 7: FractureInProgress

 8: QuiesceInProgress

 9: Quiesced

 10: RestoreInProgress

 11: Idle

 12: Broken

 13: Fractured

 14: Frozen

15: CopyInProgress.

2160

 Copy Services Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 473

9.7.20 CIM_SynchronizationAspect

Experimental. Keeps track of source of a copy operation and point-in-time.

Created By: Extrinsics: CreateElementReplica, CreateSynchronizationAspect

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifyReplicaSynchronization, ModifySettingsDefineState

Requirement: Optional

Table 277 describes class CIM_SynchronizationAspect.

CopyPriority M Optional Experimental. Priority of copy engine I/O relative to host I/O. Values:

 0: Not managed

 1: Lower than host I/O

 2: Same as host I/O

3: Higher than host I/O.

SyncedElement Mandatory

SystemElement Mandatory

Table 277 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes

SyncType Mandatory Type of association between source and target elements. Values:

 6: Mirror

 7: Snapshot

8: Clone.

ConsistencyEnabled Mandatory Set to true if consistency is enabled.

ElementName Optional A end user relevant name. The value will be stored in the ElementName
property of the created SynchronizationAspect.

CopyMethodology Optional Indicates the copy methodology utilized for copying. Values:

 2: Implementation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

8: Delta-Update.

WhenPointInTime N Optional Specifies when point-in-time was created.

SourceElement Mandatory Reference to the source element or the source group of a copy operation
and/or a point-in-time.

Table 276 - SMI Referenced Properties/Methods for CIM_StorageSynchronized (Between StorageExtent
elements)

Properties Flags Requirement Description & Notes

2161

2162

2163

2164

2165

2166

Copy Services Subprofile

474

STABLE

2167

2168

2169

2170

2171

2172

2173

 Disk Drive Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 475

DEPRECATED

10 Disk Drive Subprofile

The functionality of the Disk Drive Subprofile has been subsumed by the 11 Disk Drive Lite Subprofile.

The Disk Drive Subprofile is defined in section 7.3.3.4 of SMI-S 1.0.2.

DEPRECATED

1

2

3

Disk Drive Subprofile

476

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 477

STABLE

11 Disk Drive Lite Subprofile

11.1 Description

The Disk Drive Lite Subprofile is used to model disk drive devices. This subprofile assumes the drive is
linked to a larger system (e.g., Array, SDE). The model supports asset information, health and status, and
Physical information. The model also supports external links to Pool membership, extent mapping,
backend port modeling, SCSI buss and address mapping, and physical containment in system packages.
The subprofile also includes active management of an optional location indicator.

11.1.1 Base model

A disk drive is modeled as a single MediaAccessDevice (DiskDrive). The DiskDrive class shall be linked
to a single StorageExtent (representing the storage of the drive) by a MediaPresent association. The
StorageExtent class represents the storage of the drive and contains its size. Other classes further refine
the model. PhysicalPackage contains asset information for the device and shall be connected by a
Realizes association. The model can optionally contain SoftwareIdentity that contains information about
the firmware and is linked by a DeviceSoftware association.

The CIM_DiskDrive class can be optionally subclassed to SNIA_DiskDrive to add a set of properties that
model the capabilities of the drive. The properties include DiskType, FormFactor, and Encryption.
DiskType contains information about the technology employed to store data. FormFactor contains the
physical size of the drive. Encryption reflects the state of the encryption feature implemented by some
disk drives.

Disk Drive Lite also has an optional set of classes to model the ports on the drive. These classes include
LogicalPort and ProtocolEndpoint. LogicalPort is subclassed to many different port types (e.g., Fibre
channel, SAS, SATA …). All subclasses must define the "PortType" property as mandatory so that it can
be used to determine the interface on the drive.

NOTE The logicalPort class, ProtocolEndpoint, and the DiskDrive properties DiskType, FormFactor, and Encryption will be made
mandatory in the future.

11.1.2 Associations to external classes

The Disk Drive Subprofile ties into the rest of the system via a number of key associations.

• ConcreteComponent - Is used to associate the StorageExtent to the StoragePool that the disk is part of.
Required when used with Block Services profile

• BasedOn - Is used to associate The StorageExtent exported by the Disk Drive to another (higher level) extent
(or a Volume).

• Container - Is used to associate the physical package of the disk drive to the physical package of the system.

• SystemDevice - Is used to scope the Disk to the system containing it and is mandatory.

• ProtocolControllerAccessesUnit - Is used to link the Disk to system port(s) it is accessed through.

• SCSIInitiatorTargetLogicalUnitPath or MemberOfCollection may be used with Initiator Port Profiles.

• MemberOfCollection - Is used with Storage Device Enclosure.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Disk Drive Lite Subprofile

478

11.1.3 Active Management

The DiskDrive class has been enhanced by the addition of a property (LocationIndicator) to read or set
the state of a location indicator. When read the property returns a value that can be used to determine of
the indicator is support and it's value. When written the indicator's state is set.

11.1.4 Diagram of CIM Elements

Figure 62 illustrates the CIM elements for modeling of Disk Drives.

This Profile defines the following CIM Classes (and their uses):

DiskDrive - Used to represent the drive characteristics.

LogicalPort - To represent (target ports) for accessing the disk drive. This is optional.

PhysicalPackage - Used to represent the physical packaging aspects of the drive.

ProtocolEndpoint - To represent the protocol used (SCSI or ATA) for accessing the disk drive. This is
optional.

SoftwareIdentity - Used to represent the firmware information for the disk drive.

StorageExtent (Primordial Disk Drive Extents) - Used to represent the storage media on a disk drive.

Figure 62 - CIM Elements in the Disk Drive Model

D is k D riv e L ite

S o ftw a re Id e n tity

S to ra g e P o o l

(S e e B lo c k S e rv ic e s P a c k a g e)

P ro to c o lE n d p o in t

(S e e In it ia to r P o rts P ro fi le)

S C S IIn itia to rT a rg e tL o g ic a lU n itP a th

P ro to c o lC o n tro lle r

(S e e In itia to r P o rts P ro file)

P ro to c o lC o n tro lle rA c c e s s e s U n it

P h y s ic a lP a c k a g e

(S e e re fe re n c in g p ro file)

C o n c re te C o m p o n e n t &
A s s o c ia te d C o m p o n e n tE x te n t

C o n ta in e r

.

S to ra g e E x te n t
(P r im o rd ia l D is k D r iv e E x te n t)

P r im o rd ia l= ” tru e ”
E x te n tD is c r im in a to r= ”S N IA :D is k D r iv e ”,

“S N IA :P o o l C o m p o n e n t”

M e d ia P re s e n t

E le m e n tS o ftw a re Id e n tity

D is k D r iv e

R e a liz e s

P h y s ic a lP a c k a g e

S A P a v a ila b le
fo rE le m e n t

P ro to c o lE n d p o in t

D e v ic e S A P
Im p le m e n ta tio n

L o g ic a l P o rt

C o n c re te : S to ra g e E x te n t

(S e e E x te n t C o m p o s itio n)

B a s e d O n
(B o tto m L e v e l)

37

38

39

40

41

42

43

44

45

46

47

48

49

50

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 479

11.1.5 Durable Names and Correlatable IDs of the Profile

None.

11.1.6 Conditional Associations to other profiles

The following associations shall be implemented if certain other profiles are implemented:

DEPRECATED

• ConcreteComponent

When implementing the Disk Drive Lite Subprofile with the Block Services Package, the
ConcreteComponent association between the disk drive StorageExtent and the primordial StoragePool to
which it is assigned shall be implemented. Block Services models logical storage (StoragePools) and Disk
Drive Lite models is StorageExtents that provide storage for a primordial storage pool.

DEPRECATED

• AssociatedComponentExtent

When implementing the Disk Drive Lite profile with the Block Services Package, the
AssociatedComponentExtent association between the disk drive StorageExtent and a primordial
StoragePool to which it is assigned shall be implemented. Block Services models logical storage
(StoragePools) and Disk Drive Lite models is StorageExtents that provide storage for a primordial storage
pool.

• BasedOn

When implementing the Disk Drive Lite subprofile with Extent Composition, the BasedOn association
between the primordial disk drive StorageExtent and higher level concrete StorageExtents that directly use
storage from the disk drive extent shall be implemented.

11.1.7 Optional Associations to other profiles

The SCSIInitiatorTargetLogicalUnitPath or MemberOfCollection from CIM_ProtocolEndpoint may be used
with Initiator Port Profiles.

The MemberOfCollection association from the LogicalPort is used with enclosure profiles.

11.2 Health and Fault Management Considerations

The DiskDrive.OperationalStatus contains the overall status of the disk, summarized in Table 278.

Table 278 - OperationalStatus For DiskDrive

Primary Operational Status Subsidiary Operational
Status

Description

2 “OK” Disk Drive is enabled.

5 “Predictive Failure” Disk Drive is functionality nominally but is predicting
a failure in the near future

6 “Error” Disk Drive is no longer functioning.

8 “Starting” Disk Drive is becoming enabled.

9 “Stopping” Disk Drive is being disabled.

10 “Stopped” Disk Drive is disabled.

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Disk Drive Lite Subprofile

480

Table 279 shows the relationship between the EnabledState of a disk drive to the drives
OperationalStatus and the disk drive StorageExtent OperationalStatus.

EXPERIMENTAL

11.2.1 Disk Drive Dependency

The StorageElementDriveDependency and ResourcePoolDriveDependency associations show the direct
associations between disk drives and dependent storage elements (such as StorageVolumes) and
resource pools (such as StoragePools), respectively. Such associations allow clients to readily determine
the affected storage components when the operational status of a disk drive changes.

Figure 63 shows the StorageElementDriveDependency association between a disk drive and a dependent
StorageVolume. Additionally, the figure shows the ResourcePoolDriveDependency association between
two disk drives and a dependent StoragePool.

Table 279 - Enabled State

StorageExtent.
OperationalStatus

DiskDrive.
OperationStatus

DiskDrive.
EnabledState

2, OK 2, OK 2, Enabled

13, Lost Communication 10, Stopped 3, Disabled

13, Lost Communication 9, Stopping 4, Shutting Down

13, Lost Communication 2, OK 6, Enabled but Offline

13, Lost Communication 8, Starting 10, Starting

76

77

78

79

80

81

82

83

84

85

86

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 481

Figure 64 shows the ResourcePoolDriveDependency associations to a storage pool hierarchy. In this
figure, Pool2 is allocated from Pool1. Pool1 is dependent on Drives 1 and 2, however, Pool2 is only
dependent on Drive 2.

Figure 63 - Disk Drive Dependency

Volume 1:
StorageVolume

Pool 1:
StoragePool

AllocatedFromStoragePool

Drive 2: DiskDrive

ResourcePoolDriveDependency

StorageElementDriveDependency

Drive1: DiskDrive

ResourcePoolDriveDependency

Antecedent AntecedentAntecedent

Dependent

DependentDependent

87

88

89

Disk Drive Lite Subprofile

482

EXPERIMENTAL

11.3 Cascading Considerations

Not defined in this standard.

11.4 Supported Profiles, Subprofiles and Packages

Related Profiles for Disk Drive Lite: Not defined in this standard.

11.5 Methods of this Profile

11.5.1 Extrinsic Methods on Disk Drives

11.5.1.1 Request State Change

uint32 RequestStateChange(

[In] uint16 RequestedState,

Figure 64 - Drive Dependency and Pool Hierarchy

Volume 1:
StorageVolume

Pool 1:
StoragePool

AllocatedFromStoragePool

Drive 2: DiskDrive

ResourcePoolDriveDependency

Drive1: DiskDrive

ResourcePoolDriveDependency

AntecedentAntecedent

Dependent

DependentDependent

Pool 2:
StoragePool

AllocatedFromStoragePool

ResourcePoolDriveDependency

Dependent

StorageElementDriveDependency

Note:
Pool 2 is allocated
from Pool 1.

Antecedent

90

91

92

93

94

95

96

97

98

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 483

[Out] CIM_ConcreteJob REF Job,

[In] datetime TimeoutPeriod)

The allowed state changes are indicated by the RequestedStatesSupported property of
EnabledLogicalElementCapabilities. A Job shall be returned if the operation takes longer than the
TimeoutPeriod. The Requested State of Offline makes a drives extents unavailable to the dependent
volume.

The Job may represent a drive rebuild if the RequestedState of the drive is Offline and a failover shall be
complete before the offline operation can finish.

11.6 Registered Name and Version

Disk Drive Lite version 1.6.0 (Component Profile)

CIM Schema Version: 2.29

11.7 CIM Elements

Table 280 describes the CIM elements for Disk Drive Lite.

Table 280 - CIM Elements for Disk Drive Lite

Element Name Requirement Description

11.7.1 CIM_ATAPort (Disk Drive Target ATA Port) Optional Represents an ATA target port for the disk drive.

11.7.2 CIM_ATAProtocolEndpoint (Disk Drive target ATA
Protocol Endpoint)

Optional A target ATA protocol endpoint for a disk drive if ATA
protocols are supported.

11.7.3 CIM_AssociatedComponentExtent (Pool
Component to Primordial Pool)

Mandatory

11.7.4 CIM_BasedOn (Bottom Level BasedOn) Conditional Conditional requirement: Implementation of the Extent
Composition profile. Associates a concrete StorageExtent
representing a decomposition(partial allocation) or
composition to the disk drive StorageExtent that it is
allocated from.

11.7.5 CIM_ConcreteComponent (Disk Extent to
Primordial Pool)

Conditional Deprecated. Conditional requirement: Implementation of
the Block Services Package. Associates a disk drive
extent to a primordial storage pool.

11.7.6 CIM_Container Optional Associates a disk drive physical package to its higher
level package.

11.7.7 CIM_DeviceSAPImplementation (ATA) Optional Associates a target ATA protocol endpoint to the target
port for the drive.

11.7.8 CIM_DeviceSAPImplementation (SCSI) Optional Associates a target SCSI protocol endpoint to the target
port for the drive.

11.7.9 CIM_DiskDrive Mandatory Represents the disk drive.

11.7.10 CIM_ElementSoftwareIdentity Mandatory Associates the firmware (SoftwareIdentity) to a disk drive.

11.7.11 CIM_FCPort (Disk Drive Target FC Port) Optional Represents an FC target port for the disk drive.

11.7.12 CIM_FilterCollection (Disk Drive Lite Predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

99

100

101

102

103

104

105

106

107

108

109

110

111

Disk Drive Lite Subprofile

484

11.7.13 CIM_FilterCollection (Disk Drive Lite
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental. This is a collection of Lifecycle
IndicationFilters defined by the Disk Drive Lite Profile.

11.7.14 CIM_HostedCollection (System to
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental.

11.7.15 CIM_HostedCollection (System to predefined
IndicationFilters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

11.7.16 CIM_IndicationFilter (Disk Drive Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is the 'pre-
defined' CIM_IndicationFilter instance for the addition of a
new DiskDrive instance.

11.7.17 CIM_IndicationFilter (Disk Drive Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is the 'pre-
defined' CIM_IndicationFilter instance for the deletion of a
DiskDrive instance.

11.7.18 CIM_MediaPresent Mandatory Associates a disk drive to its storage extent.

11.7.19 CIM_MemberOfCollection (Disk Drive Lite Filter
Collection to FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Disk Drive Lite predefined FilterCollection to the
FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

11.7.20 CIM_MemberOfCollection (Disk Drive Lite
ProfileSpecificLifecycleIndicationFilterCollection to Disk
Drive Lite Filters)

Optional Experimental. This associates the Disk Drive Lite
ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Disk Drive Lite Profile.

11.7.21 CIM_MemberOfCollection (Predefined Filter
Collection to Disk Drive Lite Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Disk Drive Lite predefined FilterCollection to the
predefined Filters supported by the implementation.

11.7.22 CIM_PhysicalPackage Mandatory The physical package for the disk drive.

11.7.23 CIM_ProtocolControllerAccessesUnit Optional Deprecated. Associates an initiator protocol controller to
the disk drive storage extent.

11.7.24 CIM_Realizes Mandatory Associates the disk drive to its physical package.

11.7.25 CIM_ResourcePoolDriveDependency Optional Associates disk drive to resource pools, such as a
StoragePool.

11.7.26 CIM_SAPAvailableForElement Optional Associates the target protocol endpoint to the disk drive.

11.7.27 CIM_SASPort (Disk Drive Target SAS Port) Optional Represents a SAS target port for the disk drive.

11.7.28 CIM_SCSIInitiatorTargetLogicalUnitPath Optional Associates protocol endpoints of the initiator and target
ports to the extent that is exposed through the ports.

11.7.29 CIM_SCSIProtocolEndpoint (Disk Drive target
SCSI Protocol Endpoint)

Optional A target SCSI protocol endpoint for a disk drive if SCSI
protocols are supported.

Table 280 - CIM Elements for Disk Drive Lite

Element Name Requirement Description

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 485

11.7.1 CIM_ATAPort (Disk Drive Target ATA Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 281 describes class CIM_ATAPort (Disk Drive Target ATA Port).

11.7.2 CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint)

11.7.30 CIM_SPIPort (Disk Drive Target Parallel SCSI
Port)

Optional Represents a parallel SCSI target port for the disk drive.

11.7.31 CIM_SoftwareIdentity Mandatory Represents the firmware information for the disk drive.

11.7.32 CIM_StorageElementDriveDependency Optional Associates disk drive to storage elements, such as a
StorageVolume.

11.7.33 CIM_StorageExtent (Primordial Disk Drive Extent) Mandatory The storage extent that represents the storage of the disk
drive.

11.7.34 CIM_SystemDevice (Disk Drive System) Mandatory Associates DiskDrive to a hosting computer system.

11.7.35 CIM_SystemDevice (Port System) Optional Associates disk drive Ports to a hosting computer system.

11.7.36 CIM_SystemDevice (Storage Extent System) Mandatory Associates a StorageExtent to a hosting computer
system.

11.7.37 SNIA_DiskDrive Optional This is a subclass of CIM_DiskDrive. CIM_DiskDrive may
be subclassed as SNIA_DiskDrive to add additional
properties.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_DiskDrive

Mandatory Addition of a new Disk Drive instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_DiskDrive

Mandatory Deletion of a Disk Drive instance.

Table 281 - SMI Referenced Properties/Methods for CIM_ATAPort (Disk Drive Target ATA Port)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PortType Mandatory Shall be 92|93 (SATA or SATA2) .

Table 280 - CIM Elements for Disk Drive Lite

Element Name Requirement Description

112

113

114

115

116

117

118

Disk Drive Lite Subprofile

486

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 282 describes class CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint).

11.7.3 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)

The referenced primordial disk drive StorageExtent represents capacity has not been allocated, is
allocated in part, or is allocated in its entirety.

Requirement: Mandatory

Table 283 describes class CIM_AssociatedComponentExtent (Pool Component to Primordial Pool).

11.7.4 CIM_BasedOn (Bottom Level BasedOn)

Created By: External

Modified By: External

Deleted By: External

Requirement: Implementation of the Extent Composition profile.

Table 282 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Disk Drive target ATA Pro-
tocol Endpoint)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Shall be 3 (Target).

ProtocolIFType Mandatory

OtherTypeDescription Mandatory

ConnectionType Mandatory

Table 283 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Primordial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool.

PartComponent Mandatory The disk drive storage extent that is a component of the primordial storage
pool.

119

120

121

122

123

124

125

126

127

128

129

130

131

132

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 487

Table 284 describes class CIM_BasedOn (Bottom Level BasedOn).

11.7.5 CIM_ConcreteComponent (Disk Extent to Primordial Pool)

Deprecated. Associates a disk drive extent to a primordial storage pool. This is Deprecated since its
function is better covered by AssociatedComponentExtent.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation of the Block Services Package.

Table 285 describes class CIM_ConcreteComponent (Disk Extent to Primordial Pool).

11.7.6 CIM_Container

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 284 - SMI Referenced Properties/Methods for CIM_BasedOn (Bottom Level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional This should be specified if the concrete extent does not use the whole disk
drive extent.

EndingAddress Optional This should be specified if the concrete extent does not use the whole disk
drive extent.

Dependent Mandatory This is a reference to the concrete storage extent.

Antecedent Mandatory This is a reference to the disk drive storage extent.

Table 285 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Disk Extent to Primordial
Pool)

Properties Flags Requirement Description & Notes

PartComponent Mandatory A reference to an instance of CIM_StorageExtent that represents the
storage on the disk drive. The extent shall have its Primordial property set
to true.

GroupComponent Mandatory A reference to an instance of CIM_StoragePool with the Primordial
property set to true.

133

134

135
136

137

138

139

140

141

142

143

144

145

146

147

Disk Drive Lite Subprofile

488

Table 286 describes class CIM_Container.

11.7.7 CIM_DeviceSAPImplementation (ATA)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 287 describes class CIM_DeviceSAPImplementation (ATA).

11.7.8 CIM_DeviceSAPImplementation (SCSI)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 288 describes class CIM_DeviceSAPImplementation (SCSI).

11.7.9 CIM_DiskDrive

Created By: Static

Table 286 - SMI Referenced Properties/Methods for CIM_Container

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of CIM_PhysicalPackage that represents the
higher level package that contains the disk drive package.

PartComponent Mandatory A reference to an instance of CIM_PhysicalPackage that represents the
packaging for the disk drive.

Table 287 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (ATA)

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of an ATA port with a UsageRestriction property
set to '2' (Target).

Dependent Mandatory A reference to an instance of an ATA protocol endpoint with a Role
property set to '3' (Target).

Table 288 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (SCSI)

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of a parallel SCSI (SPI), SAS or FC port with a
UsageRestriction property set to '2' (Target).

Dependent Mandatory A reference to an instance of a SCSI protocol endpoint with a Role
property set to '3' (Target).

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 489

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 289 describes class CIM_DiskDrive.

11.7.10CIM_ElementSoftwareIdentity

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 289 - SMI Referenced Properties/Methods for CIM_DiskDrive

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Name Mandatory

OperationalStatus Mandatory Possible OperationalStatus values are 2 (OK), 5 (Predictive Failure), 6
(Error), 8 (Starting), 9 (Stopping) or 10 (Stopped).

EnabledState Mandatory Possible EnabledStates are 2 (Enabled), 3 (Disabled), 4 (Shutting Down),
6 (Enabled but Offline) or 10 (Starting)

Enabled - drive is spun up and online.

Disabled - drive is spun down, and offline

Shutting down - drive is spinning down

Enabled but Offline - drive is spun up but offline

Starting - drive is spinning up.

RequestedState Optional Possible RequestedStates are 2 (Enabled), 4 (Shutting Down) and 6
(Offline)

Enabled - Spin up drive if it was spun down and Online the drive if it was
offline.

Shutting down - spin down drive

Offline - offline drive.

RequestStateChange() Optional

165

166

167

168

169

170

171

Disk Drive Lite Subprofile

490

Table 290 describes class CIM_ElementSoftwareIdentity.

11.7.11CIM_FCPort (Disk Drive Target FC Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 291 describes class CIM_FCPort (Disk Drive Target FC Port).

11.7.12CIM_FilterCollection (Disk Drive Lite Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Disk
Drive Lite implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 290 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of CIM_SoftwareIdentity that represents the
software the disk drive.

Dependent Mandatory A reference to an instance of CIM_DiskDrive or SNIA_diskdrive.

Table 291 - SMI Referenced Properties/Methods for CIM_FCPort (Disk Drive Target FC Port)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PortType Mandatory Shall be 0|1|10|11|12|13|14|15|16|17|18 (Unknown or Other or N or NL or
F/NL or Nx or E or F or FL or B or G).

PermanentAddress CD Mandatory Port WWN. Shall be 16 unseparated uppercase hex digits.

SupportedCOS Optional

ActiveCOS Optional

SupportedFC4Types Optional

ActiveFC4Types Optional

172

173

174

175

176

177

178

179
180
181

182

183

184

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 491

Table 292 describes class CIM_FilterCollection (Disk Drive Lite Predefined FilterCollection).

11.7.13CIM_FilterCollection (Disk Drive Lite ProfileSpecificLifecycleIndicationFilterCollection)

Experimental. This is a collection of Lifecycle IndicationFilters defined by the Disk Drive Lite Profile.

Requirement: Optional

Table 293 describes class CIM_FilterCollection (Disk Drive Lite
ProfileSpecificLifecycleIndicationFilterCollection).

11.7.14CIM_HostedCollection (System to ProfileSpecificLifecycleIndicationFilterCollection)

Experimental.

Requirement: Optional

Table 294 describes class CIM_HostedCollection (System to
ProfileSpecificLifecycleIndicationFilterCollection).

11.7.15CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 292 - SMI Referenced Properties/Methods for CIM_FilterCollection (Disk Drive Lite Predefined Filter-
Collection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Disk Drive Lite:Predefined'.

Table 293 - SMI Referenced Properties/Methods for CIM_FilterCollection (Disk Drive Lite ProfileSpecifi-
cLifecycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.13
CIM_FilterCollection (StaticFilterCollection).

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Disk Drive
Lite:ProfileSpecificLifecycleIndicationFilterCollection'.

Table 294 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to ProfileSpecificLife-
cycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the ProfileSpecificLifecycleIndicationFilterCollection for the
Disk Drive Lite Profile.

Antecedent Mandatory Reference to the 'Top level' System.

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Disk Drive Lite Subprofile

492

Table 295 describes class CIM_HostedCollection (System to predefined IndicationFilters).

11.7.16CIM_IndicationFilter (Disk Drive Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new DiskDrive
instance.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 296 describes class CIM_IndicationFilter (Disk Drive Creation).

Table 295 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indica-
tionFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Disk Drive Lite.

Antecedent Mandatory Reference to the 'Top level' System.

Table 296 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Disk Drive Lite:DiskDriveCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Optional Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_DiskDrive.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

202

203

204

205

206

207

208

209

210

211

212

213

214

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 493

11.7.17CIM_IndicationFilter (Disk Drive Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a DiskDrive
instance.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 297 describes class CIM_IndicationFilter (Disk Drive Deletion).

11.7.18CIM_MediaPresent

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 297 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Disk Drive Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Disk Drive Lite:DiskDriveDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Optional Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_DiskDrive.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

215

216

217

218

219

220

221

222

223
224

Disk Drive Lite Subprofile

494

Table 298 describes class CIM_MediaPresent.

11.7.19CIM_MemberOfCollection (Disk Drive Lite Filter Collection to FilterCollection)

Experimental. This associates the Disk Drive Lite predefined FilterCollection to the FilterCollection for the
autonomous profile (e.g., the Array FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 299 describes class CIM_MemberOfCollection (Disk Drive Lite Filter Collection to FilterCollection).

11.7.20CIM_MemberOfCollection (Disk Drive Lite ProfileSpecificLifecycleIndicationFilterCollection
to Disk Drive Lite Filters)

Experimental. This associates the Disk Drive Lite ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Disk Drive Lite Profile.

Requirement: Optional

Table 300 describes class CIM_MemberOfCollection (Disk Drive Lite
ProfileSpecificLifecycleIndicationFilterCollection to Disk Drive Lite Filters).

11.7.21CIM_MemberOfCollection (Predefined Filter Collection to Disk Drive Lite Filters)

Experimental. This associates the Disk Drive Lite predefined FilterCollection to the predefined Filters supported by the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 298 - SMI Referenced Properties/Methods for CIM_MediaPresent

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of CIM_StorageExtent with the Primordial
propery set to true (a disk drive extent).

Antecedent Mandatory A reference to an instance of CIM_DiskDrive or SNIA_DiskDrive.

Table 299 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Disk Drive Lite Filter Collec-
tion to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Disk Drive Lite predefined FilterCollection.

Member Mandatory Reference to the Disk Drive Lite predefined FilterCollection.

Table 300 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Disk Drive Lite Profile-
SpecificLifecycleIndicationFilterCollection to Disk Drive Lite Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Disk Drive Lite
ProfileSpecificLifecycleIndicationFilterCollection.

Member Mandatory Reference to the IndicationFilters defined by the Disk Drive Lite Profile.

225

226

227

228

229

230
231

232

233

234

235

236

237

238

239

240

241

242

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 495

Table 301 describes class CIM_MemberOfCollection (Predefined Filter Collection to Disk Drive Lite
Filters).

11.7.22CIM_PhysicalPackage

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 302 describes class CIM_PhysicalPackage.

11.7.23CIM_ProtocolControllerAccessesUnit

Deprecated.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 303 describes class CIM_ProtocolControllerAccessesUnit.

Table 301 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Disk Drive Lite Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Disk Drive Lite predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Disk Drive Lite
implementation.

Table 302 - SMI Referenced Properties/Methods for CIM_PhysicalPackage

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Tag Mandatory

Manufacturer Mandatory

Model Mandatory

SerialNumber Optional

PartNumber Optional

Table 303 - SMI Referenced Properties/Methods for CIM_ProtocolControllerAccessesUnit

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of CIM_StorageExtent with the Primordial
property set to true (the disk drive extent).

Antecedent Mandatory A reference to a CIM_ProtocolController (from the Initiator for this disk
drive).

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

Disk Drive Lite Subprofile

496

11.7.24CIM_Realizes

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 304 describes class CIM_Realizes.

11.7.25CIM_ResourcePoolDriveDependency

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 305 describes class CIM_ResourcePoolDriveDependency.

11.7.26CIM_SAPAvailableForElement

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 304 - SMI Referenced Properties/Methods for CIM_Realizes

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to an instance of a physical package that represents the
packaging for the disk drive.

Dependent Mandatory A reference to an instance of CIM_DiskDrive or SNIA_DiskDrive.

Table 305 - SMI Referenced Properties/Methods for CIM_ResourcePoolDriveDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of StoragePool that is dependent on the disk
drive.

Antecedent Mandatory A reference to an instance of CIM_DiskDrive or SNIA_DiskDrive.

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 497

Table 306 describes class CIM_SAPAvailableForElement.

11.7.27CIM_SASPort (Disk Drive Target SAS Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 307 describes class CIM_SASPort (Disk Drive Target SAS Port).

11.7.28CIM_SCSIInitiatorTargetLogicalUnitPath

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 306 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory A reference to an instance of a SCSI or ATA protocol endpoint that
represents the target endpoint (role='3') for the disk drive.

ManagedElement Mandatory A reference to an instance of a Disk Drive or SNIA_DiskDrive.

Table 307 - SMI Referenced Properties/Methods for CIM_SASPort (Disk Drive Target SAS Port)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PermanentAddress Mandatory SAS Address. Shall be 16 un-separated upper case hex digits.

PortType Mandatory Shall be 94 (SAS).

276

277

278

279

280

281

282

283

284

285

286

287

288

Disk Drive Lite Subprofile

498

Table 308 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

11.7.29CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 309 describes class CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint).

11.7.30CIM_SPIPort (Disk Drive Target Parallel SCSI Port)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 308 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

Initiator Mandatory The protocol endpoint for the back end initiator port for accessing the disk
drive.

Target Mandatory A reference to an instance of a SCSI or ATA protocol endpoint that
represents the target endpoint (role='3') for the disk drive.

LogicalUnit Mandatory Shall reference the StorageExtent associated to the DiskDrive.

Table 309 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Disk Drive target SCSI
Protocol Endpoint)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Shall be 3 (Target).

ProtocolIFType Mandatory

OtherTypeDescription Mandatory

ConnectionType Mandatory

289

290

291

292

293

294

295

296

297

298

299

300

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 499

Table 310 describes class CIM_SPIPort (Disk Drive Target Parallel SCSI Port).

11.7.31CIM_SoftwareIdentity

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 311 describes class CIM_SoftwareIdentity.

11.7.32CIM_StorageElementDriveDependency

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 310 - SMI Referenced Properties/Methods for CIM_SPIPort (Disk Drive Target Parallel SCSI Port)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Optional

UsageRestriction Mandatory Shall be 2 for disk drive target ports.

PortType Mandatory Shall be 101 (SCSI Parallel).

Table 311 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory

VersionString Mandatory

Manufacturer Optional

BuildNumber Optional

MajorVersion Optional

RevisionNumber Optional

MinorVersion Optional

301

302

303

304

305

306

307

308

309

310

311

312

313

Disk Drive Lite Subprofile

500

Table 312 describes class CIM_StorageElementDriveDependency.

11.7.33CIM_StorageExtent (Primordial Disk Drive Extent)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 313 describes class CIM_StorageExtent (Primordial Disk Drive Extent).

11.7.34CIM_SystemDevice (Disk Drive System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 312 - SMI Referenced Properties/Methods for CIM_StorageElementDriveDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory A reference to an instance of StorageVolume or LogicalDisk that is
dependent on the disk drive.

Antecedent Mandatory A reference to an instance of CIM_DiskDrive or SNIA_DiskDrive.

Table 313 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Disk Drive Extent)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks as reported by the hardware.

ConsumableBlocks Mandatory The number of usable blocks.

Primordial Mandatory Shall be true.

ExtentStatus Mandatory

OperationalStatus Mandatory

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Pool
Component' and 'SNIA:DiskDrive'.

314

315

316

317

318

319

320

321

322

323

324

325

 Disk Drive Lite Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 501

Table 314 describes class CIM_SystemDevice (Disk Drive System).

11.7.35CIM_SystemDevice (Port System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 315 describes class CIM_SystemDevice (Port System).

11.7.36CIM_SystemDevice (Storage Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 316 describes class CIM_SystemDevice (Storage Extent System).

11.7.37SNIA_DiskDrive

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 314 - SMI Referenced Properties/Methods for CIM_SystemDevice (Disk Drive System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_DiskDrive or SNIA_DiskDrive used in
this profile.

Table 315 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_FCPort, CIM_SPIPort, CIM_SASPort or
CIM_ATAPort used in this profile.

Table 316 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_StorageExtent used in this profile.

326

327

328

329

330

331

332

333

334

335

336

337

Disk Drive Lite Subprofile

502

Table 317 describes class SNIA_DiskDrive.

STABLE

Table 317 - SMI Referenced Properties/Methods for SNIA_DiskDrive

Properties Flags Requirement Description & Notes

DiskType Mandatory The technology employed to store data. DiskType values are 0
(Unknown), 1 (Other), 2 (Hard Disk Drive) or 3 (Solid State Disk).

FormFactor Mandatory The Physical size of the disk drive. FormFactor values are 0 (Unknown), 1
(Other), 2 (Not Reported), 3 (5.25 inch), 4 (3.5 inch), 5 (2.5 inch), 6 (1.8
inch).

Encryption Mandatory This propery reflects the state of the encryption feature implemented by
some disk drives. Encryption values are 0 (Unknown), 1 (Not Supported),
2 (unlocked) or 3 (locked).

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 503

IMPLEMENTED

12 Disk Sparing Subprofile

12.1 Description

Many block service systems enhance availability by providing backup storage capacity to be used in
place of a failed component. The failure of the component may be caused by the failure of a physical
component that realizes that component or the invalidation or corruption of the component itself.

The end result of the failure is that block server is degraded by performance or spare redundancy. In the
first case, it is important that the cause of the performance degradation is known so the appropriate
response may be taken. In the second case, the administrator will have to know of the loss of
redundancy. The administrator can then plan to replace the used redundancy and fix the broken
component. A sample instance diagram is provided in Figure 65: "Sparing Instance Diagram".

Figure 65 - Sparing Instance Diagram

Current Failover

Previous Failover

ComputerSystem

SpareConfigurationCapabilities ElementCapabilities

StorageExtent

failed

StorageExtent

StorageExtent

StorageRedundancySet

ConcreteDependency

ConcreteDependency

ConcreteDependency

MemberOfCollection

MemberOfCollection

StorageExtent

Spared

AffectedJobElement

AffectedJobElement

ConcreteJob

FailoverStorageExtentsCollection

MemberOfCollection

StorageExtent

(failed drive)

AffectedJobElement

StorageExtent

IsSpare

IsSpare

MemberOfCollection

StorageVolume or
LogicalDisk, or
StoragePool

HostedCollection

1

2

3

4

5

6

7

8

9

10

Disk Sparing Subprofile

504

14 "Extent Composition Subprofile" focuses on the mapping of storage to storage elements,
StorageVolume and LogicalDisk. This subprofile enhances that picture by representing how spare
physical storage components like disk drives or purely logical constructs like LUNs or even host
partitions, can be used to provide redundancy for storage elements. The spare elements are represented
as StorageExtents themselves.

11 "Disk Drive Lite Subprofile" can be used to supplement this subprofile by explicitly listing the changes
in operational status resulting from the failure of disks and the affect of this failure on the StorageVolumes
or LogicalDisks they support. In conjunction with Storage Management Technical Specification, Part 3
Common Profiles, 1.6.1 Rev 6 25 Health Package and the RelatedElementCausingError association, a
client can tell, unambiguously the effect and cause of the storage component failure.

Fail Over is the name of the process by which the capacity provided by one StorageExtent is replaced by
that of the spare StorageExtent. The block contents of the original StorageExtent is copied to the
replacement StorageExtent. During this process a ConcreteJob shall be created to represent this process
and report the progress and status of the fail over.

The functionality provided by this subprofile includes:

• The representation of the current state of the spares whether they are not in use, are in use, or in transition
from not in use to being put into service. All three of these states can be present at once.

• The detection of the addition of another spare element and whether the implementation requires client
intervention to assign the spare element.

• Client initiated fail over. A client may cause the fail over process to start.

• Client initiated rebuild of Extent data.

• Client initiated check and rebuild of Extent parity.

12.1.1 Durable Names and Correlatable IDs of the Profile

The StorageVolumes are required to provide the correlatable ID, Name. See Storage Management
Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6 7.2, "Guidelines for SCSI Logical Unit
Names".

12.1.2 Sparing Model

StorageExtents are used as the unit of redundancy in this model. StorageExtents can be said to be a
grouping of capacity. For the question of what component of the system has failed, the StorageExtent
should be realized by a DiskDrive or some of component to which the failure is meaningful. This model
represents how the capacity is used in the protection of the data. Other models define how
StorageExtents are realized by other components or devices.

A spare is, functionally, the union of the StorageExtent representation and the associated component
representation that realizes the Extent. This subprofile uses this term in this union.

The sparing model provides for mechanisms to:

• Group StorageExtents that have failed.

• Group spares that can be used to replace failed components. The group of spares may be shared across
StorageVolumes, LogicalDisks, or StoragePools.

• Report what component is being spared or replaced by the spare

• Report the process of a fail over, sparing reconfiguration, storage extent rebuild, or parity check

• Report the capabilities of the Sparing implementation

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 505

The physical resources on which a StorageExtent is realized are components that may result in data loss
if they fail. If the physical resource is modeled, its storage shall be represented by a primordial
StorageExtent. This profile requires that the physical resource on which a spare extent is realized be
identifiable. As a consequence, if a StorageExtent is used as a spare, it shall either be a primordial
extent, or it shall have a ConcreteDependency association to one or more antecedent primordial
StorageExtents.

The StorageRedundancySet class is used to group spares. There may be a single
StorageRedundancySet per StorageVolume or LogicalDisk. Multiple StorageVolumes or LogicalDisks may
share a single StorageRedudancySet. In the first case, the spares grouping can be said to be dedicated
to that StorageVolume or LogicalDisk. In the second case, the spares grouping can be said to be global;

52

53

54

55

56

57

58

59

60

61

62

63

64

Disk Sparing Subprofile

506

that is, the spares will be used for all the StorageVolumes or LogicalDisks that are associated to a
StorageRedundancySet. This is illustrated in Figure 66: "Variations of RS per Storage Element".

In the case where spares are not dedicated, the decision to group Extents with a given
StorageRedundancySet depends of the rules of the implementation. Some implementations require
particular types of spares to be used together. For example, some implementations may require that a
DiskDrive is spared by another DiskDrive of the same size and/or type. This profile does not model
DiskDrives. To implement this case, the implementer would model the StorageExtent associated to the
DiskDrive, a StorageRedundancySet, and associate StorageExtents to that StorageRedundancySet that
share the characteristics, whatever they may be, that permit these StorageExtents to be used as spares.

Figure 66 - Variations of RS per Storage Element

Global

Dedicated

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteComponent

ConcreteComponent MemberOfCollection

MemberOfCollection

StorageExtent

Failed

IsSpare

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent
ConcreteComponent

ConcreteComponent MemberOfCollection

MemberOfCollection

StorageExtent

IsSpare

StorageVolume or
LogicalDisk

StorageExtent

ConcreteComponent

StorageExtentConcreteComponent

MemberOfCollection

65

66

67

68

69

70

71

72

73

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 507

If an implementation supports such rules then a StorageRedundancySet shall be created per rule. When
StorageVolumes or LogicalDisk are created or modified, the implementation can select the
StorageRedundancySet to associate to the created or modified storage element using on the
PackageRedundancy Goal. An implementation that supports global spares that supported both the
Clause 5:, "Block Services Package" and this subprofile, would match this Goal with
StorageRedundancySet that had at least that number of spares.

A StoragePool, StorageVolume, or LogicalDisk may be have one or more StorageExtents that provide
redundancy of its data. Storage elements for which this is the case shall participate in a
ConcreteDependency association with the StorageExtents that form its redundancy. These
StorageExtents shall participate MemberOfCollection associations to a RedundancySet. In turn, the
reference RedundancySet shall indicate the status of the redundancy. The StorageExtents that be used to
replace a StorageExtent whose realization has failed shall be associated to this StorageRedundancySet
via an IsSpare association. Once the substitution of the failed StorageExtent for the spare StorageExtent
started, the failed StorageExtent shall be associated to the spare StorageExtent via the Spared
association. This shall be the case until the process of substitution has completed. After which, the failed
StorageExtent shall participate in a MemberOfCollection with a FailoverStorageExtentsCollection but not
participate in a MemberOfCollection association with a StorageRedundancySet nor in a
ConcreteDependency association with any storage element. The failed StorageExtents are removed from
the FEC when the failed component on which they are based in removed from the system through a
means not defined in this profile, i.e., the drive FRU pulled from the array.

The FailoverExtentsCollection class is used to collect the spares that have failed. These are the
components that need to be diagnosed, repaired, and, possibly, replaced or assigned to the primordial
StoragePool.

The StorageConfigurationCapabilities class is used to report the capabilities of the implementation. Not
all sparing functionality is required. This class is used to report what methods are implemented. The
properties and methods of the class are specified later in this profile. Table 318 below lists the action
names for the sparing methods. If a sparing method is supported synchronously, then the action name for
the method shall be present in SupportedSynchronousActions array. If a sparing method is supported
asynchronously, then the action name for the method shall be present in SupportedAsynchronousActions
array.

12.1.3 Modeling Fail Over, Past and Present

This section illustrates the requirements for modeling spare fail over in three cases, before the failure,
during the fail over, and after the fail over.

Table 318 - Supported Methods to Method Mapping

Action Method

Assign Spares SpareConfigurationService.AssignSpares

Unassign Spares SpareConfigurationService.UnassignSpares

Rebuild Storage Extent SpareConfigurationService.RebuildStorageExtent

Check Parity Consistency SpareConfigurationService.CheckParityConsistency

Repair Parity SpareConfigurationService.RepairParity

Fail Over StorageRedundancySet.Failover

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Disk Sparing Subprofile

508

Figure 67: "Before Failure" shows a dedicated RedundancySet with a single spare.

Once the failure has occurred, a ConcreteJob is created to represent the fail over process, as shown in
Figure 68: "During Failure".

The AffectJobElement association shall associate the LogicalDisk or StorageVolume that is being failed
over, the StorageExtent that has failed and is causing the fail over, and the spare StorageExtent. The
associations shall remain for some period of time as per the rules in the Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 26 "Job Control Subprofile". For these rules consider the
two extents as Input values to the StorageRedundancySet.Failover() method.

This subprofile supports fail over initiated by the implementation or by the client. So that an observer can
tell what this fail over ConcreteJob is doing, the implementation shall model the ConcreteJob as if
another client initiated the fail over, even though the implementation did the initiation. In other words, the

Figure 67 - Before Failure

Figure 68 - During Failure

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalDisk, or

StoragePool

IsSpare

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalDisk, or

StoragePool

ConcreteJob

IsSpare

AffectedJobElement

AffectedJobElement

Spared

Failed

AffectedJobElement

107

108

109

110

111

112

113

114

115

116

117

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 509

ConcreteJob shall be associated to the StorageRedundancySet associated to the two Extents in question
via the OwningJobElement association. The MethodResult instance, as defined in Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 26 "Job Control Subprofile", shall contain the
StorageRedundancySet.Failover() method name and parameters.

Once the fail over is complete, the failed Extent shall no longed have a ConcreteDependency association
to StorageVolume or LogicalDisk that was once based on it. The spare StorageExtent shall now
participate in a MemberOfCollection associated to the StorageRedundancySet instead of the IsSpare
association. The failed over Volume or LogicalDisk shall now participate in a ConcreteDependency
relationship with the spare Extent. The failed Extent may now participate in a MemberOfCollection
association with the FailoverStorageExtentsCollection, illustrated in Figure 69: "After Failure".

EXPERIMENTAL

12.1.4 Sparing Configuration and Control

All six methods defined or used in this subprofile, AssignSpares, UnassignSpares, RebuildStorageExtent,
CheckParityConsistency, CheckStorageElement, and RepairParity can be initiated by the implementation
or the client. If the method execution is not instantaneous, then information about what method invocation
gave rise to the job follows the rules in Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 26 "Job Control Subprofile". These methods can also be initiated by the implementation itself.
The implementation shall represent the execution of the job, job name, and method parameters in said
manner even it initiated the Job. If the implementation supports this functionality but does not allow the
client to initiate the action, it shall still represent the execution of the functionality, as represented by a
method execution, in said manner.

The purpose of these rules to allow an observer to tell that, for example, a RepairParity task is executing.

EXPERIMENTAL

Figure 69 - After Failure

StorageExtent

StorageExtent

StorageRedundancySet

MemberOfCollection

StorageExtent

StorageExtent

ConcreteDependency

ConcreteDependency

ConcreteDependency
MemberOfCollection

MemberOfCollection

StorageVolume,
LogicalDisk, or
StoragePool

failed

MemberOfCollection

FalloverStorageExtentsCollection

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Disk Sparing Subprofile

510

12.2 Health and Fault Management Considerations

One of the primary reasons for this subprofile to allow a client to determine if the cause of performance
degradation of a block server is caused by spare fail over, volume rebuild, or parity repair.

There are several failure cases possible with this subprofile:

• There may be failures of the several configuration and control methods of this subprofile for reasons other
than the parameters provided by the client.

The StorageExtents used in the configuration and control methods may be invalid.

12.3 Cascading Conjurations

Not defined in this standard.

12.4 Supported Subprofiles and Packages

Table 319 describes the supported profiles for Disk Sparing.

12.5 Methods of the Profile

EXPERIMENTAL

12.5.1 AssignSpares

uint32 AssignSpares(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StoragePool REF InPool
[In] CIM_StorageExtent REF InExtents[]
[In] CIM_StorageRedundancySet REF RedundancySet)

This method is used to assign spares to a particular RedundancySet. If there is more than one
StoragePool in this implementation, then the arguments to the method shall contain the references to
StorageExtents and references to the primordial StoragePools of which they are components. This
method shall not permit the assignment of spare from more than one StoragePool.

This method may return the follow error codes. Many of the return codes are used widely and
documented in CIM. The following documents the return codes that are unique to this method. This
method shall not return vendor specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099", "4100..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Multiple StoragePools",

 "Spares Are Not Compatible",

Table 319 - Supported Profiles for Disk Sparing

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Mandatory

139

140

141

142

143

144

145

146

147

148

149

150

151

152
153
154
155
156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 511

 "StorageExtent is in use",

 "Method Reserved", "Vendor Specific" }

• 4097, “Multiple StoragePools”, means the client passed Extents that are components of more than one
Primordial StoragePool.

• 4098, “Spares Are Not Compatible”, means the client pass Extents than may not be used together. There is
no mechanism at this time to tell a client, through the model, what spares can be used together.

• 4099, “StorageExtent is in use”, means that one or more of the Extents passes are already in use as a spare
or as part of a StorageVolume or LogicalDisk.

12.5.2 UnassignSpares

uint32 UnassignSpares(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StoragePool REF InPool
[In] CIM_StorageExtent REF InExtents[])

This method is used to remove a spare from a StorageRedundancy and also unassign that Extent as a
spare. The unassigned spare may end up as a member of the FailoverStorageExtentsCollection. The
rules for the parameters and the same descriptions of assign spares are true for the parameters and
return codes shared between the two method definitions. This method shall not return vendor specific
return codes.

12.5.3 GetAvailableSpareExtents

uint32 GetAvailableExtents(
[In] CIM_StoragePool REF InPool<
[In] CIM_StorageRedundancySet REF RedundancySet,
[Out] CIM_StorageExtent REF AvailableExtents[])

This method returns references of available StorageExtents that may be as spares for the given
StorageRedundancySet and StoragePool. The referenced StorageRedundancySet shall provide
redundancy for the referenced StoragePool.

The method may return error codes. Many of the return codes are used widely and documented in CIM.
There are no return codes that are unique to this method. This method shall not return vendor specific
return codes.

12.5.4 FailOver

uint32 Failover(
[In] CIM_ManagedElement REF FailoverFrom
[In] CIM_ManagedElement REF FailoverTo)

This method is used to force a failover between StorageExtents. The FailoverFrom reference shall be a
reference to a StorageExtent that participates in a MemberOfCollection association with the
StorageRedundancySet instance on which this method is called. The FailoverTo reference shall be a
reference to a StorageExtent that participates in a IsSpare association with the StorageRedundancySet
instance on which this method is called.

This method may return the follow error codes. Many of the return codes are used widely and
documented in CIM. The following documents that return code semantics that are unique to this method.

ValueMap { "0", "1", "2", "3", "4", "..", "32768..65535" },
Values { "Completed with No Error", "Not Supported",
"Unknown/Unspecified Error", "Busy/In Use",
"Parameter Error", "DMTF Reserved", "Vendor Reserved" }]

172

173

174

175

176

177

178

179

180

181
182
183
184

185

186

187

188

189

190

191
192
193
194

195

196

197

198

199

200

201

202
203
204

205

206

207

208

209

210

211

212
213
214
215

Disk Sparing Subprofile

512

• 3, "Unknown/Unspecified Error", means that the implementation failed to failover for some unspecified
reason.

• 4, "Busy/In use", means that the failover between the reference StorageExtents is already in progress.

12.5.5 RebuildStorageExtent

uint32 RebuildStorageExtent(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StorageExtent REF Target)

This method is used to rebuild the data distribution on the passed Extent with the other member Extents
associated to a single StorageRedundancySet. If the Job execution fails, then use
ConcreteJob.GetError() to get the CIM_Error that states what the error was. In this case, the Target
Extent shall report the appropriate, non “OK”, OperationalStatus.

The method may return the following error codes. Many of the return codes are used widely and
documented in CIM. The following documents the return codes that are unique to this method. This
method shall not return vendor specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Target is Not a Member of a StorageRedundancySet",

 "Rebuild already in Progress",

 "Method Reserved", "Vendor Specific" }

• 4097 "Target is Not a Member of a StorageRedundancySet", means that the Extent passed is not a member
of StorageRedundancySet

• 4098 "Rebuild already in Progress", means that a rebuild of the data and/or parity on the passed Extent or
one or more of the other member Extents of the same StorageRedundancySet is already in progress.

12.5.6 CheckParityConsistency

uint32 CheckParityConsistency(
[Out] CIM_ConcreteJob REF Job
[In] CIM_StorageExtent REF Target)

This method is used to check of the parity distribution on the passed Extent with the other member
Extents associated to a single StorageRedundancySet. If the Job execution fails, then use
ConcreteJob.GetError() to get the Error that states what the error was. In this case, the Target Extent
shall report the appropriate, non “OK”, OperationalStatus. If method execution determines that the parity
is inconsistent, the ConcreteJob shall report successful completion and one of Operational Statuses of
the passed Extent shall be 6 “Error”.

The method may return the following error codes. Many of the return codes are used widely and
documented in CIM. The following documents the return codes that are unique to this method. This
method shall not return vendor-specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

216

217

218

219

220
221
222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244
245
246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 513

 "Method Parameters Checked - Job Started",

 "Consistency Check Already in Progress",
"No Parity to Check",

 "Method Reserved", "Vendor Specific" }

• 4097 "Consistency Check Already in Progress", means that a check and rebuild of the data parity on the
passed Extent or one or more of the other member Extents of the same StorageRedundancySet is already in
progress.

• 4098 "No Parity to Check", means that the member Extents of the StorageRedundancySet are not built with
parity distribution. Recheck the Virtualization modeled.

12.5.7 RepairParity

uint32 RepairParity(
[In] CIM_ConcreteJob REF Job,
[Out] CIM_StorageExtent REF Target)

This method is used to rebuild of the parity distribution on the passed Extent with the other member
Extents associated to a single StorageRedundancySet. The intent is that this method would be run after
finding out that the CheckParityConsistency() reported that the Extent pair is inconsistent. If the Job
execution fails, then use ConcreteJob.GetError() to get the Error that states what the error was. In this
case, the Target Extents shall report the appropriate, non “OK”, OperationalStatus and HealthState.

The method may return error codes. Many of the return codes are used widely and documented in CIM.
There are no return codes that are unique to this method. This method shall not return vendor specific
return codes.

12.5.8 CheckStorageElement

uint32 CheckStorageElement(
[In
 Values {"Default", "Parity", "Bad Block",
"Replication"}
 ValueMap{"1","2","3","4"}]
uint16 CheckType,
[In
 Values {"Run One Time", "Continuous"}
 ValueMap{"1","2"}]
uint16 CheckMode,
[In] CIM_LogicalElement REF TargetElement,
[Out] CIM_ConcreteJob REF Job

This method requests that the reference target element be checked with a given check type and with a
given check mode. If a check mode of 1 "Run One Time" is requested, then the element check shall run
once. If a check mode of 2 "Continuous", then the element shall be checked and checked again until the
ConcreteJob instance, referenced by the Job parameter, is terminated.

The method may return the following error codes. Many of the return codes are used widely and
documented in CIM. The following documents the return codes that are unique to this method. This
method shall not return vendor specific return codes.

ValueMap { "0", "1", "2", "3", "4", "5", "6", "..", "4096",

 "4097", "4098", "4099..32767", "32768..65535" },

Values { "Job Completed with No Error", "Not Supported",

 "Unknown", "Timeout", "Failed", "Invalid Parameter",

 "In Use", "DMTF Reserved",

 "Method Parameters Checked - Job Started",

 "Storage Element Check Already in Progress",

261

262
263

264

265

266

267

268

269

270

271
272
273

274

275

276

277

278

279

280

281

282

283
284
285
286
287
288
289
290
291
292
293
294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

Disk Sparing Subprofile

514

 "Method Reserved", "Vendor Specific" }

• 4097 "Storage Element Check Already in Progress", means that a check on the passed Extent or one or more
of the other member Extents of the same StorageRedundancySet is already in progress.

EXPERIMENTAL

12.6 Client Considerations and Recipes

The sparing implementation may cause the sparing configuration changes (i.e., jobs start and run) on its
own in response to other clients.

The number of StorageRedundancySets may change over time because the physical components,
realizing the spare StorageExtent, like disk drives are added or remove from the block server.
Additionally, purely logical realizations of the spare StorageExtent may change as well. The
StorageRedundancySets themselves once empty may remain in the model, but be empty, or may be
removed from the model entirely for this or other reasons.

The sparing implementation shall report the correct RedundancyStatus, either ‘Unknown’ 0, ‘Redundant’
1, or ‘Redundancy Lost’ 2. See property description (12.6.1) for details.

12.6.1 Determine if spare model is constructed correctly

// DESCRIPTION

// The goal of this recipe is to verify that the Sparing model

// is correctly instantiated.

// This type of instance traversal would be used by a client

// to determine if a particular storage element has spare

// coverage.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a storage element, either a StorageVolume,

// a LogicalDisk, or a StoragePool, is previously defined in the

// $StorageElement-> variable

$SparedExtents->[] =

AssociatorNames($StorageElement->,

“CIM_ConcreteDependency”,

“CIM_StorageExtent”,

“Dependent”, “Antecedent”)

for i in SparedExtents->[] {

#RedundancySets->[] =

AssociatorNames($SparedExtents->[#i],

“CIM_MemberOfCollection”,

“CIM_StorageRedundancySet”,

“Member”, “Collection”)

// We should find at least one RS per spared SE

if(1 > #RedundancySets.length) {

<ERROR! There should be at least one RedundancySet per spared
StorageExtent>

}

for j in RedundancySets->[] {

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347
348

349

350

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 515

#SpareSEs->[] =

AssociatorNames($RedundancySets->[#j],

“CIM_IsSpare”,

“CIM_StorageExtent”,

“Dependent”, “Antecedent”) // SRE has the Dependent role

if (0 < #SpareSEs->[]) {

<EXIT: Successfully found at least one spare StorageExtent

}

else {

<ERROR! The SRE associated to the subject StorageElement

 must have at least one Spare>

}

}

}

<ERROR! At least one Spared Extent MUST have been found.

 If one or more was found, an successful exit would have occured

 before this point in the code.>

12.7 Registered Name and Version

Disk Sparing version 1.5.0 (Component Profile)

12.8 CIM Elements

Table 320 describes the CIM elements for Disk Sparing.

Table 320 - CIM Elements for Disk Sparing

Element Name Requirement Description

12.8.1 CIM_AssociatedComponentExtent (Spare to
Storage Pool)

Conditional Conditional requirement: Implementation of the Extent
Composition profile.

12.8.2 CIM_ConcreteDependency (Extent to LogicalDisk) Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Represents the
group of StorageExtents that form the redundancy of a
LogicalDisk.

12.8.3 CIM_ConcreteDependency (Extent to Pool) Mandatory Represents the group of StorageExtents that form the
redundancy of a StoragePool.

12.8.4 CIM_ConcreteDependency (Extent to
StorageVolume)

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory. Represents the
group of StorageExtents that form the redundancy of a
StorageVolume.

12.8.5 CIM_ElementCapabilities Optional Associates SpareConfigurationCapabilities with the Block
Server's ComputerSystem instance.

12.8.6 CIM_HostedCollection (ComputerSystem to
FailoverStorageExtentsCollection)

Optional Associates FailoverStorageExtentsCollection with the
Block Server's ComputerSystem instance.

12.8.7 CIM_HostedCollection (ComputerSystem to
RedundancySet)

Mandatory Associates StorageRedundancySet with the Block
Server's ComputerSystem instance.

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

Disk Sparing Subprofile

516

12.8.1 CIM_AssociatedComponentExtent (Spare to Storage Pool)

The referenced spare StorageExtent represents capacity has not been allocated, is allocated in part, or is allocated in its entirety.

Requirement: Implementation of the Extent Composition profile.

Table 321 describes class CIM_AssociatedComponentExtent (Spare to Storage Pool).

12.8.2 CIM_ConcreteDependency (Extent to LogicalDisk)

Created By: Static

Modified By: Static

12.8.8 CIM_HostedService (ComputerSystem to
SpareConfigurationService)

Optional Associates SpareConfigurationService with the Block
Server's ComputerSystem instance.

12.8.9 CIM_IsSpare Mandatory Represents the spare that may be used as a spare for any
StorageExtents that is not a spare.

12.8.10 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory.

12.8.11 CIM_MemberOfCollection Mandatory Represents the relationship between the StorageExtents
that form the redundancy of a StoragePool,
StorageVolume, or LogicalDisk.

12.8.12 CIM_Spared Mandatory Represents the relationship between the spare and the
StorageExtent that has failed and is being spared.

12.8.13 CIM_StorageExtent (Spare) Mandatory Represents the redundant or spare capacity.

12.8.14 CIM_StoragePool Mandatory Elements to Primordial and Concrete Pools.

12.8.15 CIM_StorageRedundancySet Mandatory Represents the group of spare StorageExtents and
StorageExtents that these spares will substitute for case
of failure.

12.8.16 CIM_StorageVolume Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory. Commonly
known as a LUN but without the semantics of mapping to
a host (which is covered by Masking and Mapping).

12.8.17 SNIA_FailoverStorageExtentsCollection Optional The collection of StorageExtents that have failed.

12.8.18 SNIA_SpareConfigurationCapabilities Optional Instances of this class define the behavior supported by
this sparing implementation.

12.8.19 SNIA_SpareConfigurationService Optional This service manages sparing and validates the data and
the parity for the StorageExtent Not instantiating the
service means that the service methods are supported.

Table 321 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Spare to Storage
Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The StoragePool.

PartComponent Mandatory The spare storage extent that is a component of the storage pool.

Table 320 - CIM Elements for Disk Sparing

Element Name Requirement Description

384

385

386

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 517

Deleted By: Static

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 322 describes class CIM_ConcreteDependency (Extent to LogicalDisk).

12.8.3 CIM_ConcreteDependency (Extent to Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 323 describes class CIM_ConcreteDependency (Extent to Pool).

12.8.4 CIM_ConcreteDependency (Extent to StorageVolume)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory.

Table 324 describes class CIM_ConcreteDependency (Extent to StorageVolume).

12.8.5 CIM_ElementCapabilities

Created By: Static

Table 322 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to LogicalDisk)

Properties Flags Requirement Description & Notes

Antecedent Mandatory An underlying Storage Extent.

Dependent Mandatory A Logical Disk.

Table 323 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to Pool)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 324 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Extent to StorageVolume)

Properties Flags Requirement Description & Notes

Antecedent Mandatory An underlying primordial Extent.

Dependent Mandatory A StorageVolume.

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

Disk Sparing Subprofile

518

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 325 describes class CIM_ElementCapabilities.

12.8.6 CIM_HostedCollection (ComputerSystem to FailoverStorageExtentsCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 326 describes class CIM_HostedCollection (ComputerSystem to
FailoverStorageExtentsCollection).

12.8.7 CIM_HostedCollection (ComputerSystem to RedundancySet)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 327 describes class CIM_HostedCollection (ComputerSystem to RedundancySet).

Table 325 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The hosting System.

Capabilities Mandatory The support spare configuration capabilities.

Table 326 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to Failover-
StorageExtentsCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory Indicates which FailoverStorageExtentsCollection are part of Disk Sparing
implementation.

Table 327 - SMI Referenced Properties/Methods for CIM_HostedCollection (ComputerSystem to Redun-
dancySet)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory Indicate which StorageRedundancySets are part of Disk Sparing
implementation.

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 519

12.8.8 CIM_HostedService (ComputerSystem to SpareConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 328 describes class CIM_HostedService (ComputerSystem to SpareConfigurationService).

12.8.9 CIM_IsSpare

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 329 describes class CIM_IsSpare.

12.8.10CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 328 - SMI Referenced Properties/Methods for CIM_HostedService (ComputerSystem to SpareConfig-
urationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The support spare configuration service.

Table 329 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Flags Requirement Description & Notes

SpareStatus Mandatory

FailoverSupported Mandatory

Antecedent Mandatory A Spare Storage Extent.

Dependent Mandatory

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

Disk Sparing Subprofile

520

Table 330 describes class CIM_LogicalDisk.

12.8.11CIM_MemberOfCollection

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 331 describes class CIM_MemberOfCollection.

12.8.12CIM_Spared

Table 330 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory Format for name.

ExtentStatus Mandatory

OperationalStatus Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks that make of this LogicalDisk.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Primordial Mandatory Shall be false.

Table 331 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

438

439

440

441

442

443

444

445

446

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 521

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 332 describes class CIM_Spared.

12.8.13CIM_StorageExtent (Spare)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 333 describes class CIM_StorageExtent (Spare).

12.8.14CIM_StoragePool

Requirement: Mandatory

Table 334 describes class CIM_StoragePool.

Table 332 - SMI Referenced Properties/Methods for CIM_Spared

Properties Flags Requirement Description & Notes

Antecedent Mandatory A reference to the StorageExtent that as replaced another StorageExtent.

Dependent Mandatory The StorageExtent that has failed and is being replaced.

Table 333 - SMI Referenced Properties/Methods for CIM_StorageExtent (Spare)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

HealthState Mandatory Reports the state of the StorageExtents underlying component.

OperationalStatus Mandatory Reports the operational status of the StorageExtent.

Primordial Mandatory A boolean that identifies whether the spare is primordial or concrete.

Table 334 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

InstanceID Mandatory

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

Disk Sparing Subprofile

522

12.8.15CIM_StorageRedundancySet

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 335 describes class CIM_StorageRedundancySet.

12.8.16CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory.

ElementName Mandatory

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

Table 335 - SMI Referenced Properties/Methods for CIM_StorageRedundancySet

Properties Flags Requirement Description & Notes

InstanceID Mandatory

RedundancyStatus Mandatory The redundancy status shall be either 'Unknown' 0, 'Redundant' 2, or
'Redundancy Lost' 3. The implementation should report 2 or 3 most of the
time, although it may report 0 sometimes. It should report 2 when there is
at least one spare per the StorageRedundancySet. It should report 3 when
there are no more spares (via IsSpare association) per the
StorageRedundancySet.

TypeOfSet Mandatory 'Limited Sparing', 5, is the type of sparing supported in the subprofile.

MinNumberNeeded Mandatory

MaxNumberSupported Mandatory

Failover() Optional For block servers that do not do automatically fail over failed components,
this method is used to cause the fail over to occur. More commonly, block
server implementations automatically maintain the availability of their
capacity. In this case, the method would only be used to cause fail back to
occur, if that also does not occur automatically.

Table 334 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

462

463

464

465

466

467

468

469

470

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 523

Table 336 describes class CIM_StorageVolume.

12.8.17SNIA_FailoverStorageExtentsCollection

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 337 describes class SNIA_FailoverStorageExtentsCollection.

12.8.18SNIA_SpareConfigurationCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 336 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User friendly name.

Name Mandatory VPD 83 identifier for this volume (ideally a LUN WWN).

NameFormat Mandatory Format for name.

ExtentStatus Mandatory

OperationalStatus Mandatory

Primordial Mandatory Shall be false.

Table 337 - SMI Referenced Properties/Methods for SNIA_FailoverStorageExtentsCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User friendly name.

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Disk Sparing Subprofile

524

Table 338 describes class SNIA_SpareConfigurationCapabilities.

12.8.19SNIA_SpareConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 339 describes class SNIA_SpareConfigurationService.

Table 338 - SMI Referenced Properties/Methods for SNIA_SpareConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User friendly name.

SupportedAsynchronousA
ctions

N Mandatory Enumeration indicating what operations will be executed as asynchronous
jobs. If an operation is included in both this and
SupportedSynchronousActions then the underlying implementation is
indicating that it may or may not create.

SupportedSynchronousAct
ions

N Mandatory Enumeration indicating what operations will be executed without the
creation of a job. If an operation is included in both this and
SupportedAsynchronousActions then the underlying instrumentation is
indicating that it may or may not create a job.

SystemConfiguredSpares Mandatory Set to true if this storage system automatically configures spares. If set to
false, the client shall use the extrinsic methods AssignSpares and
UnassignSpares.

AutomaticFailOver Mandatory Set to true if this storage system automatically fails over. If set to false, the
client shall use the FailOver extrinsic method, although that method may
not be supported.

MaximumSpareStorageExt
ents

Mandatory States the maximum number of StorageExtents that can be configured as
spares for the entire block server. A 0 means that all primordial
StorageExtents can be configured as spares.

Table 339 - SMI Referenced Properties/Methods for SNIA_SpareConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory Opaque identifier.

AssignSpares() Mandatory

UnassignSpares() Mandatory

GetAvailableSpareExtents(
)

Mandatory

RebuildStorageExtent() Optional

486

487

488

489

490

491

492

493

494

495

 Disk Sparing Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 525

IMPLEMENTED

CheckParityConsistency() Optional

RepairParity() Optional

CheckStorageElement() Optional

Table 339 - SMI Referenced Properties/Methods for SNIA_SpareConfigurationService

Properties Flags Requirement Description & Notes

Disk Sparing Subprofile

526

 Erasure Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 527

EXPERIMENTAL

13 Erasure Profile

13.1 Description

The Erasure Profile describes how data on a storage element (StorageVolume, LogicalDisk, or primordial
StorageExtent) may be erased. As data is replicated, migrated and archived throughout its lifecycle, there
is a need to ensure that residual and superseded copies or versions of the data that remain on storage
media are destroyed in line with business policies for privacy, confidentiality and security.

Erasure will be required whenever it is deemed that the data on a storage element is sufficiently sensitive
or of competitive value that the media cannot be reused, redeployed or made redundant without ensuring
that the data is destroyed.

As part of the data lifecycle, data will potentially be replicated and migrated several times throughout their
life before final destruction, as a result of media and technology change or management policies.

Common situations would include:

• Migration to secondary or tertiary archive storage followed by deletion of the source data

• Movement of data from a failing device to a spare.

• Migration and cut-over to new target media, retaining the source media for a "fall back" for some period then
reuse (or resale) of the source media.

13.1.1 Existing Erasure standards

There are numerous erasure standards in the industry. These techniques generally involve writing a bit
pattern to the storage media and in most cases require multiple passes of overwriting of these bit
patterns. The following is an incomplete list of erasure techniques to illustrate the variety that exists
today.

• HMG Infosec Standard 5, The Baseline Standard.

• HMG Infosec Standard 5, The Enhanced Standard.

• Peter Gutmann's algorithm.

• U.S.Department of Defense Sanitizing (DOD 5220.22-M)

• Bruce Schneier's algorithm.

• Navy Staff Office Publication (NAVSO P-5239-26) for RLL.

• The National Computer Security Center (NCSC-TG-025).

• Air Force System Security Instruction 5020.

• US Army AR380-19.

• German Standard VSIT

• OPNAVINST 5239.1A.

Because there is such a wide variety of techniques, this subprofile does not dictate which technique shall
be used. The instrumentation shall tell the client which methods are supported. Since erasure of data on
a volume may be a lengthy process and will most likely be a background task, the volume may provide
the status of the erasure and may provide notification via an Indication of the erasure completion.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Erasure Profile

528

To support this profile, instrumentation shall provide a list of supported erasure methods in the
ErasureCapabilities.SupportedErasureMethods property. If the instrumentation supports erasing a
volume upon return to a storage pool, then the ErasureCapabilities.CanEraseOnReturnToStoragePool
property shall be set to true. If the instrumentation does not support this capability, then the value shall be
false (the default value). The ErasureCapabilities shall be associated to the ErasureService via the
ElementCapabilities association.

If CanEraseOnReturnToStoragePool is true, then the ErasureCapabilities.DefaultErasureMethod shall be
used to erase StorageVolume or LogicalDisk elements, unless the ErasureSetting.ErasureMethod is non-
NULL. The instrumentation may provide a default value for this property. A client may be able to change
the ErasureCapabilities.DefaultErasureMethod and ErasureSetting.ErasureMethod.

The erasure of StorageExtents is restricted to primordial extents only and shall be accomplished by
calling ErasureService.Erase explicitly. The CanEraseOnReturnToStoragePool shall only be used for
StorageVolumes and LogicalDisks.

To erase the volume explicitly, the user shall call the ErasureService.Erase method, passing in the
volume to erase and the erasure method to use. The erasure method shall be one of the erasure methods
the instrumentation supports. A NULL may be passed in as the ErasureMethod, in which case, the
instrumentation shall use the DefaultErasureMethod from the capabilities as the erasure method. To
erase a volume implicitly, it is required that the CanEraseOnReturnToStoragePool shall be true and that
the ErasureSetting associated to the volume has the EraseOnReturnToPool value set to true. If these
conditions are met, then when the user calls the ReturnToStoragePool method, the volume shall be
erased before being returned to the pool.

If a ConcreteJob has been started as a result of the erasure (either from calling Erase or
ReturnToStoragePool), then the ConcreteJob shall have an AffectedJobElement association to the
StorageVolume being erased.

Table 70 shows the new properties and method introduced by this subprofile. While a StorageVolume is
shown, the same shall apply to LogicalDisk.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

 Erasure Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 529

13.2 Health and Fault Management Considerations

Not defined in this standard.

13.3 Cascading Considerations

Not applicable

13.4 Supported Profiles, Subprofiles, and Packages

Not defined in this standard.

13.5 Methods of the Profile

The Erase method in the ErasureService shall erase the contents of the volume using the specified
erasure method. The erasure methods that the instrumentation supports shall be found in the
ErasureCapabilities.SupportedErasureMethods property.

Figure 70 - Model Elements

ComputerSystem

StoragePool

ErasureCapabilities

SupportedErasureMethods[]
CanEraseOnReturnToStoragePool
DefaultErasureMethod

ElementCapabilities

HostedService

ErasureService

Erase(out CIM_ConcreteJob, in CIM_StorageExtent, in ErasureMethod)

HostedStoragePool

SystemDevice
StorageVolume

AllocatedFromStoragePool

ErasureSetting

ErasureMethod
EraseOnReturnToPool

ElementSettingData

63

64

65

66

67

68

69

70

71

72

73

Erasure Profile

530

Table 340 - Erase Method

13.6 Client Considerations and Recipes

These cases can be generalized into the explicit case of "Volume Erasure" and the implicit case of
"Volume Deletion".

13.6.1 Recipe 1: Volume Erasure

This is the case where it is determined that the contents of a storage volume must be erased. This
requires the client to call the ErasureService method Erase() to specify the StorageVolume and the
ErasureMethod.

// DESCRIPTION:

//

// Erase a volume

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The ErasureService has been found and the object path

Method: Erase3

Return Values:3

Value3 Description3

0: Job completed3 Job completed with no error3

1: Not supported3 Method not supported3

2: Unspecified Error3 3

3: Timeout

4: Failed Refer to instance of CIM_Error

5: Invalid parameter Refer to instance of CIM_Error

6: In Use

7..4095 DMTF Reserved

4096: Job started REF returned to started ConcreteJob

Errors:

(status):registry:MessageI
D

ErrorName:MessageArguments

Parameters:

Qualifiers Name Type Description/Values

OUT Job CIM_ConcreteJob REF Returned if job started.

IN, REQ Extent CIM_StorageExtent REF Extent (volume) to erase

IN, REQ Type uint16 Type of extent
(StorageVolume,
LogicalDIsk, or primordial
StorageExtent)

IN, REQ ErasureMetho
d

uint32 Erasure method to use

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

 Erasure Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 531

// value is stored in $ErasureService->

// 2. The ErasureCapabilities associated to the

// ErasureService has been found and the instance stored

// in $ControllerCapabilities

// 3. The StorageVolume to use has been identified and the object path

// values are stored in $Volume->

// 4. The erasure method to use has been determined and it’s value

// stored in #ErasureMethod

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobStatus != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. Erase the volume

if ((#ErasureMethod != NULL) &&

 (contains(#ErasureMethod,

 $ControllerCapabilities.SupportedErasureMethods[]) == false)) {

 <ERROR! Invalid Erasure method>

}

%InputArguments[“Extent”] = { $Volume-> }

%InputArguments[“Type”] = 1 // StorageVolume

%InputArguments[“ErasureMethod”] = #ErasureMethod

#ReturnCode = InvokeMethod($ErasureService->,

 “Erase”,

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

Erasure Profile

532

 %InputArguments,

 %OutputArguments)

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

<ERROR! Method failure>

}

$Job-> = %OutputArguments[“Job”]

if ($Job-> != null) {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $Job->)

}

13.6.2 Recipe 2: Volume Deletion

This case is where a volume is being returned to the storage pool, and it needs to be erased. The client
needs to check the CanEraseOnReturnToStoragePool property to see if this is possible. If it is, then the
client looks for an ErasureSetting associated to the volume, creating one if necessary. The client sets the
ErasureSetting.ErasureMethod and ErasureSetting.EraseOnReturnToStoragePool for the setting
associated to the volume, then calls ReturnToStoragePool.

// DESCRIPTION:

//

// Erase a volume as a byproduct of being deleted

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The ErasureService has been found and the object path

// value is stored in $ErasureService->

// 2. The ErasureCapabilities associated to the

// ErasureService has been found and the instance stored

// in $ControllerCapabilities

// 3. The StorageConfigurationService has been found and the object path

// value is stored in $StorageConfigService->

// 4. The StorageVolume to use has been identified and the object path

// values are stored in $Volume->

// 5. The erasure method to use has been determined and it’s value

// stored in #ErasureMethod

//

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

 Erasure Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 533

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobStatus != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. Check capabilities

if ($ControllerCapabilities.CanEraseOnReturnToStoragePool == false) {

 <ERROR! Implicit erasure not supported. Use Erase() method >

}

// Step 2. Find/create setting

$Setting[] = Associators($Volume->,

 “CIM_ElementSettingData”,

 “SNIA_ErasureSetting”,

 null, null,

 false, false, null)

if ($Setting[].length == 0) {

 // Create setting

 $TheSetting = newInstance(“SNIA_ErasureSetting”)

 $TheSetting.InstanceID = “SNIA:0001” // create unique ID

 $TheSetting.ErasureMethod = #ErasureMethod

 $TheSetting.EraseOnReturnToStoragePool = true

 $instance-> = CreateInstance($TheSetting)

}

else {

 $Setting[0].ErasureMethod = #ErasureMethod

 $Setting[0].EraseOnReturnToStoragePool = true

 ModifyInstance($Setting[0])

}

// Step 3 Delete the volume

%InArguments[“TheElement”] = $Volume->

#ReturnCode = InvokeMethod($StorageService->,

 “ReturnToStoragePool”,

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

Erasure Profile

534

 %InArguments,

 %OutArguments)

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

<ERROR! Method failure>

}

$Job-> = %OutputArguments[“Job”]

if ($Job-> != null) {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $Job->)

}

13.7 Registered Name and Version

Erasure version 1.2.0 (Component Profile)

CIM Schema Version: 2.12.0

13.8 CIM Elements

Table 341 describes the CIM elements for Erasure.

13.8.1 CIM_AllocatedFromStoragePool

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 341 - CIM Elements for Erasure

Element Name Requirement Description

13.8.1 CIM_AllocatedFromStoragePool Mandatory AllocationFromStoragePool as defined in the Array
Profile.

13.8.2 CIM_LogicalDisk Conditional Conditional requirement: Conditional

13.8.3 CIM_StoragePool Mandatory

13.8.4 CIM_StorageVolume Conditional Conditional requirement: Conditional

13.8.5 SNIA_ErasureCapabilities Mandatory

13.8.6 SNIA_ErasureService Mandatory

13.8.7 SNIA_ErasureSetting Mandatory

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

 Erasure Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 535

Table 342 describes class CIM_AllocatedFromStoragePool.

13.8.2 CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: null

Table 343 describes class CIM_LogicalDisk.

13.8.3 CIM_StoragePool

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 344 describes class CIM_StoragePool.

13.8.4 CIM_StorageVolume

Table 342 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 343 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 344 - SMI Referenced Properties/Methods for CIM_StoragePool

Properties Flags Requirement Description & Notes

Primordial Mandatory

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

234

235

236

237

238

239

240

241

242

243

244

245

246

247

Erasure Profile

536

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: null

Table 345 describes class CIM_StorageVolume.

13.8.5 SNIA_ErasureCapabilities

Created By: Static

Requirement: Mandatory

Table 346 describes class SNIA_ErasureCapabilities.

13.8.6 SNIA_ErasureService

Created By: Static

Requirement: Mandatory

Table 345 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 346 - SMI Referenced Properties/Methods for SNIA_ErasureCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory User friendly name for this instance of Capabilities.

InstanceID Mandatory Unique identifier for the instance.

ErasureMethods Mandatory Indicates erasure methods supported.

DefaultErasureMethod Mandatory Erasure method to use if none specified in the volume's setting.

CanEraseOnReturnToStor
agePool

Mandatory Indicates that the volume can be erased when deleted.

ElementTypesSupported Mandatory Supported element types for the Erase method. Valid values are
StorageVolume, LogicalDisk, and StorageExtent.

248

249

250

251

252

253

254

255

256

257

258

259

 Erasure Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 537

Table 347 describes class SNIA_ErasureService.

13.8.7 SNIA_ErasureSetting

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 348 describes class SNIA_ErasureSetting.

EXPERIMENTAL

Table 347 - SMI Referenced Properties/Methods for SNIA_ErasureService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

Erase() Mandatory This service contains the Erase method used to erase storage elements.

Table 348 - SMI Referenced Properties/Methods for SNIA_ErasureSetting

Properties Flags Requirement Description & Notes

ErasureMethod Mandatory Erasure method to use. Must be one of the erasure methods supported by
the instrumentation.

EraseOnReturnToPool Mandatory Indicates if this volume should be erased when deleted. Default is false.

260

261

262

263

264

265

266

Erasure Profile

538

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 539

STABLE

14 Extent Composition Subprofile

14.1 Description

The Extent Composition Subprofile allows an implementation that supports the Block Services package to
optionally provide an abstraction of how it virtualizes exposable block storage elements from the
underlying Primordial storage pool. The abstraction is presented to the client as a representative
hierarchy of extents. These extents are instances of CompositeExtents and StorageExtents linked by a
combination of CompositeExtentBasedOn and BasedOn associations. The foundation of the hierarchy is
a set of Primordial extents.

This subprofile is used optionally with the Array, Virtualization, Self-Contained NAS, NAS Head, and
Volume Management profiles.

A Primordial storage extent can represent a Disk Drive in the Array or Self-contained NAS, a downstream
virtualized Volume used by the Virtualizer or NAS Head Profiles, or a OS Logical Disk in the Volume
Management Profile.

An exposable block storage element as used in this subprofile is defined as a Storage Volume or a
Logical Disk.

In the presented hierarchy each extent (the dependent) is formed from those that it “precede” it (the
antecedents) by a process of either decomposition or composition.

14.1.1 Decomposition

Decomposition is used to allocate space from an antecedent extent, in order to form a new dependent
extent. This allocation may be partial or complete consumption. Complete consumption is the degenerate
case in which all space in the antecedent extent is used. In this case the decomposed dependent extent
may be either modeled even though it is one to one with the antecedent extent or omitted and the
antecedent extent used in its stead.

14.1.2 Composition

Composition is used to form an a dependent extent from antecedent extents for the purpose of either
concatenating the antecedent blocks to achieve a size goal, or to achieve a Quality Of Service goal such
as mirroring the antecedent extents for redundancy, striping the antecedent extents for performance, or
striping the antecedent extents with the addition of parity to achieve redundancy.

These extent “productions” can be assembled in a multi-layer hierarchy.

14.1.3 Model Element Summary

This subprofile uses the following CIM Classes:

LogicalDisk & StorageVolume - These are used to model the exposable block storage element. These are
as defined in the Block Services Package. The StorageVolume may also be a Constituent Volume as
defined by the Pools From Volumes Profile.

StorageExtent (Intermediate or Pool Component) - Used to represent the decomposition (partial
allocation) of an Antecedent extent.

StorageExtent (Remaining) - Used to represent the unused portion of an antecedent StorageExtent (Pool
Component).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Extent Composition Subprofile

540

CompositeExtent (Composite Intermediate or Composite Pool Component) - Used to represent the
composition of several antecedent extents into a virtualized set of blocks with desired size and Quality-
Of-Service.

BasedOn - Used to associate a Dependent and Antecedent extent in the subprofile hierarchy for both
composition and decomposition. It is also used in one special case as a one-to-one (neither composing or
decomposing), always associating the StorageVolume or LogicalDisk to the antecedent CompositeExtent.
This is because, as a sibling of StorageExtent and LogicalDisk, CompositeExtent cannot be exposed
directly.

CompositeExtentBasedOn - A subclass of BasedOn that is used in a composition production when the
Dependent is a CompositeExtent which is describing striping; it contains Stripe Depth information. Stripe
Depth is the number of blocks written to an Antecedent extent before moving on to the next extent
Although this property is on the association class, its values shall be the same for each instance of the
association with the same Dependent CompositeExtent.

DEPRECATED

ConcreteComponent - Used to associate extents (Pool Component and Remaining) to their parent
StoragePool (See 14.1.4.2).

DEPRECATED

AssociatedComponentExtent - Used to associate extents (Pool Component or Composite Pool
Component) to their parent StoragePool (See 14.1.4.2).

StoragePool and AllocatedStoragePool are shown in instance diagrams for context but are part of the
Block Service package Read Only sub-package.

Refer to 14.8 "CIM Elements" for detailed class descriptions.

14.1.4 Relation to other Packages and Subprofiles

14.1.4.1 Block Services StoragePool hierarchy.

The Block Services package defines the model for the hierarchy of pools from the exposable storage
element to the Primordial Pool. The hierarchy defined in this subprofile parallels that pool hierarchy and is
layered so that the virtualization can be presented within the pool level in which it actually takes place.

14.1.4.2 Component Extents

Component Extents of a pool are the most dependent extents in the pool; they are also the only extents
that are directly manageable by the methods in the Block Services Package. They are also the only
extents that figure into the reconciliation of managed space in the pool (see 14.1.4.3).

Although a given implementation may choose a low level (i.e., detailed) or high-level presentation of how
it virtualizes a storage element from a pool, or how space in a pool is itself virtualized, the Pool
Component extents that are part of an exposable block storage element’s hierarchy shall be modeled
along with their associations to the parent pool.

14.1.4.3 Block Services Extent Conservation

The Block Services package describes the concept of Extent Conservation, which describes the result of
allocating storage from Pool Component extents using “Remain Space Extents”. These extents are not
modeled by the Extent Composition Subprofile, they are discoverable by the GetAvailableExtents method
in Block Services.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 541

14.1.4.4 Block Services Common RAID Levels

The Block Services Package describes a set of RAID Levels and in addition, properties on StorageSetting
such as ExtentStripeLength and UserDataStripeDepth which allow creation of a subset of those RAID
levels, using CreateOrModifyElementFromElements.

However, the Extent Composition Subprofile is capable of describing general organizations, such as
heterogeneous, multi-layer RAID such as can be create by the Volume Management Profile. An example
of this would be a RAID5 mirrored against a RAID0, a RAID(5,0)+1. Another example would be a three
layer RAID organization such as a RAID10 where the bottom layer RAID1 members were concatenations
of available extents.

14.1.5 Remaining Extents

When a StorageExtent (or CompositeExtent) is based on only part of an underlying storage extent (a
partial allocation), the unused part of the underlying StorageExtent is represented by a Remaining
StorageExtent. This is illustrated in Figure 71.

Figure 71 shows two Remaining StorageExtents. Building from the bottom, there is a Pool Component
StorageExtent allocated from the Primordial StorageExtent. But this StorageExtent does not use all space
on the primordial extent. So a Remaining StorageExtent is shown to represent the unallocated space on

Figure 71 - Remaining Extents in Extent Composition

Extent Composition

StoragePool (Primordial)

Primordial=”true”
(See Block Services)

ConcreteComponent &
AssociatedComponentExtent

Primordial: StorageExtent

Primordial=”true”
(See Referencing Profile)

BasedOn
(Bottom Level)

StorageVolume
(Allocated)

Primordial=”false”
ExtentDiscriminator=”SNIA:Allocated”

(See Referencing Profile)

AllocatedFromStoragePool

StoragePool (Concrete)

Primordial=”false”
(See Referencing Profile)

AllocatedFromStoragePool

StorageExtent
(Pool Component)

Primordial=”false”
ExtentDiscriminator=“SNIA:Pool Component”

StorageExtent
(Intermediate)

Primordial=”false”
ExtentDiscriminator=“SNIA:Intermediate”

CompositeExtent
(Composite Intermediate)

Primordial=”false”
ExtentDiscriminator=“SNIA:Intermediate”,

“SNIA:Composite”

BasedOn
(Mid Level)

BasedOn / CompositeBasedOn
(Mid Level)

BasedOn
(Top Level)

ConcreteComponent &
AssociatedComponentExtent

StorageExtent
(Remaining)

Primordial=”false”
ExtentDiscriminator=“SNIA:Remaining”

BasedOn
(Remaining)

ConcreteComponent &
AssociatedRemainingExtent

StorageExtent
(Remaining)

Primordial=”false”
ExtentDiscriminator=“SNIA:Remaining”

BasedOn
(Remaining)

ConcreteComponent &
AssociatedRemainingExtent

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Extent Composition Subprofile

542

the primordial extent. The Remaining StorageExtent has a BaseOn association to the primordial extent to
indicate that it is unallocated space from the primordial extent. The Remaining Extent also has an
AssociatedRemainingExtent association to the same primordial StoragePool that the primordial
StorageExtent has its AssociatedComponentExtent association.

The Pool Component extent above the primordial storage extent also has a StorageExtent allocated from
it that is also a partial allocation. So, it too has a Remaining StorageExtent to represent the unallocated
space on the Pool Component StorageExtent. This Remaining StorageExtent has a BasedOn association
to the Pool Component StorageExtent and an AssociatedRemainingExtent association to the same
Concrete StoragePool that the Pool Component StorageExtent has its AssociatedComponentExtent
association.

For more information and detail on the use and application of Remaining StorageExtents see 5.1.15 for
extent conservation provisions.

14.1.6 Scenarios

The following example scenarios are common abstractions of the use-cases that were used when this
subprofile was being defined. The scenarios are not intended to cover all possible variations of the use of
Extent Composition.

14.1.6.1 Volume Composition

Figure 72: "Volume Composition from General QOS Pool" shows extent composition when a single RAID
QOS/Level is applied directly to the construction of a StorageVolume. The Storage Volume or Logical
Disk and the underlying CompositeExtent represent the same virtual extent and range of blocks; The
initial BasedOn association between them is a one-to-one “dummy” association. The Storage Volume and
Logical Disk classes do not have the necessary properties to describe the RAID information and the
CompositeExtent which is a sibling class of StorageVolume and LogicalDisk, cannot be directly exposed.
This Based on association does not represent composition or decomposition, but the main recipe (see

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 543

14.6.1) for this subprofile makes use of the decomposition function (i.e., complete consumption) to make
this initial traversal.

Figure 73: "Single QOS Pool Composition (RAID Groups)" shows a single composition (such as a RAID5
or RAID1). Not shown is the scenario where there may be two or more such back to back productions
(such as a RAID10). Also not shown is the scenario where the two productions may be in different
concrete pools in the hierarchy. A RAID10 Volume may be constructed as a RAID0 composition from a
concrete pool that is itself a RAID1 pool (see 14.1.6.2).

In this scenario, note that the extents below the StorageVolume and the Component Extents are not part
of the pool, but allocated from it.

In fact this StorageVolume and its companion CompositeExtent could be composed from member extents
(labeled PartialAllocOfConcrete in the diagram) from different pools.

Figure 72 - Volume Composition from General QOS Pool

AssociatedComponentExtent & ConcreteComponent

 Extent Composition

Concrete:
StorageExtent (Pool Component)

ExtentDiscriminator= ”SNIA:Component”
Primordial=”false”

Primordial=”false”
(See referencing profile)

ConcretePool:
StoragePool

ExtentDiscriminator=”SNIA:Exported”
Primordial=”false”
(See referencing profile)

StorageVolume / LogicalDisk

AllocatedFromStoragePool

ExtentDiscriminator= ”SNIA:Intermediate”, “SNIA:Composite”
Primordial=”false”

CompositeExtent (Composite Intermediate)

BasedOn/
CompositedExtentBasedOn

PartialAllocOfConcrete:
StorageExtent (Intermediate)

ExtentDiscriminator= ”SNIA:Intermediate”
Primordial=”false”

BasedOn

Primordial=”true”
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

BasedOn

(See referencing profile)

StorageSetting

ElementSettingData

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

Concrete:
StorageExtent (Pool Component)

ExtentDiscriminator= ”SNIA:Component”
Primordial=”false”

BasedOn

PartialAllocOfConcrete:
StorageExtent (Intermediate)

ExtentDiscriminator= ”SNIA:Intermediate”
Primordial=”false”

...

BasedOn

...

...

BasedOn

AssociatedComponentExtent & ConcreteComponent

117

118

119

120

121

122

123

124

125

126

127

Extent Composition Subprofile

544

14.1.6.2 Pool Composition

Certain pools can be created or modified to contain one or more extents each with a single specific
quality of service. These extents are known as Raid Groups. The bound space in each of these RAID
Groups is represented by this subprofile as a single CompositeExtent at the top of an extent sub-
hierarchy in that pool. Volumes created from this type of Pool are partially allocated (decomposed) from
the CompositeExtent playing the role of the RAIDGroup. Figure 73 shows the Single QOS Pool
Composition (RAID Groups).

Figure 74: "SIngle QOS Pool Composition - Two Concretes" extends this scenario by allocating a child
concrete pool from the RAID Group instead of a Volume and then allocating the Volume from the child
concrete. In this example the child pool contains a single component extent that has a single Quality of

Figure 73 - Single QOS Pool Composition (RAID Groups)

AssociatedComponentExtent & ConcreteComponent

 Extent Composition

Primordial=”false”
(See referencing profile)

ConcretePool:
StoragePool

AssociatedComponentExtent
& ConcreteComponent

ExtentDiscriminator=”SNIA:Exported”
Primordial=”false”
(See referencing profile)

StorageVolume

AllocatedFromStoragePool

ExtentDiscriminator= ”SNIA:Component”, “SNIA:Composite”
Primordial=”false”

RAIDGroup:
CompositeExtent (Composite Pool Component)

BasedOn/
CompositedExtentBasedOn

BasedOn

Primordial=”true”
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

(See referencing profile)

StorageSetting

ElementSettingData

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

...

Complete
Consumption of

Primordials

128

129

130

131

132

133

134

135

136

137

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 545

Service (that of the parent RAID Group concrete pool). The Storage Volume or Logical Disk is allocated or
decomposed directly from the pool component extent.

14.1.6.3 Example RAID Compositions from Block Services

Table 349 is an abridged version of the RAID Mapping table in Block Services. The table describes the
RAID levels commonly used at the time this version of SMI-S was released. Table 349 lists the subset of
those RAID Levels that can be modeled by using the Extent Composition Subprofile, and the properties
used to distinguish them.

Figure 74 - SIngle QOS Pool Composition - Two Concretes

AssociatedComponentExtent & ConcreteComponent

 Extent Composition

Primordial=”false”
(See referencing profile)

ConcretePool:
StoragePool

AssociatedComponentExtent
& ConcreteComponent

AllocatedFromStoragePool

ExtentDiscriminator= ”SNIA:Component”, “SNIA:Composite”
Primordial=”false”

RAIDGroup:
CompositeExtent (Composite Pool Component)

BasedOn/
CompositedExtentBasedOn

Primordial=”true”
(See referencing profile)

Primordial:
StoragePool

AllocatedFromStoragePool

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

Primordial:
StorageExtent

Primordial=”true”
(See referencing profile)

...

Primordial=”false”
(See referencing profile)

ConcretePool:
StoragePool

PartialAllocOfConcrete:
StorageExtent (Pool Component)

ExtentDiscriminator= ”SNIA:Component”
Primordial=”false”

BasedOn
(Mid Level)

AssociatedComponentExtent
& ConcreteComponent

BasedOn
(Top Level)

StorageVolume

ExtentDiscriminator=”SNIA:Exported”
Primordial=”false”
(See referencing profile)

AllocatedFromStoragePool

Complete
Consumption of

Primordials

138

139

140

141

142

143

144

Extent Composition Subprofile

546

Following Table 349 are some example instance diagrams, showing the use of CompositeExtent,
StorageExtent, BasedOn and CompositeExtentBasedOn to represent the construction of many of the
RAID levels. In these cases there will be at most, two levels of CompositeExtent and
CompositeExtentBasedOn/BasedOn.

In complex compositions, such as RAID10, there is no intermediate decomposition modeled; each extent
Antecedent to the top level CompositeExtent is itself a CompositeExtent.

Table 349 - Supported Common RAID Levels

RAID Level Package

Redundancy

Data

Redundancy

Extent

Stripe

Length

User Data

Stripe

Depth

JBOD 0 1 1 Null

0 (Striping) 0 1 2 - n Vendor

Dependent

1 1 2 - n 1 Null

10 1 2 - n 2 - n Vendor

Dependent

0+1 1 2 - n 2 - n Vendor

Dependent

3 or 4 1 1 3 - n Vendor

Dependent

4DP 2 1 4 - n Vendor

Dependent

5 (3/5) 1 1 3 - n Vendor

Dependent

6, 5DP 2 1 4 - n Vendor

Dependent

15 2 2 - n 3 - n Vendor

Dependent

50 1 1 3 - n Vendor

Dependent

51 2 2 - n 3 - n Vendor

Dependent

145

146

147

148

149

150

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 547

14.1.6.3.1 JBOD (Concatenation)

Figure 75: "Concatenation Composition" shows a partial instance diagram for a JBOD Volume or Pool, in
which the Antecedent Extents are concatenated.

14.1.6.3.2 RAID0 (Striping)

Figure 76: "RAID0 Composition" shows a partial instance diagram for a RAID0 Volume or Pool.

Figure 75 - Concatenation Composition

Figure 76 - RAID0 Composition

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = true
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress StorageExtent

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

151

152

153

154

155

Extent Composition Subprofile

548

14.1.6.3.3 RAID1

Figure 77: "RAID1 Composition" shows a partial instance diagram for a RAID1 Volume or Pool.

14.1.6.3.4 RAID10

Figure 78: "RAID10 Composition" shows a partial instance diagram for a RAID10 Volume or Pool. In this
example the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level,
not just the top level composition which by itself is a non-redundant stripeset. That is, the top level is a
RAID0, but the DataRedundancy value for the corresponding CompositeExtent is 2, reflecting two
complete copies of the data.

Figure 77 - RAID1 Composition

StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

StorageExtent

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

156

157

158

159

160

161

162

163

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 549

Figure 78 - RAID10 Composition

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

Extent Composition Subprofile

550

14.1.6.3.5 RAID0+1

Figure 79: "RAID0+1 Composition" shows a partial instance diagram for a RAID0+1 Volume or Pool

Figure 79 - RAID0+1 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 0
NoSinglePointOfFailure = false
IsBasedOnUnderlyingRedundancy = false
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

164

165

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 551

14.1.6.3.6 RAID4 or 5

Figure 80: "RAID4, 5 Composition" shows a partial instance diagram for a RAID4 or 5 Volume or Pool.

14.1.6.3.7 RAID6, 5DP, and 4DP

Figure 81: "RAID 6, 5DP, 4DP" shows a partial instance diagram for a RAID6, 5DP, or 4DP Volume or
Pool. Note that the PackageRedundancy is 2, indicating that two of the antecedent extents can fail

Figure 80 - RAID4, 5 Composition

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

166

167

168

169

170

Extent Composition Subprofile

552

simultaneously without loss of data. Four extents are shown, the minimum required for these double
parity RAID organizations.

14.1.6.3.8 RAID 15

Figure 82: "RAID15 Composition" shows a partial instance diagram for a RAID15 Volume or Pool. In this
example the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level,
not just the top level composition which by itself is a simple RAID5.

Figure 81 - RAID 6, 5DP, 4DP

StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 4
NumberOfBLocks = x
ExtentDiscriminator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent StorageExtent

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

StorageExtent

CompositeExtentBasedOn

OrderIndex = 4
StartingAddress
EndingAddress
UserDataStripeDepth

171

172

173

174

175

176

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 553

NOTE Only CompositeExtent members 1 and 3 of the Raid 5 layer are shown.

14.1.6.3.9 RAID50

Figure 83: "RAID50 Composition" shows a partial instance diagram for a RAID50 Volume or Pool. In this
example the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level,
not just the top level composition which by itself is a non-redundant stripeset.

I

Figure 82 - RAID15 Composition

Com positeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
Num berOfBLocks = x
ExtentDiscrim inator= “SNIA:Com posite”
Prim ordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 2
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
Num berOfBLocks = x
ExtentDiscrim inator= “SNIA:Com posite”
Prim ordial=”false”

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 1
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundanc = true
IsConcatenated = false
ExtentStripeLength = 1
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

177

178

179

180

181

Extent Composition Subprofile

554

NOTE In the Raid 5 layer, CompositeExtent member 2 in each stripe member is not shown.

14.1.6.3.10 RAID51

Figure 84: "RAID51 Composition" shows a partial instance diagram for a RAID51 Volume or Pool. In this
example the Data and Package Redundancy reflect the Quality of Service of the combined RAID Level,
not just the top level composition which by itself is a simple mirror. That is, the top level is a RAID1, but
the PackageRedundancy is 2, indicating the QOS for the entire hierarchy.

NOTE In the Raid 5 layer, CompositeExtent member 2 in each mirror is not shown.

Figure 83 - RAID50 Composition

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscrim inator= “SNIA:Composite”
Primordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 2
NumberOfBLocks = x
ExtentDiscrim inator= “SNIA:Composite”
Primordial=”false”

CompositeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
NumberOfBLocks = x
ExtentDiscrim inator= “SNIA:Composite”
Primordial=”false”

CompositeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

CompositeExtentBasedOn

OrderIndex = 2
StartingAddress
EndingAddress
UserDataStripeDepth

182

183

184

185

186

187

188

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 555

14.2 Health and Fault Management Considerations

Not defined in this standard.

14.3 Cascading Considerations

None.

14.4 Supported Subprofiles and Packages

Related Profiles for Extent Composition: Not defined in this standard.

14.5 Methods of the Profile

None.

Figure 84 - RAID51 Composition

Com positeExtent

DataRedundancy = 2
PackageRedundancy = 2
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 1
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

Com positeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointO fFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

StorageExtent StorageExtent StorageExtent StorageExtent

Com positeExtent

DataRedundancy = 1
PackageRedundancy = 1
NoSinglePointOfFailure = true
IsBasedOnUnderlyingRedundancy = true
IsConcatenated = false
ExtentStripeLength = 3
Num berOfBLocks = x
ExtentD iscrim inator= “SNIA:Com posite”
Prim ordial=”false”

BasedOn

OrderIndex = 1
StartingAddress
EndingAddress

BasedOn

OrderIndex = 2
StartingAddress
EndingAddress

Com positeExtentBasedOn

OrderIndex = 3
StartingAddress
EndingAddress
UserDataStripeDepth

Com positeExtentBasedOn

OrderIndex =1
StartingAddress
EndingAddress
UserDataStripeDepth

189

190

191

192

193

194

195

196

197

Extent Composition Subprofile

556

14.6 Client Considerations and Recipes

14.6.1 Traverse the virtualization hierarchy of a StorageVolume or LogicalDisk

// DESCRIPTION

//

// This recipes defines a mechanism for traversing the extent hierarchy between

// the Exposable Block Storage Element and the Primordial Extents it makes use

// of, determining the RAID level structure, Concrete and Primordial pool

// membership.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The instance name for an exposable block storage element (e.g.

// StorageVolume, LogicalDisk) of interest has been previously identified as

// $BlockElement->.

// This function determines if an Extent is a Primary(non-remaining) Component

// of a Pool.

//

sub boolean IsPrimaryComponent(REF $TargetExtent->) {

$Pools->[] = AssociatorNames($TargetExtent->,

“CIM_ConcreteComponent”,

“CIM_StoragePool”,

“PartComponent”,

“GroupComponent”)

if ($Pools->[] != null && $Pools->[].length == 1) {

 // This Extent is a Component Extent of either a Concrete

 // or Primoridal pool

 return true

}

else

 return false

}

// This function determines the RAID Level or Quality of Service of a

// CompositeExtent and then recursively traverses the hierarchy beneath it.

//

sub void traverseComposition(REF $Composite->) {

 // See if this composite is a Primary(non-remaining) Component

 // Extent of a Pool (for information only.)

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 557

#PrimaryComponent = &IsPrimaryComponent($Composite->)

 // Get the instances of the associations in which this Extent is the

 // Dependent reference. The association instances retrieved should be

 // either BasedOn or CompositeExtentBasedOn.

 $Associations[] = References($Composite->,

 NULL,

 “Dependent”,

 false,

 false,

 NULL)

 // Now get the underlying extents

 $TargetExtents->[] = AssociatorNames($Composite->,

 Associations[0].getClassName(),

 NULL,

 “Dependent”,

 “Antecedent”)

 // Examine the QOS of the current level’s Composite Extent

 $CompositeExtent = GetInstance($Composite->,

 false,

 false,

 false,

 {“IsConcatenated”, “ExtentStripeLength”,

 “IsBasedOnUnderlyingRedundancy”})

 if (($Associations[0] ISA CIM_CompositeExtentBasedOn)

 && ($CompositeExtent.IsConcatenated == false)

 && ($CompositeExtent.ExtentStripeLength > 1)) {

 // The TargetExtents are striped together. Get the Stripe Depth from

 // the first association. The assumption here is that this property is

 // the same for each association instance.

 #StripeDepth = $Associations[0].UserDataStripeDepth

 // Inspect the RAID level.

 #RAID = 0

 if ($CompositeExtent.IsBasedOnUnderlyingRedundancy) {

 #RAID = 5

 }

 } else {

 // Associations are CIM_BasedOn, So this is either a Mirror or

 // a Concatenation

 if (($CompositeExtent.IsBasedOnUnderlyingRedundancy == true)

 && ($CompositeExtent.IsConcatenated == false)

 && ($CompositeExtent.ExtentStripeLength == 1)) {

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

Extent Composition Subprofile

558

 // The TargetExtents are mirrored together,

 // This level is a RAID 1

 } else if (($CompositeExtent.IsBasedOnUnderlyingRedundancy == false)

 && ($CompositeExtent.IsConcatenated == true)

 && ($CompositeExtent.ExtentStripeLength == 1)) {

 // The TargetExtents are concatenated together,

 // This level is a JBOD.

 } else {

 <ERROR! Illegal combination of property values; does not

 correspond to supported composition type.>

 }

 }

// Now for each underlying extent at this level, traverse the sub-tree

// it is the sub-root of. If the extent is a CompositeExtent, then this

// is part of a complex RAID level; recursively invoke the Composition

// Algorithm. Otherwise it is just a regular StorageExtent and thus

// either a Primoridal or decomposed from an Antecedent, so invoke the

// recursive Decomposition Algorithm.

for (#i in $TargetExtents->[]) {

 if ($TargetExtents->[#i] ISA CIM_CompositeExtent) {

 &traverseComposition($TargetExtents->[#i])

 } else {

 &traverseDecomposition($TargetExtents->[#i])

 }

 }

}

// This function recursively traverses the hierarchy below a non-Composite

// Storage Extent.

sub void traverseDecomposition(REF $SubjectExtent->) {

 // See if this extent is a Primary(non-remaining) Component

 // Extent of a Pool (for information only.)

#PrimaryComponent = &IsPrimaryComponent($SubjectExtent->)

// Check here to see if we have reached the leaves of the hierarchy

 $SubjectExtent = GetInstance($SubjectExtent->,

 false,

 false,

 false,

 {“Primordial”})

if ($SubjectExtent.Primordial == true) {

 // Recursion ends with each Primordial Extent.

 <EXIT: Recursion ends with each Primordial Extent.>

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 559

} else {

 // The Subject Extent is allocated partially or in full from the

 // Antecedent Extent, so a single BasedOn is expected.

 $TargetExtents[] = Associators($SubjectExtent->,

 “CIM_BasedOn”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”,

 false,

 false,

 {“Primordial”})

 // Since the Subject Extent is allocated from the Antecedent, there can

 // only be one Antecedent.

 if ($TargetExtents[] == null || $TargetExtents[].length != 1) {

 <ERROR! Extent allocated from multiple Antecedents>

 }

 $TargetExtent = $TargetExtents[0]

 if ($TargetExtent ISA CIM_CompositeExtent) {

 // This is a Composite Extent representing a RAID Level. Since we

 // encountered the Composite in a decomposition, the

 // Dependent/Antecedent relationship falls into one of the

 // following scenarios:

 //

 // o The Subject Extent is a StorageVolume that is one-to-one with

 // the Target Composite Extent.

 //

 // o The Subject Extent is a StorageVolume partially allocated from

 // the Target Composite Extent, where the Composite is a RAID Group.

 //

 // o The Subject Extent is a ComponentExtent of a Concrete pool and is

 // partially allocated from the Target Composite Extent where the

 // Composite is a RAID Group.

 //

 // Call the (recursive) function to analyze the sub-hierarchy

 // composed by the Target Extent.

 //

 &traverseComposition($TargetExtent.getObjectPath())

 } else {

 // The Antecedent is a regular StorageExtent and was not

 // Primordial, so it must be in turn a dependent decomposed

 // from an Antecedent, so invoke

 // ourselves recursively.

 &traverseDecomposition($TargetExtent.getObjectPath())

 }

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

Extent Composition Subprofile

560

 }

}

// MAIN

// Since the exposable block element is either one-to-one with the initial

// CompositeExtent, or a partial allocation of it (in the case of a RAID Group),

// decompose the block hierarchy.

//

&traverseDecomposition($BlockElement->)

14.6.2 Find the Primordial Extents used by a Storage Volume or Logical Disk

A storage administrator may want the information provided by this recipe for several reasons:

Failure Exposure: To understand what Drive or virtualized Volume failures may affect the health of a block
storage element, or conversely what block storage elements are affected by a given Drive failure.

Performance and Loading: To avoid locating frequently accessed Volumes on the same Disk Drive.

Utilization: To avoid locating portions of too many volumes on the same Drive while leaving other drives
under utilized.

// DESCRIPTION

//

// This recipe defines a mechanism for finding the Primordial Storage Extents

// used by a Storage Volume in an Array or Virtualizer, or a LogicalDisk in

// a Volume Manager or NAS system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The instance name for an exposable block storage element (e.g.

// StorageVolume, LogicalDisk) of interest has been previously identified as

// $BlockElement->.

// This function recursively searches for the Primordial Storage Extents that

// comprise the specified block storage element.

sub $PrimordialExtents[] findPrimordials(REF $SubjectExtent->) {

 // Get the Extents that are Antecedent to the specified Extent.

 //

 $TargetExtents[] = Associators($SubjectExtent->,

 “CIM_BasedOn”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”,

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 561

 false,

 false,

 {“Primordial”})

 // Examine each Extent at the next level to determine if its Primordial.

 #i = 0

 for (#j in $TargetExtents[]) {

if ($TargetExtents[#j].Primordial == true) {

 // The Extent is Primordial, the recursion ends here. Add it to

 // the group of Primordials gathered at this level or below.

 $PrimordialExtents[#i++] = TargetExtents[j]

} else {

 // The Extent is not Primordial, but it must be based on a

 // sub-hierarchy in which each leaf is a Primordial, so call this

 // function Recursively.

 $SubordinatePrimordialExtents[] =

 &findPrimordials(TargetExtents[#j].getObjectPath())

 if ($SubordinatePrimordialExtents[] == null

 || $SubordinatePrimordialExtents[].length == 0) {

<ERROR! Found a Leaf Extent that is not a Primordial>

 }

 for (#k in $SubordinatePrimordialExtents[]) {

// The recursion delivers the bottom for each branch

// These need to be collected and added into the whole

$PrimordialExtents[#i++] = SubordinatePrimordialExtents[#k]

 }

}

 }

 return ($PrimordialExtents[])

}

// MAIN

// Make initial call to the recursive function.

$PrimordialExtents[] = &findPrimordials($BlockElement->)

if ($PrimordialExtents[] == null || $PrimordialExtents[].length == 0) {

 <ERROR! No Primordials Found>

} else {

 <EXIT: Primordial Extents accumulated>

}

14.7 Registered Name and Version

Extent Composition version 1.6.0 (Component Profile)

CIM Schema Version: 2.29

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

Extent Composition Subprofile

562

14.8 CIM Elements

Table 350 describes the CIM elements for Extent Composition.

Table 350 - CIM Elements for Extent Composition

Element Name Requirement Description

14.8.1 CIM_AssociatedComponentExtent (Pool
Component to Concrete Pool)

Mandatory

14.8.2 CIM_AssociatedRemainingExtent (Pool to its
remaining extents)

Mandatory

14.8.3 CIM_BasedOn (Mid level BasedOn) Optional Associates a Storage Extent (Pool Component or
Intermediate) to underlying Storage Extents it is based on.

14.8.4 CIM_BasedOn (Top level BasedOn) Mandatory Associates a StorageVolume (or LogicalDisk) to the
underlying Storage Extent it is based on.

14.8.5 CIM_CompositeExtent (Composite Intermediate) Optional Represents a Concrete StorageExtent that is a composite
and does not have an AssociatedComponentExtent
association to a Concrete StoragePool.

14.8.6 CIM_CompositeExtent (Composite Pool
Component)

Optional Represents a Concrete StorageExtent that is a composite
and has an AssociatedComponentExtent association to a
Concrete StoragePool.

14.8.7 CIM_CompositeExtentBasedOn Optional Associates a Composite Extent representing a striping
simple RAID organization such as RAID 0 or RAID 5 to
the underlying Storage Extents that it virtualizes.

14.8.8 CIM_ConcreteComponent (Pool Component to
Concrete Pool)

Mandatory Deprecated. Associate the extents that are playing the
Pool Component role to their aggregating StoragePool.

14.8.9 CIM_ConcreteComponent (Remaining Extent to
Pool)

Mandatory Deprecated. Associate a remaining extent to the
StoragePool for which it represents unused space.

14.8.10 CIM_FilterCollection (Extent Composition
Predefined FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

14.8.11 CIM_HostedCollection (System to predefined
Extent Composition IndicationFilters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

14.8.12 CIM_MemberOfCollection (Extent Composition
Filter Collection to FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Extent Composition predefined FilterCollection to the
FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

14.8.13 CIM_MemberOfCollection (Predefined Filter
Collection to Extent Composition Filters)

Optional Experimental. This associates the Extent Composition
predefined FilterCollection to the predefined Filters
supported by the implementation.

14.8.14 CIM_StorageExtent (Intermediate) Optional Represents a Concrete StorageExtent that is not a
composite and does not have an
AssociatedComponentExtent association to a Concrete
StoragePool.

438

439

440

441

442

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 563

14.8.1 CIM_AssociatedComponentExtent (Pool Component to Concrete Pool)

The referenced StorageExtent represents capacity has not been allocated, is allocated in part, or is
allocated in its entirety.

Requirement: Mandatory

Table 351 describes class CIM_AssociatedComponentExtent (Pool Component to Concrete Pool).

14.8.2 CIM_AssociatedRemainingExtent (Pool to its remaining extents)

The referenced StorageExtent represents the capacity of the StorageExtent on which it is based that was
not used in resource allocation.

Requirement: Mandatory

Table 352 describes class CIM_AssociatedRemainingExtent (Pool to its remaining extents).

14.8.3 CIM_BasedOn (Mid level BasedOn)

14.8.15 CIM_StorageExtent (Pool Component) Optional Represents a Concrete StorageExtent that is not a
composite and has an AssociatedComponentExtent
association to a Concrete StoragePool.

14.8.16 CIM_StorageExtent (Remaining) Optional Represents a Concrete StorageExtent that identifies
unused space in a Concrete StoragePool and has an
AssociatedRemainingExtent association to that Concrete
StoragePool.

14.8.17 CIM_SystemDevice (Composite Extent System) Optional Associates a CompositeExtent to a hosting computer
system.

14.8.18 CIM_SystemDevice (Storage Extent System) Optional Associates a StorageExtent to a hosting computer
system.

Table 351 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Concrete Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) Concrete StoragePool.

PartComponent Mandatory The storage extent or composite extent that is a component of the
concrete storage pool.

Table 352 - SMI Referenced Properties/Methods for CIM_AssociatedRemainingExtent (Pool to its remain-
ing extents)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty, Concrete or Primordial) StoragePool.

PartComponent Mandatory The storage extent that represents free space in the concrete storage
pool.

Table 350 - CIM Elements for Extent Composition

Element Name Requirement Description

443

444

445

446

447

448

449

450

451

Extent Composition Subprofile

564

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 353 describes class CIM_BasedOn (Mid level BasedOn).

14.8.4 CIM_BasedOn (Top level BasedOn)

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 354 describes class CIM_BasedOn (Top level BasedOn).

14.8.5 CIM_CompositeExtent (Composite Intermediate)

Instances of this class with the discriminator of 'SNIA:Intermediate' and 'SNIA:Composite' are Concrete
StorageExtents that are a composite and do not have an AssociatedComponentExtent association to a
Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 353 - SMI Referenced Properties/Methods for CIM_BasedOn (Mid level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

Dependent Mandatory The Storage Extent (Pool Component, Intermediate, Composite
Intermediate, Composite Pool Component or Remaining) that is based on
underlying extents.

Antecedent Mandatory The underlying extents. They may be intermediate or Pool Components
and they may be composite or uncomposed.

Table 354 - SMI Referenced Properties/Methods for CIM_BasedOn (Top level BasedOn)

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

Dependent Mandatory The Storage Volume or Logical Disk that dependents on the associated
extent.

Antecedent Mandatory The extent on which the storage volume or logical disk is based.

452

453

454

455

456

457

458

459

460

461

462

463

464
465

466

467

468

469

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 565

Table 355 describes class CIM_CompositeExtent (Composite Intermediate).

14.8.6 CIM_CompositeExtent (Composite Pool Component)

Instances of this class with the discriminator of 'SNIA:Pool Component' and 'SNIA:Composite' are
Concrete StorageExtents that are a composite and have an AssociatedComponentExtent association to a
Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 356 describes class CIM_CompositeExtent (Composite Pool Component).

Table 355 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Intermediate)

Properties Flags Requirement Description & Notes

Name CD Mandatory

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

NoSinglePointOfFailure Mandatory

IsBasedOnUnderlyingRed
undancy

Mandatory

IsConcatenated Mandatory

ExtentStripeLength Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain 'SNIA:Intermediate'
and 'SNIA:Composite'.

Table 356 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Component)

Properties Flags Requirement Description & Notes

Name CD Mandatory

SystemCreationClassNam
e

Mandatory

470

471

472
473

474

475

476

477

478

Extent Composition Subprofile

566

14.8.7 CIM_CompositeExtentBasedOn

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 357 describes class CIM_CompositeExtentBasedOn.

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

NoSinglePointOfFailure Mandatory

IsBasedOnUnderlyingRed
undancy

Mandatory

IsConcatenated Mandatory

ExtentStripeLength Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain 'SNIA:Pool
Component' and 'SNIA:Composite'.

Table 357 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn

Properties Flags Requirement Description & Notes

StartingAddress Optional

EndingAddress Optional

OrderIndex Mandatory Indicates the order in which the antecedent extents have blocks striped
onto them.

UserDataStripeDepth Mandatory The number of blocks written to an Antecedent extent before moving on to
the next extent Although this property is on the association class, its
values shall be the same for each instance of the association with the
same Dependent CompositeExtent.

Table 356 - SMI Referenced Properties/Methods for CIM_CompositeExtent (Composite Pool Component)

Properties Flags Requirement Description & Notes

479

480

481

482

483

484

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 567

14.8.8 CIM_ConcreteComponent (Pool Component to Concrete Pool)

Deprecated. Associate the extents that are playing the Pool Component role to their aggregating
StoragePool.This is Deprecated since its function is better covered by AssociatedComponentExtent.

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 358 describes class CIM_ConcreteComponent (Pool Component to Concrete Pool).

14.8.9 CIM_ConcreteComponent (Remaining Extent to Pool)

Deprecated.

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 359 describes class CIM_ConcreteComponent (Remaining Extent to Pool).

14.8.10CIM_FilterCollection (Extent Composition Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Extent
Composition implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Dependent Mandatory The composite extent that is based on underlying extents.

Antecedent Mandatory The extents on which the composite extent is based. They may be
intermediate or pool component extents and they may be either other
composite extents or uncomposed extents.

Table 358 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Pool Component to Con-
crete Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) Concrete StoragePool.

PartComponent Mandatory The storage extent or composite extent that is a component of the
concrete storage pool.

Table 359 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Remaining Extent to Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The (non-empty) StoragePool.

PartComponent Mandatory The storage extent that represents unused space in the storage pool.

Table 357 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn

Properties Flags Requirement Description & Notes

485

486
487

488

489

490

491

492

493

494

495

496

497

498

499

500

501
502
503

504

505

Extent Composition Subprofile

568

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 360 describes class CIM_FilterCollection (Extent Composition Predefined FilterCollection).

14.8.11CIM_HostedCollection (System to predefined Extent Composition IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 361 describes class CIM_HostedCollection (System to predefined Extent Composition
IndicationFilters).

14.8.12CIM_MemberOfCollection (Extent Composition Filter Collection to FilterCollection)

Experimental. This associates the Extent Composition predefined FilterCollection to the FilterCollection
for the autonomous profile (e.g., the Array FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 362 describes class CIM_MemberOfCollection (Extent Composition Filter Collection to
FilterCollection).

Table 360 - SMI Referenced Properties/Methods for CIM_FilterCollection (Extent Composition Predefined
FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Extent
Composition:Predefined'.

Table 361 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Extent
Composition IndicationFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Extent Composition.

Antecedent Mandatory Reference to the 'Top level' System.

Table 362 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Extent Composition Filter
Collection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Extent Composition predefined FilterCollection.

Member Mandatory Reference to the Extent Composition predefined FilterCollection.

506

507

508

509

510

511

512

513

514
515

516

517

518

519

520

521

522

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 569

14.8.13CIM_MemberOfCollection (Predefined Filter Collection to Extent Composition Filters)

Experimental. This associates the Extent Composition predefined FilterCollection to the predefined
Filters supported by the implementation.

Requirement: Optional

Table 363 describes class CIM_MemberOfCollection (Predefined Filter Collection to Extent Composition
Filters).

14.8.14CIM_StorageExtent (Intermediate)

Instances of this class with the discriminator of 'SNIA:Intermediate' are Concrete StorageExtents that are
not a composite and do not have an AssociatedComponentExtent association to a Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 364 describes class CIM_StorageExtent (Intermediate).

Table 363 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Extent Composition Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Extent Composition predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Extent Composition
implementation.

Table 364 - SMI Referenced Properties/Methods for CIM_StorageExtent (Intermediate)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain
'SNIA:Intermediate'.

523

524

525

526
527

528

529

530

531

532

533

534
535

536

537

538

539

Extent Composition Subprofile

570

14.8.15CIM_StorageExtent (Pool Component)

Instances of this class with the discriminator of 'SNIA:Pool Component' are Concrete StorageExtents that
are not a composite and have an AssociatedComponentExtent association to a Concrete StoragePool.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 365 describes class CIM_StorageExtent (Pool Component).

14.8.16CIM_StorageExtent (Remaining)

Instances of this class with the discriminator of 'SNIA:Remaining' are Concrete StorageExtents that are
not a composite and have an AssociatedRemainingExtent association to the Concrete StoragePool for
which they represent free space.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 366 describes class CIM_StorageExtent (Remaining).

Table 365 - SMI Referenced Properties/Methods for CIM_StorageExtent (Pool Component)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain 'SNIA:Pool
Component'.

Table 366 - SMI Referenced Properties/Methods for CIM_StorageExtent (Remaining)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

540

541

542
543

544

545

546

547

548

 Extent Composition Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 571

14.8.17CIM_SystemDevice (Composite Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 367 describes class CIM_SystemDevice (Composite Extent System).

14.8.18CIM_SystemDevice (Storage Extent System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 368 describes class CIM_SystemDevice (Storage Extent System).

DeviceID Mandatory

ExtentStatus Mandatory

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Primordial Mandatory This shall be 'false' for extents instantiated in Extent Composition.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain 'SNIA:Remaining'.

Table 367 - SMI Referenced Properties/Methods for CIM_SystemDevice (Composite Extent System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_CompositeExtent (Composite
Intermediate or Composite Pool Component) used in this profile.

Table 368 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extent System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to an instance of Computer System.

PartComponent Mandatory A reference to an instance of CIM_StorageExtent (Intermediate, Pool
Component or Remaining) used in this profile.

Table 366 - SMI Referenced Properties/Methods for CIM_StorageExtent (Remaining)

Properties Flags Requirement Description & Notes

549

550

551

552

553

554

555

556

557

558

559

560

Extent Composition Subprofile

572

STABLE

 LUN Creation Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 573

DEPRECATED

15 LUN Creation Subprofile

The functionality of the LUN Creation and Pool Manipulation Capabilities, and Settings Subprofiles have
been subsumed by the Clause 5: Block Services Package.

The LUN Creation Subprofile is defined in section 7.3.3.11 of SMI-S 1.0.2.

DEPRECATED

1

2

3

4

LUN Creation Subprofile

574

 Extent Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 575

DEPRECATED

16 Extent Mapping Subprofile

The functionality of the Extent Mapping Subprofile (Section 7.3.3.5 of SMI-S 1.0.2) has been subsumed
by the Extent Composition Subprofile (8.3.1.15).

DEPRECATED

1

2

3

Extent Mapping Subprofile

576

 LUN Mapping and Masking Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 577

DEPRECATED

17 LUN Mapping and Masking Subprofile

The LUN Mapping and Masking Subprofile (section 7.3.3.14 in SMI-S 1.0.2) has been replaced by Clause
18: Masking and Mapping Subprofile.

17.1 Compatibility with SMI-S 1.0 clients.

Problems with the functionality and complexity of the LUN Mapping and Masking Subprofile in SMI-S 1.0
required some changes that may not be backwards compatible in the 1.1.0 version. The Mapping and
Masking Subprofile now reduces the complexity by replacing the 1.0.2 extrinsic methods and severely
constraining the valid combinations of parameters. Additionally, changes made to support non-FC
transports and non-SCSI protocols also affect backwards compatibility. Specifically, associating the
SCSIProtocolController to a SCSIProtocolEndpoint instead of LogicalPort. SCSIProtocolEndpoint is
associated to the LogicalPort. Separating the port from the protocol allows the port to be used with non-
SCSI protocols such as IP. Most of the model is identical, but new classes, properties, and methods have
been added to simplify it's operation. Some of the old methods are still used in 1.1.0.

Class and association changes to the model for 1.1.0:

• SAPAvailableForElement replaces the ProtocolControllerForPort association

• SCSIProtocolEndpoint replaces LogicalPort

• LogicalPort is associated to SCSIProtocolEndpoint via PortImplementsEndpoint (see 17 LUN Mapping and
Masking Subprofile in Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6.)

• AuthorizedPrivilege associations to SystemSpecificCollection via AuthorizedSubject associations are no
longer allowed

Instrumentation may be able to provide 1.0.2 and 1.0 compliant implementations in a single namespace,
if the following conditions are met:

• ProtocolControllerMaskingCapabilities.ProtocolControllerSupportsCollections is false (StorageHardwareID
instances are referenced directly by AuthorizedSubject associations).

• There is exactly a 1-1-1 relationship between instance of AuthorizedSubject, AuthorizedPrivilege, and
AuthorizedTarget. In other words, Privilege instances cannot be shared.

If these criteria are not met, instrumentation could provide separate 1.0.2 and 1.1.0 implementations in
separate CIM namespaces.

DEPRECATED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

LUN Mapping and Masking Subprofile

578

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 579

STABLE

Clause 18: Masking and Mapping Subprofile

18.1 Description

NOTE See 17.1 for notes on compatibility with the LUN Mapping and Masking Subprofile in SMI-S 1.0.2.

Many disk arrays provide an interface for the administrator to specify which initiators can access what
volumes through which target ports. The effect is that the given volume is only visible to SCSI commands
that originate from the specified initiators through specific sets of target ports. There may also be a
capability to select the SCSI Logical Unit Number as seen by an initiator through a specific set of ports.
The ability to limit access is called Device Masking; the ability to specify the device address seen by
particular initiators is called Device Mapping (For SCSI systems, these terms are known as LUN Masking
and LUN Mapping.)

Given a storage system with no LUN masking or mapping, all hosts/initiators see the same elements
when they discover a storage system. In a storage system supporting LUN Masking, logical units are
masked (hidden) from SCSI initiators (Host Bus Adaptors) by default. The administrator uses the Masking
and Mapping Subprofile to determine which logical units are visible (exposed) to specific initiators
through which target ports. The LUN masking and mapping interfaces allow an administrator to customize
the “view” of elements that are discovered. The effect is that the real storage system appears to be a
number of subsets - each subset exposing a view customized for a particular set of initiators.

The management model is built on these “views” of a storage system - each view is a subset of
components the administrator exposes to certain hosts - and the classes that model the authorization and
access rights.

The model described here is generalized to include access management in disks arrays, virtualization
systems, and routers used in tape libraries. The model is also generalized beyond just SCSI and Fibre
Channel implementations. Many of the examples and use cases refer to LUN masking in Fibre Channel
arrays, but the model is general.

18.1.1 Views and Paths

The key concepts for Device Masking and Mapping are view and path. A “view” is a list of logical units
exposed to a list of initiators through a list of target ports, modeled as SCSIProtocolController (SPC) with
associated LogicalDevices, StorageHardwareIDs, and SCSIProtocolEndpoints. The logical devices have
logical unit numbers and access permissions relative to the view, modeled as DeviceNumber and
DeviceAccess properties of the ProtocolControllerForUnit association. A full “path” is a combination of
one each logical unit, initiator port, and target port - the concept of path is independent from a CIM model,
but a view expresses a combinations of paths that comply with SCSI rules. In essence, an SPC serves as
a collection of paths - each initiator ID is granted access to each logical unit through each target port.

In addition, there are partial and invalid states. A partial path is a path missing associations to instances
of logical unit, initiator port, or target port. In practice, some arrays do not support partial paths and other
arrays support some, but not all, configurations with partial paths. An SPC lacking associations to logical
units, initiator ports, or target ports - as required by the underlying implementation - is in an invalid partial
path state.

An invalid view state is a combination of classes and associations in the provider that does not map to a
committed configuration of the underlying implementation. The 1.0 LUN Masking and Mapping interfaces
required clients to perform multiple transactions to achieve a valid view, forcing providers to maintain
invalid view states while waiting for the client to complete a sequence of transactions. This created non-
interoperability when the providers only supported transactions in a certain order, and when a second
client looked at the model before a sequence of transactions was completed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Masking and Mapping Subprofile

580

An SPC with no instances of one type of association (to initiators, targets, or LUs) with support from the
instrumentation is in a valid partial path state. The result is that the SPC does not expose any valid SCSI
paths. Instrumentation may support these states as convenience to clients - allowing a client to quickly
activate/deactivate a configuration by adding/removing associations - or as an intermediate state
between multiple ExposePath or HidePath requests. It is not mandatory in SMI-S to support these partial
path states, but clients need to understand which partial path states are and are not valid.

18.1.2 Model Elements

The model uses three basic types of objects:

LogicalDevice, the superclass of volumes and tape drives representing SCSI logical units

SCSIProtocolController - models the “view” described above.

SCSIProtocolEndpoint – models the SCSI protocol aspects of a port. A SCSIProtocolEndpoint is
associated to one or more ports (modeled as subclasses of LogicalPort). SCSIProtocolEnpoint and
classes (such as FCPort) representing ports are part of target port subprofiles.

These objects are related by two associations:

ProtocolControllerForUnit associates a SCSIProtocolController with its LogicalDevices; the controller-
relative address (such as a SCSI Logical Unit Number) is modeled as the DeviceNumber property of
ProtocolControllerForUnit.

SAPAvailableForElement associates a SCSIProtocolController to one or more SCSIProtocolEndpoints.

In this subprofile, the existence of a ControllerConfigurationService with a ConcreteDependency
association to a SCSIProtocolController governs the high-level device mapping and masking policy for
that protocol controller.

If the service does not exist, then regardless of host port, the policy is that
SAPAvailableForElementassociates SCSIProtocolController to all SCSIProtocolEndpoints that
represent SCSI target behavior (that is, have Role property set to “Target”).

If the service is present, then for a particular host port, the policy is that SAPAvailableForElement
connects a SCSIProtocolController to a SCSIProtocolEndpoint only when access is explicitly granted.

Figure 85: "Generic System with no Configuration Service" and Figure 86: "Generic System with
ControllerConfigurationService" depict an instance diagram of a generic storage system with dual-port
access to four logical devices and an implementation with no device mapping and masking services. All

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 581

of the LogicalDevices are exposed to all initiators with the same DeviceNumber. Figure 85: "Generic
System with no Configuration Service" depicts a configuration with no LUN Masking capabilities.

Figure 86: "Generic System with ControllerConfigurationService" depicts the same configuration in an
implementation with an ControllerConfigurationService defined. In this case, access to the
ProtocolController is denied to each host port unless it is specifically granted access.

The means to grant access is discussed in 18.5.1 "ExposePaths" and also in 18.5.2
“ExposePathsWithNameAndHostType”.

18.1.3 SCSIProtocolController Views

Device Masking limits the devices seen by particular host initiators (such as HBAs). For example, when a
host discovers a device (using SCSI Report LUNs and Inquiry commands), it may see two of four
LogicalDevices, other hosts may see no LogicalDevices, and yet other hosts may only see
LogicalDevices through a subset of target ports.

Device Mapping allows the same LogicalDevice to be assigned different DeviceNumber (LUN) as seen by
different host HBAs. This would allow each of four LogicalDevices to appear to be Logical Unit zero to
four different hosts.

Figure 85 - Generic System with no Configuration Service

Figure 86 - Generic System with ControllerConfigurationService

ProtocolController
ForUnit

LogicalDevice
LogicalDevice

SCSIProtocolController

LogicalDevice
LogicalDevice

SCSIProtocolController

ProtocolController
ForUnit

SCSIProtocolEndpoint

SCSIProtocolEndpoint

SAPAvailable
ForElement

SAPAvailable
ForElement

LogicalDevice
LogicalDevice

LogicalDevice
LogicalDevice

SCSIProtocolController

ProtocolControllerForUnit

ControllerConfigurationService

ConcreteDependency

SCSIProtocolEndpoint

SAPAvailable
ForElement

SAPAvailable
ForElement

SCSIProtocolEndpoint

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Masking and Mapping Subprofile

582

An initiator sees a single view (SCSIProtocolController) through a target port. This view includes
LogicalDevices explicitly exposed to specified initiators and “default access” LogicalDevices (that are
exposed to all initiators).

An administrator can use the ControllerConfigurationService interfaces to create “views”
(SCSIProtocolControllers) of a storage system – each view exposes a subset of components that are
intended to behave as a cohesive subset. In particular, a view:

• is associated with a set of LogicalDevices;

• may be exposed to zero or more host ports;

• is associated with one or more target device ports;

• shall not be exposed through a particular host / target port pair that is in use by another view. (In other words,
a view corresponds to the logical unit inventory provided by SCSI REPORT LUNS and INQUIRY commands.

For systems where access is granted through all or no target ports (where
ProtocolControllerMaskingCapabilities.PortsPerView is set to “All Ports share the same View”), this rule is simpler
– an initiator StorageHardwareID shall not be associated with more than one view (SCSIProtocolController).

• each LogicalDevice in a view shall have a unique DeviceNumber (SCSI logical unit number);

• a LogicalDevice may be in multiple views, and in each may be assigned the same or different DeviceNumbers
(Logical Units);

The device uses the initiator port identifier to authorize access and to determine the view to present to the
HBA. The initiator ID (such as FC Port WWN) is modeled as a subclass of Identity called
StorageHardwareID. As used in this subprofile, AuthorizedSubject associates a AuthorizedPrivilege with
a StorageHardwareID. As used in this subprofile, AuthorizedTarget associates an AuthorizedPrivilege
with a SCSIProtocolController.

In this version of the subprofile, there is exactly a one-to-one-to-one relationship between
AuthorizedSubject, AuthorizedPrivilege, and AuthorizedTarget. In other words, for each
StorageHardwareID associated to a SCSIProtocolController, there will be unique instances of
AuthorizedSubject, AuthorizedPrivilege, and AuthorizedTarget

For each StorageHardwareID relationship to a SCSIProtocolController there shall also be an instance of
the AssociatedPrivilege association. The AssociatedPrivilege association is in addition to the instances of
AuthorizedPrivilege, AuthorizedSubject and AuthorizedTarget. AuthorizedPrivilege, AuthorizedSubject
and AuthorizedTarget are deprecated and will be removed in a future version of the specification. To
maintain backward compatibility with the previous versions of SMI-S, the implementation shall continue to
provide instances of these classes.

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 583

See Figure 87, “Relationship of Initiator IDs, Endpoints, and Logical Units” for the relationship between
these classes.

18.1.4 Initiator ID Collections

An implementation may optionally model collections of Initiator IDs. This is modeled as depicted in Figure
87: "Relationship of Initiator IDs, Endpoints, and Logical Units". If the implementation supports collection

of initiator IDs, the instrumentation shall set
ProtocolControllerMaskingCapabilities.ProtocolControllerSupportsCollections to True

18.1.5 Default View / Default Logical Unit Access

An implementation may expose some logical units to all initiators while restricting access to others. A
default LUN exposes the same SCSI logical unit to all initiators, so adding a default LUN requires that the
instrumentation assure that no existing logical-unit-view map uses that same logical unit address.
Whenever a new SCSIProtocolController is created, it is automatically attached to all default LUNs

This is modeled with a SCSIProtocolController that is associated via AuthorizedTarget to a
AuthorizedPrivilege that is associated via AuthorizedSubject to a StorageHardwareID with an Name
property set to null (not the zero-length string “”). These are known as default protocol controllers -
exposing a view that is granted by default to all initiators, regardless or masking rules. If the
implementation supports default protocol controllers, the instrumentation shall instantiate at least one
default protocol controller when the instrumentation starts. The instrumentation shall reject any client
attempt to delete a default protocol controller.

Only one null-name StorageHardwareID is allowed. It is associated to all default SPCs. No other
StorageHardwareIDs may be associated to default SPCs. A target port can be associated with at most
one default SPC.

For the one null-name StorageHardwareID that is related to each default SCSIProtocolController, there
shall be one instance of the AssociatedPrivilege association.

If ProtocolControllerMaskingCapabilities.PortsPerView is not set to “All Ports share the same View”, the
instrumentation may support multiple default protocol controllers, but a target port shall not be associated
to more than one default protocol controller.

Figure 87 - Relationship of Initiator IDs, Endpoints, and Logical Units

LogicalDevice
(StorageVolume)

SCSIProtocolController

AuthorizedPrivilege

SystemSpecificCollection
(optional)

AuthorizedTarget

MemberOfCollection

StorageHardwareID

AuthorizedSubject

* *1

*

*

1

SCSIProtocolEndpoint

ProtocolController
ForUnit

*

*

SAPAvailable
ForElement

AssociatedPrivilege

1

1

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Masking and Mapping Subprofile

584

A client requests a logical unit be given default access by associating with the default protocol controller
using ExposeDefaultLUs method. The instrumentation shall ensure that the requested unit number is not
used in any SCSIProtocolController connected to target ports associated with the default protocol
controller. If the unit number is available, the logical unit is attached to the default protocol controller and
all the other protocol controllers that share its target ports. Similarly, a client requests default access be
removed from a logical unit by calling HideDefaultLUs, passing in a reference to the default protocol
controller and the logical unit’s ID.

18.1.6 Arbitrary Logical Units

If the implementation supports logical units for management (rather than storage), they shall be modeled
with SCSIArbitraryLogicalUnit. If these management units are exposed regardless of masking access
then they shall be associated to the default protocol controller.

18.1.7 Read-only verses Read-Write access

ExposePaths (and ExposePathsWithNameAndHostType) includes a DeviceAccesses parameter that is
used to set the DeviceAccess property of ProtocolControllerForUnit association.

18.1.8 Read-Only Volumes

An implementation may model a volume that is readable, but not writable to any initiator by setting
StorageVolume.Access to “Readable” (1).

18.1.9 Finding Volumes that are not Mapped

A StorageVolume is considered mapped if it is exposed to an initiator. Instrumentation shall inform clients
whether a volume is or is not mapped using the “In-Band Access Granted” value in
StorageVolume.ExtentStatus array property. If a volume is associated with one or more protocol
controllers and one of the associated protocol controllers is associated with one or more
StorageHardwareIDs, the instrumentation shall set “In-Band Access Granted” in ExtentStatus. Otherwise,
“In-Band Access Granted” shall not be set.

18.1.10Limits on Map counts per Logical Unit

ProtocolControllerMaskingCapabilities.MaximumMapCount is the maximum number of times the
underlying implementation allows a logical unit to be mapped (in other words, the maximum number of
ProtocolControllerForUnit associations that can be associated to the logical unit represented by the
LogicalDevice subclass. The instrumentation sets this to 0 if it has no limit.

18.1.11Deactivated Logical Units

Instrumentation may describe inaccessibility of a logical unit through a path using
ProtocolControllerForUnit.AccessState. This property may be read, but not written by clients. Possible
values are Active, Inactive, “Replication In Progress”, and “Mapping Inconsistency”.

Since default protocol controllers were not defined in SMI-S 1.0, a client could have created a
configuration that does not comply with the SMI-S 1.1.0 semantics (which are intended to mimic SCSI's).
Similarly, a non-compliant configuration could have been created using non-SMI-S interfaces.
Instrumentation may set AccessState to “Mapping Inconsistency” to express these states. A client request
to set a valid mapping configuration using ExposePaths (or ExposePathsWithNameAndHostType) should
clear this state and reset AccessState to Active.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 585

18.1.12SCSIProtocolController Properties

There are two clarifications to the property descriptions in Table 369. If the implementation supports
partial path SPCs, the intrinsic DeleteInstance is used to delete an SPC with no full paths. If
DeleteInstance is called to delete an SPC with full paths, the instrumentation shall return CIM Error with
CIM_ERR_FAILED status code.

18.1.13Initiator Setting Data

Some storage systems allow a customer (or host-side agent) to provide information about OS hosting
initiators. The storage system uses this information to provide OS-specialized behavior (for example,
SCSI responses). Being able to identify the OS-specific operating mode ("host mode") of an element (i.e.,
FCPort or SCSIProtocolController) is essential because there are variances in SCSI communications
between different operating systems or even different versions of the same operating system, and having
the incorrect “host mode” will cause operations to have degraded performance or even fail. This
information is modeled as StorageClientSettingData. StorageClientSettingData.ClientTypes[] is an array
of OS names. This array property allows a single StorageClientSettingData instance to apply to multiple
OS Types. The StorageClientSettingData instances shall be scoped to a particular ComputerSystem
because a CIM server hosting multiple devices will need to distinguish the valid StorageClientSettingData
instances for one array from another.

The instrumentation should provide a meaningful name for each StorageClientSettingData instance;
typically this will be names already exposed via existing management tools and documentation.

Table 369 - SCSIProtocolController Property Description

Property Description Impact on ExposePaths
(see 1)

Impact on HidePaths

SPCAllowsNoLUs It is valid to have no
LogicalDevices associated
with an SPC

If true, LUNames,
DeviceNumbers, and
DeviceAccesses may be
null. If false, LUNames and
DeviceAcceses shall be
non-null; DeviceNumbers
depends on
ClientSelectableDeviceNu
mbers

If true, then all associated
LogicalDevices may be
specified in LUNames. If
false and client specifies
names of all associated
LUs in LUNames, then see
2

SPCAllowsNoTargets It is valid to have no target
ports associated with an
SPC

If true, TargetPortIDs may
be null. If false,
TargetPortIDs shall be
non-null.

If true, then all associated
target ports may be
specified in TargetPortIDs.
If false, and client specifies
names of all associated
target ports in
TargetPortIDs, then see 2

SPCAllowsNoInitiators In is valid to have no
initiator port IDs associated
with an SPC

If true, InitiatorPortIDs may
be null. If false,
InitiatorPortIDs shall be
non-null.

If true, then all associated
initiator port IDs may be
specified in
InitiatorPortIDs. If false,
and client specifies names
of all associated initiator
port IDs in InitatorPortIDs,
then see 2

1. This only applies to the "Create a new view" use case for ExposePaths. Note: The method
ExposePathsWithNameAndHostType can also be used in place of ExposePaths.

2. The result of this HidePaths request would be an invalid partial path state; therefore, the instrumentation shall delete the SPC
and all its associations.

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

Masking and Mapping Subprofile

586

StorageClientSettingData instances are not created by clients; any storage system that provides OS type
behavior advertises these instances (via EnumerateInstance and GetInstance) and associates them
(using ElementSettingData) with elements previous configured with the setting behavior.

A client can associate StorageHardwareIDs to a StorageClientSettingData instance (when a customer or
host agent maps an initiator to an OS type). This is done by specifying the Setting parameter to
CreateStorageHardwareID). A client can also associate an StorageClientSettingData instance to a
storage system element (such as a Port, a SCSIProtocolController, or a StorageVolume) to request that
this element exhibit the setting-specific behavior. This is done by creating a new ElementSettingData
association from the element to the StorageClientSettingData instance using the intrinsic CreateInstance
method. If any ElementSettingData association between the element and a StorageClientSettingData
instance already exists, it shall be deleted by the client before calling CreateInstance. Figure 88:
"StorageClientSettingData Model" provides an example.

Figure 88 - StorageClientSettingData Model

StorageClientSettingData

ClientTypes[] = "AIX",
"Solaris", "Solaris"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageClientSettingData

ClientTypes[] = "Windows"

ElementSettingData

FCPort FCPort

ElementSettingData

StorageHardwareID

ID="5100123412341234"

StorageHardwareID

ID="5100123412341235"

StorageHardwareID

ID="5100123412341236"

ElementSettingData

ElementSettingData
ElementSettingData

StorageHardwareID

ID="5100123412341237"

ElementSettingData

StorageHardwareID

ID="5100123412341236"

ElementSettingData

StorageHardwareID

ID="5100123412341255"

ElementSettingData

Array:
ComputerSystem

Element
Setting
Data

Element
Setting
Data

206

207

208

209

210

211

212

213

214

215

216

217

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 587

Figure 89: "Entire Model" depicts the entire model.

18.1.14Durable Names and Correlatable IDs of the Profile

The Masking and Mapping Subprofile uses the durable names/correlatable ID for logical devices as
defined by the parent profile.

18.1.15Instrumentation Requirements

If a PrivilegeManagementService is not present, then all access is provided through the
ControllerConfigurationService. If an PrivilegeManagementService is present, then access shall be
specifically granted.

A LogicalDevice may have ProtocolControllerForUnit associations to multiple SCSIProtocolControllers -
this models a device shared by different subject sets.

Clients may need to know the range of possible unit numbers supported by a storage system. The agent
should set SCSIProtocolController.MaxUnitsControlled.

EXPERIMENTAL

The two CIM_ProtocolControllerMaskingCapabilities properties (SupportedSynchronousMethods and
SupportAsynchronousMethods) describe the methods that are supported by the instrumentation. These
enumerations indicate what operations will be executed as asynchronous jobs or synchronously. If an
operation is included in both, then the underlying implementation is indicating that it may or may not
create a job. If an operation is not included in either, then the instrumentation does not implement that

Figure 89 - Entire Model

Target Ports
Subprofiles

ProtocolControllerSAPAvailable
ForElement

SCSIProtocol
Endpoint

LogicalDevice
(e.g. StorageVolume)ProtocolController

ForUnit

AuthorizedPrivilege

SystemSpecificCollection

AuthorizedTarget

StorageHardwareID

MemberOfCollection

ControllerConfigurationService

CIM_ProtocolController
MaskingCapabilities

Privilege
ManagementService

StorageHardwareID
ManagementService

ComputerSystem
HostedService

HostedService

Hosted
Service

ConcreteDependency

ConcreteDependency

Element
Capabilities

*

Concrete
Dependency

ConcreteDependency

CIM_StorageClient
SettingData

ElementSettingData

Hosted
Collection

AssociatedPrivilege

AuthorizedPrivilege

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Masking and Mapping Subprofile

588

method. If an instrumentation does not support all of the methods as defined by this subprofile, these
properties can help a client determine if there is sufficient support to manage masking and mapping. Any
instrumentation that does not support the required methods of this subprofile shall not be considered
compliant even if these properties are supported.

18.1.16Element Naming

The name of a ProtocolController, StorageHardwareID, GatewayPathID, or SystemSpecificCollection may
be changed. The existence of the EnabledLogicalElementCapabilities instance associated to the element
indicates that the element can be named. If ElementNameEditSupported is set to TRUE, then the
ElementName of the associated element name may be modified.

The MaxElementNameLen property indicates the maximum supported ElementName length, and the
ElementNameMask property provides the regular expression that expresses the limits of the name; see
18.8.19 for the class definition for EnabledLogicalElementCapabilities for details for this property.

Since the ElementNameMask can describe the maximum length of the ElementName, any length defined
in the regexp is in addition to the restriction defined in MaxElementNameLen (causing the smaller value
to be the maximum length).

EXPERIMENTAL

The SupportedElementNameCodeSet property of the ImplementationCapabilities instance (associated to
top-level ComputerSystem) indicates the supported character code set for the ElementName.

To determine if the implementation supports supplying the ElementName during creation of an element,
such as a SCSIProtocolController or a StorageHardwareId, see the method
GetElementNameCapabilities in section 18.5.11.1.

EXPERIMENTAL

18.2 Health and Fault Management Considerations

None.

18.3 Cascading Considerations

None.

18.4 Supported Subprofiles, and Packages

None.

18.5 Methods of the Profile

18.5.1 ExposePaths

ExposePaths is used in place of the AssignAccess and AttachDevice methods used in 1.0. The problem
with these methods was that they required the clients to perform multiple transactions to achieve a valid
view. This forced providers to maintain invalid view states while waiting for the client to complete a
sequence of transactions. This also created non-interoperability when the providers only supported
transactions in a certain order, and when a second client looked at the model before a sequence of
transactions was completed.

ExposePaths performs the mapping and masking operation in one method call. It exposes a list of SCSI
logical units (such as RAID volumes or tape drives) to a list of initiators through a list of target ports,
through one or more SCSIProtocolControllers (SPCs). Support for the 1.0 equivalent functionality is
available by passing in an existing SCSIProtocolController.

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 589

There are two modes of operation, create and modify. If a NULL value is passed in for the SPC, then the
instrumentation will create at least one SPC that satisfies the request. Depending upon the
instrumentation capabilities, more than one SPC may be created. (e.g. if
ProtocolControllerMaskingCapabilities.OneHardwareIDPerView is true and more than one initiatorID was
passed in, then one SPC per initiatorID will be created). If an SPC is passed in, then the instrumentation
attempts to add the new paths to the existing SPC. Depending upon the instrumentation capabilities, this
may result in the creation of additional SPCs. The instrumentation shall return an error if honoring this
request would violate SCSI semantics.

For creating an SPC, the parameters that need to be specified are dependent upon the SPCAllows*
properties in ProtocolControllerMaskingCapabilities. If SPCAllowsNoLUs is false, the caller shall specify
a list of LUNames. If it is true, the caller may specify a list of LUNames or may pass in null. If
SPCAllowsNoTargets is false and PortsPerView is not 'All Ports share the same view' the caller shall
specify a list of TargetPortIDs. If it is true, the caller may specify a list of TargetPortIDs or may pass in
null. If SPCAllowsNoInitiators is false, the caller shall specify a list of InitiatorPortIDs. If it is true, the
caller may specify a list of InitiatorPortIDs or may pass in null. If LUNames is not null, the caller shall
specify the DeviceAccess for each logical unit. If the provider's ProtocolControllerMaskingCapabilities
ClientSelectableDeviceNumbers property is TRUE then the client shall either provide a list of device
numbers (LUNs) to use for the paths to be created or pass in NULL. If is false, the client shall pass in
NULL for this parameter.

The LUNames, DeviceNumbers, and DeviceAccesses parameters are mutually indexed arrays - any
element in DeviceNumbers or DeviceAccesses will set a property relative to the LogicalDevice instance
named in the corresponding element of LUNames. LUNames and DeviceAccesses shall have the same
number of elements. DeviceNumbers shall be null (asking the instrumentation to assign numbers) or have
the same number of elements as LUNames. If these conditions are not met, the instrumentation shall
return a 'Invalid Parameter' status.

For modifying an SPC, there are three specific use cases identified. The instrumentation shall support
these use cases. Other permutations are allowed, but are vendor-specific. The use cases are: Add LUs to
a view, Add initiator IDs to a view, and Add target port IDs to a view.

Add LUs to a view requires that the LUNames parameter not be null and that the InitiatorIDs and
TargetPortIDs parameters be null. DeviceNumbers may be null if ClientSelectableDeviceNumbers is
false. DeviceAccesses shall be specified.

Add initiator IDs to a view requires that the LUNames parameter be null, that the InitiatorIDs not be null,
and that the TargetPortIDs parameters be null. DeviceNumbers and DeviceAccesses shall be null.

Add target port IDs to a view requires that the LUNames and InitiatorPortIDs parameters be null and is
only possible is PortsPerView is 'Multiple Ports Per View'. DeviceNumbers and DeviceAccess shall also
be null.

If a client calls ExposePaths specifying logical units already associated to the SPC and specifies different
DeviceNumber or DeviceAccesses values, the instrumentation shall change these properties in the
appropriate ProtocolControllerForUnit instance(s).

When calling ExposePaths where an entry (e.g., LogicalDevice) does not exist, then ExposePaths shall
fail and report an error.

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

Masking and Mapping Subprofile

590

There are four valid use cases for ExposePaths - create plus the three modify use cases above. These
four use cases and the requirements for parameters are summarized in Table 370.

The relevant rules of SCSI semantics are:

- an SPC shall not be exposed through a particular host/target port pair that is in use by another SPC. (In
other words, an SPC and its associated logical units and ports together correspond to the logical unit
inventory provided by SCSI REPORT LUNS and INQUIRY commands)

- each LogicalDevice associated to an SPC shall have a unique ProtocolControllerForUnit DeviceNumber
(logical unit number)

The instrumentation shall report an error if the client request would violate one of these rules.

If the instrumentation provides PrivilegeManagementService, the results of setting DeviceAccesses shall
be synchronized with PrivilegeManagementService as described in the ProtocolControllerForUnit
DeviceAccess description (18.8.27 "CIM_ProtocolControllerForUnit").

Implementations that support SCSIProtocolController naming and setting the SCSIProtocolController
Host Type can implement the ExposePathsWithNameAndHostType method, as defined in section 18.5.2.

18.5.1.1 Uint32 ExposePaths

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances need to already exist. The members of this array
shall match the Name property of LogicalDevice instances that represent SCSI logical units. See
Table 370, “ExposePath Use Cases” for situations where this parameter may be null.

IN string InitiatorPortIDs[]

Table 370 - ExposePath Use Cases

parameters/use
cases

LUNames InitiatorPortIDs TargetPortIDs DeviceNumbers DeviceAccesses ProtocolControllers
(on input)

Create a new view See 1) See 1) See 1)

See 2)

See 3) Mandatory, see 4) NULL

Add LUs to a view Mandatory NULL NULL See 3) Mandatory, see 4) contains a single SPC
ref

Add initiator IDs to
a view (see 5)

NULL Mandatory NULL NULL NULL contains a single SPC
ref

Add target port IDs
to a view (see 6)

NULL NULL Mandatory NULL NULL contains a single SPC
ref

Vendor-specific As long as all the previous use cases are implemented, the instrumentation may support other vendor-specific
combinations of parameters.

1.Dependent on values of new SPCAllowsNo* capability properties described below
2.If PortsPerView is "All ports share same view", TargetPortIDs parameter shall be null.
3.If ClientSelectableDeviceNumbers is true, shall either be null or have same number of
 elements as LUNames. If ClientSelectableDeviceNumbers is false, shall be null.
4.shall have same number of elements as LUNames
5.Only valid if OneHardwareIDPerView is false
6.Only valid if PortsPerView is "Multiple Ports per View"

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 591

IDs of initiator ports. If existing StorageHardwareID instances exist, they shall be used. If no
StorageHardwareID instance matches, then one is implicitly created. See Table 370, “ExposePath Use
Cases” for situations where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See Table 370, “ExposePath Use Cases” for situations where this parameter may be
null.

IN string DeviceNumbers[]

A list of logical unit numbers to assign to the corresponding logical unit in the LUNames parameter. (within
the context of the elements specified in the other parameters). If the LUNames parameter is null, then this
parameter shall be null. Otherwise, if this parameter is null, all LU numbers are assigned by the hardware
or instrumentation. This shall be formatted as unseparated uppercase hexadecimal digits, with no leading
“0x”.

IN uint16 DeviceAccesses[]

A list of permissions to assign to the corresponding logical unit in the LUNames parameter. This specifies
the permission to assign within the context of the elements specified in the other parameters. Setting this
to 'No Access' assigns the DeviceNumbers for the associated initiators, but does not grant read or write
access. If the LUNames parameter is not null then this parameter shall be specified.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element; if null on input, the instrumentation will create one or more new SPC instances.

On output, this will be either null (if a job was created) or the set of SPCs affected (those created or
modified). or those having some part of the ‘view’ modified, e.g. such as association being created or an
AuthorizedPrivilege being created). If a job was started, references to the SPCs affected will be found by
following the AffectedJobElement association from the job.

18.5.2 ExposePathsWithNameAndHostType

With SMI-S 1.6.1 and CIM 2.31, the method ExposePathsWithNameAndHostType is available. The
method ExposePathsWithNameAndHostType is an expanded version of ExposePaths, with additional
parameters, namely, ElementName (a scalar of type string) and StorageClientSettingData (a scalar of
type Reference).

ExposePathsWithNameAndHostType allows clients to supply the SCSIProtocolController names into the
path exposure operations, as well as to specify the "host information" for a newly created
SCSIProtocolController. The host information allows the storage array to “better” prepare the storage
elements with the operating system specific requirements.

The boolean property
ProtocolControllerMaskingCapabilities.ExposePathsWithNameAndHostTypeSupported indicates if the
implementation supports the method ExposePathsWithNameAndHostType.

18.5.2.1 Updated StorageClientSettingData

The StorageClientSettingData.ClientTypes has been expanded to include additional entries, such as 19
(VMware ESXi) and 20 (Microsoft Windows Server 2008).

The existing ClientType value 15 (Microsoft windows) is generally used for all variation of Microsoft
Windows. However, to take advantage of the additional features of Microsoft Windows Server 2008,
ClientType should be set to 20 (Microsoft Windows Server 2008).

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

Masking and Mapping Subprofile

592

18.5.2.2 InitiatorPortID Format

An InitiatorPortID supplied to the ExposePathsWithNameAndHostType method may optionally be
preceded by the associated Node WWN and a colon (":") separator. For example, "NodeWWN :
PortWWN".

NOTE Without the colon separator, it is assumed that the supplied InitiatorPortID is the PortWWN – this is to maintain backward
compatibility with the existing implementations.

18.5.2.3 uint32 ExposePathsWithNameAndHostType

The method ExposePathsWithNameAndHostType includes all parameters of the method ExposePaths
with the following additional parameters:

IN string ElementName

The string to be used in the ElementName of the new ProtocolController.

If more than one SCSIProtocolController is created, the supplied ElementName will be used as the prefix
for subsequent SCSIProtocolControllers’ ElementName. For example, if ElementName is “Foo”, the
subsequent ElementNames may be "Foo_1", "Foo_2", "Foo_3", etc.

IN CIM_StorageClientSettingData REF ClientSettingData

A reference to the StorageClientSettingData containing the OSType appropriate for this initiator. If left
NULL, the instrumentation assumes a standard OSType - i.e., that no OS-specific behavior for this initiator
is defined.

On path creation, multiple SCSIProtocolControllers may be created (depending on the implementation).
This means, the supplied StorageClientSettingData is applied to all created SCSIProtocolControllers.

For path modifications, since only one SCSIProtocolController may be supplied (as required by
ExposePaths) the supplied StorageClientSettingData only affects the supplied SCSIProtocolController.

 See section 18.5.1.1 for the description of ExposePaths parameters.

18.5.3 HidePaths

HidePaths is used in place of the HideAccess and DetachDevice methods used in SMI-S 1.0. The
problem with these methods is the same as AssignAccess and AttachDevice, in that they required the
clients to perform multiple transactions to achieve a valid view. This forced providers to maintain invalid
view states while waiting for the client to complete a sequence of transactions. This also created non-
interoperability when the providers only supported transactions in a certain order, and when a second
client looked at the model before a sequence of transactions was completed.

HidePaths is the inverse of ExposePaths. It hides a list of SCSI logical units (such as RAID volumes or
tape drives) from a list of initiators through a list of target ports, through one or more
SCSIProtocolControllers (SPCs). Support the 1.0 equivalent functionality is available by passing in an
existing SCSIProtocolController.

When hiding logical units, there are three specific use cases identified. The instrumentation shall support
these use cases. Other permutations are allowed, but are vendor-specific. The use cases are: Remove
LUs from a view, Remove initiator IDs from a view, and Remove target port IDs from a view.

Remove LUs from a view requires that the LUNames parameter not be null and that the InitiatorIDs and
TargetPortIDs parameters be null.

Remove initiator IDs from a view requires that the LUNames parameter be null, that the InitiatorIDs not be
null, and that the TargetPortIDs parameters be null.

Remove target port IDs from a view requires that the LUNames and InitiatorPortIDs parameters be null.

379

380

381

382

383
384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 593

The disposition of the SPC when the last logical unit, initiator ID, or target port ID is removed depends
upon the ProtocolControllerMaskingCapabilites SPCAllowsNo* properties. If SPCAllowsNoLUs is false,
then the SPC is automatically deleted when the last logical unit is removed. If SPCAllowsNoTargets is
false, then the SPC is automatically deleted when the last target port ID is removed. If
SPCAllowsNoInitiators is false, then the SPC is automatically deleted when the last initiator port ID is
removed. In all other cases, the SPC needs to be explicitly deleted via the DeleteInstance intrinsic
function or via the DeleteProtocolController method. The use cases for HidePaths() are summarized in
Table 371.

When calling HidePaths where the Port, SPC, StorageHardwareID, or StorageVolume exist, but the
association(s) that are being modified don't exist (e.g. calling HidePaths for a volume that is not currently
exposed), then HidePaths may return success. The rationale for returning success is the net result of the
operation is the same whether or not the association exists, so it is not necessarily considered an error

However, when calling HidePaths where an entry (e.g. Port) does not exist, then HidePaths shall return
an error. The difference between this and the above case is that the above has just a connection between
instances missing, while this case has an actual instance missing. The net result of the HidePaths
operation would be different because HidePaths does not delete the instance (with the exception of the
AuthorizedPrivilege), just the association between instances.

18.5.3.1 uint32 HidePaths

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances need to already exist. See Table 371,
“HidePaths Use Cases” for situations where this parameter may be null.

IN string InitiatorPortIDs[]

IDs of initiator ports. See Table 371, “HidePaths Use Cases” for situations where this parameter may be
null.

IN string TargetPortIDs[]

IDs of target ports. See Table 371, “HidePaths Use Cases” for situations where this parameter may be null.

Table 371 - HidePaths Use Cases

Parameters/use cases LUNames InitiatorPortI
Ds

TargetPortID
s

ProtocolController (on
input) see 1

Remove LUs from a view Mandatory NULL NULL contains a single SPC ref

Remove initiator IDs from a view NULL Mandatory NULL contains a single SPC ref

Remove target ports from a view (see 2) NULL NULL Mandatory contains a single SPC ref

Hide full paths from a view Mandatory Mandatory Mandatory contains a single SPC ref

Vendor-specific As long as all the previous use cases are implemented, the instrumentation may support other
vendor-specific combinations of parameters.

1. On output, the provider returns a list of refs to SPCs that have been affected (those created or modified or those having some part of
the ‘view’ modified, e.g. such as association being created or deleted an AuthorizedPrivilege being created or deleted).Will be NULL if
the SPC is automatically deleted as a result of one or more of the SPCAllowsNoLUs, SPCAllowsNoTargets, or SPCAllowsNoInitiators
conditions being met as a result of the HidePaths operation.

2. Only valid if PortsPerView is "Multiple Ports per View"

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

Masking and Mapping Subprofile

594

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element. The instrumentation will attempt to remove associations (LUNames, InitiatorPortIDs, or
TargetPortIDs) from this SPC. Depending upon the specific implementation, the instrumentation may need
to create new SPCs with a subset of the remaining associations.

On output, this will be either null (if a job was created or if the SPC was automatically removed per the
SPCAllowsNo* rules) or the set of SPCs affected (those created or modified). If a job was started,
references to the SPCs affected will be found by following the AffectedJobElement association from the
job.

18.5.4 ExposeDefaultLUs

ExposeDefaultLUs is similar to ExposePaths, except ExposeDefaultLUs works with 'default view' SPCs.
The 'default view' SPC exposes logical units to all initiators. This SPC is identified by an association to a
StorageHardwareID with Name property set to the empty string. ExposeDefaultLUs exposes a list of SCSI
logical units (such as RAID volumes or tape drives) through a 'default view' SCSIProtocolController (SPC)
through a list of target ports.

As with ExposePaths, there are two modes of operation, create and modify. If a NULL value is passed in
for the SPC, then the instrumentation will attempt to create a new default view. If PortsPerView is 'All
Ports share the same view', then there is at most one default view SPC. If PortsPerView is not 'All Ports
share the same view', then there may be multiple default view SPCs as long as different ports are
associated with each. If an SPC is passed in, then the instrumentation adds the new paths to the existing
SPC. The instrumentation may return an error if honoring this request would violate SCSI semantics.

For creating a default view SPC, the parameters that need to be specified are dependent upon the
SPCAllows* properties in ProtocolControllerMaskingCapabilities. If SPCAllowsNoLUs is false, the caller
shall specify a list of LUNames. If it is true, the caller may specify a list of LUNames or may pass in null.
If SPCAllowsNoTargets is false, the caller shall specify a list of TargetPortIDs. If it is true, the caller may
specify a list of TargetPortIDs or may pass in null. If LUNames is not null, the caller shall specify the
DeviceAccess for each logical unit. If the provider's ProtocolControllerMaskingCapabilities
ClientSelectableDeviceNumbers property is TRUE then the client shall either provide a list of device
numbers (LUNs) to use for the paths to be created or pass in NULL. If is false, the client shall pass in
NULL for this parameter.

The LUNames, DeviceNumbers, and DeviceAccesses parameters are mutually indexed arrays - any
element in DeviceNumbers or DeviceAccesses will set a property relative to the LogicalDevice instance
named in the corresponding element of LUNames. LUNames and DeviceAccesses shall have the same
number of elements. DeviceNumbers shall be null (asking the instrumentation to assign numbers) or have
the same number of elements as LUNames. If these conditions are not met, the instrumentation shall
return a 'Invalid Parameter' status.

For modifying an SPC, there are two specific use cases identified. The instrumentation shall support one
and the other is required depending on a how a property is set. Other permutations are allowed, but are
vendor-specific.

The required use case is - Add LUs to a default view. Add LUs to a default view requires that the
LUNames parameter not be null and that the TargetPortIDs parameters be null. DeviceNumbers may be
null if ClientSelectableDeviceNumbers is false. DeviceAccesses shall be specified.

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 595

Add target port IDs to a default view is only valid if PortsPerView is set to 'Multiple Ports per View'. It
requires that the LUNames, DeviceNumbers, and DeviceAccesses shall also be null. The use cases for
ExposeDefaultLUs() are summarized in Table 372.

The relevant rules of SCSI semantics are:

• an SPC shall be exposed through a particular host/target port pair that is in use by another SPC. (In other
words, an SPC and its associated logical units and ports together correspond to the logical unit inventory
provided by SCSI REPORT LUNS and INQUIRY commands)

• each LogicalDevice associated to an SPC shall have a unique ProtocolControllerForUnit DeviceNumber
(logical unit number)

The instrumentation shall report an error if the client request would violate one of these rules.

If the instrumentation provides PrivilegeManagementService, the results of setting DeviceAccesses shall
be synchronized with PrivilegeManagementService as described in the ProtocolControllerForUnit
DeviceAccess description (18.8.27 "CIM_ProtocolControllerForUnit").

If the instrumentation supports ExposeDefaultLUs then it shall also support HideDefaultLUs.

18.5.4.1 uint32 ExposeDefaultLUs

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances shall already exist. The members of this array
shall match the Name property of LogicalDevice instances that represent SCSI logical units. See
Table 372, “Use Cases for ExposeDefaultLUs” for situations where this parameter may be null.

IN string TargetPortIDs[]

Table 372 - Use Cases for ExposeDefaultLUs

Parameters /
use cases

LUNames TargetPortIDs DeviceNumbers DeviceAccesses ProtocolControllers
(on input)

Create a new
default view (see 1)

See 2) See 2) See 3) Mandatory, see 4) Shall be null

Add LUs to a view Mandatory Shall be null See 3) Mandatory, see 4) Shall contain a single SPC
ref

Add target port IDs
to a view (see 5)

Shall be null Mandatory Shall be null Shall be null Shall contain a single SPC
ref

Vendor-Specific As long as all the previous use cases are implemented, the instrumentation may support other vendor-specific
combinations of parameters.

1. Only valid if PortsPerView is not "All Ports share the same View"

2. Dependent on values of SPCAllows* capability properties described above

3. If ClientSelectableDeviceNumbers is true, shall either be null or have same number of elements as LUNames. If
ClientSelectableDeviceNumbers is false, shall be null.

4. Shall have same number of elements as LUNames

5. Only valid if PortsPerView is "Multiple Ports per View"

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

Masking and Mapping Subprofile

596

IDs of target ports. See Table 372, “Use Cases for ExposeDefaultLUs” for situations where this parameter
may be null.

IN string DeviceNumbers[]

A list of logical unit numbers to assign to the corresponding logical unit in the LUNames parameter. (within
the context of the elements specified in the other parameters). If the LUNames parameter is null, then this
parameter shall be null. Otherwise, if this parameter is null, all LU numbers are assigned by the hardware
or instrumentation. Each element shall be formatted as unseparated uppercase hexadecimal digits, with
no leading “0x”.

IN uint16 DeviceAccesses[]

A list of permissions to assign to the corresponding logical unit in the LUNames parameter. This specifies
the permission to assign within the context of the elements specified in the other parameters. Setting this
to 'No Access' assigns the DeviceNumbers for the associated initiators, but does not grant read or write
access. If the LUNames parameter is not null then this parameter shall be specified.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this can be null, or contain exactly
one element; there may be multiple references on output. If null on input, the instrumentation will create
one or more new SPC instances.

On output, this will be either null (if a job was created) or the set of SPCs affected (those created or
modified). If a job was started, references to the SPCs affected will be found by following the
AffectedJobElement association from the job.

18.5.5 HideDefaultLUs

HideDefaultLUs is similar to HidePaths, except HideDefaultLUs works with 'default view' SPCs. The
'default view' SPC exposes logical units to all initiators. This SPC is identified by an association to a
StorageHardwareID with Name property set to the empty string. HideDefaultLUs hides a list of SCSI
logical units (such as RAID volumes or tape drives) through a 'default view' SCSIProtocolController (SPC)
through a list of target ports.

HideDefaultLUs is the inverse of ExposeDefaultLUs. It hides a list of SCSI logical units (such as RAID
volumes or tape drives) from a list of initiators through a list of target ports, through one or more
SCSIProtocolControllers (SPCs).

When hiding logical units, there are two specific use cases identified. The use cases are: Remove LUs
from a default view and Remove target port IDs from a default view. Remove LUs from a default view
requires that the LUNames parameter not be null and that the TargetPortIDs parameter be null. Remove
target port IDs from a default view is required if PortsPerView is Multiple Ports per view. It requires that
the LUNames parameter be null.

The instrumentation shall support the Remove LUs case and shall support the remove target port IDs if
PortsPerView is set to 'Multiple Ports per View'. Other permutations are allowed, but are vendor-specific.

If both LUNames and TargetIDs parameters are non-null and
ProtocolControllerMaskingCapabilities.MaximumMapCount is 0, then the instrumentation shall create
new SPCs and change associations as necessary to meet the client request and maintain the relevant
rules of SCSI in the ExposeDefaultLUs description. If both LUNames and TargetIDs parameters are non-
null and ProtocolControllerMaskingCapabilities.MaximumMapCount is greater than 0, then any client that

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 597

cannot be honored by changing associations to the specified SPC shall receive a 'Maximum Map Count
Error' response. The use cases for HideDefaultLUs are summarized in Table 373

The disposition of the SPC when the last logical unit or target port ID is removed depends upon the
ProtocolControllerMaskingCapabilites SPCAllows* properties. If SPCAllowsNoLUs is false, then the SPC
is automatically deleted when the last logical unit is removed. If SPCAllowsNoTargets is false, then the
SPC is automatically deleted when the last target port ID is removed. In all other cases, the SPC shall be
explicitly deleted via the DeleteInstance intrinsic function.

If the instrumentation supports HideDefaultLUs then it shall also support ExposeDefaultLUs.

18.5.5.1 uint32 HideDefaultLUs

OUT CIM_ConcreteJob REF Job

Reference to the job (may be null if no job started)

IN string LUNames[]

An array of IDs of logical unit instances. The LU instances shall already exist. See Table 373, “Use Cases
for HideDefaultLUs” for situations where this parameter may be null.

IN string TargetPortIDs[]

IDs of target ports. See Table 373, “Use Cases for HideDefaultLUs” for situations where this parameter
may be null.

IN/OUT CIM_SCSIProtocolController REF ProtocolControllers[]

An array of references to SCSIProtocolControllers (SPCs). On input, this shall contain exactly one
element. The instrumentation will attempt to remove associations (LUNames or TargetPortIDs) from this
SPC. Depending upon the specific implementation, the instrumentation may need to create new SPCs with
a subset of the remaining associations.

On output, this will be either null (if a job was created or if the SPC was automatically removed per the
SPCAllowsNo* rules) or the set of SPCs affected (those created or modified). If a job was started,
references to the SPCs affected will be found by following the AffectedJobElement association from the
job.

18.5.6 CreateStorageHardwareID

CreateStorageHardwareID creates a StorageHardwareID and the ConcreteDependency association
between this service and the new StorageHardwareID.

Table 373 - Use Cases for HideDefaultLUs

parameters/
use cases

LUNames TargetPortIDs ProtocolController (on input)

Remove LUs from a default
view

Mandatory Shall be null Mandatory

Remove target ports from a
view (see 1)

Shall be null Mandatory Mandatory

Vendor-specific As long as all the previous usecases are implemented, the instrumentation may support other vendor-
specific combinations of parameters.

1. Only valid if PortsPerView is "Multiple Ports per View"

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

Masking and Mapping Subprofile

598

18.5.6.1 Uint32 CreateStorageHardwareID(

IN string ElementName

The ElementName of the new StorageHardwareID instance.

IN string StorageID

StorageID is the value used by the SecurityService to represent identity - in this case, a hardware
worldwide unique name.

IN Uint16 IDType

The type of the StorageID property.

IN string OtherIDType

The type of the storage ID, when IDType is 'Other'.

IN CIM_StorageClientSettingData REF Setting

REF to the StorageClientSettingData containing the OSType appropriate for this initiator. If left NULL, the
instrumentation assumes a standard OSType - i.e., that no OS-specific behavior for this initiator is defined.

IN CIM_StorageHardwareID REF HardwareID

REF to the new StorageHardwareID instance.

18.5.7 DeleteStorageHardwareID

DeleteStorageHardwareID deletes a StorageHardwareID and the ConcreteDependency association
between the ID and the service. If the StorageHardwareID still has associations to AuthorizedPrivilege
instances (and thus to ProtocolControllers), then this method shall return an error. The reason is that
deleting it without deleting the associations would cause an invalid model. Deleting the Association and
AuthorizedPrivilege and SPC would be a very unexpected side effect. The client shall call HidePaths()
first to delete these associations.

18.5.7.1 Uint32 DeleteStorageHardwareID

IN CIM_StorageHardwareID REF HardwareID

REF to the StorageHardwareID to delete

18.5.8 CreateHardwareIDCollection

Create a group of StorageHardwareIDs as a new instance of SystemSpecificCollection. This is useful to
define a set of authorized subjects that can access volumes in a disk array. This method allows the client
to make a request of a specific Service instance to create the collection and provide the appropriate class
name. When these capabilities are standardized in CIM/WBEM, this method can be deprecated and
intrinsic methods used. In addition to creating the collection, this method causes the creation of the
HostedCollection association (to this service's scoping system) and MemberOfCollection association to
members of the IDs parameter.

18.5.8.1 uint32 CreateHardwareIDCollection

IN string ElementName

The ElementName to be assigned to the created collection.

IN string HardwareIDs[]

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 599

Array of strings containing representations of references to StorageHardwareID instances that will become
members of the new collection.

OUT CIM_SystemSpecificCollection REF Collection

The new instance of SystemSpecificCollection that is created.

18.5.9 AddHardwareIDsToCollection

Create MemberOfCollection instances between the specified Collection and the StorageHardwareIDs.
This method allows the client to make a request of a specific Service instance to create the associations.
When these capabilities are standardized in CIM/WBEM, this method can be deprecated and intrinsic
methods used.

18.5.9.1 uint32 AddHardwareIDsToCollection

IN string HardwareIDs[]

Array of strings containing representations of references to StorageHardwareID instances that will become
members of the collection.

IN CIM_SystemSpecificCollection REF Collection

The Collection which groups the StorageHardwareIDs.

EXPERIMENTAL

18.5.10DeleteProtocolController

DeleteProtocolController deletes the ProtocolController and all associations connected directly to this
ProtocolController. It shall also delete any AuthorizedPrivilege instances associated to this
ProtocolController as otherwise they would be left dangling. Since this subprofile does not have the
notion of child ProtocolControllers, the DeleteChildrenProtocolControllers parameter shall be false. If the
DeleteLogicalUnits parameter is True, the provider also deletes LogicalDevice instances associated via
ProtocolControllerForUnit to this ProtocolController. LogicalDevice instances shall only be deleted when
they are not part of any other ProtocolControllerForUnit associations. Whether or not the volumes may be
deleted shall be determined by the instrumentation's support for the ReturnToStoragePool method in
Block Services.

18.5.10.1 Uint32 DeleteProtocolController(

 IN CIM_ProtocolController REF ProtocolController

 ProtocolController to be deleted.

IN boolean DeleteChildrenProtocolControllers

If true, the management instrumentation provider will also delete 'child' ProtocolControllers (i.e., those
defined as Dependent references in instances of AssociatedProtocolController where this
ProtocolController is the Antecedent reference). Also, all direct associations involving the 'child'
ProtocolControllers will be removed.

IN boolean DeleteUnits

If true, the management instrumentation provider will also delete LogicalDevice instances associated via
ProtocolControllerForUnit, to this ProtocolController and its children. (Note that 'child' controllers will only
be affected if the DeleteChildrenProtocolControllers input parameter is TRUE). LogicalDevice instances
are only deleted if there are NO remaining ProtocolControllerForUnit associations, to other
ProtocolControllers.

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

Masking and Mapping Subprofile

600

EXPERIMENTAL

18.5.11GetElementNameCapabilities

This method of the ProtocolControllerMaskingCapabilities class indicates if the implementation supports
element naming during creation of an element.

Additionally, this method indicates the supported methods to modify the ElementName of existing storage
elements.

18.5.11.1 uint32 GetElementNameCapabilities(

 [IN,

 ValueMap { "2", "3", "..", "0x8000.." },

 Values { "StorageHardwareID", "SCSIProtocolController",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 ElementType,

 [IN]

 CIM_ManagedElement REF Goal,

 [OUT,

 ValueMap { "2", "3", "4",

 "..", "32768..65535" },

 Values { "ElementName can be supplied during creation",

 "ElementName can be modified with InvokeMethod",

 "ElementName can be modified with intrinsic method",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 SupportedFeatures[],

 [OUT]

 uint16 MaxElementNameLen,

 [OUT]

 string ElementNameMask);

The parameters are:

• ElementType: (required) This enumeration specifies the type of object.

• Goal: Currently this parameter is not used in this profile and it can be set to Null.

• SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a storage element. For example, the value of "ElementName can be supplied
during creation" indicates the method such as
ControllerConfigurationService.ExposePathsWithNameAndHostType accepts the ElementName when
creating a new SCSIProtocolController. An empty array indicates ElementNaming for ElementType is not
supported.

• MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.

• ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 601

This method returns the following statuses:

0 - "Completed with No Error"

The method has completed immediately with no errors.

1 - "Not Supported"

This method is not supported at this time.

3 - "Timeout"

4 - "Failed"

5 - "Invalid Parameter"

One or more of the parameters are invalid

EXPERIMENTAL

18.6 Client Considerations and Recipes

18.6.1 Expose and Hide LUNs

// DESCRIPTION:

//

// Test the accuracy of the Masking and Mapping

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. A reference to a storage element, a Storage Volume or Logical Disk

// is defined in the $StorageElement-> variable

// This storage element must not already be masked to any initiator

// 2. The WWN of two different Initiator Ports to be masked to is defined in the

// #InitiatorWWN1 and #InitiatorWWN2 variables.

// 3. The value of

// CIM_ProtocolControllerMaskingCapabilities.ClientSelectableDeviceNumbers

// is stored in #ClientSelectableDeviceNumbers

// 4. If #ClientSelectableDeviceNumbers is TRUE, the device number to be used

// for mapping is defined in #DeviceNumber.

// 5. The value of CIM_ProtocolControllerMaskingCapabilities.PortsPerView is

// stored in #PortsPerView

// 6. If #PortsPerView != 4 (All ports share the same view), the target port WWN

// is contained in the #TargetPortWWN variable.

// 7. The ControllerConfigurationService has been found and the object path

// value is stored in $ControllerConfigService->

// 8. The value of CIM_ProtocolControllerMaskingCapabilities.OneHardwareIDPerView
is

// stored in #OneHardwareIDPerView

// 9. (If CIM_ProtocolControllerMaskingCapabilities.ExposePathsSupported is null)
OR

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733
734

735

736

737

738

Masking and Mapping Subprofile

602

// ((If CIM_ProtocolControllerMaskingCapabilities.ExposePathsSupported is NOT
null) AND

// (CIM_ProtocolControllerMaskingCapabilities.ExposePathsSupported is true))

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobState != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. Subscribe for indications on the Job

// Job success -- Status is ‘17’ (“Completed”) and ‘2’ (“OK”)

#Filter1 = “SELECT FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2 “

// Determine if the Indication already exists

// If it doesn’t, create it

// Job failure -- Status is ‘17’ (“Completed”) and ‘6’ (“Error”)

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 603

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

// Determine if the Indication already exists

// If it doesn’t, create it

// Step 2. Expose a new LUN to an initiator

$StorageElement = GetInstance($StorageElement->,

false, false, false, {“Name”})

%InputArguments[“LUNames”] = {$StorageElement.Name}

%InputArguments[“InitiatorPortIDs”] = {#InitiatorWWN1}

if (#PortsPerView != 4) {// 4 = All ports share the same view

 %InputArguments[“TargetPortIDs”] = {#TargetPortWWN}

}

if (#ClientSelectableDeviceNumbers == TRUE) {

 %InputArguments[“DeviceNumbers”] = {#DeviceNumber}

 %InputArguments[“DeviceAccesses”] = {2} // Read-Write

}

else {

 %InputArguments[“DeviceNumbers”] = NULL

 %InputArguments[“DeviceAccesses”] = NULL

}

#ReturnCode = InvokeMethod($ControllerConfigService->,

 “ExposePaths”,

 %InputArguments,

 %OutputArguments)

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

<ERROR! Method failure>

}

$MMJob-> = %OutputArguments[“Job”]

if ($MMJob-> == null) {

 $CreatedOrModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

}

else {

 // Wait until job is finished

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

Masking and Mapping Subprofile

604

 &WaitForJob(#ReturnCode, $MMJob->)

 // Now get the SPCs

 $CreatedOrModifiedSPCs->[] = Associators(

 $MMJob->,

 “CIM_AffectedJobElement”,

 “CIM_ProtocolController”,

 “AffectingElement”,

 “AffectedElement”,

 false, false, null)

}

// Verify results

if ($CreatedOrModifiedSPCs->[].length == 0) {

 <ERROR! There must be one or more SPC created or modified>

}

#Found = false

for #i in $CreatedOrModifiedSPCs->[] {

 $CheckSPCForUnits[] = References($CreatedOrModifiedSPCs->[#i],

 “CIM_ProtocolControllerForUnit”,

 “Antecedent”,

 false, false, null)

 for #u in $CheckSPCForUnits[] {

 if (#ClientSelectableDeviceNumbers == TRUE) {

 if ($CheckSPCForUnits[#u].DeviceNumber != #DeviceNumber ||

 $CheckSPCForUnits[#u].DeviceAccess != 2) {

 // no match found try next one (if any)

 continue

 }

 }

 // Validate Initiator ID

 $CheckAuthTargets->[] = AssociatorNames($CheckSPCForUnits[#u].Antecedent,

 “CIM_AuthorizedTarget”,

 “CIM_AuthorizedPrivilege”,

 null, null)

 for #k in $CheckAuthTargets->[] {

 $StorageHWIDs[] = Associators($CheckAuthTargets->[#k],

 “CIM_AuthorizedSubject”,

 “CIM_StorageHardwareID”,

 null, null, false, false, null)

 for #j in $StorageHWIDs[] {

 if ($StorageHWIDs[#j].StorageID == #InitiatorWWN1) {

 #Found = true

 break

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 605

 }

 }

 if (#Found == true) {

 break

 }

 }

 // Validate StorageElement

 if (#Found == true) {// If we didn’t find initiator then don’t bother

 $CheckStorageElement = GetInstance($CheckSPCForUnits[#u].Dependent,

 false, false, false, null)

 if ($StorageElement.Name != $CheckStorageElement.Name) {

 <ERROR! Masked and Mapped Storage Element not found>

 }

 }

 }

}

if (#Found == false) {

 <ERROR! Created mapping and masking was not found>

}

// Note: since we created one SPC, there should only be one entry here

$AllCreatedOrModifiedSPCs->[] = $CreatedOrModifiedSPCs->[]

// Step 3. Expose a currently exposed LUN to a different initiator

if (#OneHardwareIDPerView == FALSE) {

 %InputArguments[“LUNames”] = NULL

 %InputArguments[“InitiatorPortIDs”] = {#InitiatorWWN2}

 %InputArguments[“TargetPortIDs”] = NULL

 %InputArguments[“DeviceAccesses”] = NULL

 // Note: ExposePaths on a modify operation takes an array containing

 // one and only one SPC, which is what we have here

 %InputArguments[“ProtocolControllers”] = { $CreatedOrModifiedSPCs->[0]}

 #ReturnCode = InvokeMethod($ControllerConfigService->,

 “ExposePaths”,

 %InputArguments,

 %OutputArguments)

 // 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

 if (#ReturnCode != 0 || #ReturnCode != 4096) {

 <ERROR! Method failure>

 }

 $MMJob-> = %OutputArguments[“Job”]

 if ($MMJob-> == null) {

 $CreatedOrModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

Masking and Mapping Subprofile

606

 }

 else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $MMJob->)

 // Now get the SPCs

 $CreatedOrModifiedSPCs->[] = Associators($MMJob->,

 “CIM_AffectedJobElement”,

 “CIM_ProtocolController”,

 “AffectingElement”,

 “AffectedElement”,

 false, false, null)

 }

 // Verify results

 if ($CreatedOrModifiedSPCs->[].length == 0) {

 <ERROR! There must be one or more SPC created or modified>

 }

 #Found = false

 for #i in $CreatedOrModifiedSPCs->[] {

 $CheckSPCForUnits[] = References($CreatedOrModifiedSPCs->[#i],

 “CIM_ProtocolControllerForUnit”,

 “Antecedent”,

 false, false, null)

 for #u in $CheckSPCForUnits[] {

 // Validate Initiator ID

 $CheckAuthTargets->[] =

 AssociatorNames($CheckSPCForUnits[#u].Antecedent,

 “CIM_AuthorizedTarget”,

 “CIM_AuthorizedPrivilege”,

 null, null)

 for #k in $CheckAuthTargets->[] {

 $StorageHWIDs[] = Associators($CheckAuthTargets->[#k],

 “CIM_AuthorizedSubject”,

 “CIM_StorageHardwareID”,

 null, null, false, false, null)

 for #j in $StorageHWIDs[] {

 if ($StorageHWIDs[#j].StorageID == #InitiatorWWN2) {

 #Found = true

 break

 }

 }

 if (#Found == true) {

 break

 }

 }

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 607

 // Validate StorageElement

 if (#Found == true) {// If we didn’t find initiator then don’t bother

 $CheckStorageElement =

 GetInstance($CheckSPCForUnits[#u].Dependent,

 false, false, false, null)

 if ($StorageElement.Name != $CheckStorageElement.Name) {

 <ERROR! Masked and Mapped Storage Element not found>

 }

 }

 }

 }

 if (#Found == false) {

 <ERROR! Created mapping and masking was not found>

 }

 $AllCreatedOrModifiedSPCs->[] = $AllCreatedOrModifiedSPCs->[] +

 $CreatedOrModifiedSPCs->[]

 /* Current contents of $AllCreatedOrModifiedSPCs->[] array

 plus any new, unique SPC REFs */

} // if #OneHardwareIDPerView == FALSE

// Step 4. Hide the paths previously exposed

// Since we can only pass in one SPC to HidePaths, we need to loop

// through the SPCs and call HidePaths for each one

$ModifiedSPCs->[] = null

for #spc in $AllCreatedOrModifiedSPCs->[] {

 $StorageElement = GetInstance($StorageElement->,

 false, false, false, {“Name”})

 %InputArguments2[“LUNames”] = {$StorageElement.Name}

 if (#OneHardwareIDPerView == FALSE) {

 %InputArguments2[“InitiatorPortIDs”] = {#InitiatorWWN1,#InitiatorWWN2}

 }

 else {

 %InputArguments2[“InitiatorPortIDs”] = {#InitiatorWWN1}

 }

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

Masking and Mapping Subprofile

608

 if (#PortsPerView != 4) { // All ports share the same view

 %InputArguments[“TargetPortIDs”] = {#TargetPortWWN}

 }

 %InputArguments2[“ProtocolControllers”] = {$AllCreatedOrModifiedSPCs->[#spc]}

 #ReturnCode = InvokeMethod($ControllerConfigService->,

 “HidePaths”,

 %InputArguments2, %OutputArguments2)

 // 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

 if(#ReturnCode != 0 || #ReturnCode != 4096) {

 <ERROR! Method failure>

 }

 // Save any SPCs returned for later validation

 $MMJob-> = %OutputArguments[“Job”]

 if ($MMJob == null) {

 $ModifiedSPCs->[] = %OutputArguments[“ProtocolControllers”]

 }

 else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $MMJob->)

 // Now get the SPCs

 $CreatedOrModifiedSPCs->[] = Associators(

 $MMJob->,

 “CIM_AffectedJobElement”,

 “CIM_ProtocolController”,

 “AffectingElement”,

 “AffectedElement”,

 false,

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 609

 false,

 null)

 $ModifiedSPCs->[] = $ModifiedSPCs->[] + $CreatedOrModifiedSPCs->[]

 /* Current contents of $ModifiedSPCs->[] array

 plus any new, unique SPC REFs from $CreatedOrModifiedSPCs->[]

 this list may be null */

 }

}

// Verify results

#Found = false

// See if the storage element is still associated to one of the SPCs

$CheckSPCs->[] = AssociatorNames($StorageElement->,

 “CIM_ProtocolControllerForUnit”,

 “CIM_ProtocolController”,

 // Assumes StorageElement LogicalDevice

 null, null)

for #x in $CheckSPCs->[] {

 for #i in $ModifiedSPCs->[] {

 if($CheckSPCs->[#x].DeviceID == $ModifiedSPCs->[#i].DeviceID) {

 #Found = true

 break

 }

 }

 if (#Found == true) {

 <ERROR! Element still mapped>

 }

}

// See if the Initiator WWNs are still associated to one of the SPCs

for #i in $ModifiedSPCs->[] {

 $CheckAuthPrivilege->[] = AssociatorNames($ModifiedSPCs->[#i],

 “CIM_AuthorizedTarget”,

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

Masking and Mapping Subprofile

610

 “CIM_AuthorizedPrivilege”,

 null, null)

 for #k in $CheckAuthPrivilege->[] {

 $StorageHWIDs[] = Associators($CheckAuthPrivilege->[#k],

 “CIM_AuthorizedSubject”,

 “CIM_StorageHardwareID”,

 null, null, false, false, { “StorageID” })

 for #j in $StorageHWIDs[] {

 if($StorageHWIDs[#j].StorageID == #InitiatorWWN1 ||

 $StorageHWIDs[#j].StorageID == #InitiatorWWN2) {

 #Found = true

 break

 }

 }

 if(#Found == true) {

 break // CheckAuthTargets loop

 }

 }

 if(#Found == true) {

 <ERROR! Element still masked>

 }

}

18.6.2 Set Host Mode for a Port

// DESCRIPTION:

//

// Associate a ElementSettingData to a Port

// In this use case, the client wishes to set the FCPort to a specific

// OS-type.

// 1. Find a StorageClientSettingData instance to uses by enumerating

// all instances of StorageClientSettingData scoped to that

// ComputerSystem

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 611

// 2. Identify the Port to use

// 3. Find the existing ElementSettingData association (if any),

// 4. Delete it via DeleteInstance

// 5. Create a new one from the Port to the

// StorageClientSettingData via CreateInstance

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The StorageClientSettingData instance to use has been identified

// and its reference stored in $ClientSettingData->

// 2. A Port has been identified and the reference stored in

// $Port->

// Step 1. Delete any existing ElementSettingData association

$ExistingAssocs[] = Associators(

 $Port->,

 “CIM_ElementSettingData”,

 “CIM_StorageClientSettingData”,

 “ManagedElement”,

 “SettingData”,

 false, false, null)

for #i in $ExistingAssocs[] {

 $ObjectPath-> = $ExistingAssocs[#i].getObjectPath()

1130

1131

1132

1133

Masking and Mapping Subprofile

612

 #Result = DeleteInstance($ObjectPath->)

}

// Step 2. Associate the Port to the new setting

$instance = newInstance(“CIM_ElementSettingData”)

$instance.ManagedElement = $Port->

$instance.SettingData = $ClientSettingData->

$CreatedInst-> = CreateInstance($instance)

18.6.3 Set Host Mode for a ProtocolController

// DESCRIPTION:

//

// Associate a ElementSettingData to a ProtocolController

// In this use case, the client wishes to set the ProtocolController

// to a specific OS-type.

// 1. Find a StorageClientSettingData instance to uses by enumerating

// all instances of StorageClientSettingData scoped to that

// ComputerSystem

// 2. Identify the ProtocolController to use

// 3. Find the existing ElementSettingData association (if any),

// 4. Delete it via DeleteInstance

// 5. Create a new one from the ProtocolController to the

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 613

// StorageClientSettingData via CreateInstance

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The StorageClientSettingData instance to use has been identified

// and its reference stored in $ClientSettingData->

// 2. A ProtocolController has been identified and the reference stored in

// $SPC->

// Step 1. Delete any existing ElementSettingData association

$ExistingAssocs[] = Associators(

 $SPC->,

 “CIM_ElementSettingData”,

 “CIM_StorageClientSettingData”,

 “ManagedElement”,

 “SettingData”,

 false, false, null)

for #i in $ExistingAssocs[] {

 $ObjectPath-> = $ExistingAssocs[#i].getObjectPath()

 #Result = DeleteInstance($ObjectPath->)

}

// Step 2. Associate the ProtocolController to the new setting

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

Masking and Mapping Subprofile

614

$instance = newInstance(“CIM_ElementSettingData”)

$instance.ManagedElement = $SPC->

$instance.SettingData = $ClientSettingData->

$CreatedInst-> = CreateInstance($instance)

18.7 Registered Name and Version

Masking and Mapping version 1.4.0 (Component Profile)

18.8 CIM Elements

Table 374 describes the CIM elements for Masking and Mapping.

Table 374 - CIM Elements for Masking and Mapping

Element Name Requirement Description

18.8.1 CIM_AuthorizedPrivilege Mandatory

18.8.2 CIM_AuthorizedSubject Mandatory

18.8.3 CIM_AuthorizedTarget Mandatory

18.8.4 CIM_ConcreteDependency (Associates
ControllerConfiguirationService and ProtocolController)

Mandatory

18.8.5 CIM_ConcreteDependency (Associates
PrivilegeManagementService and AuthorizedPrivilege)

Mandatory

18.8.6 CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and
StorageHardwareID)

Mandatory

18.8.7 CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and
SystemSpecificCollection)

Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

18.8.8 CIM_ControllerConfigurationService Mandatory

18.8.9 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ControllerConfigurationService)

Optional Associates EnabledLogicalElementCapabilities with
ControllerConfigurationService.

18.8.10 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ProtocolController)

Optional Expressed the ability for the element to be named or have
its state changed.

18.8.11 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareID)

Optional Associates EnabledLogicalElementCapabilities to
StorageHardwareID.

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 615

18.8.12 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService)

Optional Associates EnabledLogicalElementCapabilities with
StorageHardwareIDManagementService.

18.8.13 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
SystemSpecificCollection)

Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs. Associates
EnabledLogicalElementCapabilities and
SystemSpecificCollection.

18.8.14 CIM_ElementCapabilities (System to
ProtocolControllerMaskingCapabilities)

Mandatory

18.8.15 CIM_ElementSettingData (Associates
ComputerSystem and StorageClientSettingData)

Mandatory

18.8.16 CIM_ElementSettingData (Associates Port and
StorageClientSettingData)

Optional

18.8.17 CIM_ElementSettingData (Associates
ProtocolController and StorageClientSettingData)

Optional

18.8.18 CIM_ElementSettingData (Associates
StorageHardwareID and StorageClientSettingData)

Optional

18.8.19 CIM_EnabledLogicalElementCapabilities Optional This class is used to express the naming and possible
requested state change possibilities for storage elements.

18.8.20 CIM_HostedCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

18.8.21 CIM_HostedService (Associates
ComputerSystem and ControllerConfigurationService)

Mandatory

18.8.22 CIM_HostedService (Associates
ComputerSystem and PrivilegeManagementService)

Mandatory

18.8.23 CIM_HostedService (Associates
ComputerSystem and
StorageHardwareIDManagementService)

Mandatory

18.8.24 CIM_MemberOfCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

18.8.25 CIM_PrivilegeManagementService Mandatory

18.8.26 CIM_ProtocolController Mandatory

18.8.27 CIM_ProtocolControllerForUnit Mandatory

18.8.28 CIM_ProtocolControllerMaskingCapabilities Mandatory

18.8.29 CIM_SAPAvailableForElement Mandatory

18.8.30 CIM_StorageClientSettingData Mandatory

18.8.31 CIM_StorageHardwareID Mandatory

18.8.32 CIM_StorageHardwareIDManagementService Mandatory

18.8.33 CIM_SystemSpecificCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

18.8.34 SNIA_ProtocolControllerMaskingCapabilities Optional An experimental subclass of
CIM_ProtocolControllerMaskingCapabilities.

18.8.35 SNIA_StorageHardwareID Optional Experimental SNIA class adding SAS Address IDs.

Table 374 - CIM Elements for Masking and Mapping

Element Name Requirement Description

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

Masking and Mapping Subprofile

616

18.8.1 CIM_AuthorizedPrivilege

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 375 describes class CIM_AuthorizedPrivilege.

18.8.2 CIM_AuthorizedSubject

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

18.8.36 SNIA_StorageHardwareIDManagementService Optional Experimental subclass with support for SAS
StorageHardwareIDs.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Creation of a ProtocolController.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Deletion of a ProtocolController.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Creation of a ProtocolControllerForUnit association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Deletion of a ProtocolControllerForUnit association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Modification of a ProtocolControllerForUnit association
(e.g. changing DeviceNumber).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Creation of an AuthorizedSubject association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Deletion of an AuthorizedSubject association.

Table 375 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Optional User friendly name.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write').

Table 374 - CIM Elements for Masking and Mapping

Element Name Requirement Description

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 617

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 376 describes class CIM_AuthorizedSubject.

18.8.3 CIM_AuthorizedTarget

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 377 describes class CIM_AuthorizedTarget.

18.8.4 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolCon-
troller)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 376 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

PrivilegedElement Mandatory The Subject for which Privileges are granted or denied.

Privilege Mandatory The Privilege either granted or denied to an Identity or group of Identities
collected by a Role.

Table 377 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

TargetElement Mandatory The target set of resources to which the Privilege applies.

Privilege Mandatory The Privilege affecting the target resource.

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

Masking and Mapping Subprofile

618

Table 378 describes class CIM_ConcreteDependency (Associates ControllerConfiguirationService and
ProtocolController).

18.8.5 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivi-
lege)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 379 describes class CIM_ConcreteDependency (Associates PrivilegeManagementService and
AuthorizedPrivilege).

18.8.6 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and Stor-
ageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 380 describes class CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and StorageHardwareID).

Table 378 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerCon-
figuirationService and ProtocolController)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 379 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeMan-
agementService and AuthorizedPrivilege)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 380 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHard-
wareIDManagementService and StorageHardwareID)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 619

18.8.7 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and Sys-
temSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 381 describes class CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and SystemSpecificCollection).

18.8.8 CIM_ControllerConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 382 describes class CIM_ControllerConfigurationService.

Table 381 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHard-
wareIDManagementService and SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 382 - SMI Referenced Properties/Methods for CIM_ControllerConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

ExposePaths() Conditional Conditional requirement: ExposePaths and HidePaths are required if
ExposePathsSupported is NULL or set to True.

HidePaths() Conditional Conditional requirement: ExposePaths and HidePaths are required if
ExposePathsSupported is NULL or set to True.

ExposeDefaultLUs() Optional

HideDefaultLUs() Optional

DeleteProtocolController() Optional

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

Masking and Mapping Subprofile

620

18.8.9 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfiguration-
Service)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 383 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ControllerConfigurationService).

18.8.10CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 384 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ProtocolController).

18.8.11CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 383 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 384 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to ProtocolController)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 621

Table 385 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareID).

18.8.12CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDMa-
nagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 386 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService).

18.8.13CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 387 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
SystemSpecificCollection).

18.8.14CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)

Table 385 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageHardwareID)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 386 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 387 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

Masking and Mapping Subprofile

622

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 388 describes class CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities).

18.8.15CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 389 describes class CIM_ElementSettingData (Associates ComputerSystem and
StorageClientSettingData).

18.8.16CIM_ElementSettingData (Associates Port and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 390 describes class CIM_ElementSettingData (Associates Port and StorageClientSettingData).

Table 388 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolControll-
erMaskingCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 389 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSys-
tem and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 390 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and Stor-
ageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 623

18.8.17CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 391 describes class CIM_ElementSettingData (Associates ProtocolController and
StorageClientSettingData).

18.8.18CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 392 describes class CIM_ElementSettingData (Associates StorageHardwareID and
StorageClientSettingData).

18.8.19CIM_EnabledLogicalElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 391 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolCon-
troller and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 392 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardwa-
reID and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

Masking and Mapping Subprofile

624

Table 393 describes class CIM_EnabledLogicalElementCapabilities.

18.8.20CIM_HostedCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 394 describes class CIM_HostedCollection.

18.8.21CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 395 describes class CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService).

Table 393 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory The moniker for the instance.

ElementNameEditSupport
ed

Mandatory Denotes whether an storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

Table 394 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 395 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

1336

1337

1338

1339

1340

1341

1342

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 625

18.8.22CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 396 describes class CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService).

18.8.23CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementSer-
vice)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 397 describes class CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService).

18.8.24CIM_MemberOfCollection

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection,
CIM_StorageHardwareIDManagementService.AddHardwareIDsToCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 396 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 397 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

Masking and Mapping Subprofile

626

Table 398 describes class CIM_MemberOfCollection.

18.8.25CIM_PrivilegeManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 399 describes class CIM_PrivilegeManagementService.

18.8.26CIM_ProtocolController

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 398 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 399 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System Name.

Name Mandatory Uniquely identifies the Service.

ElementName Mandatory User friendly name.

AssignAccess() Mandatory

RemoveAccess() Mandatory

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 627

Table 400 describes class CIM_ProtocolController.

18.8.27CIM_ProtocolControllerForUnit

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 401 describes class CIM_ProtocolControllerForUnit.

18.8.28CIM_ProtocolControllerMaskingCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 400 - SMI Referenced Properties/Methods for CIM_ProtocolController

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System's Name.

DeviceID Mandatory Unique name for the ProtocolController.

Table 401 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block Services
StorageVolume).

1374

1375

1376

1377

1378

1379

1380

1381
1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Masking and Mapping Subprofile

628

Table 402 describes class CIM_ProtocolControllerMaskingCapabilities.

18.8.29CIM_SAPAvailableForElement

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Table 402 - SMI Referenced Properties/Methods for CIM_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Mandatory User-friendly name.

ValidHardwareIdTypes Mandatory A list of the valid values for StrorageHardwareID.IDType.

PortsPerView Mandatory Indicates the way that ports per view (ProtocolController) are handled.

ClientSelectableDeviceNu
mbers

Mandatory Indicates whether the client can specify the DeviceNumbers parameter
when calling ControllerConfigurationService.ExposePaths().

OneHardwareIDPerView Mandatory Set to true if this storage system limits configurations to a single subject
hardware ID per view.

PrivilegeDeniedSupported Mandatory Set to true if this storage system allows a client to create a Privilege
instance with PrivilegeGranted set to FALSE.

UniqueUnitNumbersPerPo
rt

Mandatory Indicates whether different ProtocolContollers attached to a
SCSIProtocolEndpoint can expose the same unit numbers (e.g. multiple
LUN 0s) or if the numbers must be unique.

ProtocolControllerSupports
Collections

Optional Indicates the storage system supports SystemSpecificCollections of
StorageHardwareIDs.

OtherValidHardwareIDTyp
es

Conditional Conditional requirement: Properties required when ValidHardwareIDTypes
includes 1 (Other).An array of strings describing types for valid
StorageHardwareID.IDType. Used when the ValidHardwareIdTypes
includes Other.

MaximumMapCount Mandatory The maximum number of ProtocolControllerForUnit associations that can
be associated with a single LogicalDevice (for example, StorageVolume).
Zero indicates there is no limit.

SPCAllowsNoLUs Mandatory Set to true if a client can create an SPC with no LogicalDevices.

SPCAllowsNoTargets Mandatory Set to true if a client can create an SPC with no target
SCSIProtocolEndpoints.

SPCAllowsNoInitiators Mandatory Set to true if a client can create an SPC with no StorageHardwareIDs.

SPCSupportsDefaultViews Mandatory Set to true if it the instrumentation supports default view SPCs that
exposes logical units to all initiators.

ExposePathsSupported Optional Set to true if this storage system supports the ExposePaths and
HidePaths methods.

GetElementNameCapabilit
ies()

Optional

1393

1394

1395

1396

1397

1398

1399

1400

1401

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 629

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 403 describes class CIM_SAPAvailableForElement.

18.8.30CIM_StorageClientSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 404 describes class CIM_StorageClientSettingData.

18.8.31CIM_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Mandatory

Table 405 describes class CIM_StorageHardwareID.

Table 403 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 404 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

ClientTypes Mandatory Array of OS names.

Table 405 - SMI Referenced Properties/Methods for CIM_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5 (Other or PortWWN or
NodeWWN or Hostname or iSCSI Name).

Masking and Mapping Subprofile

630

18.8.32CIM_StorageHardwareIDManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 406 describes class CIM_StorageHardwareIDManagementService.

18.8.33CIM_SystemSpecificCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 407 describes class CIM_SystemSpecificCollection.

18.8.34SNIA_ProtocolControllerMaskingCapabilities

An experimental subclass of CIM_ProtocolControllerMaskingCapabilities that adds properties asserting method support and support for SAS
StorageHardwareIDs.

Created By: Static

Table 406 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

CreateStorageHardwareID
()

Mandatory

DeleteStorageHardwareID
()

Mandatory

CreateHardwareIDCollecti
on()

Optional

AddHardwareIDsToCollecti
on()

Optional

Table 407 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

 Masking and Mapping Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 631

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 408 describes class SNIA_ProtocolControllerMaskingCapabilities.

18.8.35SNIA_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 409 describes class SNIA_StorageHardwareID.

18.8.36SNIA_StorageHardwareIDManagementService

Experimental subclass with support for SAS StorageHardwareIDs.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 410 describes class SNIA_StorageHardwareIDManagementService.

Table 408 - SMI Referenced Properties/Methods for SNIA_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes

SupportedAsynchronousA
ctions

Mandatory Indicates which operations will result in a Job being created.

SupportedSynchronousAct
ions

Mandatory Indicates which operations will execute without a Job being created.

Table 409 - SMI Referenced Properties/Methods for SNIA_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5|7 (Other or PortWWN or
NodeWWN or Hostname or iSCSI Name or SAS Address).

Table 410 - SMI Referenced Properties/Methods for SNIA_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

Masking and Mapping Subprofile

632

STABLE

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

CreateStorageHardwareID
()

Mandatory Experimental: may use SAS Address IDType.

DeleteStorageHardwareID
()

Mandatory

CreateHardwareIDCollecti
on()

Optional

AddHardwareIDsToCollecti
on()

Optional

Table 410 - SMI Referenced Properties/Methods for SNIA_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

 Pool Manipulation Capabilities, and Settings Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 633

DEPRECATED

19 Pool Manipulation Capabilities, and Settings Subprofile

The functionality of the LUN Creation and Pool Manipulation Capabilities, and Settings Subprofiles has
been subsumed by the Clause 5: Block Services Package.

The Pool Manipulation Capabilities, and Settings Subprofile is defined in section 7.3.3.10 of SMI-S 1.0.2.

DEPRECATED

1

2

3

4

Pool Manipulation Capabilities, and Settings Subprofile

634

SMI-S 1.6.1 Revision 6 SNIA Technical Position 635

EXPERIMENTAL

20 Storage Server Asymmetry Profile

20.1 Description

20.1.1 Overview

High-availability storage servers using multiple redundant storage processors exhibit a range of
interrelated behavior involving load-balancing, ports, and failover. This profile provides for management
of these aspects.

Many such systems have the concept of a storage resource (either a RAID group or a storage volume)
having an assignment to, or affinity for, one of the storage processors in a redundant set. This affinity
may have one or more underlying architectural reasons for existing. Examples are both front-end (target)
port connectivity with and between processors, cache processing, virtualization (RAID) processing, or
connectivity partitioning of back end resources.

When the storage processor for which the storage resource has affinity fails, the resource is taken over
by one of the other processors in the redundancy set

When both storage processors are healthy, the ports on the storage processor for which the storage
resource as affinity provide full bandwidth access to the resource. The ports on the “other” storage
processors provide full, limited, or standby access, depending on implementation

20.1.2 Relationship to Multiple Computer System Subprofile

This profile is a component profile (or subprofile) and extends the functionality of the Multiple Computer
System Subprofile, which in turn references this profile as a supported profile. This profile requires the
use of the Multiple Computer System Subprofile.

A separate profile was created for two purposes. Firstly, the functionality of Asymmetric Access is largely
storage-related and since the MCS is a common profile, the asymmetry functions are specified
separately. Secondly, although some asymmetric behavior may be modeled using provisions under the
Multiple Computer System Profile regarding aggregating resources to the lowest level ComputerSystem
that represents availability, many implementations aggregate all resources to the top-level
ComputerSystem, even though these implementations exhibit asymmetric behavior. These resources
include CIM_StorageVolumes, CIM_StoragePools, CIM_ProtocolControllers, CIM_ProtocolEndpoints,
and the CIM_StorageConfiguration and CIM_ControllerConfiguration services. CIM_LogicalPorts are
usually aggregated to the lower level systems that represent the storage processors.

Asymmetric behavior is modeled through constructs in this profile and is independent of SystemDevice
and Hosting associations in Multiple Computer System.

20.1.3 Relationship to Masking and Mapping Subprofile

The Masking and Mapping Subprofile provides the means to expose storage volumes to initiators through
front-end ports. In systems with asymmetric behavior, Masking and Mapping alone does not provide for
determining whether the action of the ExposePaths method will result in the creation of a path that is
primary, secondary, or standby from a performance standpoint.

This profile is does not formally extend Masking and Mapping but augments it’s functionality by providing
the model constructs to support this determination by a client. It does this with model relationships
directly between groups of front-end ports (which are represented by subclasses of
CIM_ProtocolEndpoint) and groups of storage resources, independent of the implementation of Mapping
and Masking “View” CIM_ProtocolControllers. This is necessary because some implementations may not
generate “primary” and “standby” view/mappings for the ports on each storage processor but instead

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Storage Server Asymmetry Profile

636

share common view controllers between storage processors, making it impossible to use the “view”
CIM_ProtocolController to group ports with volumes.

20.1.4 Relationship to T10

This subprofile supports the passive management of the functionality defined in the Target Port Group
Access States clause of the T10 SPC-4 specification.

20.1.5 Behavior, Characteristics, and Capabilities

The behavioral use cases for redundant systems are used to derive asymmetry characteristics which in
turn are used to distill capabilities for the profile that allow a client to interpret the asymmetric model
objects.

20.1.5.1 Port Failover

The first differentiator to consider when trying to classify asymmetric behavior is target port failover
behavior. Front-end ports on storage processors in a redundancy set exhibit either transparent or non-
transparent behavior when the supporting storage processor fails

20.1.5.1.1 Transparent

In transparent failover, a storage processor can support multiple virtual ports, that is the ports that it
normally has, and the functionality of ports from a failed storage processor in the same redundancy set.
Stated another way, when a storage processor fails, its ports don’t fail, they fail over to a healthy storage
processor. This mode is called transparent because the host sees only a transient loss of access to the
port. The port itself is still present after the failover.

20.1.5.1.2 Non-Transparent

In this type of architecture, the ports supported by a storage processor fail when the processor fails.
Access to the storage volumes that were exposed through the failed ports is provided through ports on a
surviving processor.

20.1.5.2 Port Asymmetry

Healthy storage servers have variant functionality with respect to access to volumes through ports on
different storage processors. This may be related to the affinity of such volumes (or the pools to which
they belong) to storage processors as described in 20.1.5.3 "Storage Resource Affinity". In some
systems, there is “full” bandwidth access to a volume through both ports on processor A and ports on
processor B. This is actually symmetric access. In other cases, access to a volume is full bandwidth
access through ports on the storage processor (“this”) for which the volumes have affinity and “reduced”
bandwidth access through ports on the “other” processor. The third variation is the there is no access at
all, other than inquiry type commands, through ports on the “other” processor, until the processor for
which the volumes have affinity fails. This functionality is reflexive in that there is full access to volumes
having affinity for the “other” processor through ports on that processor, while there is reduced access or
no access to volumes affinitied to “other” through ports on “this”.

20.1.5.3 Storage Resource Affinity

Storage resource affinity is the behavior that in many redundant servers, storage resources, either
individual volumes or RAID groups (also called RAID sets or RAID ranks) and thus the volumes allocated
from them, have an affinity for a given storage processor in a redundancy set. This affinity may stem from
allocation of non-dual ported drives to a processor or assignment of these resources to a processor for
cache or RAID processing architectural considerations. Managing this affinity is necessary on redundant
systems as part of a static load balancing strategy. This is true even when the front-end ports exhibit
symmetric access behavior, because assigning all resources to one storage processor may degrade the
overall system throughput.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 637

20.1.6 Model

20.1.6.1 Classes

This profile introduces five new classes. These include one capabilities class, two collections, and two
associations, shown in Figure 90.

20.1.6.1.1 Asymmetry Capabilities

This class contains properties that enable a client to determine the combination of asymmetry
characteristics implemented by the subject storage system. More specifically, they guide the client
algorithms in interpretation of the instances of the asymmetry classes and associations. The capabilities
are detailed in 20.8 "CIM Elements".

20.1.6.1.2 TargetPortGroup

This sub-class of CIM_SystemSpecificCollection aggregates the instances of CIM_ProtocolEndpoint or its
subclasses that represent the ports on a storage processor (represented by CIM_ComputerSystem). The
ports are aggregated because their relationship to the storage processors for failover and to the storage
resources for accessibility are the same.

Whether ProtocolEndpoint is used directly or one of its subclasses is used depends on which Target Port
component profile is implemented by the storage server.

Because CIM_TargetPortGroup ISA CIM_SystemSpecificCollection there must be an instance of
CIM_HostedCollection from each instance of CIM_TargetPortGroup to the instance of
CIM_ComputerSystem in the referencing Multiple Computer System Profile that represents the Top-Level
System.

Figure 90 - Storage Asymmetry Class Hierarchy

CIM_SystemSpecificCollection

CIM_TargetPortGroup

CIM_Dependency

CIM_StorageResourceLoadGroup

CIM_AsymmetricAccessibility CIM_StorageProcessorAffinity

CIM_Capabilities

CIM_StorageServerAsymmetryCapabilities

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Storage Server Asymmetry Profile

638

20.1.6.1.2.1 Multiple Hierarchical TargetPortGroups

Some Target Port profiles, such as the ISCS Target Port Profile, may have a hierarchy of
ProtocolEndpoints. Each layer of ProtocolEndpoints in the hierarchy that can have affinity for a storage
processor may be aggregated by a separate TargetPortGroup. This enables a client to determine which
lower-level ProtocolEndpoints in the hierarchy may be used to create upper-level ProtocolEndpoints with
the desired affinity. An example is the need to select TCPProtocolEndpoints with the same affinity for a
storage processor when attempting to create an iSCSIProtocolEndpoint for that same processor.

20.1.6.1.3 StorageResourceLoadGroup

This sub-class of CIM_SystemSpecificCollection aggregates either the storage volumes or storage pools
that have the same affinity for a storage processor. What type of storage resource is aggregated depends
on whether the pools have affinity or are common between processors and just the individual volumes
have affinity. There is a capabilities property to specify this. There is one static instance of
StorageResourceLoadGroup for each storage processor, with a single exception described in
20.1.6.1.3.1.

Because CIM_StorageResourceLoadGroup ISA CIM_SystemSpecificCollection there must be an instance
of CIM_HostedCollection from each instance of CIM_StorageResourceLoadGroup to the instance of
CIM_ComputerSystem in the referencing Multiple Computer System Profile that represents the Top-Level
System.

20.1.6.1.3.1 Single Volume Accessibility Override.

Some implementations allow for the normal “healthy” accessibility to a Storage Volume on the “other”
storage processor through ports on “this” storage processor to be overridden. Normally in an asymmetric
system this accessibility is “Standby” or “Active-NonOptimized”. This override gives Active-Optimized, or
full bandwidth access to this single volume.

This is modeled by an additional instance of StorageResourceLoadGroup that collects the subject volume
together with an instance of AsymmetricAccessibility that associates that special
StorageResourceLoadGroup with the TargetPortGroup. The properties on AsymmetricAccessibility reflect
the override. This profile does not support the action that creates or removes the override. Methods of
this profile that relate to assignment of affinity operate on the default static instance of
StorageResourceLoadGroup only.

20.1.6.1.4 StorageProcessorAffinity

This sub-class of CIM_Dependency associates instances of StorageResourceLoadGroup in a
Redundancy Set to each instance of CIM_ComputerSystem representing a storage processor. Primary
and Active properties are used to surface what the affinity is in both healthy and failed situations, and
which storage processor owns the resource group which is where the Load Group will fail back to.

20.1.6.1.5 Asymmetric Accessibility

This sub-class of CIM_Dependency associates instances of StorageResourceLoadGroup in a
Redundancy Set to each instance of CIM_CIM_TargetPortGroup in the same RedundancySet. The
AccessiblityState surfaces both the current and normal (healthy) accessibility of volumes in the
LoadGroup from ports in the Port Group.

20.1.6.2 Instance Diagrams

The following instance diagrams provide show various asymmetry use cases. They are extensions of the
MCS model, but for readability do not show Hosting and SystemDevice relationships. All instances are
scoped to the top-level system.

Figure 91 shows the Asymmetry instances in context of the Multiple Computer System Profile for a dual
redundant storage server.

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 639

Figure 91, Figure 92, Figure 93, and Figure 94 do not show the RedundancySet-related classes.

20.1.6.2.1 Multiple Tiers of Systems

Not shown is a system that has three tiers (see 30 Multiple Computer System Subprofile in Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6). This type of system may
aggregate storage processors into more than one redundant-failover sub-system. These subsystems are
then clustered in a non-failover, but load-balancing relationship to form the top-level storage server. In
this type of system, StorageProcessorAffinity associations would be contained within failover
subsystems, but AsymmetricAccessibility associations may span subsystem boundaries to reflect mid-
level load-balancing paths.

20.1.6.2.2 Non-Transparent Asymmetry Cases

Figure 92: "Ports Do Not Failover, Healthy" and Figure 93: "Ports Do Not Failover, Failed Controller" are
instance diagrams that show the model for healthy and failed situations in a non-transparent port
implementation. Because the ports and thus the Target Port Group do not failover, there is no need for a

Figure 91 - Asymmetry with MCS

StorageServer:
ComputerSystem

Top-level

StorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity

StorageProcessorAffinity

StorageProcessorAffinity StorageProcessorAffinity

StorageProcessorAffinity

AsymmetricAccessibility

AsymmetricAccessibility

AsymmetricAccessibility

StorageProcessorAffinity
StorageProcessorAffinity

RedundancySetMemberOf
Collection

ConcreteIdentity

MemberOf
Collection

152

153

154

155

156

157

158

159

160

161

162

163

164

Storage Server Asymmetry Profile

640

StorageResourceAffinity association from the Target Port Group on the storage processor to which the
ports belong to the “Other” storage processor.

Figure 92 - Ports Do Not Failover, Healthy

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity,
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

| Standby

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

 | Standby

AsymmetricAccessibility
State=

ActiveOptimized

165

166

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 641

Figure 93 - Ports Do Not Failover, Failed Controller

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

Unavailable

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity,
IsPrimary=false

IsActive=trueStorageProcessorAffinity,
IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

Unavailable

AsymmetricAccessibility
State=

ActiveNonOptimized

Storage Server Asymmetry Profile

642

20.1.6.2.3 Transparent Asymmetry Cases

Figure 94: "Ports Failover, Healthy" and Figure 95: "Ports Failover, Failed Controller" are instance
diagrams that show the model for healthy and failed situations in a transparent failover port
implementation.

Figure 94 - Ports Failover, Healthy

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity,
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveOptimized
| ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveOptimized

StorageProcessorAffinity
IsPrimary=false
IsActive=falseStorageProcessorAffinity,

IsPrimary=false
IsActive=false

167

168

169

170

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 643

20.2 Health and Fault Management Consideration

None

20.3 Cascading Considerations

None.

20.4 Supported Profiles, Subprofiles, and Packages

None.

20.5 Methods of the Profile

20.5.1 Assign Storage Resource Affinity

This profile specific method of CIM_StorageConfigurationService starts a job to assign affinity of a
StoragePool(s) or StorageVolume(s) to a storage processor. At the conclusion of the operation, the
resource will be a associated by CIM_MemberOfCollection to the StorageResourceLoadGroup with the
primary affinity for the specified storage processor. The existing instance of CIM_MemberOfCollection to
the existing StorageResourceLoadGroup is deleted.

Figure 95 - Ports Failover, Failed Controller

StorageServer:
ComputerSystem

Top-levelStorageProcessor A:
ComputerSystem

StorageProcessor B:
ComputerSystem

Component
CS

Component
CS

LogicalElement LogicalElement

ProtocolEndpointProtocolEndpoint

StorageProcessorAffinity
IsPrimary=true
IsActive=true

TargetPortGroup

StorageResource
LoadGroupMOC

MOC

AsymmetricAccessibility
State=

ActiveNonOptimized

StorageResource
LoadGroup

TargetPortGroup

MOC

MOC

StorageProcessorAffinity
IsPrimary=true
IsActive=true

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity
IsPrimary=true
IsActive=false

StorageProcessorAffinity
IsPrimary=false

IsActive=trueStorageProcessorAffinity
IsPrimary=false
IsActive=false

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveNonOptimized

AsymmetricAccessibility
State=

ActiveNonOptimized

StorageProcessorAffinity
IsPrimary=false
IsActive=trueStorageProcessorAffinity

IsPrimary=false
IsActive=false

171

172

173

174

175

176

177

178

179

180

181

182

183

Storage Server Asymmetry Profile

644

Support for this method is indicated by the presence of an instance of
StorageServerAsymmetryCapabilities in which the property StorageResourceAffinityAssignable is 'true'. If
0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/
0x1000 is returned, a job will be started to assign the element. The Job's reference will be returned in the
output parameter Job.

AssignStorageResourceAffinity

 IN, string ResourceType

This specifies whether the resource is a StorageVolume (= 2) or StoragePool (= 3).

 OUT, CIM_ConcreteJob REF JOB,

Reference to a job which may be created (may be null if job completed).

 IN, CIM_ComputerSystem REF StorageProcessor

Reference to the storage processor to which to assign the resource.

 IN, CIM_LogicalElement REF StorageResources[]

Array of references to storage resource instances to be assigned.

20.5.1.1 Return Codes

 Completed with No Error - 0

 Not Supported - 1

 Unknown - 2

 Timeout - 3

 Failed - 4

 Invalid Parameter - 5

 In Use - 6

 Method Parameters Checked - Job Started - 4096

 Size Not Supported - 4097

20.6 Client Considerations and Recipes

20.6.1 Determine which ports provide full bandwidth access to a storage element.

//

// DESCRIPTION

// Determine which ports on a storage server provide full

// bandwidth access to a storage volume.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The Top-Level ComputerSystem representing the target system of interest

// has been previously identified and defined in the $StorageServer-> variable.

//

// 2. The CIM_StorageVolume of interest has been previously identified

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 645

// and defined in the $StorageVolume-> variable.

//

// MAIN

// Step 1. Locate the instance of CIM_StorageServerAsymmetryCapabilities
associated to the

// target ComputerSystem to insure the profile is supported.

//

$StorageServerAsymmetryCapabilities[] = Associators($StorageServer->,

“CIM_ElementCapabilities”,

“CIM_StorageServerAsymmetryCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“StorageResourceSymmetryCapability”})

if ($StorageServerAsymmetryCapabilities[] == null ||
$StorageServerAsymmetryCapabilities[].length != 1) {

 <ERROR! The profile capabilities could not be found>

}

// Step 2. Check to see if this server has symmetric behavior.

// If so, exit here as an optimization.

//

if ($StorageServerAsymmetryCapabilities[0].StorageResourceSymmetryCapability == 2
) // Symmetric

 { <EXIT! Symmetric. All ports on the server provide full bandwidth access.> }

// Step 3. Find the Storage Resource Load Group to which this volume belongs.

//

$StorageResourceLoadGroup->[] = AssociatorNames($StorageVolume->,

“CIM_MemberOfCollection”,

“CIM_StorageResourceLoadGroup”,

“ManagedElement”,

“Collection”)

if ($StorageResourceLoadGroup[] == null || $StorageResourceLoadGroup[].length !=
1)

 { <ERROR! Volume must be a member of one and only one Load Group > }

// Step 4. Find the Target Port groups whose member ports provide full

// bandwidth access to the subject volume, and collect the port references for

// each such port group.

//

$AsymmetricAccessibility[] = References($StorageResourceLoadGroup->[0],

 “CIM_AsymmetricAccessibility”,

 “Dependent”,

 false,

 false,

 {“Antecedent”, “NormalAccessState”})

220

221

222

223
224

225

226

227

228

229

230

231

232

233

234

235
236

237

238

239

240

241

242
243

244

245

246

247

248

249

250

251

252

253
254

255

256

257

258

259

260

261

262

263

264

265

Storage Server Asymmetry Profile

646

#index = 0

for #i in $AsymmetricAccessibility[] {

 if ($AsymmetricAccessibility[#i].NormalAccessState == 5) { // Active
Optimized

 $Ports->[] = AssociatorNames($AsymmetricAccessibility[#i].Antecedent,

 “CIM_MemberOfCollection”,

 “CIM_ProtocolEndpoint”,

 “Collection”,

 “ManagedElement”)

 if ($Ports->[] != null) {

 for #j in $Ports->[] {

 $FullAccessPorts->[#index] = $Ports->[#j]

 #index++

 }

 }

 }

}

<EXIT: $Ports will contain the references to the ProtocolEndpoints representing
the ports which

 will give full bandwidth access to the volume.>

20.7 Registered Name and Version

Storage Server Asymmetry version 1.4.0 (Component Profile)

20.8 CIM Elements

Table 411 describes the CIM elements for Storage Server Asymmetry.

Table 411 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description

20.8.1 CIM_AsymmetricAccessibility Mandatory This association indicates the accessibility of
StorageVolumes in the StorageResourceLoadGroup
through ports in the associated TargetPortGroup.

20.8.2 CIM_ElementCapabilities (To Top-level
ComputerSystem)

Mandatory

20.8.3 CIM_HostedCollection (Top-Level System to Load
Group)

Mandatory Associates the instances of StorageResourceLoadGroup
to the Top-Level ComputerSystem. Enables a Client to
find these groups without first traversing to each Storage
Processor ComputerSystem.

20.8.4 CIM_HostedCollection (Top-Level System to Port
Group)

Mandatory Associates the instances of TargetPortGroup to the Top-
Level ComputerSystem. Enables a Client to find these
groups without first traversing to each Storage Processor
ComputerSystem.

20.8.5 CIM_MemberOfCollection (SATA Target Port
Group)

Conditional Conditional requirement: Requires TargetPortGroup to
aggregate CIM_ProtocolEndpoint. Used to aggregate
SATA Target Ports in a Target Port Group.

266

267

268
269

270

271

272

273

274

275

276

277

278

279

280

281

282

283
284

285

286

287

288

289

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 647

20.8.6 CIM_MemberOfCollection (SB Target Port Group) Conditional Conditional requirement: Requires TargetPortGroup to
aggregate SNIA_SBProtocolEndpoint. Used to
aggregate SB Target Ports in a Target Port Group.

20.8.7 CIM_MemberOfCollection (SCSI Target Port
Group)

Conditional Conditional requirement: Requires TargetPortGroup to
aggregate CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint or Requires TargetPortGroup
to aggregate CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint. Used to aggregate DA, FC,
SPI, or SAS Target Ports in a Target Port Group.

20.8.8 CIM_MemberOfCollection (Storage Resource
Load Group aggregating Storage Pools)

Conditional Conditional requirement: Requires
StorageResourceLoadGroup to aggregate
CIM_StoragePool. Aggregates Storage Pools in a
Storage Resource Load Group.

20.8.9 CIM_MemberOfCollection (Storage Resource
Load Group aggregating Storage Volumes)

Conditional Conditional requirement: Requires
StorageResourceLoadGroup to aggregate
CIM_StorageVolume. Aggregates Storage Volumes in a
Storage Resource Load Group.

20.8.10 CIM_MemberOfCollection (iSCSI Target Port
Group)

Conditional Conditional requirement: Requires TargetPortGroup to
aggregate CIM_iSCSIProtocolEndpoint. Used to
aggregate iSCSI Target Ports in a Target Port Group.

20.8.11 CIM_StorageConfigurationService Optional

20.8.12 CIM_StorageProcessorAffinity
(StorageResourceLoadGroup)

Mandatory Indicates a processing affinity and state between a
TargetPortGroup and a ComputerSystem representing a
storage processor in a redundant storage server. The
processor can host the group in either a healthy or failover
state. Instances of this association are static, one for each
combination of StorageResourceLoadGroup and
ComputerSystem in the RedundancySet.

20.8.13 CIM_StorageProcessorAffinity (Target Port
Group)

Mandatory Indicates a processing affinity and state between a
TargetPortGroup and a ComputerSystem representing a
storage processor in a redundant storage server. The
processor can host the group in either a healthy or failover
state. Instances of this association are static, one for each
combination of StorageResourceLoadGroup and
ComputerSystem in the RedundancySet.

20.8.14 CIM_StorageResourceLoadGroup (Load Groups) Mandatory StorageResourceLoadGroup aggregates either the
StoragePools or the individual StorageVolumes that have
the same affinity for a storage processor. The affinity of
this group may change during failover or failback/rebind
from one storage processor to another in a storage
server. StorageResourceLoadGroup has a instance of the
StorageProcessorAffinity association to each instance of
CIM_ComputerSystem representing a storage processor
that may host the StorageResourceLoadGroup in either a
healthy or failover state. Each instance of
StorageResourceLoadGroup in a storage server is also
associated to each instance of TargetPortGroup in the
server by the AsymmetricAccessibility class.

Table 411 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description

Storage Server Asymmetry Profile

648

20.8.1 CIM_AsymmetricAccessibility

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

20.8.15 CIM_StorageServerAsymmetryCapabilities Mandatory This class defines the asymmetric characteristics and
capabilities of a redundant storage server. The properties
in this class guide client algorithms in the interpretation of
the instances of StorageResourceLoadGroup,
TargetPortGroup, StorageProcessorAffinity, and
AsymmetricAccessibility, and also determining support for
methods that affect assignment of storage resources to
storage processors.

20.8.16 CIM_TargetPortGroup (Port Groups) Mandatory TargetPortGroup aggregates the ProtocolEndpoints
representing a group of target ports in a storage server.
The ProtocolEndpoints may be a subclass of
CIM_ProtocolEndpoint as appropriate for the type of
target port implemented by the storage server. The target
ports are aggregated because they have the same affinity
for an associated storage processor for failover and the
same accessibility state to storage resources in a given
StorageResourceLoadGroup. The TargetPortGroup may
have either a fixed affinity for a storage processor within
the server or an affinity that changes during failover from
one storage processors to another. TargetPortGroup has
a instance of the StorageProcessorAffinity association to
each instance of CIM_ComputerSystem representing a
storage processor that may host the TargetPortGroup in
either a healthy or failover state. Each instance of
TargetPortGroup in a storage server is also associated to
each instance of StorageResourceLoadGroup in the
server by the AsymmetricAccessibility class.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageProcessorAffinity AND
SourceInstance.CIM_StorageProcessorAffinity::IsActive
<>
PreviousInstance.CIM_StorageProcessorAffinity::IsActive

Mandatory CQL -Change in Affinity of a
StorageResourceLoadGroup.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageProcessorAffinity AND
SourceInstance.IsActive <> PreviousInstance.IsActive

Mandatory Deprecated WQL -Change in Affinity of a
StorageResourceLoadGroup.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_AsymmetricAccessibility AND
SourceInstance.CIM_AsymmetricAccessibility::CurrentAc
cessState <>
PreviousInstance.CIM_AsymmetricAccessibility::Current
AccessState

Mandatory CQL -Modification of accessibility to a storage element.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_AsymmetricAccessibility AND
SourceInstance.CurrentAccessState <>
PreviousInstance.CurrentAccessState

Mandatory Deprecated WQL -Modification of accessibility to a
storage element.

Table 411 - CIM Elements for Storage Server Asymmetry

Element Name Requirement Description

290

291

292

293

294

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 649

Table 412 describes class CIM_AsymmetricAccessibility.

20.8.2 CIM_ElementCapabilities (To Top-level ComputerSystem)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 413 describes class CIM_ElementCapabilities (To Top-level ComputerSystem).

20.8.3 CIM_HostedCollection (Top-Level System to Load Group)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 412 - SMI Referenced Properties/Methods for CIM_AsymmetricAccessibility

Properties Flags Requirement Description & Notes

CurrentAccessState Mandatory This property indicates the current accessibility state of volumes in the
StorageResourceLoadGroup through ports in the TargetPortGroup. With
the exception of Unavailable', the states are those defined by the T10
SPC-4 Target Port Group Access States clause. 2(Unavailable): The
volumes are not accessible in any way. 3(Standby): No data access to the
volume is possible. Status and other non-data access commands are
available. 4(Active Non-Optimized): Data access to the volume is available
at less than full bandwidth. 5(Active Optimized): Data access to the
volume is available at full bandwidth.

NormalAccessState Mandatory This property indicates the accessibility state of volumes in the
StorageResourceLoadGroup through ports in the TargetPortGroup when
the primary storage processor hosting the groups is healthy. With the
exception of 'Unavailable', the states are those defined by the T10 SPC-4
Target Port Group Access States clause. 2(Unavailable): The volumes are
not accessible in any way. 3(Standby): No data access to the volume is
possible. Status and other non-data access commands are available.
4(Active Non-Optimized): Data access to the volume is available at less
than full bandwidth. 5(Active Optimized): Data access to the volume is
available at full bandwidth.

Antecedent Mandatory The Port Group.

Dependent Mandatory The Storage Resource Load Group.

Table 413 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (To Top-level ComputerSys-
tem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Top-level Storage Sever ComputerSystem.

Capabilities Mandatory StorageServerAsymmetryCapabilities.

295

296

297

298

299

300

301

302

303

304

305

306

Storage Server Asymmetry Profile

650

Table 414 describes class CIM_HostedCollection (Top-Level System to Load Group).

20.8.4 CIM_HostedCollection (Top-Level System to Port Group)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 415 describes class CIM_HostedCollection (Top-Level System to Port Group).

20.8.5 CIM_MemberOfCollection (SATA Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_ProtocolEndpoint.

Table 416 describes class CIM_MemberOfCollection (SATA Target Port Group).

20.8.6 CIM_MemberOfCollection (SB Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Table 414 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Load
Group)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 415 - SMI Referenced Properties/Methods for CIM_HostedCollection (Top-Level System to Port
Group)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 416 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SATA Target Port Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The SATA Target Ports.

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 651

Requirement: Requires TargetPortGroup to aggregate SNIA_SBProtocolEndpoint.

Table 417 describes class CIM_MemberOfCollection (SB Target Port Group).

20.8.7 CIM_MemberOfCollection (SCSI Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint or Requires
TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint or Requires TargetPortGroup to aggregate
CIM_SCSIProtocolEndpoint or Requires TargetPortGroup to aggregate CIM_SCSIProtocolEndpoint.

Table 418 describes class CIM_MemberOfCollection (SCSI Target Port Group).

20.8.8 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Pools)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires StorageResourceLoadGroup to aggregate CIM_StoragePool.

Table 419 describes class CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage
Pools).

20.8.9 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Volumes)

Table 417 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SB Target Port Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The The SB Target Ports.

Table 418 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (SCSI Target Port Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The DA, FC, SPI, or SAS Target Ports.

Table 419 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load
Group aggregating Storage Pools)

Properties Flags Requirement Description & Notes

Collection Mandatory The Storage Resource Load Group.

Member Mandatory The StoragePools.

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

Storage Server Asymmetry Profile

652

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires StorageResourceLoadGroup to aggregate CIM_StorageVolume.

Table 420 describes class CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage
Volumes).

20.8.10CIM_MemberOfCollection (iSCSI Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Requires TargetPortGroup to aggregate CIM_iSCSIProtocolEndpoint.

Table 421 describes class CIM_MemberOfCollection (iSCSI Target Port Group).

20.8.11CIM_StorageConfigurationService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 422 describes class CIM_StorageConfigurationService.

Table 420 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Resource Load
Group aggregating Storage Volumes)

Properties Flags Requirement Description & Notes

Collection Mandatory The Storage Resource Load Group.

Member Mandatory The Storage Volumes.

Table 421 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (iSCSI Target Port Group)

Properties Flags Requirement Description & Notes

Collection Mandatory The Target Port Group.

Member Mandatory The iSCSI Target Ports.

Table 422 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

CreationClassName Mandatory

SystemName Mandatory

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 653

20.8.12CIM_StorageProcessorAffinity (StorageResourceLoadGroup)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Table 423 describes class CIM_StorageProcessorAffinity (StorageResourceLoadGroup).

20.8.13CIM_StorageProcessorAffinity (Target Port Group)

Created By: Static

Modified By: External

Deleted By: Static

Requirement: Mandatory

Name Mandatory

AssignStorageResourceAff
inity()

Optional Start a job to assign affinity of a StoragePool(s) or StorageVolume(s) to a
storage processor. At the conclusion of the operation, the resource will be
a member of the StorageResourceLoadGroup with the primary affinity for
the specified storage processor. Support for this method is indicated by
the presence of an instance of StorageServerAsymmetryCapabilites in
which the property StorageResourceAffinityAssignable is 'true'. If 0 is
returned, the function completed successfully and no ConcreteJob
instance was required. If 4096/0x1000 is returned, a job will be started to
assign the element. The Job's reference will be returned in the output
parameter Job.

Table 423 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (StorageResource-
LoadGroup)

Properties Flags Requirement Description & Notes

IsPrimary Mandatory This property is set to true if the TargetPortGroup is hosted by the storage
processor when the processor is healthy. It is set to false if the group can
be hosted by the processor when the primary storage processor for the
group has failed. For each StorageResourceLoadGroup, one instance of
StorageProcessorAffinity will have IsPrimary=true, the rest will have
IsPrimary=false.

IsActive Mandatory This property is set to true if the StorageResourceLoadGroup is currently
being hosted by the storage processor.

Antecedent Mandatory The storage processor for which the Storage Resource Load Group has
affinity.

Dependent Mandatory The Storage Resource Load Group.

Table 422 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

360

361

362

363

364

365

366

367

368

369

370

Storage Server Asymmetry Profile

654

Table 424 describes class CIM_StorageProcessorAffinity (Target Port Group).

20.8.14CIM_StorageResourceLoadGroup (Load Groups)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

20.8.15CIM_StorageServerAsymmetryCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 425 describes class CIM_StorageServerAsymmetryCapabilities.

Table 424 - SMI Referenced Properties/Methods for CIM_StorageProcessorAffinity (Target Port Group)

Properties Flags Requirement Description & Notes

IsPrimary Mandatory This property is set to true if the TargetPortGroup is hosted by the storage
processor when the processor is healthy. It is set to false if the group can
be hosted by the processor when the primary storage processor for the
group has failed. For each StorageResourceLoadGroup, one instance of
StorageProcessorAffinity will have IsPrimary=true, the rest will have
IsPrimary=false.

IsActive Mandatory This property is set to true if the TargetPortGroup is currently being hosted
by the storage processor.

Antecedent Mandatory The storage processor for which the Port Group has affinity.

Dependent Mandatory The Target Port Group.

Table 425 - SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities

Properties Flags Requirement Description & Notes

StorageResourceSymmetr
yCapability

Mandatory If this property is set to Symmetric it indicates that the StoragePools or
StorageVolumes are processed in a distributed load-balanced manner
between storage processors. If this property is set to Asymmetric it
indicates that the StoragePools or StorageVolumes are have a primary
affinity for one storage processor.

StorageResourceType Mandatory If this property is set to StorageVolume it indicates that the StoragePools
have symmetric behavior(or no affinity) and that the Volumes have affinity
for one storage processor or the other. If this property is set to
StoragePool it indicates that a StoragePool as well as the Volumes
allocated from it have affinity for one storage processor or the other.

StorageResourceAffinityAs
signable

Mandatory Set to true if this storage system allows the client to specify which storage
processor a storage resource is assigned to, either using one of the
CreateOrModify methods or the AssignStorageResourceAffinity method
on StorageConfigurationService.

371

372

373

374

375

376

377

378

379

380

381

382

 Storage Server Asymmetry Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 655

20.8.16CIM_TargetPortGroup (Port Groups)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

EXPERIMENTAL

PortGroupFailoverBehavio
r

Mandatory This property specifies whether a storage server supports transparent or
non-transparent failover of TargetPortGroups. If this value is 2(Port Group
Fails), a TargetPortGroup will have a single StorageProcessorAffinity
association to the storage processor it belongs to and will fail with. If this
property has a value of 3, the TargetPortGroup will have a
StorageProcessorAffinity association to each storage processor that can
host it's function, and the properties on the association will indicate both
which processor is primary and which is currently hosting the ports in the
group.

TargetPortSymmetryCapa
bility

Mandatory This property indicates the normal(healthy) state accessibility to volumes
both in the StorageResourceLoadGroup on the same storage processor
as a TargetPortGroup, and to volumes in StorageResourceLoadGroups on
'other' storage processors in the redundant server. If this values is
2(Symmetric): There is equal bandwidth access to volumes on all storage
processors through target ports on this storage processor. If this value is
3(Asymmetric Non-Optimized): There is full bandwidth access to volumes
in the StorageResourceLoadGroup on the same storage processor as the
TargetPortGroup and degraded bandwidth access to volumes in the
StorageResourceLoadGroups on the 'other' storage processors. If this
value is 4(Asymmetric No Access): There is full bandwidth access to
volumes in the StorageResourceLoadGroup on the same storage
processor as the TargetPortGroup and no access to volumes on 'other'
storage processors.

Table 425 - SMI Referenced Properties/Methods for CIM_StorageServerAsymmetryCapabilities

Properties Flags Requirement Description & Notes

383

384

385

386

387

Storage Server Asymmetry Profile

656

 Block Services Resource Ownership Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 657

DEPRECATED

21 Block Services Resource Ownership Subprofile

NOTE The Block Services Resource Ownership Subprofile is scheduled for removal for SMI-S 2.0. The functionality of this profile
will not be replaced in SMI-S 2.0. The Storage Network Industry Association (SNIA) is not aware of any implementations of this
profile. The SNIA would like to hear from anyone that has implemented the Block Services Resource Ownership Subprofile. If your
company or organization has implemented this subprofile and is a member of the SNIA, please contact the DRM Technical Working
Group or indicate your preference to keep this subprofile in SMI-S 2.0 during member reviews and ballots. If your company or
organization has implemented this subprofile and is not a member of the SNIA, please indicate your preference to keep this
subprofile as part of SMI-S using the SNIA feedback portal: http://www.snia.org/tech_activities/feedback/ .

21.1 Description

The Block Services Resource Ownership common subprofile models control over the rights of a client to
grant or deny access to block storage resources, as shown in Figure 96. By asserting exclusive control
over these rights, one client can control which other clients may access those resources. This subprofile
is intended for environments in which multiple CIM clients may not be completely aware of each other's
activities, making it important that use of the resource not be disrupted by a client that is unaware of
shared resource use. Specific examples include use of a volume by in-band virtualizers and NAS
gateways, where attempts to manage the volume by clients not associated with this use could be
seriously disruptive. An intended configuration is that a CIM client exists in the cascading device that has
exclusive use of the volume. The Resource Ownership Subprofile is optional.

1

2
3
4
5
6
7
8

9

10

11

12

13

14

15

16

17

18

Block Services Resource Ownership Subprofile

658

This profile concerns itself with the existence and use of two sets of rights which may be realized as two
Privilege instances that are associated via ConcreteDependency to a PrivilegeManagementService.
There is one Privilege to "Manage StorageVolume" and a superset of that to "Manage Storage". Each is
described in Table 426.

Figure 96 - Resource Ownership for Block Services

Table 426 - Block Service Management Rights

ElementName Property Index Value

Manage StorageVolume Activities 0 Execute

QualifiersFormats 0 <class>.method

Privilege

ElementName = Manage StorageVolume
RepresentsAuthorizationRights = TrueConcreteDependency

SystemDevice

HostedCollection

ConcreteDependency

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

System

1

HostedService
*

*
*

Subprofile: Security RBAC
Subprofile: Security ResourceOwnership

Subprofile: BlockServices ResourceOwnership

Registered Profile

ReferencedProfile

RegisteredSubProfile

RegisteredName = “BlockServices ResourceOwnership”*

*RegisteredSubProfile

RegisteredName = “Security ResourceOwnership”

ReferencedProfile

*

RegisteredSubProfile

RegisteredName = “Security RBAC”
*

*

*

Bold: Required

StorageVolume

StoragePool

1

HostedStoragePool

Subject: Identity

InstanceID: string
CurrentlyAuthenticated: boolean

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromStorageP
ool()
DeleteStoragePool()
ReturnToStoragePool()
CreateOrModifyElementFromElement()

ControllerConfigurationService

AttachDevice()
DetachDevice()
ExposePaths()
HidePaths()

1

HostedService

*

HostedService* *

Privilege

ElementName = Manage Storage
RepresentsAuthorizationRights = True

ElementConformsToProfile

ReferencedProfile
*

*

StorageExtentConcreteComponent

*

*

*

*
RedundancySet

*

*

*

*

SystemDevice

IdentityContext *

*

*

1
*

PrivilegePropagationRule

 ElementName = "SNIA_BSResourceOwnership"

PolicyRuleInSystem

PolicySetAppliesToElement

PolicySetAppliesToElement

*

ConcreteIdentity

*

Registered Profile

RegisteredName = “Security”
SubProfileRequiresProfile

1..*
*

19

20

21

22

 Block Services Resource Ownership Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 659

This profile assumes that the intrinsic CreateInstance and DeleteInstance methods are not supported for
either StorageVolumes or StoragePools.

With RepresentsAuthorizationRights set to True, the ChangeAccess call may be used to assign "Manage
StorageVolume" rights to a StorageVolume for a particular set of subjects, each represented by an
Identity. Once this assignment is made, only members of that set of subjects are permitted to assign
“Manage StorageVolume” rights to other subjects, (regardless of the setting of
RepresentsAuthorizationRights. The ShowAccess call may be used to list the rights granted to a
particular subject Identity and target StorageVolume or StoragePool.

To establish an “Owner” in the sense meant by this profile, only one subject is assigned the "Manage
StorageVolume" privilege with RepresentsAuthorizationRights set both to True and False.

The same strategy is used to assign "Manage Storage" rights to a StoragePool.

Even though the SMI-S 1.1 ExposePaths and HidePaths extrinsics act on StorageVolumes by the LUID
string parameter rather than a reference, nevertheless they are governed by authorization rights.

This profile requires that every StorageVolume allocated from a StoragePool that is governed by "Manage
Storage" rights be assigned the corresponding "Manage StorageVolume" rights to the same subject. This
is an implicit PrivilegePropagationRule, which need not be made explicit to be in affect. Whenever
ChangeAccess, or other means, is used to modify the “Manage StorageVolume” rights of a particular

ActivityQualifiers 0 StorageConfigurationService.
 ReturnToStoragePool
StorageConfigurationService.
 CreateorModifyElementfromElements
StorageConfigurationService.AttachDevice,
StorageConfigurationService.DetachDevice,
StorageConfigurationService.ExposePaths,
StorageConfigurationService.HidePaths,
PrivilegeManagementService.AssignAccess,
PrivilegeManagementService.ChangeAccess,
ModifyInstance,
SetProperty

Manage Storage Activities 0 Execute

QualifiersFormats 0 <class>.method

ActivityQualifiers 0 StorageConfigurationService.
 CreateOrModifyStoragePool,
StorageConfigurationService.
 CreateOrModifyElementFromStoragePool,
StorageConfigurationService.
 DeleteStoragePool,
StorageConfigurationService.
 ReturnToStoragePool,
StorageConfigurationService.
 CreateorModifyElementfromElements,
ControllerConfigurationService.AttachDevice,
ControllerConfigurationService.DetachDevice,
ControllerConfigurationService.ExposePaths,
ControllerConfigurationService.HidePaths,
PrivilegeManagementService.AssignAccess,
PrivilegeManagementService.ChangeAccess,
ModifyInstance,
SetProperty

Table 426 - Block Service Management Rights

ElementName Property Index Value

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Block Services Resource Ownership Subprofile

660

subject to a StoragePool, those rights are propagated for that subject to all StorageVolumes that have an
AllocatedFromStoragePool association to that StoragePool.

If an explicit PrivilegePropagationRule is used, it shall have ElementName set to
“SNIA_BSResourceOwnership”.

Optionally, a QueryCondition, (not shown), may be associated to that PrivilegePropagationRule via
PolicyConditionInPolicyRule, (not shown), if specified the QueryCondition instance shall have its
QueryLanguage property set to “2”, meaning “CQL”, its QueryResultName set to
“SNIA_BSResourceOwnershipCondition” and its Query property set to

“SELECT (M.SourceInstanceHost || '/' || M.SourceInstanceModelPath) AS PMSPath,
M.MethodParameters.Subject,
M.MethodParameters.Target,
FROM CIM_InstMethodCall M,
WHERE M.MethodName = 'ChangeAccess'
AND M.ReturnValue = 0
AND M.PreCall = FALSE
AND M.MethodParameters.Target ISA CIM_StoragePool
AND ANY P IN M.MethodParameters.Privileges[*]
 SATISFIES (P.ElementName = 'ManageStorage')

Additionally, if this optional QueryCondition is associated then a corresponding MethodAction instance,
(not shown), shall also be associated to the same PrivilegePropagationRule via PolicyActionInPolicyRule,
(not shown). The MethodAction instance shall have its QueryLanguage property set to “2”, meaning
“CQL”, its InstMethodCallName set to “SNIA_BSResourceOwnershipAction” and its Query property set to

“SELECT (BS.PMSPath || '.' || 'ChangeAccess') AS MethodName,
BS.Subject AS Subject,
ObjectPath(SV) AS Target,
NULL AS PropagationPolicies,
BS.Privileges AS Privileges
FROM SNIA_BSResourceOwnershipCondition BS,
 CIM_AllocatedFromStoragePool AFSP,
 CIM_StorageVolume SV,
 CIM_Privilege P
WHERE ObjectPath(SV) = AFSP.Dependent
AND BS.Target = AFSP.Antecedent
AND P.ElementName = 'Manage StorageVolume'

If AuthorizedSubject/AuthorizedTarget associations are implemented, then these need to be created as
appropriate to reflect the assigned rights. In any case, a client may use ShowAccess to determine what
privileges are in force for particular subject Identity, StorageVolume or StoragePool.

If the ChangeAccess request to establish ownership is not permitted, then the return status shall be
CIM_ERR_ACCESS_DENIED. This result may be because the requestor is not permitted to make the
call, or the requestor does not have sufficient rights to modify ownership of the target.

Some vendors may define additional vendor-specific extrinsic operations that need to be restricted in
order to realize the functionality of Resource Ownership. Execution of each such vendor-specific
extrinsics shall be added to the above list of restricted activities. Clients may check for the presence of at
least the above list of restricted activities, but shall not check for an exact match to the above list, as such
a check may fail if there are vendor-specific extrinsics that are also restricted.

21.1.1 Design considerations

This list realizes a number of design decisions:

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

 Block Services Resource Ownership Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 661

• For simplicity, the "Manage Storage" Privilege is a superset of the "Manage StorageVolume" Privilege. The
"Manage Storage" Privilege may be used against both StorageVolumes and StoragePools. When applied to a
StorageVolume, methods called out in that Privilege that do not affect StorageVolumes are simply ignored.

• The capability to own StoragePools is signaled by a PrivilegeManagementService with a
ConcreteDependency.Dependent ”Manage Storage” Privilege with RepresentsAuthorizationRights set to
True.

• The "Manage StorageVolume" Privilege does not provide the ability to manage StoragePools.

• DeleteProtocolController is not restricted. The design goal is to control resource management in a fashion
that keeps reasonably well-behaved clients from causing unintended problems. Control of the StoragePool
and StorageVolume instances is sufficient, as a reasonably well-behaved client should at least call
DetachDevice or HidePaths on the associated StorageVolumes before calling DeleteProtocolController (both
DeleteDevice and HidePaths are controlled), or at the very least understand what the attached volumes are
being used for before deleting the protocol controller. The ProtocolControllerforPort and the associated port
(e.g., FCPort) are also not restricted for similar reasons.

• RemoveAccess and ChangeAccess are not restricted to avoid complexity. These could be restricted by
creating a second type of resource ownership Privilege to control them, and the corresponding access
Privileges to enforce the restrictions, but for 1.1, it seems reasonable to trust clients that don't know what
they're doing to avoid invocations of RemoveAccess and ChangeAccess.

• ServiceAffectsElement associations are assumed between Services and affected elements. (See Figure 97:
"ServiceAffectsElement Associations for ResourceOwnership".) This subprofile does not REQUIRE an
implementation to present these associations unless there is more than one of a particular type Service in the
profiled Namespace.

• AuthorizedPrivilege instances are assumed when a Privilege is granted to a subject or assigned to a target.
(See Figure 98: "AuthorizedPrivilege Associations for ResourceOwnership".) AuthorizedTarget and
AuthorizedSubject associations are assumed between the AuthorizedPrivilege and the target and subject
entities respectively. This subprofile does not REQUIRE the implementation to make these instances explicit.

Figure 97 - ServiceAffectsElement Associations for ResourceOwnership

PrivilegeManagementService

AssignAccess()
RemoveAccess()
ChangeAccess()
ShowAccess()

Privilege

*

Subprofile: Security RBAC
Subprofile: Security ResourceOwnership

Subprofile: BlockServices ResourceOwnership

Bold: Required

StorageVolume

StoragePool*

*

*

*Identity

*

StorageConfigurationService

CreateOrModifyStoragePool()
CreateOrModifyElementFromStoragePool()
DeleteStoragePool()
ReturnToStoragePool()
CreateOrModifyElementFromElement()

ControllerConfigurationService

AttachDevice()
DetachDevice()
ExposePaths()
HidePaths()

ServiceAffectsElement

*

*

*

*

StorageExtent *

RedundancySet

*

*

ServiceAffectsElement

ServiceAffectsElement
*ServiceAffectsElement

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Block Services Resource Ownership Subprofile

662

Instead this profile relies on the ChangeAccess method to grant or deny rights and on the ShowAccess
method to display rights

• PrivilegePropagationRule instances are assumed with appropriate PolicySetAppliesToElement associations
to StoragePool and StorageVolume instances and a PolicyRuleInSystem association to a System instances.
This subprofile does not REQUIRE either the PrivilegePropagationRule instances nor the related association
instances.

21.1.2 Privilege Propagation

Propagation is a means of restricting the number of AuthorizedTarget associations for a Privilege.
Propagation has two elements:

1) Privilege restrictions on a StoragePool propagate to ConcreteComponent.PartComponent StorageExtents.

2) Privilege restrictions on a StoragePool propagate across ConcreteIdentity to a StorageExtent
aspect. (For instance when a Raid 5 extent is used as a StoragePool.)

3) Privilege restrictions on a StorageExtent propagate across ConcreteIdentity to a RedundancySet
aspect. (For instance when spares are available for a Raid 5 extent.)

To place these rules in force, a PrivilegePropagationRule instance is associated via
PolicySetAppliesToElement to affected StoragePools or StorageVolumes. This rule shall have its
ElementName set to "BlockServices ResourceOwnership" and it shall not have any PolicyCondition or
PolicyAction instances associated with it.

ShowAccess may be used to determine the resulting behavior.

21.2 Client Considerations and Recipes

Resource Ownership Privileges can be distinguished from LUN Mapping/Masking privileges as the latter
contain Execute (instance of Activities[]) cdb=* (ActivityQualifiers[]) SCSI Command (QualifierFormats[]).

Figure 98 - AuthorizedPrivilege Associations for ResourceOwnership

Subprofile : Security RBAC
Subprofile : Security ResourceO w nership

Subprofile : B lockServices ResourceO w nership

Bold: Required

StorageVolum e

StoragePool *

AuthorizedPrivilege*

*

Identity

AuthorizedSubject

*
Privilege

StorageExtent

RedundancySet

*

*

*

AuthorizedTarget

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

 Block Services Resource Ownership Subprofile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 663

A cascading provider determines whether or not Resource Ownership is supported by an array by looking
for Block Services Resource Ownership as a RegisteredSubprofile of the Array Profile.

While this subprofile is intended to support cascading, it can be used with any CIM Client that can
authenticate to the CIM Server and thereby obtain an authenticated Identity.

A client can determine whether resource ownership restrictions are enforced on a StorageVolume or
StoragePool by using the ShowAccess method (preferred) or by association traversal via
AuthorizedTarget to resource ownership Privileges.

When CIM Servers are cascaded, it's necessary to be able to associate the embedded CIM client (e.g., in
a virtualizer or NAS head) with the Identity in the array that is the AuthorizedSubject of the privileges.
Assuming shared secrets, this can be modeled and realized as follows:

• In the virtualizer or NAS Head, a CIM Service instance is associated (ServiceSAPDependency) with a
RemoteServiceAccessPoint that has associated via CredentialContext to a SharedSecret credential that
contains information necessary for authentication.

• RemoteID: String by which the principal is known. This maps to Account.UserID

• Secret: Password or other secret. This is set, but is not typically readable.

• In the array, the Identity instance is created that is authenticated by the Credential in the previous step. This
Identity may be associated via ConcreteIdentity to an Account. Or, it may be associated via IdentityContext to
a RemoteServiceAccessPoint that provides access to a 3rd Party Authentication service. If the latter, then the
Security 3rdPartyAuthentication Subprofile shall be present on the Array.

• When the CIM client uses HTTP authentication with that username and password, the authenticated Identity
is assigned to the CIM client's session.

There is no requirement that the Identity and Account instances in the array be creatable or manipulable
via CIM. The contents of these instances have significant security implications and hence the ability to
create and change them need to be carefully controlled. This example uses HTTP authentication, but is
not meant to exclude other forms of authentication.

DEPRECATED

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Block Services Resource Ownership Subprofile

664

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 665

IMPLEMENTED

22 Storage Virtualizer Profile

22.1 Description

Storage virtualizers act like RAID arrays but can use storage provided by systems external to the storage
virtualizer and local disks. A storage virtualizer system combines both remote and local storage to create
a seamless pool. The virtualization system allocates volumes from the pool for host systems to use.

The basic virtualizer system profile provides a read-only view of the system. The various subprofiles
indicated in Figure 99: "Storage Virtualizer Package Diagram" extend this description and also enable
configuration. Refer to 22.4 for more information on these optional extensions. This profile also includes
the mandatory 31 Physical Package Package (in Storage Management Technical Specification, Part 3
Common Profiles, 1.6.1 Rev 6) that describes the physical layout of the system and includes product
identification information. The modeling in this document is split into various sections that describe how
to model particular elements of an storage virtualizer system.

Figure 99: "Storage Virtualizer Package Diagram" illustrates the relationship between the packages
related to the Storage Virtualizer Profile.

Figure 99 - Storage Virtualizer Package Diagram

Location

M asking & M apping

Copy Services

Storage Virtualization Profile

M ultiple System

Access Points

Softw are

B lock Services
PhysicalPackage

HostedService

Com puterSystem Package

HostedAccessPoint

Com ponentCS

PhysicalE lem entLocation

InstalledSoftwareIdentity

In itiatorPorts

TargetPorts

Job Contro l

Cascading
(Deprecated)

D isk Drive
L ite

Storage
Server

Asym m etry

System Device

System Device

HostedCollection

Block Server
Perform ance

Device
Credentials

Replication
Services

Thin
Provisioning

ConcreteCom ponent

Extent
Com position

BasedO n

ConcreteCom ponent

Volum e
Com position

Storage
Elem ent

Protection

Erasure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Storage Virtualizer Profile

666

22.1.1 Instance Diagram

The diagrams used in this document are 'Instance' diagrams implying the actual classes that you
implement rather than the class hierarchy diagrams often used to show CIM models. This is felt to be
easier to understand. Refer to the DMTF MOF files for information on class inheritance information and
full information on the properties and methods used.

Figure 100: "Storage Virtualizer System Instance" is an instance diagram of a simple Storage
Virtualization system.

15

16

17

18

19

20

21

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 667

Figure 100 - Storage Virtualizer System Instance

ProtocolController

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

StorageExtent
(Imported Extents)

Primordial=”true”
ExtentDiscriminator=”SNIA:Pool Component”,
“SNIA:Imported”

StoragePool

AllocatedFromStoragePool

StorageSetting

ElementSettingData

AllocatedFromStoragePool

ComputerSystem

Dedicated[x] =
'Storage Virtualizer'

HostedStoragePool

Port

StorageSetting

ElementSettingData

ProtocolEndpoint

ProtocolControllerForUnit

SAPAvailableForElement DeviceSAPImplementation

Target Port Subprofile

Initiator Port Subprofile

Block Services Package

LogicalPort

Initiator:
SCSIProrocolEndpoint

StorageVolume

Name: //VPD pg 83 ID
DefaultAccessMode

SystemDevice

HostedAccessPoint

Target:
SCSIProrocolEndpoin t

SCSIInitiatorTarget
LogicalUnitPath

DeviceSAP
Implementation

SystemDevice

LogicalIdentity

Masking/Mapping Subprofile

SCSIProtocolController
(for SMI-S 1.0
Compatibility)

ProtocolController
AccessUnit

ProtocolContrroller
ForPort

StorageExtent
(Primordial Disk Drive Extent)

ConcreteComponent &
AssociatedComponentExtent

DiskDrive

Physical Package

DiskDrive Lite

ProtocolController

SCSIArbitraryLogicalUnit

SystemDevice

ProtocolControllerForUnit

ImplementationCapabilities

ElementCapabilities

Storage Virtualizer Profile

668

EXPERIMENTAL

22.1.1.1 Primordial StorageExtent Dependency

The StorageElementExtentDependency and ResourcePoolExtentDependency associations show the
direct associations between the “imported” primordial storage extents and dependent storage elements
(such as StorageVolumes) and resource pools (such as StoragePools), respectively.

Figure 101 shows the StorageElementExtentDependency association between an imported primordial
StorageExtent and a dependent StorageVolume. Additionally, the figure shows the
ResourcePoolExtentDependency association between two imported primordial storage extents and a
dependent StoragePool.

Figure 102 shows the ResourcePoolExtentDependency associations to a storage pool hierarchy. In this
figure, Pool2 is allocated from Pool1. Pool1 is dependent on Extents 1 and 2, however, Pool2 is only
dependent on Extent 2.

Figure 101 - Dependency to Primordial StorageExtents

Volume 1:
StorageVolume

Pool 1:
StoragePool

AllocatedFromStoragePool

Extent 2: StorageExtent

// Primordial
// Imported

ResourcePoolExtentDependency

StorageElementExtentDependency

Extent1: StorageExtent

// Primordial
// Imported

ResourcePoolExtentDependency

Antecedent AntecedentAntecedent

Dependent

DependentDependent

22

23

24

25

26

27

28

29

30

31

32

33

34

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 669

EXPERIMENTAL

22.1.2 Storage Virtualization System

The Virtualization system is modeled using the ComputerSystem class with the “Dedicated” properties set
to ‘BlockServer’ and “StorageVirtualizer”. The model allows the system to be a cluster or contain
redundant components, but the components act as a single system. The ComputerSystem class and
common Multiple Computer System Subprofile model this.

EXPERIMENTAL

The capabilities of the Storage Virtualizer implementation are identified in an instance of
CIM_ImplementationCapabilities, which is associated to the top level Storage Virtualizer
ComputerSystem via ElementCapabilities. This includes information on the capacity optimization
techniques supported by the Storage Virtualizer.

EXPERIMENTAL

Figure 102 - Primordial Extent Dependency and Pool Hierarchy

Volume 1:
StorageVolume

Pool 1:
StoragePool

AllocatedFromStoragePool

Extent 2: StorageExtent

// Primordial
// Imported

ResourcePoolExtentDependency

Extent 1: StorageExtent

// Primordial
// Imported

ResourcePoolExtentDependency

AntecedentAntecedent

Dependent

DependentDependent

Pool 2:
StoragePool

AllocatedFromStoragePool

ResourcePoolExtentDependency

Dependent

StorageElementExtentDependency

Note:
Pool 2 is allocated
from Pool 1.

Antecedent

35

36

37

38

39

40

41

42

43

Storage Virtualizer Profile

670

The StoragePool classes in the center of the diagram represents the mapping from array storage to
volumes for host access. The pool is hosted on the ComputerSystem and services to control it are host
on the same controller. The StorageExtent at the bottom of the screen represents the storage from
external arrays used by the mapping. These StorageExtents are connected to the pool using the
ConcreteComponent association. The SCSIProtocolController with the ProtocolControllerAccessesUnit
association to the StorageVolume are provided for clients convenience (and compatibility with SMI-S 1.0).

StorageVolumes at the upper right are the volumes created from the StoragePool and are accessible from
hosts. The associations to the SCSIProtocolController and to the Port indicate ports the volume is
mapped to. The StorageVolumes are described by the StorageSetting class connected by the
ElementSettingData association.

22.1.3 Disk Drive Lite

The Disk Drive Lite Subprofile is optional. It should be used to model storage local to the storage
virtualizer system. The Disk Drive Lite model includes a StorageExtent instance that represents the
storage of the disk drive. If the Disk Drive Lite Profile is implemented, the StorageExtent shall be
associated to a primordial pool. It may share a primordial pool with external storage or it can have its own
primordial pool.

22.1.4 Controller Software

Information on the installed controller software is represented by the optional Software Subprofile. This is
linked to the controller using an InstalledSoftwareIdentity association.

22.1.5 Device Management Access

Most devices now have a web GUI to allow device specific configuration. This is modeled using the
common subprofile “Access Point”.

22.1.6 Physical Modeling

The physical aspects of the storage virtualizer ComputerSystem are represented by the Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 Package 31 "Physical Package
Package" and the optional Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6
27 "Location Subprofile", which provide more details.

22.1.7 Services

The system hosts services used to control the configuration of the system’s resources. These services
are optional and modeled by Clause 5: "Block Services Package", 9 "Copy Services Subprofile", and 26
"Job Control Subprofile".

22.1.8 Ports

An implementation of the storage virtualizer shall implement at least one Target Ports Subprofile and may
implement one or more of the Initiator Ports Subprofiles. However, this specification does not specify any
particular port type be supported. In either target or initiator cases, the ports could be FC or iSCSI. All
port subprofiles are documented in Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6.

The storage virtualizer ConcreteComponent StorageExtent instances shown in the Initiator Ports Profile
are the optional remote LogicalDevice instances from Initiator Ports. However, these StorageExtents are
mandatory in the Storage Virtualizer Profile.

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 671

EXPERIMENTAL

22.1.9 Model Element Summary

This Profile defines the following CIM Classes (and their uses):

ComputerSystem (Top Level System) - This is the top level ComputerSystem of the Storage Virtualizer,
distinguished by the Dedicated Property of ‘15’ and ‘21’.

ComputerSystem (Shadow) - This is the ComputerSystem(s) to which the Storage Virtualizer cascades.

SCSIArbitraryLogicalUnit - To represent a LUN address for receiving SCSI commands.

SCSIProtocolController - To represent wide-open mapping of volumes (in the absence of the Masking and
Mapping Profile).

StorageExtent (Imported Extents) - Used to represent the volumes that have been imported from external
devices.

StorageVolume (Shadow) - Used to represent the volumes that are imported to the Storage Virtualizer.

EXPERIMENTAL

22.2 Health and Fault Management

Defined in the included subprofiles.

EXPERIMENTAL

22.3 Storage Virtualizer Support for Cascading

The Cascading Profile (see 24 Cascading Subprofile in the Storage Management Technical Specification,
Part 3 Common Profiles, 1.6.1 Rev 6) has been deprecated in favor of embedding the cascading related
classes in the Storage Virtualizer Profile. The classes identified in this section identify the elements of
Storage Virtualizer support for the cascading function.

Figure 103: "Virtualizer, Cascading and Initiator Ports" shows the relationship between the Storage
Virtualizer and the elements that support cascading of elements to other block server profiles. For
example, cascading is required when the virtualizer imports logical units from arrays.

Each imported array is modeled in the virtualizer with a shadow ComputerSystem; the arrays’ logical
units are modeled using shadow StorageVolume instances. These are depicted in Figure 103:
"Virtualizer, Cascading and Initiator Ports" in the box labeled “Cascading Support”.

Each shadow ComputerSystem (representing an array) is associated to the Storage Virtualizer
ComputerSystem using a Dependency association. StorageVolume models an Array logical unit and is
associated to storage virtualizer ConcreteComponent StorageExtent via the LogicalIdentity association.
The StorageExtent represents the virtualizer’s view of logical units imported from arrays. The
StorageExtents are local resources. The shadow ComputerSystem and StorageVolumes contain the
correlatable IDs needed to map virtualizer resources to equivalent objects in an Array Profile.

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

Storage Virtualizer Profile

672

The AllocatedResources collection identifies the shadow StorageVolumes that are actually allocated to
the StorageVirtualizer for its use. Optionally, the implementation may also have a RemoteResources
collection that identifies all the storage volumes it can see on the SAN.

EXPERIMENTAL

Figure 103 - Virtualizer, Cascading and Initiator Ports

Cascading Support

Block Services Package

Initiator Ports Profile

StorageVolume

LUID: //VPD pg 83 ID
DefaultAccessMode

StorageExtent
(Imported Extents)

Primordial=”true”
ExtentDiscriminator=”SNIA:Pool
Component”, “SNIA:Imported”

StoragePool

AllocatedFromStoragePool

StorageSetting

ElementSettingData

AllocatedFromStoragePool

ComputerSystem

Dedicated[x] =
'Storage Virtualizer'

HostedStoragePool

StorageSetting

ElementSettingData

LogicalPort

Initiator:
SCSIProtocolEndpoint

SystemDevice

HostedAccessPoint

Target:
SCSIProtocolEndpoint

SCSIInitiatorTarget
LogicalUnitPath

DeviceSAP
Implementation

SystemDevice

SCSIProtocolController
(for SMI-S 1.0
Compatibility)

ProtocolController
AccessesUnit

ProtocolController
ForPort

ComputerSystem (Shadow)

OtherIdentifyingInfo=”Shadow”
IdentifyingDescriptions=”SNIA:DetailedType”

ConcreteComponent &
AssociatedComponentExtent

StorageVolume (Shadow)

LUID: //VPD pg 83 ID
DefaultAccessMode
ExtentDiscriminator=”Shadow”

LogicalIdentity

SystemDevice

Dependency

AllocatedResources

ElementType=”3"
CollectionDiscriminator=”SNIA:Imported Volumes”

MemberOfCollection

HostedCollection

114

115

116

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 673

22.4 Supported Subprofiles and Packages

Table 427 describes the supported profiles for Storage Virtualizer.

Table 427 - Supported Profiles for Storage Virtualizer

Profile Name Organization Version Requirement Description

Access Points SNIA 1.3.0 Optional

Block Server Performance SNIA 1.6.1 Optional

Block Storage Views SNIA 1.6.0 Optional Experimental.

CKD Block Services SNIA 1.5.0 Optional Experimental.

Cluster SNIA 1.0.2 Optional Deprecated. See Multiple Computer System

Extra Capacity Set SNIA 1.0.2 Optional Deprecated. See Multiple Computer System

Disk Drive SNIA 1.0.2 Optional Deprecated. See Disk Drive Lite

Disk Drive Lite SNIA 1.6.0 Optional

Extent Mapping SNIA 1.0.2 Optional Deprecated. See Extent Composition

Erasure SNIA 1.2.0 Optional Experimental.

Storage Server Asymmetry SNIA 1.4.0 Optional Experimental.

Volume Composition SNIA 1.5.0 Optional Experimental.

Storage Element
Protection

SNIA 1.4.0 Optional Experimental.

Copy Services SNIA 1.5.0 Optional

Pool Manipulation
Capabilities and Settings

SNIA 1.0.2 Optional Deprecated. See Block Services

LUN Creation SNIA 1.0.2 Optional Deprecated. See Block Services

Device Credentials SNIA 1.3.0 Optional

LUN Mapping and Masking SNIA 1.0.2 Optional Deprecated. See Masking and Mapping

Job Control SNIA 1.5.0 Optional

Location SNIA 1.4.0 Optional

Masking and Mapping SNIA 1.4.0 Optional

Group Masking and
Mapping

SNIA 1.5.0 Optional

Software SNIA 1.4.0 Optional

Multiple Computer System SNIA 1.2.0 Optional

Backend Ports SNIA 1.0.2 Optional Deprecated. See specific Initiator Ports

Disk Sparing SNIA 1.5.0 Optional

Extent Composition SNIA 1.6.0 Optional

Cascading SNIA 1.3.0 Mandatory Deprecated. This is deprecated in favor of
embedding cascading elements in the Storage
Virtualizer profile.

Block Services SNIA 1.6.1 Mandatory

Physical Package SNIA 1.5.0 Mandatory

117

118

Storage Virtualizer Profile

674

22.5 Methods of the Profile

None.

22.6 Use Cases

EXPERIMENTAL

22.6.1 Discover the Capacity Optimization Support in an Storage Virtualizer

22.6.1.1 Summary

From a list of available Storage Virtualizer devices, determine which devices support any capacity
optimization techniques.

22.6.1.2 Basic Course of Events

1) Administrator identifies an available virtualizer device.

2) Administrator determines if the virtualizer advertises implementation capabilities.

3) System responds with an implementation capabilities.

4) Administrator inspects the capacity optimization techniques supported by the virtualizer

Health SNIA 1.2.0 Mandatory

Thin Provisioning SNIA 1.6.0 Optional Experimental.

Replication Services SNIA 1.6.1 Optional Experimental.

Operational Power SNIA 1.5.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version 1.0.0

iSCSI Target Ports SNIA 1.6.0 Support for at
least one is
mandatory.FC Target Ports SNIA 1.4.0

SAS Target Ports SNIA 1.4.0 Experimental.

SB Target Ports SNIA 1.2.0

FC Initiator Ports SNIA 1.6.0

iSCSI Initiator Ports SNIA 1.2.0 Experimental.

SAS Initiator Ports SNIA 1.4.0 Experimental.

ATA Initiator Ports SNIA 1.4.0 Experimental.

SB Initiator Ports SNIA 1.4.0 Experimental.

Indication SNIA 1.5.0 Support for at
least one is
mandatory.

Deprecated. See the SNIA Indications Profile

Indications SNIA 1.6.0 Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version 1.2.0

Table 427 - Supported Profiles for Storage Virtualizer

Profile Name Organization Version Requirement Description

119

120

121

122

123

124

125

126

127

128

129

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 675

22.6.1.3 Alternative Paths

none

22.6.1.4 Exception Paths

FAILED:

• The Storage Virtualizer System does not report implementation capabilities

• The Storage Virtualizer System reports implementation capabilities, but reports “none” for supported capacity
optimizations.

22.6.1.5 Triggers

Device selection for provisioning storage for an application.

22.6.1.6 Assumptions

The administrator has a list of candidate storage virtualizer system names for doing provisioning.

22.6.1.7 Preconditions

The systems are available.

EXPERIMENTAL

22.7 Registered Name and Version

Storage Virtualizer version 1.6.0 (Autonomous Profile)

CIM Schema Version: 2.25

22.8 CIM Elements

Table 428 describes the CIM elements for Storage Virtualizer.

Table 428 - CIM Elements for Storage Virtualizer

Element Name Requirement Description

22.8.1 CIM_AssociatedComponentExtent (Pool
Component to Primordial Pool)

Conditional Conditional requirement: Implementation of the Extent
Composition profile.

22.8.2 CIM_ComputerSystem (Shadow) Mandatory Experimental. 'Top level' system that represents a block
storage device (e.g., an Array).

22.8.3 CIM_ComputerSystem (Top Level System) Mandatory 'Top-level' system that represents the whole virtualizer.
Associated to RegisteredProfile.

22.8.4 CIM_ConcreteComponent (Imported Extents to
Primordial Pool)

Mandatory Used to associate StorageExtents that are playing the
Pool Component role to a Primordial StoragePool.

22.8.5 CIM_Dependency (Systems) Mandatory Experimental. This associates the block storage (e.g.,
Array) System to the Storage Virtualizer System.

22.8.6 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Experimental. Associates the conformant Storage
Virtualizer ComputerSystem to the
CIM_ImplementationCapabilities supported by the
implementation.

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Storage Virtualizer Profile

676

22.8.7 CIM_FilterCollection (Storage Virtualizer
Predefined FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

22.8.8 CIM_FilterCollection (Storage Virtualizer
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental. This is a collection of Lifecycle
IndicationFilters defined by the Storage Virtualizer Profile.

22.8.9 CIM_HostedCollection (Allocated Resources) Mandatory Experimental. This would associate the
AllocatedResources collection to the top level system for
the Storage Virtualizer.

22.8.10 CIM_HostedCollection (Remote Resources) Conditional Experimental. Conditional requirement: This is required if
SNIA_RemoteResources is modeled. This would
associate the RemoteResources collection to the top level
system for the Storage Virtualizer.

22.8.11 CIM_HostedCollection (Storage Virtualizer to
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental.

22.8.12 CIM_HostedCollection (Storage Virtualizer to
predefined FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

22.8.13 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

22.8.14 CIM_IndicationFilter (Storage Virtualizer
LogicalPort OperationalStatus)

Conditional Deprecated. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalPorts.

22.8.15 CIM_IndicationFilter (Storage Virtualizer Storage
Volume OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolumes.

22.8.16 CIM_IndicationFilter (Storage Virtualizer System
Creation)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
Storage Virtualizer system instance.

22.8.17 CIM_IndicationFilter (Storage Virtualizer System
Deletion)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the removal of a new
Storage Virtualizer system instance.

22.8.18 CIM_IndicationFilter (Storage Virtualizer System
OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of a System.

Table 428 - CIM Elements for Storage Virtualizer

Element Name Requirement Description

154

155

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 677

22.8.19 CIM_IndicationFilter (WQL Storage Virtualizer
FCPort OperationalStatus)

Optional Deprecated. This is the 'pre-defined' WQL version of the
CIM_IndicationFilter instance for changes in the
OperationalStatus of FCPorts.

22.8.20 CIM_IndicationFilter (WQL Storage Virtualizer
Storage Volume OperationalStatus)

Optional Deprecated. This is the 'pre-defined' WQL version of the
CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolumes.

22.8.21 CIM_IndicationFilter (WQL Storage Virtualizer
System OperationalStatus)

Optional Deprecated. This is the 'pre-defined' WQL version of the
CIM_IndicationFilter instance for changes in the
OperationalStatus of a System.

22.8.22 CIM_LogicalIdentity (Shadow Storage Volume) Mandatory Experimental. Associates a Storage Virtualizer
StorageExtent to a shadow instance of an (imported)
StorageVolume.

22.8.23 CIM_MemberOfCollection (Allocated Resources) Mandatory Experimental. This supports collecting StorageVolumes.
This is required to support the AllocatedResources
collection.

22.8.24 CIM_MemberOfCollection (Predefined Filter
Collection to Storage Virtualizer Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Storage Virtualizer predefined FilterCollection to the
predefined Filters supported by the Storage Virtualizer.

22.8.25 CIM_MemberOfCollection (Remote Resources) Optional Experimental. This supports collecting all Shadow
instances of StorageVolume that the Storage Virtualizer
has available to use. This is optional when used to
support the RemoteResources collection (the
RemoteResources collection is optional).

22.8.26 CIM_MemberOfCollection (Storage Virtualizer
ProfileSpecificLifecycleIndicationFilterCollection to
Storage Virtualizer Filters)

Optional Experimental. This associates the Storage Virtualizer
ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Storage Virtualizer Profile.

22.8.27 CIM_ProtocolControllerForUnit (Arbitrary LU for
All LUNs View)

Conditional Conditional requirement: Elements that are mandatory if
Masking and Mapping is not implemented.

22.8.28 CIM_ProtocolControllerForUnit (Storage volumes
for All LUNs View)

Conditional Conditional requirement: Elements that are mandatory if
Masking and Mapping is not implemented.

22.8.29 CIM_RemoteServiceAccessPoint (Shadow) Optional Experimental. CIM_RemoteServiceAccessPoint
represents the management interface to a Shadow
system.

22.8.30 CIM_ResourcePoolExtentDependency
(PoolExtentDepedency)

Conditional Conditional requirement: Implementation of the Extent
Composition profile.

22.8.31 CIM_SAPAvailableForElement Conditional Experimental. Conditional requirement: This is required if
CIM_RemoteServiceAccessPoint is modeled. Represents
the association between a RemoteServiceAccessPoint
and the Shadow (e.g., Array) System to which it provides
access.

22.8.32 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU) Optional A SCSI Logical Unit that exists only for management of
the virtualizer.

22.8.33 CIM_SCSIProtocolController (All LUNs View) Conditional Conditional requirement: Elements that are mandatory if
Masking and Mapping is not implemented.

22.8.34 CIM_StorageElementExtentDependency
(ElementExtentDependency)

Conditional Conditional requirement: Implementation of the Extent
Composition profile.

Table 428 - CIM Elements for Storage Virtualizer

Element Name Requirement Description

Storage Virtualizer Profile

678

22.8.35 CIM_StorageExtent (Imported Extents) Mandatory Used to represent the storage imported from external
arrays and used as ConcreteComponents of Primordial
StoragePools.

22.8.36 CIM_StorageVolume (Shadow) Mandatory Experimental. A shadow copy of a remote StorageVolume
that is imported to the Storage Virtualizer.

22.8.37 CIM_SystemDevice (Shadow StorageVolumes) Mandatory Experimental. This association links shadow
StorageVolumes to the scoping (Shadow) system (of the
array). This is used to associate the shadow
StorageVolunmes with the System that manages them.

22.8.38 CIM_SystemDevice (System to
SCSIArbitraryLogicalUnit)

Conditional Conditional requirement: Elements that are mandatory if
SCSIArbitraryLogicalUnit is instantiated. This association
links SCSIArbitraryLogicalUnit to the scoping system.

22.8.39 CIM_SystemDevice (System to
SCSIProtocolController)

Conditional Conditional requirement: Elements that are mandatory if
Masking and Mapping is not implemented. This
association links SCSIProtocolController to the scoping
system.

22.8.40 CIM_SystemDevice (System to StorageExtent) Mandatory This association links the primordial imported
StorageExtent to the scoping system.

22.8.41 SNIA_AllocatedResources Mandatory Experimental. This is a SystemSpecificCollection for
collecting StorageVolumes that are being used by the
Storage Virtualizer (e.g., StorageVolumes that the
Virtualizer is using as Imported Primordial Extents).

22.8.42 SNIA_RemoteResources Optional Experimental. This is a SystemSpecificCollection for
collecting StorageVolumes that may be allocated by the
Storage Virtualizer profile (e.g., StorageVolumes that may
be allocated to support a Storage Virtualizer primordial
storage pool).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Creation of a ComputerSystem instance. See section
Storage Management Technical Specification, Part 4
Block Devices, 1.6.1 Rev 6 22.8.16 CIM_IndicationFilter
(Storage Virtualizer System Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of a ComputerSystem instance. See section
Storage Management Technical Specification, Part 4
Block Devices, 1.6.1 Rev 6 22.8.17 CIM_IndicationFilter
(Storage Virtualizer System Deletion).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Deprecated. Deprecated WQL -Modification of
OperationalStatus of a Storage Volume instance, provided
for backward compatibility with In-band Virtualization. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 22.8.20
CIM_IndicationFilter (WQL Storage Virtualizer Storage
Volume OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatu
s

Mandatory CQL -Modification of OperationalStatus of a Storage
Volume instance. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
22.8.15 CIM_IndicationFilter (Storage Virtualizer Storage
Volume OperationalStatus).

Table 428 - CIM Elements for Storage Virtualizer

Element Name Requirement Description

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 679

22.8.1 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)

The referenced primordial imported StorageExtent represents capacity has not been allocated, is
allocated in part, or is allocated in its entirety.

Requirement: Implementation of the Extent Composition profile.

Table 429 describes class CIM_AssociatedComponentExtent (Pool Component to Primordial Pool).

22.8.2 CIM_ComputerSystem (Shadow)

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FCPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Deprecated. Deprecated WQL -Modification of
OperationalStatus of a FC port instance, provided for
backward compatibility with In-band Virtualization. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 22.8.19
CIM_IndicationFilter (WQL Storage Virtualizer FCPort
OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalPort AND
SourceInstance.CIM_LogicalPort::OperationalStatus <>
PreviousInstance.CIM_LogicalPort::OperationalStatus

Mandatory Deprecated. CQL -Modification of OperationalStatus of a
Logical (FC or Ethernet) port instance. See section
Storage Management Technical Specification, Part 4
Block Devices, 1.6.1 Rev 6 22.8.14 CIM_IndicationFilter
(Storage Virtualizer LogicalPort OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Optional Deprecated. Deprecated WQL -Modification of
OperationalStatus of a ComputerSystem instance,
provided for backward compatibility with In-band
Virtualization. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
22.8.21 CIM_IndicationFilter (WQL Storage Virtualizer
System OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatu
s <>
PreviousInstance.CIM_ComputerSystem::OperationalStat
us

Mandatory CQL -Modification of OperationalStatus of a
ComputerSystem instance. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 22.8.18 CIM_IndicationFilter
(Storage Virtualizer System OperationalStatus).

Table 429 - SMI Referenced Properties/Methods for CIM_AssociatedComponentExtent (Pool Component to
Primordial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool.

PartComponent Mandatory The imported storage extent that is a component of the primordial storage
pool.

Table 428 - CIM Elements for Storage Virtualizer

Element Name Requirement Description

156

157

158

Storage Virtualizer Profile

680

Table 430 describes class CIM_ComputerSystem (Shadow).

22.8.3 CIM_ComputerSystem (Top Level System)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The
RegisteredProfile instance shall have RegisteredName set to 'Storage Virtualizer',
RegisteredOrganization set to 'SNIA', and RegisteredVersion set to '1.6.0'.

Table 431 describes class CIM_ComputerSystem (Top Level System).

Table 430 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the shadow system. E.g., IP address.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory At least one of the indices of this array should contain any of the valid
system name formats. Another index should contain the string 'Shadow'.

IdentifyingDescriptions C Mandatory For system names this array property should contain the NameFormat of
the system name (e.g., 'Ipv4 Address' if the OtherIdentifyInfo is an IPv4
address). In the index for the OItherIdentifyingInfo string 'Shadow' the
IdentifyingDescriptions entry should be 'SNIA:DetailedType'.

OperationalStatus Mandatory Overall status of the shadow system, as seen by the Storage Virtualizer.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to operation as a block
storage system (e.g., an Array).

PrimaryOwnerContact M Optional Contact details for owner.

PrimaryOwnerName M Optional Owner of the shadow system.

Table 431 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name C Mandatory Unique identifier for the storage virtualizer. Eg IP address or a FC WWN.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory

IdentifyingDescriptions C Mandatory

OperationalStatus Mandatory Overall status of the storage virtualizer.

NameFormat Mandatory Format for Name property.

159

160

161

162

163

164

165

166

167

168

169

170

171

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 681

22.8.4 CIM_ConcreteComponent (Imported Extents to Primordial Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 432 describes class CIM_ConcreteComponent (Imported Extents to Primordial Pool).

22.8.5 CIM_Dependency (Systems)

Experimental. CIM_Dependency is an association between a shadow System (e.g., Array) and the
Storage Virtualizer top level System (ComputerSystem). The specific nature of the dependency is
determined by associations between resources (imported StorageExtents) of the Storage Virtualizer
system and resources (StorageVolumes) of the shadow system.

CIM_Dependency is not subclassed from anything.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 433 describes class CIM_Dependency (Systems).

Dedicated Mandatory The values 15 and 21 indicate that this computer system is dedicated to
operation as a storage virtualizer.

PrimaryOwnerContact M Optional Contact details for owner.

PrimaryOwnerName M Optional Owner of the storage virtualizer.

Table 432 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (Imported Extents to Primor-
dial Pool)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A Primordial StoragePool.

PartComponent Mandatory The imported StorageExtent.

Table 433 - SMI Referenced Properties/Methods for CIM_Dependency (Systems)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Storage Virtualizer top level System.

Dependent Mandatory The shadow System (e.g., system of the Array device).

Table 431 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

172
173

174

175

176

177

178

179

180

181

182
183
184

185

186

187

188

189

Storage Virtualizer Profile

682

22.8.6 CIM_ElementCapabilities (ImplementationCapabilities to System)

Experimental. Associates the conformant Storage Virtualizer ComputerSystem to the
CIM_ImplementationCapabilities supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 434 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

22.8.7 CIM_FilterCollection (Storage Virtualizer Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A
Storage Virtualizer implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 435 describes class CIM_FilterCollection (Storage Virtualizer Predefined FilterCollection).

22.8.8 CIM_FilterCollection (Storage Virtualizer ProfileSpecificLifecycleIndicationFilterCollection)

Experimental. This is a collection of Lifecycle IndicationFilters defined by the Storage Virtualizer Profile.

Requirement: Optional

Table 434 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Storage Virtualizer ComputerSystem that has
ImplementationCapabilities.

Table 435 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Virtualizer Predefined
FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Storage
Virtualizer:Predefined'.

190

191

192
193

194

195

196

197

198

199

200
201
202

203

204

205

206

207

208

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 683

Table 436 describes class CIM_FilterCollection (Storage Virtualizer
ProfileSpecificLifecycleIndicationFilterCollection).

22.8.9 CIM_HostedCollection (Allocated Resources)

Experimental. CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping
System. It represents a Collection that only has meaning in the context of a System, and/or whose
elements are restricted by the definition of the System. In the Storage Virtualizer profile, it is used to
associate the Allocated Resources to the top level Computer System of the Storage Virtualizer.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 437 describes class CIM_HostedCollection (Allocated Resources).

22.8.10CIM_HostedCollection (Remote Resources)

Experimental. CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping
System. It represents a Collection that only has meaning in the context of a System, and/or whose
elements are restricted by the definition of the System. In the Storage Virtualizer Profile, it is used to
associate the Remote Resources to the top level Computer System of the Storage Virtualizer.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if SNIA_RemoteResources is modeled.

Table 436 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Virtualizer ProfileSpecifi-
cLifecycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.13
CIM_FilterCollection (StaticFilterCollection).

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Storage
Virtualizer:ProfileSpecificLifecycleIndicationFilterCollection'.

Table 437 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Top Level System of the Storage Virtualizer.

Dependent Mandatory The AllocatedResources collection of shadow storage volumes.

209

210

211

212
213
214

215

216

217

218

219

220

221

222
223
224

225

226

227

228

229

Storage Virtualizer Profile

684

Table 438 describes class CIM_HostedCollection (Remote Resources).

22.8.11CIM_HostedCollection (Storage Virtualizer to ProfileSpecificLifecycleIndicationFilterCollec-
tion)

Experimental.

Requirement: Optional

Table 439 describes class CIM_HostedCollection (Storage Virtualizer to
ProfileSpecificLifecycleIndicationFilterCollection).

22.8.12CIM_HostedCollection (Storage Virtualizer to predefined FilterCollection)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 440 describes class CIM_HostedCollection (Storage Virtualizer to predefined FilterCollection).

22.8.13CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 438 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Top Level System of the Storage Virtualizer.

Dependent Mandatory The RemoteResources collection of shadow storage volumes.

Table 439 - SMI Referenced Properties/Methods for CIM_HostedCollection (Storage Virtualizer to Profile-
SpecificLifecycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the ProfileSpecificLifecycleIndicationFilterCollection for the
Storage Virtualizer.

Antecedent Mandatory Reference to the 'Top level' Storage Virtualizer System.

Table 440 - SMI Referenced Properties/Methods for CIM_HostedCollection (Storage Virtualizer to pre-
defined FilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Storage Virtualizer.

Antecedent Mandatory Reference to the 'Top level' Storage Virtualizer System.

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 685

Table 441 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

22.8.14CIM_IndicationFilter (Storage Virtualizer LogicalPort OperationalStatus)

Deprecated. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of LogicalPorts.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 442 describes class CIM_IndicationFilter (Storage Virtualizer LogicalPort OperationalStatus).

Table 441 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimiz
ations

Mandatory This array of strings lists the capacity optimization techniques that are
supported by the implementation. Valid string values are "none" |
"SNIA:Thin Provisioning" | "SNIA:Data Compression" | "SNIA:Data
Deduplication".

SupportedViews Mandatory This array of strings lists the view classes that are supported by the
implementation. Valid string values are "none" | "SNIA:VolumeView" |
"SNIA:DiskDriveView" | "SNIA:ExposedView" |
"SNIA:MaskingMappingView" | "SNIA:MappingProtocolControllerView" |
"SNIA:StoragePoolView" | "SNIA:ReplicaPairView" .

Table 442 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer LogicalPort
OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:LogicalPortOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

248

249

250

251

252

253

254

255

256

Storage Virtualizer Profile

686

22.8.15CIM_IndicationFilter (Storage Virtualizer Storage Volume OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of StorageVolumes.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 443 describes class CIM_IndicationFilter (Storage Virtualizer Storage Volume OperationalStatus).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_LogicalPort AND
SourceInstance.CIM_LogicalPort::OperationalStatus <>
PreviousInstance.CIM_LogicalPort::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 443 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Storage Vol-
ume OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:StorageVolumeOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus <>
PreviousInstance.CIM_StorageVolume::OperationalStatus.

Table 442 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer LogicalPort
OperationalStatus)

Properties Flags Requirement Description & Notes

257

258

259

260

261

262

263

264

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 687

22.8.16CIM_IndicationFilter (Storage Virtualizer System Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new Storage
Virtualizer system instance. This would represent the addition of a controller computer system to the
Storage Virtualizer.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 444 describes class CIM_IndicationFilter (Storage Virtualizer System Creation).

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 444 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System Cre-
ation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:SystemCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_ComputerSystem.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 443 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer Storage Vol-
ume OperationalStatus)

Properties Flags Requirement Description & Notes

265

266
267

268

269

270

271

272

273

Storage Virtualizer Profile

688

22.8.17CIM_IndicationFilter (Storage Virtualizer System Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the removal of a new Storage
Virtualizer system instance. This would represent the removal of a controller computer system from the
Storage Virtualizer.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 445 describes class CIM_IndicationFilter (Storage Virtualizer System Deletion).

22.8.18CIM_IndicationFilter (Storage Virtualizer System OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of a System.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 445 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System Dele-
tion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:SystemDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_ComputerSystem.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

274

275
276

277

278

279

280

281

282

283

284

285

286

287

288

289

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 689

Table 446 describes class CIM_IndicationFilter (Storage Virtualizer System OperationalStatus).

22.8.19CIM_IndicationFilter (WQL Storage Virtualizer FCPort OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of FCPorts.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 446 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Virtualizer System Oper-
ationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:SystemOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatus <>
PreviousInstance.CIM_ComputerSystem::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

290

291

292

293

294

295

296

297

Storage Virtualizer Profile

690

Table 447 describes class CIM_IndicationFilter (WQL Storage Virtualizer FCPort OperationalStatus).

22.8.20CIM_IndicationFilter (WQL Storage Virtualizer Storage Volume OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolumes.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 447 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer FCPort
OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:FCPortOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_FCPort AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

298

299

300

301

302

303

304

305

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 691

Table 448 describes class CIM_IndicationFilter (WQL Storage Virtualizer Storage Volume
OperationalStatus).

22.8.21CIM_IndicationFilter (WQL Storage Virtualizer System OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of a System.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 448 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer Storage
Volume OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage
Virtualizer:StorageVolumeOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageVolume AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

306

307

308

309

310

311

312

Storage Virtualizer Profile

692

Table 449 describes class CIM_IndicationFilter (WQL Storage Virtualizer System OperationalStatus).

22.8.22CIM_LogicalIdentity (Shadow Storage Volume)

Experimental. Associates local StorageExtent to a shadow instance of an (imported) StorageVolume.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 450 describes class CIM_LogicalIdentity (Shadow Storage Volume).

22.8.23CIM_MemberOfCollection (Allocated Resources)

Experimental. This use of MemberOfCollection is to collect all allocated shadow StorageVolume
instances (in the AllocatedResources collection).

Table 449 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Virtualizer System
OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Virtualizer:SystemOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_ComputerSystem AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 450 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (Shadow Storage Volume)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the shadow (imported) StorageVolume.

SameElement Mandatory This is a reference to the Storage Virtualizer StorageExtent that maps to
the shadow (imported) StorageVolume.

313

314

315

316

317

318

319

320

321
322

323

324

325

326

327

328

329

330

331

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 693

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 451 describes class CIM_MemberOfCollection (Allocated Resources).

22.8.24CIM_MemberOfCollection (Predefined Filter Collection to Storage Virtualizer Filters)

Experimental. This associates the Storage Virtualizer predefined FilterCollection to the predefined Filters
supported by the Storage Virtualizer.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 452 describes class CIM_MemberOfCollection (Predefined Filter Collection to Storage Virtualizer
Filters).

22.8.25CIM_MemberOfCollection (Remote Resources)

Experimental. This use of MemberOfCollection is to collect all shadow StorageVolume instances (in the
RemoteResources collection). Each association (and the RemoteResources collection, itself) is created
through external means.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 453 describes class CIM_MemberOfCollection (Remote Resources).

Table 451 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Member Mandatory A shadow storage volume (one with ExtentDiscriminator='SNIA:Shadow').

Collection Mandatory The AllocatedResources collection of shadow storage volumes.

Table 452 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Storage Virtualizer Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Storage Virtualizer predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Storage Virtualizer.

Table 453 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Member Mandatory A shadow storage volume (one with ExtentDiscriminator='SNIA:Shadow').

Collection Mandatory The RemoteResources collection of shadow storage volumes.

332

333

334

335
336

337

338

339

340

341

342

343

344
345

346

347

348

349

350

Storage Virtualizer Profile

694

22.8.26CIM_MemberOfCollection (Storage Virtualizer ProfileSpecificLifecycleIndicationFilterCol-
lection to Storage Virtualizer Filters)

Experimental. This associates the Storage Virtualizer ProfileSpecificLifecycleIndicationFilterCollection to
the Filters defined by the Storage Virtualizer Profile.

Requirement: Optional

Table 454 describes class CIM_MemberOfCollection (Storage Virtualizer
ProfileSpecificLifecycleIndicationFilterCollection to Storage Virtualizer Filters).

22.8.27CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 455 describes class CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View).

22.8.28CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 454 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Virtualizer Profile-
SpecificLifecycleIndicationFilterCollection to Storage Virtualizer Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Storage Virtualizer
ProfileSpecificLifecycleIndicationFilterCollection.

Member Mandatory Reference to the IndicationFilters defined by the Storage Virtualizer
Profile.

Table 455 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Arbitrary LU for All
LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI Arbitrary logical unit.

351

352

353

354

355

356

357

358

359

360

361

362
363

364

365

366

367

368

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 695

Table 456 describes class CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View).

22.8.29CIM_RemoteServiceAccessPoint (Shadow)

Experimental. CIM_RemoteServiceAccessPoint is an instance that provides access information for
accessing the actual Shadow (e.g., Array) system via a management interface.

CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 457 describes class CIM_RemoteServiceAccessPoint (Shadow).

22.8.30CIM_ResourcePoolExtentDependency (PoolExtentDepedency)

The referenced imported primordial StorageExtent and its dependent resource pools.

Requirement: Implementation of the Extent Composition profile.

Table 456 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit (Storage volumes for
All LUNs View)

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block Services
StorageVolume).

Table 457 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The CIM Class name of the Computer System hosting the management
interface.

SystemName Mandatory The name of the Computer System hosting the management interface.

CreationClassName Mandatory The CIM Class name of the management interface.

Name Mandatory The unique name of the management interface.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Storage Virtualizer Profile

696

Table 458 describes class CIM_ResourcePoolExtentDependency (PoolExtentDepedency).

22.8.31CIM_SAPAvailableForElement

Experimental.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if CIM_RemoteServiceAccessPoint is modeled.

Table 459 describes class CIM_SAPAvailableForElement.

22.8.32CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 460 describes class CIM_SCSIArbitraryLogicalUnit (Arbitrary LU).

Table 458 - SMI Referenced Properties/Methods for CIM_ResourcePoolExtentDependency (PoolExtentDe-
pedency)

Properties Flags Requirement Description & Notes

Dependent Mandatory The dependent storage pool.

Antecedent Mandatory The imported storage extent that is a component of the primordial storage
pool.

Table 459 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Shadow System.

AvailableSAP Mandatory The service access point of the shadow system.

Table 460 - SMI Referenced Properties/Methods for CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifer.

ElementName Mandatory User-friendly name.

Name Mandatory

OperationalStatus Mandatory

385

386

387

388

389

390

391

392

393

394

395

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 697

22.8.33CIM_SCSIProtocolController (All LUNs View)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 461 describes class CIM_SCSIProtocolController (All LUNs View).

22.8.34CIM_StorageElementExtentDependency (ElementExtentDependency)

The referenced imported primordial StorageExtent and its dependent elements.

Requirement: Implementation of the Extent Composition profile.

Table 462 describes class CIM_StorageElementExtentDependency (ElementExtentDependency).

22.8.35CIM_StorageExtent (Imported Extents)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 461 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController (All LUNs View)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Table 462 - SMI Referenced Properties/Methods for CIM_StorageElementExtentDependency (ElementEx-
tentDependency)

Properties Flags Requirement Description & Notes

Dependent Mandatory The dependent element.

Antecedent Mandatory The imported storage extent that is a component of the primordial storage
pool.

396

397

398

399

400

401

402

403

404
405
406

407

408

409

410

Storage Virtualizer Profile

698

Table 463 describes class CIM_StorageExtent (Imported Extents).

22.8.36CIM_StorageVolume (Shadow)

Experimental. A shadow copy of a remote StorageVolume that is imported to the Storage Virtualizer. If the
Storage Virtualizer has access to the leaf profile, the data in this class should reflect what the Storage
Virtualizer obtains from that profile. If the referencing profile does not have access to the leaf profile, then
this should be filled out as best can be done.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 464 describes class CIM_StorageVolume (Shadow).

Table 463 - SMI Referenced Properties/Methods for CIM_StorageExtent (Imported Extents)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

ExtentStatus Mandatory

OperationalStatus Mandatory

Primordial Mandatory This shall be true for extents instantiated in the Storage Virtualizer.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Pool
Component' and 'SNIA:Imported'.

Table 464 - SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory The identifier for this volume. If the Storage Virtualizer has access to the
CIM Server for the device that exports the storage volume, then this
should be the Name property as reported by the CIM Server. If the Storage
Virtualizer does not have access to the CIM Server for the device, then it
should be one of the names supported for storage volumes.

411

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 699

22.8.37CIM_SystemDevice (Shadow StorageVolumes)

Experimental.

Created By: Static

Modified By: Static

OtherIdentifyingInfo CD Optional Additional correlatable names. Specific values should be values that may
be correlated with the names reported by the device that exports the
storage volume.

IdentifyingDescriptions Optional

NameFormat Mandatory The type of identifier in the Name property.

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

ExtentDiscriminator Mandatory This shall be 'SNIA:Shadow'.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

Table 464 - SMI Referenced Properties/Methods for CIM_StorageVolume (Shadow)

Properties Flags Requirement Description & Notes

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

Storage Virtualizer Profile

700

Deleted By: Static

Requirement: Mandatory

Table 465 describes class CIM_SystemDevice (Shadow StorageVolumes).

22.8.38CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if SCSIArbitraryLogicalUnit is instantiated.

Table 466 describes class CIM_SystemDevice (System to SCSIArbitraryLogicalUnit).

22.8.39CIM_SystemDevice (System to SCSIProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Elements that are mandatory if Masking and Mapping is not implemented.

Table 467 describes class CIM_SystemDevice (System to SCSIProtocolController).

22.8.40CIM_SystemDevice (System to StorageExtent)

Table 465 - SMI Referenced Properties/Methods for CIM_SystemDevice (Shadow StorageVolumes)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Shadow Computer System that contains this StorageVolume.

PartComponent Mandatory The storage volume that is managed by a computer system.

Table 466 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIArbitraryLogical-
Unit)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 467 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolCon-
troller)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

427

428

429

430

431

432

433

434

435

436

437

438
439

440

441
442

443

444

445

446

 Storage Virtualizer Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 701

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 468 describes class CIM_SystemDevice (System to StorageExtent).

22.8.41SNIA_AllocatedResources

Experimental. An instance of a default SNIA_AllocatedResources defines the set of StorageVolumes that
are allocated and in use by the Storage Virtualizer.

SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the SNIA_AllocatedResources shall exist for a Storage Virtualizer Profile and
shall be hosted by one of its ComputerSystems (typically the top level ComputerSystem.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 469 describes class SNIA_AllocatedResources.

22.8.42SNIA_RemoteResources

Experimental. An instance of a default SNIA_RemoteResources defines the set of shadow
StorageVolumes that are available to be used by the Storage Virtualizer.

SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the SNIA_RemoteResources would exist and shall be hosted by the top level
ComputerSystems of the Storage Virtualizer Profile.

Table 468 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageExtent)

Properties Flags Requirement Description & Notes

PartComponent Mandatory The imported StorageExtent.

GroupComponent Mandatory The scoping ComputerSystem.

Table 469 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection (e.g., Allocated
StorageVolumes).

ElementType Mandatory The type of remote resources collected by the AllocatedResources
collection.

For this version of SMI-S, the only value supported is '3' (StorageVolume).

CollectionDiscriminator Mandatory An array of strings indicating the purposes of the collection of elements.
This shall contain 'SNIA:Imported Volumes'.

447

448

449
450

451

452
453

454

455

456

457

458

Storage Virtualizer Profile

702

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 470 describes class SNIA_RemoteResources.

IMPLEMENTED

Table 470 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection (e.g., Remote
Storage Volumes).

ElementType Mandatory The type of remote resources collected by the RemoteResources
collection. This shall be '3' (StorageVolume).

CollectionDiscriminator Mandatory An array of strings indicating the purposes of the collection of elements.
This shall contain 'SNIA:Imported Volumes'.

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 703

EXPERIMENTAL

23 Volume Composition Profile

23.1 Description

23.1.1 Overview

Some Arrays and Storage Virtualizers as well as Volume Managers have the ability to combine together
existing storage volumes to make them appear to be one, bigger, volume. These are called composite
volumes in this version of the specification. This is different from the approach shown in the Block
Services Package which shows how to create StorageExtents and StoragePools. This subprofile shows
how to create StorageVolumes from volumes that are already allocated from the Storage Pool and
exposed. These volumes may not necessarily be mapped to a port or masked to a host. These volumes
can come from the same or different storage pools. Often the rules to determine which volumes can be
combined with other volumes are quite complex and can vary even across a vendor's own product line.
Once these elements are combined together, only one storage element is visible and the rest of the
storage elements are hidden and cannot be exposed. When the composite storage element is dissolved,
the hidden StorageVolumes reappear.

The Volume Composition Subprofile describes how instrumentation would combine exposable storage
elements into other exposable storage elements. Storage Elements in this context are Storage Volumes
or Logical Disks, although for this version of the specification, only StorageVolumes are supported.

This subprofile introduces a number of new methods and capabilities. The existing methods in the
StoragePool and StorageConfigurationService classes (CreateOrModifyElementFromStoragePool,
CreateOrModifyElementFromElements, ReturnToStoragePool) were found to be inadequate or attached
to the wrong class (i.e., StoragePool) to support the desired functionality. For this reason new methods
with a composition-specific focus are introduced, instead of extending or overloading the usage of
existing methods.

23.1.2 Relationship to Block Services Package

This profile makes use of the Block Services Package model and the applicable methods. Block Services
shows how StorageExtents and StoragePools may be constructed from StoragePools and ultimately how
StorageExtents may be exposed as a storage element (StorageVolume or LogicalDisk). This subprofile
uses the StorageVolume, StorageExtent, and StoragePool classes in essentially the same ways as Block
Services This subprofile does not discuss how to create or delete StoragePools. It does maintain the
concept that a StorageVolume is allocated from a StoragePool as shown by the
AllocatedFromStoragePool association, although it does extend by allowing a StorageVolume to be
allocated from multiple StoragePools. It also maintains the concept that a StorageVolume has a BasedOn
association to an underlying StorageExtent. Because of this, the capacity calculations as defined in the
Block Services Package shall continue to produce the correct results.

23.1.3 Relationship to Extent Composition

This profile is a component profile (or subprofile) and extends the functionality of the Extent Composition
subprofile, which in turn references this profile as a supported profile. This profile requires the use of the
Extent Composition Subprofile.

Extent Composition shows the hierarchical relationships between StorageVolumes and StorageExtents.
This subprofile shows how to model composite storage elements (composite StorageVolumes). Extent
Composition does not define any methods. This profile defines methods to perform composition and
decomposition of composite StorageVolumes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Volume Composition Profile

704

23.1.4 Model

To model these composite volumes, this subprofile shall define the use of CompositeExtent to represent
the “composition” characteristics of the volume. A composite StorageVolume shall have a BasedOn
association to the Antecedent CompositeExtent. That CompositeExtent shall have
CompositeExtentBasedOn or BasedOn relationships to the underlying extents (from potentially multiple
pools) that comprise the StorageVolume. These underlying extents could, in turn, be CompositeExtents.

If the volume is a composite from multiple pools, there shall be one AllocatedFromStoragePool
association to each pool. SpaceConsumed shall show applicable space consumed from each pool. The
general class model looks like Figure 104: "Volume Composition Class Mode".

One important thing to note about the class model is that the CompositeExtent is not associated via
ConcreteComponent to the StoragePool.

The client can use the StorageElementCompositionCapabilities to determine which features of this profile
are supported. The first property is to check is SupportsComposites, which will be set to true if the
instrumentation supports creating and modifying composites. The client should also check
MaxCompositeSize and MaxCompositeElements to determine the bounds for composite creation. Since
there are a number of differences in the way vendors have implemented creation and modification, the
client should check the CompositionCharacteristics array to understand which creation and modification
options the instrumentation supports. The SupportedAsynchronousActions and
SupportedSynchronousActions indicate which methods are supported and whether or not a job is started
when the method is invoked. An entry in both arrays indicates a job may be started in some cases but not
in others. SupportedStorageElements indicates the types of storage elements that may be used. For this
version of the specification, only StorageVolumes are supported. The CompositionMethodsSupported
indicates which of the different ways of creating a composite (simple concatenation, striping across
elements, concatenate and stripe, etc.) are supported by the instrumentation. Lastly,

Figure 104 - Volume Composition Class Mode

StorageVolume

CompositeExtent

StorageExtent

StoragePool

BasedOn

BasedOn

ConcreteComponent

AllocatedFromStoragePool
ComputerSystem SystemDevice

HostedService

ElementCapabilities

StorageElementCompositionService

StorageElementCompositionCapabilities

SystemDevice

Block Services

StorageSetting

1

1

1

1 11

1

1

*

1

*

Extent Composition

ElementSettingData 1

*

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 705

CompositeSourcesSupported is used to indicate the source of storage elements when they are not
explicitly specified in the call to CreateOrModifyCompositeElement. The client can examine the
CompositionCharacteristics property to determine which options are permitted. See Table 471 for a
summary of those possible values.

23.1.5 Quality of Service (QoS) Considerations

It is a requirement of Block Services that each StorageVolumes have an associated StorageSetting. This
StorageSetting defines a requested ‘service level’ in terms of data and package redundancy. The
currently achieved value is found in the StorageVolume itself.

When a composite is created, it shall have an associated StorageSetting as regular StorageVolumes do.
It shall also track the current ‘service level’ achieved in the StorageVolume properties as specified by
Block Services. However, the resulting ‘service level’ needs to be determined. Determining what this
resulting ‘service level’ will depend upon the parameters passed in to CreateOrModifyCompositeElement.
If only InElements is passed in, the ‘service level’ of the StorageVolume shall be determined by the
instrumentation. If Goal or RepresentativeElement is passed in, the instrumentation shall attempt to meet
the ‘service level’ specified by the Goal or RepresentativeElement instead of InElements (if InElements is
non-NULL).

23.1.6 Composite Stripe Length and Depth

This profile supports the creation of composites where the elements are either concatenated together,
striped, or concatenated and striped. To provide this information, this profile utilizes a StorageSetting that
contains additional information about any striping done on the composite.
StorageSetting.ExtentStripeLength describes the number of underlying storage elements in a composite
volume that data is striped across. For any volumes not participating in the stripe, data is linearly written
to the remaining volumes. This property only applies to composites that have a CompositeType of "Stripe
elements” or "Concatenate and stripe elements". In the case of "Stripe elements", this value shall be
equal to the number of elements in the composite. In the case of "Concatenate and stripe elements",
ExtentStripeLength shall be equal to the number of striped elements and not the number of concatenated
elements. In other words, for "Concatenate and stripe elements", ExtentStripeLength would be equivalent
to the total number of volumes in the composite minus the number of concatenated elements.

Table 471 - CompositionCharacteristics Property

Value Description

CompositionIsDestructive Any data that exists on the elements will be destroyed when the composite is created

CanCompositeComposites It is possible to use an existing composite as an element to a new composite

CanModifyComposite An existing composite can be modified by adding or removing one or more elements

CompositeElementsMustBeSameSize All elements used to create/modify a composite shall be the same size

CompositeElementsMustBeSameRAID/
QoS

All elements used to create/modify a composite shall have the same RAID or QoS level

DecompositionDeletesElements When the composite is dissolved, the component elements (e.g. StorageVolumes) are deleted

CanAddToComposite Elements can be added to a composite in any position

CanAppendToComposite Elements can only be added at the end of a composite.

CanRemoveFromComposite Elements can be removed from a composite

CompositeAdditionIsDestructive Adding elements to a composite results in loss of data

CompositeRemovalIsDestructive Removing elements from a composite results in loss of data

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Volume Composition Profile

706

The StorageSetting class also defines the UserDataStripeDepth property. This property defines the
number bytes written to an individual striped volume in a composite volume before data is written to the
next volume in the stripe. This property only applies to Composite Volumes that have a CompositeType of
"Stripe elements” or "Concatenate and stripe elements". Furthermore, for a composite volume there is no
relationship between StorageSetting.ExtentStripeLength and StorageSetting.UserDataStripeDepth, which
collectively with StorageSetting.ParityLayout describe the RAID level of storage elements. As an
example, consider the case where you have a 4-volume composition with 3 striped and 1 concatenated
volumes. In this example, UserDataStripeDepth bytes of data are written alternatively to the first 3
volumes until they fill up. Then all the writes go to the last volume.

The CompositeExtent properties are also affected by the stripe length. The
CompositeExtent.ExtentStripeLength shall be set to 1 when the CompositeType is “Concatenate
elements”, n for “Stripe elements”, and (n minus number of concatenated volumes) for “Concatenated and
stripe elements”; where n is the number of members of a composite volume.
CompositeExtent.IsConcatenated shall be set to true for CompositeType “Concatenate elements” and
“Concatenated and stripe elements”, false otherwise. PackageRedundancy shall be set to zero as there is
no package redundancy in the CompositeExtent. IsBasedOnUnderlyingRedundancy shall be set to true if
all of the composite volumes’ IsBasedOnUnderlyingRedundancy property is set to true, false otherwise.
NoSinglePointOfFailure shall be set to false as the CompositeExtent represents a single point of failure
for the composite volume.

23.1.7 Examples

23.1.7.1 Example 1

Figure 105 shows how a composite volume may be created. For simplification, the value of the
StorageExtent.BlockSize property is 1 and the associations to the underlying primordial StoragePool
have been omitted, along with the StorageSettings associated to the volumes. In some implementations,
there may be intermediate extents between the volume and the ConcreteComponent StorageExtent.

In this example, we have four StorageExtents of 40 blocks each that are combined into a concrete
storage pool of 160 blocks and four storage volumes allocated from the pool, each consuming 40 blocks.
The remaining space in the pool is 0 blocks.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 707

Next, a composite volume is created by calling CreateOrModifyCompositeElement using three of the
volumes (V1, V2, and V3). The result, shown in Figure 106, is the creation of a composite volume with the
name V1 whose size is now 120 blocks and volumes V2 and V3 are now inaccessible. The volume V4 is
unchanged. A CompositeExtent is added and is the Antecedent of a BasedOn association to the
StorageVolume. In turn, the BasedOn associations that were going from volumes V1, V2, and V3 from
extents SE1, SE2, and SE3 are now associated from the extents to the CompositeExtent.

Figure 105 - Example 1 Step 1

V1: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

Apool: StoragePool

Primordial = false
TotalManagedSpace = 160
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V3: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V2: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn BasedOn BasedOn BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent

ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

123

124

125

126

127

128

129

Volume Composition Profile

708

23.1.7.2 First Alternative to Example 1

Figure 107 shows how the StorageSetting would be set when two volumes are turned into a composite. In
this example, the volumes have a BasedOn relationship to a CompositeExtent. These volumes partially
consume the underlying extent. Not shown in the diagram are the other StorageVolumes that consume
the rest of the extent. In this example, the first volume, V1, has a DataRedundancy of 2 and a
PackageRedundancy of 1. The second volume, V2, has a DataRedundancy of 1 and a
PackageRedundancy of 0

Figure 106 - Example 1 Step 2

V1: StorageVolume

NumberOfBlocks = 120
ConsumableBlocks = 120

Apool: StoragePool

Primordial = false
TotalManagedSpace = 160
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn

BasedOn

BasedOn
BasedOn

ConcreteComponent

ConcreteComponent

ConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=120 AllocatedFromStrorgePool

SpaceConsumed=40

C1: CompositeExtent

NumberOfBlocks = 120
ConsumableBlocks = 120
ExtentStripeLength=1
PackageRedundancy=0

BasedOn

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

130

131

132

133

134

135

136

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 709

.

As shown in Figure 108, after composition, the two volumes are combined into a single volume, V1, with
a size equal to the sum of the prior two volumes. The StorageSetting of composite volume has been set to
the lowest StorageSetting of the “before” volumes, which in this case is the StorageSetting from volume
V2, for a DataRedundancy of 1 and a PackageRedundancy of 0. Also note that (partial) StorageExtents
have been added between the CompositeExtent representing the composite volume (CE1-2) and the
underlying CompositeExtents from before (CE1 and CE2). This is to preserve the consumption
information of the original volumes.

Figure 107 - First Alternative Example - Before Composition

V1: StorageVolume

NumberOfBlocks = 10
ConsumableBlocks = 10

V2: StorageVolume

NumberOfBlocks = 20
ConsumableBlocks = 20

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn

S1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

S2: StorageSetting

DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL

ElementSettingData

137

138

139

140

141

142

143

144

Volume Composition Profile

710

23.1.7.3 Second Alternative to Example 1

Figure 109 also shows an alternative extent model. In this example, the volumes have a BasedOn
relationship to a CompositeExtent that in turn is based on an underlying StorageExtent (e.g. a
ConcreteComponent of a concrete StoragePool). These volumes wholly consume the underlying extent.
In this example, both volumes have a DataRedundancy of 2 and a PackageRedundancy of 1.

Figure 108 - First Alternative Example - After Composition

V1: StorageVolume

NumberOfBlocks = 30
ConsumableBlocks = 30

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CSS1: StorageSetting

DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL
StripeLength=0
StripeDepth=0

ElementSettingData

BasedOn

CE1-2: CompositeExtent

NumberOfBlocks = 30
ConsumableBlocks = 30
ExtentStripeLength=1
PackageRedundancy=0

BasedOn BasedOn

PE1: StorageExtent

NumberOfBlocks = 10
ConsumableBlocks = 10

PE2: StorageExtent

NumberOfBlocks = 20
ConsumableBlocks = 20

BasedOnBasedOn

145

146

147

148

149

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 711

After composition, as shown in Figure 110, the two volumes are combined into a single volume, V1, with a
size equal to the sum of the prior two volumes. The StorageSetting of the composite volume has been set
to the StorageSetting of the “before” volumes, which in this case is a DataRedundancy of 2 and a
PackageRedundancy of 1. Also note that the volume is now based on a single CompositeExtent (CE2 has
been removed), which is now based on the previous two underlying StorageExtents.

Figure 109 - Second Alternative Example - Before Composition

V1: StorageVolume

NumberOfBlocks = 50
ConsumableBlocks = 50

V2: StorageVolume

NumberOfBlocks = 50
ConsumableBlocks = 50

CE1: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

CE2: CompositeExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn
S1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

S2: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL

ElementSettingData

SE1: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

SE2: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn

150

151

152

153

154

Volume Composition Profile

712

23.1.7.4 Example 2

In this example, shown in Figure 111, a composite volume is built from volumes from two concrete
storage pools. The configuration is the same as in the first example, except now there are two concrete
StoragePools. Volumes V1 and V2 and extents SE1 and SE2 are associated to StoragePool A, and
volumes V3 and V4 and extents SE3 and SE4 are associated to StoragePool B.

Figure 110 - Second Alternative Example - After Composition

V1:StorageVolume

NumberOfBlocks = 100
ConsumableBlocks = 100

CE1: CompositeExtent

NumberOfBlocks = 100
ConsumableBlocks = 100
ExtentStripeLength=1
PackageRedundancy=0

BasedOn

ElementSettingData

SE1: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

SE2: StorageExtent

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn BasedOn

CSS1: StorageSetting

DataRedundancy=2
PackageRedundancy=1
ParityLayout=NULL
StripeLength=0
StripeDepth=0

155

156

157

158

159

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 713

Like the example shown in Figure 110, three volumes are combined into a composite volume, leaving one
original volume. In this case, the composite volume has an AllocatedFromStoragePool association to
each of the pools from which it was created. The SpaceConsumed property in the association is set to the
space used from that particular pool. In this case, since two extents were consumed from StoragePool A
and one from StoragePool B, the AllocatedFromStoragePool.SpaceConsumed for StoragePool A is 80
blocks and the AllocatedFromStoragePool.SpaceConsumed for StoragePool B is 40 blocks. The
CompositeExtent has BasedOn associations to the underlying StorageExtents in each pool. Figure 112:
"Example 2 - After Composition" shows the resulting model.

Figure 111 - Example 2 - Before Composition

V1: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

PoolA: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V3: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

V2: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn BasedOn BasedOn BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

AllocatedFromStrorgePool
SpaceConsumed=40

PoolB: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

StoragePool A StoragePool B

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

160

161

162

163

164

165

166

167

168

Volume Composition Profile

714

23.2 Striped and Concatenated Composite Volumes

The profile supports a composite volume that consists of striping across some constituent elements and
concatenation among the remaining constituent elements, or vice versa. For example, Figure 113 shows
the model for a composite volume that combines striping and concatenation. In this example, a composite
volume consisting of “vol1” and “vol2” existed. Then, the composite volume was expanded using “vol3”
and composite type of Concatenate. Therefore, the expanded composite volume now has a composition
of “Concatenate+Stripe”. It is also possible to start with a composite volume that has a composite type of
Concatenate and expand it with two ore more volumes that are Striped. In this case, the composition is
still considered “Concatenate+Stripe”.

Use the method 23.6.5 "GetCompositeElements" to determine which constituent elements are striped and
which ones are concatenated.

Figure 112 - Example 2 - After Composition

V1: StorageVolume

NumberOfBlocks = 120
ConsumableBlocks = 120

PoolA: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

V4: StorageVolume

NumberOfBlocks = 40
ConsumableBlocks = 40

SE1: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

BasedOn

BasedOn BasedOn

BasedOn

ConcreteComponent

ConcreteComponentConcreteComponent ConcreteComponent

AllocatedFromStrorgePool
SpaceConsumed=80

AllocatedFromStrorgePool
SpaceConsumed=40

PoolB: StoragePool

Primordial = false
TotalManagedSpace = 80
RemainingManagedSpace = 0

C1: CompositeExtent

NumberOfBlocks = 120
ConsumableBlocks = 120

BasedOn

AllocatedFromStrorgePool
SpaceConsumed=40

StoragePool A StoragePool B

SE4: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE3: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

SE2: StorageExtent

NumberOfBlocks = 40
ConsumableBlocks = 40

169

170

171

172

173

174

175

176

177

178

179

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 715

23.3 Health and Fault Management Consideration

Not defined in this version of the specification.

23.4 Cascading Considerations

None

Figure 113 - Striping and Concatenation

V1: StorageVolume

NumberOfBlocks = 125
ConsumableBlocks = 125
IsComposite=true

CE1: CompositeExtent

NumberOfBlocks = 100
ConsumableBlocks = 100
DataRedundancy=1
PackageRedundancy=1
ParityLayout=NULL
ExtentStripeLength=2
ExtentStripeDepth=N
IsConcatenated=false

SE1: StorageExtent (was
Vol1)

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn

SE2: StorageExtent (was
Vol2)

NumberOfBlocks = 50
ConsumableBlocks = 50

BasedOn

SE3: StorageExtent (was
Vol3)

NumberOfBlocks = 25
ConsumableBlocks = 25

BasedOn

CE2: CompositeExtent

NumberOfBlocks = 125
ConsumableBlocks = 125
DataRedundancy=1
PackageRedundancy=0
ParityLayout=NULL
ExtentStripeLength=1
IsConcatenated=True

BasedOn BasedOn

180

181

182

183

184

Volume Composition Profile

716

23.5 Supported Profiles, Subprofiles, and Packages

Table 472 describes the supported profiles for Volume Composition.

23.6 Methods of the Profile

Table 473 describes the methods of the profile.

23.6.1 CreateOrModifyCompositeElement

This method is found in the StorageElementCompositionService. It creates or modifies a composite
element. Only like elements (e.g., StorageVolumes) can be combined. In this version of the specification,
only StorageVolumes may be used to create composite elements.

This method attempts to support vendors’ sometimes complicated algorithms for creating and modifying
composite storage elements, while simplifying it as much as possible. The key parameters are the Goal,
RepresentativeElement, Size, InElements[], and TheElement. Setting one or more of these values will
influence what the other values of these key parameters may be. These combinations will be described
below. Of the other parameters, they are fairly self-explanatory and are described in Table 474. For this
version of the specification, ElementType shall only be “StorageVolume”.

The Goal parameter specifies a set of generic QoS settings to use when creating the composite. The
RepresentativeElement parameter is intended as a more detailed goal or QoS target for the composite.
Because vendors have complex rules to create composites, it can be difficult to map those to the
standard QoS settings that might be expressed in the usual setting properties. By passing in a
representative element, the client is indicating to the instrumentation that it should use additional vendor-
specific information about that storage element when trying to create a composite. This allows for better
interoperability because it hides those vendor rules, while still supporting vendor needs. If Goal or

Table 472 - Supported Profiles for Volume Composition

Profile Name Organization Version Requirement Description

Extent Composition SNIA 1.6.0 Mandatory

Block Services SNIA 1.6.1 Mandatory

Table 473 - Method Summary

Method Created Instances Modified Instances Deleted Instances

CreateOrModifyCompositeElement StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

ReturnElementToElements StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

GetAvailableElements N/A N/A N/A

GetCompositeElements N/A N/A N/A

GetSupportedStripeLengths N/A N/A N/A

GetSupportedStripeLengthRange N/A N/A N/A

GetSupportedStripeDepths N/A N/A N/A

GetSupportedStripeDepthRange N/A N/A N/A

RemoveElementsFromElement StorageVolume
CompositeExtent

StorageVolume
CompositeExtent

N/A

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 717

RepresentativeElement is non-null, then the other shall be null. InElements[] can also be used to deduce
QoS setting to use in case neither Goal or RepresentativeElement is specified. In this case, the QoS for
the composite element will be the lowest common denominator of the QoS values for the InElements
array.

23.6.1.1 Creating a Composite

When creating a new composite storage element, there are two distinct modes of operation. Regardless
of which mode is used, the following values shall apply:

The TheElement parameter shall be NULL. ElementName may be specified if the instrumentation
supports naming of composite elements. CompositeType may be specified if the instrumentation supports
the setting of this parameter. Job will be non-NULL upon the method return if a Job was created.

The two creation use cases are the following:

• Pass in a non-empty list of extents (e.g., StorageVolumes) in InElements[] and a NULL Size parameter. The
RepresentativeElement and Goal parameters may be NULL as the instrumentation will pick up the QoS goal
from the InElements. If RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the
QoS settings in the RepresentativeElement. It shall fail if it cannot create a composite that satisfies that QoS.
If Goal is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it
cannot create a composite that satisfies that Goal. The user may specify RepresentativeElement or Goal, but
not both. The ElementSource parameter shall be NULL.

• Pass in a Size and a NULL InElements parameter. In this case, the instrumentation shall find the elements to
use, based on the value of the ElementSource parameter, which may be NULL, indicating the instrumentation
will determine the source of the elements. Goal or RepresentativeElement shall be specified. If
RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the
RepresentativeElement. It shall fail if it cannot create a composite that satisfies that QoS. If Goal is not NULL,
the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it cannot create a
composite that satisfies that Goal. The user may specify RepresentativeElement or Goal, but not both. The
size of the composite created shall be equal to or greater than the Size passed in.

23.6.1.2 Modifying a Composite

When modifying a composite, the client should examine the supported capabilities of the instrumentation
before modifying a composite, as certain operations may result in data loss, depending upon the
capabilities of the instrumentation.

Modifying a composite is similar to creation, with a few differences. The key difference is that TheElement
shall be specified. ElementName may be specified if the instrumentation supports naming of composite
elements. CompositeType may be specified if the instrumentation supports the setting of this parameter.
Job will be non-NULL upon the method return if a Job was created.

The two modification use cases are the following:

• Pass in a non-empty list of extents (e.g., StorageVolumes) in InElements[] and a NULL Size parameter. The
RepresentativeElement and Goal parameters may be NULL as the instrumentation will pick up the QoS goal
from the existing composite and the InElements. If RepresentativeElement is not NULL, the instrumentation
shall attempt to satisfy the QoS settings in the RepresentativeElement. It shall fail if it cannot modify the
composite to satisfies that QoS. If Goal is not NULL, the instrumentation shall attempt to satisfy the QoS
settings in the Goal. It shall fail if it cannot modify a composite to satisfy that Goal. The user may specify
RepresentativeElement or Goal, but not both. If the Size parameter is NULL, the Instrumentation shall modify
the composite size to be the current size plus the sum of the ConsumableBlocks times BlockSize of the
InElements[] entries. The ElementSource parameter shall be NULL.

• Pass in a Size and a NULL InElements parameter. In this case, the instrumentation shall find the elements to
use, based on the value of the ElementSource parameter, which may be NULL, indicating the instrumentation
will determine the source of the elements. Goal or RepresentativeElement shall be specified. If

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

Volume Composition Profile

718

RepresentativeElement is not NULL, the instrumentation shall attempt to satisfy the QoS settings in the
RepresentativeElement. It shall fail if it cannot modify the composite to satisfy that QoS. If Goal is not NULL,
the instrumentation shall attempt to satisfy the QoS settings in the Goal. It shall fail if it cannot modify a
composite to satisfy that Goal. The user may specify RepresentativeElement or Goal, but not both. The size
of the composite created shall be equal to or greater than the Size passed in. If Size is smaller than the
current composite size, this may mean that volumes in the composite may remove from the composite.

Table 474 describes the return values for the CreateOrModifyCompositeElement method.

Table 474 - CreateOrModifyCompositeElement

Method: CreateOrModifyCompositeElement

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot be modified

4096: Method Parameters Checked - Job
started

Job was started

4097: Size Not supported

Parameters:

Qualifiers Name Type Description/Values

IN ElementName string End-user relevant name for the element created

IN ElementType uint16 Type of element being created

OUT Job REF ConcreteJob Reference to the job created

IN Goal REF ManagedElement The QoS requirements for the composite
element to maintain. This parameter may be
null. If both Goal and RepresentativeElement
are null, the implementation selects an
appropriate Goal from the InElements. When a
StorageSetting is used, this will include the
stripe length and depth.

IN RepresentativeEleme
nt

REF StorageExtent The instrumentation will use this parameter +
Size or InElements to determine the elements
used to construct the composite. This parameter
may be NULL. If both Goal and
RepresentativeElement are null, the
implementation selects an appropriate Goal
from the InElements.

253

254

255

256

257

258

259

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 719

23.6.2 RemoveElementsFromElement

This method is found in the StorageElementCompositionService. It removes selected elements from a
composite volume. Note that the elements returned may not match the elements that went into the
composite (e.g., VPD page 83h information may not be the same). Also, removing a member element
from a composite element may impact the data stored on the remaining members (see Table 471,
“CompositionCharacteristics Property”). Removing all members is the same as calling
ReturnElementToElements.

IN/OUT Size uint64 Unit: bytes

As an input parameter Size specifies the desired
size. If NULL, then InElements shall be supplied.
If not NULL, this parameter will supply a new
size when creating or modifying an existing
element.

As an output parameter Size specifies the size
achieved.

IN InElements[] REF StorageExtent The elements from which to create the
composite element. If this parameter is NULL
then Size shall be non-NULL.

Once the elements are combined, they will be
removed from the model and replaced with a
single element.

For some instrumentation, this may be one of
the InElements, so in effect, all but one are
removed.

IN/OUT TheElement REF LogicalElement When used to create a composite, this shall be
NULL

Upon modification, this shall specify an existing
composite element. The method will then modify
the specified element. Upon completion (unless
a Job is started), a reference to the resulting
element shall be returned

IN CompositeType uint16 Type of composite element to create. Possible
values are Concatenate, Stripe,

Concatenate+Stripe, Vendor specific.

If NULL, the instrumentation will decide

IN ElementSource uint16 Tell the instrumentation where to get the
elements. Only applies when Size is specified
and not InElements. Otherwise it shall be NULL.

Possible values are:

1. Use existing elements only

2. Create new elements only

3. Can use existing or create new or both

4. Instrumentation decides

If NULL, the instrumentation will decide.

Table 474 - CreateOrModifyCompositeElement

Method: CreateOrModifyCompositeElement

260

261

262

263

264

265

266

Volume Composition Profile

720

Table 475 describes the return values for the RemoveElementsFromElement method.

23.6.3 ReturnElementToElements

This method is found in the StorageElementCompositionService. It dissolves a composite into its
constituent elements. Note that the elements returned may not match the elements that went into the
composite (e.g., VPD page 83h information may not be the same).

Table 476 describes the return values for the ReturnElementToElements method.

Table 475 - RemoveElementsFromElement

Method: RemoveElementsFromElement

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot be modified

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

INOUT TheElement REF StorageVolume Composite element to modify. Returns element
in case object path changes as a result of
removal

IN InElements[] REF StorageExtent The elements to remove from the composite ele-
ment. These may be found by calling
GetCompositeElements or keeping track of the
elements that went into the composite.

Table 476 - ReturnElementToElements

Method: ReturnElementToElements

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

267

268

269

270

271

272

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 721

23.6.4 GetAvailableElements

This method, found in the StorageElementCompositionService, queries the set of pools passed in and
returns a set of elements (volumes or logical disks) that can be composed together based on the
specified goal and element passed in. Since there are usually complicated vendor-specific rules for
creating these composite volumes, using the representative element can supply more vendor-specific
information than there would be in a interoperable setting. The client can then use some or all of this list
in a call to CreateOrModifyCompositeElement().

In this version of the specification, only StorageVolumes shall be supported as the ElementType.

Table 477 describes the return values for the GetAvailableElements method.

6: In use Element is in use and cannot be dissolved

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN TheElement REF LogicalElement The composite element to dissolve

OUT OutElements[] REF StorageExtent Elements the composite was dissolved into

Table 477 - GetAvailableElements

Method: GetAvailableElements

Return Values:

Value Description

0: Success Job completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

6: In use Element is in use and cannot be dissolved

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN InPools[] REF StoragePool List of pools to look in

IN Goal REF StorageSetting The QoS goal requirements for the composite
element. Can be NULL. If it is NULL, then
RepresentativeElement shall be non-NULL

Table 476 - ReturnElementToElements

Method: ReturnElementToElements

273

274

275

276

277

278

279

280

281

Volume Composition Profile

722

23.6.5 GetCompositeElements

This method is found in the StorageElementCompositionService. It is used to query an existing composite
element to determine the component elements that make up that composite element (i.e., the “parents” of
a composite element). If the method is executed under control of a job, examine the AffectedJobElement
associations for the list of the constituent elements after the job completes.

Table 478 describes the return values for the GetCompositeElements method.

IN ElementType uint16 Enumeration indicating the type of element
being created or modified

Values:

2: StorageVolume

3: LogicalDisk

IN RepresentativeEleme
nt

REF StorageExtent Serves as a guide to help the instrumentation
determine which elements to return. It shall be a
member of one of the pools passed in. This may
be NULL, only if Goal is non-NULL

OUT Candidates[] REF StorageExtent The elements that can be used to create the
composite element. These will be an array of
references to StorageVolumes or LogicalDisks.

Table 478 - GetCompositeElements

Method: GetCompositeElements

Return Values:

Value Description

0: Success Method completed with no error.

1: Not Supported Method not supported

2: Unknown Unknown error occurred

3: Timeout Operation timed out

4: Failed Operation failed

5: Invalid Parameter Invalid parameter

6: In use Element is in use and cannot be accessed

4096: Method Parameters Checked - Job
started

Job was started

Parameters:

Qualifiers Name Type Description/Values

OUT Job REF ConcreteJob Reference to the job created

IN TheElement REF StorageExtent The element to query

Table 477 - GetAvailableElements

Method: GetAvailableElements

282

283

284

285

286

287

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 723

23.6.6 GetSupportedStripeLengths

This method is found in the StorageElementCompositionService. This method returns the list of possible
stripe lengths which can be used in the property StorageSetting.ExtentStripeLength supplied, as the
Goal, to the CreateOrModifyCompositeElement method. Note that different implementations may support
either the GetSupportedStripeLengths or the GetSupportedStripeLengthRange method. If the system only
supports a range of lengths, then the return value will be set to 3.

Table 479 describes the return values for the GetSupportedStripeLengths method.

23.6.7 GetSupportedStripeLengthRange

This method is found in the StorageElementCompositionService. For systems that support a range of
stripe lengths for composite volumes, this method can be used to retrieve the range of possible stripe
lengths which can be used in the property StorageSetting.ExtentStripeLength supplied, as the Goal, to
the CreateOrModifyCompositeElement method. Note that different implementations may support either
the GetSupportedStripeLengths or the GetSupportedStripeLengthRange method. If the system only
supports discrete values, then the return value will be set to 3.

IN RequestType uint16 Possible values are:

Immediate -- return the immediate “parent” of
TheElement.

Primordial -- return dependent storage extents
of TheElement at the lowest extent hierarchy.

OUT OutElements[] REF StorageExtent The elements that comprise the composite.

OUT OutElementTypes[] uint16 A parallel array to OutElements array. Possible
values:

Member of Stripe Set, and

Member of Concatenation

Table 479 - GetSupportedStripeLengths

Method: GetSupportedStripeLengths

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeLengthRange instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT StripeLengths[] uint64 List of supported stripe
Lengths

Table 478 - GetCompositeElements

Method: GetCompositeElements

288

289

290

291

292

293

294

295

296

297

298

299

300

301

Volume Composition Profile

724

Table 480 describes the return values for the GetSupportedStripeLengthRange method.

23.6.8 GetSupportedStripeDepths

This method is found in the StorageElementCompositionService. This method returns the list of possible
stripe depths which can be used in the property StorageSetting.UserDataStripeDepth supplied, as the
Goal, to the CreateOrModifyCompositeElement method for systems that support discrete stripe depths.
For systems that require the stripe depth to be on a given boundary, such as 512, the stripe length will be
rounded up to the next higher value that is a multiple of the required boundary. Note that different
implementations may support either the GetSupportedStripeDepths or the
GetSupportedStripeDepthRange method. If the system only supports a range of stripe depths, then the
return value will be set to 3.

Table 481 describes the return values for the GetSupportedStripeDepths method.

Table 480 - GetSupportedStripeLengthRange

Method: GetSupportedStripeLengthRange

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeLengths instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT MinimumStripeLength uint64 Minimum ExtentStripeLength
for a composite element

OUT MaximumStripeLength uint64 Maximum ExtentStripeLength
for a composite element

OUT StripeLengthDivisor uint64 Composite element’s stripe
length must be a multiple of
this value

Table 481 - GetSupportedStripeDepths

Method: GetSupportedStripeDepths

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeDepthRange instead

Parameters

Qualifiers Name Type Description/Values

302

303

304

305

306

307

308

309

310

311

312

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 725

23.6.9 GetSupportedStripeDepthRange

This method is found in the StorageElementCompositionService. For systems that support a range of
stripe depths for composite volumes, this method can be used to retrieve the range of possible stripe
depths which can be used in the property StorageSetting.UserDataStripeDepth supplied, as the Goal, to
the CreateOrModifyCompositeElement method. Note that different implementations may support either
the GetSupportedStripeDepths or the GetSupportedStripeDepthRange method. If the system only
supports discrete values, then the return value will be set to 3.

Table 482 describes the return values for the GetSupportedStripeDepthRange method.

23.7 Client Considerations and Recipes

23.7.1 Indications

When storage elements are combined into a composite or a composite is dissolved, indications shall be
sent. When a composite is created, the instrumentation shall send an InstDelete indication for all volumes
that no longer exist as StorageVolumes. The AllocatedFromStoragePool association shall be deleted, as
well as the ElementSettingData association and its associated StorageSetting. Indications shall not be
required to be sent for those deletions. If the storage element still exists but is no longer accessible, the
provider may send an InstModification indication for the StorageVolume depending upon whether or not
there are any changes to the storage element itself. If the instrumentation creates a new storage element,

IN ElementType uint16 Type of element

OUT StripeDepths[] uint64 List of supported stripe depths

Table 482 - GetSupportedStripeDepthRange

Method: GetSupportedStripeDepthRange

Return Values

Value Description

0 Method completed with no error.

1 Method not supported

2 ElementType not supported

3 Use GetSupportedStripeDepths instead

Parameters

Qualifiers Name Type Description/Values

IN ElementType uint16 Type of element

OUT MinimumStripeDepth uint64 Minimum User-
DataStripeDepth for a com-
posite element

OUT MaximumStripeDepth uint64 Maximum User-
DataStripeDepth for a com-
posite element

OUT StripeDepthDivisor uint64 Composite element’s stripe
depth must be a multiple of
this value

Table 481 - GetSupportedStripeDepths

Method: GetSupportedStripeDepths

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Volume Composition Profile

726

then it shall send an InstCreation indication for the new element. If the instrumentation modifies an
existing element and it becomes the element to represent a composite, an InstModification indication
shall be sent. InstModification indications for the AllocatedFromStoragePool association,
ElementSettingData association, and associated StorageSetting shall not be not required.

When a composite is dissolved, the instrumentation shall send an InstCreation indication for each storage
element created. It shall send an InstDeletion indication if the composite element is deleted and an
InstModification indication if the composite element is merely modified. Indications for the
AllocatedFromStoragePool associations, ElementSettingData associations, and associated
StorageSettings that are created, deleted, or modified as a result of the dissolution of the composite shall
not be required.

The user is advised to check the StorageSetting for the storage elements they are interested in after
composite creation or deletion as those settings may have changed from what they were before.

23.7.2 Recipe 1: Create Composite Volume

In this use case, all available storage is consumed in StorageVolumes. The client wishes to create a
larger volume from volumes that are not being used. The client will call
CreateOrModifyElementFromElements(), passing in a set storage volumes. The provider will then create
the concatenated volume.

// DESCRIPTION:

//

// Create a composite volume

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The StorageElementCompositionService has been found and the object path

// value is stored in $CompositionService->

// 2. The list of elements (volumes) to use to create the composite has been

// identified and the object path values are stored in $volumes->[]

// 3. The StorageSetting to use has been identified and the object path

// values are stored in $Goal->

// 4. The type of element to create has been selected (LogicalDisk or

// StorageVolume and it’s value stored in #ElementType

// 5. A representative element (LogicalDisk or StorageVolume instance)

// has been identified and it’s object path stored in $SampleElement->

// Note: this is allowed to be null

// 6. The StorageElementCompositionCapabilities associated to the

// StorageElementCompositionService has been found and the instance

// stored in $CompositionCapabilities

// 7. The type of composite to create has been identified and the value

// stored in #CompositeType

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 727

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobState != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. See if creation is supported

if ($CompositionCapabilities.SupportsComposites == false) {

 <ERROR! Volume composition not supported>

}

if ((contains(“CreateOrModifyCompositeElement”,

 $CompositionCapabilities.SupportedAsynchronousActions[]) == FALSE)

 && (contains(“CreateOrModifyCompositeElement”,

 $CompositionCapabilities.SupportedSynchronousActions[]) == FALSE)) {

 <ERROR! Volume composition creation not supported>

}

// Step 2. Subscribe to indications

#Filter1 = “SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StorageVolume”;

#Filter2 = “SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StorageVolume”;

// Determine if the Indication filters already exist

// If they don’t, create them

// Step 3. Create the composite

%InputArguments[“ElementName”] = {“Test”}

%InputArguments[“ElementType”] = #ElementType

%InputArguments[“Goal”] = $Goal->

%InputArguments[“InElements”] = {$volumes->}

%InputArguments[“ElementType”] = #CompositeType

#ReturnCode = InvokeMethod($CompositionService->,

 “CreateOrModifyCompositeElement”,

 %InputArguments,

 %OutputArguments)

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402
403

404
405

406

407

408

409

410

411

412

413

414

415

416

417

Volume Composition Profile

728

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

 <ERROR! Method failure>

}

$Job-> = %OutputArguments[“Job”]

if ($Job-> == null) {

 $CompositeCreated-> = %OutputArguments[“TheElement”]

}

else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $Job->)

 // Now get the composite just created

 $CompositeCreated-> = Associators($Job->,

 “CIM_AffectedJobElement”,

 “CIM_StorageExtent”,

 “AffectingElement”,

 “AffectedElement”,

 false, false, null)

}

// Step 4: Verify the volumes that went into the composite are no longer accesible

for #i in $Candidates->[] {

 if ($Candidates->[#i] == $CompositeCreated->) {

 // It’s allowed for the created composite to take over the

 // identity of a volume that went into creating it

 }

 else {

 $Refs->[] = AssociatorNames(

 $Candidates->[#i],

 “CIM_SystemDevice”, // AssocClass

 “CIM_ComputerSystem”, // ResultClass

 “PartComponent”, // Role

 null)

 if($Refs->[].length != 0)

 {

 <“ERROR! Composite volume component still exists”>

 }

 }

}

23.7.3 Recipe 2: Delete Composite Volume

In this use case, the client wishes to return a concatenated volume to its individual component storage
volumes. The client calls ReturnElementToElements() to dissolve the concatenated volume.

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 729

// DESCRIPTION:

//

// Delete a composite volume

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

//

// 1. The StorageElementCompositionService has been found and the object path

// value is stored in $CompositionService->

// 2. A composite volume has been created and the object path stored in

// $compositeVolume->

// 3. The StorageElementCompositionCapabilities associated to the

// StorageElementCompositionService has been found and the instance

// stored in $CompositionCapabilities

// Determine if there is a job created by method

// and wait for the job to complete

// Input:

// #ReturnCode : The return code of the method

// $ConcreteJob-> :The output parameter that may have a ConcreteJob REF.

// This method will return control if the recipe was not exited because of error

sub void WaitForJob(#ReturnCode, $ConcreteJob->) {

 if (4096 == #ReturnCode) {

if ($ConcreteJob-> != null) {

 /*Wait until the completion of the job using $ConcreteJob-> as

a filter Verify that the OperationalStatus contains 2 (“OK”),

or 17 (“Completed”) */

 $JobInstance = GetInstance($ConcreteJob->,

 false, false, false, null)

 if ($JobInstance.JobState != 7) {// 7 - Completed

<ERROR! Job failed! >

 }

} else {

 <ERROR! Missing Job reference>

}

 }

}

// Step 1. Subscribe to indications

#Filter1 = “SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StorageVolume”;

#Filter2 = “SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StorageVolume”;

// Determine if the Indication filters already exist

// If they don’t, create them

// Step 2. Dissolve the composite volume

if ($CompositionCapabilities.SupportsComposites == false) {

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496
497

498
499

500

501

502

503

Volume Composition Profile

730

 <ERROR! Volume composition not supported>

}

%InputArguments[“TheElement”] = $CompositeVolume->

#ReturnCode = InvokeMethod($CompositionService->,

 “ReturnElementToElement”,

 %InputArguments,

 %OutputArguments)

// 0 is “Success” and 4096 is “Method Parameters Checked - Job Started”

if (#ReturnCode != 0 || #ReturnCode != 4096) {

<ERROR! Method failure>

}

$Job-> = %OutputArguments[“Job”]

if ($Job-> == null) {

 $Volumes->[] = %OutputArguments[“OutElements”]

}

else {

 // Wait until job is finished

 &WaitForJob(#ReturnCode, $Job->)

 // Now get the SPCs

 $Volumes->[] = Associators(

 $Job->,

 “CIM_AffectedJobElement”,

 “CIM_StorageExtent”,

 “AffectingElement”,

 “AffectedElement”,

 false, false, null)

}

// Step 2. Show the elements from the former composite

for #v in $Volumes->[] {

 $AnInstance = GetInstance($Volumes->[#i],

 false, false, false, null)

 // Display instance

}

23.8 Registered Name and Version

Volume Composition version 1.5.0 (Component Profile)

CIM Schema Version: 2.23.0

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 731

23.9 CIM Elements

Table 483 describes the CIM elements for Volume Composition.

23.9.1 CIM_CompositeExtent

Created By: Extrinsic

Modified By: Extrinsic

Deleted By: Extrinsic

Requirement: Mandatory

Table 484 describes class CIM_CompositeExtent.

Table 483 - CIM Elements for Volume Composition

Element Name Requirement Description

23.9.1 CIM_CompositeExtent Mandatory

23.9.2 CIM_CompositeExtentBasedOn (Volume
Composition)

Mandatory

23.9.3 CIM_ElementCapabilities Mandatory

23.9.4 CIM_ElementSettingData Mandatory

23.9.5 CIM_HostedService (Associates ComputerSystem
and the ElementCompositionService)

Mandatory

23.9.6 CIM_StorageElementCompositionCapabilities Mandatory

23.9.7 CIM_StorageElementCompositionService Mandatory

23.9.8 CIM_StorageSetting Mandatory

23.9.9 CIM_StorageVolume Conditional Conditional requirement: Storage Volumes used as
storage elements.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Storage Volumes used as
storage elements. Modification of a StorageVolume upon
creation or deletion of a composite.

Table 484 - SMI Referenced Properties/Methods for CIM_CompositeExtent

Properties Flags Requirement Description & Notes

IsConcatenated Mandatory Indicates data is concatenated across extents in the group.

BlockSize Mandatory Size in bytes of the blocks which form this StorageExtent.

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The maximum number of blocks, of size BlockSize, which are available for
consumption.

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

541

542

543

544

545

546

547

548

Volume Composition Profile

732

23.9.2 CIM_CompositeExtentBasedOn (Volume Composition)

Created By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Modified By: External

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Mandatory

Table 485 describes class CIM_CompositeExtentBasedOn (Volume Composition).

23.9.3 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 486 describes class CIM_ElementCapabilities.

23.9.4 CIM_ElementSettingData

Created By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Modified By: Static

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Mandatory

Table 487 describes class CIM_ElementSettingData.

Table 485 - SMI Referenced Properties/Methods for CIM_CompositeExtentBasedOn (Volume Composition)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 486 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 487 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The composite setting data object associated with the composite element.

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 733

23.9.5 CIM_HostedService (Associates ComputerSystem and the ElementCompositionService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 488 describes class CIM_HostedService (Associates ComputerSystem and the
ElementCompositionService).

23.9.6 CIM_StorageElementCompositionCapabilities

Created By: Static

Requirement: Mandatory

Table 489 describes class CIM_StorageElementCompositionCapabilities.

Table 488 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
the ElementCompositionService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 489 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory User friendly name for this instance of Capabilities.

InstanceID Mandatory Unique identifier for the instance.

SupportsComposites Mandatory Indicates if instrumentation supports composite elements.

MaxCompositeSize Mandatory Indicates the largest composite element that can be created in bytes.

MaxCompositeElements Mandatory Indicates the most elements that can be combined into a composite
element.

CompositionCharacteristic
s

Mandatory Composition characteristics supported by this system.

SupportedAsynchronousA
ctions

Mandatory Indicates which methods are executed asynchronously.

SupportedSynchronousAct
ions

Mandatory Indicates which methods are executed synchronously.

SupportedStorageElement
s

Mandatory Managed element types that can be composited. Currently only
StorageVolume.

CompositionMethodsSupp
orted

Mandatory Composition methods supported.

CompositeSourcesSupport
ed

Mandatory Composition sources supported.

567

568

569

570

571

572

573

574

575

576

577

Volume Composition Profile

734

23.9.7 CIM_StorageElementCompositionService

Created By: Static

Requirement: Mandatory

Table 490 describes class CIM_StorageElementCompositionService.

23.9.8 CIM_StorageSetting

Created By: Static

Modified By: Static

Deleted By: Static

SupportsCompositeNamin
g

Mandatory Can the user name the composite.

SupportsRepresentativeEl
ement

Mandatory Can the user specify the RepresentativeElement in
CreateOrModifyComposite and GetAvailableElements.

Table 490 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

CreateOrModifyComposite
Element()

Mandatory This method creates or modifies a composite element. Only like elements
(e.g. StorageVolumes) can be combined.

ReturnElementToElements
()

Mandatory Dissolve the composite. All elements in the composite are restored.

RemoveElementsFromEle
ment()

Optional Removes one or more constituent elements from a composite volume.

GetAvailableElements() Optional This method queries the set of pools passed in and returns a set of
volumes or logical disks that can be composed together based on the
specified goal and element passed in.

GetCompositeElements() Optional Returns list of volumes/logical disks that were combined into this
composite volume. Since (usually) all but one of these volumes/logical
disks disappear when the composite is created, this is an essential
method to help the client figure out what is in the composite. Remember
that a particular client may not have been the one to create the composite.

GetSupportedCompositeSt
ripeDepths()

Optional This method returns the list of possible stripe depths (a.k.a. stripe size) to
use in the CreateOrModifyCompositeElement method.

GetSupportedCompositeSt
ripeDepthRange()

Optional This method returns the range of possible stripe depths (a.k.a. stripe size)
to use in the CreateOrModifyCompositeElement method.

Table 489 - SMI Referenced Properties/Methods for CIM_StorageElementCompositionCapabilities

Properties Flags Requirement Description & Notes

578

579

580

581

582

583

584

585

 Volume Composition Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 735

Requirement: Mandatory

Table 491 describes class CIM_StorageSetting.

Table 491 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional Number of underlying StorageVolumes in a composite volume that data is
striped across.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional The number of bytes forming a stripe (aka stripe size).

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

586

587

Volume Composition Profile

736

23.9.9 CIM_StorageVolume

Created By: Extrinsic: ReturnElementToElements

Modified By: External

Deleted By: Extrinsics: CreateOrModifyCompositeElement, ReturnElementToElements

Requirement: Storage Volumes used as storage elements.

Table 492 describes class CIM_StorageVolume.

EXPERIMENTAL

Table 492 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks as reported by the hardware.

ConsumableBlocks Mandatory The number of usable blocks.

ExtentStatus Mandatory

OperationalStatus Mandatory

588

589

590

591

592

593

 Volume Management Profile

SMI-S 1.6.1 Revision 6 SNIA Technical Position 737

DEPRECATED

24 Volume Management Profile

NOTE The Volume Management Profile is scheduled for removal for SMI-S 2.0. The functionality of this profile will not be replaced
in SMI-S 2.0. The Storage Network Industry Association (SNIA) is not aware of any implementations of this profile. The SNIA would
like to hear from anyone that has implemented the Volume Management Profile. If your company or organization has implemented
this profile and is a member of the SNIA, please contact the DRM Technical Working Group or indicate your preference to keep this
profile in SMI-S 2.0 during member reviews and ballots. If your company or organization has implemented this profile and is not a
member of the SNIA, please indicate your preference to keep this profile as part of SMI-S using the SNIA feedback portal: http://
www.snia.org/tech_activities/feedback/ .

24.1 Description

The host Volume Management (VM) Profile addresses block storage virtualization and presents virtual
block devices to clients. The model represents virtualization for host volume management where
LogicalDisks are exported.

A host volume manager is a software storage management subsystem that allows one to manage
physical disks as logical devices called volumes. A volume is a logical device that appears to data
management systems as a physical disk. Through support of RAID, the volume manager provides similar
features as many disk arrays. Therefore, CIM administration of a volume manager is similar to that of an
array. Embedded volume managers, like in a switch, should use the Virtualization Profile.

The Volume Management Profile uses existing classes from the Array Profile and Block Services
Subprofile, and optionally uses the Host Discovered Resources Subprofile to bind with the disks in the
host operating system.

1

2
3
4
5
6
7
8

9

10

11

12

13

14

15

16

17

18

19

20

Volume Management Profile

738

24.1.1 Instance Diagram

24.1.2 Input Class of the Volume Manager

The host operating system provides a unique name for each disk via a special file name. Typically, these
are device file names: drive letters on Windows systems or /dev/dsk/device1 on UNIX systems. A
LogicalDisk can be based on a disk partition or created by the operating system to represent a discovered
volume and would have an operating system device name. The volume manager provider will place into a
primordial pool all disks that it discovers as a LogicalDisk and uses the Name property to specify the
operating system device file name.

24.1.3 Export Class of the Volume Manager

The Volume Management Profile exports LogicalDisk, which may be referred to as a volume in a typical
host volume manager. For host volume managers, this is treated as a virtual disk or volume, and is where
a file system or database would reside.

24.1.4 Initializing OS Disks for Volume Manager Use

All disks initially discovered by the volume manager from the host's device tree are added to a Primordial
Pool by creating an association between the Primordial Pool and a LogicalDisk instance. Typically, these
discovered disks are those listed in the /dev directory. Disks on a host are not immediately available for
volume manager use; they are first initialized for volume manager use by writing metadata to the disk.
Any disks that are not yet initialized for volume manager use will become initialized as a side effect of
creating a concrete StoragePool.

Figure 114 - Volume Management Instance Diagram

Host

CIM_ComputerSystem

CIM_StoragePool

CIM_HostedStoragePool

Output_Material::
 CIM_LogicalDisk

CIM_StorageCapabilities

CIM_ElementCapabilities

CIM_AllocatedFromStoragePool

Input_material
CIM_LogicalDisk

CIM_BasedOn

CIM_StorageSetting

CIM_AllocatedFromStoragePool

CIM_BasedOn

CIM_SystemDevice

CIM_ConcreateComponent

CIM_ElementSettingData

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

 Volume Management Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 739

24.1.5 Creating Pools and Logical Volumes

Concrete StoragePools are created by the Block Services CreateOrModifyStoragePool method.
Any uninitialized disks that are added to the concrete StoragePool are initialized as a side-effect of
adding the disk to the pool.
The Block Services methods CreateOrModifyElementFromStoragePool or
CreateOrModifyElementFromElements are used to create and modify volumes. When specifying a
primordial pool or uninitialized disks to create or modify volumes, any disks that are not yet initialized will
be initialized as a side effect of adding the disks to a concrete pool and creating the volume. See 5.1
Description for more details on methods for creating pools and logical volumes.

24.1.6 Storage Settings for Volumes

Providers need to map a Quality of Service and any Storage Settings to a particular volume's redundancy
or raid level. This is similar to creating StorageVolumes in the Block Services Subprofile.

The StorageSetting, StorageSettingWithHints, and StorageCapabilities classes may be used to specify
striping parameters such as number of stripe columns, or the extent stripe length. See Clause 5: "Block
Services Package" for a description of these settings. The StorageSettings.Description string should be
updated with an appropriate string describing the volume's settings. The Exported value in ExtentStatus[]
of the LogicalDisk should be set if it is intended for application use.

24.1.7 Durable Names and Other Correlatable ids of the Profile

Each object's Name in the volume manager is not durable. The names can be changed at any time.
However, names will always be unique and correlatable. The provider will present names that the
underlying volume manager software creates using its own naming heuristics. When available, the Host
Discovered Resources Profile provides the connectivity and correlatable IDs of the host resources.

24.2 Health and Fault Management Considerations

Not defined in this standard.

24.3 Cascading Considerations

The Cascading Subprofile may be used when the Host Discovered Resources Profile is available on the
host, where the Host Discovered Resource Profile would be the leaf profile. In this case, all discovered
disks by the provider are still placed in the primordial pool. Therefore, the behavior of what is in the
primordial pool should not change based on the presence of another profile. The content should be
consistent regardless of the presence of the Host Discovered Resources Profile. The the description of
the Cascading Subprofile for usage with the Security Resource Ownership Subprofile.

24.4 Supported Subprofiles and Packages

Table 493 describes the supported profiles for Volume Management.

Table 493 - Supported Profiles for Volume Management

Profile Name Organization Version Requirement Description

Access Points SNIA 1.3.0 Optional

Extent Composition SNIA 1.6.0 Optional

Location SNIA 1.4.0 Optional

Software SNIA 1.4.0 Optional

Disk Sparing SNIA 1.5.0 Optional

Job Control SNIA 1.5.0 Optional

Block Server Performance SNIA 1.6.1 Optional

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Volume Management Profile

740

24.5 Methods of the Profile

None

24.6 Client Considerations and Recipes

Use Clause 5: Block Services Package to create and modify volumes.

See recipes for creating volumes in 5.6.6 "Conditional: Create StoragePool and Storage Element on
Block Server (e.g., Array or Volume Manager)" in Clause 5: Block Services Package.

Replacing a disk is done by using the Sparing Subprofile. Newly added disks are first made and then are
used to replace the old disk.

24.6.1 Storage Configuration

The Volume Management Profile uses the StorageConfigurationService in the Block Services Subprofile
for creating and modifying objects in a StoragePool. Creating volumes with specified extents shall be
done using the CreateorModifyElementFromElements method. When specifying extents, or when using
the InExtents[] parameter of CreateOrModifyStoragePool for creating storage pools as well as adding
disks, then the specified extents shall be from among the extents returned from the
StoragePool.GetAvailableExtents method. Any other extents may cause the operation to fail.

24.7 Registered Name and Version

Volume Management version 1.2.0 (Autonomous Profile)

24.8 CIM Elements

Table 494 describes the CIM elements for Volume Management.

Block Services SNIA 1.6.1 Mandatory

Health SNIA 1.2.0 Mandatory

Indication SNIA 1.5.0 Mandatory

Table 494 - CIM Elements for Volume Management

Element Name Requirement Description

24.8.1 CIM_AllocatedFromStoragePool (LogicalDisk from
Pool)

Mandatory

24.8.2 CIM_AllocatedFromStoragePool (Pool from Pool) Mandatory

24.8.3 CIM_ComputerSystem Mandatory Associated to RegisteredProfile.

24.8.4 CIM_ElementCapabilities Mandatory

24.8.5 CIM_ElementSettingData Mandatory

24.8.6 CIM_HostedStoragePool Mandatory

24.8.7 CIM_LogicalDisk Mandatory

24.8.8 CIM_StorageCapabilities Mandatory

Table 493 - Supported Profiles for Volume Management

Profile Name Organization Version Requirement Description

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

 Volume Management Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 741

24.8.1 CIM_AllocatedFromStoragePool (LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 495 describes class CIM_AllocatedFromStoragePool (LogicalDisk from Pool).

24.8.9 CIM_StoragePool (Concrete) Mandatory Logical Disks are allocated from 'concrete' pools.

24.8.10 CIM_StoragePool (Primordial) Mandatory At least one primordial pool must exist for a host. This is
the 'unallocated storage' of the host, and contains unused
disks.

24.8.11 CIM_StorageSetting Mandatory

24.8.12 CIM_SystemDevice Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Mandatory Addition of a new logical disk instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Mandatory Deletion of a logical disk instance.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Change of status of a Logical Disk.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Mandatory CQL -Change of status of a Logical Disk.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::OperationalStatus <>
PreviousInstance.CIM_StoragePool::OperationalStatus

Mandatory CQL -Change of status of a storage pool.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Addition of a storage pool instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of a storage pool instance.

Table 495 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (LogicalDisk from
Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 494 - CIM Elements for Volume Management

Element Name Requirement Description

92

93

94

95

96

97

Volume Management Profile

742

24.8.2 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 496 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

24.8.3 CIM_ComputerSystem

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile instance shall have
RegisteredName set to 'Volume Management', RegisteredOrganization set to 'SNIA', and RegisteredVersion set to '1.2.0'.

Table 497 describes class CIM_ComputerSystem.

24.8.4 CIM_ElementCapabilities

Table 496 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Dependent Mandatory

Antecedent Mandatory

Table 497 - SMI Referenced Properties/Methods for CIM_ComputerSystem

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the Host. IP address.

ElementName Mandatory User friendly name.

OperationalStatus Mandatory Overall status of the Host.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory This should include 0.

This indicates that this computer system is not dedicated to volume
management.

PrimaryOwnerContact Optional

PrimaryOwnerName Optional

98

99

100

101

102

103

104

105

106

107

108

109
110

111

112

 Volume Management Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 743

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 498 describes class CIM_ElementCapabilities.

24.8.5 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 499 describes class CIM_ElementSettingData.

24.8.6 CIM_HostedStoragePool

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 500 describes class CIM_HostedStoragePool.

24.8.7 CIM_LogicalDisk

Table 498 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 499 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory

Table 500 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

Volume Management Profile

744

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 501 describes class CIM_LogicalDisk.

24.8.8 CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 502 describes class CIM_StorageCapabilities.

Table 501 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifer.

ElementName Mandatory User friendly name.

Name Mandatory Should be a durable name. As yet any name.

ExtentStatus Mandatory

OperationalStatus Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

ConsumableBlocks Mandatory

Table 502 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

131

132

133

134

135

136

137

138

139

140

141

 Volume Management Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 745

24.8.9 CIM_StoragePool (Concrete)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 503 describes class CIM_StoragePool (Concrete).

24.8.10CIM_StoragePool (Primordial)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

NoSinglePointOfFailure Mandatory

NoSinglePointOfFailureDef
ault

Mandatory

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyDefault Mandatory

PackageRedundancyMin Mandatory

PackageRedundancyMax Mandatory

PackageRedundancyDefa
ult

Mandatory

DeltaReservationDefault Mandatory

DeltaReservationMax Mandatory

DeltaReservationMin Mandatory

Table 503 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

PoolID Mandatory

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Primordial Mandatory Set to false.

Table 502 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

142

143

144

145

146

147

148

149

150

151

152

Volume Management Profile

746

Table 504 describes class CIM_StoragePool (Primordial).

24.8.11CIM_StorageSetting

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 505 describes class CIM_StorageSetting.

24.8.12CIM_SystemDevice

Created By: Static

Modified By: Static

Deleted By: Static

Table 504 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

PoolID Mandatory

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Primordial Mandatory Set to true.

Table 505 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque identifier.

ElementName Mandatory User friendly name.... can be used for 'potted' settings for specific RAID
levels.

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory

PackageRedundancyMax Mandatory

PackageRedundancyGoal Mandatory

DeltaReservationGoal Mandatory

DeltaReservationMax Mandatory

DeltaReservationMin Mandatory

153

154

155

156

157

158

159

160

161

162

163

 Volume Management Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 747

Requirement: Mandatory

Table 506 describes class CIM_SystemDevice.

DEPRECATED

Table 506 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

164

165

Volume Management Profile

748

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 749

EXPERIMENTAL

25 Storage Element Protection SubProfile

25.1 Description

25.1.1 Overview

The Storage Element Protection Subprofile defines classes and methods for managing access permission
to a storage element—either a storage volume or logical disk. This subprofile also defines how long the
protection shall stay in effect. It allows a client to protect data as required by changeable business and
operational policies. Clients may modify access to a storage element for various reasons, including:

• Regulatory Compliance - Ensure that vital records are available, unaltered (immutable) and protected from
accidental or malicious destruction. The degree of exposure and the retention period depend on the nature
of the records.

• Protection of Fixed Content - Maintain in “Read-only” mode between cyclic refreshes of the data content.

• Protection of Recovery Assets - Protect data from accidental reuse. For example, make recovery logs
“Read-only” or immutable.

• Reclamation of Expired (Archive) Capacity - After migration, delete or destroy data when elements are
released for re-use.

25.1.2 Use Cases

In a typical scenario, a storage element is allocated with Read/Write permission. At a later time, when the
element holds data that requires protection, the access permission is changed to Read-only with a
retention period.

Changes in regulations, audit or litigation may require that the storage element be retained for a longer
period. In this case, the retention period may be extended or alternatively set to a "never to expire" value.
This new setting retains the current protection for an indefinite period--until litigation is resolved, for
example.

Company policy may dictate that archived data, although still protected and retained for legal purposes,
be unavailable even for Read-only. In this case, the element may be hidden from read-and-write access.
It will be visible only to a storage administrator.

25.1.3 Functionality

A management application will interact with this subprofile in two ways—(1) the management application
can retrieve and modify the access permission attribute and (2) the management application may define
the period for which the access permission will remain in effect (the retention period). During the retention
period, other functions shall be disabled to prevent the storage element from being reformatted, erased or
otherwise (logically) destroyed. While this retention period is in effect, the access permission cannot be
modified except to make it more restrictive. Once this period expires, the access permissions remain in
effect, but they may now be modified. The management application may extend this retention period but
shall not be able to shorten it.

25.1.4 Class Model

In order to support the desired protection functionality, this profile defines a new method, Protect, for the
StorageProtectionService class. This method allows the client to set the protection-related configurations
of a storage element, either a StorageVolume or LogicalDisk. When first called for a storage element, it
creates a StorageProtectionSetting instance with the client requested configuration and associates it to
the target element by the ElementProtectionSettingData association. If the target element already has a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Storage Element Protection SubProfile

750

StorageProtectionSetting associated via ElementProtectionSettingData, then it modifies the properties of
the existing instance of StorageProtectionSetting, as shown in Figure 115: "Storage Element Protection
Class Model". After the retention period has expired and every protection configuration has been

released, the StorageProtectionSetting instance will not automatically be removed by the instrumentation.
However a state change indication will be sent to the management application so that it may remove the
instance by using the DeleteInstance operation if needed.

Table 507 shows properties this profile defines for the StorageProtectionCapabilities class, which
indicates the capability of the element protection feature of the associated StorageProtectionService,
including the granularity of the retention period.

Figure 115 - Storage Element Protection Class Model

Table 507 - Properties for StorageProtectionCapabilities

Property Flags Type Descriptions & Notes

ProtectionTimeGranularity uint16 Granularity for the time period of
StorageProtectionSetting.RemainingProtectionTime.

Possible values are: 0 (Unknown), 1 (Other), 2 (Second), 3 (Minute),
4 (Hour), 5 (Day)

SupportedStorageElementFeatures uint16[] Enumeration indicating which storage elements can be protected.
Possible values:

1 - StorageVolume Protection

2 - LogicalDisk Protection

ComputerSystem

StorageVolume
or

LogicalDisk

SystemDevice

StorageProtectionSetting

HostedService

ElementCapabilities

1 *
1

*

ElementProtectionSettingData

1

1

StorageProtectionService

Protect()

StorageProtectionCapabilities

42

43

44

45

46

47

48

49

50

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 751

This profile also defines a new Setting class, StorageProtectionSetting, which contains the protection-
related properties for a particular StorageVolume or LogicalDisk storage element, shown in Table 508.
This class is associated to a storage element instance via the ElementProtectionSettingData association.
A client can retrieve the protection-related configurations and statuses of a StorageVolume or LogicalDisk
by traversing the ElementProtectionSettingData association if it exists. If that association is not found, no
protection management is applied for the StorageVolume or LogicalDisk.

SupportedSynchronousActions uint16[] Methods that will not create a job. Possible values:

1 - Storage Element Protection

SupportedAsynchronousActions uint16[] Methods that will create a job. Possible values:

1 - Storage Element Protection

Table 508 - Properties for StorageProtectionSetting

Property Flags Type Descriptions & Notes

ProtectionControlled boolean Whether the storage element is under protection control or not. If
this property is FALSE that indicates the storage device has
protection feature or used to has but currently the service has been
withdrawn or not available to obtain protection attributes by some
accident.

Access uint16 Read and write accessibility of the storage element.

1: Read/Write Enabled

2: Read Only

3. Write Once

4: Read/Write Disabled

While it is not possible to use Protect() to transition to "Write Once",
it’s still needed for correct reporting of status

InquiryProtection Uint16[] Protected responses for SCSI inquiry commands.

1: No SCSI Inquiry Protection

2: Inquiry Disabled

3: Zero Capacity Returned

This property is utilized in the protection of a StorageVolume and it
is optional to implement

DenyAsCopyTarget boolean Whether the storage element can be specified as a copy target or
not. If this property is TRUE then this storage element will not be
selectable as a target of copy pair

LUNMappingConfigurable boolean Whether LU assignment to the storage element is configurable or
not. This property is utilized in the protection of a StorageVolume
and is optional to implement

ProtectExpirationSpecified uint16 Duration type of the storage element protection.

1: None

2: Limited Expiration

3: Permanent

RemainingProtectionTime datetime Amount of remaining time before a management application can
change the access permission.

Table 507 - Properties for StorageProtectionCapabilities

Property Flags Type Descriptions & Notes

51

52

53

54

55

56

Storage Element Protection SubProfile

752

25.1.5 Access permission

The overall state of the StorageVolume or LogicalDisk protection is indicated by the combination of
several properties. Table 509, Table 510, Table 511, Table 512, and Table 513 show the possible values
of each property listed in Table 508. These tables apply to properties in the StorageProtectionSetting
class.

Table 509 - Values for ProtectionControlled

Value Description

TRUE Storage element is under protection control.

FALSE Storage element is NOT under protection control.

Table 510 - Values for Access

Value Description

0 (Unknown) Accessibility status is unknown.

1 (Read/Write Enabled) Both read and write commands are allowed.

2 (Read Only) Read command is allowed; write command is prohibited.

3 (Write Once) Read command is allowed; overwrite command is
prohibited.

4 (Read/Write Disabled) Both read and write commands are prohibited.

Table 511 - Values for InquiryProtection

Value Description

0 (Unknown) Status is unknown

1 (No SCSI Inquiry Protection) Protection method by the SCSI inquiry commands is not
performed

2 (Inquiry Disabled) All SCSI inquiry commands are rejected

3 (Zero Capacity Returned) Size 0 is returned as a reply of SCSI read capacity
command

Table 512 - Values for DenyAsCopyTarget

Value Description

TRUE Storage element can not be specified as a copy target

FALSE Storage element can be specified as a copy target

57

58

59

60

61

62

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 753

25.1.6 Retention period

The Retention period (the amount of time that the settings are to remain locked) is also indicated by the
combination of several properties. Table 514 and Table 515 show the meaning of each property value.
These tables apply to properties in the StorageProtectionSetting class.

There are two ways to designate the duration of access permission, shown in Figure 116: "Retention
Time Line":

• Expiration Date - Defines a future date/time when access permission may be modified.

Table 513 - Values for LUNMappingConfigurable

Value Description

TRUE LU assignment to the storage volume is configurable

FALSE LU assignment to the storage volume is not
configurable

Table 514 - Values for ProtectExpirationSpecified

Value Description

0 (Unknown) Status is unknown.

1 (None) The protection duration is not specified.

2 (Limited Expiration) The protection expires after the time period

3 (Permanent) The protection is permanent

Table 515 - Values for RemainingProtectionTime

Value Description

datetime Amount of remaining time before a management application can change the access permission. It is a dynamic
value which keeps decreasing by the time progress until it reaches the datetime equivalent of 0. The value will be
decreased by the time period indicated by the StorageProtectionCapabilities.ProtectionTimeGranularity property

63

64

65

66

67

68

69

Storage Element Protection SubProfile

754

• Remaining Retention Period - Defines the remaining length of time for access permission.

The use of an Expiration Date requires a reference to an agreed-upon reference clock. Without a trusted
external date/time reference, the retention period will be open to spoofing, conflicts between individual
component clocks (e.g., server and storage) and time zones issues. The inevitable nuances of individual
implementations may require variations in the client application.

The use of Remaining Retention Period does not require a reference clock. There is no question of
interpretation of whether or when the retention period will expire - it is either zero (expired) or not. The
implementation is the responsibility of the provider and is hidden from the client. Providers may
implement the retention function that works best for that provider, while remaining interoperable.

25.1.7 Protection State Transition

Figure 117: "Protection State Transition DIagram" shows storage element protection state transition.
When the retention period is not specified or expired, the storage element may transition to any state
except Write Once permission by using the Protect method. Once a retention period is specified to a
storage element, it may transition to a more restricted state only via the Protect method. It may transition
to the other states only when the retention period has expired. Generally a storage element starts with a
protection state of "Access = Read/Write Enabled, Retention = None/Expired" and Protect is used to set

Figure 116 - Retention Time Line

Set “R ead-W rite Enab led”

R em ain ing R etention Period

N ow R etention Period E xp ires

S et “R ead O nly”
w ith R etention P eriod

Locked

R ead O nly

R ead /W rite E nab led

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 755

the protection to be more restrictive. If the storage element is write-once media such as a CD-ROM it will
have a protection state of "Access = Write Once, Retention = Permanent".

25.1.8 Sample Usage Scenario

Figure 118: "Step 1 - Initial State", Figure 119: "Step 2 - Volume Set to Read-only", Figure 120: "Step 3
- Second Volume Set to Read-only", Figure 121: "Step 4 - Volume Set to Read/Write Disabled", and
Figure 122: "Step 5 Volume Access Changed" show the progression of a typical usage scenario for
StorageVolume protection.

25.1.8.1 Step 1: StorageVolume not protected

Figure 118: "Step 1 - Initial State" shows the initial state of a StorageVolume that does not have
protection enabled yet. In this situation, no instance of StorageProtectionSetting exists. However, it
shows that the instrumentation has the capability to support the setting of the element protection
properties because the StorageProtectionCapabilities SupportedStorageElementFeatures property
includes the value 1 (StorageVolume Protection) and the SupportedAsynchronousActions property
includes the value 1 (Storage Element Protection). The StorageProtectionCapabilities instance also has a
value of 5 (Day) for the ProtectionTimeGranularity property which indicates the retention period specified
on this device will be decreased by the granularity of a day.

Figure 117 - Protection State Transition DIagram

Access = “R /W Enabled”
R etention = “N one / Exp ired”

A ccess = “W rite O nce”
R etention = “P erm anent”

Access = “R ead O nly”
R etention = “L im ited Exp ira tion”

Access = “R ead O nly”
R etention = “N one / Exp ired ”

Access = “R ead O nly”
R etention = “Perm anent”

A ccess = “R /W D isabled”
R etention = “L im ited Expira tion”

A ccess = “R /W D isabled”
R etention = “N one / E xp ired”

A ccess = “R /W D isabled”
R etention = “P erm anent”

P rotect() w ith longer period

T im e P assage

every sta te
except “W rite O nce”Protect()

P rotect()

P rotect()

P rotect()

P rotect() w ith sam e or longer period

P ro tect()

T im e Passage

Protect()

P rotect() w ith longer period

Protect()

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

Storage Element Protection SubProfile

756

25.1.8.2 Step 2: Volume Set to Read-only

In Figure 119: "Step 2 - Volume Set to Read-only", the StorageVolume is set to Read-only permission for
a specific period of time. In this example, there are two StorageVolumes, 'V1' and 'V2'. By using the
Protect() method of StorageProtectionService, volume 'V1' is set to Read-only access permission and a
365-day retention period. This operation creates new instance of StorageProtectionSetting ('SPS1') and
associates it with the target StorageVolume 'V1'. After the Protect method completes, the Access property
is now set to the value 2 (Read Only), and the RemainingProtectionTime is set to the value of 365 days.

Figure 118 - Step 1 - Initial State

ComputerSystem

StorageVolume

SystemDevice

StorageProtectionService

Protect()
HostedService

StorageProtectionCapabilities

SupportedStorageElementfeatures = { 1, 2 }
SupportedAsynchronousActions = { 1 }
ProtectionTimeGranularity = 5

ElementCapabilities

102

103

104

105

106

107

108

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 757

25.1.8.3 Step 3: Second Volume Set to Read-only

Figure 120: "Step 3 - Second Volume Set to Read-only" shows Set Read-only permission to another
StorageVolume 'V2' after some amount of time.

After 30 days, the client decides to protect StorageVolume 'V2' by setting it to Read-only with a retention
time of 365 days, same as ‘V1’. A new instance of StorageProtectionSetting is created by the
instrumentation to the target StorageVolume ‘V2’. A single StorageProtectionSetting instance will not be
shared because it has a different RemainingProtectionTime although both are configured with the same
access permission.

Figure 119 - Step 2 - Volume Set to Read-only

ComputerSystem

‘V1’: StorageVolume

SystemDevice

‘SPS1’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 365
days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities
ElementCapabilities

ElementProtectionSettingData

‘V2’: StorageVolume

SystemDevice

109

110

111

112

113

114

115

116

Storage Element Protection SubProfile

758

.

25.1.8.4 Step 4: Volume Set to Read/Write Disabled

Figure 121: "Step 4 - Volume Set to Read/Write Disabled" shows access permission of StorageVolume
'V1' changed to Read/Write Disabled.

Within the retention period, the access permission may not be changed except to be made more
restricted. Because StorageVolume 'V1' was set to Read-only permission, it is possible to modify it to
Read/Write Disabled permission within its retention period because this setting is more restrictive than
Read-only.

Figure 120 - Step 3 - Second Volume Set to Read-only

ComputerSystem

‘V1’: StorageVolume

SystemDevice

‘SPS1’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 335
days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities
ElementCapabilities

ElementProtectionSettingData

‘V2’: StorageVolume

SystemDevice

‘SPS2’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 365
days

ElementProtectionSettingData

117

118

119

120

121

122

123

124

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 759

25.1.8.5 Step 5: Volume Access Change

Figure 122: "Step 5 Volume Access Changed" shows change of access permission of StorageVolume
'V1' to “Read/Write Enabled” after expiration.

After the passage of the specified time, the retention period of StorageVolume will expire. Therefore, its
access permission can be modified to any level. The StorageProtectionSetting instance is not
automatically deleted when the retention period has expired. The StorageVolume maintains its access
permission configuration.

Figure 121 - Step 4 - Volume Set to Read/Write Disabled

ComputerSystem

‘V1’: StorageVolume

SystemDevice

‘SPS1’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 4
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 305
days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities
ElementCapabilities

ElementProtectionSettingData

‘V2’: StorageVolume

SystemDevice

‘SPS2’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 335
days

ElementProtectionSettingData

125

126

127

128

129

130

131

Storage Element Protection SubProfile

760

25.2 Health and Fault Management Consideration

Not defined in this standard

25.3 Cascading Considerations

Not applicable

25.4 Supported Profiles, Subprofiles, and Packages

Related Profiles for Storage Element Protection: Not defined in this standard.

Figure 122 - Step 5 Volume Access Changed

ComputerSystem

‘V1’: StorageVolume

SystemDevice

‘SPS1’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 1
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 0 days

StorageProtectionService

Protect()

HostedService

StorageProtectionCapabilities
ElementCapabilities

ElementProtectionSettingData

‘V2’: StorageVolume

SystemDevice

‘SPS2’: StorageProtectionSetting

ProtectionControlled = TRUE
Access = 2
InquiryProtection = {}
DenyAsCopyTarget = FALSE
LUNMappingConfigurable = TRUE
ProtectExpirationSpecified = 2
RemainingProtectionTime = 30 days

ElementProtectionSettingData

132

133

134

135

136

137

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 761

25.5 Methods of the Profile

25.5.1 Protect

This method, defined in Table 516, is found in the StorageProtectionService. It configures the protection
attributes of StorageVolumes and LogicalDisks, which prevents them from being modified for a specific
period of time. Values specified for this method shall be set as properties of the StorageProtectionSetting
instance that is associated to the specified StorageVolume or LogicalDisk. This method can be used to
extend the retention period, but not decrease it. The instrumentation shall always create a new instance
of StorageProtectionSetting when protection is first applied, but it shall reuse the existing setting when
modifying the protection setting.

Table 516 - Methods of the Storage Element Protection Profile

Method: Protect

Return Values:

Value Description

0: Success Method completed with no error.

1: Not Supported Method is not supported

2: Unspecified Error Unspecified error

3: Timeout Timeout happened during processing

4: Failed Method failed.

5: Invalid Parameter Specified parameter is not allowed

6: Invalid State Transition Specified access permission or retention period is not allowed in the current
status.

4096: Method parameters checked - job started A Job was started

Errors:

Not defined in this standard

Parameters:

Qualifiers Name Type Description/Values

OUT Job CIM_Job REF Reference to the job created, if any

IN Element CIM_StorageExtent REF StorageVolume or LogicalDisk to be
configured.

IN ElementType uint16 The type of element being protected.

1: StorageVolume

2: LogicalDisk

IN Access uint16 Read and write accessibility of the storage
element.

1: Read/Write Enabled

2: Read Only

4: Read/Write Disabled

Note that it is not possible to transition to
"3: Write Once" from other state

138

139

140

141

142

143

144

145

146

Storage Element Protection SubProfile

762

25.6 Client Considerations and Recipes

25.6.1 Start Volume Protection

In this use case, a StorageVolume is used to store business data that needs to be protected from
overwriting; there is a regulation that this kind of data should be held for three years. Therefore, a
management application requests the instrumentation to set the StorageVolume for Read-only access
permission and a three-year retention period.

// DESCRIPTION

//

// Start StorageVolume protection

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. Reference to the CIM_StorageVolume to be protected

// has been found and the object path value is stored in

// $StorageVolume->

// 2. Reference to the SNIA_StorageProtectionService

// has been found and the obejct path value is stored in

// $StorageProtectionService->

// 3. The SNIA_StorageProtectionCapabilities for this service

// has been found and the instance value is stored in

IN InquiryProtection uint16[] The inquiry protection method for SCSI
inquiry commands.

1: No SCSI Inquiry Protection

2: Inquiry Disabled

3: Zero Capacity Returned

This may be specified when protecting a
StorageVolume

IN DenyAsCopyTarget boolean Whether the storage element can be
specified as a copy target or not. If this
property is TRUE then the storage
element will not be selectable as a target
of copy pair

IN LUNMappingConfigure boolean Whether LU assignment to the
StorageVolume is configurable or not. This
may be specified when protecting a
StorageVolume

IN ProtectExpirationType uint16 Duration type of the storage element
protection.

1: None

2: Limited Expiration

3: Permanent

IN TimePeriod datetime Amount of remaining time before a
management application can change the
access permission

Table 516 - Methods of the Storage Element Protection Profile

Method: Protect

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 763

// $StorageProtectionCapabilities

// 4. Variable #ThreeYearsValue and #TwoYeasValue are the

// type of datetime and have the value of a three and two year

// time period, respectively

// Check for the capability

#SupportedFeatures[] =

 $StorageProtectionCapabilities.SupportedStorageElementFeatures

if (contains(1, #SupportedFeatures) == false) {

 <ERROR! StorageVolume protection feature is not supported>

}

// Invoke the protection method.

%InputArguments[“Element”] = $StorageVolume->

%InputArguments[“ElementType”] = 1// StorageVolume

%InputArguments[“Access”] = 2// Read Only

%InputArguments[“ProtectExpirationType”] = 2// Limited Expiration

%InputArguments[“TimePeriod”] = #ThreeYearsValue// 3 years

#ReturnCode = InvokeMethod(

 $StorageProtectionService->,

“Protect”,

%InputArguments,

%OutputArguments)

if (#ReturnCode != 0) {

 <ERROR! CIM_StorageProtectionSetting has not been created.>

}

// Verify the protection setting.

$StorageProtectionSettings->[] = Associators(

$StorageVolume->,

“SNIA_ElementProtectionSettingData”,

“SNIA_StorageProtectionSetting”,

“Dependent”,

“Antecedent”,

false, false, NULL)

for #i in $StorageProtectionSettings->[] { // should be only one item.

 if($StorageProtectionSetting->[#i].ProtectionControlled == false) {

<ERROR! CIM_StorageVolume is not under protection controlled.>

 }

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Storage Element Protection SubProfile

764

 if($StorageProtectionSetting->[#i].Access == 2 &&

$StorageProtectionSetting->[#i].ProtectExpirationSpecified == 2 &&

$StorageProtectionSetting->[#i].RemainingProtectionTime > #TwoYearsValue
&&

$StorageProtectionSetting->[#i].RemainingProtectionTime <=
#ThreeYearsValue)

{

 <EXIT: StorageVolume Protection configuration successful>

 }

}

// if we get to this point, it was not set

<ERROR! StorageProtectionSetting has not been created.>

// end of the recipe

25.6.2 Extend the Retention Period

In this use case, a regulation has changed and the business data now need to be held for five years. A
management application retrieves the value of the RemainingProtectionTime property of
StorageProtectionSetting instance, which is associated to the target StorageVolume, and calculates the
new value by adding two years to it. Then the application uses the StorageProtectionService.Protect()
method to configure a new retention period.

// DESCRIPTION

//

// Extend the retention period

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

//

// 1. Reference to the CIM_StorageVolume to be protected

// has been found and the object path value is stored in

// $StorageVolume->

// 2. Reference to the SNIA_StorageProtectionService

// has been found and the obejct path value is stored in

// $StorageProtectionService->

// 3. The SNIA_StorageProtectionCapabilities for this service

// has been found and the instance value is stored in

// $StorageProtectionCapabilities

// 4. Variable #TwoYearsValue is the type of datetime and

// has two year period of value.

// Check for the capability

#SupportedFeatures[] =

 $StorageProtectionCapabilities.SupportedStorageElementFeatures

203

204

205
206

207
208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 765

if (contains(1, #SupportedFeatures) == false) {

 <ERROR! StorageVolume protection feature is not supported>

}

// Get current value for remaining protection time.

$StorageProtectionSettings[] = Associators(

$StorageVolume->,

“SNIA_ElementProtectionSettingData”,

“SNIA_StorageProtectionSetting”,

“Dependent”,

“Antecedent”,

false, false, NULL)

for #i in $StorageProtectionSettings[] { // should be only one item.

 if($StorageProtectionSetting[#i].ProtectionControlled == false) {

<ERROR! CIM_StorageVolume is not under protection controlled.>

 }

 #RemainingProtectionTime =

 $StorageProtectionSetting[#i].RemainingProtectionTime

}

// Invoke the protection method.

// Set the time to protect the StorageVolume to the current time remaining + 2 more
years

%InputArguments[“Element”] = $StorageVolume->

%InputArguments[“ElementType”] = 1// StorageVolume

%InputArguments[“Access”] = 2// Read Only

%InputArguments[“ProtectExpirationType”] = 2// Limited Expiration

%InputArguments[“TimePeriod”] = #RemainingProtectionTime + #TwoYearsValue

#ReturnCode = InvokeMethod(

 $StorageProtectionService->,

 “Protect”,

 %InputArguments,

 %OutputArguments)

if (#ReturnCode != 0) {

 <ERROR! SNIA_StorageProtectionSetting has not been created.>

}

// Verify the protection setting using prior found instance

for #i in $StorageProtectionSettings->[] {

 if($StorageProtectionSetting->[#i].ProtectionControlled == false) {

<ERROR! CIM_StorageVolume is not under protection controlled.>

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261
262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

Storage Element Protection SubProfile

766

 }

 if($StorageProtectionSetting->[#i].Access == 2 &&

$StorageProtectionSetting->[#i].ProtectExpirationSpecified == 2 &&

$StorageProtectionSetting->[#i].RemainingProtectionTime

 > #TwoYearsValue &&

$StorageProtectionSetting->[#i].RemainingProtectionTime

 <= #RemainingProtectionTime + #TwoYearsValue)

{

 <EXIT: StorageVolume Protection configuration successful>

 }

}

// if we get to this point, it was not set

<ERROR! SNIA_StorageProtectionSetting was not created>

// end of the recipe

25.7 Registered Name and Version

Storage Element Protection version 1.4.0 (Component Profile)

CIM Schema Version: 2.18.0

25.8 CIM Elements

Table 517 describes the CIM elements for Storage Element Protection.

Table 517 - CIM Elements for Storage Element Protection

Element Name Requirement Description

25.8.1 CIM_ElementCapabilities Mandatory Associates the capabilities to the service.

25.8.2 CIM_HostedService Mandatory Associates the service to the system providing the
service.

25.8.3 SNIA_ElementProtectionSettingData Mandatory SNIA_ElementProtectionSettingData represents the
association between the storage element to be protected
and applicable protection setting.

25.8.4 SNIA_StorageProtectionCapabilities Mandatory

25.8.5 SNIA_StorageProtectionService Mandatory

25.8.6 SNIA_StorageProtectionSetting Mandatory SNIA_StorageProtectionSetting class holds properties for
the protection-related configuration and statuses of a
storage element. It is associated to the StorageVolume or
LogicalDisk class by
SNIA_ElementProtectionSettingData. A management
application can retrieve the protection-related information
by traversing the ElementProtectionSettingData
association. If is not found, it indicates no protection
management is applied for the storage element.

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 767

25.8.1 CIM_ElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 518 describes class CIM_ElementCapabilities.

25.8.2 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 519 describes class CIM_HostedService.

25.8.3 SNIA_ElementProtectionSettingData

Created By: Extrinsic: Protect

Modified By: Static

Deleted By: External

Requirement: Mandatory

Table 520 describes class SNIA_ElementProtectionSettingData.

Table 518 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The service.

Capabilities Mandatory The associated capabilities.

Table 519 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory The protection service.

Antecedent Mandatory The system providing the service.

Table 520 - SMI Referenced Properties/Methods for SNIA_ElementProtectionSettingData

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The storage element to be protected.

SettingData Mandatory The protection setting and status of the storage element.

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

Storage Element Protection SubProfile

768

25.8.4 SNIA_StorageProtectionCapabilities

Created By: Static

Requirement: Mandatory

Table 521 describes class SNIA_StorageProtectionCapabilities.

25.8.5 SNIA_StorageProtectionService

Created By: Static

Requirement: Mandatory

Table 522 describes class SNIA_StorageProtectionService.

25.8.6 SNIA_StorageProtectionSetting

Created By: Extrinsic: Protect

Modified By: Extrinsic: Protect

Deleted By: DeleteInstance

Requirement: Mandatory

Table 521 - SMI Referenced Properties/Methods for SNIA_StorageProtectionCapabilities

Properties Flags Requirement Description & Notes

ProtectionTimeGranularity Mandatory Granularity for the time period of
StorageProtectionSetting.RemainingProtectionTime. 0: Unknown 1: Other
2: Second 3: Minute 4: Hour 5: Day.

SupportedStorageElement
Features

Mandatory Value for storage element protection. 1 (StorageVolume Protection), 2
(LogicalDisk protection.

SupportedSynchronousAct
ions

Mandatory Value for storage element protection. 1 (Storage Element Protection).

SupportedAsynchronousA
ctions

Mandatory Value for element protection. 1 (Storage Element Protection).

Table 522 - SMI Referenced Properties/Methods for SNIA_StorageProtectionService

Properties Flags Requirement Description & Notes

Protect() Mandatory Configures the protection attributes of the storage element and prevent
modification for a specific period of time. Values specified for this method
will be set as properties of StorageProtectionSetting instance which is
associated to the specified storage element. This method can be used to
extend the retention period, but not for decreasing it.

318

319

320

321

322

323

324

325

326

327

328

329

330

 Storage Element Protection SubProfile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 769

Table 523 describes class SNIA_StorageProtectionSetting.

EXPERIMENTAL

Table 523 - SMI Referenced Properties/Methods for SNIA_StorageProtectionSetting

Properties Flags Requirement Description & Notes

ProtectionControlled Optional Whether the storage element is under protection control or not.

Access Mandatory Read and write accessibility of the StorageVolume. 0: Unknown 1: Read/
Write Enabled 2: Read Only 3: Write Once 4: Read/Write Disabled.

InquiryProtection Conditional Conditional requirement: Storage Volumes used as storage elements.
StorageVolume protection method for SCSI inquiry commands. 0:
Unknown 1: No SCSI Inquiry Protection 2: Inquiry Disabled 3: Zero
Capacity Returned.

DenyAsCopyTarget Optional Whether the storage element can be specified as a copy target or not.

LUNMappingConfigurable Conditional Conditional requirement: Storage Volumes used as storage elements.
Whether LU assignment to the StorageVolume is configurable or not.

ProtectionExpirationSpecifi
ed

Mandatory Duration type of the storage element protection. 1: None 2: Limited
Expiration 3: Permanent.

RemainingProtectionTime Mandatory Amount of remaining time before a management application can change
the access permission.

331

Storage Element Protection SubProfile

770

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 771

EXPERIMENTAL

26 Replication Services Profile

26.1 Description

26.1.1 Synopsis

Profile Name: Replication Services

Version: 1.6.1

Organization: SNIA

CIM schema version: 2.39

Central Class: ReplicationService

Scoping Class: ComputerSystem

26.1.2 Supported Profiles, Subprofiles, and Packages

Table 524 describes the supported profiles for Replication Services.

26.1.3 Overview

The Replication Services, a component profile, specifies attributes and methods to copy data from a
source element to a target element. The copy operations may be performed on elements from the same
storage system or across a connection to a different storage system. Elements may be placed into a
group in order to facilitate copy operations on many elements at the same time. The elements of a group
may be declared as Consistent.

Two types of synchronization views are supported. A replica may be synchronized to the current view of
the source element or may be synchronized to a point-in-time view. Snapshots and clones always
represent a point-in-time view, while a mirror represents a current view.

Two copy operation modes are supported -- synchronous and asynchronous. In the synchronous mode,
the write operations to the source elements are reflected to the target elements before signalling the host
that a write operation is complete. In the asynchronous mode, the host is signaled as soon as the write

Table 524 - Supported Profiles for Replication Services

Profile Name Organization Version Requirement Description

Block Services SNIA 1.6.1 Mandatory

Copy Services SNIA 1.5.0 Mandatory

Job Control SNIA 1.5.0 Optional

Cascading SNIA 1.3.0 Mandatory Deprecated. This is a deprecated profile.
Related cascading elements are marked as
Optional.

Indication SNIA 1.5.0 Support for at
least one is
mandatory.

Deprecated. See the SNIA Indications Profile

Indications SNIA 1.6.0 Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version 1.2.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Replication Services Profile

772

operations to the source elements are complete; however, the writes to the target elements may take
place at a later time.

Replication Services supports local and remote replication. Local replication specifies that both the
source and target elements are contained in a single managed system, such as an array platform.
Remote replication specifies the source and the target elements are contained in separate systems. For
remote replication, the client may interact with both the source and the target systems; however, the
client only invokes the replication methods to a single Replication Service.

Replication Services supports “copying” thinly provisioned elements. Unlike fully provisioned elements, a
thinly provisioned element has fewer actual allocated storage blocks than the advertised capacity of the
element.

Replication Services supports "copying" compressed storage elements. A compressed element does
content compression in 'real time' when it is written to the volume, then the data is stored compressed,
and then uncompressed when it is read back. A compressed element has fewer actual allocated storage
blocks than the capacity of the original content.

The Replication Service supports copy operations to and from undiscovered resources. An undiscovered
resource is an addressable entity without a known object model.

Replication Services includes the methods to create the necessary access point and shared secret
instances that may be required for copy operations to remote resources.

The Replication Service generally relies on the underlying implementation to perform the actual copy
operations. However, the profile can expose the “copy methodology” if that information is available.

EXPERIMENTAL

The profile also exposes the TokenizedClone capabilities of the implementation. TokenizedClone is also
known as Offloaded Data Transfer (ODX). With TokenizedClone, the calling application or operating
system will initiate a copy operation by first requesting a "token" from the array by issuing an Offload
READ operation. The token in this context encapsulates the information about the data in the storage
sub-system. The calling application or operating system can then issue an Offload WRITE operation
using this token. The storage sub-system that issued the token will know what data to replicate, replicate
that data, and then acknowledge the completed operation back to the calling application or operating
system.

The specification for TokenizedClone can be found in the T10 specification
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-059r8.pdf

EXPERIMENTAL

Throughout this profile, there are specific references to class properties and methods pertaining to each
section. Refer to 26.8 "CIM Elements" for a complete list of all properties and methods, including their
description.

26.1.4 Key Features

The following is a brief list of key features of the Replication Services:

• The ability to specify individual or Groups of elements to manage replication

• The ability to copy to and from undiscovered resources

• The ability to support Consistency Management

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 773

• The ability to handle local and remote replication seamlessly

• The ability to replicate Thinly Provisioned elements

• The ability to offer different Copy Methodologies

• The ability to efficiently retrieve replication relationships

• The ability to reduce the potential to receive many unwanted indications

26.1.5 Replication Services and Copy Services Profiles

The Replication Services Profile extends the functionality of the Copy Services Subprofile by including
enhanced local replication for thinly provisioned storage objects, remote replication, and support for
replication groups and consistency groups.

Any action taken via a Copy Services conformant interface shall be reflected correctly in the applicable
Replication Services properties. Furthermore, any action taken via a Replication Services conformant
interface shall be reflected correctly in the applicable Copy Services properties, as if the similar action
was taken by the Copy Services. Refer to 26.5.4 "Replication Services and Copy Services Properties and
Methods Mapping" for mapping between Copy Services specific properties and properties introduced for
Replication Services.

26.1.6 Key Components

Table 525 shows a list of key classes used by Replication Services. Refer to 26.5 "Methods of the Profile"
and “CIM Elements” for additional details on methods and properties of these classes.

Clients should refer to 26.6 "Client Considerations and Recipes" for a list of steps to follow to utilize the
replication service.

26.1.7 Replication Services Discovery

Figure 123 depicts the Replication Services discovery instance diagram.

Table 525 - Key Classes

Class Name Notes

ReplicationService The main class for Replication Services. It contains methods for replication and group
management, for example, CreateGroup, CreateElementReplica, CreateGroupReplica,
ModifyReplicaSynchronization.

ReplicationServiceCapabilities Contains a set of properties and methods that describe the capabilities of the service, for
example, SupportedReplicationTypes, GetSupportedFeature.

ReplicationGroup Represents a group of elements participating in replication activities.

ReplicationSettingData Contains options to customize replication operations, for example, pairing of group elements,
TargetElementSupplier, CopyMethodology, ThinProvisioningPolicy, StorageCompressionPolicy.

ReplicationEntity Represents information about an addressable entity without a known object model.

GroupSynchronized Associates source and target groups.

StorageSynchronized Associates source and target elements.

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Replication Services Profile

774

The single instance of the class ReplicationService and its methods provide the mechanism for creating
and managing replicas.

Replication Services relies on the Block Services Package for storage pool manipulations and capacity
related indications; and on the Storage Element Protection Profile for changing the protection of
elements. The profile also relies on Cascading Profile, Masking and Mapping Profile, and Device
Credential Profile for access to the remote resources.

26.1.8 Replication Services Capabilities

The single instance of the class ReplicationServiceCapabilities and its methods describe the various
capabilities of the service. Clients should examine the ReplicationServiceCapabilities instance and invoke
its methods to determine the specific capabilities of a replication service implementation.

26.1.9 SyncTypes

SyncTypes describe the replication policy supported by the profile. The following SyncTypes are defined:

Mirror: Creates and maintains a synchronized mirror copy of the source. Writes done to the source
element are reflected to the target element. The target element remains dependent on the source element.

Snapshot: Creates a point-in-time, virtual image of the source element. The target element remains
dependent on the source element. Identical blocks in the source and target elements are shared via
implementation-dependent means, to achieve space savings compared to full copies. Snapshots are

commonly known as delta replicas.1

Clone: Creates a point-in-time, independent, copy of the source element.

TokenizedClone: The storage sub-system utilizes tokens to create clones.

Figure 123 - Replication Services Discovery

1. Industry usage of the term snapshot varies widely. In this specification, it is used to mean a delta snapshot as defined
in the SNIA Dictionary.

ComputerSystem

// Array

ReplicationService

HostedService

ReplicationServiceCapabilities

ElementCapabilities

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 775

Synchronized replication indicates that updates to a source element are reflected to the target element.
The mode determines whether the target element is updated immediately, in the case of synchronous
mode, or some time later, in the case of asynchronous mode.

Table 526 compares the SyncTypes and the relationships between the source and target elements. It is a
quick reference for the clients to determine the appropriate SyncType for the intended target results.

With respect to "Relation of Target to Source," Dependent indicates the target element must remain
associated with the source element; Independent indicates the target element can exist without the
source element.

With respect to “Target is Virtual copy of the Source,” the target element is not a “physical” copy of the
source element, instead the system holds a collection of mapping information that map the target element
data to the source element data.

26.1.10Modes

The mode controls when the write operations are performed. The following modes are defined:

Synchronous: The writer waits until the write operations are committed to both the source and target
elements; or to both the source element and a target related entity, such as pointer tables.

Asynchronous: The writer waits until the write operations are committed to the source elements only. In
this mode, there can be a delay before the write operations are committed to the target elements.

26.1.11Locality of Target Elements

Locality specifies the relationship between the source and the target elements. Replication Services
defines the following localities:

Local: It indicates the source and target elements are contained in a single managed system.

Remote: It indicates the source and target elements are contained in separate managed systems. In this
case, the service must rely on a networking protocol for the copy operations.

The networking protocols are modeled using ProtocolEndpoint, which enables a replication service to
reach a remote element. The property ProtocolEndpoint.ProtocolIFType specifies the protocol type, for
examples, TCP, Fibre Channel, Other, etc.

Locality is important because it advertises the capability of replication service. For example, the property
ReplicationServiceCapabilities.SupportedReplicationType may have values such as “Synchronous Mirror
Local” and “Synchronous Mirror Remote.”

Table 526 - Comparing SyncTypes

SyncType Relation of
Target to
Source

Updates
 to Source
Reflected
to Target

Target
 is Point-
 In-Time

Copy

Target
 is self-

contained

Target is
Virtual copy
of Source

Target’s
 space

consumption

Mirror Dependent Yes No Yes-after Split/
Detach

No Same as source

Snapshot Dependent No Yes No Yes Less than source

Clone Independent No Yes Yes No Same as source

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Replication Services Profile

776

Figure 124 and Figure 125 show the local and remote instance diagrams, respectively.

Figure 124 - Local Replica

ComputerSystem

Name:
 SanJose

StorageVolume1
(source)

SystemName:
 SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
 SanJose

StorageSynchronized

SystemDevice SystemDevice

Local Replication

133

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 777

Each RemoteReplicationCollection can have one or more paths to the remote system. As long as one of
these paths to the remote system is up, the property RemoteReplicationCollection.ConnectivityStatus
indicates “UP”.

Instances of RemoteReplicationCollection may statically be created by the implementation, or clients may
be required to create such instances by invoking the extrinsic method
CreateRemoteReplicationCollection. Clients subsequently can manipulate instances of
RemoteReplicationCollection by invoking the intrinsic method ModifyInstance and/or the extrinsic
methods AddToRemoteReplicationCollection and RemoveFromRemoteReplicationCollection.

The RemoteReplicationCollection abstracts the details of network connections to a remote system to
allow clients to focus on whether a remote system is reachable or not. For example, the Figure 126,
“Remote Replication over two Paths” shows the local system has two connections to a remote system. As
long as one connection is functioning, there are replication operations between the local and the remote
system.

Figure 125 - Remote Replica

ComputerSystem

Name:
 SanJose

StorageVolume1
(source)

SystemName:
 SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
 Boston

StorageSynchronized

Remote Replication

SystemDevice

ProtocolEndpoint

OperationalStatus : OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ServiceAffectsElement

RemoteReplicationCollection

ConnectivityStatus: Up, Down,
Unknown
Active: True

HostedCollection

MemberOfCollection

HostedAccessPoint

Remote System in BostonLocal System in San Jose

Network TrafficSAPAvailableForElement

MemberOfCollection

134

135

136

137

138

139

140

141

142

143

144

145

146

Replication Services Profile

778

Storage elements, such as storage volumes, are added to the RemoteReplicationCollection using the
appropriate CreateElementReplica or CreateGroupReplica methods.

Figure 127, “Expanded Remote Replica” shows a local system and two remote systems. The remote
elements are associated to a remote ComputerSystem. In this configuration, all the replication operations
utilize a single connection (ProtocolEndpoint) to all remote systems

Figure 126 - Remote Replication over two Paths

ComputerSystem

Name:
 SanJose

ReplicationService

HostedService

StorageVolume2
(target)

SystemName:
 Boston

Remote Replication

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ServiceAffectsElement

RemoteReplicationCollection

ConnectivityStatus: Up, Down,
Unknown
Active: True

HostedCollection

HostedAccessPoint

Remote System in Boston

Local System in San Jose

Network Traffic

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

Remote System in Boulder
StorageVolume3

(target)

SystemName:
 Boulder

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

ProtocolEndpoint

OperationalStatus: OK,
Error
ProtocolIFType: TCP,
HTTP, Fibre Channel,
Other

Network Traffic

RemoteReplicationCollection

ConnectivityStatus: Up, Down,
Unknown
Active: True

HostedCollection

HostedAccessPoint

ServiceAffectsElement

MemberOfCollection

MemberOfCollection

147

148

149

150

151

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 779

26.1.12Remote Replication

Remote replication may require access information such as an RemoteServiceAccessPoint instance for
the remote resources. See 26.3 "Cascading Considerations" for additional information.

26.1.13Undiscovered Resources

An undiscovered resource is any addressable entity without a known object model. Generally, clients
identify an undiscovered resource using one or more of the following:

• WWN (World Wide Name)

• URI (Uniform Resource Identifier)

Figure 127 - Expanded Remote Replica

Shadow Model for Boston Array

Computer SystemProtocolEndpoint

HostedAccessPoint

SystemDevice

StorageVolume

Shadow Model for Boulder Array

Computer SystemProtocolEndpoint

HostedAccessPoint

SystemDevice
StorageVolume

Computer System

ProtocolEndpoint

HostedAccessPoint

SystemDevice

StorageVolume

StorageVolume

StorageSynchronized

StorageSynchronized

SystemDevice

RemoteReplicationCollection

MemberOf
Collection

MemberOf
Collection

MemberOf
Collection

Model for array in San Jose with remote
replication in place for arrays in Boston and

Boulder

Dependency

Dependency

HostedCollection

152

153

154

155

156

157

158

159

Replication Services Profile

780

• IP Address

• Remote ComputerSystem Objectpath

• Remote Filesystem Objectpath

In all cases, the assumption is that the underlying implementation "knows" how to perform the copy
operation.

The Replication Service includes the necessary methods to create and manage the instances
representing undiscovered resources. See the class ReplicationEntity (in 26.8 "CIM Elements") and the
method AddReplicationEntity (26.5.2.15). Also in the replication service capabilities the absence of
“Requires full discovery of target ComputerSystem“ in the SupportedFeatures property indicates the
service supports undiscovered resources.

Figure 128 shows an instance of ReplicationEntity and its association to ReplicationService.

An instance of the StorageSynchronized association identifies the source and the target elements of a
copy operation even in the case where the source or the target element is an instance of
ReplicationEntity, which is a ManagedElement. Additionally, the
StorageSynchronized.UndiscoveredElement property may indicate which elements in the copy operation
are “undiscovered”. The possible values are:

• SystemElement -- the source element.

• SyncedElement -- the target element.

• Both -- both the source and the target elements.

Figure 129 shows an example of a StorageSynchronized association where the source element is a
StorageVolume and the target element is a ReplicationEntity.

Figure 128 - An instance of ReplicationEntity

Figure 129 - StorageSynchronized and ReplicationEntity

ReplicationEntity

InstanceID: xyz
Type: WWN
EntityID: 0011223344556677

ReplicationService

ServiceAffectsElement

ReplicationEntity

// Remote Target
InstanceID: xyz
Type: WWN
EntityID: 0011223344556677

StorageVolume

// Local Source
DeviceID: 123

StorageSynchronized

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 781

26.1.14Multi-hop Replication

In multi-hop replication, the target element of one copy operation can simultaneously be the source for
another copy operation. As shown in Figure 130, multi-hop replication involves at least three elements.

If an implementation supports multi-hop replication, the supported features capabilities will indicate
“Multi-hop element replication”. Furthermore, the implementation may need to know that the client is
planning to add additional hops in subsequent operations. In this case, the replication capabilities would
indicate “Multi-hop requires advance notice”. In response to this capability, the client in creating the first
replica, must set the property ReplicationSettingData.Multihop appropriately (see 26.8 "CIM Elements"
for details on Multi-hop specification). The capabilities method GetSupportedMaximum indicates the
maximum number of hops supported by the implementation.

26.1.15Groups

Replication Services utilizes Groups of elements to manage replication activities that include more than
one source or target element in a copy operation. A major advantage of using groups is that an operation,
such as fracture, (see 26.5.3.9 "GetSupportedOperations") may be performed on the group as a whole,
instead of fracturing individual element pairs one by one.

The optional ReplicationGroup class represents a collection of ordered storage elements.

Key features of replication groups are:

• A group can be the source and/or the target of a copy operation.

• Elements of a group may be optionally declared Consistent.

• A group may optionally be declared as temporary (Persistent = false).

• A group may contain zero elements (an empty group).

Replication Services includes methods to create and delete a group, and methods to add elements or pair
of elements to an existing group(s) or to remove elements from a group.

Certain copy operations such as copying one source element to many target elements (one-to-many) may
result in the service creating a temporary group to keep track of all the target elements. The service may
delete temporary groups that are no longer associated with a copy operation. Deleting a temporary group
does not affect the elements associated with the group.

Figure 130 - Multi-hop Replication

StorageVolum e

// Hop 1 Source

StorageVolum e

// Hop 1 Target
// Hop 2 Source

StorageSynchronized

M ultihop Replication

StorageVolum e

// Hop 2 Target

StorageSynchronized

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

Replication Services Profile

782

The method ReplicationService.CreateGroupReplica() is used to copy a group of elements. The property
ReplicationSettingData.Pairing determines the pairing of the source and the target elements. Possible
values are: Exact order and Optimum. Exact order means the first element of the source group is copied
to the first element of the target group, the second element of the source group is copied to the second
element of the target group, and so on. Optimum means in order to minimize any resource and data flow
contentions, if possible, pair the source and the target elements in such a way that they are on different
data paths.

An implementation may allow the target group to have more (or fewer) elements than the source group.

See the ReplicationServiceCapabilities.GetSupportedReplicationSettingData() method for Pairing and for
UnequalGroupsAction capabilities.

Figure 131 shows group instances and the associated storage volumes.

The association between ReplicationGroup and its storage elements (e.g. StorageVolume) is
OrderedMemberOfCollection to maintain the order of the storage elements to facilitate pairing of the
source and the target group elements.

26.1.15.1 Composite Groups

A Composite Group is a group that includes storage elements from multiple storage arrays.

26.1.15.2 Consistency Groups

A Consistency Group is a set of elements that have an "Application Consistent View." Application
Consistent View is a set of elements that collectively represent some resource in a known state.

Block Storage Systems can only maintain state as to whether a group of elements is “sequentially
consistent” or not.

The instrumentation may support consistency groups for a given copy type and mode. The
CreateGroupReplica method allows a client to specify the target group to be consistent.

26.1.15.2.1 Sequentially Consistent

A group of target elements is considered to be "sequentially consistent” if each element is updated in the
same order as the application updates the corresponding source elements. Sequentially Consistent is
also known as Dependent Write Consistency.

Figure 131 - Group Instances

ReplicationGroup

// Source Group

StorageVolume

// One or more
source elements

OrderedMemberOfCollection

StorageVolume

// One or more target
elements

StorageSynchronized

ReplicationGroup

// Target Group

OrderedMemberOfCollection

GroupSynchronized

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 783

Figure 132 shows the target elements that have a sequentially consistent view at all times. Once the
connection between volume2 and volume5 fails, all subsequent copy operations to the target elements
stop, therefore maintaining the consistency of the target elements.

26.1.16Associations

Replication Services utilizes a number of stateful associations to associate source and target groups,
source and target elements, and, when necessary, the individual elements to their corresponding point-in-
time aspect.

Because the TokenizedClone operations are not initiated or controlled by the methods of the profile, there
will not be a StorageSynchronized (or GroupSynchronized) association between the elements involved in
a TokenizedClone operation.

Figure 133 shows the associated groups with equal number of source and target elements.

Figure 132 - Sequentially Consistent Example

StorageVolume1

W1, W4, W7

StorageVolume2

W2, W5, W8

StorageVolume4

W1

StorageVolume5

W2

Source Group Target Group

StorageVolume3

W3, W6

StorageVolume6

W3

break

Because of the break between
volumes 2 and 5, suspend data
transfers between the remaining
volumes.

Order of writes to source:
 W1, W2, W3;
 W4, W5, W6;
 W7, W8

Consistent view given W1,
W2, W3
(Target elements are
sequentially consistent at
W3 Point-In-Time)

After W3
copy

235

236

237

238

239

240

241

242

243

244

245

Replication Services Profile

784

26.1.16.1 GroupSynchronized Association

This association relates source and target groups, or, for a one-to-many relationship, relates a source
element to a target group. The association’s property ConsistencyEnabled indicates whether the target
elements are required to be Consistent or not.

Within a group, the SyncType and Mode properties of all subordinate StorageSynchronized associations
between the source and the target elements shall be the same. The SyncType and Mode properties of the
GroupSynchronized association shall also be the same as the SyncType and Mode properties of
subordinate StorageSynchronized associations.

This association relates the individual source and target elements. The association’s property CopyState
indicates the current state of the association. Some possible values of CopyState are Initialized or
Synchronized.

A StorageSynchronized association can participate in only one pair of related replication groups.

26.1.16.2 SettingsDefineState Association and SynchronizationAspect Instance

The SettingsDefineState associates an element (e.g., a StorageVolume), or a group of elements (e.g. a
ReplicationGroup), to a SynchronizationAspect. An instance of SynchronizationAspect includes
properties for the date and time of the point-in-time copy and a reference to the source element (see
Figure 134). The association is particularly useful for Clones (targets) and Snapshots (source) that do not
have a StorageSynchronized association to another storage element. In the case of Clones, the
StorageSynchronized association is removed (generally, following the provider’s restart) after the copy
operation completes. As for Snapshots, it is possible to create a point-in-time snapshot copy of an
element, or a group of elements, without having a target element (using the method
CreateSynchronizationAspect). In this mode, the target elements are added at a later time (using the
method ModifySettingsDefineState). Creating a SynchronizationAspect of a Snapshot is particularly
useful when a client wants to capture a point-in-time copy at a given time; however, the client wants to
create the actual target element at a later time, perhaps when it is more convenient.

Figure 133 - Associated Groups and Elements

StorageVolume1

StorageSynchronized

StorageVolume2

StorageVolume3

StorageVolume4
StorageSynchronized

GroupSynchronized

Source Group Target Group

CIM_ReplicationGroup extends
CIM_Collection

Property ConsistencyEnabled = true or false

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 785

.

The instrumentation may also offer the ability to further copy an existing SynchronizationAspect using the
CreateSynchronizationAspect method and supplying the existing SynchronizationAspect as the
“SourceElement” (see Figure 135).

If an instance of a SynchronizationAspect is associated to a group of elements, the property
“WhenPointInTime” applies to all elements of the group, indicating the point-in-time copy of all elements
is created at the same exact time.

If an instance of SynchronizationAspect is associated to a group of elements, the members of the group
also have their own associated instances of SynchronizationAspect. The group’s SynchronizationAspect
is associated to its “dependent” instances of SynchronizationAspect via the SettingsAffectSettings
association (see Figure 136).

Figure 134 - SettingsDefineState Association

Figure 135 - A new instance of SynchronizationAspect

StorageVolume or
ReplicationGroup

Source or Target Element

SynchronizationAspect

datetime WhenPointInTime
REF SourceElementSettingsDefineState

StorageVolume or
ReplicationGroup

Source or Target Element

SynchronizationAspect

datetime WhenPointInTime
REF SourceElement

Note: For example,
represents the 10:00AM
point-in-time.

SettingsDefineState

SynchronizationAspect

datetime WhenPointInTime
REF SourceElement

Note: Copied at 11:00AM,
but represents the 10:00AM
point-in-time.

SettingsDefineState

271

272

273

274

275

276

277

278

279

280

281

Replication Services Profile

786

SettingsDefineState may also be applied to Mirror targets; as such, the property
SynchronizationAspect.WhenPointInTime would have the date and time of when the mirror relationship
was fractured (or split).

In all cases, the SettingsDefineState association may not persist across the provider’s restarts.
Furthermore, an instance of a SynchronizationAspect shall be removed if the SourceElement is deleted.

Figure 137 is an instance diagram for a clone target element and its associated SynchronizationAspect
instance. Once the clone target element becomes synchronized, the StorageSynchronized association is
removed and the property SynchronizationAspect.CopyState has a value of “Operation Completed.”

Figure 136 - SynchronizationAspect of a Group of elements

ReplicationGroup

// Source Group

StorageVolume

// One or more
source elements

OrderedMemberOfCollection

SynchronizationAspect

datetime WhenPointInTime
REF SourceElement
(StorageVolume)SettingsDefineState

SynchronizationAspect

datetime WhenPointInTime
REF SourceElement
(ReplicationGroup)

SettingsAffectSettings

SettingsDefineState

282

283

284

285

286

287

288

289

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 787

26.1.16.3 One-to-Many Association

Using a replication group, Replication Services allows for one source element to be copied to many target
elements.

As shown in Figure 138, one source element is associated to more than one target element. With
ConsistencyEnabled set to true, if the link to a target element is broken, all subsequent copy operations
to all other target elements are suspended. This ensures all the target elements contain the same exact
data.

Figure 137 - SynchronizationAspect Instance

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

StorageSynchronized

Before

SynchronizationAspect

// SyncStatus: Operation In Progress
// WhenPointInTime
// SourceElement ObjectPath

StorageVolume

// Source

StorageVolume

// Target
// Clone

SettingsDefineState

After

SynchronizationAspect

// SyncStatus: Operation Completed
// WhenPointInTime
// SourceElement ObjectPath

Once synchronization is reached , StorageSynchronized association is removed .

290

291

292

293

294

295

296

Replication Services Profile

788

26.1.17Operations on List of Synchronizations

Primarily for scalability reasons, an implementation optionally may offer the ability to perform an
operation, such as fracture, on a list of synchronization associations. The list of synchronization
associations may be a collection of independent associations or a subset of StorageSynchronized
associations belonging to a source and a target replication groups. The method
ModifyListSynchronization and GetSupportedListOperations are used for list modifications.

26.1.18State Management For Associated Replicas

Both mirror and snapshot replicas maintain stateful associations with source elements. In the case of
clone replicas, the replication associations to the source elements exist while the copy operation is in
progress.

The CopyState property of the replication association identifies the state, while the ProgressStatus
property of the same association indicates the “status” of the copy operation to reach the requested
CopyState, which is indicated in the property RequestedCopyState. For example, CopyState might have a
value of “UnSynchronized”, while ProgressStatus might have a value of “Synchronizing”, also known as
“sync-in-progress”. In all cases, when creating a replica element, the desired CopyState, as reflected in
the property RequestedCopyState, is Synchronized, which indicates the replica element has the same
data as the source element. The RequestedCopyState property will contain “Not Applicable” once the
requested CopyState is achieved.

The GroupSynchronized association between the source and target groups also includes the CopyState
properties. If all values of StorageSynchronized.CopyState of source and target associations are the
same (i.e., Synchronized), GroupSynchronized.CopyState will also have the same value. On the other
hand, any mismatch in the StorageSynchronized.CopyState values, will render the
GroupSynchronized.CopyState property to have a value of Mixed.

Unplanned states, such as Broken, Aborted, or Partitioned can be entered from any other state and
generally indicate an unusual circumstance. Recovery from the Broken or Partitioned state may be
automatic once the error condition is resolved, or it may require a client to intervene with a “Resync”

Figure 138 - One-to-Many Association

StorageVolume1

StorageSynchronized

StorageVolume2

StorageVolume3

StorageSynchronized

GroupSynchronized

Source Element

Target Group

Property ConsistencyEnabled = true or false

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 789

operation (see 26.5.3.3 "GetSupportedFeatures"), or a “Resume” operation. Continuing from an Aborted
state requires a client to intervene with a Resync operation. In this situation, the implementation may
indicate a Resync operation is required by the setting the ProgressStatus to "Waiting for resync".
Additionally, the copy operation may be temporarily stopped due to system or connection bandwidth. In
this case the ProgressStatus will be set to “Pending.” See 26.5.3.3 "GetSupportedFeatures".

If after the error condition is resolved, the CopyState indicates “Suspended” state, in order to resume the
copy operation it is necessary for the client to issue a “Resume” operation.

If the CopyState indicates “Invalid”, generally, it means the storage system is unable to determine the
state of the copy operation. In this situation, the client needs to “detach” and ‘re-establish” the replication
relationship.

Use the method ReplicationServiceCapabilities.GetSupportedCopyStates to determine the possible
CopyStates. The CopyStates have been normalized in such a way that they may apply to all SyncTypes.

Table 527 describes the supported CopyStates.

Figure 139 shows the CopyState transitions. The dashed arrow lines represent automatic transitions.
They transition unconditionally when the target element is ready to move to the next state. The solid
arrow lines represent the transitions as the result of a requested operation (using, for example,
ModifyReplicaSynchronization). The label of the solid arrow line indicates the requested operation.

Table 527 - CopyStates Values

CopyState value Description

Initialized The source and target elements are associated. The copy operation has not started -- no data flow.

Synchronized The “copy operation” is complete. The target element is an “exact replica” of the source element.

Unsynchronized Not all the source element data has been “copied” to the target element.

Fractured The target element was abruptly split from its source element -- consistency is not guaranteed.

Split The target element was gracefully (or systematically) split from its source element -- consistency is
guaranteed.

Suspended Data flow between the source and target elements has stopped. Writes to source element are held
until a resume operation is completed.

Broken Replica is not a valid view of the source element. OperationalStatus of replica may indicate an Error
condition. This state generally indicates an error condition such as broken connection.

Failedover Reads and writes to/from the target element. Source element is not “reachable”.

Inactive Copy operation has stopped, writes to source element will not be sent to target element.

Prepared Initialization is completed, the copy operation has started, however, the data flow has not started.

Aborted The copy operation is aborted with the Abort operation. Use the Resync Replica operation to restart
the copy operation.

Skewed The target has been modified and is no longer synchronized with the source element or the point-in-
time view. Use the Resync Replica operation to resynchronize the source and target elements.

Mixed Applies to the CopyState of GroupSynchronized. It indicates the StorageSynchronized associations of
the elements in the groups have different CopyState values.

Partitioned The state of replication relationship can not be determined, for example, due to a connection problem.

Invalid The array is unable to determine the state of the replication relationship, for example, after the
connection is restored; however, either source or target element has an unknown status.

Restored The data was copied from the target element to the source element.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

Replication Services Profile

790

The “create” methods normally start with the Initialized state. However, it is possible to use the
WaitForCopyState parameter of the create method to force the CopyState to the Inactive or Prepared
state after the initialization is complete. In this case, CopyState will remain in Inactive or Prepared state
until such time a Modify method is used to Activate the synchronization.

Figure 139 - CopyState Transitions

Exit

Initialized

Unsynchronized

Fractured

Synchronized

Fracture

Inactive

Suspended

Suspend

Suspend

Activate

Resume

Split

Split

Failedover

Failover

Resync

Detach

Detach

ReturnToResourcePool

Deactivate

Entry

Exit

Deactivate

Exit

Detach

Resync

Failback

Create*Replica may
specify WaitForCopyState

= Inactive or Prepared
Note: Dashed arrow lines represent triggerless transition. They fire

unconditionally when target element is ready to move to the next state.

General flow: Initialized, Unsynchronized, Synchronized.

(Synchronized
Clone Target
Detaches
Relationship)

Exit

Dissolve

Prepared

Activate

Unprepare

SkewedResync

Restored
Restore

Fracture

Detach

340

341

342

343

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 791

26.1.18.1 Synchronized CopyState

Synchronized state for the Mirror and Clone SyncTypes indicates all data has been copied from the
source element to the target element. For the Snapshot SyncType, because the target element is a virtual
point-in-time view of the source element, the Synchronized CopyState indicates all the metadata
(pointers/mapping information) for the snapshot have been created. Synchronization for the snapshots is
achieved rapidly in comparison to synchronization of Mirrors or Clones.

Depending on implementation, the clone target element detaches automatically when the target element
becomes synchronized; otherwise, the client needs to explicitly request a detach operation. See the
method ReplicationServiceCapabilities in 26.5.3.3.

Figure 140 shows a sampling of the CopyState transitions and the corresponding ProgressStatus
changes. In a steady state condition, for example, the CopyState has a value of “Synchronized”, and at
the same time the ProgressStatus has a value of “Completed”.

344

345

346

347

348

349

350

351

352

353

354

355

Replication Services Profile

792

Figure 140 - Sample CopyState and ProgressStatus Transitions

 Resyncing

 Completed

 Initializing

 Detaching

 Fracturing

 Synchronizing

 Completed

 Completed

Legend:

ProgressStatus

Initialized

Unsynchronized

Synchronized

Fractured

Fracture

Resync

Entry

ExitCopyState

Detach

Automatic
Transition

Operation

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 793

26.1.19Unsynchronized and Skewed CopyStates

Unsynchronized CopyState indicates the target element is not an exact copy of the source element (or
the source’s point-in-time). The copy operation automatically continues until the synchronization between
the source element (or its point-in-time) and the target element is reached.

The Skewed CopyState is similar to the Unsynchronized CopyState except that the synchronized
relationship remains in the Skewed state until a client issues the Resync operation
(ModifyReplicaSynchronization or ModifyListSynchronization invoke methods). As an example:
Committing write operations to a Snapshot target element causes the source and the target elements to
become Skewed.

26.1.20Accessibility to Associations and Elements

There are two cases that should be considered:

Case 1: The method completes successfully without returning a job. The created replication associations
(StorageSynchronized and GroupSynchronized for Mirror and Snapshot copy types) and the newly
created target elements shall be accessible. The StorageSynchronized or GroupSynchronized
associations between source and target elements for the Clone copy type may not be accessible after
synchronization is achieved; however, there will be a SettingsDefineState association (if supported)
between the newly copied target element and a SynchronizationAspect instance.

Case 2: The method returns the status of “Job Started”. The AffectedJobElement association associates
the concrete job to the target element (or group), unless there is no target element (or group) such as
CreateSynchronizationAspect or when the target element (or group) is deleted (ReturnToResourcePool).
In this case, the AffectedJobElement points to the source element (or group). To ensure the replication
association is accessible, the CopyState of the association has to have at least reached the Initialized
state. To guarantee accessibility to associations and elements, specify the WaitForCopyState when
issuing the methods CreateElementReplica and CreateGroupReplica.

26.1.21Host Access Restrictions

Generally, exposing both the source and replica to the same host may cause problems due to a duplicate
volume signature. At a minimum, the signature of a replica must be changed before the replica is exposed
to the same host as the source element.

Managing host access to source and target elements can be managed by using services described in
Clause 18: Masking and Mapping Subprofile.

The method ReplicationServiceCapabilities.GetSupportedCopyStates for each CopyState additionally
returns information as to whether a replica is host accessible (boolean) for the given CopyState.

26.1.22Read Only Elements

Clients can request a newly created target element to be “Read Only” to the host. For example, to create
a “Read Only” target element, as a parameter, supply a ReplicationSettingData object with ReadOnly = 3
to a method such as ReplicationService.CreateElementReplica. As a result of this request, the
StorageSynchronized association’s ReadOnly property will have a value of 3 to indicate the
SynchedElement (i.e. the target element) is read only to the host.

The implementation may also support the ability for the clients to make the source element “Read Only”
to the host, before the copy operation begins to ensure there is no change in the source element’s data
while the data is being copied. Once the copy operation completes and the StorageSynchronized
association between the source and the target elements is removed, the replication service will remove
the “Read Only” state of the source element.

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

Replication Services Profile

794

Refer to the GetSupportedReplicationSettingData (section 26.5.3.17) and
GetDefaultReplicationSettingData (section 26.5.3.18) methods of the ReplicationServiceCapabilities
class to determine whether the implementation supports Read Only elements.

The implementation may have also implemented the Storage Element Protection Profile to allow clients to
set the state of the elements to “Read Only” etc.

26.1.23Deleting the Target Elements

Mirror, Clone, and Snapshot target elements that are no longer in a synchronization association are
deleted using the StorageConfigurationService.ReturnToStoragePool method. However, the Snapshot
target elements that are in a synchronization association are deleted using the
ReplicationService.ModifyReplicaSynchronization (or ModifyListSynchronization) method with the
“Return To ResourcePool” operation parameter, which also removes the synchronization association.

26.1.24Completion of Long Operations

There are two ways of indicating the completion of long running operations when a replica element is
created or modified:

Option 1: Generally, the long running operations are performed under the control of a job. The client can
monitor the progress of the job by polling the job’s status and percent complete, or by subscribing to job
related indications.

Option 2: Subscribe to receive indications when the CopyState of StorageSynchronized (or
GroupSynchronized) changes.

Clients may utilize both options simultaneously. To avoid receiving many indications, it is recommended
for the clients to utilize indication queries that are constrained by the object path of the appropriate
replication association.

If a replication operation was specified using a WaitForCopyState parameter and the method is executing
under the control of a job, the job “waits” until at least the CopyState is reached, at which point the job
considers the operation complete. However, depending on the specified WaitForCopyState, the copy
operation may continue until a steady state is achieved. For example, in the Figure 139, “CopyState
Transitions” diagram, Inactive and Synchronized states are considered steady states; whereas Initialized
and Unsynchronized are transient states.

During the copy operation, the AffectedJobElement association associates the job to the target element
or to the target group. In case an operation does not have a target element (e.g.
CreateSynchronizationAspect), the AffectedJobElement is the source element.

26.1.25Managing Background Copy

By default, replication service performs the copy operations in the background. In other words, the
methods such as CreateElementReplica, start the copy operation (or start a job) and return while the
copy operation is in progress. To perform a copy operation in the foreground, the method may specify the
WaitForCopyState of Synchronized, in which case the call will not return until the copy operation is
complete.

Alternatively, the methods CreateElementReplica and CreateGroupReplica may specify the
WaitForCopyState of Inactive if the ReplicationType supports it. In this case, the copy operation is not
started until the inactive synchronization is activated (using the ModifyReplicaSynchronization or
ModifyListSynchronization methods).

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 795

26.1.26Managing CopyPriority

A client may be able to manipulate the CopyPriority of a StorageSynchronized association -- see the
ReplicationServiceCapabilities.tures method in 26.8 "CIM Elements", which would indicate “Adjustable
CopyPriority”.

CopyPriority allows a client to manage the copy I/O rate and the priority of peer I/O operations relative to
host I/O operations. Before the copy operation starts, the CopyPriority may be specified in
ReplicationSettingData parameter supplied to the CreateElementReplica or CreateGroupReplica. After
the copy operation starts, the StorageSynchronized.CopyPriority property may be modified by invoking
the intrinsic ModifyInstance method.

The CopyPriority values are:

• Low - copy operation lower priority than host I/O.

• Same - copy operation has the same priority as host I/O.

• High - copy operation has higher priority than host I/O.

• Urgent - copy operation to be performed as soon as possible, regardless of the host I/O requests

In a group copy operation, adjusting the CopyPriority of one StorageSynchronized association belonging
to the group shall cause the CopyPriority of the remaining group StorageSynchronized associations to be
adjusted likewise.

26.1.27Using StorageSettings for Replicas

The StorageSetting class has several properties used to create and manage replicas. Instances of this
class are used as the goal parameter for the methods of this profile. The extrinsic method
CIM_StorageCapabilities.CreateSetting is used to create a setting and the intrinsic method
ModifyInstance is used to adjust the properties of a created StorageSetting. See Clause 5: "Block
Services Package" for the details of creating and modifying a storage setting.

26.1.28Finding and Creating Target Elements

The extrinsic method ReplicationService.GetAvailableTargetElements is used to locate the available
target elements for a given source and SyncType. The implementation may also support creating target
elements if the appropriate target elements are not supplied and/or are not available. The implementation
may require the client to create specialized elements to be used as a target of a copy operation. The
specialized elements have a specific values in their Usage property. Certain types of specialized
elements can be provided by changing the Usage property of existing elements. Refer to Clause 5: "Block
Services Package" for creating (specialized) elements and modifying the Usage value of existing
elements.

Refer to 26.5.3.17 "GetSupportedReplicationSettingData" and 26.5.3.3 "GetSupportedFeatures" to
determine if the implementation automatically creates target elements, and if specialized elements are
required for the desired SyncType.

26.1.29Using StoragePools (e.g. ResourcePools) for Replicas

Replicas are allocated from storage pools (e.g. resource pools). The implementation may require
specialized storage pools to contain delta replicas (changed tracks of snapshots) or the “write intent log”
files. The specialized storage pools have a specific value in their Usage property, for example, “Reserved
as a Delta Replica Container“, “Reserved for Local Replication Services“, or “Reserved for Remote
Replication Services”.

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

Replication Services Profile

796

26.1.29.1 Delta Replica StoragePools

Depending on the implementation, the Snapshot targets may require a fixed space consumption or
variable space consumption. Refer to 26.5.3.3 "GetSupportedFeatures" to determine if specialized
resource pool are required.

There are three types of delta replica pool access:

• “Any” - specialized storage pools are not required for delta replicas. The implementation creates delta
replicas based on the fixed space consumption model and the client can select any storage pool as a
container.

• “Shared” - a single shared storage pool is the container for all delta replicas. This type of storage pool is
always preexisting and may be located with the GetElementBasedOnUsage method. The client may need to
add space to this type of storage pool.

• “Exclusive” - each source element requires an exclusive, special storage pool for associated delta replicas. If
the storage pool already exists, it is associated to the source element with a ReplicaPoolForStorage
association. If the storage pool does not exist, the client creates the storage pool.

• “Multiple” - “multiple specialized, exclusive pools may exist or may be created.“

Figure 141 and Figure 142 show the fixed and variable space consumption for the Snapshot targets,
respectively. If the implementation supports fixed space consumption, the DeltaReservation properties
are set by the client to the appropriate values for a new snapshot. The values are set in the associated
StorageSetting element to be passed as a goal parameter to the CreateElementReplica method (or
CreateGroupReplica or CreateSynchronizationAspect methods). For variable space consumption, there
are no special properties to set by the client.

Figure 141 - Fixed Space Consumption

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = D

StorageSynchronized

StorageExtent (optional)

// container element
NumberOfBlocks = S1
BlockSize = M
ConsumableBlocks = S2

BasedOn

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M
DeltaReservation = 0

StartingAddress = A
EndingAddress = A + SpaceConsumed/M - 1

StoragePool

// container element
// any concrete pool
TotalManagedSpace = S3
RemainingManagedSpace = S4

AllocatedFromStoragePool
SpaceConsumed = (N*M*D)/100 rounded up to nearest multiple of M

StorageSetting

DeltaReservationMin = D1
DeltaReservationGoal = D2
DeltaReservationMax = D3

ElementSettingData

CopyType = “Snapshot”

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 797

26.1.30Provider Configurations for Remote Replication

Remote replication involves a minimum of two peer system instances. There are two possible provider
configurations for controlling remote replication service access points:

Configuration 1: One instance of the provider controls both peers. A client interfaces to one SMI-S server
and CIMOM. The only stitching required between arrays is a StorageSynchronized (and
GroupSynchronized) association between storage elements in separate arrays.

Configuration 2: A separate instance of the provider controls each peer system. Each provider has its
own SMI-S server/CIMOM instance. Clients are required to interact with two providers: the provider
controlling the source element and the provider controlling the target element. See the method
ReplicationServiceCapabilities.tures in 26.5.3.3 "GetSupportedFeatures" for the capability “Remote
resource requires remote CIMOM“.

The remote replication model allows connections that are bi-directional or uni-directional. By default,
connections to remote systems are bi-directional, unless it is stated otherwise. Refer to 26.5.3.19
"GetSupportedConnectionFeatures".

Figure 142 - Variable Space Consumption

StorageSynchronized

StorageVolume

// target element
NumberOfBlocks = N
BlockSize = M

StoragePool

// container element
// delta replica pool
TotalManagedSpace = S
RemainingManagedSpace = variable
LowSpaceWarningThreshold = T2
Usage =
 “Reserved as a Delta Replica Container”

AllocatedFromStoragePool

StorageVolume

// source element
NumberOfBlocks = N
BlockSize = M

SpaceConsumed = variable

CopyType = “Snapshot”

ReplicaPoolForStorage

502

503

Replication Services Profile

798

26.1.31Thinly Provisioned Elements

Replication Services supports “copying” thinly provisioned elements. Depending on the underlying
implementation, it is possible to copy a thinly provisioned source element to a thinly provisioned target
element or alternatively to a fully provisioned target element. Other combinations may be advertised in
the capabilities.

If an implementation supports more than one combination of source and target provisioning, clients may
use the ReplicationSettingData parameter of the CreateElementReplica or CreateGroupReplica to
request a specific combination. Clients can set the property
ReplicationSettingData.ThinProvisioningPolicy for the desired results.

Refer to the capabilities for the allowable combinations supported by the implementation. See 26.5.3.13
"GetSupportedThinProvisioningFeatures", 26.5.3.12 "GetSupportedSettingsDefineStateOperations" and
26.5.3.18 "GetDefaultReplicationSettingData".

EXPERIMENTAL

26.1.32Data Compressed Elements

Replication Services supports "copying" compressed elements. Depending on the underlying
implementation, it is possible to copy a compressed source element to a compressed target element or
alternatively to a fully provisioned target element. Other combinations may be advertised in the
capabilities. It's also possible to combine the capability of thinly provisioning and compressed
provisioning for one storage element.

As the capacity usage of compression in replication:

• When the replication is from a compressed source to a compressed target, it will be a normal volume
replication, so the capacity allocation for the target is as same as the normal allocation in volume replication;

• When the replication is from a compressed source to an uncompressed target, the data on the source will be
uncompressed in memory and written onto the target, so the capacity to be allocated to the target will be the
capacity of data after uncompression;

• When the replication is from an uncompressed source to a compressed target, the data on the source will be
compressed in memory and written onto the target, so the capacity to be allocated to the target will be the
capacity of data after compression;

If an implementation supports more than one combination of source and target provisioning, clients may
use the ReplicationSettingData parameter of the CreateElementReplica or CreateGroupReplica to
request a specific combination. Clients can set the property
ReplicationSettingData.StorageCompressionPolicy and ReplicationSettingData.ThinProvisioningPolicy
for the desired results.

Refer to the capabilities for allowable combinations supported by the implementation. See 26.5.3.20
"GetSupportedStorageCompressionFeatures".

EXPERIMENTAL

26.1.33Indications

Depending on the implementation, the Replication Services Profile generates a number of different alert
and life cycle indicatons, as shown in Table 528. Clients decide what indications they wish to receive by
subscribing to the appropriate indications.

504

505

506

507

508

509

510

511

512

513

514

515

516

517

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 799

Because on a large system with many copy operations in progress simultaneously, there is a potential to
receive many unwanted indications. Therefore, it is recommended for the clients to subscribe to
indications that have a query that is constrained to a specific replication association. See 26.8 "CIM
Elements" for the indication queries. For the storage pool and job indications, refer to Clause 5: "Block
Services Package" and Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 26
"Job Control Subprofile".

26.2 Health and Fault Management Consideration

The profile uses indications to report health and fault management. In general, instance modification
indications are sent when changes in OperationalStatus and HealthState values of the following instances
indicate a fault condition:

• Source and Replica elements

• ProtocolEndpoints

• RemoteReplicationCollections

Table 528 - Indications

Indication Source Of

CIM_InstCreation • New Job Creation

• New Target Element Creation

• New StorageSynchronized Association Creation

• New GroupSynchronized Association Creation

CIM_InstDeletion • Job Deletion

• Target Element Deletion (e.g. Snapshot)

• StorageSynchronized Association Deletion

• GroupSynchronized Association Deletion

CIM_InstModification • Job Progress and Status Changes

• Source and Target Elements Status Changes

• CopyState Changes

• ProgressStatus Changes

• ProtocolEndpoints and RemoteReplicationCollections Status Changes

CIM_AlertIndication • StoragePool space consumption Alerts (especially by Snapshot targets).

• Error conditions, such as

• StorageSynchronized and GroupSynchronized State set to Broken.

• ProtocolEndpoints.OperationalStatus set to Error.

• RemoteReplicationCollection.ConnectivityStatus set to “down”

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

Replication Services Profile

800

In response to a fault indication, clients can follow the RelatedElementCausingError association between
the instance reporting the error and the faulted component.

The profile also generates alert indications when the CopyState of a replication association transitions to
the Broken state.

The Replication Services Profile generates alert indications that allow monitoring of storage pool
consumption by the replica elements.

26.3 Cascading Considerations

For remote replication, the Replication Services Profile requires a cascading provider to perform the
“stitching” of resources between the cascading profile (replication services), and a leaf profile (for
example the Array Profile), where the remote resources are contained. The cascading provider ensures
that the leaf resources represent real instances of ComputerSystem, ProtocolEndpoint, and storage
objects such as StorageVolume in the Cascading Profile. Furthermore, the cascading provider shall
ensure that state and status properties such as OperationalStatus and CopyState have consistent values
between the leaf and real resources.

The replication service relies on other profiles to facilitate access to the leaf resources. For example, the
RemoteServiceAccessPoint instance identifies the necessary information to establish access to the leaf
system’s resources. See Figure 143 for an instance diagram of establishing access to the leaf resources.
This figure also shows instances of additional objects inherited from the class ServiceAccessPoint that
can facilitate access to remote resources.

Figure 143 - Instance Diagram for Access to Leaf Resources

C om puterSystem

N am e:
 SanJose

R eplicationServ ice

H ostedServ ice

StorageVolum e 2
(target)

System N am e:
 B oston

R em ote R ep lica tion w ith S erv iceAccessP o in t

R em oteServ iceAccessPoint

Serv iceAccessPoint

(abstract)H ostedAccessPoint

R em ote S ystem in Boston

Loca l S ystem in S an Jose
N etw ork T ra ffic

ProtocolEndpoint AccessServiceU R I

S torageVolum e 1
(source)

System N am e:
 SanJose

SAPAvailableForE lem ent

556

557

558

559

560

561

562

563

564

565

566

567

568

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 801

26.3.1 ServiceAccessPoint and SharedSecret Instances

Access to remote resources may require an instance of ServiceAccessPoint such as
RemoteServiceAccessPoint (inherited from ServiceAccessPoint) and its associated SharedSecret
instance, which describes response to a challenge question (i.e., password).

Figure 144 shows an instance of ServiceAccessPoint associated to an instance of SharedSecret via the
CredentialContext association.

The method AddServiceAccessPoint (26.5.2.16) and the method AddSharedSecret (26.5.2.17) can be
used to create the required instances.

Figure 144 - Instance of ServiceAccessPoint

SharedSecretServiceAccessPoint

CredentialContext

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

Replication Services Profile

802

26.3.2 Cascading Support

Figure 145 illustrates the Replication Services support for cascading.

The embedded dashed box in the figure illustrates the classes and associations of the cascading support.
The dashed classes are shadow of instances provided by the remote system. The collection
AllocatedResources collects all the components in use by the replication service. The RemoteResources
collection collects all components (StorageVolumes, LogicalDisks, StoragePools, etc.) accessible to the
replication service (whether used or not).

Figure 146 shows cascading support utilizing replication groups.

Figure 145 - Replication Services support for Cascading

 Replication Services Profile

 Cascading Support

ComputerSystem

ComputerSystem
(Shadow)

StorageVolume
(Shadow)

Name=“OS X”

StorageVolume
(Shadow)

RemoteResources

ElementType = "Volume"
CollectionDiscriminator =
["SNIA:Target Volume",
”SNIA:Remote Storage
Pools”]

Dependency

RemoteServiceAccessPoin
t

SAPAvailableForElement

SystemDevice

AllocatedResources

ElementType = "Volume"
CollectionDiscriminator =
 "SNIA:Target Volume"

MemberOfCollection

MemberOfCollection

HostedCollection

HostedCollection

StorageVolume

Name=”LocalDevice”

StorageSynchronized

SystemDevice

“Remote Volume”

“Local Volume”

StoragePool
(Shadow)

HostedStoragePool

588

589

590

591

592

593

594

595

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 803

26.4 Mapping of Copy Services and Replication Services Properties and Methods

Any action taken using the Replication Services methods is reflected, where applicable, appropriately in
the properties used by the Copy Services Subprofile (9 Copy Services Subprofile). The reverse is also
true in that any action taken by the Copy Services methods is reflected correctly in the properties used by
the Replication Services Profile. Refer to Table 226, “Alignment of SyncType/Mode and CopyType” and
Table 227, “Alignment of CopyState and SyncState” for alignment of the specific properties used by Copy
Services and this profile.

Figure 146 - Cascading and Replication Groups

 Replication Services Profile

 Cascading Support

ComputerSystem

ComputerSystem
(Shadow) StorageVolume

(Shadow)

Name=“OS X”

StorageVolume
(Shadow)

RemoteResources

Dependency

RemoteServiceAccessPoint

SAPAvailableForElement

SystemDevice

AllocatedResources

MemberOfCollection

MemberOfCollection

HostedCollection

HostedCollection
StorageVolume

Name=”LocalDevice”

StorageSynchronized

SystemDevice

ReplicationGroup

InstanceID=”LocalGroup”

ReplicationGroup
(Shadow)

InstanceID=“RemoteGroup”

ReplicationService

HostedService

ServiceAffectsElement OrderededMemberOfCollection

GroupSynchronized

OrderededMemberOfCollection

MemberOfCollection

596

597

598

599

600

601

602

603

Replication Services Profile

804

26.5 Methods of the Profile

The Replication Services Profile has a number of extrinsic methods for group management and
replication management. Additionally, there are a number of extrinsic methods in the
ReplicationServiceCapabilities that advertise the implemented replication services capabilities. Also, the
Profile is dependent on other extrinsic methods provided by the Block Services Package for storage pool
and storage element manipulations. Furthermore, the Profile relies on a number of intrinsic methods such
as ModifyInstance, DeleteInstance for certain optional capabilities.

All of the Profile extrinsic methods return one of the following status codes. Depending on the error
condition, a method may return additional error codes and/or throw an appropriate exception to indicate
the error encountered.

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 529 summarizes the extrinsic methods for group management (class ReplicationService).

Table 530 summarizes the extrinsic methods for replication management (class ReplicationService).

Table 529 - Extrinsic Methods for Group Management

Method Described in

CreateGroup() See 26.5.1.1

DeleteGroup() See 26.5.1.2

AddMembers() See 26.5.1.3

RemoveMembers() See 26.5.1.4

Table 530 - Extrinsic Methods for Replication Management

Method Described in

CreateElementReplica() See 26.5.2.1

CreateGroupReplica() See 26.5.2.2

CreateListReplica() See 26.5.2.3

CreateGroupReplicaFromElements() See 26.5.2.4

CreateSynchronizationAspect() See 26.5.2.5

ModifyReplicaSynchronization() See 26.5.2.6

ModifyListSynchronization() See 26.5.2.7

ModifySettingsDefineState() See 26.5.2.8

ModifyListSettingsDefineState() See 26.5.2.9

GetAvailableTargetElements() See 26.5.2.10

604

605

606

607

608

609

610

611

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 805

Table 531 summarizes the extrinsic methods for examining the implemented capabilities (class
ReplicationServiceCapabilities). The majority of these methods accept the ReplicationType as an input
parameter. The supplied ReplicationType must be a supported replication type corresponding to the
property ReplicationServicesCapabilities.SupportedReplicationTypes; otherwise the method returns “Not
Supported” (or throws a “Not Supported” exception).

GetPeerSystems() See 26.5.2.11

GetServiceAccessPoints() See 26.5.2.14

GetReplicationRelationships() See 26.5.2.12

GetReplicationRelationshipInstances() See 26.5.2.13

AddReplicationEntity See 26.5.2.15

AddServiceAccessPoint See 26.5.2.16

AddSharedSecret See 26.5.2.17

CreateRemoteReplicationCollection() See 26.5.2.18

AddToRemoteReplicationCollection() See 26.5.2.19

RemoveFromRemoteReplicationCollection() See 26.5.2.20

Table 531 - Extrinsic Methods for Getting Supported Capabilities

Method Described in

ConvertSyncTypeToReplicationType() See 26.5.3.1

ConvertReplicationTypeToSyncType() See 26.5.3.2

GetSupportedFeatures() See 26.5.3.3

GetSupportedGroupFeatures() See 26.5.3.4

GetSupportedCopyStates() See 26.5.3.5

GetSupportedGroupCopyStates() See 26.5.3.6

GetSupportedWaitForCopyStates() See 26.5.3.7

GetSupportedConsistency() See 26.5.3.8

GetSupportedOperations() See 26.5.3.9

GetSupportedGroupOperations() See 26.5.3.10

GetSupportedListOperations() See 26.5.3.11

GetSupportedSettingsDefineStateOperations() See 26.5.3.12

GetSupportedThinProvisioningFeatures() See 26.5.3.13

GetSupportedMaximum() See 26.5.3.14

GetDefaultConsistency() See 26.5.3.15

GetDefaultGroupPersistency() See 26.5.3.16

GetSupportedReplicationSettingData See 26.5.3.17

GetDefaultReplicationSettingData() See 26.5.3.18

Table 530 - Extrinsic Methods for Replication Management

Method Described in

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

Replication Services Profile

806

26.5.1 Group Management Methods

26.5.1.1 CreateGroup

uint32 ReplicationService.CreateGroup(

[IN] string GroupName,

[IN] CIM_LogicalElement REF Members[],

[IN] boolean Persistent,

[IN] boolean DeleteOnEmptyElement,

[IN] boolean DeleteOnUnassociated,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[OUT] CIM_ReplicationGroup REF ReplicationGroup,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method allows a client to create a new replication group. Any required associations (such as
HostedCollection) are created in addition to the instance of the group. The parameters are as follows:

• GroupName: If nameable, represents a user friendly name for the group being created. If null or not
nameable, then the implementation assigns a name.

• Members[]: An array of strings containing object references to the elements to add to the group -- order is
maintained. If null, the group will be empty, assuming empty groups are supported. Duplicates members are
not allowed.

• Persistent: If true, the group must persist across Provider reboots (group is not temporary). If null, the
implementation decides. Use the intrinsic method ModifyInstance to change Persistency of a group if the
group persistency is supported by the implementation.

• DeleteOnEmptyElement: If true and empty groups are allowed, the group will be deleted when the last
element is removed from the group. If empty groups are not allowed, the group will be deleted automatically
when the group becomes empty. If this parameter is not null, its value will be used to set the group's
DeleteOnEmptyElement property. Use the intrinsic method ModifyInstance to change this property after the
group is created.

• DeleteOnUnassociated: If true, the group will be deleted when the group is no longer associated with another
group. This can happen if all synchronization associations to the individual elements of the group are
“deleted”. If this parameter is not null, its value will be used to set the group's DeleteOnUnassociated
property. Use the intrinsic method ModifyInstance to change this property after the group is created.

• ServiceAccessPoint: Reference to access point information to allow the service to create a group on a remote
system. If null, the group is created on the local system.

• ReplicationGroup: If the method completes successfully, then the ReplicationGroup is a reference to the
group that is created.

GetSupportedConnectionFeatures() See 26.5.3.19

GetSupportedStorageCompressionFeatures() See 26.5.3.20

GetSynchronizationSupported() See 26.5.3.21

GetSupportedTokenizedReplicationType() See 26.5.3.22

Table 531 - Extrinsic Methods for Getting Supported Capabilities

Method Described in

630

631

632

633

634

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 807

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example, to
supply the “Description” for the created group.

This method returns the following additional values/statuses:

• If groups are not nameable and a name is supplied, the method returns 7 (“Groups are not nameable“) or
throws an appropriate exception.

• If the ServiceAccessPoint is not specified, the replication group is created on the system hosting the
replication service, via the HostedService association.

26.5.1.2 DeleteGroup

uint32 ReplicationService.DeleteGroup(

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup.

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN] boolean RemoveElements,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method allows a client to delete a replication group. All associations to the deleted group are also
removed as part of the action. The parameters are as follows:

• ReplicationGroup: This is a reference to the group that the client wants to delete.

• ServiceAccessPoint: Reference to access point information to allow the service to delete the group on a
remote system. If null, the group is on the local system.

• RemoveElements: The client can request to delete the group even if it is not empty. If one or more elements
in the group are in a replication relationship, RemoteElements is ignored.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

This method returns the following additional values/statuses:

• If an element in the group is in a replication association, the method returns 7 (“One or more element in a
replication relationship“) or throws an appropriate exception.

26.5.1.3 AddMembers

uint32 ReplicationService.AddMembers(

[IN] CIM_LogicalElement REF Members[],

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method allows a client to add members to an existing replication group. The parameters are as
follows:

• Members[]: An array of strings containing object references to the new elements to add to the replication
group. The new elements are added at the end of current members of the replication group. Duplicate
members are not allowed.

• ReplicationGroup: A reference to an existing replication group.

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

Replication Services Profile

808

• ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

26.5.1.4 RemoveMembers

uint32 ReplicationService.RemoveMembers(

[IN] CIM_LogicalElement REF Members[],

[IN] boolean DeleteOnEmptyElement,

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method allows a client to remove members from an existing replication group. If empty replication
groups are not supported by the implementation, deleting all members will delete the group. The
parameters are as follows:

• Members[]: An array of strings containing object references to the elements to remove from the replication
group. Attempting to remove a member that is not in the replication group, returns an error.

• DeleteOnEmptyElement: If true and removal of the members causes the group to become empty, the group
will be deleted. Note, if empty groups are not allowed, the group will be deleted automatically when the group
becomes empty. If this parameter is not null, it overrides the group's property DeleteOnEmptyElement.

• ReplicationGroup: A reference to an existing replication group.

• ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

This method returns the following additional values/statuses:

• Attempting to remove a group member that is in a replication association, returns 7 (“One or more element in
a replication relationship“) or throws an appropriate exception.

26.5.2 Replication Management Methods

26.5.2.1 CreateElementReplica

 uint32 ReplicationService.CreateElementReplica(

 [IN] string ElementName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 809

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState,

 [IN] CIM_ConnectivityCollection REF ConnectivityCollection);

This method allows a client to create (or start a job to create) a new storage object which is a replica of
the specified source storage object (SourceElement). The parameters are as follows:

• ElementName: A end user relevant name for the element being created. If null, then a system supplied name
is used. The value will be stored in the 'ElementName' property for the created element.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously.

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element.

• TargetElement:

• As an input, refers to a target element to use. If a target element is not supplied, the implementation may
locate or create a suitable target element. See 26.5.3.17 "GetSupportedReplicationSettingData".

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element.

• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

• Synchronization: Refers to the created association between the source and the target element. If a job is
created, this parameter may be null, unless the association is actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null.

• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached. For example,
CopyState of Initialized means associations have been established, but there is no data flow. CopyState of
Synchronized indicates the replica is an exact copy of the source element. CopyState of UnSynchronized
means copy operation is in progress (see Table 527 for the CopyStates).

• ConnectivityCollection: Reference to the ConnectivityCollection - for example, a
RemoteReplicationCollection. Since a RemoteReplicationCollection aggregates the ProtocolEndpoints that
provide the paths to a remote system, generally, it is not necessary to supply both the ConnectivityCollection
and the ServiceAccessPoint.

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

Replication Services Profile

810

Method Notes:

• Creates a storage element of the same type as the source element.

• If the TargetElement, the TargetPool, or the TargetAccessPoint are not specified, the TargetElement is
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElement will have the applicable association to the top level ComputerSystem.
For example, if the TargetElement is a StorageVolume, the created TargetElement will have a SystemDevice
association to the top level computer system.

• Creates a StorageSynchronized association.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target element.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 532 shows selected optional parameters that can interact.

NOTE * See capabilities (Table 550, “Target Element Suppliers”) for whether implementation locates/creates target elements.

26.5.2.2 CreateGroupReplica

 uint32 ReplicationService.CreateGroupReplica(

 [IN] string RelationshipName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

Table 532 - Selected CreateElementReplica optional parameters

TargetElement TargetSettingGoal TargetPool Comment

Null Null Null Implementation locates/creates
target element*

Supplied Null Null

Null Supplied Null Goal is used to locate/create
target element*

Null Supplied Supplied Goal is used to locate/create
target element* in the supplied
Pool

Null Null Supplied Pool is used to locate/create
target element* in Pool.
Implementation determines the
Goal

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 811

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState,

 [IN] CIM_ConnectivityCollection REF ConnectivityCollection);

This method allows a client to create (or start a job to create) a new group of storage objects which are
replicas of the specified source storage or a group of source storage objects (SourceElements). The
parameters are as follows:

• RelationshipName: A user relevent name for the relationship between the source and target groups or
between a source element and a target group (i.e., one-to-many). If null, the implementation assigns a name.
If the individual target elements require an ElementName, a name would be constructed using
RelationshipName (or ReplicationSettingData.ElementName) as prefix followed by \"_n\" sequence number,
where n is a number beginning with 1.

If the method is expected to create the target group, and the parameter ReplicationSettingData is supplied,
the property ReplicationSettingData.ElementName may be used as the group name.

• SyncType: See CreateElementReplica’s parameters (26.5.2.1).

• Mode: See CreateElementReplica’s parameters (26.5.2.1).

• SourceGroup: A group of source storage objects which may be a StorageVolume or storage object. If this
parameter is not supplied, SourceElement is required. Both SourceGroup and SourceElement shall not be
supplied.

• SourceElement: The source storage object which may be a StorageVolume or storage object. If this
parameter is not supplied, SourceGroup is required. Both SourceGroup and SourceElement shall not be
supplied.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source elements/group.

• TargetGroup:

• As an input, refers to a target group to use.

• As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately. If TargetGroup is supplied, TargetElementCount shall be null.

• TargetElementCount: This parameter applies to one-source-to-many-target elements. If TargetGroup is
supplied, this parameter shall be null.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

• Consistency: This parameter overrides the default group consistency. For example, "No Consistency",
"Sequential Consistency".

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.2.1).

• Job: See CreateElementReplica’s parameters (26.5.2.1).

• Synchronization: Refers to the created association between the source element (or source replication group)
and the target replication group. If a job is created, this parameter may be null, unless the association is
actually formed.

• TargetSettingGoal: See CreateElementReplica’s parameters (26.5.2.1).

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

Replication Services Profile

812

• TargetPool: See CreateElementReplica’s parameters (26.5.2.1).

• WaitForCopyState: See CreateElementReplica’s parameters (26.5.2.1).

• ConnectivityCollection: See CreateElementReplica’s parameters (26.5.2.1).

Method Notes:

• Creates storage elements of the same type as the source element(s).

• If the TargetGroup or the TargetAccessPoint are not specified, the TargetGroup is created on the system
hosting the replication service, via the HostedService association.

• Creates StorageSynchronized and GroupSynchronized associations.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target elements.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 533 shows selected optional parameters that can interact.

NOTE * See capabilities (Table 550, “Target Element Suppliers”) for whether implementation locates/creates target elements.

Table 533 - Selected CreateGroupReplica optional parameters

TargetGroup TargetElementCount TargetSettingGoal TargetPool Comment

Null Null Null Null Implementation locates/
creates target elements*

Supplied Null Null Null

Supplied Supplied Null Null An illegal combination.

Null Supplied Null Null Implementation locates/
creates target elements*

Null Supplied Supplied Null Goal is used to locate/create
target elements*

Null Supplied Supplied Supplied Goal is used to locate/create
target elements* in the
supplied Pool

Null Null Supplied Null Goal is used to locate/create
target elements*

Null Null Supplied Supplied Goal is used to locate/create
target elements in the
supplied Pool

Null Null Null Supplied Pool is used to locate/create
target elements* in Pool.
Implementation determines
the Goal

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 813

26.5.2.3 CreateListReplica

 uint32 ReplicationService.CreateListReplica(

 [IN] string ElementNames[],

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN, Required] CIM_LogicalElement REF SourceElements[],

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_LogicalElement REF TargetElements[],

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[],

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState,

 [IN] CIM_ConnectivityCollection REF ConnectivityCollection);

This method allows a client to create (or start a job to create) new storage objects which are a replica of
the corresponding specified source storage object (an element of the SourceElements). The parameters
are as follows:

• ElementNames: An array of end user relevant names for the elements being created. If null, then a system
supplied name is used. The value will be stored in the 'ElementName' property for the created element. The
first element of the array ElementNames is assigned to the first replica, the second element to the second
replica and so on. If there are more SourceElements entries than ElementNames, the system supplied name
is used.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone. The
same SyncType is applied to all SourceElements entries.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously. The same
Mode is applied to all SourceElements entries.

• SourceElements: An array of source storage objects which may be StorageVolumes or storage objects. All
the source elements shall be of the same type -- for example, all StorageVolumes.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element. The same SourceAccessPoint applies to all SourceElements
entries.

• TargetElements:

• As an input, refers to an array of target elements to use. If specified, the elements will match one to one with
SourceElements[]. If a target elements are not supplied, the implementation may locate or create a suitable
target elements. See 26.5.3.17 "GetSupportedReplicationSettingData".

• As an output, refers to the created target storage elements (i.e., the replicas). If a job is created, the target
elements may not be available immediately.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element. The same TargetAccessPoint applies to all TargetElements entries.

859

860

861

862

863

864

865

866

867

868

869

870

871

Replication Services Profile

814

• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data. The same ReplicationSettingData
applies to SourceElements entries.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

• Synchronizations: Refers to an array of created associations between the source and the target elements. If a
job is created, this parameter may be null, unless the associations are actually formed.

• TargetSettingGoal: The definition for the StorageSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null. The same TargetSettingGoal applies to
all TargetElements entries.

• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null. The same TargetPool applies to all TargetElement entries.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached for all
Synchronizations. For example, CopyState of Initialized means associations have been established, but there
is no data flow. CopyState of Synchronized indicates the replicas are an exact copy of the corresponding
source element. CopyState of UnSynchronized means copy operation is in progress (see Table 527 for the
CopyStates).

• ConnectivityCollection: See CreateElementReplica’s parameters (26.5.2.1).

Method Notes:

• Creates a storage elements of the same type as the source elements.

• If the TargetElements, the TargetPool, or the TargetAccessPoint are not specified, the TargetElements are
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElements will have the applicable associations to the top level ComputerSystem.
For example, if the TargetElements are StorageVolumes, the created TargetElements will have SystemDevice
associations to the top level computer system.

• Creates the StorageSynchronized associations.

• Creates SystemDevice, AllocatedFromStoragePool, and ElementSettingData associations to the newly
created target elements.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 534 shows selected optional parameters that can interact.

Table 534 - Selected CreateListReplica optional parameters

TargetElements TargetSettingGoal TargetPool Comment

Null Null Null Implementation locates/creates
target elements*

Supplied Null Null

Null Supplied Null Goal is used to locate/create
target elements*

Null Supplied Supplied Goal is used to locate/create
target elements* in the supplied
Pool

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 815

NOTE *See capabilities (Table 550, “Target Element Suppliers”) for whether implementation locates/creates target elements.

26.5.2.4 CreateGroupReplicaFromElements

 uint32 ReplicationService.CreateGroupReplicaFromElements(

 [IN] string RelationshipName,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN,OUT] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_LogicalElement REF SourceElements[],

 [IN, OUT] string SourceGroupName,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN] uint16 Consistency,

 [IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState,

 [IN] CIM_ConnectivityCollection REF ConnectivityCollection);

This method allows a client to create (or start a job to create) a new group of storage objects which are
replicas of the specified source storage objects (SourceElements). This method combines the
functionality of CreateGroup and CreateGroupReplica in that the methods accepts a list of source
elements and creates the source group, and the target group, if not supplied.

The parameter SourceGroupName corresponds to the parameter GroupName as defined in the
CreateGroup method.

For the explanation of the parameters, see the methods CreateGroup (26.5.1.1) and CreateGroupReplica
(26.5.2.2).

26.5.2.5 CreateSynchronizationAspect

 uint32 ReplicationService.CreateSynchronizationAspect(

 [IN] string Name,

 [IN, Required] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] CIM_ReplicationGroup REF SourceGroup,

 [IN] CIM_ManagedElement REF SourceElement,

 [IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

 [IN] uint16 Consistency,

Null Null Supplied Pool is used to locate/create
target elements* in Pool.
Implementation determines the
Goal

Table 534 - Selected CreateListReplica optional parameters

TargetElements TargetSettingGoal TargetPool Comment

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

Replication Services Profile

816

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SettingsDefineState REF SettingsState);

This method allows a client to create (or start a job to create) new instances of SynchronizationAspect
that are associated to the source element (or a group of source elements) via the SettingsDefineState
associations. This representation may be of a form of pointers or a series of checkpoints that keep track
of the source element data for the created point-in-time.

This method does not include a target element, however, a target element can be added subsequently
using the ModifySettingsDefineState method.

The method creates individual associations between the source elements and the instances of
SynchronizationAspect.

The parameters are as follows:

• Name: A end user relevant name. If null, then a system supplied default name can be used. The value will be
stored in the ElementName or relationship name depending on whether an element is created or a group.

• SyncType: See CreateElementReplica’s parameters (26.5.2.1).

• Mode: See CreateElementReplica’s parameters (26.5.2.1).

• SourceGroup: See parameters in 26.5.2.2 "CreateGroupReplica".

• SourceElement: See CreateGroupReplica’s parameters (26.5.2.2). The source element may also be an
instance of another SynchronizationAspect.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element/group.

• Consistency: See CreateGroupReplica’s parameters (26.5.2.2)

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.2.1).

• Job: See CreateElementReplica’s parameters (26.5.2.1).

• SettingsState: Refers to the created association between the source element or group and the instance of the
SynchronizationAspect. If a job is created, this parameter may be null, unless the association is actually
formed.

Method Notes:

• May create an instance of SynchronizationAspect if an appropriate one does not exist already.

• May create ReplicaPoolForStorage associations.

26.5.2.6 ModifyReplicaSynchronization

 uint32 ReplicationService.ModifyReplicaSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

[IN] CIM_StorageSynchronized REF SyncPair[],

 [OUT] CIM_ConcreteJob REF Job,

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 817

 [IN] boolean Force,

[OUT] CIM_SettingsDefineState REF SettingsState,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the synchronization association between
two storage objects or replication groups. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: The reference to the replication association describing the elements/groups relationship that
is to be modified.

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.2.1).

• SyncPair[]: This parameter applies to AddSyncPair/RemoveSyncPair Operations. It allows a client to form a
StorageSynchronized association between source and target elements and then add the association to
existing source and target groups. Alternatively, a client can remove a StorageSynchronized association from
source and target groups.

• Job: See CreateElementReplica’s parameters (26.5.2.1).

• SettingsState: Reference to the association between the source or group element and an instance of
SynchronizationAspect. This parameters applies to operations such as Dissolve, which dissolves the
Synchronized relationship, but causes the SettingsDefineState association to be created. Depending on the
implementation, Deactivate may also return a SettingsState.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See CreateElementReplica’s parameters (26.5.2.1).

26.5.2.7 ModifyListSynchronization

 uint32 ReplicationService.ModifyListSynchronization(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_Synchronized REF Synchronization[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) a list of synchronization associations
between two storage objects or replication groups. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: An array of references to the replication association describing the elements/groups
relationship that is to be modified. All elements of the this array shall of the same concrete class, i.e.,
StorageSynchronized or GroupSynchronized, and shall have the same SyncType, the same Mode, and the
Operation must be valid for the ReplicationType -- SyncType, Mode, Local/Remote.

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.2.1).

• Job: See CreateElementReplica’s parameters (26.5.2.1).

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

Replication Services Profile

818

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See CreateElementReplica’s parameters (26.5.2.1). All the supplied synchronization
associations must reach at least the specified CopyState before the method returns.

26.5.2.8 ModifySettingsDefineState

 uint32 ReplicationService.ModifySettingsDefineState(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SettingsDefineState REF SettingsState,

 [IN, OUT] CIM_LogicalElement REF TargetElement,

 [IN, OUT] CIM_ReplicationGroup REF TargetGroup,

 [IN] uint64 TargetElementCount,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [OUT] CIM_Synchronized REF Synchronization,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the SettingsDefineState association
between the storage objects and SynchronizationAspect. The modification could range from introducing
the target elements, which creates new StorageSynchronized associations, to dissolving the
SettingsDefineState associations all together.

With the Copy To Target operation, the supplied SettingsState is deleted since an “active”
Synchronization is created to associate the source and the target elements (or groups).

The parameters are:

• Operation: This parameter describes the type of modification to be made to the related associations, for
example, Copy To Target, which initiates the copy operation from the point-in-time view to the supplied
targets. With the Attach To Target operation, the target simply “points” to the point-in-time view.

• SettingsState: Refers to the associations between the source elements and the SynchronizationAspect
instances. If an associated source element is part of a consistency group, all members of the group shall be
paired with the appropriate target elements.

• TargetElement: If TargetElement is supplied, TargetGroup and TargetCount shall be null.

• As an input, if the point-in-time has only one source element, this parameter supplies the target element.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetGroup: If TargetGroup is supplied, TargetElement and TargetElementCount shall be null.

• As an input, refers to a target group to use. If the source has only one element, the presence of a group
creates a one-to-many association between the source and the target elements. If TargetGroup is supplied,
TargetElement and TargetCount shall be null."

• As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately.

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 819

• TargetElementCount: This parameter applies to one-source-to-many-target-elements. It is possible to create
multiple copies of a source element. If TargetCount is supplied, TargetElement and TargetGroup shall be null.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

• Synchronization: The reference to the replication association describing the elements/groups relationship.

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.2.1).

• Job: See CreateElementReplica’s parameters (26.5.2.1).

• TargetSettingGoal: See CreateElementReplica’s parameters (26.5.2.1).

• TargetPool: See CreateElementReplica’s parameters (26.5.2.1).

• WaitForCopyState: See CreateElementReplica’s parameters (26.5.2.1).

26.5.2.9 ModifyListSettingsDefineState

 uint32 ReplicationService.ModifyListSettingsDefineState(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SettingsDefineState REF SettingsStates[],

 [IN, OUT] CIM_LogicalElement REF TargetElements[],

 [IN, OUT] CIM_ReplicationGroup REF TargetGroups[],

 [IN] uint64 TargetElementCount,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [OUT] CIM_Synchronized REF Synchronizations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPool,

 [IN] uint16 WaitForCopyState);

This method is similar to ReplicationService.ModifySettingsDefineState (26.5.2.8), except that it accepts
a list of SettingsDefineState associations.

26.5.2.10 GetAvailableTargetElements

 uint32 ReplicationService.GetAvailableTargetElements(

 [IN, Required] CIM_LogicalElement REF SourceElement,

 [IN, Required] uint16 SyncType,

 [IN, Required] uint16 Mode,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [IN] CIM_ComputerSystem REF TargetComputerSystem,

 [IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

 [IN] CIM_SettingData REF TargetSettingGoal,

 [IN] CIM_ResourcePool REF TargetPools[],

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_LogicalElement REF Candidates[]);

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

Replication Services Profile

820

This method allows a client to get (or start a job to get) all of the candidate target elements for the
supplied source element. If a job is started, once the job completes, examine the AffectedJobElement
associations for candidate targets. The parameters are:

• SourceElement: The source storage object which may be a StorageVolume or storage object.

• SyncType: See CreateElementReplica’s parameters (26.5.2.1).

• Mode: See CreateElementReplica’s parameters (26.5.2.1).

• ReplicationSettingData: See CreateElementReplica’s parameters (26.5.2.1). The parameter is useful for
requesting a specific combination of thinly and fully provisioned elements.

• TargetComputerSystem: Reference to target computer system. If this parameter and TargetAccessPoint are
null, only local targets are returned.

• TargetAccessPoint: Reference to target access point information. If this parameter and
TargetComputerSystem are null, only local targets are returned.

• TargetSettingGoal: Desired target StorageSetting. If null, settings of the source elements shall be used.

• TargetPools[]: The storage pools for the target elements. If null, all storage pools (on the given systems) are
examined.

• Job: See CreateElementReplica’s parameters (26.5.2.1).

• Candidates[]: The list of the candidate target elements found.

26.5.2.11 GetPeerSystems

 uint32 ReplicationService.GetPeerSystems(

 [IN] uint16 Options,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_ComputerSystem REF Systems[]);

This method allows a client to get (or start a job to get) all of the peer systems. A peer system is a system
that is known and visible to the Replication Service. Peer systems are discovered through discovery
services and/or implementation specific services. If a job is started, once the job completes, examine the
AffectedJobElement associations for the peer systems. The parameters are:

• Options: This parameter specifies whether to return all known peer systems or only the systems that are
currently reachable. If null, all known systems are returned, whether they are currently reachable or not.

• Job: See CreateElementReplica’s parameters (26.5.2.1).

• Systems[]: The list of peer computer systems.

26.5.2.12 GetReplicationRelationships

 uint32 ReplicationService.GetReplicationRelationships(

 [IN] uint16 Type,

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 Locality,

 [IN] uint16 CopyState,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_Synchronized REF Synchronizations[]);

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 821

This method allows a client to get (or start a job to get) all of the synchronization relationships known to
the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships. The parameters are as follows:

• Type: The type of synchronization relationships, for example, StorageSynchronized or GroupSynchronized. If
this parameter is not supplied, all such relationships are retrieved.

• SyncType: See CreateElementReplica’s parameters (26.5.2.1). If this parameter is not supplied, all
SyncTypes are retrieved.

• Mode: See CreateElementReplica’s parameters (26.5.2.1). If this parameter is not supplied, all Modes are
retrieved.

• Locality: Describes the desired locality. If this parameter is not supplied, all replication relationships are
retrieved, regardless of the locality of elements. Choices are: Local only -- Source and target elements are
contained in the same system; and Remote only -- Source and target elements are contained in two different
systems.

• CopyState: Only retrieve synchronization relationships that currently this CopyState (see Table 527). If this
parameter is not supplied, relationships are retrieved regardless of their current CopyState.

• Job: See CreateElementReplica’s parameters (26.5.2.1).

• Synchronizations[]: An array of elements found.

26.5.2.13 GetReplicationRelationshipInstances

 uint32 ReplicationService.GetReplicationRelationshipInstances(

 [IN] uint16 Type,

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 Locality,

 [IN] uint16 CopyState,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT, EmbeddedInstance("CIM_Synchronized")]

 string Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationship instances
known to the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships.

The output parameter Synchronizations is an array of embedded instances. For the explanation of the
remaining parameters, see the method ReplicationService.GetReplicationRelationships (26.5.2.12).

26.5.2.14 GetServiceAccessPoints

 uint32 ReplicationService.GetServiceAccessPoints(

 [IN] CIM_ComputerSystem REF System,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_ServiceAccessPoint REF ServiceAccessPoints[]);

This method allows a client to get (or start a job to get) ServiceAccessPoints associated with a peer
system. If a job is started, once the job completes, examine the AffectedJobElement associations for the
peer system’s ServiceAccessPoints. The parameters are as follows:

• System: A reference to the computer system.

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

Replication Services Profile

822

• Job: See CreateElementReplica’s parameters (26.5.2.1).

• ServiceAccessPoints[]: An array of references to ServiceAccessPoints associated with the supplied system.

26.5.2.15 AddReplicationEntity

uint32 ReplicationService.AddReplicationEntity(

 [Required, IN, EmbeddedInstance("CIM_ReplicationEntity")]

 string ReplicationEntity,

 [IN] boolean Persistent,

 [IN] string InstanceNamespace,

 [OUT] CIM_ReplicationEntity REF ReplicationEntityPath);

This method allows a client to introduce a new instance of ReplicationEntity in the specified Namespace.
The parameters are:

• ReplicationEntity: A required parameter containing the information for the ReplicationEntity.

• Persistent: If true, the instance must persist across a Management Server reboot. If null, the value will be
based on the default value of the class in the MOF. Use the intrinsic method ModifyInstance to change the
Persistency value.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

• ReplicationEntityPath: A reference to the created instance.

26.5.2.16 AddServiceAccessPoint

uint32 ReplicationService.AddServiceAccessPoint(

 [Required, IN, EmbeddedInstance("CIM_ServiceAccessPoint")]

 string ServiceAccessPoint,

 [IN] string InstanceNamespace,

 [OUT] CIM_ServiceAccessPoint REF ServiceAccessPointPath);

This method allows a client to introduce a new instance of ServiceAccessPoint in the specified
Namespace. The parameters are:

• ServiceAccessPoint: A required parameter containing the information for the ServiceAccessPoint, or a
subclass of the class ServiceAccessPoint, for example, a RemoteServiceAccessPoint.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

• ServiceAccessPointPath: A reference to the created instance.

26.5.2.17 AddSharedSecret

uint32 ReplicationService.AddSharedSecret(

 [Required, IN, EmbeddedInstance("CIM_SharedSecret")]

 string SharedSecret,

 [IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

 [IN] string InstanceNamespace,

 [OUT] CIM_SharedSecret REF SharedSecretPath);

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 823

This method allows a client to introduce a new instance of SharedSecret in the specified Namespace and
optionally associate it to an instance of a ServiceAccessPoint. The parameters are:

• SharedSecret: A required parameter containing the information for the SharedSecret.

• ServiceAccessPoint: Associate created instance to this ServiceAccessPoint. If null, no such association is
established.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

• SharedSecretPath: A reference to the created instance.

26.5.2.18 CreateRemoteReplicationCollection

uint32 ReplicationService..CreateRemoteReplicationCollection(

 [IN] string ElementName,

 [IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

 [IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

 [IN] CIM_ComputerSystem REF RemoteComputerSystem,

 [IN] boolean Active,

 [IN] boolean DeleteOnUnassociated,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_ConnectivityCollection REF ConnectivityCollection,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

A method to create (or start a job to create) a new instance of RemoteReplicationCollection, and
optionally supply the remote system and the paths (i.e. ProtocolEndpoints) that are used to perform
replication operations to/from the remote system. The parameters are:

• ElementName: A end user relevant name for the element being created. If NULL, then a system supplied
default name will be used. The value will be stored in the 'ElementName' property for the created element.

• LocalAccessPoints: An array of references to local ServiceAccessPoints (for example, ProtocolEndpoints)
that allow communication to the remote system.

• RemoteAccessPoints: An array of references to remote ServiceAccessPoints (for example,
ProtocolEndpoints) that allow communication to the remote system.

• RemoteComputerSystem: A reference to the remote system.

• Active: If true, the instance of RemoteReplicationCollection will be enabled and allows replication operations
to to the remote system. Use the intrinsic method ModifyInstance to change this property after the
RemoteReplicationCollection is created.

• DeleteOnUnAssociated: If true, the instance of RemoteReplicationCollection will be deleted when it is no
longer associated to a ServiceAccessPoint. Use the intrinsic method ModifyInstance to change this property
after the RemoteReplicationCollection is created.

• Job: Reference to the job (may be NULL if job is completed) doing the work.

• ConnectivityCollection: Reference to the created instance of RemoteReplicationCollectioReplication

• ReplicationSettingData: An embedded instance to provide additional information such as enabling data
compression while transmitting/receiving data.

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

Replication Services Profile

824

26.5.2.19 AddToRemoteReplicationCollection

uint32 ReplicationService.AddToRemoteReplicationCollection(

 [IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

 [IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

 [IN] CIM_ComputerSystem REF RemoteComputerSystem,

 [OUT] CIM_ConcreteJob REF Job,

 [Required, IN] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to add (or start a job to add) additional service access points (i.e. ProtocolEndpoints) and/or
remote systems associations to an existing instance of RemoteReplicationCollection.

Generally, both AccessPoints and RemoteComputerSystem parameters are supplied to establish the
access points to a remote ComputerSystem; however, if parameter AccessPoints is NULL, then only the
RemoteComputerSystem is added for the existing AccessPoints associated to the
RemoteReplicationCollection. If RemoteComputerSystem is NULL, then only AccessPoints are added for
the existing remote ComputerSystems known to the RemoteReplicationCollection.

See the method CreateRemoteReplicationCollection for description of the parameters.

26.5.2.20 RemoveFromRemoteReplicationCollection

 uint32 ReplicationService.RemoveFromRemoteReplicationCollection(

 [IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

 [IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

 [OUT] CIM_ConcreteJob REF Job,

 [Required, IN] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to remove (or start a job to remove) service access points (i.e. ProtocolEndpoints) and/or
remote systems associations from an existing instance of RemoteReplicationCollection.

Generally, both AccessPoints and RemoteComputerSystem parameters are supplied to remove the
access points to a remote ComputerSystem; however, if parameter AccessPoints is NULL, then only the
remote ComputerSystem is removed for the existing AccessPoints associated to the
RemoteReplicationCollection. If ComputerSystem is NULL, then only AccessPoints are removed from the
existing remote ComputerSystems known to the RemoteReplicationCollection. See the method
CreateRemoteReplicationCollection for description of the parameters.

26.5.3 Capabilities Methods

26.5.3.1 ConvertSyncTypeToReplicationType

uint32 ReplicationServiceCapabilities.ConvertSyncTypeToReplicationType(

 [IN] uint16 SyncType,

 [IN] uint16 Mode,

 [IN] uint16 LocalOrRemote,

 [OUT] uint16 SupportedReplicationTypes);

The majority of the methods in this class accept ReplicationType which represents a combination of
SyncType, Mode, and Local/Remote. This method accepts the supplied information and returns the
corresponding ReplicationType, which can be passed to other methods to get the additional capabilities.

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 825

Table 535, Table 536, Table 537, and Table 538 show the values for the
CovertSyncTypeToReplicationType parameters. These values also appear in the value maps in the
appropriate MOF files.

Table 535 - SyncTypes

SyncType Value

Mirror 6

Snapshot 7

Clone 8

TokenizedClone 9

Table 536 - Modes

Mode Value

Synchronous 2

Asynchronous 3

Table 537 - Local or Remote

LocalOrRemote Value

Local 2

Remote 3

Table 538 - ReplicationTypes

SupportedReplicationType Value

Synchronous Mirror Local 2

Asynchronous Mirror Local 3

Synchronous Mirror Remote 4

Asynchronous Mirror Remote 5

Synchronous Snapshot Local 6

Asynchronous Snapshot Local 7

Synchronous Snapshot Remote 8

Asynchronous Snapshot Remote 9

Synchronous Clone Local 10

Asynchronous Clone Local 11

Synchronous Clone Remote 12

Asynchronous Clone Remote 13

Synchronous TokenizedClone Local 14

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

Replication Services Profile

826

26.5.3.2 ConvertReplicationTypeToSyncType

 uint32 ReplicationServiceCapabilities.ConvertReplicationTypeToSyncType(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SyncType,

 [OUT] uint16 Mode,

 [OUT] uint16 LocalOrRemote);

This method does the opposite of the method ConvertSyncTypeToReplicationType. This method
translates ReplicationType to the corresponding SyncType, Mode, and Local/Remote.

26.5.3.3 GetSupportedFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 Features[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

The ReplicationSettingData parameter provides additional refinements for the ReplicationType. For
example, the CopyMethodology.

For a given ReplicationType, this method returns the supported features, as listed in Table 539.

Asynchronous TokenizedClone Local 15

Synchronous TokenizedClone Remote 16

Asynchronous TokenizedClone Remote 17

Table 539 - Features

Feature Description

“Replication Groups” Elements in a replication group are supported in a replication
operation.

"Multi-hop element replication" A target element can also act as the source for another copy
operation.

“Each hop must have same SyncType“ In a multi-hop replication, the new hop must have the same
SyncType as the previous hop.

“Multi-hop requires advance notice” The service needs to know when multi-hoping is intended to allow
the service to do the appropriate set up. The parameter
ReplicationSettingData specifies the number of hops intended.

"Requires full discovery of target ComputerSystem" Provider requires the remote ComputerSystems to be discovered.
The absence of this capability indicates the service supports
undiscovered resources.

"Service suspends source I/O when necessary" Provider is able to suspend I/O to source elements before splitting
the target elements. Otherwise, the client needs to quiesce the
application before issuing the split command.

Table 538 - ReplicationTypes

SupportedReplicationType Value

1342

1343

1344

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 827

"Targets allocated from Any storage pool" Specialized storage pools are not required for the target elements,
as long as the pool is not reserved for special activities.

"Targets allocated from Shared storage pool" Targets are allocated from storage pools reserved for Replication
Services.

"Targets allocated from Exclusive storage pool" Targets are allocated from exclusive storage pools.

"Targets allocated from Multiple storage pools" Targets are allocated from multiple specialized, exclusive pools.

“Targets require reserved elements” The target elements must have a specific Usage value. For
example, reserved for "Local Replica Target" (mirror), reserved for
"Delta Replica Target" (Snapshot)., etc.

"Target is associated to SynchronizationAspect” The target element is associated to SynchronizationAspect via
SettingsDefineState. SynchronizationAspect contains the point-in-
time timestamp and the source element reference used to copy to
the target element.

"Source is associated to SynchronizationAspect” The source element is associated to SynchronizationAspect via the
SettingsDefineState association. SynchronizationAspect contains
the point-in-time information of the source data.

"Error recovery from Broken state Automatic", For example, if the connection between the source and target
elements is broken (CopyState = Broken or Partitioned), once the
connection is restored, the copy operation continues automatically.
If the error recovery is not automatic, it requires manual intervention
to restart the copy operation. Use ModifyReplicaSynchronization,
with Operation set to Resume.

“Target must remain associated to source” A dependent target element must remain associated to source
element at all times.

"Remote resource requires remote CIMOM" Client is required to interact with two providers: the provider
controlling the source element and the provider controlling the target
element.

"Synchronized clone target detaches automatically" The clone target element detaches automatically when the target
element becomes synchronized; otherwise, the client needs to
explicitly request a detach operation.

"Reverse Roles operation requires Read Only source" The “Reverse Roles” operation requires the source element to be in
the Read Only mode. To change the protection of an element, see
25 "Storage Element Protection SubProfile".

"Reverse Roles operation requires resync" After the “Reverse Roles” operation completed, it is required to
resync the synchronization relationship between the source and the
target elements. This is indicated in the property
Synchronized.ProgressStatus - “Requires resync“.

"Restore operation requires fracture"

also,

“Restore operation requires detach”

The “Restore from Replica” operation requires the synchronization
relationship to be fractured or detached after restore is completed --
indicated in the property Synchronized.ProgressStatus - “Requires
fracture” or “Requires detach”.

"Resync operation requires activate" For the copy operation to continue, the synchronization relationship
must be activated -- indicated in the property
Synchronized.ProgressStatus - “Requires activate”.

"Copy operation requires offline source" Instrumentation requires the source element to be offline (not-ready)
to ensure data does not change before starting the copy operation.

"Adjustable CopyPriority" Priority of copy operation versus the host I/O can be adjusted.

Table 539 - Features

Feature Description

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

Replication Services Profile

828

26.5.3.4 GetSupportedGroupFeatures

 uint32 ReplicationServiceCapabilities.GetSupportedGroupFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 GroupFeatures[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns the supported replication group features, as listed in
Table 540.

Table 540 - Group Features

GroupFeatures Description

"One-to-many replication" One source element can be copied to multiple target elements in a
group.

“Many-to-many replication“ One or more elements in the source group and one or more elements
in the target group.

“Consistency enabled for all groups” By default, all groups are Consistent

“Empty replication groups allowed” It is possible to have a replication group with no members; otherwise,
an empty group gets deleted automatically.

"Source group must have more than one element" One members replication groups are not supported.

"Composite Groups" A replication group can have members from different
ComputerSystems.

"Multi-hop group replication" A target replication group can also act as a source for another copy
operation.

“Each hop must have same SyncType” The SyncType of each hop must be the same, e.g., mirror, snapshot,
clone.

"Group can only have one single relationship active" At any given time, only one relationship in the source group can be
active.

“Source element can be removed from group” A source element can be removed even when the group is
associated with another replication group.

“Target element can be removed from group” A target element can be removed even when the group is associated
with another replication group.

"Group can persist" The replication group can persist across the Provider reboot (group is
not temporary).

"Group is nameable" A user friendly name can be given to a replication group
(ElementName)

"Supports target element count" It is possible to supply one source element and request more than
one target element copies.

"Synchronized clone target detaches automatically" The clone target element detaches automatically when the target
element becomes synchronized; otherwise, the client needs to
explicitly request a detach operation.

"Reverse Roles operation requires Read Only source" The “Reverse Roles” operation requires the source element to be in
the Read Only mode. To change the protection of an element, see 25
"Storage Element Protection SubProfile".

"Reverse Roles operation requires resync" After the “Reverse Roles” operation completed, it is required to
resync the synchronization relationship between the source and the
target elements. This is indicated in the property
Synchronized.ProgressStatus - “Requires resync“.

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 829

26.5.3.5 GetSupportedCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[],

 [OUT] boolean HostAccessible[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns the supported CopyStates (see Table 527) and a parallel
array to indicate whether for a given CopyState the target element is host accessible or not (true or false).

26.5.3.6 GetSupportedGroupCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedGroupCopyStates(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedCopyStates[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns the supported replication group CopyStates (see Table
527).

26.5.3.7 GetSupportedWaitForCopyStates

 uint32 ReplicationServiceCapabilities.GetSupportedWaitForCopyStates(

 [IN] uint16 ReplicationType,

 [IN] unit16 MethodName,

 [OUT] uint16 SupportedCopyStates[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

"Restore operation requires fracture"

also,

“Restore operation requires detach”

The “Restore from Replica” operation requires the synchronization
relationship to be fractured (or detached) after restore is completed -
- indicated in the property Synchronized.ProgressStatus - “Requires
fracture” or “Requires detach”.

"Resync operation requires activate" For the copy operation to continue, the synchronization relationship
must be activated -- indicated in the property
Synchronized.ProgressStatus - “Requires activate”.

"Copy operation requires offline source" Instrumentation requires the source element to be offline (not-ready)
to ensure data does not change before starting the copy operation.

“Element can be member of multiple groups” An element can be member of more than one replication group at the
same time.

“Elements of group can be mix of thin and thick” A replication group can have a mix of thinly and fully provisioned
members.

"TokenizedClone ConsistentPointInTime" The point-in-time to be created at an exact time with no I/O activities
in such a way the data is consistent among all the elements of the
group.

Table 540 - Group Features

GroupFeatures Description

1362

1363

1364

1365

1366

1367

1368

1369

Replication Services Profile

830

This method, for a given ReplicationType and method, returns the supported CopyStates that can be
specified in the method's WaitForCopyState parameter.

26.5.3.8 GetSupportedConsistency

 uint32 ReplicationServiceCapabilities.GetSupportedConsistency(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedConsistency[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType, this method returns the supported Consistency, as listed in Table 541.

26.5.3.9 GetSupportedOperations

 uint32 ReplicationServiceCapabilities.GetSupportedOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported Operations on a StorageSynchronized
association that can be supplied to the ModifyReplicaSynchronization method. Table 542 shows the
possible Operations that an implementation may support.

Refer to Figure 56, “CopyState Transitions” for additional information.

Table 541 - Consistency

Consistency Description

“Sequentially Consistent” Provider guarantees ordered write consistency.

Table 542 - Operations

Operation Description Special Consideration

"Abort" Abort the copy operation if it is possible.

"Activate Consistency" Enable consistency.

“Activate” Activate an “Inactive” or “Prepared” StorageSynchronized
association.

"AddSyncPair" Add source and target elements of a StorageSynchronized
association to the source and target replication groups. The
SyncType of the associations must be the same.

"Deactivate Consistency" Disable consistency.

“Deactivate” Stop the copy operation. Writes to source element are
allowed.

Snapshot: Writes to target element
after point-in-time is created are lost
(pointers removed).

"Detach" Remove the association between the source and target
elements. Detach does not delete the target element.

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 831

“Dissolve” Dissolve the synchronization association between two
storage objects, however, the target element continues to
exist.

Snapshot: This operation also creates
a SettingsDefineState association
between the source element and an
instance of SynchronizationAspect if
the ReplicationType supports it.

"Failover" Enable the read and write operations from the host to the
target element. This operation useful for situations when the
source element is unavailable.

"Failback" Switch the read/write activities from the host back to source
element. Update source element from target element with
writes to target during the failover period.

"Fracture" Separate the target element from the source element.

"RemoveSyncPair" Remove the elements associated via the
StorageSynchronized association from the source and the
target groups.

"Resync Replica" Resynchronize a fractured target element. Or, from a Broken
or Aborted relationship.

To continue from the Broken state,
the problem should be corrected first
before resyncing the replica. Also, to
continue from the Aborted state.

"Restore from Replica" Copy target element to the source element. To ensure integrity of data, restoring
to a source element which is the
source of multiple copy operations,
the implementation may impose
additional restrictions ranging from
not supporting the restore operation
to such a source element to
preventing multiple restore operations
simultaneously. Also, after the
operation is completed, it may be
necessary to fracture (or detach) the
synchronization relationship. See
GetSupportedFeatures in capabilities.

"Resume" Continue the copy operation of a suspended relationship.

"Reset To Sync" Change Mode to Synchronous.

"Reset To Async" Change Mode to Asynchronous.

“Return To ResourcePool” Delete a Snapshot target.

"Reverse Roles" Switch the source and the target element roles. The source element may need to be
Read Only. See
GetSupportedFeatures in capabilities.

"Split" Separate the source and the target elements in a consistent
manner.

"Suspend" Stop the copy operation in such a way that it can be
resumed.

“Unprepare” Causes the synchronization to be reinitialized and stop in
Prepared state.

Table 542 - Operations

Operation Description Special Consideration

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

Replication Services Profile

832

Table 543 compares the action of similar Operations.

26.5.3.10 GetSupportedGroupOperations

uint32 ReplicationServiceCapabilities.GetSupportedGroupOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported replication group Operations (see Table
542) on a GroupSynchronized association that can be supplied to the ModifyReplicaSynchronization
method.

26.5.3.11 GetSupportedListOperations

uint32 ReplicationServiceCapabilities.GetSupportedListOperations(

Table 543 - Comparison of Similar Operations

Operations Description

Activate versus Resume Activate: Activates a StorageSynchronizes association
that has a CopyState of “Inactive.”

Resume: Resumes a StorageSynchronized association
that has a CopyState of “Suspended”.

Deactivate versus Suspend Deactivate: Stops the copy operation. In the case of
Snapshots, all writes to target element are deleted
(pointers to changed data are removed). While inactive,
writes to source element will not be committed to target
element once activated.

Suspend: Stops the copy operation. All writes to target
element are preserved. Once resumed, pending writes to
target element are committed.

Fracture versus Split Fracture: Source and target elements are separated
“abruptly.”

Split: Source and target elements are separated in an
orderly fashion. Consistency of target elements is
maintained.

Detach versus Dissolve Detach: The association between the source and target
element must be first Fractured/Split before it can be
Detached.

Dissolve: The association can have a CopyState of
Synchronized. Additionally, Dissolve can create a
SettingsDefineState association based on
GetSupportedFeatures (26.5.3.3) Capabilities.

Unsynchronized versus Skewed Unsynchronized: The source element contains data that
has not been copied to the target element. Most likely, the
copy operation is in the process of updating the target
element (ProgressStatus=Synchronizing).

Skewed: The target element has been updated by a host
(e.g. target of a snapshot). Resynchronization is not
automatic and requires an explicit “Resync” operation
(i.e., ModifySynchronization)

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 833

 [IN] uint16 ReplicationType,

 [IN] uint16 SynchronizationType,

 [OUT] uint16 SupportedOperations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported replication Operations (see Table 542) on
a list of associations that can be supplied to the ModifyListSynchronization method. The parameter
SynchronizationType specifies the operations as they apply to a list of StorageSynchronized or
GroupSynchronized. If SynchronizationType is not specified, StorageSynchronized is assumed.

26.5.3.12 GetSupportedSettingsDefineStateOperations

uint32 ReplicationServiceCapabilities.GetSupportedSettingsDefineStateOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported operations on a SettingsDefineState
association that can be supplied to the ModifySettingsDefineState method. Table 544 shows the list of
SettingsDefineState operations that an implementation may support.

26.5.3.13 GetSupportedThinProvisioningFeatures

uint32 ReplicationServiceCapabilities.GetSupportedThinProvisioningFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedThinProvisioningFeatures[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported features related to thin provisioning. Table
545 shows the list of the Thin Provisioning Features an implementation may support.

Table 544 - SettingsDefineState Operations

SettingsDefineState
Operation

Description Special Consideration

"Activate Consistency" Enable consistency

"Deactivate Consistency" Disable consistency

"Delete" Remove the SettingsDefineState association. Instance of
SynchronizationAspect may also be deleted if it is not shared
with other elements.

"Copy To Target" Introduces the target elements and forms the necessary
associations between the source and the target elements
i.e., StorageSynchronized and GroupSynchronized.

Detach Removes the association between the
SynchronizationAspect and the target element.

Restore Restore the source element from the associated
SynchronizationAspect.

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

Replication Services Profile

834

A client can request a specific thin provisioning policy in the ReplicationSettingData parameter of the
appropriate method call. See the property ReplicationSettingData.ThinProvisioningPolicy for the
supported options for a copy operation.

26.5.3.14 GetSupportedMaximum

 uint32 ReplicationServiceCapabilities.GetSupportedMaximum(

 [IN] uint16 ReplicationType,

 [IN] uint16 Component,

 [OUT] uint64 MaxValue,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method accepts a ReplicationType and a component, it then returns a static numeric value
representing the maximum number of the specified component that the service supports. A value of 0
indicates unlimited components of the given type. In all cases the maximum value is bounded by the
availability of resources on the computer system. If the information is not known, the method returns 7
which indicates "Information is not available".

Effectively, this method informs clients of the edge conditions.

Table 546 shows the list of components that can be specified.

Table 545 - Thin Provisioning Features

Feature Description

"Thin provisioning is not supported" The replication service does not distinguish between thinly and fully
provisioned elements. The service treats all elements as fully
provisioned elements.

"Zeros written in unused allocated blocks of target" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused. The implementation then writes
zeros in the unused blocks of the target element.

"Unused allocated blocks of target are not initialized" Applies to copying from a thinly provisioned element to a fully
provisioned element. The implementation needs to allocate “real”
storage blocks on the target side for the corresponding blocks of the
source element that are unused.

Table 546 - Components

Component Description

“Number of groups” Maximum number of groups supported by the replication service.

"Number of elements per source group" Maximum number of elements in a group that can be used as a source
group.

"Number of elements per target group" Maximum number of elements in a group that can be used as a target
group.

"Number of target elements per source element" Maximum number of target elements per source element.

"Number of total source elements" Maximum number of total source elements supported by the service.

"Number of total target elements" Maximum number of total target elements supported by the source.

"Number of peer systems" Maximum number of peer systems that replication service can
communicate with.

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 835

26.5.3.15 GetDefaultConsistency

uint32 ReplicationServiceCapabilities.GetDefaultConsistency(

 [IN] uint16 ReplicationType,

 [OUT] uint16 DefaultConsistency,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

This method for a given ReplicationType, returns the default consistency value for the replication groups.
Table 547 shows the list of possible Default Consistency values that an implementation may offer.

26.5.3.16 GetDefaultGroupPersistency

 uint32 ReplicationServiceCapabilities.GetDefaultGroupPersistency(

 [OUT] uint16 DefaultGroupPersistency);

This method returns the default persistency for a newly created group. Table 548 shows the list of
possible Group Persistency values that an implementation may offer.

26.5.3.17 GetSupportedReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetSupportedReplicationSettingData(

 [IN] uint16 ReplicationType,

 [IN] uint16 PropertyName,

 [OUT] uint16 SupportedValues[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the service can
manage.

"Maximum number of tokens supported" Maximum number of tokens per sub-system.

"Current number of token in-use" Number of tokens in use for the sub-system.

"Optimal token size" Refers to OptimalDataChunk.

Table 547 - Default Consistency

DefaultConsistency Description

"No default consistency" Replication groups are not declared as consistent.

"Sequentially Consistent" By default, a newly created replication group is declared
to be consistent.

Table 548 - Group Persistency

DefaultGroupPersistency Description

"No default persistency" Replication groups are not declared as persistent across
the Provider reboots.

"Persistent" By default, a newly created replication group is declared
to be persistent across the Provider reboot (group is not
temporary).

Table 546 - Components

Component Description

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

Replication Services Profile

836

This method, for a given ReplicationType, returns an array of supported settings that can be utilized in an
instance of the ReplicationSettingData class. See the MOF for the ReplicationSettingData class for the
value map of the properties. Explanation of some of the properties appears below.

Table 549 shows the values for the property ReplicationSettingData.CopyMethodology.

Table 550 shows the values for the property ReplicationSettingData.TargetElementSuppliers.

Table 551 shows the values for the property ReplicationSettingData.ThinProvisioningPolicy.

Table 549 - Copy Methodologies

CopyMethodology Description

"Other" A methodology not listed in this table.

"Implementation decides" Implementation determines a suitable methodology.

"Full-Copy" All data is copied to the target element.

"Incremental-Copy" Only changed data is copied to the target element.

"Differential-Copy" Only the new writes are copied to the target element.

"Copy-On-Write" Affected data is copied on the first write to the source or to
the target elements.

"Copy-On-Access" Affected data is copied on the first access to the source
element.

“Delta-Update” Difference based replication where initially the source
element is copied to the target element. Then, at regular
intervals, only changes to the source element that have
taken place since the previous copy operation are
incrementally updated to the target element. This copy
operation is also referred to as asynchronous mirroring.

“Snap-And-Clone“ The service creates a snapshot of the source element
first, then uses the snapshot as the source of the copy
operation to the target element.

Table 550 - Target Element Suppliers

TargetElementSupplier Description

“Use existing” Use existing elements only. If appropriate elements are
not available, returns an error.

“Create new” Create new target elements only.

“Use and create“ If appropriate elements are not available, create new
target elements.

“Instrumentation decides“

“Client must supply” Client must supply target elements.

Table 551 - ThinProvisioningPolicy

Feature Description

"Copy thin source to thin target" Thinly provisioned source element is copied to a thinly provisioned
target element.

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 837

EXPERIMENTAL

Table 552 shows the values for the property ReplicationSettingData.StorageCompressionPolicy.

EXPERIMENTAL

26.5.3.18 GetDefaultReplicationSettingData

 uint32 ReplicationServiceCapabilities.GetDefaultReplicationSettingData(

 [IN] uint16 ReplicationType,

 [OUT, EmbeddedObject]

 string DefaultInstance);

"Copy thin source to full target" Thinly provisioned source element is copied to a fully provisioned
target element.

"Copy full source to thin target" Fully provisioned source element is copied to a thinly provisioned
target element.

"Provisioning of target same as source" Provisioning of the target element is the same as the provisioning of
the source element.

"Target pool decides provisioning of target element" In the call to the CreateElementReplica or CreateGroupReplica
method, the storage pool for the target elements is supplied. The
supplied storage pool decides the provisioning of the created target
elements.

"Implementation decides provisioning of target" Vendor specific.

Table 552 - StorageCompressionPolicy

Feature Description

"Compressed source to compressed target" Compressed source element is copied to a compressed
target element.

"Compressed source to uncompressed target" Compressed source element is copied to an uncom-
pressed target element.

"Uncompressed source to compressed target" Uncompressed source element is copied to a com-
pressed target element.

"Compression of target same as source" Compression of the target element is the same as the
compression of the source element.

"Target pool decides compression of target element" In the call to the CreateElementReplica or CreateGrou-
pReplica method, the storage pool for the target elements
is supplied. The supplied storage pool decides the provi-
sioning of the created target elements.

"Implementation decides compression of target" Leaves implementation to decide the compression of the
target.

Table 551 - ThinProvisioningPolicy

Feature Description
1488

1489

1490

1491

1492

1493

Replication Services Profile

838

This method, for a given ReplicationType, returns the default ReplicationSettingData as an instance. Use
this method to determine the implementation behavior for replication settings that do not have a distinct
capability method.

26.5.3.19 GetSupportedConnectionFeatures

uint32 ReplicationServiceCapabilities.GetSupportedConnectionFeatures(

 [IN] CIM_ProtocolEndpoint REF connection,

 [OUT] uint16 SupporteConnectionFeatures[]);

This method accepts a connection reference and returns specific features of that connection. Table 553
shows the list of possible Connection Features that an implementation may support.

EXPERIMENTAL

26.5.3.20 GetSupportedStorageCompressionFeatures

uint32 ReplicationServiceCapabilities.GetSupportedStorageCompressionFeatures(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedStorageCompressionFeatures[],

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData);

For a given ReplicationType this method returns the supported features related to storage compression.
Table 554 shows the list of the Storage Compression Features an implementation may support.

Table 553 - Connection Features

ConnectionFeature

"Unidirectional to ProtocolEndpoint" Direction of data flow to this ProtocolEndpoint, from a
remote system (by default the connection is bi-
directional).

"Unidirectional from ProtocolEndpoint" Direction of data flow from this ProtocolEndpoint to a
remote system (by default the connection is bi-
directional).

Table 554 - Storage Compression Features

Feature Description

"Storage compression is not supported" The replication service does not support storage com-
pression. Only uncompressed elements are accepted.

"Compressed source to compressed target" The replication service supports copying from com-
pressed source element to compressed target element.

"Compressed source to uncompressed target" The replication service supports copying from com-
pressed source element to uncompressed target element.

1494

1495

1496

1497

1498

1499

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 839

26.5.3.21 GetSynchronizationSupported

uint32 ReplicationServiceCapabilities.GetSynchronizationSupported(

 [IN] CIM_ManagedElement REF LocalElement,

 [IN] CIM_ManagedElement REF OtherElement,

 [IN] CIM_ServiceAccessPoint REF OtherElementAccessPoint,

 [IN] uint16 MethodName,

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] uint16 SyncTypes[],

 [OUT] uint16 Modes[],

 [OUT] uint16 LocalElementRole[]);

This method returns the supported SyncTypes, Modes, and local element role (source or target) for a
given “local element” such as a storage volume.

As an example, this method can be used to determine if a given storage volume can be mirrored,
snapped, or cloned.

The returned data can be narrowed by supplying additional parameters such as the OtherElement -- for
example, a target storage volume -- desired method -- for example, CreateElementReplica -- and
additional options using the properties of the ReplicationSettingData. In this case, the method returns
possible SyncTypes (i.e. Mirror, Snapshot, Clone) between the LocalElement and the OtherElement.

The [OUT] parameter LocalElementRole indicates whether the local element can be the source, the
target, or both (multi-hop replication) of the copy operations.

EXPERIMENTAL

26.5.3.22 GetSupportedTokenizedReplicationType

uint32 ReplicationServiceCapabilities.GetSupportedTokenizedReplicationType(

 [IN] CIM_ManagedElement REF SourceElement,

 [IN] CIM_ManagedElement REF TargetElement,

 [IN] CIM_ServiceAccessPoint REF ElementAccessPoint,

"Uncompressed source to compressed target" The replication service supports copying from uncom-
pressed source element to compressed target element.

"Compression of target same as source" The source element is copied to a target with the same
compression setting as the source.

Target pool decides compression of target element" In the call to the CreateElementReplica or CreateGrou-
pReplica method, the storage pool for the target elements
is supplied. The supplied storage pool decides the com-
pression of the created target elements.

"Implementation decides compression of target" Leaves implementation to decide compression setting of
the target.

Table 554 - Storage Compression Features

Feature Description

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

Replication Services Profile

840

 [IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

 [OUT] uint16 ReplicationTypes[]);

For the supplied elements, this method returns the supported tokenized ReplicationTypes (e.g 14, 15, 16,
17). At least one supplied element is expected to be local to the service.

The method returns "Not Supported" if tokenized operation is not supported between the supplied
elements. The method returns "Source Temporarily Not Available" or "Target Temporarily Not Available" if
the source or the target element temporarily cannot be used for tokenized operations -- for example, the
source or the target element is currently being used for another copy operation.

EXPERIMENTAL

26.5.4 Replication Services and Copy Services Properties and Methods Mapping

To preserve backward compatibility, a few additional properties in the existing classes are introduced
instead of changing the semantics of the existing properties. Any action taken by a Replication Services
client shall be reflected correctly in the applicable properties visible to a Copy Services client. The
reverse is also true in that any action taken by a Copy Services client shall be reflected correctly in the
properties visible to a Replication Services client. Keep in mind certain requests that are not supported by
Copy Services result in the request failing. For example, passing an instance of StorageSynchronized
that contains a remote SyncedElement reference to the Copy Services’ ModifySynchronization method
will generate an error.

26.5.4.1 Properties Mapping

See 9.1.6.1.1 "Alignment of StorageSynchronized Properties" to determine the alignment between
CopyType and SyncState (from Copy Services) and SyncType, Mode, CopyState, and ProgressStatus
(from Replication Services).

26.5.4.2 Method Mapping

Table 555, “Copy Services and Replication Services Methods Mapping” summarizes the method mapping
between Copy Services and Replication Services Profiles. Again, use the Replication Services for
extended functionality, such as Thin Provisioning.

For description of the Copy Services Methods, see 9.5 "Methods of the Profile".

26.6 Client Considerations and Recipes

26.6.1 Creating and Managing Replicas

In general, creating and managing replicas involves the following steps:

Table 555 - Copy Services and Replication Services Methods Mapping

Copy Services Method Corresponding Replication Services Method

CreateReplica() CreateElementReplica()

AttachReplica()

ModifySynchronization() ModifyReplicaSynchronization()

ModifyListSynchronization()

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 841

• Decide on the SyncType of replica (Mirror, Snapshot, Clone) and Mode (Synchronous, Asynchronous). See
26.1.9 "SyncTypes".

• Locate the hosted instance of ReplicationService. See 26.1.7.

• Locate the instance of ReplicationServiceCapabilities. Utilize its properties and methods to determine the
applicable capabilities offered by the implementation for the desired ReplicationType (includes SyncType and
Mode). See 26.1.8 "Replication Services Capabilities".

• Use the method ReplicationService.GetAvailableTargetElements to locate appropriate target elements.
Depending on the implementation, it is also possible to allow the service to locate target elements. See
26.1.28.

• Verify StoragePools have sufficient free capacity for the target elements. See 26.1.29.

• If necessary, use the ReplicationService’s group manipulation methods to create and populate source and
target groups. See 26.5 "Methods of the Profile".

• Invoke the appropriate extrinsic method of the ReplicationService to create a replica. See 26.5 "Methods of
the Profile".

• Monitor the copy operation’s progress by examining the replication associations properties, or subscribe to
the appropriate indications -- including storage pool low space alert indications. See 26.1.16 "Associations"
and 26.1.33 "Indications".

• Invoke the method ReplicationService.ModifyReplicaSynchronization to modify a replica. For example, “split”
a replica from its source element. See 26.5 "Methods of the Profile".

26.7 Registered Name and Version

Replication Services version 1.6.1 (Component Profile)

CIM Schema Version: 2.39.0

26.8 CIM Elements

Table 556 describes the CIM elements for Replication Services.

Table 556 - CIM Elements for Replication Services

Element Name Requirement Description

26.8.1 CIM_ElementCapabilities Mandatory Associates StorageReplicationCapabilities and
ReplicationService.

26.8.2 CIM_GroupSynchronized Conditional Experimental. Conditional requirement: Required if
groups are supported. Associates source and target
groups, or a source element to a target group.

26.8.3 CIM_HostedAccessPoint (ForProtocolEndpoint) Conditional Conditional requirement: Required if remote replication is
supported. Associates ProtocolEndpoint to the
ComputerSystem on which it is hosted.

26.8.4 CIM_HostedAccessPoint
(ForRemoteServiceAccessPoint)

Conditional Conditional requirement: Required if remote replication is
supported. Associates RemoteServiceAccessPoint to the
ComputerSystem.

26.8.5 CIM_HostedCollection (Allocated Resources) Mandatory This would associate the AllocatedResources collection to
the top level system for the Replication Services Profile
using Cascading.

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

Replication Services Profile

842

26.8.6 CIM_HostedCollection (Between ComputerSystem
and RemoteReplicationCollection)

Conditional Conditional requirement: Required if remote replication is
supported. Associates the RemoteReplicationCollection
(ConnectivityCollection) to the hosting System.

26.8.7 CIM_HostedCollection (Between ComputerSystem
and ReplicationGroup)

Conditional Conditional requirement: Required if groups are
supported. Associates the replication group to the hosting
System.

26.8.8 CIM_HostedCollection (Remote Resources) Conditional Conditional requirement: This is required if
SNIA_RemoteResources is modeled. This would
associate the RemoteResources collection to the top level
system for the Replication Services Profile in support of
Cascading.

26.8.9 CIM_HostedService Mandatory

26.8.10 CIM_MemberOfCollection (Allocated Resources) Optional This supports collecting replication components. This is
required to support the AllocatedResources collection for
Cascading.

26.8.11 CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection)

Optional Associates ProtocolEndpoints to
RemoteReplicationCollection (ConnectivityCollection).

26.8.12 CIM_MemberOfCollection (Remote Resources) Optional This supports collecting all Shadow instances of
components that the Replication Service has available to
use. This is optional when used to support the
RemoteResources collection (the RemoteResources
collection is optional).

26.8.13 CIM_MemberOfCollection (Storage elements to
RemoteReplicationCollection)

Optional Associates storage elements to
RemoteReplicationCollection (ConnectivityCollection).

26.8.14 CIM_OrderedMemberOfCollection Conditional Conditional requirement: Required if groups are
supported. Associates ReplicationGroup to storage
elements.

26.8.15 CIM_ProtocolEndpoint Conditional Conditional requirement: Required if remote replication is
supported. Special purpose endpoint that represents
connections between systems.

26.8.16 CIM_RemoteReplicationCollection Conditional Conditional requirement: Required if remote replication is
supported. A RemoteReplicationCollection groups
together a set of ProtocolEndpoints of the same 'type'
(i.e., class) which are able to communicate with each
other. The ProtocolEndpoints are used by Replication
Services.

26.8.17 CIM_RemoteServiceAccessPoint Conditional Conditional requirement: Required if remote replication is
supported. A ServiceAccessPoint for replication service.

26.8.18 CIM_ReplicaPoolForStorage Optional Associates special storage pool for Snapshots (delta
replicas) to a source element.

26.8.19 CIM_ReplicationEntity Optional Represents a replication entity such as an entity known by
its World Wide Name (WWN).

26.8.20 CIM_ReplicationGroup Conditional Experimental. Conditional requirement: Required if
groups are supported. Represents a group of elements
participating in a replication activity.

26.8.21 CIM_ReplicationService Mandatory Experimental. Base class for Replication Services.
Methods are described in the Extrinsic Methods clause.

26.8.22 CIM_ReplicationServiceCapabilities Mandatory Experimental. A set of properties and methods that
describe the capabilities of a replication services provider.

Table 556 - CIM Elements for Replication Services

Element Name Requirement Description

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 843

26.8.23 CIM_ReplicationSettingData Optional Experimental. Contains special options for use by
methods of Replication Services.

26.8.24 CIM_SAPAvailableForFileShare Conditional Conditional requirement: Required if remote replication is
supported. This association identifies the element that is
serviced by the ServiceAccessPoint.

26.8.25 CIM_ServiceAffectsElement (Between
ReplicationService and RemoteReplicationCollection)

Conditional Conditional requirement: Required if remote replication is
supported. Associates Replication Service to
RemoteReplicationCollection (ConnectivityCollection).

26.8.26 CIM_ServiceAffectsElement (Between
ReplicationService and ReplicationEntity)

Optional Associates Replication Service to ReplicationEntity.

26.8.27 CIM_ServiceAffectsElement (Between
ReplicationService and ReplicationGroup)

Conditional Conditional requirement: Required if groups are
supported. Associates Replication Service to Replication
Group.

26.8.28 CIM_SettingsAffectSettings (Between
SynchronizationAspect and child
SynchronizationAspects)

Optional Associates a SynchronizationAspect associated to a
replication group to individual instances of
SynchronizationAspect.

26.8.29 CIM_SettingsDefineState (Between
ReplicationGroup and SynchronizationAspect)

Optional Associates a replication group to an instance of
SynchronizationAspect.

26.8.30 CIM_SettingsDefineState (Between storage
object and SynchronizationAspect)

Optional Associates a storage object to an instance of
SynchronizationAspect.

26.8.31 CIM_SharedSecret Conditional Conditional requirement: Required if remote replication is
supported.

26.8.32 CIM_StorageSynchronized Mandatory Experimental. Associates replica target element to source
element. Property definitions and descriptions are
identical to those for LogicalDisk usage.

26.8.33 CIM_SynchronizationAspect Optional Experimental. Keeps track of the source of a copy
operation, even after StorageSynchronized is removed.
Also keeps track of point-in-time.

26.8.34 SNIA_AllocatedResources Optional This is a SystemSpecificCollection for collecting
components that are being used by the Replication
Services profile (e.g., StorageVolumes, LogicalDisks, etc.)
that supports Cascading.

26.8.35 SNIA_RemoteResources Optional This is a SystemSpecificCollection for collecting
components that may be allocated by the Replication
Services profile (e.g., StorageVolume) that supports
Cascading.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageSynchronized

Mandatory All instance creation indications for StorageSynchronized.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_GroupSynchronized

Conditional Conditional requirement: Required if groups are
supported. All instance creation indications for
GroupSynchronized.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SynchronizationAspect

Optional All instance creation indications for
SynchronizationAspect.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Conditional Conditional requirement: Required if semi-fixed indication
filters are supported. CQL -Instance deletion indications
for a specific StorageSynchronized.

Table 556 - CIM Elements for Replication Services

Element Name Requirement Description

Replication Services Profile

844

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageSynchronized

Optional All instance deletion indications for StorageSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_GroupSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-group-synchronized')

Conditional Conditional requirement: Required if groups and semi-
fixed indication filters are supported. CQL -Instance
deletion indications for a specific GroupSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_GroupSynchronized

Optional All instance deletion indications for GroupSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SynchronizationAspect

Optional All instance deletion indications for
SynchronizationAspect.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::CopyState
<>
PreviousInstance.CIM_StorageSynchronized::CopyState
AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Conditional Conditional requirement: Required if semi-fixed indication
filters are supported. CQL -Synchronization state
transition for a specific replica association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::CopyState
<>
PreviousInstance.CIM_StorageSynchronized::CopyState

Optional CQL -Synchronization state transition for replica
associations.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::ProgressStat
us <>
PreviousInstance.CIM_StorageSynchronized::ProgressSt
atus AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-storage-synchronized')

Optional CQL -Progress status transition for a specific replica
association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageSynchronized AND
SourceInstance.CIM_StorageSynchronized::ProgressStat
us <>
PreviousInstance.CIM_StorageSynchronized::ProgressSt
atus

Optional CQL -Progress status transition for replica associations.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_GroupSynchronized AND
SourceInstance.CIM_GroupSynchronized::CopyState <>
PreviousInstance.CIM_GroupSynchronized::CopyState
AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-group-synchronized')

Conditional Conditional requirement: Required if groups and semi-
fixed indication filters are supported. CQL -
Synchronization state transition for a specific replication
group association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_GroupSynchronized AND
SourceInstance.CIM_GroupSynchronized::CopyState <>
PreviousInstance.CIM_GroupSynchronized::CopyState

Optional CQL -Synchronization state transition for replication group
associations.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND AlertingManagedElement ISA
CIM_StorageSynchronized

Optional Deprecated. Use standard message "FSM4" instead. Be
notified when CopyState is set to Broken.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM4'

Optional Be notified when CopyState is set to Broken.

Table 556 - CIM Elements for Replication Services

Element Name Requirement Description

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 845

26.8.1 CIM_ElementCapabilities

Associates StorageReplicationCapabilities and ReplicationService.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 557 describes class CIM_ElementCapabilities.

26.8.2 CIM_GroupSynchronized

Experimental. Associates source and target groups, or a source element to a target group.

Created By: Extrinsic: CreateGroupReplica

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsic: ModifyReplicaSynchronization

Requirement: Required if groups are supported.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND AlertingManagedElement ISA
CIM_GroupSynchronized

Optional Deprecated. Use standard message "FSM4" instead. Be
notified when CopyState is set to Broken.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND AlertingManagedElement ISA
CIM_StoragePool

Optional Deprecated. Use standard message "FSM5" instead.
Remaining pool space either below warning threshold set
for the pool or there is no remaining space in the pool.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM5'

Optional Remaining pool space either below warning threshold set
for the pool or there is no remaining space in the pool.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND AlertingManagedElement ISA
CIM_RemoteReplicationCollection

Optional Deprecated. Use standard message "FSM6" instead. Be
notified of changes in RemoteReplicationCollection
(ConnectivityCollections).

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM6'

Optional Be notified of changes in RemoteReplicationCollection
(ConnectivityCollections).

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND AlertingManagedElement ISA
CIM_ProtocolEndpoint

Optional Deprecated. Use standard message "FSM7" instead. Be
notified of changes in ProtocolEndpoints.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM7'

Optional Be notified of changes in ProtocolEndpoints.

Table 557 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 556 - CIM Elements for Replication Services

Element Name Requirement Description

Replication Services Profile

846

Table 558 describes class CIM_GroupSynchronized.

Table 558 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes

RelationshipName Mandatory A user relevant name for the relationship between the source and target
groups or between a source element and a target group (i.e. one-to-
many).

SyncType Mandatory Type of association between source and target groups. Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState N Optional Indicates the last requested or desired state for the association. Values:

 4: Synchronized

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: Failedover

 11: Prepared

 12: Aborted

 15: Not Applicable

 16: Partitioned

 17: Invalid

18: Restored.

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 847

CopyState Mandatory State of association between source and target groups, or source element
and target group. Values:

 2: Initialized

 3: UnSynchronized

 4: Synchronized

 5: Broken

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: FailedOver

 11: Prepared

 12: Aborted

 13: Skewed

 14: Mixed

 15: Not Applicable

 16: Partitioned

 17: Invalid

18: Restored.

Table 558 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes

Replication Services Profile

848

ProgressStatus N Optional Status of association between source and target groups. Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Preparing

 6: Synchronizing

 7: Resyncing

 8: Restoring

 9: Fracturing

 10: Splitting

 11: Failing over

 12: Failing back

 13: Aborting

 14: Mixed

 15: Not Applicable

 16: Suspending

 17: Requires fracture

 18: Requires resync

 19: Requires activate

 20: Pending

 21: Detaching

22: Requires detach.

PercentSynced N Optional Percent of individual elements in the group synched. Values: 0-100.

ConsistencyEnabled Mandatory Set to true if consistency is enabled.

ConsistencyType Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the consistency type used by the groups. Values:

2: Sequential Consistency.

ConsistencyState Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the current state of consistency. Values:

 2: Not Applicable

 3: Consistent

4: Inconsistent.

ConsistencyStatus Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the current status of consistency. Values:

 2: Completed

 3: Consistency-in-progress

 4: Consistency disabled

5: Consistency-error.

WhenEstablished N Optional Specifies when the association was established.

Table 558 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 849

26.8.3 CIM_HostedAccessPoint (ForProtocolEndpoint)

Associates ProtocolEndpoint to the System on which it is hosted.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 559 describes class CIM_HostedAccessPoint (ForProtocolEndpoint).

26.8.4 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)

Associates RemoteServiceAccessPoint to the ComputerSystem.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

WhenSynchronized N Optional Date and time synchronization of all elements in the group is achieved.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.

FailedCopyStopsHostIO N Optional If true, the storage array tells host to stop sending data to source element
if copying to a remote element fails. To set this property initially, use
ReplicationSettingData parameter in create method. To modify this
property, use ModifyInstance intrinsic method.

CopyRecoveryMode N Optional Describes whether the copy operation continues after a broken link is
restored. If Manual, the CopyState is set to Suspended after the link is
restored. It is required to issue the Resume operation to continue. To set
this property initially, use ReplicationSettingData parameter in create
method. To modify this property, use ModifyInstance intrinsic method.
Values:

 2: Automatic

 3: Manual

4: Implementation decides.

SyncedElement Mandatory

SystemElement Mandatory

Table 559 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access points that are hosted on this System.

Table 558 - SMI Referenced Properties/Methods for CIM_GroupSynchronized

Properties Flags Requirement Description & Notes

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

Replication Services Profile

850

Table 560 describes class CIM_HostedAccessPoint (ForRemoteServiceAccessPoint).

26.8.5 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Replication Services profile, it is used to associate the
Allocated Resources to the top level Computer System of the Replication Services Profile in support of
Cascading.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 561 describes class CIM_HostedCollection (Allocated Resources).

26.8.6 CIM_HostedCollection (Between ComputerSystem and RemoteReplicationCollection)

Associates the RemoteReplicationCollection (ConnectivityCollection) to the hosting System.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 562 describes class CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection).

Table 560 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-
Point)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access points that are hosted on this System.

Table 561 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 562 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

1624

1625

1626
1627
1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 851

26.8.7 CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)

Associates the replication group to the hosting System.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 563 describes class CIM_HostedCollection (Between ComputerSystem and ReplicationGroup).

26.8.8 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Replication Services Profile, it is used to associate the
Remote Resources to the top level Computer System of the Replication Services Profile that supports
Cascading.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: This is required if SNIA_RemoteResources is modeled.

Table 564 describes class CIM_HostedCollection (Remote Resources).

26.8.9 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 563 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
ReplicationGroup)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 564 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

1645

1646

1647

1648

1649

1650

1651
1652
1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

Replication Services Profile

852

Table 565 describes class CIM_HostedService.

26.8.10CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow component instances (in the
AllocatedResources collection).

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 566 describes class CIM_MemberOfCollection (Allocated Resources).

26.8.11CIM_MemberOfCollection (ProtocolEndpoints to RemoteReplicationCollection)

Associates ProtocolEndpoints to RemoteReplicationCollection (ConnectivityCollection).

Created By: Extrinsics: CreateRemoteReplicationCollection, AddToRemoteReplicationCollection

Modified By: Static

Deleted By: Extrinsic: RemoveFromRemoteReplicationCollection

Requirement: Optional

Table 567 describes class CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection).

26.8.12CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow components (in the RemoteResources
collection). Each association (and the RemoteResources collection, itself) is created through external
means.

Table 565 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Replication Service hosted on the System.

Table 566 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 567 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682
1683

1684

1685

1686

1687

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 853

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 568 describes class CIM_MemberOfCollection (Remote Resources).

26.8.13CIM_MemberOfCollection (Storage elements to RemoteReplicationCollection)

Associates storage elements to RemoteReplicationCollection (ConnectivityCollection).

Created By: Extrinsics: CreateElementReplica, CreateGroupReplica

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Optional

Table 569 describes class CIM_MemberOfCollection (Storage elements to RemoteReplicationCollection).

26.8.14CIM_OrderedMemberOfCollection

Associates ReplicationGroup to storage elements.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsics: DeleteGroup, RemoveMembers

Requirement: Required if groups are supported.

Table 570 describes class CIM_OrderedMemberOfCollection.

Table 568 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 569 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage elements to
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 570 - SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection

Properties Flags Requirement Description & Notes

AssignedSequence Mandatory Indicates relative position of members within a group.

Collection Mandatory

Member Mandatory

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

Replication Services Profile

854

26.8.15CIM_ProtocolEndpoint

Special purpose endpoint that represents connections between systems.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 571 describes class CIM_ProtocolEndpoint.

26.8.16CIM_RemoteReplicationCollection

Collects the ProtocolEndpoints/ServiceAccessPoints used by Replication Services.

Created By: Extrinsic: CreateRemoteReplicationCollection

Modified By: Extrinsics: AddToRemoteReplicationCollection, RemoveFromRemoteReplicationCollection

Deleted By: Extrinsic: Static

Requirement: Required if remote replication is supported.

Table 571 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Value always reflects protocol type. Values:

 1: Other

 6: Ethernet CSMA/CD

 7: ISO 802.3 CSMA/CD

 8: ISO 802.4 Token Bus

 15: FDDI

 56: Fibre Channel

 117: Gigabit Ethernet

 4096: IPv4

 4097: IPv6

 4098: IPv4/IPv6

4111: TCP.

OtherTypeDescription N Optional String identifying the Other connection protocol.

OperationalStatus Mandatory An array containing the operational status of protocol end point.

1708

1709

1710

1711

1712

1713

1714

1715

1716

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 855

Table 572 describes class CIM_RemoteReplicationCollection.

26.8.17CIM_RemoteServiceAccessPoint

Created By: Extrinsic: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 573 describes class CIM_RemoteServiceAccessPoint.

Table 572 - SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque.

ElementName Optional User Friendly name.

ConnectivityStatus Mandatory An enumeration describing the current or potential connectivity between
endpoints in this collection. Values:

 2: Connectivity - Up

 3: No Connectivity - Down

4: Partitioned - Partial connectivity.

Active N Optional Indicates that this collection is currently active and allows replication
activities to the remote elements.

DeleteOnUnassociated N Optional If true, this instance of RemoteReplicationCollection will be deleted when it
is no longer associated with an access point.

SoftwareCompressionEna
bled

MN Optional This boolean property indicates if software compression is enabled -- the
transmitted/received data is compressed by software. The default is false.

HardwareCompressionEna
bled

MN Optional This boolean property indicates if hardware compression is enabled -- the
transmitted/received data is compressed by hardware. The default is false.

Table 573 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

ElementName Optional User Friendly name.

AccessInfo Mandatory Access or addressing information or a combination of this information for a
remote connection. This information can be a host name, network
address, or similar information.

InfoFormat Mandatory The format of the Management Address (i.e. AccessInfo). For example:
"Host Name", "IPv4 Address", "IPv6 Address", "URL". See MOF for the
complete list and values.

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

Replication Services Profile

856

26.8.18CIM_ReplicaPoolForStorage

Associates special storage pool for Snapshots (delta replicas) to a source element.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 574 describes class CIM_ReplicaPoolForStorage.

26.8.19CIM_ReplicationEntity

Represents a replication entity such as an entity known by its World Wide Name (WWN).

Created By: Extrinsic: AddReplicationEntity

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 575 describes class CIM_ReplicationEntity.

Table 574 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 575 - SMI Referenced Properties/Methods for CIM_ReplicationEntity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

Type Mandatory Indicates how to interpret the information appearing in EntityID. Values:

 2: StoragePool

 3: StorageExtent

 4: StorageVolume

 5: LogicalDisk

 6: Filesystem

 7: WWN

 8: URI

 9: Objectpath

10: Encoded in EntityID.

EntityID Mandatory An ID representing the resource identified by this entity. For example, the
WWN or the URI of an element. The property Type is to be used to
interpret the ID.

OtherTypeDescription N Optional Populated when Type has the value of Other.

Persistent MN Optional If false, the instance of this object, not the element represented by this
entity, may be deleted at the completion of a copy operation.

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 857

26.8.20CIM_ReplicationGroup

Experimental. Represents a group of elements participating in a replication activity.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 576 describes class CIM_ReplicationGroup.

26.8.21CIM_ReplicationService

Experimental. Base class for Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 577 describes class CIM_ReplicationService.

Table 576 - SMI Referenced Properties/Methods for CIM_ReplicationGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

Persistent MN Optional If false, the group, not the elements associated with the group, may be
deleted at the completion of a copy operation.

DeleteOnEmptyElement M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.

DeleteOnUnassociated M Mandatory If true, the group will be deleted when the group is no longer associated
with another group. This can happen if all synchronization associations to
the individual elements of the group are dissolved.

ConsistentPointInTime N Optional If it is true, it means the point-in-time was created at an exact time with no
I/O activities in such a way the data is consistent among all the elements
of the group. This property is only valid when the group is a target of a
copy operation.

Table 577 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

CreateElementReplica() Mandatory

CreateGroupReplica() Conditional Conditional requirement: Required if groups are supported.

CreateListReplica() Optional

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

Replication Services Profile

858

26.8.22CIM_ReplicationServiceCapabilities

Experimental. This class defines all of the capability properties for the replication services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

CreateSynchronizationAsp
ect()

Optional

ModifyReplicaSynchroniza
tion()

Mandatory

ModifyListSynchronization(
)

Optional

ModifySettingsDefineState
()

Optional

CreateGroup() Conditional Conditional requirement: Required if groups are supported.

DeleteGroup() Conditional Conditional requirement: Required if groups are supported.

AddMembers() Conditional Conditional requirement: Required if groups are supported.

RemoveMembers() Conditional Conditional requirement: Required if groups are supported.

GetAvailableTargetElemen
ts()

Optional

GetPeerSystems() Optional

GetReplicationRelationshi
ps()

Optional

GetServiceAccessPoints() Optional

AddReplicationEntity() Optional

AddServiceAccessPoint() Optional

AddSharedSecret() Optional

CreateGroupReplicaFrom
Elements()

Optional

GetReplicationRelationshi
pInstance()

Optional

ModifyListSettingsDefineSt
ate()

Optional

CreateRemoteReplication
Collection()

Optional

AddToRemoteReplicationC
ollection()

Optional

RemoveFromRemoteRepli
cationCollection()

Optional

Table 577 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement Description & Notes

1751

1752

1753

1754

1755

1756

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 859

Table 578 describes class CIM_ReplicationServiceCapabilities.

Table 578 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

SupportedReplicationType
s

Mandatory Enumeration indicating the supported SyncType/Mode/Local-or-Remote
combinations. Values:

 2: Synchronous Mirror Local

 3: Asynchronous Mirror Local

 4: Synchronous Mirror Remote

 5: Asynchronous Mirror Remote

 6: Synchronous Snapshot Local

 7: Asynchronous Snapshot Local

 8: Synchronous Snapshot Remote

 9: Asynchronous Snapshot Remote

 10: Synchronous Clone Local

 11: Asynchronous Clone Local

 12: Synchronous Clone Remote

 13: Asynchronous Clone Remote

 14: Synchronous TokenizedClone Local

 15: Asynchronous TokenizedClone Local

 16: Synchronous TokenizedClone Remote

17: Asynchronous TokenizedClone Remote.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects. Values:

 2: StorageVolume

3: LogicalDisk.

SupportedAsynchronousA
ctions

N Mandatory Identify replication methods using job control. Values:

 2: CreateElementReplica

 3: CreateGroupReplica

 4: CreateSynchronizationAspect

 5: ModifyReplicaSynchronization

 6: ModifyListSynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

 9: GetPeerSystems

 10: GetReplicationRelationships

 11: GetServiceAccessPoints

19: CreateListReplica.

1757

Replication Services Profile

860

SupportedSynchronousAct
ions

N Mandatory Identify replication methods not using job control. Values:

 2: CreateElementReplica

 3: CreateGroupReplica

 4: CreateSynchronizationAspect

 5: ModifyReplicaSynchronization

 6: ModifyListSynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

 9: GetPeerSystems

 10: GetReplicationRelationships

 11: GetServiceAccessPoints

 12: CreateGroup

 13: DeleteGroup

 14: AddMembers

 15: RemoveMembers

 16: AddReplicationEntity

 17: AddServiceAccessPoint

 18: AddSharedSecret

19: CreateListReplica.

ConvertSyncTypeToReplic
ationType()

Mandatory

ConvertReplicationTypeTo
SyncType()

Mandatory

GetSupportedCopyStates() Mandatory

GetSupportedGroupCopyS
tates()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedWaitForCop
yStates()

Optional

GetSupportedFeatures() Mandatory

GetSupportedGroupFeatur
es()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedConsistency(
)

Conditional Conditional requirement: Required if groups are supported.

GetSupportedOperations() Mandatory

GetSupportedGroupOpera
tions()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedListOperatio
ns()

Optional

GetSupportedSettingsDefi
neStateOperations()

Optional

Table 578 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 861

26.8.23CIM_ReplicationSettingData

Experimental. Contains special options for use by methods of Replication Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 579 describes class CIM_ReplicationSettingData.

GetSupportedThinProvisio
ningFeatures()

Optional

GetSupportedStorageCom
pressionFeatures()

Optional

GetSupportedMaximum() Optional

GetDefaultConsistency() Conditional Conditional requirement: Required if groups are supported.

GetDefaultGroupPersisten
cy()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedReplicationS
ettingData()

Optional

GetDefaultReplicationSetti
ngData()

Optional

GetSupportedConnectionF
eatures()

Optional

GetSynchronizationSuppor
ted()

Optional

GetSupportedTokenizedRe
plicationType()

Optional

Table 579 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

Pairing MN Optional Controls how source and target elements are paired. Values:

 2: Instrumentation decides

 3: Exact order

4: Optimum (If possible source and target elements on different adapters).

UnequalGroupsAction MN Optional Indicates what should happen if number of elements in source and target
are unequal. Values:

 2: Return an error

 3: Allow larger source group

4: Allow larger target group.

Table 578 - SMI Referenced Properties/Methods for CIM_ReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

1758

1759

1760

1761

1762

1763

1764

Replication Services Profile

862

DesiredCopyMethodology MN Optional Request specific copy methodology. Values:

 1: Other

 2: Instrumentation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

 8: Delta-Update

9: Snap-And-Clone.

TargetElementSupplier MN Optional If target elements are not supplied, this property indicates where the target
elements should come from. Values:

 1: Use existing elements

 2: Create new elements

 3: Use existing or Create new elements

 4: Instrumentation decides

5: Client must supply.

ThinProvisioningPolicy MN Optional If the target element is not supplied, this property specifies the
provisioning of the target element. Values:

 2: Copy thin source to thin target

 3: Copy thin source to full target

 4: Copy full source to thin target

 5: Provisioning of target same as source

 6: Target pool decides provisioning of target element

7: Implementation decides provisioning of target.

StorageCompressionPolic
y

MN Optional If the target element is not supplied, this property specifies the
compression of the target element. Values:

 2: Copy compressed source to compressed target

 3: Copy compressed source to uncompressed target

 4: Copy uncompressed source to compressed target

 5: Compression of target same as source

 6: Target pool decides compression of target element

7: Implementation decides compression of target.

ConsistentPointInTime MN Optional If it is true, it means the point-in-time to be created at an exact time with no
I/O activities in such a way the data is consistent among all the elements
or the group.

DeltaUpdateInterval MN Optional If non-zero, it specifies the interval between the snapshots of source
element, for example, every 23 minutes (00000000002300.000000:000). If
zero or NULL, the implementation decides.

Multihop MN Optional This property applies to multihop copy operation. It specifies the number of
hops the starting source (or group) element is expected to be copied.
Default is 1.

Table 579 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 863

OnGroupOrListError MN Optional This property applies to group or list operations. It specifies what the
implementation should do if an error is encountered before all entries in
the group or list are processed. Default is to Stop.

 2: Continue

3: Stop.

CopyPriority MN Optional This property sets the StorageSynchronized.CopyPriority property.
CopyPriority allows the priority of background copy operation to be
managed relative to host I/O operations during a sequential background
copy operation.

 0: Not Managed

 1: Low

 2: Same (as host I/O)

 3: High

4: Urgent.

FailedCopyStopsHostIO MN Optional If true, the storage array tells host to stop sending data to source element
if copying to a remote element fails.

CopyRecoveryMode MN Optional Describes whether the copy operation continues after a broken link is
restored. If Manual, the CopyState is set to Suspended after the link is
restored. It is required to issue the Resume operation to continue. Values:

 2: Automatic

 3: Manual

4: Implementation decides.

UnequalListsAction MN Optional Indicates what should happen if number of elements in source and target
lists are unequal. Values:

 2: Return an error

 3: Allow source list to be larger

4: Allow target list to be larger.

DeltaUpdateBlocks MN Optional This property applies to Delta-Update copy methodology. If non-zero, it
specifies the snapshots of source element should be created after this
number of blocks have been modified. If both DeltaUpdateBlocks and
DeltaUpdateInterval are specified the snapshot is created based on which
criterion occurs first. If NULL or 0, the implementation decides the number
of blocks.

ReadOnly MN Optional This property specifies whether the source, the target, or both elements
should be read only to the host. Values:

 2: SystemElement (source)

 3: SyncedElement (target)

4: Both.

TargetElementResourcePo
ol

MN Optional If the target element resource pool is not supplied and the implementation
is expected to create the target element, the instrumentation selects the
resource pool based on this property. Values:

 2: Implementation decides

3: Same as source element.

Table 579 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

Replication Services Profile

864

26.8.24CIM_SAPAvailableForFileShare

This association identifies the element that is serviced by the ProtocolEndpoint.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 580 describes class CIM_SAPAvailableForFileShare.

26.8.25CIM_ServiceAffectsElement (Between ReplicationService and RemoteReplicationCollec-
tion)

Associates Replication Service to RemoteReplicationCollection (ConnectivityCollection).

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

TargetElementGoal MN Optional If the target element goal is not supplied and the implementation is
expected to create the target element, the instrumentation selects the goal
based on this property. Values:

 2: Implementation decides

3: Same as source element.

RRCSoftwareCompression
Enabled

MN Optional This boolean property indicates if software compression is enabled -- the
transmitted/received data is compressed by software. The default is false.

RRCHardwareCompressio
nEnabled

MN Optional This boolean property indicates if hardware compression is enabled -- the
transmitted/received data is compressed by hardware. The default is false.

AutoDelete MN Optional The created element can be deleted if system resources are running low.
The default is false.

TimeBeforeRemoval MN Optional The amount of time that the element is retained. If this property is non-null,
AutoDelete is ignored.

Table 580 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare

Properties Flags Requirement Description & Notes

FileShare Mandatory The managed element.

AvailableSAP Mandatory The servicing protocol end point.

Table 579 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 865

Table 581 describes class CIM_ServiceAffectsElement (Between ReplicationService and
RemoteReplicationCollection).

26.8.26CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)

Associates Replication Service to ReplicationEntity.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 582 describes class CIM_ServiceAffectsElement (Between ReplicationService and
ReplicationEntity).

26.8.27CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)

Associates Replication Service to Replication Group.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if groups are supported.

Table 583 describes class CIM_ServiceAffectsElement (Between ReplicationService and
ReplicationGroup).

Table 581 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Remote Replication Collection.

Table 582 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationEntity)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Replication Entity.

Table 583 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationGroup)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Replication Group.

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

Replication Services Profile

866

26.8.28CIM_SettingsAffectSettings (Between SynchronizationAspect and child Synchronization-
Aspects)

Associates a SynchronizationAspect associated to a replication group to individual instances of
SynchronizationAspect.

Created By: Extrinsic: CreateSynchronizationAspect

Modified By: Static

Deleted By: Extrinsics: ModifySettingsDefineState, ModifyReplicaSynchronization

Requirement: Optional

Table 584 describes class CIM_SettingsAffectSettings (Between SynchronizationAspect and child
SynchronizationAspects).

26.8.29CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)

Associates a replication group to an instance of SynchronizationAspect.

Created By: Extrinsic: CreateSynchronizationAspect

Modified By: Static

Deleted By: Extrinsics: ModifySettingsDefineState, ModifyReplicaSynchronization

Requirement: Optional

Table 585 describes class CIM_SettingsDefineState (Between ReplicationGroup and
SynchronizationAspect).

26.8.30CIM_SettingsDefineState (Between storage object and SynchronizationAspect)

Associates a storage object to an instance of SynchronizationAspect.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 584 - SMI Referenced Properties/Methods for CIM_SettingsAffectSettings (Between Synchroniza-
tionAspect and child SynchronizationAspects)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory SynchronizationAspect associated to replication group.

SettingData Mandatory SynchronizationAspect associated to replication group members.

Table 585 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup
and SynchronizationAspect)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 867

Table 586 describes class CIM_SettingsDefineState (Between storage object and
SynchronizationAspect).

26.8.31CIM_SharedSecret

Created By: Extrinsic: AddSharedSecret

Modified By: Static

Deleted By: Static

Requirement: Required if remote replication is supported.

Table 587 describes class CIM_SharedSecret.

26.8.32CIM_StorageSynchronized

Experimental. Associates replica target element to source element.

Created By: Extrinsics: CreateElementReplica, CreateGroupReplica, CreateListReplica

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsic: ModifyReplicaSynchronization

Requirement: Mandatory

Table 588 describes class CIM_StorageSynchronized.

Table 586 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and
SynchronizationAspect)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

Table 587 - SMI Referenced Properties/Methods for CIM_SharedSecret

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory Key.

SystemName Mandatory Key.

ServiceCreationClassNam
e

Mandatory Key.

ServiceName Mandatory Key.

RemoteID Mandatory Key, The identity of the client as known on the remote system.

Secret Mandatory A secret.

Table 588 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

WhenSynced N Optional Date and time synchronization of the elements is achieved.

WhenEstablished N Optional Specifies when the association was established.

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

Replication Services Profile

868

WhenSynchronized N Optional Specifies when the CopyState has a value of Synchronized.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.

SyncMaintained Mandatory Boolean indicating whether synchronization is maintained.

SyncType Mandatory Type of association between source and target groups. Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

RequestedCopyState Optional Indicates the last requested or desired state for the association. Values:

 4: Synchronized

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: Failedover

 11: Prepared

 12: Aborted

 15: Not Applicable

 16: Partitioned

 17: Invalid

18: Restored.

ReplicaType Optional

Table 588 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 869

CopyState Mandatory State of association between source and target groups. Values:

 2: Initialized

 3: Unsynchronized

 4: Synchronized

 5: Broken

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: FailedOver

 11: Prepared

 12: Aborted

 13: Skewed

 14: Mixed

 15: Not Applicable

 16: Partitioned

 17: Invalid

18: Restored.

Table 588 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

Replication Services Profile

870

ProgressStatus N Optional Status of association between source and target groups. Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Preparing

 6: Synchronizing

 7: Resyncing

 8: Restoring

 9: Fracturing

 10: Splitting

 11: Failing over

 12: Failing back

 13: Aborting

 14: Mixed

 15: Not Applicable

 16: Suspending

 17: Requires fracture

 18: Requires resync

 19: Requires activate

 20: Pending

 21: Detaching

22: Requires detach.

PercentSynced N Optional Specifies the percent of the work completed to reach synchronization. For
synchronized associations (e.g. SyncType Mirror), while fractured, the
percent difference between source and target elements can derived by
subtracting PercentSynched from 100.

CopyPriority MN Optional CopyPriority allows the priority of background copy engine I/O to be
managed relative to host I/O operations during a sequential background
copy operation. Values:

 0: Not Managed

 1: Low

 2: Same (as host I/O)

 3: High

4: Urgent.

UndiscoveredElement N Optional Specifies whether the source, the target, or both elements involved in a
copy operation are undiscovered. If NULL both source and target
elements are considered discovered. Values:

 2: SystemElement

 3: SyncedElement

4: Both.

Table 588 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 871

26.8.33CIM_SynchronizationAspect

Experimental. Keeps track of source of a copy operation and point-in-time.

Created By: Extrinsics: CreateElementReplica, CreateListReplica, CreateSynchronizationAspect

Modified By: Extrinsic: ModifyReplicaSynchronization

Deleted By: Extrinsics: ModifyReplicaSynchronization, ModifySettingsDefineState

Requirement: Optional

Table 589 describes class CIM_SynchronizationAspect.

SyncState Mandatory State of association between source and target elements. See MOF for
the complete list and values.

FailedCopyStopsHostIO N Optional If true, the storage array tells host to stop sending data to source element
if copying to a remote element fails. To set this property initially, use
ReplicationSettingData parameter in create method. To modify this
property, use ModifyInstance intrinsic method.

CopyRecoveryMode N Optional Describes whether the copy operation continues after a broken link is
restored. If Manual, the CopyState is set to Suspended after the link is
restored. It is required to issue the Resume operation to continue. To set
this property initially, use ReplicationSettingData parameter in create
method. To modify this property, use ModifyInstance intrinsic method.
Values:

 2: Automatic

 3: Manual

4: Implementation decides.

ReadOnly N Optional This property specifies whether the source, the target, or both elements
are "read only" to the host. Values:

 2: SystemElement

 3: SyncedElement

4: Both.

SyncedElement Mandatory

SystemElement Mandatory

Table 589 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes

InstanceID Mandatory

SyncType Mandatory Type of association between source and target elements. Values:

 6: Mirror

 7: Snapshot

8: Clone.

ConsistencyEnabled Conditional Conditional requirement: Required if groups are supported. Set to true if
consistency is enabled.

ElementName Mandatory An end user relevant name. The value will be stored in the ElementName
property of the created SynchronizationAspect.

Table 588 - SMI Referenced Properties/Methods for CIM_StorageSynchronized

Properties Flags Requirement Description & Notes

1835

1836

1837

1838

1839

1840

1841

Replication Services Profile

872

26.8.34SNIA_AllocatedResources

An instance of a default SNIA_AllocatedResources defines the set of components that are allocated and
in use by the Replication Services Profile.

SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the SNIA_AllocatedResources shall exist for the Replication Services Profile and
shall be hosted by one of its ComputerSystems (typically the top level ComputerSystem.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

ConsistencyType Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the consistency type used by the groups. Values:

2: Sequential Consistency.

CopyStatus N Optional Describes the status of copy operation. Values:

 2: Not Applicable

 3: Operation In Progress

4: Operation Completed.

CopyMethodology N Optional Indicates the copy methodology utilized for copying. Values:

 2: Implementation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

 8: Delta-Update

9: Snap-And-Clone.

WhenPointInTime N Optional Specifies when point-in-time was created.

SourceElement Mandatory Reference to the source element or the source group of a copy operation
and/or a point-in-time.

AutoDelete MN Optional The created element can be deleted if system resources are running low.
The default is false.

TimeBeforeRemoval MN Optional The amount of time that the element is retained. If this property is non-null,
AutoDelete is ignored.

Table 589 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes

1842

1843
1844

1845

1846
1847

1848

1849

1850

1851

 Replication Services Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 873

Table 590 describes class SNIA_AllocatedResources.

26.8.35SNIA_RemoteResources

An instance of a default SNIA_RemoteResources defines the set of shadow components that are
available to be used by the Replication Services Profile that supports Cascading.

SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the SNIA_RemoteResources would exist and shall be hosted by the top level
ComputerSystems of the Replication Services Profile that supports Cascading.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 591 describes class SNIA_RemoteResources.

EXPERIMENTAL

Table 590 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection (e.g., Allocated
StorageVolumes).

ElementType Mandatory The type of remote resources collected by the AllocatedResources
collection.

For this version of SMI-S, the only value supported is '2' (Any Type).

CollectionDiscriminator Mandatory Experimental. This is an array of values that shall contain one or more
values from the list: 'SNIA:Target Volumes', 'SNIA:Source Volumes',
'SNIA:Target Volume Group', 'SNIA:Source Volume Group'.

Table 591 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection (e.g., Remote
StorageVolumes).

ElementType Mandatory The type of remote resources collected by the RemoteResources
collection. This shall be '2' (Any Type).

CollectionDiscriminator Mandatory Experimental. This is an array of values that shall contain one or more
values from the list: 'SNIA:Target Volumes', 'SNIA:Source Volumes',
'SNIA:Target Volume Group', 'SNIA:Source Volume Group', 'SNIA:Remote
Storage Pools'.

1852

1853

1854
1855

1856

1857
1858

1859

1860

1861

1862

1863

Replication Services Profile

874

SMI-S 1.6.1 Revision 6 SNIA Technical Position 875

EXPERIMENTAL

27 Pools from Volumes Profile

27.1 Description

27.1.1 Overview

The Pools from Volumes Profile defines how a pool may be created from StorageVolumes. The Block
Services Package defines how to create a StoragePool from unallocated storage. However, there are
some devices that allow the user to create storage pools from already allocated volumes, necessitating
this profile. This is a similar concept to Volume Composition, in that the volumes are combined into a
larger entity and are no longer available for use as regular volumes. The specific use cases that have
been identified for these kinds of pools are for snapshot replica pools and thin provisioned volume pools.

27.1.2 Terminology

This profile uses the following terms to help distinguish between the different uses of StoragePool and
StorageVolume. This is done to help distinguish which kind of StorageVolume or StoragePool is being
referred to.

Constituent Volume -- StorageVolumes used to create a concrete StoragePool.

Pool Volume -- StorageVolume created from a Constituent Pool.

Constituent Pool -- A concrete StoragePool created from constituent volumes.

27.1.3 Relationship to Block Services Package

The Pools from Volumes Profile extends the Block Services Package with additional descriptions and
definitions showing how such pools may be created and how to model the constituent volumes. The
existing Block Services classes, properties, and methods are used.

27.1.4 Relationship to Extent Composition

This profile shall not require Extent Composition. Some of the examples make use of Extent Composition
but only to demonstrate the relationship of the volumes to the underlying extents.

This profile shall not require any BasedOn association to any underlying extents from the volumes
created from the constituent pool, even if Extent Composition is supported by the instrumentation.

27.1.5 Class Model

Figure 147 shows the classes used in this profile. These are the same classes used in the autonomous
profile and Block Services Package.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Pools from Volumes Profile

876

27.1.6 Model Elements

27.1.6.1 StorageVolume

StorageVolume is used in three different contexts in this profile. The first is the normal usage as
described in Clause 5: Block Services Package. The second is as a “constituent volume.” These
StorageVolumes are normal volumes that have been used to create a concrete StoragePool. This volume
has the same associations as normal StorageVolumes with its underlying elements, namely the
AllocatedFromStoragePool association to the concrete StoragePool and the BasedOn association to the
StorageExtent. Once used to create a StoragePool, this volume can be identified by its Usage property.
The third type of StorageVolume is a volume created from the constituent pool. This is referred to as a
“pool volume.” This acts as a normal StorageVolume, with the exception that it does not have a BasedOn
association to any antecedent StorageExtent, even if Extent Composition is supported.

27.1.6.1.1 Volume Visibility

In some implementations, these volumes may still be visible in a list of volumes reported by the array
after pool creation. In this profile, these volumes are called "constituent volumes" to distinguish them
from volumes allocated from the pool. Even though these volumes are visible, they are not usable as
normal volumes. Some instrumentation may need the ability to “see” a constituent volume in order to
perform copy operation or to resize (e.g., shrink) the constituent pool.

27.1.6.2 StoragePool

StoragePool is used in two contexts in this profile. The first is the regular concrete StoragePool. The
second is the constituent pool that is created by the constituent volumes.

27.1.7 Example

This example will show the model changes that occur when a constituent StoragePool is created from
StorageVolumes. Figure 148 shows the starting conditions. There are two normal StorageVolumes
allocated from a concrete pool, labeled ConcretePool in the diagram. This example follows the Extent
Composition model, so each volume has a BasedOn association to an underlying StorageExtent that is a
ConcreteComponent of the concrete StoragePool. Depending upon the instrumentation, there may be
intermediate extents between the volume and extent (e.g. if the instrumentation follows the Volume
Composition model, there may be an intermediate CompositeExtent between the StorageVolume and
StorageExtent). Although not shown in the diagram, for each ConcreteComponent association, there is

Figure 147 - Class Model

StorageVolume StoragePool
AllocatedFromStoragePool

ComputerSystem

SystemDevice

Block Services

StorageSetting

1 ElementSettingData 1

Autonomous Profile
(e.g. Array)

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

 Pools from Volumes Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 877

also an AssociatedComponentExtent association between the same two instances the
ConcreteComponent associates.

The next figure, Figure 149, shows the changes that would occur in the model after creation of the
StoragePool from the StorageVolumes (e.g. as a result of a invocation of he CreateOrModifyStoragePool
method). In this diagram, both of the volumes have been used to create a constituent StoragePool,
labeled CreatedPool in the diagram. The following model changes occur:

• AllocatedFromStoragePool.SpaceConsumed value goes to 0 for the constituent volumes (Volume1 and
Volume2). This is needed to prevent double counting the storage in the newly created StoragePool

• A ConcreteDependency association is added between the newly created StoragePool (CreatedPool) and
each of the StorageVolumes used to create the pool to show that they represent the same piece of storage

• A CompositeExtent is created for each created volume (PoolVolume) and associated to the created pool via
ConcreteComponent and AssociatedRemainingExtent (not shown in figure)

• A one-to-one BasedOn association from the created volume to the created CompositeExtent is created
BasedOn associations are created to associate each of these created CompositeExtents to all of the extents

Figure 148 - Before Pool Creation

CIM_StorageExtent

CIM_ConcreteComponent

Volume2:
CIM_StorageVolume

// Normal StorageVolume

CIM_AllocatedFromStoragePool

ConcretePool:
CIM_StoragePool

Primordial = false

PrimordialPool:
CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

CIM_BasedOn

CIM_StorageExtent

Primordial = true

CIM_ConcreteComponent

CIM_BasedOn

CIM_StorageExtent

CIM_ConcreteComponent

CIM_BasedOn

CIM_StorageExtent

Primordial = true

CIM_ConcreteComponent

CIM_BasedOn

Volume1:
CIM_StorageVolume

// Normal StorageVolume
CIM_AllocatedFromStoragePool

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Pools from Volumes Profile

878

(StorageExtent or CompositeExtent) that have a BasedOn association to the StorageVolume that is a
constituent volume of the created StoragePool

These changes are consistent with the Extent Composition Profile.

74

75

76

 Pools from Volumes Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 879

Figure 149 - After Pool Creation

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

PoolVolume:
CIM_StorageVolume

CIM_AllocatedFromStoragePool

CIM_AllocatedFromStoragePool

CreatedPool:
CIM_StoragePool

// constituent pool

CIM_BasedOn

New Instances

CIM_BasedOn

CIM_AllocatedFromStoragePool
SpaceConsumed=0

CIM_CompositeExtent

ConcreteDependency

BasedOn

Volume2:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

Volume1:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_StorageExtent

CIM_StorageExtent

Primordial = true

CIM_BasedOn

CIM_StorageExtent

CIM_StorageExtent

Primordial = true

CIM_BasedOn

ConcretePool:
CIM_StoragePool

Primordial = false

PrimordialPool:
CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

ConcreteDependency

CIM_BasedOnCIM_BasedOn

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent

CIM_ConcreteComponent

Pools from Volumes Profile

880

If Extent Composition is not implemented, the model changes are much simpler. The following figure,
Figure 150, shows what model changes occur, summarized below.

• AllocatedFromStoragePool.SpaceConsumed value goes to 0 for the constituent volumes (Volume1 and
Volume2). This is needed to prevent double counting the storage in the newly created StoragePool

• A ConcreteDependency association is added between the newly created StoragePool (CreatedPool) and
each of the StorageVolumes used to create the pool to show that they represent the same piece of storage

27.2 Block Services Enhancements

The following classes, methods, and properties from Block Services are enhanced as follows.

27.2.1 StoragePool Manipulation Methods

See 5.1.6.2 "StoragePool Manipulation Methods".

Figure 150 - After Pool Creation without Extent Composition

PoolVolume:
CIM_StorageVolume

CIM_AllocatedFromStoragePool

CIM_AllocatedFromStoragePool

CreatedPool:
CIM_StoragePool

// constituent pool

ConcreteDependency

New Instances

Volume2:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

ConcretePool:
CIM_StoragePool

Primordial = false

PrimordialPool:
CIM_StoragePool

Primordial = true

CIM_AllocatedFromStoragePool

Volume1:
CIM_StorageVolume

// Constituent volume
Usage = Reserved

CIM_AllocatedFromStoragePool
SpaceConsumed = 0

ConcreteDependency

77

78

79

80

81

82

83

84

85

86

 Pools from Volumes Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 881

Possible inputs to CreateOrModifyStoragePool shall also allow StorageVolumes. More details may be
found in 27.6 "Methods of the Profile".

27.2.2 Declaring Storage Configuration Options

See 5.1.7 "Declaring Storage Configuration Options".

SNIA_StorageConfigurationCapabilities.SupportedStoragePoolFeatures is enhanced to allow
“StorageVolumes” as one of the valid options.

27.2.3 The Usage Property

See 5.1.13 "The Usage Property".

The constituent volume can be identified by its Usage property. The value to use is Reserved for
Computer System.

27.3 Health and Fault Management Considerations

The same Health and Fault Management Considerations from Block Services apply here.

27.4 Cascading Considerations

Not defined in this specification

27.5 Supported Profiles, Subprofiles, and Packages

This profile requires and extends the Block Services Package.

Use of the Extent Composition Profile is optional in this profile.

27.6 Methods of the Profile

No new methods are defined. Methods from Block Services are enhanced as follows.

27.6.1 CreateOrModifyStoragePool

See 5.5.3.3 "CreateOrModifyStoragePool".

In the context of the Pools from Volumes Profile, a list of StorageVolumes shall be the only allowed type
for the InExtents[] parameter used to build the constituent pool. Use of StorageExtents is already allowed
by the Block Services Package and this profile shall not change that. The CreateOrModifyStoragePool
method signature is listed below with a description of the parameters used when creating a StoragePool
from StorageVolumes.

uint32 CreateOrModifyStoragePool(
[In] string ElementName
[Out] CIM_ConcreteJob ref Job,
[In] CIM_StorageSetting ref Goal,
[In,out] Uint64 Size,
[In] string InPools[],
[In] string InExtents[],
[Out] CIM_StoragePool ref Pool);

The parameters are as follows:

• ElementName: If the instrumentation supports naming of StoragePools this parameter may be used to assign
a name to the StoragePool

• Job: If a Job was created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter.

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114
115
116
117
118
119
120

121

122

123

124

125

Pools from Volumes Profile

882

• Goal: This is the Service Level that the StoragePool is expected to provide. This may be a null value in which
case a default setting is used.

• Size: Null should be used for the Size parameter as all the passed in capacity (as specified by InExtents)
shall be used to create the StoragePool. Size may be specified, but is not recommended, as it may not be
possible to accurately estimate the resulting pool size ahead of time, due capacity being reserved for
StoragePool overhead.If it is not possible to create an element of at least the desired size, a return code of
“Size not supported” shall be returned with size set to the nearest supported size.

• InPools[]: This shall be null when creating a pool. When modifying a pool, there shall be exactly one entry,
corresponding to the pool being modified.

• InExtents[]: This is an array of strings containing Object references (see 4.11.5 of DMTF DSP00200 CIM
Operations over HTTP for format) to source StorageVolumes.

• TheElement: If the method completes without creating a Job, then the TheElement is the object path of the
StoragePool that is created. Otherwise, TheElement shall be null. When the TheElement is null, then the
storage element created can be determined by using the Job model.

27.6.2 DeleteStoragePool

See 5.5.3.5 "DeleteStoragePool".

When deleting the constituent pool, the constituent volume’s AllocatedFromStoragePool.SpaceConsumed
value returns to the value it had before it was used to build the constituent pool. The
RemainingManagedStorage of the associated parent StoragePool will not change, as the same amount of
storage is still in use, albeit in the formerly constituent volumes instead of the constituent pool. The
former constituent volumes will have their Usage value reset to that of a normal volume,

The parameters and their meanings are the same as in Block Services DeleteStoragePool.

27.6.3 Storage Element Modification

See 5.5.4.4.1 "Storage Element Modification".

For a constituent pool, the capacity may be expandable by providing the references to existing
component StorageVolumes of the StoragePool and additional references to normal StorageVolumes. A
constituent pool’s capacity may be reducible by providing references to some, but not all, of the current
constituent volumes of the StoragePool. If the summary of the capacity of the referenced input
StorageVolumes is greater than the TotalManagedSpace of the StoragePool, then this action shall be
characterized as a capacity expansion. If this summary is less than the TotalManagedSpace of the
StoragePool, then this action shall be characterized as capacity reduction.

What this means in relation to the CreateOrModifyStoragePool method is that the InPools[] parameter
shall have exactly one entry, that of the StoragePool being modified. This specification shall only define
the case where the StoragePool being modified shall have been created from StorageVolumes.

27.7 Client Considerations and Recipes

27.7.1 Client Considerations

Not included in this standard.

27.7.2 Recipe 1: Create StoragePool

// DESCRIPTION

// The goal of this recipe is to create a StoragePool from StorageVolumes

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

 Pools from Volumes Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 883

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.#Size is set to the size for the new Storage Pool in bytes

// #Size = total size of the volumes in bytes

// 3.#StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 4. The volumes to use to create the pool have been identified and

// their object paths stored in $Volumes->[]

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// associated with the system

$StorageConfigurationService-> = $Services->[0]

// See if the service supports thin provisioned pool creation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageConfigurationService->,

“CIM_ElementCapabilities”,

“SNIA_StorageConfigurationCapabilities”,

null, null, false, false, null)

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

Pools from Volumes Profile

884

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Creation of thin provisioned pools not supported>

}

if (contains(2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 || contains(2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #SupportsPoolCreation = true

}

if (contains(

2, // Storage Pool Creation

$ServiceCapabilities[0].SupportedAsyncronousActions[]))

{

 #PoolCreationProducesJob = true

}

if (contains(5, // 5 = StorageVolumes

$ServiceCapabilities[0].SupportedStoragePoolFeatures[]))

{

 #SupportsPoolsFromVolumes = true

}

// Return if thin provisioned pools cannot be created

if ((#SupportesPoolCreation == false) &&

 (#SupportsPoolsFromVolumes == false)) {

 <ERROR! Creation of thin provisioned pools not supported>

}

$StorageCapabilitiesOffered = $ServiceCapabilities[0]

// Step 5. Register for indications on configuration jobs

if(#PoolCreationProducesJob == true)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

 Pools from Volumes Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 885

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 6. Create the Storage Pool

%InArguments[“ElementName”] = NULL// we do not care what the name is

%InArguments[“Goal”] = NULL // use default setting

%InArguments[“Size”] = #Size

%InArguments[“InExtents”] = $Volumes->[]

%InArguments[“InPools”] = null

#ReturnValue = InvokeMethod(

$StorageConfigurationService->,

“CreateOrModifyStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // Storage Pool was not created

<ERROR! Failed >

}

if(#PoolCreationProducesJob == true && $PoolCreationJob-> != null)

{

 $PoolCreationJob-> = %OutArguments[“Job”]

//Wait until the completion of the job

 // using $PoolCreationJob-> as a filter

 // Wait for indication from either filters defined in step 5

// If the indication states the Job is ‘Complete’ and ‘Error’

// then exit with error: ERROR! Job did not complete successfully

}

else {

 $NewPool-> = %OutArguments[“Pool”]

}

// Use the new pool

27.8 Registered Name and Version

Pools from Volumes version 1.4.0 (Component Profile)

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

Pools from Volumes Profile

886

27.9 CIM Elements

Table 592 describes the CIM elements for Pools from Volumes.

27.9.1 CIM_AllocatedFromStoragePool (Volume from Pool)

AllocatedFromStoragePool as defined in Block Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 593 describes class CIM_AllocatedFromStoragePool (Volume from Pool).

27.9.2 CIM_ElementCapabilities

Associates StorageCapabilities or StorageConfiguationCapabilities with StoragePool.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 592 - CIM Elements for Pools from Volumes

Element Name Requirement Description

27.9.1 CIM_AllocatedFromStoragePool (Volume from
Pool)

Mandatory AllocatedFromStoragePool as defined in Block Services.

27.9.2 CIM_ElementCapabilities Mandatory Associates StorageCapabilities or
StorageConfiguationCapabilities with StoragePool.

27.9.3 CIM_StorageCapabilities Mandatory Capabilities class used to generate StorageSettings. Also
associated to StoragePools via ElementCapabilities.

27.9.4 CIM_StorageVolume Mandatory StorageVolume as defined in Block Services.

27.9.5 CIM_SystemDevice Mandatory Associates top level system from Array, Virtualizer, ... to
StorageVolume.

27.9.6 SNIA_StorageConfigurationCapabilities Mandatory SupportedStoragePoolFeatures as defined in
SNIA_StorageConfigurationCapabilities, with the addition
of support for StorageVolumes as inputs to pool creation.

27.9.7 SNIA_StoragePool Mandatory StoragePool as defined in Block Services.

27.9.8 SNIA_StorageSetting Optional StorageSetting as defined in Block Services.

Table 593 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

 Pools from Volumes Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 887

Table 594 describes class CIM_ElementCapabilities.

27.9.3 CIM_StorageCapabilities

Capabilities class used to generate StorageSettings. Also associated to StoragePools via ElementCapabilities.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

27.9.4 CIM_StorageVolume

StorageVolume as defined in Block Services.

Created By: External

Modified By: Static

Deleted By: Extrinsic: External

Requirement: Mandatory

27.9.5 CIM_SystemDevice

Associates top level system from Array, Virtualizer, ... to StorageVolume.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: External

Requirement: Mandatory

Table 595 describes class CIM_SystemDevice.

27.9.6 SNIA_StorageConfigurationCapabilities

SupportedStoragePoolFeatures as defined in SNIA_StorageConfigurationCapabilities, with the addition of support for StorageVolumes as
inputs to pool creation.

Created By: Static

Modified By: Static

Deleted By: Static

Table 594 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 595 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Pools from Volumes Profile

888

Requirement: Mandatory

Table 596 describes class SNIA_StorageConfigurationCapabilities.

27.9.7 SNIA_StoragePool

StoragePool as defined in Block Services.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

27.9.8 SNIA_StorageSetting

StorageSetting as defined in Block Services.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Optional

EXPERIMENTAL

Table 596 - SMI Referenced Properties/Methods for SNIA_StorageConfigurationCapabilities

Properties Flags Requirement Description & Notes

SupportedStoragePoolFea
tures

Mandatory Lists the types of storage elements that are supported by pool creation/
modification. To support Pools from Volumes, this list shall include 5
(StorageVolumes).

331

332

333

334
335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

SMI-S 1.6.1 Revision 6 SNIA Technical Position 889

EXPERIMENTAL

28 Group Masking and Mapping Profile

28.1 Description

28.1.1 Synopsis

Profile Name: Group Masking and Mapping

Version: 1.5.0

Organization: SNIA

CIM schema version: 2.23

Central Class: GroupMaskingMappingService

Scoping Class: ComputerSystem

Table 597 describes the supported profiles for Group Masking and Mapping.

28.1.2 Overview

The Group Masking and Mapping Profile specializes Clause 18: "Masking and Mapping Subprofile". The
Group Masking and Mapping Profile is a component profile (subprofile) that allows the masking and
mapping operations based on groups of initiator ports (StorageHardwareIDs), target ports, and devices.
The profile contains the necessary methods to manipulate masking groups and create or delete masking
“views”. Additionally, the group features are advertised by the instance of
GroupMaskingMappingCapabilities.

Because the Group Masking and Mapping Profile is specialization of Clause 18: "Masking and Mapping
Subprofile", all the classes of Clause 18 (including properties, methods, indications, and capabilities) are
inherited (and are available) in this profile.

A masking view created in this profile is modeled as SCSIProtocolController. This is consistent with the
views created by methods of the Masking and Mapping Subprofile.

A major goal of the profile is to simplify the masking and mapping operations as much as it is possible.
For example, once a masking view is created, to expose additional volumes to the initiators of the
masking view, all a client needs to do is to add the additional volumes to the device group belonging to
the masking view. Similarly, to remove access to one or more volumes exposed through a masking view,
the client simply removes the volumes from the device group associated with the masking view.

The Group Masking and Mapping Profile facilitates provisioning of storage to clustered systems by
exposing a group of storage volumes to the same host systems connected to the storage array.

Table 597 - Supported Profiles for Group Masking and Mapping

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Group Masking and Mapping Profile

890

28.1.3 Model Elements

In addition to the model elements inherited from Clause 18: "Masking and Mapping Subprofile", this
profile uses the following classes and associations:

MaskingGroup - This class represents a collection of storage masking objects, such as a group of
InitiatorPorts, TargetPorts or Volumes (i.e., Devices). The masking group has properties to facilitate "self
cleaning" of the groups no longer in use. For example,

• DeleteOnEmpty -- delete the group if all its members are removed.

• DeleteWhenBecomesUnassociated -- delete the group if it no longer is associated to a view.

InitiatorMaskingGroup - A class inherited from MaskingGroup. It represents a collection of
StorageHardwareID object paths.

TargetMaskingGroup - A class inherited from MaskingGroup. It represents a collection of
ProtocolEndpoint object paths.

DeviceMaskingGroup - A class inherited from MaskingGroup. It represents a collection of
StorageVolume object paths.

An implementation may allow empty masking groups to be associated to a masking view; however, an
empty associated masking group may indicate “no access” to the elements associated with the masking
view. For example, an empty associated InitiatorMaskingGroup indicates none of the initiators have
access to the LogicalDevices associated to the masking view. Refer to the group capabilities in 28.7 "CIM
Elements", which may indicate “Associated empty group indicates no access“. The absence of this value
conversely indicates “all access”. In other words, an empty associated InitiatorMaskingGroup indicates all
initiators have access to the elements associated with the masking view.

The masking groups are associated to the “view” via the following associations:

AssociatedInitiatorMaskingGroup - Associates an InitiatorMaskingGroup to a SCSIProtocolController.

AssociatedTargetMaskingGroup - Associates an TargetMaskingGroup to a SCSIProtocolController.

AssociatedDeviceMaskingGroup - Associates an DeviceMaskingGroup to a SCSIProtocolController.

Figure 151 depicts the complete model for a masking view that includes the masking groups. The gray
classes are from this profile; whereas, the remaining classes are from Clause 18: "Masking and Mapping
Subprofile".

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 891

Figure 152 shows the masking groups and their associated masking objects. The association between
the DeviceMaskingGroup and StorageVolumes is OrderedMemberOfCollections because the method
CreateGroup, which creates this association, needs to maintain the order of the StorageVolumes as each
StorageVolume is assigned a unique device number. Assigning unique device numbers may be done
when a device masking group is created or when a masking view is created. If device numbers are
supplied, the implementation shall assign the appropriate device numbers in the order in which the
devices are ordered in the device masking group, hence the requirement to have an
OrderedMemberOfCollection association between the logical devices and the device masking group.

A SCSIProtocolController shall be associated to no more than one InitiatorMaskingGroup, one
TargetMaskingGroup, and one DeviceMaskingGroup. If any of the masking groups is nested, the child
groups are indirectly participating in the masking view. However, the nested masking groups are not
associated directly to the same masking view.

Figure 151 - Group Masking and Mapping Model

LogicalDevice
(StorageVolume)

SCSIProtocolController

AuthorizedPrivilege

SystemSpecificCollection
(optional)

AuthorizedTarget

MemberOfCollection

StorageHardwareID

AuthorizedSubject

*
*1

*

*

1

SCSIProtocolEndpoint

ProtocolController
ForUnit

* *

SAPAvailable
ForElement

InitiatorMaskingGroup

// One or more
elements

TargetMaskingGroup

// One or more
elements

DeviceMaskingGroup

// One or more
elements

AssociatedInitiatorMaskingGroup

AssociatedDeviceMaskingGroup

AssociatedTargetMaskingGroup

MemberOfCollection

OrderedMemberOfCollection

MemberOfCollection

58

59

60

61

62

63

64

65

66

67

68

69

Group Masking and Mapping Profile

892

The profile includes the optional indications for when a masking group is created, deleted, or modified.
Additionally, the profile includes an alert message indicating that the associated membership of a
masking group has changed. The related standard message is:

There is a change in membership of masking group with identifier <InstanceID>.

See 28.7 "CIM Elements" for the supported indication filters.

28.1.3.1 Nested Groups

Masking groups, depending on the capabilities of the implementation, may be nested to an arbitrary
depth. The nested groups shall be of the same type, for example, nested initiator masking groups, or
nested target port groups. A masking group may contain a combination of masking objects (initiators,
target ports, devices), and the like masking groups. For example, a "top level" initiator masking group
may contain zero or more StorageHardwareIDs and zero or more initiator masking groups. The "nested"
initiator masking groups may in turn contain additional StorageHardwareIDs and initiator masking groups.

To create a masking view, a client may supply the "top level" masking group and the appropriate target
port and device masking groups to the CreateMaskingView method.

See the instance of GroupMaskingMappingCapabilities (in 28.7 "CIM Elements") for whether the
implementation supports nested masking groups, and whether the depth of nested groups is limited to
one.

Figure 153 shows nest masking groups and an example of a nested initiator masking group.

Figure 152 - Masking Groups

StorageH ardw areID

In itia torM askingG roup

SC SIProtocolEndpo int

TargetM askingG roup

Logica lD evice
(S torageVolum e)

D eviceM askingG roup

O rderedM em berO fC ollectionM em berO fC ollectionM em berO fC ollection

G roupM askingM appingServ ice

Serv iceA ffectsE lem ent
ServiceA ffectsE lem ent

Serv iceA ffectsE lem ent

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 893

A use case for nested group is in a simple cluster environment (see Figure 154, “Nested Masking Group
Example,”), where there is a set of HBAs that belong to one host and a set of HBAs that belong to another
host. Assume each host’s HBA ports are in their own Initiator Masking Group which is participating in
some other masking views. A nested parent group (Engineering, in the example) is then created to
contain both of these child groups (HBA0 and HBA1, in the example). This new parent group can then be
directly associated to a new masking view, furthermore, the child groups still remain associated to some
other masking views.

In this example, when the Engineering InitiatorMaskingGroup is associated to a new masking view, the
child groups HBA0 and HBA1 are indirectly participating in the new masking view, however, they are not
associated directly to the new masking view. Note that HBA0 and HBA1 will have access to the devices
exposed to the Engineering InitiatorMaskingGroup by the masking view.

With nested masking groups, only the outer (i.e., the parent) initiator masking group needs to be
associated to a masking view. The inner (i.e., the children) initiator masking groups will implicitly have
access to the same storage devices made available in the masking view associated to the parent.
However, the inner masking groups (i.e., the children) can be associated to a different masking view in
order to have access to storage devices participating in a different masking view.

Figure 153 - Nested Masking Groups

StorageHardwareID

// IDType
// StorageID

InitiatorMaskingGroup

// InstanceID
// ElementName

MemberOfCollection

*

MaskingGroup

MemberOfCollection

InitiatorMaskingGroup

// InstanceID
// ElementName

MemberOfCollection

*

Nested Masking Groups Example: Nested InitiatorMaskingGroup

Class Diagram Instance Diagram

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

Group Masking and Mapping Profile

894

28.1.4 Device Numbers

A LogicalDevice is exposed to an initiator with a Device Number, also known as a Logical Unit Number
(LUN). Clients may supply the desired Logical Unit Numbers. If clients do not supply the desired Logical
Units Numbers, the instrumentation decides on the Logical Unit Numbers. There is a boolean property in
the InitiatorMaskingGroup class called ConsistentLogicalUnitNumber to indicate whether device numbers
for a LogicalDevice (volume) visible to the same initiator must be same.

Figure 154 - Nested Masking Group Example

InitiatorMaskingGroup

HBA1:ComputerSystem

InitiatorMaskingGroup

HBA0:ComputerSystem

InitiatorMaskingGroup

Engineering

StorageHardwareIDStorageHardwareID

MemberOfCollectionMemberOfCollection

MemberOfCollection MemberOfCollection

SCSIProtocolControllerSCSIProtocolController

AssociatedInitiatorMaskingGroup AssociatedInitiatorMaskingGroup

104

105

106

107

108

109

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 895

Figure 155 shows an example configuration with the InitiatorMaskingGroup.ConsistentLogicalUnitNumber
property set to true. In this case, the storage volume “ABC” shall have the same DeviceNumber value
exposed to the same initiator regardless of the path.

Figure 155 - Example ConsistentLogicalUnitNumber set to true

InitiatorMaskingGroup

ConsistentLogicalUnitNumber = True

StorageHardwareID

MemberOfCollection

SCSIProtocolController

SCSIProtocolController

AssociatedInitiatorMaskingGroup
AssociatedInitiatorMaskingGroup

StorageVolume

DeviceID = “ABC”

SCSIProtocolEndpoint

Name = “7E0”

SCSIProtocolEndpoint

Name = “7E1”

SAPAvailable
ForElement

SAPAvailable
ForElement

ProtocolController
ForUnit

ProtocolController
ForUnit

DeviceNumber = 0 DeviceNumber = 0

110

111

112

Group Masking and Mapping Profile

896

Figure 156 shows an example configuration with the InitiatorMaskingGroup.ConsistentLogicalUnitNumber
property set to false. In this case, depending on the path, the storage volume “ABC” may have different
DeviceNumber values exposed to the same initiator.

If the instrumentation only supports ConsistentLogicalUnitNumber, the capabilities method
SupportedInitiatorGroupFeatures shall indicate “ConsistentLogicalUnitNumber must be true“. In this
case, clients can not create an InitiatorMaskingGroup with the value of the property
ConsistentLogicalUnitNumber set to false.

Figure 156 - Example ConsistentLogicalUnitNumber set to false

InitiatorMaskingGroup

ConsistentLogicalUnitNumber = False

StorageHardwareID

MemberOfCollection

SCSIProtocolController

SCSIProtocolController

AssociatedInitiatorMaskingGroup
AssociatedInitiatorMaskingGroup

StorageVolume

DeviceID = “ABC”

SCSIProtocolEndpoint

Name = “7E0”

SCSIProtocolEndpoint

Name = “7E1”

SAPAvailable
ForElement

SAPAvailable
ForElement

ProtocolController
ForUnit

ProtocolController
ForUnit

DeviceNumber = 0 DeviceNumber = 1

113

114

115

116

117

118

119

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 897

28.1.5 Group Masking and Mapping Capabilities

The class GroupMaskingMappingCapabilities contains the properties that advertise the capabilities of the
group masking and mapping implementation. For example, the property SupportedFeatures indicates
capabilities of a masking view that uses groups, and the property SupportedInitiatorGroupFeatures
indicates the capabilities specific to an initiator group.

Refer to 28.7 "CIM Elements" for all the capabilities details.

28.2 Health and Fault Management Consideration

None

28.3 Cascading Considerations

None

28.4 Methods of the Profile

The Group Masking and Mapping Profile has extrinsic methods for group management and for managing
masking view.

The Profile relies on a number of intrinsic methods ModifyInstance and DeleteInstance for changing the
property values and deleting instances and that do not require special consideration such as the “force”
option.

All of the Profile extrinsic methods return one of the following status codes. Depending on the error
condition, a method may return additional error codes and/or throw an appropriate exception to indicate
the error encountered.

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 598 summarizes the extrinsic methods for group management (class
GroupMaskingMappingService):

Table 598 - Extrinsic Methods for Masking Group Management

Method Described in

CreateGroup See 28.4.1

DeleteGroup See 28.4.2

AddMembers See 28.4.3

RemoveMembers See 28.4.4

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Group Masking and Mapping Profile

898

Table 599 summarizes the extrinsic methods for creating and deleting group masking views (class
GroupMaskingMappingService):

28.4.1 CreateGroup

 uint32 GroupMaskingMappingService.CreateGroup(

 [IN] string GroupName,

 [IN] uint16 Type,

 [IN] CIM_ManagedElement REF Members[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteOnEmpty,

 [IN] boolean DeleteWhenBecomesUnassociated,

 [IN] boolean ConsistentLogicalUnitNumber,

 [OUT] CIM_MaskingGroup REF MaskingGroup);

This method allows a client to create a new masking group. Any required associations (such as
ServiceAffectsElement) are created in addition to the instance of the group. The parameters are as
follows:

• GroupName: If nameable, an end user relevant name for the group being created. If NULL or not nameable,
then system assigns a name. If nameable, the name shall be unique for given ComputerSystem. If not
nameable and a group name is supplied, the method returns an error and aborts the method call.

• Type: The type of masking group to create. Possible choices are InitiatorMaskingGroup,
TargetMaskingGroup, and DeviceMaskingGroup. Any other type or a masking group type not supported by
the instrumentation are rejected.

• Members[]: A list of elements to add to the masking group. For device masking groups the order is
maintained. If NULL, the group shall be empty -- if empty groups are supported. All the supplied elements
shall be of type appropriate for the type of masking group being created.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• DeleteOnEmpty: If true, the group shall be deleted when the last element is removed from the group. If false,
the group shall not be deleted when the last element is removed from the group. If an implementation does
not allow empty groups, the group shall be deleted when it becomes empty regardless of the value of this
parameter. See the GetSupported*GroupFeatures() method of the GroupMaskingMappingCapabilities to
determine whether empty groups are allowed.

• DeleteWhenBecomesUnassociated: If true, the group shall be deleted when the group is no longer
associated to any SCSIProtocolController (i.e., a masking view).

• ConsistentLogicalUnitNumber: If true, it indicates the device numbers for a volume visible to the same
initiator through different paths must be same.

• MaskingGroup: A reference to the created group.

Table 599 - Extrinsic Methods for Masking Views Management

Method Described in

CreateMaskingView See 28.4.5

DeleteMaskingView See 28.4.6

ModifyMaskingView See 28.4.7

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 899

28.4.2 DeleteGroup

 uint32 GroupMaskingMappingService.DeleteGroup(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean Force);

This method allows a client to delete a masking group. Deleting a masking group does not delete its
associated members. The parameters are as follows:

• MaskingGroup: Reference to a masking group which would be deleted.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• Force: Attempt to delete the masking group even though it is associated to a masking view, or the group is
not empty. The intent of the Force parameter is to reduce the chance of accidental deletion of a masking
group.

28.4.3 AddMembers

 uint32 GroupMaskingMappingService.AddMembers(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

 [IN] CIM_ManagedElement REF Members[],

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job);

This method allows a client to add members to an existing masking group. The parameters are as follows:

• MaskingGroup: Reference to an existing masking group.

• Members[]: List of elements to add to the group. New members are added, in the order supplied, to the end of
the existing members of the group. It is not an error, if a new member is already in the group. All the supplied
elements shall be of type appropriate for the type of masking group supplied.

• DeviceNumbers[]: List of device numbers that correspond to Members. This property is applicable when the
group consists of storage volumes.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

28.4.4 RemoveMembers

 uint32 GroupMaskingMappingService.RemoveMembers(

 [IN, Required] CIM_MaskingGroup REF MaskingGroup,

 [IN] CIM_ManagedElement REF Members[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteOnEmpty);

This method allows a client to remove members from a masking group. The parameters are as follows:

• MaskingGroup: Reference to an existing masking group.

• Members[]: List of elements to remove from the group. Deleting all members of a group is equivalent to
deleting the group if empty groups are not supported by the implementation.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

Group Masking and Mapping Profile

900

• DeleteOnEmpty: If true and removal of the members causes the group to become empty, the group shall be
deleted. Note, if empty groups are not allowed, the group shall be deleted automatically when the group
becomes empty. If this parameter is not NULL, it overrides the group's property DeleteOnEmpty.

28.4.5 CreateMaskingView

 uint32 GroupMaskingMappingService.CreateMaskingView(

 [IN] string ElementName,

 [IN] CIM_MaskingGroup REF InitiatorMaskingGroup,

 [IN] CIM_MaskingGroup REF TargetMaskingGroup,

 [IN] CIM_MaskingGroup REF DeviceMaskingGroup,

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_SCSIProtocolController REF ProtocolController);

This method allows a client to expose a group of SCSI logical units (such as RAID volumes or tape
drives) to a group of initiators through a group of target ports, through one or more
SCSIProtocolControllers (SPCs). If 0 is returned, the function completed successfully and no
ConcreteJob instance is created. If 4096/0x1000 is returned, a ConcreteJob is started, a reference to
which is returned in the Job output parameter. The parameters are as follows:

• ElementName: A user relevant name for the masking view. If NULL, the implementation assigns a name.

• InitiatorMaskingGroup: Reference to a group of StorageHardwareIDs.

• TargetMaskingGroup: Reference to a group of SCSIProtocolEndpoints.

• DeviceMaskingGroup: Reference to a group of StorageVolumes.

• DeviceNumbers[]: List of device numbers that correspond to the elements of DeviceMaskingGroup. If this
parameter is NULL, device numbers are assigned by the instrumentation.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• ProtocolController: A reference to the created SCSIProtocolController, which represents the masking view.

28.4.6 DeleteMaskingView

 uint32 GroupMaskingMappingService.DeleteMaskingView(

 [IN, Required] CIM_SCSIProtocolController REF ProtocolController,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] boolean DeleteWhenBecomesUnassociated);

This method allows a client to delete a masking view, i.e., a SCSIProtocolController. Deleting a masking
view may also delete the associated masking groups -- see the applicable capabilities and group
properties in 28.7 "CIM Elements". The parameters are as follows:

• ProtocolController: A reference to the SCSIProtocolController to delete. The masking group associated with
the view may also get deleted depending on the groups' applicable properties.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• DeleteWhenBecomesUnassociated: Override the setting of the masking groups' property
DeleteWhenBecomesUnassociated with the value of this parameter.

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 901

28.4.7 ModifyMaskingView

 uint32 GroupMaskingMappingService.ModifyMaskingView(

 [IN, Required] uint16 Operation,

 [IN, Required] CIM_SCSIProtocolController REF ProtocolController,

 [IN] CIM_MaskingGroup REF MaskingGroup,

 [IN] string DeviceNumbers[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] Force);

This method allows a client to modify a masking view by adding a masking group or by removing a
masking group from the masking view. The parameters are as follows:

• Operation: It describes the type of modification to be made to the masking view. Possible values: "Add
Group", "Remove Group", and “Replace Group”. Adding a masking group to a masking view which already is
associated to the same type of masking group is an error condition. For example, if a masking view is already
associated to an InitiatorMaskingGroup, attempting to add another InitiatorMaskingGroup to the same
masking view results in an error return (or an exception is thrown). The “Replace Group” operation replaces
an existing masking group of the same type (i.e., Initiator, Target Port, or Device). However, if the masking
view is not already associated to a masking group of the type supplied, the instrumentation shall create the
appropriate association between the supplied masking view and masking group; in other words, the “Replace
Group” operation behaves the same as the “Add Group” operation.

• MaskingGroup: A reference to the masking group.

• DeviceNumbers: This parameter applies to an "Add Group" operation. It is a list of device numbers that
correspond to the elements of a DeviceMaskingGroup. If device numbers are not supplied, the
instrumentation may assign the appropriate device numbers to the supplied logical devices.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be NULL if job is completed).

• Force: If true, the client is not warned that the operation may render the masking view unusable.

28.5 Client Considerations and Recipes

28.5.1 Using Groups in Masking and Mapping

In general, the Masking and Mapping operations using groups involve the following steps:

• Create the masking groups (initiators, target port, and storage volumes), using the CreateGroup method call.

• Create the masking view using the CreateMaskingView method call.

Depending on the implementation, it may be necessary to supply DeviceNumbers when creating a
DeviceMaskingGroup or the actual masking view -- refer to the group capabilities (in 28.7 "CIM
Elements"). If DeviceNumbers are not required, the implementation shall assign the appropriate device
numbers.

Once a masking view is created, to expose additional storage volumes to the same initiator ports, the
client only needs to add the additional storage volumes to the DeviceMaskingGroup using the
AddMembers method call. Alternatively, to remove access to certain storage volumes exposed through a
masking view, the client needs only to use the RemoveMembers method call to removed the intended
storage volumes from the DeviceMaskingGroup associated with the masking view.

An implementation may initially allow a client to create a masking view with fewer than all three masking
groups (initiators, target ports, and devices) or even empty masking groups (see the capabilities in 28.7
"CIM Elements" to determine which groups are required for the creation of a masking view).

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

Group Masking and Mapping Profile

902

Subsequently, the client may use the appropriate methods (ModifyMaskingView) to add the necessary
masking groups and/or to add members (AddMembers) to the empty masking groups.

Assuming the methods ExposePaths and HidePaths methods are supported by the implementation,
changes made to an masking view via the ExposePaths and HidePaths methods shall appear correctly to
a client using the Group Masking and Mapping Profile. For example, if a client utilizes the HidePaths
method to remove a device associated to a masking view, the instrumentation shall remove the device
from the device masking group associated to the same masking view. However, if the device masking
group is associated to multiple masking views, the instrumentation return an error. Similarly, if a client
utilizes the AddMembers method to add a device to a device masking group associated to an existing
masking view, the end result shall be as if the client used the ExposePaths method to expose the device.
In summary, any changes made to a masking view by a 1.5 client shall appear correct to the pre-1.5 client
and vice versa.

28.6 Registered Name and Version

Group Masking and Mapping version 1.5.0 (Component Profile)

CIM Schema Version: 2.23.0

Specializes SNIA Masking and Mapping version 1.4.0

28.7 CIM Elements

Table 600 describes the CIM elements for Group Masking and Mapping.

Table 600 - CIM Elements for Group Masking and Mapping

Element Name Requirement Description

28.7.1 CIM_AssociatedDeviceMaskingGroup Conditional Conditional requirement: Required if device masking
groups are supported. Associates SCSIProtocolController
to an DeviceMaskingGroup.

28.7.2 CIM_AssociatedInitiatorMaskingGroup Conditional Conditional requirement: Required if initiator masking
groups are supported. Associates SCSIProtocolController
to an InitiatorMaskingGroup.

28.7.3 CIM_AssociatedTargetMaskingGroup Conditional Conditional requirement: Required if target masking
groups are supported. Associates SCSIProtocolController
to a TargetMaskingGroup.

28.7.4 CIM_AuthorizedPrivilege Mandatory

28.7.5 CIM_AuthorizedSubject Mandatory

28.7.6 CIM_AuthorizedTarget Mandatory

28.7.7 CIM_ConcreteDependency (Associates
ControllerConfiguirationService and ProtocolController)

Mandatory

28.7.8 CIM_ConcreteDependency (Associates
PrivilegeManagementService and AuthorizedPrivilege)

Mandatory

28.7.9 CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and
StorageHardwareID)

Mandatory

28.7.10 CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and
SystemSpecificCollection)

Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

28.7.11 CIM_DeviceMaskingGroup Mandatory Represents a group of Devices (StorageVolumes).

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 903

28.7.12 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ControllerConfigurationService)

Optional Associates EnabledLogicalElementCapabilities with
ControllerConfigurationService.

28.7.13 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
ProtocolController)

Optional Expressed the ability for the element to be named or have
its state changed.

28.7.14 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareID)

Optional Associates EnabledLogicalElementCapabilities to
StorageHardwareID.

28.7.15 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService)

Optional Associates EnabledLogicalElementCapabilities with
StorageHardwareIDManagementService.

28.7.16 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to
SystemSpecificCollection)

Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs. Associates
EnabledLogicalElementCapabilities and
SystemSpecificCollection.

28.7.17 CIM_ElementCapabilities (System to
ProtocolControllerMaskingCapabilities)

Mandatory

28.7.18 CIM_ElementSettingData (Associates
ComputerSystem and StorageClientSettingData)

Mandatory

28.7.19 CIM_ElementSettingData (Associates Port and
StorageClientSettingData)

Optional

28.7.20 CIM_ElementSettingData (Associates
ProtocolController and StorageClientSettingData)

Optional

28.7.21 CIM_ElementSettingData (Associates
StorageHardwareID and StorageClientSettingData)

Optional

28.7.22 CIM_EnabledLogicalElementCapabilities Optional This class is used to express the naming and possible
requested state change possibilities for storage elements.

28.7.23 CIM_GroupMaskingMappingCapabilities Mandatory A set of properties that describe the capabilities of a group
masking and mapping provider.

28.7.24 CIM_GroupMaskingMappingService Mandatory Central class for Group Masking and Mapping Profile.
Methods are described in the Extrinsic Methods clause.

28.7.25 CIM_HostedCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

28.7.26 CIM_HostedService (Associates
ComputerSystem and ControllerConfigurationService)

Mandatory

28.7.27 CIM_HostedService (Associates
ComputerSystem and PrivilegeManagementService)

Mandatory

28.7.28 CIM_HostedService (Associates
ComputerSystem and
StorageHardwareIDManagementService)

Mandatory

28.7.29 CIM_InitiatorMaskingGroup Mandatory Represents a group of initiator ports
(StorageHardwareIDs).

28.7.30 CIM_MemberOfCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

28.7.31 CIM_PrivilegeManagementService Mandatory

Table 600 - CIM Elements for Group Masking and Mapping

Element Name Requirement Description

Group Masking and Mapping Profile

904

28.7.32 CIM_ProtocolController Mandatory

28.7.33 CIM_ProtocolControllerForUnit Mandatory

28.7.34 CIM_SAPAvailableForElement Mandatory

28.7.35 CIM_ServiceAffectsElement (Between
GroupMaskingMappingService and MaskingGroup)

Conditional Conditional requirement: Required if device masking
groups are supported or Required if initiator masking
groups are supported or Required if target masking
groups are supported. Associates Group Masking
Mapping Service to Masking Group.

28.7.36 CIM_StorageClientSettingData Mandatory

28.7.37 CIM_StorageHardwareID Mandatory

28.7.38 CIM_StorageHardwareIDManagementService Mandatory

28.7.39 CIM_SystemSpecificCollection Conditional Conditional requirement: Implementation support for
collections of StorageHardwareIDs.

28.7.40 CIM_TargetMaskingGroup Mandatory Represents a group of target ports (ProtocolEndpoints).

28.7.41 SNIA_ProtocolControllerMaskingCapabilities Optional An experimental subclass of
CIM_ProtocolControllerMaskingCapabilities.

28.7.42 SNIA_StorageHardwareID Optional Experimental SNIA class adding SAS Address IDs.

28.7.43 SNIA_StorageHardwareIDManagementService Optional Experimental subclass with support for SAS
StorageHardwareIDs.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Creation of a ProtocolController.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolController

Mandatory Deletion of a ProtocolController.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Creation of a ProtocolControllerForUnit association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Deletion of a ProtocolControllerForUnit association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ProtocolControllerForUnit

Mandatory Modification of a ProtocolControllerForUnit association
(e.g. changing DeviceNumber).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Creation of an AuthorizedSubject association.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_AuthorizedSubject

Mandatory Deletion of an AuthorizedSubject association.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_MaskingGroup

Optional Creation of a MaskingGroup.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_MaskingGroup

Optional Deletion of a MaskingGroup.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_MaskingGroup

Optional Modification of properties of a MaskingGroup.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM31'

Optional There is a change in the membership of a masking group.

Table 600 - CIM Elements for Group Masking and Mapping

Element Name Requirement Description

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 905

28.7.1 CIM_AssociatedDeviceMaskingGroup

Associates SCSIProtocolController to an DeviceMaskingGroup.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if device masking groups are supported.

Table 601 describes class CIM_AssociatedDeviceMaskingGroup.

28.7.2 CIM_AssociatedInitiatorMaskingGroup

Associates SCSIProtocolController to an InitiatorMaskingGroup.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if initiator masking groups are supported.

Table 602 describes class CIM_AssociatedInitiatorMaskingGroup.

28.7.3 CIM_AssociatedTargetMaskingGroup

Associates SCSIProtocolController to an TargetMaskingGroup.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if target masking groups are supported.

Table 603 describes class CIM_AssociatedTargetMaskingGroup.

Table 601 - SMI Referenced Properties/Methods for CIM_AssociatedDeviceMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory DeviceMaskingGroup.

Table 602 - SMI Referenced Properties/Methods for CIM_AssociatedInitiatorMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory InitiatorMaskingGroup.

Table 603 - SMI Referenced Properties/Methods for CIM_AssociatedTargetMaskingGroup

Properties Flags Requirement Description & Notes

Antecedent Mandatory SCSIProtocolController.

Dependent Mandatory TargetMaskingGroup.

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

Group Masking and Mapping Profile

906

28.7.4 CIM_AuthorizedPrivilege

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 604 describes class CIM_AuthorizedPrivilege.

28.7.5 CIM_AuthorizedSubject

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 605 describes class CIM_AuthorizedSubject.

28.7.6 CIM_AuthorizedTarget

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Table 604 - SMI Referenced Properties/Methods for CIM_AuthorizedPrivilege

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Optional User friendly name.

PrivilegeGranted Mandatory Indicates if the privilege is granted or not.

Activities Mandatory For SMI-S, shall be 5,6 ('Read' and Write').

Table 605 - SMI Referenced Properties/Methods for CIM_AuthorizedSubject

Properties Flags Requirement Description & Notes

PrivilegedElement Mandatory The Subject for which Privileges are granted or denied.

Privilege Mandatory The Privilege either granted or denied to an Identity or group of Identities
collected by a Role.

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 907

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 606 describes class CIM_AuthorizedTarget.

28.7.7 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolCon-
troller)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 607 describes class CIM_ConcreteDependency (Associates ControllerConfiguirationService and
ProtocolController).

28.7.8 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivi-
lege)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 608 describes class CIM_ConcreteDependency (Associates PrivilegeManagementService and
AuthorizedPrivilege).

Table 606 - SMI Referenced Properties/Methods for CIM_AuthorizedTarget

Properties Flags Requirement Description & Notes

TargetElement Mandatory The target set of resources to which the Privilege applies.

Privilege Mandatory The Privilege affecting the target resource.

Table 607 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates ControllerCon-
figuirationService and ProtocolController)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 608 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates PrivilegeMan-
agementService and AuthorizedPrivilege)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

Group Masking and Mapping Profile

908

28.7.9 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and Stor-
ageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 609 describes class CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and StorageHardwareID).

28.7.10CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and Sys-
temSpecificCollection)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 610 describes class CIM_ConcreteDependency (Associates
StorageHardwareIDManagementService and SystemSpecificCollection).

28.7.11CIM_DeviceMaskingGroup

Represents a group of Devices (StorageVolumes).

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Table 609 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHard-
wareIDManagementService and StorageHardwareID)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 610 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (Associates StorageHard-
wareIDManagementService and SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 909

Table 611 describes class CIM_DeviceMaskingGroup.

28.7.12CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfiguration-
Service)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 612 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ControllerConfigurationService).

28.7.13CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 611 - SMI Referenced Properties/Methods for CIM_DeviceMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.

DeleteWhenBecomesUnas
sociated

M Mandatory If true, the group will be deleted when the group is no longer associated
with a masking view. This can happen if all masking views associated to
this group are deleted.

ElementName Optional User Friendly name.

Table 612 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Group Masking and Mapping Profile

910

Table 613 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
ProtocolController).

28.7.14CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 614 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareID).

28.7.15CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDMa-
nagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 615 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageHardwareIDManagementService).

28.7.16CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)

Table 613 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to ProtocolController)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 614 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageHardwareID)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 615 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 911

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 616 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
SystemSpecificCollection).

28.7.17CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 617 describes class CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities).

28.7.18CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 616 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to SystemSpecificCollection)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory

Table 617 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (System to ProtocolControll-
erMaskingCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

Group Masking and Mapping Profile

912

Table 618 describes class CIM_ElementSettingData (Associates ComputerSystem and
StorageClientSettingData).

28.7.19CIM_ElementSettingData (Associates Port and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 619 describes class CIM_ElementSettingData (Associates Port and StorageClientSettingData).

28.7.20CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)

Created By: CreateInstance

Modified By: Static

Deleted By: DeleteInstance

Requirement: Optional

Table 620 describes class CIM_ElementSettingData (Associates ProtocolController and
StorageClientSettingData).

28.7.21CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID

Table 618 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ComputerSys-
tem and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 619 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates Port and Stor-
ageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 620 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates ProtocolCon-
troller and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 913

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 621 describes class CIM_ElementSettingData (Associates StorageHardwareID and
StorageClientSettingData).

28.7.22CIM_EnabledLogicalElementCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 622 describes class CIM_EnabledLogicalElementCapabilities.

28.7.23CIM_GroupMaskingMappingCapabilities

A set of properties that describe the capabilities of a group masking and mapping provider. The class
definition specializes the CIM_ProtocolControllerMaskingCapabilities definition in the Masking and
Mapping profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)'
in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 621 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Associates StorageHardwa-
reID and StorageClientSettingData)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory

Table 622 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

ElementName Mandatory The moniker for the instance.

ElementNameEditSupport
ed

Mandatory Denotes whether an storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

476

477

478

479

480

481

482

483

484

485

486

487

488
489
490

491

492

493

494

Group Masking and Mapping Profile

914

Table 623 describes class CIM_GroupMaskingMappingCapabilities.

Table 623 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifer.

ElementName Mandatory User-friendly name.

ValidHardwareIdTypes Mandatory A list of the valid values for StrorageHardwareID.IDType.

PortsPerView Mandatory Indicates the way that ports per view (ProtocolController) are handled.

ClientSelectableDeviceNu
mbers

Mandatory Indicates whether the client can specify the DeviceNumbers parameter
when calling ControllerConfigurationService.ExposePaths().

OneHardwareIDPerView Mandatory Set to true if this storage system limits configurations to a single subject
hardware ID per view.

PrivilegeDeniedSupported Mandatory Set to true if this storage system allows a client to create a Privilege
instance with PrivilegeGranted set to FALSE.

UniqueUnitNumbersPerPo
rt

Mandatory Indicates whether different ProtocolContollers attached to a
SCSIProtocolEndpoint can expose the same unit numbers (e.g. multiple
LUN 0s) or if the numbers must be unique.

ProtocolControllerSupports
Collections

Optional Indicates the storage system supports SystemSpecificCollections of
StorageHardwareIDs.

OtherValidHardwareIDTyp
es

Conditional Conditional requirement: Properties required when ValidHardwareIDTypes
includes 1 (Other).An array of strings describing types for valid
StorageHardwareID.IDType. Used when the ValidHardwareIdTypes
includes Other.

MaximumMapCount Mandatory The maximum number of ProtocolControllerForUnit associations that can
be associated with a single LogicalDevice (for example, StorageVolume).
Zero indicates there is no limit.

SPCAllowsNoLUs Mandatory Set to true if a client can create an SPC with no LogicalDevices.

SPCAllowsNoTargets Mandatory Set to true if a client can create an SPC with no target
SCSIProtocolEndpoints.

SPCAllowsNoInitiators Mandatory Set to true if a client can create an SPC with no StorageHardwareIDs.

SPCSupportsDefaultViews Mandatory Set to true if it the instrumentation supports default view SPCs that
exposes logical units to all initiators.

ExposePathsSupported Optional Set to true if this storage system supports the ExposePaths and
HidePaths methods.

495

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 915

SupportedFeatures
(added)

Mandatory Enumeration indicating the capabilities of masking and mapping features
having to do with masking groups. Values:

 2: Supports initiator masking group

 3: Supports target masking group

 4: Supports device masking group

 5: Auto assigns host device numbers

 6: Maskview creation requires initiator masking group

 7: Maskview creation requires target masking group

 8: Maskview creation requires device masking group

 9: Maskview requires non-empty initiator masking group

 10: Maskview requires non-empty target masking group

11: Maskview requires non-empty device masking group.

SupportedAsynchronousA
ctions (added)

Mandatory Identify group masking methods using job control. Values:

 19: CreateGroup

 20: DeleteGroup

 21: AddMembers

 22: RemoveMembers

 23: CreateMaskingView

 24: DeleteMaskingView

25: ModifyMaskingView.

SupportedSynchronousAct
ions (added)

Mandatory Identify group masking methods not using job control. Values:

 19: CreateGroup

 20: DeleteGroup

 21: AddMembers

 22: RemoveMembers

 23: CreateMaskingView

 24: DeleteMaskingView

25: ModifyMaskingView.

Table 623 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes

Group Masking and Mapping Profile

916

SupportedDeviceGroupFe
atures (added)

Conditional Conditional requirement: Required if device masking groups are
supported. Enumeration indicating the capabilities of Initiator groups.
Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking group

 10: Associated empty group indicates no access

11: Unassociated group rejects device numbers.

SupportedInitiatorGroupFe
atures (added)

Conditional Conditional requirement: Required if initiator masking groups are
supported. Enumeration indicating the capabilities of Initiator groups.
Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking group

 10: Associated empty group indicates no access

11: ConsistentLogicalUnitNumber must be true.

SupportedTargetGroupFea
tures (added)

Conditional Conditional requirement: Required if target masking groups are supported.
Enumeration indicating the capabilities of Initiator groups. Values:

 2: Group is nameable

 3: Can add to an associated group

 4: Empty group is allowed

 5: Group associated with view can be empty

 6: Nested groups allowed

 7: Only one level of nested groups

 8: Group can participate in multiple views

 9: Maskview deletion deletes unassociated masking group

10: Associated empty group indicates no access.

GetElementNameCapabilit
ies()

Optional

Table 623 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingCapabilities

Properties Flags Requirement Description & Notes

496

497
498

499

500

501

502

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 917

28.7.24CIM_GroupMaskingMappingService

Central class for Group Masking and Mapping Profile. The class definition specializes the
CIM_ControllerConfigurationService definition in the Masking and Mapping profile. Properties or methods
not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 624 describes class CIM_GroupMaskingMappingService.

28.7.25CIM_HostedCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 624 - SMI Referenced Properties/Methods for CIM_GroupMaskingMappingService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Unique identifer for the Service.

ExposePaths() Conditional Conditional requirement: ExposePaths and HidePaths are required if
ExposePathsSupported is NULL or set to True.

HidePaths() Conditional Conditional requirement: ExposePaths and HidePaths are required if
ExposePathsSupported is NULL or set to True.

ExposeDefaultLUs() Optional

HideDefaultLUs() Optional

DeleteProtocolController() Optional

CreateMaskingView()
(added)

Mandatory

DeleteMaskingView()
(added)

Optional

ModifyMaskingView()
(added)

Optional

CreateGroup() (added) Mandatory

DeleteGroup() (added) Optional

AddMembers() (added) Mandatory

RemoveMembers()
(added)

Mandatory

503

504

505

506

507

508

509

510

Group Masking and Mapping Profile

918

Table 625 describes class CIM_HostedCollection.

28.7.26CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 626 describes class CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService).

28.7.27CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 627 describes class CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService).

28.7.28CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementSer-
vice)

Table 625 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 626 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
ControllerConfigurationService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 627 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
PrivilegeManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 919

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 628 describes class CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService).

28.7.29CIM_InitiatorMaskingGroup

Represents a group of initiator ports (StorageHardwareIDs).

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Table 629 describes class CIM_InitiatorMaskingGroup.

28.7.30CIM_MemberOfCollection

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection,
CIM_StorageHardwareIDManagementService.AddHardwareIDsToCollection

Modified By: Static

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 628 - SMI Referenced Properties/Methods for CIM_HostedService (Associates ComputerSystem and
StorageHardwareIDManagementService)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 629 - SMI Referenced Properties/Methods for CIM_InitiatorMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.

DeleteWhenBecomesUnas
sociated

M Mandatory If true, the group will be deleted when the group is no longer associated
with a masking view. This can happen if all masking views associated to
this group are deleted.

ConsistentLogicalUnitNum
ber

M Mandatory If true, it indicates the device numbers for a volume visible to the same
initiator though different paths must be the same.

ElementName Optional User Friendly name.

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

Group Masking and Mapping Profile

920

Table 630 describes class CIM_MemberOfCollection.

28.7.31CIM_PrivilegeManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 631 describes class CIM_PrivilegeManagementService.

28.7.32CIM_ProtocolController

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths

Requirement: Mandatory

Table 630 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 631 - SMI Referenced Properties/Methods for CIM_PrivilegeManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System Name.

Name Mandatory Uniquely identifies the Service.

ElementName Mandatory User friendly name.

AssignAccess() Mandatory

RemoveAccess() Mandatory

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 921

Table 632 describes class CIM_ProtocolController.

28.7.33CIM_ProtocolControllerForUnit

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Requirement: Mandatory

Table 633 describes class CIM_ProtocolControllerForUnit.

28.7.34CIM_SAPAvailableForElement

Created By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Modified By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Deleted By: Extrinsics: CIM_ControllerConfigurationService.ExposePaths,
CIM_ControllerConfigurationService.HidePaths, CIM_ControllerConfigurationService.ExposeDefaultLUs,
CIM_ControllerConfigurationService.HideDefaultLUs

Table 632 - SMI Referenced Properties/Methods for CIM_ProtocolController

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

CreationClassName Mandatory The name of the concrete subclass.

SystemName Mandatory The scoping System's Name.

DeviceID Mandatory Unique name for the ProtocolController.

Table 633 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForUnit

Properties Flags Requirement Description & Notes

DeviceNumber Mandatory Address (e.g. LUN) of the associated Device. Shall be formatted as
unseparated uppercase hexadecimal digits, with no leading 0x.

DeviceAccess Mandatory The access rights granted to the referenced logical unit as exposed
through referenced ProtocolController.

Antecedent Mandatory

Dependent Mandatory A reference to the SCSI logical unit (for example, a Block Services
StorageVolume).

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

Group Masking and Mapping Profile

922

Requirement: Mandatory

Table 634 describes class CIM_SAPAvailableForElement.

28.7.35CIM_ServiceAffectsElement (Between GroupMaskingMappingService and MaskingGroup)

Associates Group Masking Mapping Service to Masking Group.

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: DeleteGroup, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Required if device masking groups are supported or Required if initiator masking groups
are supported or Required if target masking groups are supported.

Table 635 describes class CIM_ServiceAffectsElement (Between GroupMaskingMappingService and
MaskingGroup).

28.7.36CIM_StorageClientSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 636 describes class CIM_StorageClientSettingData.

28.7.37CIM_StorageHardwareID

Table 634 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 635 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between GroupMasking-
MappingService and MaskingGroup)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Group Masking Mapping Service.

AffectedElement Mandatory Masking Group.

Table 636 - SMI Referenced Properties/Methods for CIM_StorageClientSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

ClientTypes Mandatory Array of OS names.

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 923

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Mandatory

Table 637 describes class CIM_StorageHardwareID.

28.7.38CIM_StorageHardwareIDManagementService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 638 describes class CIM_StorageHardwareIDManagementService.

28.7.39CIM_SystemSpecificCollection

Created By: Extrinsic: CIM_StorageHardwareIDManagementService.CreateHardwareIDCollection

Modified By: Static

Table 637 - SMI Referenced Properties/Methods for CIM_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5 (Other or PortWWN or
NodeWWN or Hostname or iSCSI Name).

Table 638 - SMI Referenced Properties/Methods for CIM_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

CreateStorageHardwareID
()

Mandatory

DeleteStorageHardwareID
()

Mandatory

CreateHardwareIDCollecti
on()

Optional

AddHardwareIDsToCollecti
on()

Optional

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

Group Masking and Mapping Profile

924

Deleted By: Static

Requirement: Implementation support for collections of StorageHardwareIDs.

Table 639 describes class CIM_SystemSpecificCollection.

28.7.40CIM_TargetMaskingGroup

Represents a group of target ports (ProtocolEndpoints).

Created By: Extrinsic: CreateGroup

Modified By: Extrinsics: AddMembers, RemoveMembers

Deleted By: Extrinsic: DeleteGroup

Requirement: Mandatory

Table 640 describes class CIM_TargetMaskingGroup.

28.7.41SNIA_ProtocolControllerMaskingCapabilities

An experimental subclass of CIM_ProtocolControllerMaskingCapabilities that adds properties asserting
method support and support for SAS StorageHardwareIDs.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 639 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

ElementName Mandatory A user-friendly name.

Table 640 - SMI Referenced Properties/Methods for CIM_TargetMaskingGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

DeleteOnEmpty M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.

DeleteWhenBecomesUnas
sociated

M Mandatory If true, the group will be deleted when the group is no longer associated
with a masking view. This can happen if all masking views associated to
this group are deleted.

ElementName Optional User Friendly name.

616

617

618

619

620

621

622

623

624

625

626

627
628

629

630

631

632

 Group Masking and Mapping Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 925

Table 641 describes class SNIA_ProtocolControllerMaskingCapabilities.

28.7.42SNIA_StorageHardwareID

Created By: Extrinsics: CIM_StorageHardwareIDManagementService.CreateStorageHardwareID,
CIM_ControllerConfigurationService.ExposePaths

Modified By: Static

Deleted By: Extrinsic: CIM_StorageHardwareIDManagementService.DeleteStorageHardwareID

Requirement: Optional

Table 642 describes class SNIA_StorageHardwareID.

28.7.43SNIA_StorageHardwareIDManagementService

Experimental subclass with support for SAS StorageHardwareIDs.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 643 describes class SNIA_StorageHardwareIDManagementService.

Table 641 - SMI Referenced Properties/Methods for SNIA_ProtocolControllerMaskingCapabilities

Properties Flags Requirement Description & Notes

SupportedAsynchronousA
ctions

Mandatory Indicates which operations will result in a Job being created.

SupportedSynchronousAct
ions

Mandatory Indicates which operations will execute without a Job being created.

Table 642 - SMI Referenced Properties/Methods for SNIA_StorageHardwareID

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque and unique identifier.

StorageID N Mandatory The worldwide unique ID.

IDType Mandatory StorageID type. Values may be 1|2|3|4|5|7 (Other or PortWWN or
NodeWWN or Hostname or iSCSI Name or SAS Address).

Table 643 - SMI Referenced Properties/Methods for SNIA_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The scoping System CreationClassName.

SystemName Mandatory The scoping System Name.

CreationClassName Mandatory The name of the concrete subclass.

Name Mandatory Uniquely identifies the Service.

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Group Masking and Mapping Profile

926

EXPERIMENTAL

CreateStorageHardwareID
()

Mandatory Experimental: may use SAS Address IDType.

DeleteStorageHardwareID
()

Mandatory

CreateHardwareIDCollecti
on()

Optional

AddHardwareIDsToCollecti
on()

Optional

Table 643 - SMI Referenced Properties/Methods for SNIA_StorageHardwareIDManagementService

Properties Flags Requirement Description & Notes

SMI-S 1.6.1 Revision 6 SNIA Technical Position 927

EXPERIMENTAL

29 Storage Relocation Profile

29.1 Overview

Typically, a storage pool is established on a set of storage extents, and a volume is allocated to a storage
pool with different performance characteristics (e.g. with different RPM drives, or different drive classes).

However, Storage Relocation can be used to relocate storage (e.g. storage volume, storage pool, logical
disk) within the same storage machine or cross different storage machines with different extent allocation
methods. Storage Relocation can be used as a solution on data migration; and can also be used as part
of a solution on hot spot tuning, while there may be additional backend execution on hot spot tuning
which is transparent to customers. The relocation is performed concurrently with IO operations and the
host views of the volumes do not change. So, the relocations are transparent to host operations.

This profile defines three types of storage relocation operations defined in this profile: Storage Volume
Relocation, Logical Disk Relocation, Storage Pool Relocation.

29.1.1 Storage Volume Relocation

Volume relocation refers to the operation to migrate every extent of a volume to a different set of extents.
In this profile, volume relocation is simply done by: 1) relocating volume away from one storage pool and
into another; or 2) relocating onto a new group of extents within one storage pool.

The extent migration serves as a basic utility for the volume relocation function. It migrates data from a
source extent to another target extent. The source and target extent can be any two distinct extents as
long as the migrations can be done through storage controllers (within same storage machine, or cross
different storage machines).

29.1.2 Logical Disk Relocation

Similar to storage volume relocation, logical disk relocation refers to the operation to migrate every extent
of a logical disk to a different set of extents. In this profile, logical disk relocation can be done by:
relocating logical disk onto a new group of extents.

29.1.3 Storage Pool Relocation

Storage pools are container objects which allows user to group extents together. Typically, users consider
performance characteristics and/or failure boundaries on grouping extents. Volumes created from the
pools inherit the characteristics of the storage in the pools. In this profile, storage pool relocation
includes: 1) relocating storage pool onto a new group of extents; 2) merging storage pools.

Relocating storage pool onto a new group of extents needs extent migration which is similar to volume
relocation.

Merging storage pools is an operation which permits user to merge multiple storage pools into one, which
finally enables user to create volumes on more extents. Merging storage pools is also helpful for users to
define storage tiers by grouping extents with similar performance characteristics into one storage pool.
Typically pools merge might not involve migrating extents. It might just involve a series of global metadata
updates in storage machine. So the time duration for this operation can be relatively short.

29.2 Model

New class ‘StorageRelocationService’ is defined in this profile; and it extends the classes of Block
Services, and Job Control.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Storage Relocation Profile

928

29.3 Implementation

Figure 157. presents the classes related to this profile:

StorageConfigurationCapabilities.SupportedStorageElementFeatures shall include a subset of
'StorageVolume Relocation', 'LogicalDisk Relocation', and 'StoragePool Relocation' to indicate support for
relocation of StorageVolumes, LogicalDisks, or StoragePools.

StorageConfigurationCapabilities.SupportedAsynchronousActions shall include a subset of
'StorageVolume Relocation', 'LogicalDisk Relocation', and 'StoragePool Relocation' to indicate support for
asynchronous relocation control of StorageVolumes, LogicalDisks, or StoragePools.

StorageConfigurationCapabilities.SupportedSynchronousActions shall include a subset of
'StorageVolume Relocation', 'LogicalDisk Relocation', and 'StoragePool Relocation' to indicate support for
asynchronous relocation control of StorageVolumes, LogicalDisks, or StoragePools.

StorageConfigurationCapabilities.SupportedStoragePoolUsage shall include a subset of 'Used as source
for Relocation Service', and 'Used as target for Relocation Service' to indicate the support for each
StoragePool (Primordial or Concrete) in relocation.

Figure 157 - Storage Relocation

+ R e lo c a te S to ra g e V o lu m e s T o S to ra g e P o o l ()
+ R e lo c a te S to ra g e P o o ls T o S to ra g e P o o l ()
+ R e lo c a te S to ra g e V o lu m e T o S to ra g e E x te n ts ()
+ R e lo c a te S to ra g e P o o lT o S to ra g e E x te n ts ()
+ R e lo c a te L o g ic a lD is k T o S to ra g e E x te n ts ()
+ G e tA v a ila b le T a rg e tR e lo c a tio n E x te n ts ()

S to ra g e R e lo c a t io n S e rv ic e

S to ra g e C o n fig u ra t io n C a p a b ilit ie s

+ S u p p o r te d A s y n c h ro n o u s A c tio n s : u in t1 6 []
+ S u p p o r te d S y n c h ro n o u s A c tio n s : u in t1 6 []
+ S u p p o r te d S to ra g e E le m e n tF e a tu re s : u in t1 6 []
+ S u p p o r te d S to ra g e P o o lU s a g e : u in t1 6 []
+ C lie n tS e tta b le P o o lU s a g e : u in t1 6 []

S to ra g e V o lu m e

+ O p e ra tio n a lS ta tu s : u in t1 6 []
+ N u m E x te n ts M ig ra tin g : u in t1 6

S to ra g e P o o l

+ O p e ra tio n a lS ta tu s : u in t1 6 []
+ C a p a c ity In M ig ra tin g S o u rc e : u in t3 2
+ C a p a c ity In M ig ra tin g T a rg e t : u in t3 2

E le m e n tC a p a b ilit ie s

S to ra g e E x te n t

-E x te n tS ta tu s : u in t1 6 []

A llo c a te d F ro m S to ra g e P o o l

C o n c re te J o b

A ffe c te d J o b E le m e n t

A ffe c te d J o b E le m e n t A ffe c te d J o b E le m e n t
O w n in g J o b E le m e n t

J o b C o n tro l P a c k a g e

L o g ic a lD is k

+ O p e ra tio n a lS ta tu s : u in t1 6 []
+ N u m E x te n ts M ig ra tin g : u in t1 6

A ffe c te d J o b E le m e n t

C o m p u te rS y s te m

H o s te d S e rv ic e

E le m e n tC a p a b ilit ie s

41

42

43

44

45

46

47

48

49

50

51

52

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 929

StorageConfigurationCapabilities.ClientSettablePoolUsage shall include a subset of 'Used as source for
Relocation Service', and 'Used as target for Relocation Service' to indicate the support for each
StoragePool (Primordial or Concrete) in relocation.

The 'CapacityInMigratingSource' of StoragePool defines the capacity in bytes of allocated extents in the
process of being migrated out of this storage pool when volume relocation is on going. The
'CapacityInMigratingSource' property is optional if the Storage Relocation profile is not supported.

The 'CapacityInMigratingTarget' of StoragePool defines the capacity in bytes of allocated Extents in the
process of being migrated into this storage pool when volume relocation is on going. The
'CapacityInMigratingTarget' property is optional if the Storage Relocation profile is not supported.

The 'Relocating' value for 'OperationalStatus' of both source and target StoragePools defines the status
when the relocation operation of source and target storage pools is on going.

The 'NumExtentsMigrating' of StorageVolume defines the number of Extents in the process of migrating
for this storage volume when the volume relocation is on going. The 'NumExtentsMigrating' property is
optional if the Storage Relocation profile is not supported.

The 'Relocating' value for 'OperationalStatus' of StorageVolume defines the status when the volume
relocation is on going.

The 'NumExtentsMigrating' of LogicalDisk defines the number of Extents in the process of migrating for
this logical disk when the relocation is on going. The 'NumExtentsMigrating' property is optional if the
Storage Relocation profile is not supported.

The 'Relocating' value for 'OperationalStatus' of LogicalDisk defines the status when the volume
relocation is on going.

The 'Relocating' value for 'ExtentStatus' defines the status of StorageExtent who belongs to relocation
ongoing progress.

StorageRelocationService is defined as the service class for storage relocation methods. Two methods of
StorageRelocationService will be used for relocation:

• RelocateStorageVolumesToStoragePool: this method is defined to relocate a group of storage volumes into a
target storage pool.

• RelocateStoragePoolsToStoragePool: this method is defined to relocate a group of storage pools into a target
storage pool.

• RelocateStorageVolumeToStorageExtents: this method is defined to relocate a storage volume onto a new
group of storage extents.

• RelocateStoragePoolToStorageExtents: this method is defined to relocate a storage pool onto a new group of
storage extents.

• RelocateLogicalDiskToStorageExtents: this method is defined to relocate a logical disk onto a new group of
storage extents.

• GetAvailableTargetRelocationExtents: this method is defined to get available storage extents for relocation.

29.3.1 Capacity of StoragePool after StorageVolume relocation

After relocating StorageVolume away from source StoragePool and onto target StoragePool, the available
capacity (RemainingManagedSpace) of source StoragePool should be increased by the capacity
(AllocatedFromStoragePool.SpaceConsumed) of that StorageVolume, while the available capacity
(RemainingManagedSpace) of target StoragePool should be decreased by the capacity

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Storage Relocation Profile

930

(AllocatedFromStoragePool.SpaceConsumed) of that StorageVolume. The total capacity of both source
StoragePool and target StoragePool won't be changed.

29.3.2 Capacity of StoragePool after StoragePool merge

After merging source StoragePool into target StoragePool, the source StoragePool will never exist,
meanwhile the total capacity and remaining capacity of target StoragePool should be increased by that
capacity of the source one.

29.3.3 Capacity of StorageElement after be relocated onto new group of StorageExtents

After relocating StorageElement (StorageVolume, StoragePool, LogicalDisk) onto new group of
StorageExtents, the capacity will be as same as before.

29.3.4 Track and control of Relocation progress

As one implementation option, Job Control Subprofile can be used to track and control relocation
progress. When the Job Control Subprofile is implemented and a client executes the relocation that
executes asynchronously, a reference to an instance of ConcreteJob is returned and the return value for
the method is set to "Method parameters checked - job started".

The ConcreteJob instance allows the progress of the method to be checked, suspended, resumed, and
terminated, etc. And Indications can be used to subscribe for Job completion. For more details, see
Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 26 Job Control Subprofile.

29.3.5 Relocation Capabilities of Storage Pool

StoragePool has a key role in storage relocation. So defining relocation capabilities of each StoragePool
(Primordial and Concrete) is recommended:

• If a primordial or concrete StoragePool can be used as an source in relocation,
StorageConfigurationCapabilities.SupportedStoragePoolUsage should include 'Used as source for
Relocation Service'.

• If a primordial or concrete StoragePool can be used as a target in relocation,
StorageConfigurationCapabilities.SupportedStoragePoolUsage should include 'Used as target for Relocation
Service'.

• If a primordial or concrete StoragePool can be used as either an source or a target,
StorageConfigurationCapabilities.SupportedStoragePoolUsage should include both.

• If the storage system supports client to configure the capabilities of the storage pool,
StorageConfigurationCapabilities.ClientSettablePoolUsage should be configured to include 'Used as source
for Relocation Service', or 'Used as target for Relocation Service', or both.

29.4 Indications

The implementation of Storage Relocation can be asynchronous operation, so indications can be used to
notify multiple clients.

29.4.1 StorageVolume Relocation starts (msgID: DRM32)

This is an alert message indicating that the relocation of a StorageVolume starts. The related standard
message can be:

Relocation starts for StorageVolume with identifier DeviceID.

29.4.2 StorageVolume Relocation ends (msgID: DRM33)

This is an alert message indicating that the relocation of a StorageVolume ends. The related standard
message can be:

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 931

Relocation ends for StorageVolume with identifier DeviceID.

29.4.3 StoragePool Relocation starts (msgID: DRM34)

This is an alert message indicating that the relocation of a StoragePool starts. The related standard
message can be:

Relocation starts for StoragePool with identifier PoolID.

29.4.4 StoragePool Relocation ends (msgID: DRM35)

This is an alert message indicating that the relocation of a StoragePool ends. The related standard
message can be:

Relocation ends for StoragePool with identifier PoolID.

29.4.5 LogicalDisk Relocation starts (msgID: DRM36)

This is an alert message indicating that the relocation of a LogicalDisk starts. The related standard
message can be:

Relocation starts for LogicalDisk with identifier DeviceID.

29.4.6 LogicalDisk Relocation ends (msgID: DRM37)

This is an alert message indicating that the relocation of a LogicalDisk ends. The related standard
message can be:

Relocation ends for LogicalDisk with identifier DeviceID.

29.5 Health and Fault Management Consideration

Not defined in this standard.

29.6 Cascading Considerations

Not defined in this standard.

29.7 Mapping & Masking Considerations

For both local and remote relocation, after it’s done, the source should disappear, and the target should
be the new replacement.

In local relocation, it should be transparent to client sides, which means every properties of the target
volume should be as same as source volume and mapping relationship to host should not be impacted.
But it’s not constrained here to have something changed on target, it depends on the real behavior of
storage system.

In remote relocation, the source object will disappear from source device, and target object will appear on
target device. So the remote relocation may be only permitted when there is relation from the volume to
others (e.g. mapping relation to host). But if the storage system has the ability to migrate all the relations
together with the relocation action, it can still be achieved.

So to mapping & masking, there should be no impact in local relocation, but it can depend on the
behavior of the storage system. And to remote relocation, it depends on the behavior of the storage
system.

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Storage Relocation Profile

932

29.8 Supported Profiles, Subprofiles, and Packages

Table 644 describes the supported profiles for Storage Relocation.

29.9 Methods of the Profile

This profile defines StorageRelocationService as the service class for storage relocation methods. All of
the Profile extrinsic methods return one of the following status codes. Depending on the error condition, a
method may return additional error codes and/or throw an appropriate exception to indicate the error
encountered.

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

29.9.1 RelocateStorageVolumesToStoragePool

uint32 RelocateStorageVolumesToStoragePool(

[IN,OUT] CIM_StorageVolume REF TheElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_StoragePool REF TargetPool);

This method is defined to relocate a group of storage volumes into a target storage pool, by inputting
‘TheElements’ as storage volumes to be relocated, ‘TargetSettingGoal’ as setting goal, and ‘TargetPool’
as target storage pool. The output 'Job' parameter can be used to track the relocation progress. The
detailed description for each parameter is as follows:

• TheElements: As an input, TheElements is an array of storage volumes for the source of relocation. As an
output, it represents the storage volumes after relocation.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target pool. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represent the profile appropriate to the relocation target pool. If not NULL, this
parameter will supply a new Goal for the target pool.

Table 644 - Supported Profiles for Storage Relocation

Profile Name Organization Version Requirement Description

Block Services SNIA 1.6.1 Optional

Job Control SNIA 1.5.0 Optional

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 933

• TargetPool: A reference to target storage pool instance used for relocation. As an input parameter, TargetPool
specifies the storage pool to relocate source onto. As an output parameter, TargetPool represents the pool
actually used as the relocation target. It is output only when the relocation succeeds.

29.9.2 RelocateStoragePoolsToStoragePool

uint32 RelocateStoragePoolsToStoragePool(

[IN,OUT] CIM_StoragePool REF TheElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_StoragePool REF TargetPool);

This method is defined to relocate a group of storage pools into a target storage pool, by inputting
‘TheElements’ as source storage pools to be relocated, ‘TargetSettingGoal’ as setting goal, and
‘TargetPool’ as the target storage pool. The output 'Job' parameter can be used to track the relocation
progress. The detailed description for each parameter is as follows:

• TheElements: As an input, TheElements is an array of storage pools for the source of relocation. As an
output, it represents the storage pools after relocation.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target pool. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represent the profile appropriate to the relocation target pool. If not NULL, this
parameter will supply a new Goal for the target pool.

• TargetPool: A reference to target storage pool instance used for relocation. As an input parameter, TargetPool
specifies the storage pool to relocate source onto. As an output parameter, TargetPool represents the pool
actually used as the relocation target. It is output only when the relocation succeeds.

29.9.3 RelocateStorageVolumeToStorageExtents

uint32 RelocateStorageVolumeToStorageExtents(

[IN] CIM_StorageExtent REF InElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_StorageVolume REF TheElement);

This method is defined to relocate a storage volume onto a new group of storage extents, by inputting
‘InElements’ as the group of storage extents to move onto, ‘TargetSettingGoal’ as setting goal, and
‘TheElement’ as target storage volume to be relocated. The output 'Job' parameter can be used to track
the relocation progress. The detailed description for each parameter is as follows:

• InElements: An array of StorageExtents that 'TheElement' is relocated to.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target element. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represents the profile appropriate to the relocation target elements. If not NULL,
this parameter will supply a new Goal for the target elements.

• TheElement: As an input, TheElement is a storageVolume as the source of relocation. As an output, it
represents the storageVolume after relocation.

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

Storage Relocation Profile

934

29.9.4 RelocateStoragePoolToStorageExtents

uint32 RelocateStoragePoolToStorageExtents(

[IN] CIM_StorageExtent REF InElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_StoragePool REF TheElement);

This method is defined to relocate a storage pool onto a new group of storage extents, by inputting
‘InElements’ as the group of storage extents to move onto, ‘TargetSettingGoal’ as setting goal, and
‘TheElement’ as the target storage pool to be relocated. The output 'Job' parameter can be used to track
the relocation progress. The detailed description for each parameter is as follows:

• InElements: An array of StorageExtents that 'TheElement' is relocated to.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target element. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represents the profile appropriate to the relocation target elements. If not NULL,
this parameter will supply a new Goal for the target elements.

• TheElement: As an input, TheElement is a storagePool as the source of relocation. As an output, it
represents the storagePool after relocation.

29.9.5 RelocateLogicalDiskToStorageExtents

uint32 RelocateLogicalDiskToStorageExtents(

[IN] CIM_StorageExtent REF InElements[],

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN,OUT] CIM_LogicalDisk REF TheElement);

This method is defined to relocate a logical disk onto a new group of storage extents, by inputting
‘InElements’ as the group of storage extents to move onto, ‘TargetSettingGoal’ as setting goal, and
‘TheElement’ as target logical disk to be relocated. The output 'Job' parameter can be used to track the
relocation progress. The detailed description for each parameter is as follows:

• InElements: An array of StorageExtents that 'TheElement' is relocated to.

• Job: Reference to the job (may be null if job completed).

• TargetSettingGoal: The requirements for the relocation target element. If set to a null value, the default
configuration associated with the service will be used. This parameter should be a reference to a
CIM_StorageSetting which represents the profile appropriate to the relocation target elements. If not NULL,
this parameter will supply a new Goal for the target elements.

• TheElement: As an input, TheElement is a logicalDisk as the source of relocation. As an output, it represents
the logicalDisk after relocation.

29.9.6 GetAvailableTargetRelocationExtents

uint32 GetAvailableTargetRelocationExtents(

[IN] CIM_LogicalElement REF TheElement,

[IN] CIM_StorageSetting REF TargetSettingGoal,

[IN] CIM_StoragePool REF InPool,

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 935

[OUT] CIM_StorageExtent REF AvailableExtents[]);

This method is defined to get available group of storage extents for relocation. It supports:

a) Get available target storage extents for storage volume relocation: by inputting ‘TheElement’ as
target storage volume to be relocated, ‘TargetSettingGoal’ as setting goal, ‘InPool’ as the source for
new group of storage extents. The output ‘AvailableExtents’ parameter will return the candidate
extents for relocation.

b) Get available target storage extents for storage pool relocation: by inputting ‘TheElement’ as target
storage pool to be relocated, ‘TargetSettingGoal’ as setting goal, ‘InPool’ as the source for new
group of storage extents. The output ‘AvailableExtents’ parameter will return the candidate extents
for relocation.

c) Get available target storage extents for logical disk relocation: by inputting ‘TheElement’ as target
logical disk to be relocated, ‘TargetSettingGoal’ as setting goal, ‘InPool’ as the source for new group
of storage extents. The output ‘AvailableExtents’ parameter will return the candidate extents for
relocation.

The detailed description for each parameter is as follows:

• TheElement: TheElement is a storage element as the source of relocation.

• TargetSettingGoal: The TargetSettingGoal for which supported extents should be retrieved as available for
relocation. If a NULL is passed for the Goal, the method will return all available extents, regardless of the
goal. There exists a possibility of error in relocating a Pool, Volume, or LogicalDisk to extents retrieved in this
manner.

• InPool: A reference to target storage pool instance used for relocation.

• AvailableExtents: A group of references to available StorageExtents for relocation.

29.10 Client Considerations and Recipes

29.10.1 Client Considerations

29.10.1.1 Relocate StorageVolume to StoragePool for data migration

As one solution for data migration, StorageVolume can be relocated to a new local or remote concrete
StoragePool.

• For local relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities associating
to the StorageRelocationService instance supports 'StorageVolume To StoragePool Relocation'; and 2)
‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the target StoragePool
instance supports 'Used as target for Relocation Service', client can invoke
StorageRelocationService.RelocateStorageVolumesToStoragePool to start the StorageVolume relocation
onto the new concrete StoragePool.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

Storage Relocation Profile

936

Figure 158 shows the progress of this relocation.

Figure 158 - Relocate StorageVolume to local StoragePool

If ‘SupportedAsynchronousActions’ of StorageConfigurationCapabilities supports 'StorageVolume To
StoragePool Relocation', client can use the ‘Job’ output to track the progress of relocation. In the
progress, Job.PercentComplete can be queried to track the completion percent. And through association
‘AffectedJobElement’, the target StoragePool instance with its property ‘CapacityInMigratingTarget’, the
source StoragePool instance which the StorageVolume originally resides on with its property
‘CapacityInMigratingSource’, and StorageVolume with its property ‘NumExtentsMigrating’ can be queried
out continuously to track the detailed progress of relocation. While in relocation, the ‘OperationalStatus’
of the source storage volume (StorageVolume1) will have value ‘Relocating’ to indicate it’s in relocation
progress.

As an successful result, ‘CapacityInMigratingTarget’, ‘CapacityInMigratingSource’ and
‘NumExtentsMigrating’ should all be 0. The ‘OperationalStatus’ of the storage volume will change the
value from ‘Relocating’ to ‘OK’. The key properties of the StorageVolume should stay the same.

• For remote relocation to remote storage pool, it needs to check the StorageConfigurationCapabilities in both
local and remote storage system. So if 1) ‘SupportedStorageElementFeatures’ of
StorageConfigurationCapabilities associating to the local StorageRelocationService instance supports
'StorageVolume To StoragePool Relocation'; and 2) ‘SupportedStoragePoolUsage’ of
StorageConfigurationCapabilities associating to the remote target StoragePool instance supports 'Used as
target for Relocation Service', client can invoke
StorageRelocationService.RelocateStorageVolumesToStoragePool to start the StorageVolume relocation
onto the remote concrete StoragePool.

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

Job: Relocating Volume

SystemName = Tucson

StorageVolume1

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

After relocating successfully:In relocating:

SystemName = Tucson

StoragePool2

HostedStoragePool

HostedStoragePool

AllocatedFromStoragePool

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

SystemName = Tucson

StorageVolume1

SystemName = Tucson

StoragePool1

SystemName = Tucson

StoragePool2

HostedStoragePool

HostedStoragePool

AllocatedFromStoragePool

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 937

Figure 159 shows the progress of this relocation.

Figure 159 - Relocate StorageVolume to remote StoragePool

As same as the local relocation, the same mechanism can be used to track the relocation progress. And
as an successful result, it is different in remote relocation that the key properties of the StorageVolume
may not be able to stay the same as before, the source storage volume will disappear from the source
storage device and appear on the target storage device, so relocating to a remote location may be a
disruptive process.

29.10.1.2 Relocate StoragePool for merge

As one solution for extent merge or capacity expansion, one StoragePool can be relocated into a target
local or remote StoragePool.

• For local relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities associating
to the StorageRelocationService instance supports 'StoragePool To StoragePool Relocation'; 2)
‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the source StoragePool
instance supports 'Used as source for Relocation Service'; and 3) ‘SupportedStoragePoolUsage’ of
StorageConfigurationCapabilities associating to the target StoragePool instance supports 'Used as target for
Relocation Service', client can invoke StorageRelocationService.RelocateStoragePoolsToStoragePool to start
the source StoragePool relocation onto the target StoragePool.

Figure 160 shows the progress of this relocation.

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

Job: Relocating Volume

SystemName = Springs

StorageVolume1

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

SystemName = Tucson

StorageVolume1

SystemName = Tucson

StoragePool1

After relocating successfully:In relocating:

AllocatedFromStoragePool

HostedStoragePoolSystemDeviceHostedStoragePool

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Storage Relocation Profile

938

Figure 160 - Relocate StoragePool to local StoragePool

If ‘SupportedAsynchronousActions’ of StorageConfigurationCapabilities supports 'StoragePool To
StoragePool Relocation', client can use the ‘Job’ output to track the progress of relocation. In the
progress, Job.PercentComplete can be queried to track the completion percent. And through association
‘AffectedJobElement’, the source StoragePool instance with its property ‘CapacityInMigratingSource’, and
the target StoragePool instance with its property ‘CapacityInMigratingTarget’ can be queried out
continuously to track the detailed progress of relocation. While in relocation, the ‘OperationalStatus’ of
the source storage pool (StoragePool2) will have value ‘Relocating’ to indicate it’s in relocation progress.

As an successful result, the source StoragePool won’t exist anymore, and target StoragePool’s
‘CapacityInMigratingTarget’ should be 0. The ‘OperationalStatus’ of the source storage pool will change
the value from ‘Relocating’ to ‘OK’. All the children (volumes or sub pools) belonging to the source
storage pool will be changed as children of target storage pool.

• For remote relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities
associating to the local StorageRelocationService instance supports 'StoragePool To StoragePool
Relocation'; 2) ‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the local
source StoragePool instance supports 'Used as source for Relocation Service'; and 3)
‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the remote target
StoragePool instance supports 'Used as target for Relocation Service', client can invoke
StorageRelocationService.RelocateStoragePoolsToStoragePool to start the local source StoragePool
relocation onto the remote target StoragePool.

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

Job: Relocating Pool

SystemName = Tucson

StoragePool2

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElementAffectedJobElement

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

SystemName = Tucson

StoragePool1

After relocating successfully:In relocating:

HostedStoragePool

HostedStoragePool
HostedStoragePool

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 939

Figure 161 shows the progress of this relocation.

Figure 161 - Relocate StoragePool to remote StoragePool

As same as the local relocation, job instance can be used to track the relocation progress. And as the
result of remote relocation, all the children (volumes or sub pools) belonging to the source storage pool
will disappear from the source storage device, and appear as the children of target storage pool on
remote target storage device. So remote location is a disruptive process.

NOTE It is possible to merge a primordial StoragePool into a target StoragePool if the ‘SupportedStoragePoolUsage’ of
StorageConfigurationCapabilities associating to the source primordial StoragePool instance supports 'Used as source for
Relocation Service'. As implementation, merging primordial StoragePool can result in that all of the concrete StoragePools under
that primordial StoragePool will be merged.

29.10.1.3 Relocate StorageVolume to new StorageExtent group for hotspot tuning

If a StorageVolume is identified as one hotspot volume after analyzing performance statistics of it,
relocating it from low performance StorageExtent (e.g., HDD extent) group to high performance
StorageExtent (e.g.SSD extent) group can serve as an solution on hotspot tuning. And if it becomes cold
spot, it can be relocated back to low performance StorageExtent group.

• For local relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities associating
to the StorageRelocationService instance supports 'StorageVolume To StorageExtent Relocation'; 2) the new
StorageExtent group is under one concrete StoragePool; and 3) ‘SupportedStoragePoolUsage’ of
StorageConfigurationCapabilities associating to the target StoragePool instance supports 'Used as target for
Relocation Service', the client can invoke
StorageRelocationService.RelocateStorageVolumeToStorageExtents to start the StorageVolume relocation
onto the new StorageExtent group.

Name = Tucson

ComputerSystem
Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

Job: Relocating Pool

SystemName = Springs

StoragePool2

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

SystemName = Tucson

StoragePool1

After relocating successfully:In relocating:

HostedStoragePool
HostedStoragePool HostedStoragePool

385

386

387

388

389

390

391
392
393
394

395

396

397

398

399

400

401

402

403

404

405

406

Storage Relocation Profile

940

Figure 162 shows the progress of this relocation.

Figure 162 - Relocate StorageVolume to local StorageExtent group

If ‘SupportedAsynchronousActions’ of StorageConfigurationCapabilities supports 'StorageVolume To
StorageExtent Relocation', client can use the ‘Job’ output to track the progress of relocation. In the
progress, Job.PercentComplete can be queried to track the completion percent. And through association
‘AffectedJobElement’, the StorageVolume instance with its property ‘NumExtentsMigrating’, each
associated StorageExtent instance in ‘Relocating’ status, and the target StoragePool instance with its
property ‘CapacityInMigratingTarget’ can be queried out continuously to track the detailed progress of
relocation. While in relocation, the ‘OperationalStatus’ of the source storage volume (StorageVolume1)
will have value ‘Relocating’ to indicate it’s in relocation progress; and the ‘ExtentStatus’ of each new
storage extent will have value ‘Relocating’ to indicate it’s in relocation progress.

As an successful result, both the target StoragePool’s ‘CapacityInMigratingTarget’ and the
StorageVolume’s ‘NumExtentsMigrating’ should be 0. The ‘OperationalStatus’ of the source storage
volume will change the value from ‘Relocating’ to ‘OK’. The ‘ExtentStatus’ of each new storage extent will
remove the ‘Relocating’ value. The key properties of the StorageVolume stays the same.

For remote relocation, if 1) ‘SupportedStorageElementFeatures’ of StorageConfigurationCapabilities
associating to the local StorageRelocationService instance supports 'StorageVolume To StorageExtent
Relocation'; 2) the remote new StorageExtent group is under one remote concrete StoragePool; and 3)
‘SupportedStoragePoolUsage’ of StorageConfigurationCapabilities associating to the remote target
StoragePool instance supports 'Used as target for Relocation Service', the client can invoke
StorageRelocationService.relocateStorageVolumeToStorageExtents to start the StorageVolume
relocation onto the remote new StorageExtent group.

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

Job: Relocating Volume

SystemName = Tucson

StorageVolume1

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

1

*

ConcreteComponent

In relocating:

Name = Tucson

ComputerSystem

StorageRelocationService

HostedService

SystemName = Tucson

StorageVolume1

SystemName = Tucson

StoragePool1

1

*

ConcreteComponent

After relocating successfully:

AllocatedFromStoragePool

SystemName = Tucson

StorageExtent

SystemName = Tucson

StorageExtent BasedOn

HostedStoragePool

SystemDevice

HostedStoragePool

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 941

Figure 163 shows the progress of this relocation.

Figure 163 - Relocate StorageVolume to remote StorageExtent group

Like the local relocation, job instance can be used to track the relocation progress. And as the result of
remote relocation, the source storage volume will disappear from the source storage device, and appear
on the target storage device, so this remote location is a disruptive process.

NOTE Relocating StorageVolume to new StorageExtent group can also be used as an solution for data migration, and the progress
will be as same as the above.

29.10.2Recipes

29.10.2.1 Relocate StorageVolumes to StoragePool

// DESCRIPTION

// The goal of this recipe is to relocate storage volumes to a local or remote
storage pool.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.$RelocationTargetPool-> is set to reference of the target storage pool for
volume relocation

// 3.$VolumesToRelocate->[] is set to reference of the storage volumes to be
relocated.

// Step 1. Get the storage relocation services and determine the service

// capabilities. Note that the device may not support storage relocation

// so it is possible that the service is not present and

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

Job: Relocating Volume

SystemName = Springs

StorageVolume1

OwningJobElement

SystemName = Tucson

StoragePool1

AffectedJobElement

AffectedJobElement

1

*

ConcreteComponent

In relocating:

Name = Tucson

ComputerSystem

Name = Springs

ComputerSystem

StorageRelocationService StorageRelocationService

HostedService HostedService

SystemName = Tucson

StorageVolume1

SystemName = Tucson

StoragePool1

1

*

ConcreteComponent

After relocating successfully:

AllocatedFromStoragePool

SystemName = Tucson

StorageExtent

SystemName = Tucson

StorageExtent BasedOn

HostedStoragePool

SystemDevice

HostedStoragePool

429

430

431

432

433

434
435

436

437

438

439
440

441

442

443

444

445
446

447
448

449

450

451

Storage Relocation Profile

942

// the desired operation cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageRelocationService”,

 null,

 null)

 // StorageRelocationService and HostedService may not be implemented

 // in the SMI-S Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Relocation is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageRelocationService and/or HostedService may not be included in

 // the model implemented at all if Storage Relocation is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Relocation is not supported.>

 }

}

// There should be only one storage relocation service

// associated with the system

$StorageRelocationService-> = $Services->[0]

// See if the service supports storage volume to storage pool relocation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageRelocationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null, null, false, false, null)

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Storage relocation not supported>

}

if (contains(14, // StorageVolume To StoragePool Relocation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[]))

{

 #SupportsVolumeToStoragePoolRelocation = true

}

else {

 #SupportsVolumeToStoragePoolRelocation = false

 <ERROR! Storage volume to storage pool relocation not supported>

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 943

}

// Only one of SupportedSynchronousActions or SupportedAsynchronousActions

// should contain StorageVolume To StoragePool Relocation

if (contains(17, // StorageVolume To StoragePool Relocation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 == contains(17, // StorageVolume To StoragePool Relocation

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 <ERROR! Storage volume to storage pool relocation should be supported

 in either SupportedSynchronousActions or SupportedAsynchronousActions>

}

if (contains(17, // StorageVolume To StoragePool Relocation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #VolumeRelocationProducesJob = true

}

// Step 2. Get the StorageConfigurationCapabilities of the pool and check

// if it can be target pool for volume relocation

$PoolCapabilities[] = Associators(

$RelocationTargetPool->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

 null, null, false, false, null)

if ($PoolCapabilities[] == null ||

 $PoolCapabilities[].length == 0) {

 <ERROR! The target storage pool does not support storage relocation>

}

if (contains(10, // Used as target for Relocation Service

 $PoolCapabilities[0].SupportedStoragePoolUsage[]))

{

 #Pool_TargetPoolCapability = true

}

else {

 #Pool_TargetPoolCapability = false

 <ERROR! The target storage pool can’t be used as target for relocation service>

}

if (contains(17, // StorageVolume To StoragePool Relocation

 $PoolCapabilities[0].SupportedAsyncronousActions[]))

{

 #Pool_RelocationProducesJob = true

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

Storage Relocation Profile

944

}

// Step 3. Register for indications on relocation jobs

if(#Pool_RelocationProducesJob == true)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 4. Relocate the volumes to the Storage Pool

%InArguments[“TheElements”] = $VolumesToRelocate->[]

%InArguments[“Goal”] = null

%InArguments[“TargetPool”] = $RelocationTargetPool->

#ReturnValue = InvokeMethod(

$StorageRelocationService->,

“RelocateStorageVolumesToStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // The volume relocation operation failed

<ERROR! Failed >

}

if(#Pool_RelocationProducesJob == true)

{

 $VolumeRelocationJob-> = %OutArguments[“Job”]

 // Get migrating status of one of the volumes

 $AffectedVolumes[] = Associators(

$VolumeRelocationJob->,

“CIM_AffectedJobElement”,

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 945

“CIM_StorageVolume”,

null, null, false, false, null)

 #NumExtentsMigrating_Vol = $AffectedVolumes[0].NumExtentsMigrating

 // The OperationalStatus of the volume could be 19 (Relocating)

 #OperationalStatus_Vol = $AffectedVolumes[0].OperationalStatus[0]

 // Get migrating status of the target pool

 $AffectedTargetPool[] = Associators(

$VolumeRelocationJob->,

“CIM_AffectedJobElement”,

“CIM_StoragePool”,

null, null, false, false, null)

 #MigratingIn_TargetPool = $AffectedTargetPool[0].CapacityInMigratingTarget

 // The OperationalStatus of the target pool could be 19 (Relocating)

 #OperationalStatus_TargetPool = $AffectedTargetPool[0].OperationalStatus[0]

//Wait until the completion of the job

 // using $VolumeRelocationJob-> as a filter

 // Wait for indication from either filters defined in step 3

// If the indication states the Job is ‘Complete’ and ‘Error’

// then exit with error: ERROR! Job did not complete successfully

}

else {

 // The volumes that are successfully relocated are output in TheElements

 $RelocatedVolumes-> = %OutArguments[“TheElements”]

}

29.10.2.2 Relocate StoragePool to StoragePool

// DESCRIPTION

// The goal of this recipe is to merge a storage pool to another (local or remote)
storage pool

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.$TargetPool-> is set to reference of the target storage pool

// 3.$PoolsToRelocate->[] is set to reference of the storage pools to be
relocated.

// Step 1. Get the storage relocation services and determine the service

// capabilities. Note that the device may not support storage relocation

// so it is possible that the service is not present and

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599
600

601

602

603

604

605

606
607

608

609

610

Storage Relocation Profile

946

// the desired operation cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageRelocationService”,

 null,

 null)

 // StorageRelocationService and HostedService may not be implemented

 // in the SMI-S Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Relocation is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageRelocationService and/or HostedService may not be included in

 // the model implemented at all if Storage Relocation is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Relocation is not supported.>

 }

}

// There should be only one storage relocation service

// associated with the system

$StorageRelocationService-> = $Services->[0]

// See if the service supports storage pool to storage pool relocation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageRelocationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null, null, false, false, null)

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Storage relocation not supported>

}

if (contains(15, // StoragePool To StoragePool Relocation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[]))

{

 #SupportsPoolToPoolRelocation = true

}

else {

 #SupportsPoolToPoolRelocation = false

 <ERROR! Storage pool to storage pool relocation not supported>

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 947

}

// Only one of SupportedSynchronousActions or SupportedAsynchronousActions

// should contain StoragePool To StoragePool Relocation

if (contains(18, // StoragePool To StoragePool Relocation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 == contains(18, // StoragePool To StoragePool Relocation

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 <ERROR! Storage pool to storage pool relocation should be supported

 in either SupportedSynchronousActions or SupportedAsynchronousActions>

}

if (contains(18, // StoragePool To StoragePool Relocation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #PoolRelocationProducesJob = true

}

// Step 2. Get the StorageConfigurationCapabilities of the pools to be relocated
and check

// if they can be source pools in storage pool relocation

for #i in $PoolsToRelocate->[]

{

$SourcePoolCapabilities[] = Associators(

$PoolsToRelocate->[#i],

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

 null, null, false, false, null)

if ($SourcePoolCapabilities[] == null ||

 $SourcePoolCapabilities[].length == 0) {

 <ERROR! The source storage pool does not support storage relocation>

}

if (contains(9, // Used as source for Relocation Service

 $SourcePoolCapabilities[0].SupportedStoragePoolUsage[]))

{

 #Pool_SourcePoolCapability = true

}

else {

 #Pool_SourcePoolCapability = false

 <ERROR! The source storage pool can’t be used as source for relocation service>

}

}

// Step 3. Get the StorageConfigurationCapabilities of the target pool and check

// if it can be target storage pool in storage pool relocation

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668
669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

Storage Relocation Profile

948

$TargetPoolCapabilities[] = Associators(

$TargetPool->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

 null, null, false, false, null)

if ($TargetPoolCapabilities[] == null ||

 $TargetPoolCapabilities[].length == 0) {

 <ERROR! The target storage pool does not support storage relocation>

}

if (contains(10, // Used as target for Relocation Service

 $TargetPoolCapabilities[0].SupportedStoragePoolUsage[]))

{

 #Pool_TargetPoolCapability = true

}

else {

 #Pool_TargetPoolCapability = false

 <ERROR! The target storage pool can’t be used as target for relocation service>

}

// Step 4. Register for indications on relocation jobs

if(#PoolRelocationProducesJob == true)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 5. Relocate the source pools to the target pool

%InArguments[“TheElements”] = $PoolsToRelocate->[]

%InArguments[“Goal”] = null

%InArguments[“TargetPool”] = $TargetPool->

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 949

#ReturnValue = InvokeMethod(

$StorageRelocationService->,

“RelocateStoragePoolsToStoragePool”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // The storage pool relocation operation failed

<ERROR! Failed >

}

if(#PoolRelocationProducesJob == true)

{

 $PoolRelocationJob-> = %OutArguments[“Job”]

 $AffectedStoragePools[] = Associators(

$PoolRelocationJob->,

“CIM_AffectedJobElement”,

“CIM_StoragePool”,

null, null, false, false, null)

 // Get migrating status of one of the source pools

 for #i in $AffectedStoragePools[]

 {

 if ($AffectedStoragePools[#i] != $TargetPool) {

 $Affected_SourcePool = $AffectedStoragePools[#i]

 break

 }

 }

 #MigratingOut_SourcePool = $Affected_SourcePool.CapacityInMigratingSource

 // The OperationalStatus of the source pool could be 19 (Relocating)

 #OperationalStatus_SourcePool = $Affected_SourcePool.OperationalStatus[0]

 // Get migrating status of the target pool

 #MigratingIn_TargetPool = $TargetPool.CapacityInMigratingTarget

 // The OperationalStatus of the target pool could be 19 (Relocating)

 #OperationalStatus_TargetPool = $TargetPool.OperationalStatus[0]

//Wait until the completion of the job

 // using $PoolRelocationJob-> as a filter

 // Wait for indication from either filters defined in step 4

// If the indication states the Job is ‘Complete’ and ‘Error’

// then exit with error: ERROR! Job did not complete successfully

}

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

Storage Relocation Profile

950

29.10.2.3 Relocate StorageVolume to StorageExtents

// DESCRIPTION

// The goal of this recipe is to relocate storage volume onto a new group of
storage extents

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.$TargetPool-> is set to reference of the target storage pool from which
target extents are allocated for volume relocation

// 3.$VolumeToRelocate-> is set to reference of the storage volume to be
relocated.

// Step 1. Get the storage relocation services and determine the service

// capabilities. Note that the device may not support storage relocation

// so it is possible that the service is not present and

// the desired operation cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageRelocationService”,

 null,

 null)

 // StorageRelocationService and HostedService may not be implemented

 // in the SMI-S Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Relocation is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageRelocationService and/or HostedService may not be included in

 // the model implemented at all if Storage Relocation is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Relocation is not supported.>

 }

}

// There should be only one storage relocation service

// associated with the system

$StorageRelocationService-> = $Services->[0]

// See if the service supports storage volume to storage extent relocation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageRelocationService->,

“CIM_ElementCapabilities”,

773

774

775
776

777

778

779

780

781
782

783
784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 951

“CIM_StorageConfigurationCapabilities”,

null, null, false, false, null)

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Storage relocation not supported>

}

if (contains(16, // StorageVolume To StorageExtent Relocation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[]))

{

 #SupportsVolumeToExtentRelocation = true

}

else {

 #SupportsVolumeToExtentRelocation = false

 <ERROR! Storage volume to storage extent relocation not supported>

}

// Only one of SupportedSynchronousActions or SupportedAsynchronousActions

// should contain StorageVolume To StorageExtent Relocation

if (contains(19, // StorageVolume To StorageExtent Relocation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 == contains(19, // StorageVolume To StorageExtent Relocation

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 <ERROR! Storage volume to storage extent relocation should be supported

 in either SupportedSynchronousActions or SupportedAsynchronousActions>

}

if (contains(19, // StorageVolume To StorageExtent Relocation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #VolumeToExtentProducesJob = true

}

// Step 2. Get available target extents on target pool

%InArguments[“TheElement”] = $VolumeToRelocate->

%InArguments[“InPool”] = $TargetPool->

%InArguments[“TargetSettingGoal”]= null

#ReturnValue = InvokeMethod(

$StorageRelocationService->,

“GetAvailableTargetRelocationExtents”,

%InArguments, %OutArguments)

if(#ReturnValue != 0)

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

Storage Relocation Profile

952

{ // GetAvailableTargetRelocationExtents failed

<ERROR! Failed >

}

if(%OutArguments[“AvailableExtents”] == null)

{ // There is no available relocation extent

<ERROR! Failed >

}

$TargetExtents->[] = %OutArguments[“AvailableExtents”]

// Step 3. Register for indications on relocation jobs

if(#VolumeToExtentProducesJob == true)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 4. Relocate the volume to the extents

%InArguments[“InElements”] = $TargetExtents->[]

%InArguments[“Goal”] = null

%InArguments[“TheElement”] = $VolumeToRelocate->

#ReturnValue = InvokeMethod(

$StorageRelocationService->,

“RelocateStorageVolumeToStorageExtents”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // The volume relocation operation failed

<ERROR! Failed >

}

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 953

if(#VolumeToExtentProducesJob == true)

{

 $VolumeRelocationJob-> = %OutArguments[“Job”]

 // Get migrating status of the source volume

 $AffectedVolume[] = Associators(

$VolumeRelocationJob->,

“CIM_AffectedJobElement”,

“CIM_StorageVolume”,

null, null, false, false, null)

 #NumExtentsMigrating_Vol = $AffectedVolume[0].NumExtentsMigrating

 // The OperationalStatus of the volume could be 19 (Relocating)

 #OperationalStatus_Vol = $AffectedVolume[0].OperationalStatus[0]

 // Get migrating status of one of the target extents

 $AffectedTargetExtents[] = Associators(

$VolumeRelocationJob->,

“CIM_AffectedJobElement”,

“CIM_StorageExtent”,

null, null, false, false, null)

 // The extent status of the target extent could be 18 (Relocating)

 #TargetExtentStatus = $AffectedTargetExtents[0].ExtentStatus

//Wait until the completion of the job

 // using $VolumeRelocationJob-> as a filter

 // Wait for indication from either filters defined in step 2

// If the indication states the Job is ‘Complete’ and ‘Error’

// then exit with error: ERROR! Job did not complete successfully

}

else {

 // The relocated volume is output in TheElement

 $RelocatedVolume-> = %OutArguments[“TheElement”]

}

29.10.2.4 Relocate StoragePool to StorageExtents

// DESCRIPTION

// The goal of this recipe is to relocate a storage pool onto a new group of
storage extents

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.$TargetPool-> is set to reference of the target storage pool from which
target extents are allocated for pool relocation

// 3.$PoolToRelocate-> is set to reference of the storage pool to be relocated.

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926
927

928

929

930

931

932
933

934

Storage Relocation Profile

954

// Step 1. Get the storage relocation services and determine the service

// capabilities. Note that the device may not support storage relocation

// so it is possible that the service is not present and

// the desired operation cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 "CIM_HostedService",

 "CIM_StorageRelocationService",

 null,

 null)

 // StorageRelocationService and HostedService may not be implemented

 // in the SMI-S Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Relocation is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageRelocationService and/or HostedService may not be included in

 // the model implemented at all if Storage Relocation is not supported.

 if ($Exception.CIMStatusCode == "CIM_ERR_INVALID_PARAMETER") {

 <ERROR! Storage Relocation is not supported.>

 }

}

// There should be only one storage relocation service

// associated with the system

$StorageRelocationService-> = $Services->[0]

// See if the service supports storage pool to storage extent relocation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageRelocationService->,

"CIM_ElementCapabilities",

"CIM_StorageConfigurationCapabilities",

null, null, false, false, null)

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Storage relocation not supported>

}

if (contains(17, // StoragePool To StorageExtent Relocation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[]))

{

 #SupportsPoolToExtentRelocation = true

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 955

}

else {

 #SupportsPoolToExtentRelocation = false

 <ERROR! Storage pool to storage extent relocation not supported>

}

// Only one of SupportedSynchronousActions or SupportedAsynchronousActions

// should contain StoragePool To StorageExtent Relocation

if (contains(20, // StoragePool To StorageExtent Relocation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 == contains(20, // StoragePool To StorageExtent Relocation

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 <ERROR! Storage pool to storage extent relocation should be supported

 in either SupportedSynchronousActions or SupportedAsynchronousActions>

}

if (contains(20, // StoragePool To StorageExtent Relocation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #PoolToExtentProducesJob = true

}

// Step 2. Get available target extents on target pool

%InArguments["TheElement"] = $PoolToRelocate->

%InArguments["InPool"] = $TargetPool->

%InArguments["TargetSettingGoal"]= null

#ReturnValue = InvokeMethod(

$StorageRelocationService->,

"GetAvailableTargetRelocationExtents",

%InArguments, %OutArguments)

if(#ReturnValue != 0)

{ // GetAvailableTargetRelocationExtents failed

<ERROR! Failed >

}

if(%OutArguments["AvailableExtents"] == null)

{ // There is no available relocation extent

<ERROR! Failed >

}

$TargetExtents->[] = %OutArguments["AvailableExtents"]

// Step 3. Register for indications on relocation jobs

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

Storage Relocation Profile

956

if(#PoolToExtentProducesJob == true)

{

// '17' ("Completed") '2' ("OK")

#Filter1 = "SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2"

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

// '17' ("Completed") '6' ("Error")

#Filter2 = "SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 "

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 4. Relocate the pool to the extents

%InArguments["InElements"] = $TargetExtents->[]

%InArguments["Goal"] = null

%InArguments["TheElement"] = $PoolToRelocate->

#ReturnValue = InvokeMethod(

$StorageRelocationService->,

"RelocateStoragePoolToStorageExtents",

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // The pool relocation operation failed

<ERROR! Failed >

}

if(#PoolToExtentProducesJob == true)

{

 $PoolRelocationJob-> = %OutArguments["Job"]

 // Get migrating status of the source pool

 $AffectedPool[] = Associators(

$PoolRelocationJob->,

"CIM_AffectedJobElement",

"CIM_StoragePool",

null, null, false, false, null)

 #MigratingOut_SourcePool = $AffectedPool[0].CapacityInMigratingSource

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 957

 // The OperationalStatus of the pool could be 19 (Relocating)

 #OperationalStatus_SourcePool = $AffectedPool[0].OperationalStatus[0]

 // Get migrating status of one of the target extents

 $AffectedTargetExtents[] = Associators(

$PoolRelocationJob->,

"CIM_AffectedJobElement",

"CIM_StorageExtent",

null, null, false, false, null)

 // The extent status of the target extent could be 18 (Relocating)

 #TargetExtentStatus = $AffectedTargetExtents[0].ExtentStatus

//Wait until the completion of the job

 // using $PoolRelocationJob-> as a filter

 // Wait for indication from either filters defined in step 2

// If the indication states the Job is 'Complete' and 'Error'

// then exit with error: ERROR! Job did not complete successfully

}

else {

 // The relocated pool is output in TheElement

 $RelocatedPool-> = %OutArguments["TheElement"]

}

29.10.2.5 Relocate LogicalDisk to StorageExtents

// DESCRIPTION

// The goal of this recipe is to relocate a logical disk onto a new group of
storage extents

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2.$TargetPool-> is set to reference of the target storage pool from which
target extents are allocated for logical disk
relocation

// 3.$LogicalDiskToRelocate-> is set to reference of the logical disk to be
relocated.

// Step 1. Get the storage relocation services and determine the service

// capabilities. Note that the device may not support storage relocation

// so it is possible that the service is not present and

// the desired operation cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageRelocationService”,

 null,

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076
1077

1078

1079

1080

1081

1082
1083
1084

1085
1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

Storage Relocation Profile

958

 null)

 // StorageRelocationService and HostedService may not be implemented

 // in the SMI-S Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Relocation is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageRelocationService and/or HostedService may not be included in

 // the model implemented at all if Storage Relocation is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Relocation is not supported.>

 }

}

// There should be only one storage relocation service

// associated with the system

$StorageRelocationService-> = $Services->[0]

// See if the service supports logical disk to storage extent relocation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

$StorageRelocationService->,

“CIM_ElementCapabilities”,

“CIM_StorageConfigurationCapabilities”,

null, null, false, false, null)

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Storage relocation not supported>

}

if (contains(18, // LogicalDisk To StorageExtent Relocation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[]))

{

 #SupportsLogicalDiskToExtentRelocation = true

}

else {

 #SupportsLogicalDiskToExtentRelocation = false

 <ERROR! Storage pool to storage extent relocation not supported>

}

// Only one of SupportedSynchronousActions or SupportedAsynchronousActions

// should contain LogicalDisk To StorageExtent Relocation

if (contains(21, // LogicalDisk To StorageExtent Relocation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 == contains(21, // LogicalDisk To StorageExtent Relocation

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 959

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 <ERROR! Logical disk to storage extent relocation should be supported

 in either SupportedSynchronousActions or SupportedAsynchronousActions>

}

if (contains(21, // LogicalDisk To StorageExtent Relocation

$ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #LogicalDiskToExtentProducesJob = true

}

// Step 2. Get available target extents on target pool

%InArguments[“TheElement”] = $LogicalDiskToRelocate->

%InArguments[“InPool”] = $TargetPool->

%InArguments[“TargetSettingGoal”]= null

#ReturnValue = InvokeMethod(

$StorageRelocationService->,

“GetAvailableTargetRelocationExtents”,

%InArguments, %OutArguments)

if(#ReturnValue != 0)

{ // GetAvailableTargetRelocationExtents failed

<ERROR! Failed >

}

if(%OutArguments[“AvailableExtents”] == null)

{ // There is no available relocation extent

<ERROR! Failed >

}

$TargetExtents->[] = %OutArguments[“AvailableExtents”]

// Step 3. Register for indications on relocation jobs

if(#LogicalDiskToExtentProducesJob == true)

{

// ‘17’ (“Completed”) ‘2’ (“OK”)

#Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

// ‘17’ (“Completed”) ‘6’ (“Error”)

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

Storage Relocation Profile

960

#Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

@{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 4. Relocate the logical disk to the extents

%InArguments[“InElements”] = $TargetExtents->[]

%InArguments[“Goal”] = null

%InArguments[“TheElement”] = $LogicalDiskToRelocate->

#ReturnValue = InvokeMethod(

$StorageRelocationService->,

“RelocateLogicalDiskToStorageExtents”,

%InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // The logical disk relocation operation failed

<ERROR! Failed >

}

if(#LogicalDiskToExtentProducesJob == true)

{

 $LogicalDiskRelocationJob-> = %OutArguments[“Job”]

 // Get migrating status of the source logical disk

 $AffectedLogicalDisk[] = Associators(

$LogicalDiskRelocationJob->,

“CIM_AffectedJobElement”,

“CIM_LogicalDisk”,

null, null, false, false, null)

 #MigratingOut_SourceLogicalDisk = $AffectedLogicalDisk[0].NumExtentsMigrating

 // The OperationalStatus of the logical disk could be 19 (Relocating)

 #OperationalStatus_SourceLogicalDisk =
$AffectedLogicalDisk[0].OperationalStatus[0]

 // Get migrating status of one of the target extents

 $AffectedTargetExtents[] = Associators(

$LogicalDiskRelocationJob->,

“CIM_AffectedJobElement”,

“CIM_StorageExtent”,

null, null, false, false, null)

 // The extent status of the target extent could be 18 (Relocating)

 #TargetExtentStatus = $AffectedTargetExtents[0].ExtentStatus

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205
1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 961

//Wait until the completion of the job

 // using $LogicalDiskRelocationJob-> as a filter

 // Wait for indication from either filters defined in step 2

// If the indication states the Job is ‘Complete’ and ‘Error’

// then exit with error: ERROR! Job did not complete successfully

}

else {

 // The relocated pool is output in TheElement

 $RelocatedLogicalDisk-> = %OutArguments[“TheElement”]

}

29.11 Registered Name and Version

Storage Relocation version 1.6.0 (Component Profile)

CIM Schema Version: 2.29

29.12 CIM Elements

Table 645 describes the CIM elements for Storage Relocation.

Table 645 - CIM Elements for Storage Relocation

Element Name Requirement Description

29.12.1 CIM_AffectedJobElement (LogicalDisk to
ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '21' (async disk operations). This
AffectedJobElement represents an association between a
Job and the LogicalDisks(s) that may be affected by its
execution.

29.12.2 CIM_AffectedJobElement (StorageExtent to
ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '19|20|21' (async extent
operations). AffectedJobElement represents an
association between a Job and the storage extent(s) that
may be affected by its execution.

29.12.3 CIM_AffectedJobElement (StoragePool to
ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '17|18|20' (async pool operations).
AffectedJobElement represents an association between a
Job and the storage pool(s) that may be affected by its
execution.

29.12.4 CIM_AffectedJobElement (StorageVolume to
ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '17|19' (async volume operations).
AffectedJobElement represents an association between a
Job and the storage volumes(s) that may be affected by
its execution.

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

Storage Relocation Profile

962

29.12.5 CIM_ElementCapabilities
(StorageConfigurationCapabilities to StoragePool)

Mandatory Associates StorageConfigurationCapabilities with
StoragePool. This ElementCapabilities shall represent the
capabilities of the StoragePool to which it is associated.

29.12.6 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageRelocationService)

Mandatory Associates the global StorageConfigurationCapabilities
with StorageRelocationservice. This ElementCapabilities
shall represent the capabilities that
StorageRelocationService can provide.

29.12.7 CIM_FilterCollection (Storage Relocation
Predefined FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

29.12.8 CIM_FilterCollection (Storage Relocation
ProfileSpecificAlertIndicationFilterCollection)

Optional Experimental. This is a collection of Lifecycle
IndicationFilters defined by the Storage Relocation
Profile.

29.12.9 CIM_HostedCollection (System to Storage
Relocation ProfileSpecificAlertIndicationFilterCollection)

Optional Experimental.

29.12.10 CIM_HostedCollection (System to predefined
IndicationFilters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

29.12.11 CIM_HostedService (StorageRelocationService
to ComputerSystem)

Mandatory HostedService represents an association between the
scoping System and the StorageRelocationService.

29.12.12 CIM_IndicationFilter
(LogicalDiskRelocationEnd)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the end of a storage
relocation of a logical disk instance.

29.12.13 CIM_IndicationFilter
(LogicalDiskRelocationStart)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the start of a storage
relocation of a logical disk instance.

29.12.14 CIM_IndicationFilter
(StoragePoolRelocationEnd)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the end of a storage
relocation of a storage pool instance.

29.12.15 CIM_IndicationFilter
(StoragePoolRelocationStart)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the start of a storage
relocation of a storage pool instance.

29.12.16 CIM_IndicationFilter (VolumeRelocationEnd) Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the end of a storage
relocation of a storage volume instance.

29.12.17 CIM_IndicationFilter (VolumeRelocationStart) Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the start of a storage
relocation of a storage volume instance.

29.12.18 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. The
CIM_LogicalDisk is an augmented version of the
CIM_LogicalDisk defined in the Block Services package.
See CIM_LogicalDisk in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.34 CIM_LogicalDisk.

Table 645 - CIM Elements for Storage Relocation

Element Name Requirement Description

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 963

29.12.19 CIM_MemberOfCollection (Predefined Filter
Collection to Storage Relocation Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Storage Relocation predefined FilterCollection to the
predefined Filters supported by the implementation.

29.12.20 CIM_MemberOfCollection (Storage Relocation
Filter Collection to FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Storage Relocation predefined FilterCollection to the
FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

29.12.21 CIM_MemberOfCollection (Storage Relocation
ProfileSpecificAlertIndicationFilterCollection to Storage
Relocation Filters)

Optional Experimental. This associates the Storage Relocation
ProfileSpecificAlertIndicationFilterCollection to the Filters
defined by the Storage Relocation Profile.

29.12.22 CIM_OwningJobElement
(StorageRelocationService to ConcreteJob)

Conditional Conditional requirement: This is required if
CIM_StorageConfigurationCapabilities.SupportedAsynchr
onousActions contains '17|18|19|20|21' (async relocation
operations). OwningJobElement represents an
association between a Job and the
StorageRelocationService that initiated its execution.

29.12.23 CIM_StorageConfigurationCapabilities
(Concrete)

Mandatory The Concrete CIM_StorageConfigurationCapabilities an
augmented version of the Concrete
CIM_StorageConfigurationCapabilities defined in the
Block Services package. See
CIM_StorageConfigurationCapabilities (Concrete) in
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.40
CIM_StorageConfigurationCapabilities (Concrete).

29.12.24 CIM_StorageConfigurationCapabilities (Global) Mandatory The global CIM_StorageConfigurationCapabilities an
augmented version of the global
CIM_StorageConfigurationCapabilities defined in the
Block Services package. See
CIM_StorageConfigurationCapabilities (Global) in section
Storage Management Technical Specification, Part 4
Block Devices, 1.6.1 Rev 6 5.8.41
CIM_StorageConfigurationCapabilities (Global).

29.12.25 CIM_StorageConfigurationCapabilities
(Primordial)

Mandatory The primordial CIM_StorageConfigurationCapabilities an
augmented version of the primordial
CIM_StorageConfigurationCapabilities defined in the
Block Services package. See
CIM_StorageConfigurationCapabilities (Primordial) in
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.42
CIM_StorageConfigurationCapabilities (Primordial).

29.12.26 CIM_StorageExtent (Relocatable) Optional A StorageExtent that can be a source or target of a
relocation operation.

29.12.27 CIM_StoragePool (Concrete) Mandatory The concrete CIM_StoragePool an augmented version of
the concrete CIM_StoragePool defined in the Block
Services package. See CIM_StoragePool (Concrete) in
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.44
CIM_StoragePool (Concrete).

Table 645 - CIM Elements for Storage Relocation

Element Name Requirement Description

Storage Relocation Profile

964

29.12.1CIM_AffectedJobElement (LogicalDisk to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '21' (async disk operations).

Table 646 describes class CIM_AffectedJobElement (LogicalDisk to ConcreteJob).

29.12.2CIM_AffectedJobElement (StorageExtent to ConcreteJob)

29.12.28 CIM_StoragePool (Primordial) Mandatory The primordial CIM_StoragePool an augmented version
of the primordial CIM_StoragePool defined in the Block
Services package. See CIM_StoragePool (Primordial) in
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.46
CIM_StoragePool (Primordial).

29.12.29 CIM_StorageRelocationService Mandatory Experimental. CIM_StorageRelocationService that
provides the storage relocation methods.

29.12.30 CIM_StorageVolume Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. The CIM_StorageVolume is an augmented
version of the CIM_StorageVolume defined in the Block
Services package. See CIM_StorageVolume in section
Storage Management Technical Specification, Part 4
Block Devices, 1.6.1 Rev 6 5.8.51 CIM_StorageVolume.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM32'

Optional Indication that StorageVolume relocation starts.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM33'

Optional Indication that StorageVolume relocation ends.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM34'

Optional Indication that StoragePool relocation starts.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM35'

Optional Indication that StoragePool relocation ends.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM36'

Optional Indication that LogicalDisk relocation starts.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM37'

Optional Indication that LogicalDisk relocation ends.

Table 646 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (LogicalDisk to Concrete-
Job)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory A reference to a CIM_LogicalDisk instance that is affected by the
execution of the job.

AffectingElement Mandatory The job that is affecting the logical disk.

Table 645 - CIM Elements for Storage Relocation

Element Name Requirement Description

1232

1233

1234

1235

1236

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 965

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '19|20|21' (async extent operations).

Table 647 describes class CIM_AffectedJobElement (StorageExtent to ConcreteJob).

29.12.3CIM_AffectedJobElement (StoragePool to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '17|18|20' (async pool operations).

Table 648 describes class CIM_AffectedJobElement (StoragePool to ConcreteJob).

29.12.4CIM_AffectedJobElement (StorageVolume to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '17|19' (async volume operations).

Table 649 describes class CIM_AffectedJobElement (StorageVolume to ConcreteJob).

29.12.5CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)

Requirement: Mandatory

Table 647 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StorageExtent to Concrete-
Job)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory A reference to a CIM_StorageExtent instance that is affected by the
execution of the job.

AffectingElement Mandatory The job that is affecting the storage extent.

Table 648 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StoragePool to Concrete-
Job)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory A reference to a CIM_StoragePool instance that is affected by the
execution of the job.

AffectingElement Mandatory The job that is affecting the storage pool.

Table 649 - SMI Referenced Properties/Methods for CIM_AffectedJobElement (StorageVolume to Concrete-
Job)

Properties Flags Requirement Description & Notes

AffectedElement Mandatory A reference to a CIM_StorageVolume instance that is affected by the
execution of the job.

AffectingElement Mandatory The job that is affecting the storage volume.

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

Storage Relocation Profile

966

Table 650 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool).

29.12.6CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageRelocationService)

Requirement: Mandatory

Table 651 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageRelocationService).

29.12.7CIM_FilterCollection (Storage Relocation Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Storage Relocation implementation shall
indicate support for predefined FilterCollections by the SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter
Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 652 describes class CIM_FilterCollection (Storage Relocation Predefined FilterCollection).

29.12.8CIM_FilterCollection (Storage Relocation ProfileSpecificAlertIndicationFilterCollection)

Experimental. This is a collection of Lifecycle IndicationFilters defined by the Storage Relocation Profile.

Requirement: Optional

Table 650 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The Pool StorageConfigurationCapabilities instance associated with the
StoragePool.

ManagedElement Mandatory The StoragePool reference.

Table 651 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StorageRelocationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The global StorageConfigurationCapabilities associated with the element.

ManagedElement Mandatory The StorageRelocationService.

Table 652 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Relocation Predefined
FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Storage
Relocation:Predefined'.

1250

1251

1252

1253

1254

1255

1256
1257
1258

1259

1260

1261

1262

1263

1264

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 967

Table 653 describes class CIM_FilterCollection (Storage Relocation
ProfileSpecificAlertIndicationFilterCollection).

29.12.9CIM_HostedCollection (System to Storage Relocation ProfileSpecificAlertIndicationFilter-
Collection)

Experimental.

Requirement: Optional

Table 654 describes class CIM_HostedCollection (System to Storage Relocation
ProfileSpecificAlertIndicationFilterCollection).

29.12.10CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 655 describes class CIM_HostedCollection (System to predefined IndicationFilters).

29.12.11CIM_HostedService (StorageRelocationService to ComputerSystem)

Requirement: Mandatory

Table 653 - SMI Referenced Properties/Methods for CIM_FilterCollection (Storage Relocation ProfileSpecif-
icAlertIndicationFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.13
CIM_FilterCollection (StaticFilterCollection).

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Storage
Relocation:ProfileSpecificAlertIndicationFilterCollection'.

Table 654 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to Storage Relocation
ProfileSpecificAlertIndicationFilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the ProfileSpecificAlertIndicationFilterCollection for the
Storage Relocation Profile.

Antecedent Mandatory Reference to the 'Top level' System.

Table 655 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indica-
tionFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Storage Relocation
implementation.

Antecedent Mandatory Reference to the System of the referencing profile.

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

Storage Relocation Profile

968

Table 656 describes class CIM_HostedService (StorageRelocationService to ComputerSystem).

29.12.12CIM_IndicationFilter (LogicalDiskRelocationEnd)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the end of a storage relocation of
a CIM_LogicalDisk instance. This would typically occur sometime after getting the alert for the start of the
relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 657 describes class CIM_IndicationFilter (LogicalDiskRelocationEnd).

29.12.13CIM_IndicationFilter (LogicalDiskRelocationStart)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the start of a storage relocation of
a CIM_LogicalDisk instance. This would typically occur as a result of an invocation of Storage Relocation
Service method.

Table 656 - SMI Referenced Properties/Methods for CIM_HostedService (StorageRelocationService to
ComputerSystem)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The StorageRelocationService hosted on the System.

Table 657 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDiskRelocationEnd)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Relocation:LogicalDiskRelocationEnd'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM37'.

QueryLanguage Mandatory This should be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

1280

1281

1282
1283

1284

1285

1286

1287

1288

1289

1290
1291

1292

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 969

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 658 describes class CIM_IndicationFilter (LogicalDiskRelocationStart).

29.12.14CIM_IndicationFilter (StoragePoolRelocationEnd)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the end of a storage relocation of
a CIM_StoragePool instance. This would typically occur sometime after getting the alert for the start of
the relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 658 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDiskRelocationStart)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Relocation:LogicalDiskRelocationStart'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM36'.

QueryLanguage Mandatory This should be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

1293

1294

1295

1296

1297

1298
1299

1300

1301

1302

1303

Storage Relocation Profile

970

Table 659 describes class CIM_IndicationFilter (StoragePoolRelocationEnd).

29.12.15CIM_IndicationFilter (StoragePoolRelocationStart)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the start of a storage relocation of
a CIM_StoragePool instance. This would typically occur as a result of an invocation of Storage Relocation
Service method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 660 describes class CIM_IndicationFilter (StoragePoolRelocationStart).

Table 659 - SMI Referenced Properties/Methods for CIM_IndicationFilter (StoragePoolRelocationEnd)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Relocation:StoragePoolRelocationEnd'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM35'.

QueryLanguage Mandatory This should be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 660 - SMI Referenced Properties/Methods for CIM_IndicationFilter (StoragePoolRelocationStart)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

1304

1305

1306
1307

1308

1309

1310

1311

1312

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 971

29.12.16CIM_IndicationFilter (VolumeRelocationEnd)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the end of a storage relocation of
a CIM_StorageVolume instance. This would typically occur sometime after getting the alert for the start of
the relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 661 describes class CIM_IndicationFilter (VolumeRelocationEnd).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Relocation:StoragePoolRelocationStart'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM34'.

QueryLanguage Mandatory This should be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 661 - SMI Referenced Properties/Methods for CIM_IndicationFilter (VolumeRelocationEnd)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Relocation:VolumeRelocationEnd'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Table 660 - SMI Referenced Properties/Methods for CIM_IndicationFilter (StoragePoolRelocationStart)

Properties Flags Requirement Description & Notes

1313

1314
1315

1316

1317

1318

1319

1320

Storage Relocation Profile

972

29.12.17CIM_IndicationFilter (VolumeRelocationStart)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the start of a storage relocation of
a CIM_StorageVolume instance. This would typically occur as a result of an invocation of Storage
Relocation Service method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 662 describes class CIM_IndicationFilter (VolumeRelocationStart).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM33'.

QueryLanguage Mandatory This should be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 662 - SMI Referenced Properties/Methods for CIM_IndicationFilter (VolumeRelocationStart)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Storage Relocation:VolumeRelocationStart'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM32'.

QueryLanguage Mandatory This should be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 661 - SMI Referenced Properties/Methods for CIM_IndicationFilter (VolumeRelocationEnd)

Properties Flags Requirement Description & Notes

1321

1322
1323

1324

1325

1326

1327

1328

1329

1330
1331

1332

1333

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 973

29.12.18CIM_LogicalDisk

The CIM_LogicalDisk is an augmented version of the CIM_LogicalDisk defined in the Block Services
package. When Storage Relocation is implemented this class adds a property and a property value for
storage relocation.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 663 describes class CIM_LogicalDisk.

Table 663 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.34 CIM_LogicalDisk.

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34 CIM_LogicalDisk.

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

DeviceID Mandatory See the DeviceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34 CIM_LogicalDisk.

ElementName Optional See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

Name Mandatory See the Name definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34 CIM_LogicalDisk.

NameFormat Mandatory See the NameFormat definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34 CIM_LogicalDisk.

ExtentStatus Mandatory See the ExtentStatus definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34 CIM_LogicalDisk.

OperationalStatus Mandatory Value shall be 2|3|6|8|15|19 (OK or Degraded or Error or Starting or
Dormant or Relocating). The Storage Relocation Profile adds the 19
enumeration.

BlockSize Mandatory See the BlockSize definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34 CIM_LogicalDisk.

NumberOfBlocks Mandatory See the NumberOfBlocks definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

ConsumableBlocks Mandatory See the ConsumableBlocks definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

IsBasedOnUnderlyingRed
undancy

Mandatory See the IsBasedOnUnderlyingRedundancy definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.34 CIM_LogicalDisk.

NoSinglePointOfFailure Mandatory See the NoSinglePointOfFailure definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

1334

1335

1336

Storage Relocation Profile

974

29.12.19CIM_MemberOfCollection (Predefined Filter Collection to Storage Relocation Filters)

Experimental. This associates the Storage Relocation predefined FilterCollection to the predefined Filters
supported by the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 664 describes class CIM_MemberOfCollection (Predefined Filter Collection to Storage Relocation
Filters).

29.12.20CIM_MemberOfCollection (Storage Relocation Filter Collection to FilterCollection)

Experimental. This associates the Storage Relocation predefined FilterCollection to the FilterCollection
for the autonomous profile (e.g., the Array FilterCollection).

DataRedundancy Mandatory See the DataRedundancy definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

PackageRedundancy Mandatory See the PackageRedundancy definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

DeltaReservation Mandatory See the DeltaReservation definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

Usage Optional See the Usage definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34 CIM_LogicalDisk.

OtherUsageDescription Optional See the OtherUsageDescription definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

ClientSettableUsage Optional See the ClientSettableUsage definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34
CIM_LogicalDisk.

Primordial Mandatory See the Primordial definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.34 CIM_LogicalDisk.

ExtentDiscriminator Mandatory Experimental. See the ExtentDiscriminator definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.34 CIM_LogicalDisk.

NumExtentsMigrating Optional The number of Extents in the process of migrating for this logical disk
when the logical disk relocation is on going. The Storage Relocation
Profile adds this property.

Table 664 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Storage Relocation Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Storage Relocation predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Storage Relocation
implementation.

Table 663 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

1337

1338

1339

1340

1341

1342

1343

1344
1345

1346

1347

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 975

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 665 describes class CIM_MemberOfCollection (Storage Relocation Filter Collection to
FilterCollection).

29.12.21CIM_MemberOfCollection (Storage Relocation ProfileSpecificAlertIndicationFilterCollec-
tion to Storage Relocation Filters)

Experimental. This associates the Storage Relocation ProfileSpecificAlertIndicationFilterCollection to the
Filters defined by the Storage Relocation Profile.

Requirement: Optional

Table 666 describes class CIM_MemberOfCollection (Storage Relocation
ProfileSpecificAlertIndicationFilterCollection to Storage Relocation Filters).

29.12.22CIM_OwningJobElement (StorageRelocationService to ConcreteJob)

Requirement: This is required if CIM_StorageConfigurationCapabilities.SupportedAsynchronousActions
contains '17|18|19|20|21' (async relocation operations).

Table 667 describes class CIM_OwningJobElement (StorageRelocationService to ConcreteJob).

Table 665 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Relocation Filter
Collection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the predefined FilterCollection of the referencing profile (e.g.,
Array FilterCollection).

Member Mandatory Reference to the Storage Relocation predefined FilterCollection.

Table 666 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Storage Relocation Profile-
SpecificAlertIndicationFilterCollection to Storage Relocation Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Storage Relocation
ProfileSpecificAlertIndicationFilterCollection.

Member Mandatory Reference to the IndicationFilters defined by the Storage Relocation
Profile.

Table 667 - SMI Referenced Properties/Methods for CIM_OwningJobElement (StorageRelocationService to
ConcreteJob)

Properties Flags Requirement Description & Notes

OwningElement Mandatory A reference to a CIM_StorageRelocationService instance responsible for
the creation of the job.

OwnedElement Mandatory The job created by the CIM_StorageRelocationService.

1348

1349

1350

1351

1352
1353

1354

1355

1356

1357

1358

1359

1360

1361

1362
1363

1364

Storage Relocation Profile

976

29.12.23CIM_StorageConfigurationCapabilities (Concrete)

The global CIM_StorageConfigurationCapabilities an augmented version of the global
CIM_StorageConfigurationCapabilities defined in the Block Services package.When Storage Relocation
is implemented this class is Mandatory and adds property values for storage relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 668 describes class CIM_StorageConfigurationCapabilities (Concrete).

Table 668 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.40
CIM_StorageConfigurationCapabilities (Concrete).

ElementName Mandatory See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.40
CIM_StorageConfigurationCapabilities (Concrete).

SupportedStoragePoolFea
tures

Optional See the SupportedStoragePoolFeatures definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.40 CIM_StorageConfigurationCapabilities (Concrete).

SupportedAsynchronousA
ctions

Mandatory Lists what actions, invoked through StorageConfigurationService
methods, shall not produce Concrete jobs.

This profile augments the list in Block Services by making this property
mandatory and adding actions, invoked through StorageRelocationService
methods, that may produce Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Types

Mandatory See the SupportedStorageElementTypes definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.40 CIM_StorageConfigurationCapabilities (Concrete).

SupportedSynchronousAct
ions

Mandatory Lists what actions, invoked through StorageConfigurationService
methods, may produce Concrete jobs.

This profile augments the list in Block Services by making this property
mandatory and adding actions, invoked through StorageRelocationService
methods, that shall not produce Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

1365

1366

1367

1368

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 977

29.12.24CIM_StorageConfigurationCapabilities (Global)

The global CIM_StorageConfigurationCapabilities an augmented version of the global
CIM_StorageConfigurationCapabilities defined in the Block Services package.When Storage Relocation
is implemented this class is Mandatory and adds property values for storage relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SupportedStorageElement
Features

Mandatory Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().
Matches 3|5|8|9|11|12|13 (StorageVolume Creation or StorageVolume
Modification or LogicalDisk Creation or LogicalDisk Modification or
Storage Element QoS Change or Storage Element Capacity Expansion or
Storage Element Capacity Reduction).

This profile augments the list in Block Services by making this property
mandatory and adding actions supported through the invocation of
StorageRelocationService.RelocateStorageElementsToStoragePool() and
StorageRelocationService.RelocateStorageElementToElements().

14 = 'StorageVolume To StoragePool Relocation'

15 = 'StoragePool To StoragePool Relocation'

16 = 'StorageVolume To StorageExtent Relocation'

17 = 'StoragePool To StorageExtent Relocation'

18 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Usage

Optional See the SupportedStorageElementUsage definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.40 CIM_StorageConfigurationCapabilities (Concrete).

ClientSettableElementUsa
ge

Optional See the ClientSettableElementUsage definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.40 CIM_StorageConfigurationCapabilities (Concrete).

SupportedStoragePoolUsa
ge

Mandatory Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

This profile augments the list in Block Services by making this property
mandatory and adding the following values to the enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

ClientSettablePoolUsage Mandatory Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

This profile augments the list in Block Services by making this property
mandatory and adding the following values to the enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

Table 668 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

1369

1370
1371

1372

1373

1374

1375

Storage Relocation Profile

978

Table 669 describes class CIM_StorageConfigurationCapabilities (Global).

Table 669 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.41
CIM_StorageConfigurationCapabilities (Global).

ElementName Mandatory See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.41
CIM_StorageConfigurationCapabilities (Global).

SupportedStoragePoolFea
tures

Optional See the SupportedStoragePoolFeatures definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.41 CIM_StorageConfigurationCapabilities (Global).

SupportedAsynchronousA
ctions

Mandatory Lists what actions, invoked through StorageConfigurationService
methods, shall not produce Concrete jobs.

This profile augments the list in Block Services by making this property
mandatory and adding actions, invoked through StorageRelocationService
methods, that may produce Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Types

Mandatory See the SupportedStorageElementTypes definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.41 CIM_StorageConfigurationCapabilities (Global).

SupportedSynchronousAct
ions

Mandatory Lists what actions, invoked through StorageConfigurationService
methods, may produce Concrete jobs.

This profile augments the list in Block Services by making this property
mandatory and adding actions, invoked through StorageRelocationService
methods, that shall not produce Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

1376

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 979

29.12.25CIM_StorageConfigurationCapabilities (Primordial)

The global CIM_StorageConfigurationCapabilities an augmented version of the global
CIM_StorageConfigurationCapabilities defined in the Block Services package.When Storage Relocation
is implemented this class is Mandatory and adds property values for storage relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

SupportedStorageElement
Features

Mandatory Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().
Matches 3|5|8|9|11|12|13 (StorageVolume Creation or StorageVolume
Modification or LogicalDisk Creation or LogicalDisk Modification or
Storage Element QoS Change or Storage Element Capacity Expansion or
Storage Element Capacity Reduction).

This profile augments the list in Block Services by making this property
mandatory and adding actions supported through the invocation of
StorageRelocationService.RelocateStorageElementsToStoragePool() and
StorageRelocationService.RelocateStorageElementToElements().

14 = 'StorageVolume To StoragePool Relocation'

15 = 'StoragePool To StoragePool Relocation'

16 = 'StorageVolume To StorageExtent Relocation'

17 = 'StoragePool To StorageExtent Relocation'

18 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Usage

Optional See the SupportedStorageElementUsage definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.41 CIM_StorageConfigurationCapabilities (Global).

ClientSettableElementUsa
ge

Optional See the ClientSettableElementUsage definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.41 CIM_StorageConfigurationCapabilities (Global).

SupportedStoragePoolUsa
ge

Mandatory Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

This profile augments the list in Block Services by making this property
mandatory and adding the following values to the enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

ClientSettablePoolUsage Mandatory Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

This profile augments the list in Block Services by making this property
mandatory and adding the following values to the enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

Table 669 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

1377

1378
1379

1380

1381

1382

1383

Storage Relocation Profile

980

Table 670 describes class CIM_StorageConfigurationCapabilities (Primordial).

Table 670 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.42
CIM_StorageConfigurationCapabilities (Primordial).

ElementName Mandatory See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.42
CIM_StorageConfigurationCapabilities (Primordial).

SupportedStoragePoolFea
tures

Optional See the SupportedStoragePoolFeatures definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.42 CIM_StorageConfigurationCapabilities (Primordial).

SupportedAsynchronousA
ctions

Mandatory Lists what actions, invoked through StorageConfigurationService
methods, shall not produce Concrete jobs.

This profile augments the list in Block Services by making this property
mandatory and adding actions, invoked through StorageRelocationService
methods, that may produce Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Types

Mandatory See the SupportedStorageElementTypes definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.42 CIM_StorageConfigurationCapabilities (Primordial).

SupportedSynchronousAct
ions

Mandatory Lists what actions, invoked through StorageConfigurationService
methods, may produce Concrete jobs.

This profile augments the list in Block Services by making this property
mandatory and adding actions, invoked through StorageRelocationService
methods, that shall not produce Concrete jobs.

17 = 'StorageVolume To StoragePool Relocation'

18 = 'StoragePool To StoragePool Relocation'

19 = 'StorageVolume To StorageExtent Relocation'

20 = 'StoragePool To StorageExtent Relocation'

21 = 'LogicalDisk To StorageExtent Relocation'.

SupportedStorageElement
Features

Mandatory Lists actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().

This profile augments the list in Block Services by making this property
mandatory and adding actions supported through the invocation of
StorageRelocationService.RelocateStorageElementsToStoragePool() and
StorageRelocationService.RelocateStorageElementToElements().

14 = 'StorageVolume To StoragePool Relocation'

15 = 'StoragePool To StoragePool Relocation'

16 = 'StorageVolume To StorageExtent Relocation'

17 = 'StoragePool To StorageExtent Relocation'

18 = 'LogicalDisk To StorageExtent Relocation'.

1384

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 981

29.12.26CIM_StorageExtent (Relocatable)

A StorageExtent that can be a source or target of a relocation operation.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 671 describes class CIM_StorageExtent (Relocatable).

SupportedStorageElement
Usage

Optional See the SupportedStorageElementUsage definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.42 CIM_StorageConfigurationCapabilities (Primordial).

ClientSettableElementUsa
ge

Optional See the ClientSettableElementUsage definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.42 CIM_StorageConfigurationCapabilities (Primordial).

SupportedStoragePoolUsa
ge

Mandatory Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

This profile augments the list in Block Services by making this property
mandatory and adding the following values to the enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

ClientSettablePoolUsage Mandatory Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

This profile augments the list in Block Services by making this property
mandatory and adding the following values to the enumerations:

9='Used as source for Relocation Service'

10='Used as target for Relocation Service'.

Table 671 - SMI Referenced Properties/Methods for CIM_StorageExtent (Relocatable)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ExtentStatus Mandatory A value 18 means the extent is actively involved in a relocating operation.

NumberOfBlocks Mandatory

ConsumableBlocks Mandatory The number of usable blocks.

BlockSize Mandatory

Table 670 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

1385

1386

1387

1388

1389

1390

1391

Storage Relocation Profile

982

29.12.27CIM_StoragePool (Concrete)

The concrete CIM_StoragePool an augmented version of the concrete CIM_StoragePool defined in the Block Services package. When Storage
Relocation is implemented this class adds properties for storage relocation.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 672 describes class CIM_StoragePool (Concrete).

Primordial Mandatory This shall be 'false' for extents that are components of Concrete
StoragePools and 'true' for extents that are components of Primordial
StoragePools.

ExtentDiscriminator Mandatory Experimental. This is array of values that shall contain 'SNIA:Pool
Component'.

Table 672 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial Mandatory See the Primordial definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44 CIM_StoragePool
(Concrete)Shall be false.

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44 CIM_StoragePool
(Concrete).

ElementName Optional See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44
CIM_StoragePool (Concrete).

PoolID Mandatory See the PoolID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44 CIM_StoragePool
(Concrete).

TotalManagedSpace Mandatory See the TotalManagedSpace definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44
CIM_StoragePool (Concrete).

RemainingManagedSpace Mandatory See the RemainingManagedSpace definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.44 CIM_StoragePool (Concrete).

Usage Optional See the Usage definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44 CIM_StoragePool
(Concrete).

OtherUsageDescription Optional See the OtherUsageDescription definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44
CIM_StoragePool (Concrete).

ClientSettableUsage Optional See the ClientSettableUsage definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44
CIM_StoragePool (Concrete).

OperationalStatus Mandatory The Storage Relocation Profile adds the requirement for this property. The
values shall be either '2' (OK) or '19' (Relocating).

Table 671 - SMI Referenced Properties/Methods for CIM_StorageExtent (Relocatable)

Properties Flags Requirement Description & Notes

1392

1393
1394

1395

1396

1397

1398

1399

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 983

29.12.28CIM_StoragePool (Primordial)

The primordial CIM_StoragePool an augmented version of the primordial CIM_StoragePool defined in the
Block Services package. When Storage Relocation is implemented this class adds properties for storage
relocation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 673 describes class CIM_StoragePool (Primordial).

CapacityInMigratingSource Optional The Storage Relocation Profile adds this property.The total capacity of
extents migrating out from this storage pool.

CapacityInMigratingTarget Optional The Storage Relocation Profile adds this property.The total capacity of
extents migrating into this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. See
the GetSupportedSizes definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44
CIM_StoragePool (Concrete).

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. See
the GetSupportedSizeRange definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44
CIM_StoragePool (Concrete).

GetAvailableExtents() Optional See the GetAvailableExtents definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.44
CIM_StoragePool (Concrete).

Table 673 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial Mandatory See the Primordial definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46 CIM_StoragePool
(Primordial)Shall be true.

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46 CIM_StoragePool
(Primordial).

ElementName Optional See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46
CIM_StoragePool (Primordial).

PoolID Mandatory See the PoolID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46 CIM_StoragePool
(Primordial).

TotalManagedSpace Mandatory See the TotalManagedSpace definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46
CIM_StoragePool (Primordial).

RemainingManagedSpace Mandatory See the RemainingManagedSpace definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.46 CIM_StoragePool (Primordial).

Table 672 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

1400

1401
1402

1403

1404

1405

1406

1407

Storage Relocation Profile

984

29.12.29CIM_StorageRelocationService

Experimental.

Requirement: Mandatory

Table 674 describes class CIM_StorageRelocationService.

Usage Optional See the Usage definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46 CIM_StoragePool
(Primordial).

OtherUsageDescription Optional See the OtherUsageDescription definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46
CIM_StoragePool (Primordial).

ClientSettableUsage Optional See the ClientSettableUsage definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46
CIM_StoragePool (Primordial).

OperationalStatus Mandatory The Storage Relocation Profile adds the requirement for this property. The
values shall be either '2' (OK) or '19' (Relocating).

CapacityInMigratingSource Optional The Storage Relocation Profile adds this property.The total capacity of
extents migrating out from this storage pool.

CapacityInMigratingTarget Optional The Storage Relocation Profile adds this property.The total capacity of
extents migrating into this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. See
the GetSupportedSizes definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46
CIM_StoragePool (Primordial).

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. See
the GetSupportedSizeRange definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46
CIM_StoragePool (Primordial).

GetAvailableExtents() Optional See the GetAvailableExtents definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.46
CIM_StoragePool (Primordial).

Table 674 - SMI Referenced Properties/Methods for CIM_StorageRelocationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

RelocateStorageVolumesT
oStoragePool()

Optional Relocate storage volumes to specified target storage pool.

RelocateStoragePoolsToSt
oragePool()

Optional Relocate storage pools to specified target storage pool.

RelocateStorageVolumeTo
StorageExtents()

Optional Relocate a storage volume to specified storage extents.

Table 673 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

1408

1409

1410

1411

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 985

29.12.30CIM_StorageVolume

The CIM_StorageVolume is an augmented version of the CIM_StorageVolume defined in the Block
Services package. When Storage Relocation is implemented this class adds a property and a property
value for storage relocation.

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 675 describes class CIM_StorageVolume.

RelocateStoragePoolToSto
rageExtents()

Optional Relocate a storage pool to specified storage extents.

RelocateLogicalDiskToStor
ageExtents()

Optional Relocate a logical disk to specified storage extents.

GetAvailableTargetRelocat
ionExtents()

Optional Get available target storage extents as new group for relocation.

Table 675 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.51 CIM_StorageVolume.

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

DeviceID Mandatory See the DeviceID definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

ElementName Optional See the ElementName definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

Name CD Mandatory See the Name definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

OtherIdentifyingInfo CD Optional See the OtherIdentifyingInfo definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

IdentifyingDescriptions Optional See the IdentifyingDescriptions definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

Table 674 - SMI Referenced Properties/Methods for CIM_StorageRelocationService

Properties Flags Requirement Description & Notes

1412

1413
1414

1415

1416

1417

1418

1419

1420

1421

Storage Relocation Profile

986

NameFormat Mandatory See the NameFormat definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

NameNamespace Mandatory See the NameNamespace definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

ExtentStatus Mandatory See the ExtentStatus definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

OperationalStatus Mandatory Value shall be 2|3|6|8|15|19 (OK or Degraded or Error or Starting or
Dormant or Relocating).The Storage Relocation Profile adds the
enumeration for relocating.

NumExtentsMigrating Optional The Storage Relocation Profile adds this property. The number of Extents
in the process of migrating for this storage volume when the volume
relocation is on going.

BlockSize Mandatory See the BlockSize definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

NumberOfBlocks Mandatory See the NumberOfBlocks definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

ConsumableBlocks Mandatory See the ConsumableBlocks definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

IsBasedOnUnderlyingRed
undancy

Mandatory See the IsBasedOnUnderlyingRedundancy definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.51 CIM_StorageVolume.

NoSinglePointOfFailure Mandatory See the NoSinglePointOfFailure definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

DataRedundancy Mandatory See the DataRedundancy definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

PackageRedundancy Mandatory See the PackageRedundancy definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

DeltaReservation Mandatory See the DeltaReservation definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

Usage Optional See the Usage definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

OtherUsageDescription Optional See the OtherUsageDescription definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

ClientSettableUsage Optional See the ClientSettableUsage definition in section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

Table 675 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

 Storage Relocation Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 987

EXPERIMENTAL

Primordial Mandatory See the Primordial definition in section Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6 5.8.51
CIM_StorageVolume.

ExtentDiscriminator Mandatory Experimental. See the ExtentDiscriminator definition in section Storage
Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.51 CIM_StorageVolume.

Table 675 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

Storage Relocation Profile

988

SMI-S 1.6.1 Revision 6 SNIA Technical Position 989

EXPERIMENTAL

30 Thin Provisioning Profile

30.1 Description

30.1.1 Overview

NOTE In the context of this standard, the term "fully provisioned" refers to storage elements (pools, volumes or logical disks) that
are not subject to thin provisioning technologies.

The Block Services with Thin Provisioning Profile is a specialization of the Block Services Package (see
Clause 5: Block Services Package), adding support for thin provisioning. All the provisions of the Block
Services Package apply, in addition to those defined in this profile.

This profile is nearly compatible with the Block Services Package. A client supporting the Block Services
Package interacting with a Block Server with Thin Provisioning Profile agent should be able to actively
manage fully-provisioned volumes and pools, but discovery will be slightly impacted because it will see
instances of both fully and thinly provisioned pools and volumes. The model is the same, but the client
needs to consider the values of thin-provisioning-specific properties to fully understand capacity
utilization.

30.1.2 Background

Thin provisioning is a capability of some block server implementations to defer provisioning of backing
store for regions of a volume until the regions have been accessed (written) by the consumer (e.g., host
file system). The alternatives (fully provisioned volumes) allocate all of the requested capacity from the
backing store at the time the volume is created. For thin provisioned volumes, the block server
implementation tracks information about which regions have been accessed, and once a region is
accessed, the backing storage is allocated.

There are various approaches to implementing thin provisioning; some vendors pattern thin provisioning
logic after OS virtual memory or journaled file systems, and there are numerous variations. This profile
does not address techniques or algorithms for thin provisioning; these details are left to innovation of the
vendors delivering thin provisioning solutions. This profile provides a common abstraction for the
management features of thin provisioning. In particular, this profile allows SMI-S clients to determine
whether a storage system (and children such as pools, and volumes) supports thin provisioning,
determine the difference between the exposed “virtual capacity” and actual, committed physical storage,
and create thinly provisioned volumes and pools.

30.1.3 Model

No new classes are defined by this profile; it extends the classes of Block Services.

Throughout this profile, volume refers to either StorageVolume or LogicalDisk, which are the two types of
elements exported from the Block Services Profile. Pool children refers to the three types of elements
(StorageVolume, LogicalDisk, and StoragePool) that may be carved from a pool.

30.1.3.1 Capacity Concepts for Volumes

Each storage volume has a nominal capacity value, the capacity seen by users and applications (such as
file systems). This capacity is also reported through in-band interfaces such as SCSI READ CAPACITY.
Applications cannot write more than this capacity at a given time. When fully provisioned volumes are
created, the nominal capacity is allocated by the block server. When thin provisioned volumes are
created, a smaller value (referred to here as the initial reserve capacity) is allocated (this value may be
zero).

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Thin Provisioning Profile

990

Capacity consumed is the capacity the application is actually using at a give time (the block server may
have rounded this up to a multiple of some internal granule size). For thin provisioned volumes, the
capacity consumed on the backend storage may be smaller than the nominal capacity. The capacity
consumed grows from the initial reserve capacity as the application (such as a file system) writes new
areas of the volume. In theory, the capacity consumed could grow to equal (or exceed when metadata is
considered) the nominal capacity.

The nominal capacity is represented in the model by the ConsumableBlocks property of volumes.
Capacity consumed is modeled by the SpaceConsumed property of the AllocatedFromStoragePool
association referencing the volume. Initial reserve capacity is modeled using the
ThinProvisionedInitialReserve property of StorageSettings. In some block servers, the smaller capacity is
a characteristic of a StoragePool and is represented by the SpaceConsumed on the
AllocatedFromStoragePool association between the StorageVolume or LogicalDisk and StoragePool.

Note that these concepts and properties also apply to delta replicas as defined in 9 Copy Services
Subprofile and 26 Replication Services Profile.

30.1.3.2 Capacity Concepts for Pools

Block Servers supporting thin provisioned volumes have different approaches to modeling capacity in
pools. This profile supports three approaches:

• The first approach is used when a pool supports thin provisioned children, but the “advertised” capacity of the
pool matches the actual capacity of its underlying storage. In this case, the block server follows the provisions
in Clause 5: Block Services Package.

• The second approach is used when a pool supports thin provisioned children and has a defined capacity to
which its children can grow, but this capacity is greater than the capacity of underlying storage.

• The third approach is when the block server does not assign a maximum capacity to the pool.

The model supporting these three approaches is documented in 30.1.3.3.1 Pool Capacity.

Note that primordial StoragePools cannot be thinly provisioned, but can support allocation of thinly
provisioned concrete pools.

30.1.3.3 Overview

Figure 164 presents the key classes and related to this profile.

Figure 164 - Thin Provisioning Model

StorageVolum e

C onsum ableB locks
Thin lyP rovis ioned = true

S toragePool

Prim ord ia l = False
SpaceLim it
SpaceLim itD eterm ination
ThinP rovis ionM etaD ataSpace

A llocatedFrom StoragePool

SpaceC onsum ed

SN IA_S torageC onfigurationC apabilities
(capabilities of pool)

SupportedS torageE lem entTypes
ThinP rovis ionedC lientSettableR eserve
ThinP rovis ionedD efaultR eserve

E lem entC apabilities

SN IA _StorageSetting (goal for
creating pools)

ThinProvis ionedPoolType
ThinProvis ionedInitia lR eserve

StorageC onfigurationService

SN IA _StorageC onfigurationC apabilities
(capabilities of the b lock server)

SupportedS torageE lem entTypes
ThinP rovis ionedC lientSettableR eserve
ThinP rovis ionedD efaultR eserve

E lem entC apabilities

SN IA _StorageSetting (for
vo lum es))

ThinProvis ionedIn itia lR eserve

E lem entSettingD ata

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 991

StorageConfigurationCapabilities.SupportedStorageElementTypes shall include a subset of
ThinlyProvisionedStorageVolume, ThinlyProvisionedLogicalDisk,
ThinlyProvisionedAllocatedStoragePool, ThinlyProvisionedQuotaStoragePool, or
ThinlyProvisionedLimitlessStoragePool to indicate support for allocation of thinly provisioned
StorageVolumes, LogicalDisks, or StoragePools. The three SupportedStorageElementTypes values
related to pools allow the block server to advertise which types of pool capacity approaches are available
for child pools. The meaning of Allocated, Quota and Limitless pools is expanded in 30.1.3.2 Capacity
Concepts for Pools. Similar values are used in ElementType parameters of methods to specify which
approach the client prefers when creating new children. Note that as defined in the Block Services
Package, StorageConfigurationCapabilities associated to StorageConfigurationService defines global
block server capabilities; other instances of StorageConfigurationCapabilities may optionally be
associated to StoragePool to provide pool-specific overrides.

The SpaceLimitDetermination property of StoragePool defines the approach associated with the pool for
determining capacity information for the pool. See 30.1.3.3.1 Pool Capacity. The
SpaceLimitDetermination property is undefined if the Block Services with Thin Provisioning Profile is not
supported. SpaceLimitDetermination shall be present on any StoragePool instance that supports thin
provisioning and SpaceLimitDetermination is not Allocated.

The SpaceLimit property of StoragePool is the capacity of the storage allocated to the pool when
Spacelimitdetermination has the value 3 (Quota) or 4 (Limitless) or is set to the value of
TotalManagedSpace if SpaceLimitDetermination has the value 2 (Allocated). The value of SpaceLimit may
be modified by a client using CreateOrModifyStoragePool. The upper bounds returned from
GetAvailableSizes and GetAvailableSizeRanges should be approximately the same as SpaceLimit. See
30.1.3.3.1 Pool Capacity. The SpaceLimit property is not defined if the Block Services with Thin
Provisioning Profile is not supported.

The ThinProvisionMetaDataSpace property of StoragePool is the size of the pool’s metadata (in bytes).
Unlike fully-provisioned pools, this value cannot be determined by subtracting the sum of
SpaceConsumed of child elements from TotalManagedSpace. The ThinProvisionMetaDataSpace property
is undefined if the Block Services with Thin Provisioning Profile is not supported.

If the ThinlyProvisioned property of StorageVolume or LogicalDisk is “true”, then the block server shall
support thin provisioning for the StorageVolume or LogicalDisk. If ThinlyProvisioned is undefined or the
value is null, the StorageVolume or LogicalDisk shall not be thin provisioned. The ThinlyProvisioned
property is undefined if the Block Services with Thin Provisioning Profile is not supported.

30.1.3.3.1 Pool Capacity

StoragePool.SpaceLimitDetermination indicates which of three approaches apply to determining the
capacity related properties of the associated StoragePool.

In all cases, StoragePool.TotalManagedSpace represents the sum of the usable capacity from underlying
StorageExtents. The StorageExtents may or may not be modeled and the usable capacity may have been
reduced due to redundancy or metadata. In all cases, RemainingManagedSpace shall be set to
SpaceLimit minus the sum of SpaceConsumed on AllocatedFromStoragePool associations to all child
elements allocated from the pool.

This profile supports three techniques for determining the space available for creating or expanding child
elements.

• If StoragePool.SpaceLimitDetermination is set to 2 (Allocated), TotalManagedSpace is also the capacity that
may be used to create or expand pool children (StorageVolumes, LogicalDisks, or other StoragePools). And
StoragePool.RemamingManagedSpace represents the capacity left to create a new storage element or
expand an existing storage element. This approach is common to fully provisioned pools. The SpaceLimit
property should be set to the same value as TotalManagedSpace.

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Thin Provisioning Profile

992

• If StoragePool.SpaceLimitDetermination is set to 3 (Quota), StoragePool.SpaceLimit serves as an
administratively defined limit on the capacity that may be used to create or expand child elements
(StorageVolumes, LogicalDisks, or other StoragePools).

• If StoragePool.SpaceLimitDetermination is set to 4 (Limitless), then the block server does not have a defined
limit on the capacity for creating or expanding children. Clients that support thin provisioning should not use
SpaceLimit when SpaceLimitDetermination is set to 4 (Limitless). But for compatibility with clients that do not
support this profile, the instrumentation should use a heuristic to set SpaceLimit (and to values returned from
GetAvailableSizes and GetAvailableSizeRanges) to a reasonable value. One possible heuristic is to set
SpaceLimit to the value of the largest volume supported by the implementation (e.g., 2 terabytes if the
implementation does not support SCSI sixteen byte CDBs).

If SpaceLimitDetermination is null or undefined, clients should treat the pools as if
SpaceLimitDetermination was 2 (Allocated).

30.1.3.3.2 Relationship to Pools From Volumes

Not defined in this standard.

30.1.3.4 Indications

30.1.3.4.1 Capacity Warning

This is an alert message indicating that the actual capacity of a volume or pool is nearing a limit (e.g.,
actual usage of containing pool is nearing SpaceLimit). The related standard message is

Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity in
use nearing available limit.

30.1.3.4.2 Capacity Critical

This is an alert message indicating that the actual capacity of a volume or pool has reached a limit (e.g.,
actual usage of containing pool is equal to SpaceLimit). Write commands from hosts to the volume or pool
are failing. The related standard message is

Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity in
use exceeded available limit.

30.1.3.4.3 Capacity Okay

This is an alert message indicating that the actual capacity of a volume or pool is no longer in a capacity
warning or critical state. The related standard message is

Thin provisioned <Volume or Pool> with identifier <Volume or Pool ID> capacity
condition cleared.

30.2 Health and Fault Management Consideration

Not defined in this standard.

30.3 Cascading Considerations

Not defined in this standard.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135
136

137

138

139

140

141
142

143

144

145

146
147

148

149

150

151

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 993

30.4 Supported Profiles, Subprofiles, and Packages

Table 676 describes the supported profiles for Thin Provisioning.

30.5 Methods of the Profile

This profile uses the same methods and approach to creating/modifying volumes and pools as Block
Services, with additional properties used for active management of thin provisioned elements. The next
few sections provides details of how these properties are used.

30.5.1 StoragePool GetSupportedSizes() and GetSupportedSizeRanges()

When a client invokes GetSupportedSizes() or GetSupportedSizeRanges() with ElementType set to 5
(Thin Provisioned Volume) or 6 (Thin Provisioning Logical Disk), the instrumentation shall return size
information relative to the value of SpaceLimitDetermination for the related pools.

• For pools with SpaceLimitDetermination of 2 (Allocated), the instrumentation shall return sizes using the
same approach for fully provisioned volumes as described in Clause 5: Block Services Package.

• For pools with SpaceLimitDetermination set to 3 (Quota) or 4 (Limitless), the sizes returned should not
exceed the value of SpaceLimit for pools supporting thin provisioning.

When a client invokes GetSupportedSizes() or GetSupportedSizeRanges() with ElementType set to 3
(Storage Volume) or 4 (Logical Disk),

• For pools with SpaceLimitDetermination of 3 (Quota) or 4 (Limitless), the provider shall return 3 (Invalid
Element Type)

30.5.2 StorageSetting CreateSetting

When creating thinly provisioned StoragePools: ThinProvisionedPoolType shall be set to a value from
SupportedStorageElementTypes in the parent pool’s applicable StorageConfigurationCapabilities
instance.

30.5.3 StorageConfigurationService CreateOrModifyStoragePool()

CreateOrModifyStoragePool is used to create a thinly provisioned pool. The ElementType parameter
(e.g., ThinlyProvisionedAllocatedStoragePool) shall be included in SupportedStorageElementTypes in the
StorageConfigurationCapabilities instances applicable to the pool specified in the InPools parameter.

NOTE CreateOrModifyStoragePool also supports pool creation using InExtents, instead of InPools.

30.5.4 StorageConfigurationService CreateOrModifyElementFromElements()

CreateOrModifyElementFromElements may be used to create a pool from extents

To create a thinly-provisioned pool, the ElementType shall be ThinlyProvisionedAllocatedStoragePool,
ThinlyProvisionedQuotaStoragePool, or ThinlyProvisionedLimitlessStoragePool.

Table 676 - Supported Profiles for Thin Provisioning

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.6.0 Optional

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Thin Provisioning Profile

994

The size parameter is ignored if ElementType is ThinlyProvisionedAllocatedStoragePool. In this case, the
size is set by the block server based on the capacity of the extents allocated to the pool

30.5.5 StorageConfigurationService CreateOrModifyElementFromStoragePool()

CreateOrModifyElementFromStoragePool is used to create a StorageVolume or LogicalDisk. The size
parameter holds the desired nominal size. The ElementType parameter shall be
ThinlyProvisionedStorageVolume or ThinlyProvisionedLogicalDisk.

See 30.6 Client Considerations and Recipes for examples using these methods.

30.6 Client Considerations and Recipes

30.6.1 Create a Pool from a Parent Pool

Creating a thin provisioned pool follows the same approach as creating fully provisioned pool with the
changes in step 1 below. Assume the client wishes to create a pool using the Allocated approach to
space determination

1) find a parent pool associated to a StorageConfigurationCapabilities instance where SupportedStora-
geElementTypes incudes ThinlyProvisionedAllocatedStoragePool

2) create a (or locate an existing usable) StorageSetting instance

3) Call CreateOrModifyStoragePool

• the StorageSetting as the Goal Parameter

• the appropriate parent pool as the PoolToDrawFrom,

• the size parameter is set to the client’s requested size

• ElementType is ThinlyProvisionedAllocatedStoragePool

NOTE If the client sets SpaceLimitDetermination to Quota, the Size parameter becomes the value of SpaceLimit in the created
pool.

// DESCRIPTION

// The goal of this recipe is to create a thin provisioned pool

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2. #PoolSize is set to the size for the new Storage Pool in bytes

// 3. #StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 4. #ElementType is set to the element to created:

// ThinlyProvisionedAllocatedStoragePool

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203
204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 995

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// associated with the system

$StorageConfigurationService-> = $Services->[0]

// See if the service supports thin provisioned pool creation

// There should be zero or only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

 $StorageConfigurationService->,

 “CIM_ElementCapabilities”,

 “SNIA_StorageConfigurationCapabilities”,

 null, null, false, false, null)

if ($ServiceCapabilities[] == null ||

 $ServiceCapabilities[].length == 0) {

 <ERROR! Creation of thin provisioned pools not supported>

}

if (contains(2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

 || contains(2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedAsynchronousActions[]))

{

 #SupportsPoolCreation = true

}

if (contains(

 2, // Storage Pool Creation

 $ServiceCapabilities[0].SupportedAsyncronousActions[]))

{

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

Thin Provisioning Profile

996

 #PoolCreationProducesJob = true

}

if (contains(7, // 7 = ThinlyProvisionedAllocatedStoragePool

 $ServiceCapabilities[0].SupportedStorageElementTypes[]))

{

 #SupportsThinPoolCreation = true

}

// Return if thin provisioned pools cannot be created

if ((#SupportesPoolCreation == false) &&

 (#SupportsThinPoolCreation == false)) {

 <ERROR! Creation of thin provisioned pools not supported>

}

$StorageCapabilitiesOffered = $ServiceCapabilities[0]

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find

// a StoragePool from which thin provisioned storage pools might be created.

$PoolToDrawFrom-> = null

// Find the associated StoragePools

$StoragePools[] = Associators(

 $BlockServer->,

 “CIM_HostedStoragePool”,

 “CIM_StoragePool”,

 null, null, false, false, null)

for #i in $StoragePools[]

{

 // Step 3. For each StoragePool, follow the CIM_ElementCapabilities

 // asociation to the StorageCapabilities of that pool. Compare the

 // StorageCapabilities to the desired StorageSetting and find the

 // best match.

 // See if this pool has its own StorageConfigurationCapabilities.

 $PoolServiceCapabilities[] = Associators(

 $StoragePools[#i].getObjectPath(),

 “CIM_ElementCapabilities”,

 “SNIA_StorageConfigurationCapabilities”,

 null, null, false, false, null)

 if($PoolServiceCapabilities[] != null) {

 // see if there is a capability for this pool to create the proper pool

 for #c in $PoolServiceCapabilities[]

 {

 if (contains(2, // Storage Pool Creation

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 997

 $PoolServiceCapabilities[#c].SupportedSynchronousActions[])

 || contains(2, // Storage Pool Creation

 $PoolServiceCapabilities[#c].SupportedAsynchronousActions[]))

 {

 #Pool_SupportsPoolCreation = true

 }

 if (contains(2, // Storage Pool Creation

 $PoolServiceCapabilities[#c].SupportedAsyncronousActions[]))

 {

 #Pool_PoolCreationProducesJob = true

 }

 #Pool_SupportsThinPoolCreation = contains(

 7, // 7 = ThinlyProvisionedAllocatedStoragePool

 $PoolServiceCapabilities[0].SupportedStorageElementTypes[])

 if (#Pool_SupportsPoolCreation == true &&

 #Pool_SupportsThinPoolCreation == true) {

 #SupportsPoolCreation = true

 #SupportsThinPoolCreation = true

 $StorageCapabilitiesOffered = $PoolServiceCapabilities[#c]

 break;

 }

 }

 } // end of if($PoolServiceCapabilities[] != null)

 if($StorageCapabilitiesOffered != null) {

 $PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

 // Step 4. Determine if the selected pool has enough space for

 // another pool.

 // If the block server supports hints, then the Storage Setting returned

 // will contain default hints

 // Create a setting

 %InArguments[“SettingType”] = 3 // Goal

 #ReturnValue = InvokeMethod(

 $StorageCapabilitiesOffered.getObjectPath(),

 “CreateSetting”,

 %InArguments,

 %OutArguments)

 if ((#ReturnValue != 0) || (%OutArguments[“NewSetting”] == null))

 {

 <ERROR! Unable to create storage setting >

 }

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Thin Provisioning Profile

998

 $GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

 // Determine the possible size, closest to the requested size

 #PossibleSize = &Block_Services_PoolSizeAvailable(

 $PoolToDrawFrom->,

 $GeneratedStorageSetting->,

 #RequestedSize,

 #ElementType)

 if(0 != #PossibleSize) // we found a size close to #RequestedSize

 {

 break;

 }

 else

 {

 // Causes an error to be returned if there are no more candidate Pools

 $PoolToDrawFrom-> = NULL;

 }

 }

} // for

if ($PoolToDrawFrom-> == NULL)

{

 <ERROR! Unable to find a suitable pool from which to create the storage element >

}

// Step 5. Register for indications on configuration jobs

if(#PoolCreationProducesJob == true)

{

 // ‘17’ (“Completed”) ‘2’ (“OK”)

 #Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

 @{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

 // ‘17’ (“Completed”) ‘6’ (“Error”)

 #Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

 @{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

}

// Step 6. Create the Storage Pool

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 999

%InArguments[“ElementName”] = NULL // we do not care what the name is

%InArguments[“Goal”] = $GeneratedStorageSetting->

%InArguments[“Size”] = #PossibleSize

%InArguments[“InExtents”] = null

%InArguments[“Pool”] = null

%InArguments[“InPools”] = $PoolToDrawFrom->

#ReturnValue = InvokeMethod(

 $StorageConfigurationService->,

 “CreateOrModifyStoragePool”,

 %InArguments, %OutArguments)

if(#ReturnValue != 0 && #ReturnValue != 4096)

{ // Storage Pool was not created

 <ERROR! Failed >

}

if(#PoolCreationProducesJob == true && $PoolCreationJob-> != null)

{

 $PoolCreationJob-> = %OutArguments[“Job”]

 //Wait until the completion of the job

 // using $PoolCreationJob-> as a filter

 // Wait for indication from either filters defined in step 5

 // If the indication states the Job is ‘Complete’ and ‘Error’

 // then exit with error: ERROR! Job did not complete successfully

}

else {

 $PoolToDrawFrom-> = %OutArguments[“Pool”]

}

// Use the new pool

30.6.2 Create a Pool from Extents

This recipe is similar to the above except it uses CreateOrModifyElementFromElement.

ElementType is ThinlyProvisionedAllocatedStoragePool, ThinlyProvisionedQuotaStoragePool, and
ThinlyProvisionedLimitlessStoragePool.

The size parameter is ignored if ElementType is ThinlyProvisionedAllocatedStoragePool. In this case, the
size is set by the block server based on the capacity of the extents allocated to the pool.

30.6.3 Creating a Thinly Provisioned Volume

Creating a thin provisioned volume follows the same approach as creating fully provisioned volume with
the following extra steps:

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

Thin Provisioning Profile

1000

1) verify that the parent pool supports thin provisioned child volumes by verifying that StorageConfigu-
rationCapabilities.SupportedStorageElementTypes incudes ThinlyProvisionedStorageVolume

2) use StorageConfigurationCapabilities.ThinProvisionedClientSettableReserve to determine whether
the client can specify an desired initial reserve

3) create a (or locate and existing usable) StorageSetting instance, set ThinProvisionedInitialReserve
as needed

4) call CreateOrModifyElementFromStoragePool using

• the StorageSetting as the Goal,

• the appropriate parent pool as the PoolToDrawFrom,

• the size parameter holds the nominal size,

• ElementType is ThinlyProvisionedStorageVolume

// DESCRIPTION

// The goal of this recipe is to create a thin provisioned StorageVolume

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. A reference to a CIM_ComputerSystem storage array is previously

// defined in the $BlockServer-> variable

// 2. #PossibleSize is set to the size for the new StorageVolume in bytes

// 3. #StorageElementClass is set to the class name of the element being created

// like CIM_StorageVolume or CIM_LogicalDisk.

// 4. #ElementType is set to the element to created:

// ThinlyProvisionedStorageVolume

// Step 1. Get the configuration services and determine the service

// capabilities. Note that the device may not support storage

// configuration so it is possible that the service is not present and

// the desired management cannot be performed.

try {

 $Services->[] = AssociatorNames($BlockServer->,

 “CIM_HostedService”,

 “CIM_StorageConfigurationService”,

 null,

 null)

 // StorageConfigurationService and HostedService may not be implemented

 // in the SMI Agent.

 if ($Services->[] == null) {

 <ERROR! Storage Configuration is not supported.>

 }

} catch (CIMException $Exception) {

 // StorageConfigurationService and/or HostedService may not be included in

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1001

 // the model implemented at all if Storage Configuration is not supported.

 if ($Exception.CIMStatusCode == “CIM_ERR_INVALID_PARAMETER”) {

 <ERROR! Storage Configuration is not supported.>

 }

}

// There should be only one storage configuration service

// associated with the system

$StorageConfigurationService-> = $Services->[0]

// See if the service supports thin provisioned pool creation

// There should be only one StorageConfigurationCapabilities instance

$ServiceCapabilities[] = Associators(

 $StorageConfigurationService->,

 “CIM_ElementCapabilities”,

 “SNIA_StorageConfigurationCapabilities”,

 null, null, false, false, null)

#SupportsElementCreationSync = contains(5, // Storage Element Creation

 $ServiceCapabilities[0].SupportedSynchronousActions[])

#SupportsElementCreationFeature = contains(3, // StorageElementCreation

 $ServiceCapabilities[0].SupportedStorageElementFeatures[])

#ElementCreationProducesJob = contains(5, // Storage Element Creation

 $ServiceCapabilities[0].SupportedAsynchronousActions[])

#SupportsThinPoolCreation = contains(5, // 5 = ThinlyProvisionedStorageVolume

 $ServiceCapabilities[0].SupportedStorageElementTypes[])

// If a storage element can not be created and that storage element is

// neither created synchronously or asynchronously, then fail the test

if (#SupportedElementCreationFeature == false ||

 (#SupportedElementCreationSync == false &&

 #ElementCreationProducesJob == false) ||

 #SupportsThinPoolCreation == false)

{

 <ERROR! Thin provisioned StorageElement creation is not supported.>

}

$StorageCapabilitiesOffered = $ServiceCapabilities[0]

// Step 2. Enumerate over the CIM_HostedStoragePool associations to find

// a StoragePool from which thin provisioned storage pools might be created.

$PoolToDrawFrom-> = null

// Find the associated StoragePools

$StoragePools[] = Associators(

 $BlockServer->,

 “CIM_HostedStoragePool”,

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

Thin Provisioning Profile

1002

 “CIM_StoragePool”,

 null, null, false, false, null)

for #i in $StoragePools[]

{

 // Skip primordial pools

 if ($StoragePool[#i].Primordial == true)

 {

 <continue>

 }

 // Step 3. For each StoragePool, follow the CIM_ElementCapabilities

 // asociation to the StorageCapabilities of that pool. Compare the

 // StorageCapabilities to the desired StorageSetting and find the

 // best match.

 // See if this pool has its own StorageConfigurationCapabilities.

 $PoolServiceCapabilities[] = Associators(

 $StoragePools[#i].getObjectPath(),

 “CIM_ElementCapabilities”,

 “SNIA_StorageConfigurationCapabilities”,

 null, null, false, false, null)

 if($PoolServiceCapabilities[] != null) {

 for #c in $PoolServiceCapabilities[]

 {

 #SupportsElementCreationSync = contains(5, // Storage Element Creation

 $PoolServiceCapabilities[#c].SupportedSynchronousActions[])

 #SupportsElementCreationFeature = contains(3, // StorageElementCreation

 $PoolServiceCapabilities[#c].SupportedStorageElementFeatures[])

 #ElementCreationProducesJob = contains(5, // Storage Element Creation

 $PoolServiceCapabilities[#c].SupportedAsynchronousActions[])

 #SupportsThinPoolCreation = contains(5, // 5 =
ThinlyProvisionedStorageVolume

 $PoolServiceCapabilities[#c].SupportedStorageElementTypes[])

 // If a storage element can not be created and that storage element is

 // neither created synchronously or asynchronously, then skip this capability

 if (#SupportedElementCreationFeature == false ||

 (#SupportedElementCreationSync == false &&

 #ElementCreationProducesJob == false) ||

 #SupportsThinPoolCreation == false)

 {

 <continue>

 }

 else {

 $StorageCapabilitiesOffered = $ServiceCapabilities[0]

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531
532

533

534

535

536

537

538

539

540

541

542

543

544

545

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1003

 }

 }

 } // end of if($PoolServiceCapabilities[]-> != null)

 $PoolToDrawFrom-> = $StoragePool[#i].getObjectPath()

 // Step 4. Register for indications on configuration jobs

 if(#SupportedElementProducesJob == true)

 {

 // ‘17’ (“Completed”) ‘2’ (“OK”)

 #Filter1 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 2”

 @{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter1)

 // ‘17’ (“Completed”) ‘6’ (“Error”)

 #Filter2 = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ConcreteJob

 AND ANY SourceInstance.OperationalStatus[*] = 17

 AND ANY SourceInstance.OperationalStatus[*] = 6 “

 @{Determine if Indications already exist or have to be created}

 &CreateIndication(#Filter2)

 }

 // Step 5. Create Storage Element.

 %InArguments[“SettingType”] = 3 // “Goal”

 #ReturnValue = InvokeMethod(

 $StorageCapabilitiesOffered.getObjectPath(),

 “CreateSetting”,

 %InArguments,

 %OutArguments)

 if (#ReturnValue != 0)

 {

 <ERROR! Unable to create storage setting >

 }

 $GeneratedStorageSetting-> = %OutArguments[“NewSetting”]

 %InArguments[“ElementName”] = NULL

 %InArguments[“ElementType”] = #ElementType

 %InArguments[“Goal”] = $GeneratedStorageSetting->

 %InArguments[“Size”] = #PossibleSize

 %InArguments[“InPool”] = $PoolToDrawFrom->

 %InArguments[“TheElement”] = null

 #ReturnValue = InvokeMethod(

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

Thin Provisioning Profile

1004

 $StorageConfigurationService->,

 “CreateOrModifyElementFromStoragePool”,

 %InArguments, %OutArguments)

 if(#ReturnValue != 0 || #ReturnValue != 4096)

 { // Method did not succeeded or succeeded but did not create a job

 <ERROR! Failed >

 }

 else if(#ReturnValue == 0 ||

 (#ReturnValue == 4096 && %OutArguments[“TheElement”] != null)))

 {

 $CreatedElement-> = %OutArguments[“TheElement”]

 }

 else // a Job was created and TheElement is null

 {

 // Wait for indication from either filters defined in step 4

 // If the indication states the Job is ‘Complete’ and ‘Error’

 // then exit with error

 // ERROR! Job did not complete successfully

 // Once the ‘Job’ has completed successfully, then

 // follow the AffectedJobElement association from the ‘Job’ to

 // retrieve the storage element that was created.

 $CreateElements[] = Associators(

 $Job->, // Object Name coersed from %OutArguments[“Job”]

 “CIM_AffectedJobElement”,

 #StorageElementClass,

 null, null, false, false, null)

 // Only one storage element will be created,

 $CreatedElement-> = $CreatedElement[0].getObjectPath()

 }

}

30.6.4 Capacity Properties for Fully-provisioned RAID1 Volume

Figure 165 demonstrates two approaches for setting capacity properties. In one approach, the capacity
due to redundancy on RAID is included in the concrete pool; in the other approach, the capacity in the
concrete pool reflects the factoring out of the RAID overhead. In this array configuration, there is a
primordial pool showing the capacity from two 502 block disks. (The disks are not modeled, a valid option
in SMI-S.) Each disk has two blocks of metadata - yielding 2 * 500 usable blocks. The block server has
assembled these two disks into a RAID1 set (represented by the Concrete pool)—a process which
consumes four blocks for metadata. A single StorageVolume is allocated. This volume consumes 110
blocks. The SpaceConsumed value of 224 in the upper right reflects two times 110 (the nominal volume
capacity times 2 for RAID1) plus four blocks metadata.

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1005

Note that Block Services allows an arbitrary number of concrete pools between the primordial pool and
the pool from which the volume is allocated, so other sets of instances could also represent the same
RAID1 configuration.

Figure 165 - RAID1 Capacity after Volume Creation

Concrete: StoragePool

Primordial = false
TotalManagedSpace = 496 * 512
RemainingManagedSpace = 386 * 512

SVP: AllocatedFromStoragePool
SpaceConsumed = 110 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

Simple: StorageVolume

NumberOfBlocks = 110

Concrete: StoragePool

Primordial = false
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 776 * 512

SVP: AllocatedFromStoragePool
SpaceConsumed = 224 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

Simple: StorageVolume

NumberOfBlocks = 110

RAID-at-Pool approach RAID-at-Volume approach

630

631

632

Thin Provisioning Profile

1006

30.6.5 Capacity Properties for Thin Provisioning

Figure 166 builds on Figure 165, showing a newly created thinly provisioned volume with of 50 blocks
consumed.

Figure 166 - RAID1 Capacity with Thin Volume and RAID-at-Pool Approach

Concrete: StoragePool

Primordial = false
SpaceLimitDetermination = Allocated
TotalManagedSpace = 496 * 512
RemainingManagedSpace = 336 * 512

FVP: AllocatedFromStoragePool
SpaceConsumed = 110 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

FullVol: StorageVolume

NumberOfBlocks = 110

ThinVol: StorageVolume

NumberOfBlocks = 110

TVP: AllocatedFromStoragePool
SpaceConsumed = 50 * 512

633

634

635

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1007

Figure 167 adds the same thin volume, but uses the RAID-on-Volume approach.

30.7 Registered Name and Version

Thin Provisioning version 1.6.0 (Component Profile)

CIM Schema Version: 2.28

Specializes SNIA Block Services version 1.6.1

30.8 CIM Elements

Table 677 describes the CIM elements for Thin Provisioning.

Figure 167 - RAID1 Capacity with Thin Volume and RAID-at-Volume Approach

Table 677 - CIM Elements for Thin Provisioning

Element Name Requirement Description

30.8.1 CIM_AllocatedFromStoragePool (Pool from Pool) Mandatory AllocatedFromStoragePool.

30.8.2 CIM_AllocatedFromStoragePool (Volume or
LogicalDisk from Pool)

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. AllocatedFromStoragePool.

Concrete: StoragePool

Primordial = false
SpaceLimitDetermination = Allocated
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 672 * 512

FVP: AllocatedFromStoragePool
SpaceConsumed = 224 * 512

Primordial : StoragePool

Primordial = true
TotalManagedSpace = 1000 * 512
RemainingManagedSpace = 0

PP: AllocatedFromStoragePool
SpaceConsumed = 1000 * 512

FullVol: StorageVolume

NumberOfBlocks = 110

ThinVol: StorageVolume

NumberOfBlocks = 110

TVP: AllocatedFromStoragePool
SpaceConsumed = 104 * 512

636

637

638

639

640

641

642

Thin Provisioning Profile

1008

30.8.3 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StorageVolume or
LogicalDisk)

Optional Expressed the ability for the element to be named or have
its state changed.

30.8.4 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to StoragePool)

Optional Expressed the ability for the element to be named or have
its state changed.

30.8.5 CIM_ElementCapabilities
(ImplementationCapabilities to System)

Optional Experimental. Associates the conformant Array
ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

30.8.6 CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService)

Optional Associates StorageCapabilities with
StorageConfigurationService. This StorageCapabilities
shall represent the capabilities of the entire
implementation.

30.8.7 CIM_ElementCapabilities (StorageCapabilities to
StoragePool)

Mandatory Associates StorageCapabilities with StoragePool. This
StorageCapabilities shall represent the capabilities of the
StoragePool to which it is associated.

30.8.8 CIM_ElementCapabilities
(StorageConfigurationCapabilities to
StorageConfigurationService)

Mandatory Associates StorageConfigurationCapabilities with
StorageConfigurationService.

30.8.9 CIM_ElementCapabilities
(StorageConfigurationCapabilities to concrete
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

30.8.10 CIM_ElementCapabilities
(StorageConfigurationCapabilities to primordial
StoragePool)

Optional Associates StorageConfigurationCapabilities with
StoragePool.

30.8.11 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StoragePool)

Optional Deprecated. Associates
EnabledLogicalElementCapabilities with
StorageConfigurationService.

30.8.12 CIM_ElementCapabilities (Used to declare the
naming capabilities of the StorageVolume or LogicalDisk)

Optional Associates EnabledLogicalElementCapabilities with
StorageConfigurationService.

30.8.13 CIM_ElementSettingData Mandatory

30.8.14 CIM_EnabledLogicalElementCapabilities (For
StorageConfigurationService)

Optional Deprecated. This class is used to express the naming and
possible requested state change possibilities for storage
elements.

30.8.15 CIM_EnabledLogicalElementCapabilities (For
StoragePool)

Optional This class is used to express the naming and possible
requested state change possibilities for storage pools.

30.8.16 CIM_FilterCollection (Block Services Predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

30.8.17 CIM_FilterCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental. This is a collection of Lifecycle
IndicationFilters defined by the Block Services Profile.

30.8.18 CIM_FilterCollection (Thin Provisioning
Predefined FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

Table 677 - CIM Elements for Thin Provisioning

Element Name Requirement Description

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1009

30.8.19 CIM_FilterCollection (Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection)

Optional Experimental. This is a collection of Lifecycle
IndicationFilters defined by the Thin Provisioning Profile.

30.8.20 CIM_HostedCollection (Block Services to
ProfileSpecificLifecycleIndicationFilterCollection)

Optional Experimental.

30.8.21 CIM_HostedCollection (System to Thin
Provisioning ProfileSpecificAlertIndicationFilterCollection)

Optional Experimental.

30.8.22 CIM_HostedCollection (System to Thin
Provisioning predefined IndicationFilters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

30.8.23 CIM_HostedCollection (System to predefined
IndicationFilters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

30.8.24 CIM_HostedService Conditional Conditional requirement: Support for
StorageConfigurationService.

30.8.25 CIM_HostedStoragePool Mandatory

30.8.26 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

30.8.27 CIM_IndicationFilter (Logical Disk Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
LogicalDisk instance.

30.8.28 CIM_IndicationFilter (Logical Disk Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
LogicalDisk instance.

30.8.29 CIM_IndicationFilter (Logical Disk
OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

30.8.30 CIM_IndicationFilter (Storage Pool Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
StoragePool instance.

30.8.31 CIM_IndicationFilter (Storage Pool Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
StoragePool instance.

Table 677 - CIM Elements for Thin Provisioning

Element Name Requirement Description

Thin Provisioning Profile

1010

30.8.32 CIM_IndicationFilter (Storage Pool
TotalManagedSpace)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in
TotalManagedSpace for StoragePool instances.

30.8.33 CIM_IndicationFilter (Storage Volume Creation) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the addition of a new
StorageVolume instance.

30.8.34 CIM_IndicationFilter (Storage Volume Deletion) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion of a
StorageVolume instance.

30.8.35 CIM_IndicationFilter (Storage Volume
OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolume instances.

30.8.36 CIM_IndicationFilter (Thin Provisioning Critical) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for an alert when the Thin
Provisioning critical threshold is reached.

30.8.37 CIM_IndicationFilter (Thin Provisioning Threshold
Cleared)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for an alert when a Thin
Provisioning threshold has been cleared.

30.8.38 CIM_IndicationFilter (Thin Provisioning Warning) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for an alert when the Thin
Provisioning warning threshold is reached.

30.8.39 CIM_IndicationFilter (WQL Logical Disk
OperationalStatus)

Conditional Deprecated. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance for changes
in the OperationalStatus of LogicalDisk instances.

30.8.40 CIM_IndicationFilter (WQL Storage Volume
OperationalStatus)

Conditional Deprecated. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined' WQL
version of the CIM_IndicationFilter instance for changes
in the OperationalStatus of StorageVolume instances.

30.8.41 CIM_LogicalDisk Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. A LogicalDisk is
allocated from a concrete StoragePool.

Table 677 - CIM Elements for Thin Provisioning

Element Name Requirement Description

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1011

30.8.42 CIM_MemberOfCollection (Block Services Filter
Collection to FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Block Services predefined FilterCollection to the
FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

30.8.43 CIM_MemberOfCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection to Block
Services Filters)

Optional Experimental. This associates the Block Services
ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Block Services Profile.

30.8.44 CIM_MemberOfCollection (Predefined Filter
Collection to Block Services Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Block Services predefined FilterCollection to the
predefined Filters supported by the implementation.

30.8.45 CIM_MemberOfCollection (Predefined Filter
Collection to Thin Provisioning Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Thin Provisioning predefined FilterCollection to the
predefined Filters supported by the implementation.

30.8.46 CIM_MemberOfCollection (Thin Provisioning
Filter Collection to FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Thin Provisioning predefined FilterCollection to the
FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

30.8.47 CIM_MemberOfCollection (Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection to Thin
Provisioning Filters)

Optional Experimental. This associates the Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection to the Filters
defined by the Thin Provisioning Profile.

30.8.48 CIM_OwningJobElement Conditional Conditional requirement: Support for Job Control profile.

30.8.49 CIM_StorageCapabilities Mandatory

30.8.50 CIM_StorageConfigurationCapabilities (Concrete) Conditional Conditional requirement: Support for the Storage
Relocation profile. StorageConfigurationCapabilities as
defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and
volumes.

30.8.51 CIM_StorageConfigurationCapabilities (Global) Conditional Conditional requirement: Support for
StorageConfigurationService.
StorageConfigurationCapabilities as defined in Block
Services, with the addition of
SupportedStorageElementTypes for thin pools and
volumes.

30.8.52 CIM_StorageConfigurationCapabilities
(Primordial)

Conditional Conditional requirement: Support for the Storage
Relocation profile. StorageConfigurationCapabilities as
defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and
volumes.

30.8.53 CIM_StorageConfigurationService Mandatory StorageConfigurationService as defined in Block
Services, adding thin provisioning values to the
ElementType parameter.

Table 677 - CIM Elements for Thin Provisioning

Element Name Requirement Description

Thin Provisioning Profile

1012

30.8.54 CIM_StoragePool (Concrete) Mandatory Concrete StoragePool as defined in Block Services with
the addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

30.8.55 CIM_StoragePool (Empty) Optional Empty StoragePool as defined in Block Services with the
addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

30.8.56 CIM_StoragePool (Primordial) Mandatory Primordial StoragePool as defined in Block Services with
the addition of SpaceLimit, SpaceLimitDetermination, and
ThinProvisionMetaDataSpace.

30.8.57 CIM_StorageSetting Mandatory StorageSetting as defined in Block Services with the
addition of Thin Provisioning properties.

30.8.58 CIM_StorageSettingWithHints Optional

30.8.59 CIM_StorageSettingsAssociatedToCapabilities Optional This class associates the StorageCapabilities with the
preset setting. Any StorageSetting instance associated
with this association shall work, unmodified, to create a
storage element. The preset settings should not change
overtime and represent possible settings for storage
elements are set of design time rather than runtime. All
StorageSetting instances linked with this association shall
have a ChangeableType of "0" ("Fixed - Not
Changeable").

30.8.60 CIM_StorageSettingsGeneratedFromCapabilities Conditional Conditional requirement: Support for
StorageConfigurationService. This class associates the
StorageCapabilities with the StorageSetting generated
from it via the CreateSetting method. StorageSettings
instances generated in this manner, as identified with this
association, may be removed from the model at any time
by the implementation if the ChangeableType of the
associated setting is set to "2" ("Changeable - Transient").
All StorageSettings associated with this class shall be
changeable, ChangeableType is "2" or "3". Some
implementations may permit the modification of the
ChangeableType property itself on StorageSetting
instances associated via this class. Provided this is
allowed, a client may change the ChangeableType to "3"
("Changeable - Persistent") to have this setting retained
either after generation of the instance or after its
modification by the client. The DefaultSetting property of
the StorageSetting instances linked with this association
is meaningless.

30.8.61 CIM_StorageVolume Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Representation of a virtual disk (for SCSI, a
logical unit). A StorageVolume is allocated from a
concrete StoragePool. See the "Standard Formats for
Logical Unit Names" section in the Storage Management
Technical Specification, Part 1 Common Architecture for
details on how to set Name, NameFormat, and
NameNamespace properties.

30.8.62 CIM_SystemDevice (System to StorageVolume
or LogicalDisk)

Mandatory Associates top level system from Array, Virtualizer, ... to
StorageVolume or LogicalDisk.

Table 677 - CIM Elements for Thin Provisioning

Element Name Requirement Description

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1013

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Creation/Deletion of StoragePool. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.26 CIM_IndicationFilter (Storage
Pool Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StoragePool

Mandatory Deletion of StoragePool. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.27 CIM_IndicationFilter (Storage
Pool Deletion).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Creation of StorageVolume, if the
StorageVolume storage element is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.29
CIM_IndicationFilter (Storage Volume Creation).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_StorageVolume

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Deletion of StorageVolume, if the
StorageVolume storage element is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.30
CIM_IndicationFilter (Storage Volume Deletion).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. Deprecated WQL -Change of status of a
Storage Volume, if Storage Volume is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.33
CIM_IndicationFilter (WQL Storage Volume
OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus
<>
PreviousInstance.CIM_StorageVolume::OperationalStatu
s

Conditional Conditional requirement: Referenced from Array -
StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced
from Host Hardware RAID Controller - StorageVolume is
mandatory. CQL -Change of status of a Storage Volume,
if Storage Volume is implemented. See section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.31 CIM_IndicationFilter (Storage
Volume OperationalStatus).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Creation of
LogicalDisk, if the LogicalDisk storage element is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.23 CIM_IndicationFilter (Logical Disk Creation).

Table 677 - CIM Elements for Thin Provisioning

Element Name Requirement Description

Thin Provisioning Profile

1014

30.8.1 CIM_AllocatedFromStoragePool (Pool from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 678 describes class CIM_AllocatedFromStoragePool (Pool from Pool).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_LogicalDisk

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deletion of
LogicalDisk, if the LogicalDisk storage element is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.24 CIM_IndicationFilter (Logical Disk Deletion).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. Deprecated
WQL -Change of status of LogicalDisk, if LogicalDisk is
implemented. See section Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
5.8.32 CIM_IndicationFilter (WQL Logical Disk
OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Conditional Conditional requirement: Referenced from Volume
Management - LogicalDisk is mandatory. CQL -Change of
status of LogicalDisk, if LogicalDisk is implemented. See
section Storage Management Technical Specification,
Part 4 Block Devices, 1.6.1 Rev 6 5.8.25
CIM_IndicationFilter (Logical Disk OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace
<>
PreviousInstance.CIM_StoragePool::TotalManagedSpace

Mandatory CQL -Change of TotalManagedSpace. See section
Storage Management Technical Specification, Part 4
Block Devices, 1.6.1 Rev 6 5.8.28 CIM_IndicationFilter
(Storage Pool TotalManagedSpace).

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM28'

Mandatory Indication that capacity is running low. See 30.1.3.4.1
Capacity Warning.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM29'

Mandatory Indication that capacity is has run out. See 30.1.3.4.2
Capacity Critical.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity='SNIA' and MessageID='DRM30'

Optional Indication that capacity condition has been cleared. See
30.1.3.4.3 Capacity Okay.

Table 678 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Pool from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory Antecedent references the parent pool from which the dependent pool is
allocated.

Dependent Mandatory

Table 677 - CIM Elements for Thin Provisioning

Element Name Requirement Description

643

644

645

646

647

648

649

650

651

652

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1015

30.8.2 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 679 describes class CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool).

30.8.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or Logi-
calDisk)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 680 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StorageVolume or LogicalDisk).

30.8.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 679 - SMI Referenced Properties/Methods for CIM_AllocatedFromStoragePool (Volume or LogicalD-
isk from Pool)

Properties Flags Requirement Description & Notes

SpaceConsumed Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 680 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory A Storage Volume or Logical Disk.

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

Thin Provisioning Profile

1016

Table 681 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
StoragePool).

30.8.5 CIM_ElementCapabilities (ImplementationCapabilities to System)

Experimental. Associates the conformant Array ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 682 describes class CIM_ElementCapabilities (ImplementationCapabilities to System).

30.8.6 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 683 describes class CIM_ElementCapabilities (StorageCapabilities to
StorageConfigurationService).

Table 681 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCa-
pabilities to StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with a storage pool.

ManagedElement Mandatory A reference to an instance of a StoragePool.

Table 682 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to System)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The conformant Array ComputerSystem that has
ImplementationCapabilities.

Table 683 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
ageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1017

30.8.7 CIM_ElementCapabilities (StorageCapabilities to StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 684 describes class CIM_ElementCapabilities (StorageCapabilities to StoragePool).

30.8.8 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationSer-
vice)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 685 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to
StorageConfigurationService).

30.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 684 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageCapabilities to Stor-
agePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 685 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to StorageConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

Thin Provisioning Profile

1018

Table 686 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete
StoragePool).

30.8.10CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 687 describes class CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial
StoragePool).

30.8.11CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)

Deprecated. Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for
identifying the capability to provide an element name for storage pools.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 688 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StoragePool).

Table 686 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to concrete StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 687 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (StorageConfigurationCapa-
bilities to primordial StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the element.

ManagedElement Mandatory The managed element.

Table 688 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StoragePool)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StoragePool Enabled Capabilities" that is associated
with an instance of StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

705

706

707

708

709

710

711

712

713

714

715
716

717

718

719

720

721

722

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1019

30.8.12CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or
LogicalDisk)

Associates EnabledLogicalElementCapabilities with StorageConfigurationService. This is for identifying the capability to provide an element
name for storage volumes or logical disks.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 689 describes class CIM_ElementCapabilities (Used to declare the naming capabilities of the
StorageVolume or LogicalDisk).

30.8.13CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 690 describes class CIM_ElementSettingData.

30.8.14CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)

Deprecated.

Created By: Static

Modified By: Static

Table 689 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Used to declare the naming
capabilities of the StorageVolume or LogicalDisk)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object (CIM_EnabledLogicalElementCapabilities) with an
ElementName of "StorageVolume Enabled Capabilities" or "LogicalDisk
Enabled Capacilities" that is associated with an instance of
StorageConfigurationService.

ManagedElement Mandatory A reference to an instance of CIM_StorageConfigurationService.

Table 690 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced setting is a default
setting for the element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced setting is currently
being used in the operation of the element, or that this information is
unknown. Value shall be 0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or LogicalDisk.

SettingData Mandatory The StorageSetting or StorageSettingWithHints that is associated with the
Storage Volume or Logical Disk.

723

724

725
726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

Thin Provisioning Profile

1020

Deleted By: Static

Requirement: Optional

Table 691 describes class CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService).

30.8.15CIM_EnabledLogicalElementCapabilities (For StoragePool)

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 692 describes class CIM_EnabledLogicalElementCapabilities (For StoragePool).

Table 691 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
ConfigurationService)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should include one of the following
three values:

StoragePool Enabled Capabilities

StorageVolume Enabled Capabilities

LogicalDisk Enabled Capacilities.

ElementNameEditSupport
ed

Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

Table 692 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For this usage of the capabilities this should be 'StoragePool Enabled
Capabilities'.

ElementNameEditSupport
ed

Mandatory Denotes whether a storage element can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

743

744

745

746

747

748

749

750

751

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1021

30.8.16CIM_FilterCollection (Block Services Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Block
Services implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 693 describes class CIM_FilterCollection (Block Services Predefined FilterCollection).

30.8.17CIM_FilterCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection)

Experimental. This is a collection of Lifecycle IndicationFilters defined by the Block Services Profile.

Requirement: Optional

Table 694 describes class CIM_FilterCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection).

30.8.18CIM_FilterCollection (Thin Provisioning Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Thin
Provisioning implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this element may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

Table 693 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services Predefined Filter-
Collection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Block Services:Predefined'.

Table 694 - SMI Referenced Properties/Methods for CIM_FilterCollection (Block Services ProfileSpecifi-
cLifecycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.13
CIM_FilterCollection (StaticFilterCollection).

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Block
Services:ProfileSpecificLifecycleIndicationFilterCollection'.

Table 692 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (For Storage-
Pool)

Properties Flags Requirement Description & Notes

752

753
754
755

756

757

758

759

760

761

762

763

764

765
766
767

768

769

Thin Provisioning Profile

1022

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 695 describes class CIM_FilterCollection (Thin Provisioning Predefined FilterCollection).

30.8.19CIM_FilterCollection (Thin Provisioning ProfileSpecificAlertIndicationFilterCollection)

Experimental. This is a collection of Lifecycle IndicationFilters defined by the Thin Provisioning Profile.

Requirement: Optional

Table 696 describes class CIM_FilterCollection (Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection).

30.8.20CIM_HostedCollection (Block Services to ProfileSpecificLifecycleIndicationFilterCollec-
tion)

Experimental.

Requirement: Optional

Table 697 describes class CIM_HostedCollection (Block Services to
ProfileSpecificLifecycleIndicationFilterCollection).

30.8.21CIM_HostedCollection (System to Thin Provisioning ProfileSpecificAlertIndicationFilterCol-
lection)

Experimental.

Table 695 - SMI Referenced Properties/Methods for CIM_FilterCollection (Thin Provisioning Predefined Fil-
terCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Thin Provisioning:Predefined'.

Table 696 - SMI Referenced Properties/Methods for CIM_FilterCollection (Thin Provisioning ProfileSpecifi-
cAlertIndicationFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.13
CIM_FilterCollection (StaticFilterCollection).

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Thin
Provisioning:ProfileSpecificAlertIndicationFilterCollection'.

Table 697 - SMI Referenced Properties/Methods for CIM_HostedCollection (Block Services to Profile-
SpecificLifecycleIndicationFilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the ProfileSpecificLifecycleIndicationFilterCollection for the
Block Services Profile.

Antecedent Mandatory Reference to the 'Top level' System.

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1023

Requirement: Optional

Table 698 describes class CIM_HostedCollection (System to Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection).

30.8.22CIM_HostedCollection (System to Thin Provisioning predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 699 describes class CIM_HostedCollection (System to Thin Provisioning predefined
IndicationFilters).

30.8.23CIM_HostedCollection (System to predefined IndicationFilters)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 700 describes class CIM_HostedCollection (System to predefined IndicationFilters).

30.8.24CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Table 698 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the ProfileSpecificAlertIndicationFilterCollection for the Thin
Provisioning Profile.

Antecedent Mandatory Reference to the 'Top level' System.

Table 699 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to Thin Provisioning
predefined IndicationFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Thin Provisioning.

Antecedent Mandatory Reference to the System of the referencing profile.

Table 700 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined Indica-
tionFilters)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for Block Services.

Antecedent Mandatory Reference to the System of the referencing profile.

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

Thin Provisioning Profile

1024

Requirement: Support for StorageConfigurationService.

Table 701 describes class CIM_HostedService.

30.8.25CIM_HostedStoragePool

Requirement: Mandatory

Table 702 describes class CIM_HostedStoragePool.

30.8.26CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 703 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

30.8.27CIM_IndicationFilter (Logical Disk Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new LogicalDisk
instance. This would typically occur as a result of an invocation of
CreateOrModifyElementFromStoragePool method.

Table 701 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting computer system.

Dependent Mandatory The storage configuration service hosted on the computer system.

Table 702 - SMI Referenced Properties/Methods for CIM_HostedStoragePool

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the hosting computer system.

PartComponent Mandatory The reference to the hosted storage pool.

Table 703 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedElementNameC
odeSet

Optional This property indicates the supported code set for the ElementName -- for
example, "Single Byte ASCII", "UTF-8", "ISO 8859-1", etc. See MOF for
details.

804

805

806

807

808

809

810

811

812

813

814

815

816
817

818

819

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1025

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 704 describes class CIM_IndicationFilter (Logical Disk Creation).

30.8.28CIM_IndicationFilter (Logical Disk Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a LogicalDisk
instance. This would typically occur as a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 704 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

820

821

822

823

824

825
826

827

828

829

830

831

Thin Provisioning Profile

1026

Table 705 describes class CIM_IndicationFilter (Logical Disk Deletion).

30.8.29CIM_IndicationFilter (Logical Disk OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of LogicalDisk instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 706 describes class CIM_IndicationFilter (Logical Disk OperationalStatus).

Table 705 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_LogicalDisk.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 706 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

832

833

834

835

836

837

838

839

840

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1027

30.8.30CIM_IndicationFilter (Storage Pool Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StoragePool
instance. This would typically occur as a result of an invocation of CreateOrModifyStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 707 describes class CIM_IndicationFilter (Storage Pool Creation).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 707 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

Table 706 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Logical Disk OperationalStatus)

Properties Flags Requirement Description & Notes

841

842
843

844

845

846

847

848

849

Thin Provisioning Profile

1028

30.8.31CIM_IndicationFilter (Storage Pool Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StoragePool
instance. This would typically occur as a result of an invocation of DeleteStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 708 describes class CIM_IndicationFilter (Storage Pool Deletion).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StoragePool.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 708 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StoragePool.

Table 707 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Creation)

Properties Flags Requirement Description & Notes

850

851
852

853

854

855

856

857

858

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1029

30.8.32CIM_IndicationFilter (Storage Pool TotalManagedSpace)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in TotalManagedSpace
for StoragePool instances. This would typically occur as a result of an invocation of
CreateOrModifyStoragePool that expands a StoragePool.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 709 describes class CIM_IndicationFilter (Storage Pool TotalManagedSpace).

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 709 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool TotalManaged-
Space)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StoragePoolTotalManagedSpace'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StoragePool AND
SourceInstance.CIM_StoragePool::TotalManagedSpace <>
PreviousInstance.CIM_StoragePool::TotalManagedSpace.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 708 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Pool Deletion)

Properties Flags Requirement Description & Notes

859

860
861

862

863

864

865

866

867

Thin Provisioning Profile

1030

30.8.33CIM_IndicationFilter (Storage Volume Creation)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the addition of a new StorageVolume instance. This would typically
occur as a result of an invocation of CreateOrModifyElementFromStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 710 describes class CIM_IndicationFilter (Storage Volume Creation).

30.8.34CIM_IndicationFilter (Storage Volume Deletion)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a StorageVolume
instance. This would typically occur as a result of an invocation of ReturnToStoragePool method.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 710 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Creation)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeCreation'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA
CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

868

869
870

871

872

873

874

875

876

877

878
879

880

881

882

883

884

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1031

Table 711 describes class CIM_IndicationFilter (Storage Volume Deletion).

30.8.35CIM_IndicationFilter (Storage Volume OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of StorageVolume instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 712 describes class CIM_IndicationFilter (Storage Volume OperationalStatus).

Table 711 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume Deletion)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeDeletion'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA
CIM_StorageVolume.

QueryLanguage Mandatory This should be 'DMTF:CQL' for CQL queries, but may be 'WQL' or 'SMI-S
V1.0'. WQL and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 712 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalSta-
tus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

885

886

887

888

889

890

891

892

893

Thin Provisioning Profile

1032

30.8.36CIM_IndicationFilter (Thin Provisioning Critical)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for an alert when the Thin Provisioning critical threshold is reached. This
would typically occur as a result write activity to the volume or storage pool involved.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 713 describes class CIM_IndicationFilter (Thin Provisioning Critical).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:StorageVolumeOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageVolume AND
SourceInstance.CIM_StorageVolume::OperationalStatus <>
PreviousInstance.CIM_StorageVolume::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 713 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Thin Provisioning Critical)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Thin Provisioning:ThinProvisioningCritical'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

Table 712 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Storage Volume OperationalSta-
tus)

Properties Flags Requirement Description & Notes

894

895
896

897

898

899

900

901

902

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1033

30.8.37CIM_IndicationFilter (Thin Provisioning Threshold Cleared)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for an alert when a Thin Provisioning
threshold has been cleared. This would typically occur as a result freeing or adding space to the volume
or storage pool involved.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 714 describes class CIM_IndicationFilter (Thin Provisioning Threshold Cleared).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM29'.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 714 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Thin Provisioning Threshold
Cleared)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Thin Provisioning:ThinProvisioningCleared'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM30'.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 713 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Thin Provisioning Critical)

Properties Flags Requirement Description & Notes

903

904
905

906

907

908

909

910

Thin Provisioning Profile

1034

30.8.38CIM_IndicationFilter (Thin Provisioning Warning)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for an alert when the Thin
Provisioning warning threshold is reached. This would typically occur as a result write activity to the
volume or storage pool involved.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 715 describes class CIM_IndicationFilter (Thin Provisioning Warning).

30.8.39CIM_IndicationFilter (WQL Logical Disk OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 715 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Thin Provisioning Warning)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Thin Provisioning:ThinProvisioningWarning'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' and
MessageID='DRM28'.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

911

912
913

914

915

916

917

918

919

920

921
922

923

924

925

926

927

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1035

Table 716 describes class CIM_IndicationFilter (WQL Logical Disk OperationalStatus).

30.8.40CIM_IndicationFilter (WQL Storage Volume OperationalStatus)

Deprecated. This is the 'pre-defined' WQL version of the CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageVolume instances.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 717 describes class CIM_IndicationFilter (WQL Storage Volume OperationalStatus).

Table 716 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Logical Disk Operational-
Status)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block Services:LogicalDiskOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_LogicalDisk AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 717 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operation-
alStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

928

929

930
931

932

933

934

935

936

937

Thin Provisioning Profile

1036

30.8.41CIM_LogicalDisk

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Volume Management - LogicalDisk is mandatory.

Table 718 describes class CIM_LogicalDisk.

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Name Mandatory This shall be 'SNIA:Block
Services:StorageVolumeOperationalStatusWQL'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.28 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageVolume AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus.

QueryLanguage Mandatory This shall be 'WQL' or 'SMI-S V1.0'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 50.6.28
CIM_IndicationFilter (pre-defined).

Table 718 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory This shall be "12" (OS Device Name).

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

Table 717 - SMI Referenced Properties/Methods for CIM_IndicationFilter (WQL Storage Volume Operation-
alStatus)

Properties Flags Requirement Description & Notes

938

939

940

941

942

943

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1037

30.8.42CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)

Experimental. This associates the Block Services predefined FilterCollection to the FilterCollection for the autonomous profile (e.g., the Array
FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 719 describes class CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
logical disk when the logical disk relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not compression is
being applied to the volume. When set to "true" the data is compressed.
When set to "false" the data is not compressed.

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the volume and at what rate. The possible values are '1'
(None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the compresson is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

Table 719 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Filter Col-
lection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined FilterCollection.

Member Mandatory Reference to the Block Services predefined FilterCollection.

Table 718 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

944

945
946

947

948

949

Thin Provisioning Profile

1038

30.8.43CIM_MemberOfCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollec-
tion to Block Services Filters)

Experimental. This associates the Block Services ProfileSpecificLifecycleIndicationFilterCollection to the
Filters defined by the Block Services Profile.

Requirement: Optional

Table 720 describes class CIM_MemberOfCollection (Block Services
ProfileSpecificLifecycleIndicationFilterCollection to Block Services Filters).

30.8.44CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)

Experimental. This associates the Block Services predefined FilterCollection to the predefined Filters
supported by the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 721 describes class CIM_MemberOfCollection (Predefined Filter Collection to Block Services
Filters).

30.8.45CIM_MemberOfCollection (Predefined Filter Collection to Thin Provisioning Filters)

Experimental. This associates the Thin Provisioning predefined FilterCollection to the predefined Filters
supported by the implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 720 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Block Services Profile-
SpecificLifecycleIndicationFilterCollection to Block Services Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services
ProfileSpecificLifecycleIndicationFilterCollection.

Member Mandatory Reference to the IndicationFilters defined by the Block Services Profile.

Table 721 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Block Services Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Block Services predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Block Services
implementation.

950

951

952
953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1039

Table 722 describes class CIM_MemberOfCollection (Predefined Filter Collection to Thin Provisioning
Filters).

30.8.46CIM_MemberOfCollection (Thin Provisioning Filter Collection to FilterCollection)

Experimental. This associates the Thin Provisioning predefined FilterCollection to the FilterCollection for
the autonomous profile (e.g., the Array FilterCollection).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 723 describes class CIM_MemberOfCollection (Thin Provisioning Filter Collection to
FilterCollection).

30.8.47CIM_MemberOfCollection (Thin Provisioning ProfileSpecificAlertIndicationFilterCollection
to Thin Provisioning Filters)

Experimental. This associates the Thin Provisioning ProfileSpecificAlertIndicationFilterCollection to the
Filters defined by the Thin Provisioning Profile.

Requirement: Optional

Table 724 describes class CIM_MemberOfCollection (Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection to Thin Provisioning Filters).

30.8.48CIM_OwningJobElement

Conditional on support for Job Control profile.

Requirement: Support for Job Control profile.

Table 722 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Thin Provisioning Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Thin Provisioning predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Thin Provisioning
implementation.

Table 723 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Thin Provisioning Filter Col-
lection to FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the predefined FilterCollection of the referencing profile.

Member Mandatory Reference to the Thin Provisioning predefined FilterCollection.

Table 724 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Thin Provisioning Profile-
SpecificAlertIndicationFilterCollection to Thin Provisioning Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Thin Provisioning
ProfileSpecificAlertIndicationFilterCollection.

Member Mandatory Reference to the IndicationFilters defined by the Thin Provisioning Profile.

969

970
971

972

973

974

975

976

977

978
979

980

981

982

983

984

985

986

987

Thin Provisioning Profile

1040

Table 725 describes class CIM_OwningJobElement.

30.8.49CIM_StorageCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 726 describes class CIM_StorageCapabilities.

Table 725 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory

Table 726 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In addition, the
user-friendly name can be used as a index property for a search or query.
(Note: ElementName does not have to be unique within a namespace) If
the capabilities are fixed, then this property should be used as a means for
the client application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6 (StoragePool or
StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports no single point
of failure. Values are: FALSE = does not support no single point of failure,
and TRUE = supports no single point of failure.

NoSinglePointOfFailureDef
ault

Mandatory Indicates the default value for the NoSinglePointOfFailure property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

988

989

990

991

992

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1041

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefa
ult

Mandatory PackageRedundancyDefault describes the default number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of members or
columns, a storage element will have when created or modified using this
capability. A NULL means that the setting of stripe length is not supported
at all or not supported at this level of storage element allocation or
assignment.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a storage element
will have when created or modified using this capability. A NULL means
that the setting of the parity is not supported at all or is not supported at
this level of storage element allocation or assignment.

UserDataStripeDepthDefa
ult

Optional UserDataStripeDepthDefault describes what the number of bytes forming
a stripe that a storage element will have when created or modified using
this capability. A NULL means that the setting of stripe depth is not
supported at all or not supported at this level of storage element allocation
or assignment.

AvailableDiskType Optional Experimental. Enumeration indicating the type of DiskDrives which may be
available. (0)Unknown, (1)Other, (2)Hard Disk Drive, (3)Solid State Drive,
(4)Hybrid.

AvailableFormFactor Optional Experimental. Enumeration indicating the drive physical size which may
be available. (0)Unknown, (1)Other, (2)Not Reported, (3)5.25 inch, (4)3.5
inch, (5)2.5 inch, (6)1.8 inch".

AvailablePortType Optional Deprecated.

AvailableInterconnectType Optional Experimental. Enumeration indicating the type of disk interconnections
which may be available. (0)Unknown, (1)other , (2)SAS, (3)SATA, (4)SAS/
SATA, (5)FC, (6)SOP.

AvailableInterconnectSpee
d

Optional Experimental. The speed of disk interconnections which are be available.
Values are in bits/second.

AvailableRPM Optional Experimental. The rotational speed of disk media which are be available.
Values are in rotations per minute. SSD devices shall report 0".

EncryptionSupported Optional Experimental. This property reflects support of the encryption feature
implemented by some disk drives.".

SupportedCompressionRa
tes

Optional Experimental. SupportedCompressionRates identifies the compression
rates that are supported by the implementation, "including '1' (None). If '1'
(None) is specified, then no other rate may be identified. If '1' (None) is not
specificed, then the values recognized are '2' (High), '3' (Medium), '4'
(Low) and/or '5' (Implementation Decides).

Table 726 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

Thin Provisioning Profile

1042

30.8.50CIM_StorageConfigurationCapabilities (Concrete)

StorageConfigurationCapabilities as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes. The class definition specializes the
CIM_StorageConfigurationCapabilities definition in the Block Services profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

Table 727 describes class CIM_StorageConfigurationCapabilities (Concrete).

CreateSetting() Conditional Conditional requirement: Support for StorageConfigurationService.
Generate a setting to use as a goal for creating or modifying storage
elements.

GetSupportedStripeLength
s()

Optional List the possible discrete stripe lengths supported at this time of this
method's execution.

GetSupportedStripeLength
Range()

Optional List the possible stripe length ranges supported at the time of this
method's execution.

GetSupportedParityLayout
s()

Optional List the possible parity layouts supported at the time of this method's
execution.

GetSupportedStripeDepths
()

Optional List the possible stripe depths supported at the time of this method's
execution.

GetSupportedStripeDepth
Range()

Optional List the possible stripe depth ranges supported at the time of this method's
execution.

Table 727 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3|5|6|7 (InExtents or Single InPool or Storage Pool QoS
Change or Storage Pool Capacity Expansion or Storage Pool Capacity
Reduction).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs. This version of the standard recognizes
"2" (Storage Pool Creation), "3" (Storage Pool Deletion), "4" (Storage Pool
Modification), "5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element Modification) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

Table 726 - SMI Referenced Properties/Methods for CIM_StorageCapabilities

Properties Flags Requirement Description & Notes

993

994
995
996

997

998

999

1000

1001

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1043

SupportedStorageElement
Types (overridden)

Mandatory Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6 (ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "3" (Storage Pool Deletion), "4" (Storage Pool
Modification), "5" (Storage Element Creation), "12" (Storage Element from
Element Creation), "13" (Storage Element from Element Modification) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().
Matches 3|8|14|15|16|17|18 (StorageVolume Creation or LogicalDisk
Creation or StorageVolume To StoragePool Relocation or StoragePool To
StoragePool Relocation or StorageVolume To StorageExtent Relocation or
StoragePool To StorageExtent Relocation LogicalDisk To StorageExtent
Relocation).

SupportedStorageElement
Usage

Optional Indicates the intended usage or any restrictions that may have been
imposed on supported storage elements.

ClientSettableElementUsa
ge

Optional Indicates the intended usage or any restrictions that may have been
imposed on the usage of client-settable elements.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

MaximumElementCreateC
ount

Optional Indicates the maximum number of elements that can be specified to be
created in a single method call. If 0 or null, there is no limit.

MaximumElementDeleteC
ount

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the maximum number of elements that can be deleted in a single
method call. If 0 or null, there is no limit.

MultipleElementCreateFea
tures

Optional Enumeration indicating features offered by the multiple element create
method. "2" (Single instance creation indication).

MultipleElementDeleteFeat
ures

Optional Enumeration indicating features offered by the multiple element delete
method. "2" (Continue on nonexistent element) or "3" (Return error on
nonexistent element).

ThinProvisionedClientSett
ableReserve (added)

Mandatory Experimental.

Table 727 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

1002

1003
1004
1005

1006

1007

1008

1009

Thin Provisioning Profile

1044

30.8.51CIM_StorageConfigurationCapabilities (Global)

StorageConfigurationCapabilities as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes. The class definition specializes the
CIM_StorageConfigurationCapabilities definition in the Block Services profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 728 describes class CIM_StorageConfigurationCapabilities (Global).

ThinProvisionedDefaultRe
serve (added)

Mandatory Experimental.

GetElementNameCapabilit
ies()

Optional This method indicates if ElementName can be specified as a part of
invoking an appropriate method of StorageConfigurationService to create
a new element. Additionally, the returned data includes the methods that
can be used to modify the ElementName of existing storage elements.

Table 728 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3|5|6|7 (InExtents or Single InPool or Storage Pool QoS
Change or Storage Pool Capacity Expansion or Storage Pool Capacity
Reduction).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs.

SupportedStorageElement
Types (overridden)

Mandatory Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6 (ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs.

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool().
Matches 3|5|8|9|11|12|13|14|15|16|17|18 (StorageVolume Creation or
StorageVolume Modification or LogicalDisk Creation or LogicalDisk
Modification or Storage Element QoS Change or Storage Element
Capacity Expansion or Storage Element Capacity Reduction or
StorageVolume To StoragePool Relocation or StoragePool To StoragePool
Relocation or StorageVolume To StorageExtent Relocation or
'StoragePool To StorageExtent Relocation or LogicalDisk To
StorageExtent Relocation).

Table 727 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Concrete)

Properties Flags Requirement Description & Notes

1010

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1045

30.8.52CIM_StorageConfigurationCapabilities (Primordial)

StorageConfigurationCapabilities as defined in Block Services, with the addition of
SupportedStorageElementTypes for thin pools and volumes. The class definition specializes the
CIM_StorageConfigurationCapabilities definition in the Block Services profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Support for the Storage Relocation profile.

SupportedStorageElement
Usage

Optional Indicates the intended usage or any restrictions that may have been
imposed on supported storage elements.

ClientSettableElementUsa
ge

Optional Indicates the intended usage or any restrictions that may have been
imposed on the usage of client-settable elements.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

MaximumElementCreateC
ount

Optional Indicates the maximum number of elements that can be specified to be
created in a single method call. If 0 or null, there is no limit.

MaximumElementDeleteC
ount

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the maximum number of elements that can be deleted in a single
method call. If 0 or null, there is no limit.

MultipleElementCreateFea
tures

Optional Enumeration indicating features offered by the multiple element create
method. "2" (Single instance creation indication).

MultipleElementDeleteFeat
ures

Optional Enumeration indicating features offered by the multiple element delete
method. "2" (Continue on nonexistent element) or "3" (Return error on
nonexistent element).

AutomaticPoolSelectionAll
owed

Optional If true, it indicates the implementation selects appropriate pools based on
other supplied parameters to create elements. For example, based on
supplied Goal.

ThinProvisionedClientSett
ableReserve (added)

Mandatory Experimental.

ThinProvisionedDefaultRe
serve (added)

Mandatory Experimental.

GetElementNameCapabilit
ies()

Optional This method indicates if ElementName can be specified as a part of
invoking an appropriate method of StorageConfigurationService to create
a new element. Additionally, the returned data includes the methods that
can be used to modify the ElementName of existing storage elements.

Table 728 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Global)

Properties Flags Requirement Description & Notes

1011

1012
1013
1014

1015

1016

1017

1018

1019

Thin Provisioning Profile

1046

Table 729 describes class CIM_StorageConfigurationCapabilities (Primordial).

Table 729 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SupportedStoragePoolFea
tures

Optional Lists what StorageConfigurationService functionalities are implemented.
Matches 2|3 (InExtents or Single InPool).

SupportedSynchronousAct
ions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods,
shall not produce Concrete jobs. This version of the standard recognizes
"2" (Storage Pool Creation), "12" (Storage Element from Element
Creation) or "15" (StoragePool Usage Modification) or "17"
(StorageVolume To StoragePool Relocation) or "18" (StoragePool To
StoragePool Relocation) or "19" (StorageVolume To StorageExtent
Relocation) or "20" (StoragePool To StorageExtent Relocation) or "21"
(LogicalDisk To StorageExtent Relocation).

SupportedStorageElement
Types (overridden)

Mandatory Extended for Thin Provisioning to include 5
(ThinlyProvisionedStorageVolume), 6 (ThinlyProvisionedLogicalDisk), 7
(ThinlyProvisionedAllocatedStoragePool), 8
(ThinlyProvisionedQuotaStoragePool), or 9
(ThinlyProvisionedLimitlessStoragePool).

SupportedAsynchronousA
ctions

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
what actions, invoked through StorageConfigurationService methods, may
produce Concrete jobs. This version of the standard recognizes "2"
(Storage Pool Creation), "12" (Storage Element from Element Creation) or
"15" (StoragePool Usage Modification) or "17" (StorageVolume To
StoragePool Relocation) or "18" (StoragePool To StoragePool Relocation)
or "19" (StorageVolume To StorageExtent Relocation) or "20"
(StoragePool To StorageExtent Relocation) or "21" (LogicalDisk To
StorageExtent Relocation) or "22" (Multiple Storage Element Creation) or
"23" (Multiple Storage Element Return) or "24" (Storage Element from
Multiple Pools Creation).

SupportedStorageElement
Features

Conditional Conditional requirement: Support for the Storage Relocation profile. Lists
actions supported through the invocation of
StorageServiceService.CreateOrModifyElementFromStoragePool(). This
version of the standard does not recognize any values for this property.
For Primordial pools, this shall not contain 3 (StorageVolume Creation), 5
(StorageVolume Modification), 8 (LogicalDisk Creation) or 9 (LogicalDisk
Modification) or 14 (StorageVolume To StoragePool Relocation) or 15
(StoragePool To StoragePool Relocation) or 16 (StorageVolume To
StorageExtent Relocation) or 17 (StoragePool To StorageExtent
Relocation) or 18 (LogicalDisk To StorageExtent Relocation).

SupportedStorageElement
Usage

Optional For Primordial StorageConfigurationCapabilities, this shall be NULL.

ClientSettableElementUsa
ge

Optional For Primordial StorageConfigurationCapabilities, this shall be NULL.

SupportedStoragePoolUsa
ge

Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on storage pools.

ClientSettablePoolUsage Conditional Conditional requirement: Support for the Storage Relocation profile.
Indicates the intended usage or any restrictions that may have been
imposed on the usage of a client-settable storage pool.

1020

1021
1022
1023

1024

1025

1026

1027

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1047

30.8.53CIM_StorageConfigurationService

StorageConfigurationService as defined in Block Services, adding thin provisioning values to the ElementType parameter. The class definition
specializes the CIM_StorageConfigurationService definition in the Block Services profile. Properties or methods not inherited are marked
accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 730 describes class CIM_StorageConfigurationService.

ThinProvisionedClientSett
ableReserve (added)

Mandatory Experimental.

ThinProvisionedDefaultRe
serve (added)

Mandatory Experimental.

Table 730 - SMI Referenced Properties/Methods for CIM_StorageConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

CreateOrModifyStoragePo
ol()

Optional Create (or modify) a StoragePool. A job may be created as well.

DeleteStoragePool() Optional Start a job to delete a StoragePool.

CreateOrModifyElementFr
omStoragePool()
(overridden)

Mandatory Expanded ElementType parameter.

CreateElementsFromStora
gePools()

Optional Experimental. Create one or more storage elements. A job may be created
as well.

CreateOrModifyElementFr
omElements() (overridden)

Mandatory Expanded ElementType parameter.

ReturnToStoragePool() Mandatory Release the capacity represented by this storage element back to the
Pool.

ReturnElementsToStorage
Pool()

Optional Experimental. Release the capacity represented by one or more storage
elements back to the Pool.

RequestUsageChange() Optional Allows a client to change the Usage for the element.

GetElementsBasedOnUsa
ge()

Optional Allows a client to retrieve elements for a specialized Usage.

Table 729 - SMI Referenced Properties/Methods for CIM_StorageConfigurationCapabilities (Primordial)

Properties Flags Requirement Description & Notes

1028

1029

1030
1031
1032

1033

1034

1035

1036

1037

Thin Provisioning Profile

1048

30.8.54CIM_StoragePool (Concrete)

Concrete StoragePool as defined in Block Services with the addition of SpaceLimit,
SpaceLimitDetermination, and ThinProvisionMetaDataSpace properties. The class definition specializes
the CIM_StoragePool definition in the Block Services profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Mandatory

Table 731 describes class CIM_StoragePool (Concrete).

Table 731 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

Primordial (overridden) Mandatory Shall be false.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

ElementsShareSpace Optional If true, it indicates elements allocated from the storage pool are sharing
space from the storage pool. For example, multiple snapshots "allocated"
from a storage pool, point to the same blocks of the storage pool. As
another example, elements utilizing de-duplication technology refer to a
shared copy of the data stored in the storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included in
the TotalManagedSpace of the storage pool.

SpaceLimit (added) Mandatory Experimental. The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4 (Limitless) or set to
the value of TotalManagedSpace if SpaceLimitDetermination has the value
2 (Allocated).

SpaceLimitDetermination
(added)

Mandatory Experimental. The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for determining capacity
information for the pool.

ThinProvisionMetaDataSp
ace (added)

Optional Experimental. The size of metadata consumed by this storage pool.

1038

1039
1040
1041

1042

1043

1044

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1049

30.8.55CIM_StoragePool (Empty)

Empty StoragePool as defined in Block Services with the addition of SpaceLimit,
SpaceLimitDetermination, and ThinProvisionMetaDataSpace properties. The class definition specializes
the CIM_StoragePool definition in the Block Services profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Modified By: Extrinsic: StorageConfigurationService.CreateOrModifyStoragePool

Deleted By: Extrinsic: StorageConfigurationService.DeleteStoragePool

Requirement: Optional

Table 732 describes class CIM_StoragePool (Empty).

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded from
this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded from
this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in use
as supporting capacity for existing storage element.

Table 732 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

Primordial Mandatory This may be either true or false. That is, both concrete and primordial
StoragePools may be empty.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory This shall be 0 for an empty StoragePool.

RemainingManagedSpace Mandatory

Usage Optional

OtherUsageDescription Optional

ClientSettableUsage Optional

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

Table 731 - SMI Referenced Properties/Methods for CIM_StoragePool (Concrete)

Properties Flags Requirement Description & Notes

1045

1046

1047

1048
1049
1050

1051

1052

1053

1054

Thin Provisioning Profile

1050

30.8.56CIM_StoragePool (Primordial)

Primordial StoragePool as defined in Block Services with the addition of SpaceLimit,
SpaceLimitDetermination, and ThinProvisionMetaDataSpace properties. The class definition specializes
the CIM_StoragePool definition in the Block Services profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 733 describes class CIM_StoragePool (Primordial).

SpaceLimit (added) Mandatory Experimental. The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4 (Limitless) or set to
the value of TotalManagedSpace if SpaceLimitDetermination has the value
2 (Allocated).

SpaceLimitDetermination
(added)

Mandatory Experimental. The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for determining capacity
information for the pool.

ThinProvisionMetaDataSp
ace (added)

Optional Experimental. The size of metadata consumed by this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService.

GetAvailableExtents() Optional

Table 733 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

Primordial (overridden) Mandatory Shall be true.

InstanceID Mandatory

ElementName Optional

PoolID Mandatory A unique name in the context of this system that identifies this Pool.

OperationalStatus Conditional Experimental. Conditional requirement: Support for the Storage Relocation
profile. Value shall be 2|3|6|15 (OK or Degraded or Error or Dormant). In
addition, the secondary OperationalStatus may be 19 (Relocating) with
2|3|15 (OK or Degraded or Dormant).

TotalManagedSpace Mandatory

RemainingManagedSpace Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

CapacityInMigratingSource Optional Experimental. The total capacity of extents migrating out from this storage
pool.

Table 732 - SMI Referenced Properties/Methods for CIM_StoragePool (Empty)

Properties Flags Requirement Description & Notes

1055

1056

1057
1058
1059

1060

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1051

30.8.57CIM_StorageSetting

StorageSetting as defined in Block Services with the addition of and Thin Provisioning properties. The
class definition specializes the CIM_StorageSetting definition in the Block Services profile. Properties or
methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 734 describes class CIM_StorageSetting.

CapacityInMigratingTarget Optional Experimental. The total capacity of extents migrating into this storage pool.

ReservedSpace Optional The amount of capacity used by the storage pool to store information
about the configuration of the storage pool. The space is not included in
the TotalManagedSpace of the storage pool.

SpaceLimit (added) Mandatory Experimental. The capacity of the storage allocated to the pool when
SpaceLimitDetermination has the value 3 (Quota) or 4 (Limitless) or set to
the value of TotalManagedSpace if SpaceLimitDetermination has the value
2 (Allocated).

SpaceLimitDetermination
(added)

Mandatory Experimental. The SpaceLimitDetermination property of StoragePool
defines the approach associated with the pool for determining capacity
information for the pool.

ThinProvisionMetaDataSp
ace (added)

Optional Experimental. The size of metadata consumed by this storage pool.

GetSupportedSizes() Conditional Conditional requirement: Support for StorageConfigurationService. List
the discrete storage element sizes that can be created or expanded from
this Pool.

GetSupportedSizeRange() Conditional Conditional requirement: Support for StorageConfigurationService. List
the size ranges for storage element that can be created or expanded from
this Pool.

GetAvailableExtents() Optional List the StorageExtents from this Pool that may be used to create or
expand a storage element. The StorageExtents may not already be in use
as supporting capacity for existing storage element.

Table 734 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

Table 733 - SMI Referenced Properties/Methods for CIM_StoragePool (Primordial)

Properties Flags Requirement Description & Notes

1061

1062

1063

1064

Thin Provisioning Profile

1052

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

DiskType Optional Experimental. Enumeration indicating the type of DiskDrive wanted.
(0)Dont care, (1)Other, (2)Hard Disk Drive, (3)Solid State Drive, (4)Hybrid.

InterconnectType Optional Experimental. Enumeration indicating the type of disk interconnection
wanted.".

InterconnectSpeed Optional Experimental. The speed of disk interconnection wanted in bits/second.
Value of 0 means dont care.

FormFactor Optional Experimental. Enumeration indicating the physical size of drive wanted.".

RPM Optional Experimental. The rotational speed of disk media wanted. A value of
0xffffffff means dont care. A value of 0 specifies a SSD drive.

Encryption Optional Experimental. This property reflects support of the encryption feature
wanted.

PortType Optional Experimental.

Table 734 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

1065

1066

1067

1068

1069

1070

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1053

30.8.58CIM_StorageSettingWithHints

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 735 describes class CIM_StorageSettingWithHints.

CompressionRate Optional Experimental. CompressionRate Indicates the desired compression for a
storage element. The possible values are '1' (None), '2' (High), '3'
(Medium), '4' (Low) or '5' (Implementation Decides).

CompressedElement Optional Experimental. CompressedElement property indicates whether or not
compression of the element is being requested. When set to true,
compression is being requested. When set to false, compression is not
being requested.

ThinProvisionedPoolType
(added)

Mandatory Experimental. This property is needed when the Setting is used as goal in
CreateOrModify... but is not needed when the Setting class is associated
to a pool or volume.

ThinProvisionedInitialRese
rve (added)

Mandatory

Table 735 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory

DataRedundancyMin Mandatory

DataRedundancyMax Mandatory

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory

PackageRedundancyMax Mandatory

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional

ExtentStripeLengthMin Optional

ExtentStripeLengthMax Optional

ParityLayout Optional

UserDataStripeDepth Optional

UserDataStripeDepthMin Optional

Table 734 - SMI Referenced Properties/Methods for CIM_StorageSetting

Properties Flags Requirement Description & Notes

1071

1072

1073

1074

Thin Provisioning Profile

1054

30.8.59CIM_StorageSettingsAssociatedToCapabilities

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 736 describes class CIM_StorageSettingsAssociatedToCapabilities.

UserDataStripeDepthMax Optional

StorageExtentInitialUsage Optional

StoragePoolInitialUsage Optional

DataAvailabilityHint Mandatory This hint is an indication from a client of the importance placed on data
availability. Values are 0=Don't Care to 10=Very Important.

AccessRandomnessHint Mandatory This hint is an indication from a client of the randomness of accesses.
Values are 0=Entirely Sequential to 10=Entirely Random.

AccessDirectionHint Mandatory This hint is an indication from a client of the direction of accesses. Values
are 0=Entirely Read to 10=Entirely Write.

AccessSizeHint Mandatory This hint is an indication from a client of the optimal access sizes. Several
sizes can be specified. Units("Megabytes").

AccessLatencyHint Mandatory This hint is an indication from a client how important access latency is.`
Values are 0=Don't Care to 10=Very Important.

AccessBandwidthWeight Mandatory This hint is an indication from a client of bandwidth prioritization. Values
are 0=Don't Care to 10=Very Important.

StorageCostHint Mandatory This hint is an indication of the importance the client places on the cost of
storage. Values are 0=Don't Care to 10=Very Important. A StorageVolume
provider might choose to place data on low cost or high cost drives based
on this parameter.

StorageEfficiencyHint Mandatory This hint is an indication of the importance placed on storage efficiency by
the client. Values are 0=Don't Care to 10=Very Important. A
StorageVolume provider might choose different RAID levels based on this
hint.

ChangeableType Mandatory

Table 736 - SMI Referenced Properties/Methods for CIM_StorageSettingsAssociatedToCapabilities

Properties Flags Requirement Description & Notes

DefaultSetting Mandatory This boolean designates the setting that will be used if the CreateSetting()
method is called with providing the NewSetting parameter. However, some
implementations may require that the NewSetting parameter be non null.
There may be only one default setting per the combination of
StorageCapabilities and associated StoragePool as associated through
ElementCapabilities.

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 735 - SMI Referenced Properties/Methods for CIM_StorageSettingWithHints

Properties Flags Requirement Description & Notes

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1055

30.8.60CIM_StorageSettingsGeneratedFromCapabilities

Created By: Extrinsic: CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Support for StorageConfigurationService.

Table 737 describes class CIM_StorageSettingsGeneratedFromCapabilities.

30.8.61CIM_StorageVolume

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Array - StorageVolume is mandatory or Referenced from Storage
Virtualizer - StorageVolume is mandatory or Referenced from Host Hardware RAID Controller -
StorageVolume is mandatory.

Table 738 describes class CIM_StorageVolume.

Table 737 - SMI Referenced Properties/Methods for CIM_StorageSettingsGeneratedFromCapabilities

Properties Flags Requirement Description & Notes

Dependent Mandatory The StorageSetting reference.

Antecedent Mandatory The StorageCapabilities reference.

Table 738 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Optional

Thin Provisioning Profile

1056

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted by a client
application.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
storage volume when the volume relocation is on going.

IsCompressed Optional Experimental. IsCompressed identifies whether or not compression is
being applied to the volume. When set to "true" the data is compressed.
When set to "false" the data is not compressed.

Table 738 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

1091

1092

1093

1094

1095

1096

 Thin Provisioning Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1057

30.8.62CIM_SystemDevice (System to StorageVolume or LogicalDisk)

Created By: Static

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 739 describes class CIM_SystemDevice (System to StorageVolume or LogicalDisk).

EXPERIMENTAL

CompressionRate Optional Experimental. CompressionRate identifies whether or not compression is
being applied to the volume and at what rate. The possible values are '1'
(None), '2' (High), '3' (Medium) or '4' (Low).

CompressionState Optional Experimental. CompressionState indicates whether the compression is '2'
(pending), '3' (initializing), '4' (in progress) or '5' (completed). If
compression is not supported (CompressionRate='1') for the volume, the
CompressionState shall be '1' (Not Applicable).

Table 739 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to StorageVolume or Log-
icalDisk)

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 738 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

Thin Provisioning Profile

1058

SMI-S 1.6.1 Revision 6 SNIA Technical Position 1059

EXPERIMENTAL

31 Automated Storage Tiering Profile

31.1 Description

31.1.1 Synopsis

Profile Name: Automated Storage Tiering

Version: 1.6.1

Organization: SNIA

CIM schema version: 2.35

Central Class: TierService

Scoping Class: ComputerSystem

31.1.2 Supported Profiles, Subprofiles, and Packages

Profile Name: Automated Storage Tiering (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.35.0

Table 740 describes the related profiles for Automated Storage Tiering.

31.1.3 Overview

The storage industry offers a range of storage products with varying performance characteristics. For
example, Solid State Drive (SSD), Fibre Channel (FC), Serial ATA (SATA), etc.

Various storage products can be configured into different tiers of storage. To enable storage arrays to
provide faster access to data based on how frequently the data is accessed, it is desirable to monitor the
frequency of data access enabling the optimized placement of the data in the appropriate storage tier.

The Automated Storage Tiering profile, a component profile, includes classes and methods to expose the
storage tiering feature of the storage array. The storage tiers may be created by the storage array based

Table 740 - Related Profiles for Automated Storage Tiering

Profile Name Organization Version Requirement Description

Block Services SNIA 1.6.1 Mandatory

Pools from Volumes SNIA 1.4.0 Optional

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.6.0 Optional

Disk Drive Lite SNIA 1.6.0 Optional

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Automated Storage Tiering Profile

1060

on the performance characteristics of the underlying hardware and the quality of service associated with
that hardware.

Alternatively, SMI-S clients may have the ability to create the storage tiers based on various requirements
such as disk drive technology, quality of service, etc.

Once the storage tiers have been identified, the storage array will monitor the data usage of various
storage elements (e.g., volumes) and “automatically” move the data to the appropriate storage tier in
order to optimize the response time of the applications using that data. At the same time, as the data in a
high performing storage tiers is used less often, the storage array will move that data to a less performing
storage tier.

Storage tiering may be a fully automated feature managed by the storage array. Deciding when and under
what performance criteria to move storage volumes between storage tiers may also be based on policies
and schedules provided by the storage administrators. In some cases, a storage array may have well
established default policies for optimum performance; however, it may also allow the storage
administrators to fine tune the policies to better meet the requirements of the applications accessing the
data.

The implementation may also offer a manual mode to allow clients to decide when to actually perform the
data movement/relocation based on the collected workload statistics.

Throughout this profile, there are specific references to class properties and methods pertaining to each
section. Refer to 31.4 "CIM Elements" for a complete list of all properties and methods, including their
description.

31.1.4 Key Components

Table 741 shows a list of key classes used by the Automated Storage Tiering.

Clients should refer to 31.3 "Client Considerations and Recipes" for a list of steps to follow to utilize the
storage tiering service.

31.1.5 Automated Storage Tiering Discovery

Figure 168 depicts the Automated Storage Tiering discovery instance diagram.

Table 741 - Key Classes

Class Name Notes

TierService The main class for Automated Storage Tiering. It contains methods for manipulating storage
tiers.

TierServiceCapabilities Contains a set of properties and methods that describe the capabilities of automated storage
tiering.

StorageTier Represents a collection of storage objects belong to a tier.

AssociatedElementTier Associates an element to a storage tier.

TierDomain Represents a set of storage tiers that have a common scope and management domain.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1061

As shown in Figure 169, the single instance of the class TierService and its methods provide the
mechanism for creating and managing storage tiers if they are not automatically created by the storage
array.

An instance of the TierSettingData associated to the TierServiceCapabilities includes properties that may
apply to all storage tiers (effectively, a “global” setting). Each storage tier also has an associated
TierSettingData (effectively, a “local” setting). The “local” setting has precedence over the “global”
setting. In other words, if a property appears in both the “local” and in the “global” setting, the property in
the “local” setting prevails.

Figure 168 - Automated Storage Tiering Discovery

Com puterSystem

// Array

TierService

HostedService

TierServiceCapabilities

Elem entCapabilities

50

51

52

53

54

55

56

57

Automated Storage Tiering Profile

1062

31.1.6 Storage Tiers

A storage tier is a collection of storage objects that have the same performance characteristics and/or
Quality of Service (QoS).

An implementation offering support for storage tiering, may create the storage tiers automatically or allow
clients to invoke the appropriate methods in the TierService class to create the storage tiers.

Figure 170 shows two storage tiers -- one based on SSD (Solid State Drives) disk drives, and one based
on SATA (Serial ATA) disk drives.

Storage volumes can be automatically relocated from one storage tier to another storage tier in order to
improve access to data stored on the storage volumes.

A storage tier with a lower value RelativePerformanceOrder has a “better” performance characteristics.
On systems that create storage tiers automatically, the system assigns an appropriate
RelativePerformanceOrder value to the storage tier. On systems that clients request a storage tier to be
created (by invoking the method CreateStorageTier, see section 31.2.1), clients can specify the
RelativePerformanceOrder for the storage tier, as well as the acceptable minimum and maximum values
for the RelativePerformanceOrder for the requested storage tier.

The method GetStorageTierCandidateObjects (see section 31.2.8) allows clients to locate the appropriate
storage objects to form a storage tier.

Storage volumes with a null or 0 StorageVolume.StorageTieringSelection property are not subject to
storage tiering. The property StorageVolume.StorageTieringSelection has the following possible values:

Figure 169 - Additional Automated Storage Tiering Components

ComputerSystem

// Array

TierService

HostedService

TierServiceCapabilities

ElementCapabilities

TierDomain

StorageTier

ServiceAffectsElement

ServiceAffectsElement

ConcreteDependency

SystemComponent

TierSettingData

SettingsDefineCapabilities

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1063

• 0: The StorageVolume is not subject to storage tiering

• 1: “Use RelativePerformanceOrder” -- Use the property StorageVolume.RelativePerformanceOrder to locate
an appropriate storage tier for this storage volume.

• 2: “Use RelativePerformanceOrderSet” -- which indicates the storage volume can only be associated with
storage tiers that have a RelativePerformanceOrder value included in this set.

The (optional) boolean property StorageTieringFrozen (when set to True) of the StorageSetting instance
associated to a StorageVolume indicates if further data movement of the StorageVolume has been
suspended. To resume the data movement of the StorageVolume by the storage tiering subsystem, use
the ModifyInstance intrinsic method to set the property StorageTieringFrozen of the associated
StorageSetting instance to False.

77

78

79

80

81

82

83

84

85

86

Automated Storage Tiering Profile

1064

A storage tier may be comprised of storage objects with the same performance characteristics (and QoS)
from different storage pools, as shown in Figure 171.

Figure 170 - Storage Tiering Model

Pool1:
StoragePool

TierDomain

volume:
StorageVolume

extent1:
StorageExtent

//SSD//SSD

extent2:
StorageExtent

//SSD

extent4:
StorageExtent

//SATA

extent5:
StorageExtent

//SATA

extent3:
StorageExtent

//SSD

extent6:
StorageExtent

//SATA

tier1:
StorageTier

tier2:
StorageTier

AssociatedComponentExtent

MemberOfCollection

AssociatedElementTier

MemberOfCollection

ConcreteDependency

cap2:
StorageTierCapabilities

// QoS

ElementCapabilities

cap1:
StorageTierCapabilities

// QoS

ElementCapabilities

StorageTier as a collection of StorageExtents
(within the same StoragePool)

AllocatedfromStoragePool

TierSetting1:
TierSettingData

SettingsDefineCapabilities

SettingsDefineCapabilities
TierSetting2:

TierSettingData

AssociatedResourcePool

87

88

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1065

A storage tier may consist of StorageVolumes allocated from different storage pools with similar
performance characteristics (and/or QoS). In this configuration, StorageVolumes form a StoragePool (per
Pools from Volumes profile). Figure 172 shows such configuration.

Figure 171 - Storage Tiering Model based on different pools

C om puterS ystemT ier D om ain

T ierS e tting2 :
T ie rS ettingD ata

T ie rC apabilities2:
S torageT ierC apab ilities

T ierC apabilities1 :
S torageT ierC apab ilities

P oo l1 :
S to rageP oo l

//S S D

P ool2 :
S torageP oolt

//S SD

P ool4:
S to rageP oo l

//S A TA

P ool5:
S to rageP oo l

//S A TA

P ool3:
S torageP ool

//S S D

P ool6:
S torageP oo l

//SA TA

Tier1 :
S to rageT ie r

T ier2 :
S torageT ie r

S e ttingsD efineC apabilities

S ystem C om ponent

M em berO fC o llection

E lem entC apabilities

M em berO fC ollection

C oncre teD ependency

E lem entC apab ilities

T ierS etting1 :
T ie rS ettingD ata

S ettingsD efineC apabilities

S to rageT ier as a co llection o f S torageP oo ls

A ssoc ia tedR esourceP ool

89

90

91

Automated Storage Tiering Profile

1066

Storage tiers can be based on the Quality of Service (QoS) offered by the underlying storage pools.
Figure 173 shows two different storage tiers--one that is “highly available,” and another that has “low
availability.” The storage capabilities associated to each storage tier indicate the range of redundancies
offered by the corresponding storage tier.

Figure 172 - Storage Tiering based on StorageVolumes forming a StoragePool

T ie rD o m a in

V o lu m e 1 :
S to ra g e V o lu m e

//S S D

V o lu m e 2 :
S to ra g e V o lu m e l

/ /S S D

C o n c re te P o o l1 :
S to ra g e P o o l

/ /S S D

C o n c re te P o o l2 :
S to ra g e P o o l

/ /S A T A

V o lu m e l3 :
S to ra g e V o lu m e

/ /S A T A

P o o l3 :
S to ra g e P o o l

/ /S S D + S A T A
// C o n s t itu e n t P o o l

tie r1 :
S to ra g e T ie r

t ie r2 :
S to ra g e T ie r

M e m b e rO fC o lle c tio n

V o lu m e 5 :
S to ra g e V o lu m e

// S S D + S A T A
//P o o l V o lu m e

S to ra g e T ie r a s a c o lle c t io n o f S to ra g e V o lu m e s
(P o o ls f ro m V o lu m e s)

V o lu m e 4 :
S to ra g e V o lu m e

//S A T A

M e m b e rO fC o lle c tio n

A llo c a te d fro m S to ra g e P o o l A llo c a te d fro m S to ra g e P o o l A llo c a te d fro m S to ra g e P o o l A llo c a te d fro m S to ra g e P o o l

A llo c a te d fro m S to ra g e P o o l

C o n c re te D e p e n d e n c y

C o n c re te D e p e n d e n c y

C o n c re te D e p e n d e n c y C o n c re te D e p e n d e n c y

A s s o c ia te d E le m e n tT ie r A s s o c ia te d E le m e n tT ie r

C o n c re te D e p e n d e n c y

A s s o c ia te d R e s o u rc e P o o l

92

93

94

95

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1067

StorageTiers can be a collection of primordial StorageExtents with different characteristics that are used
to form a StoragePool, as shown in Figure 174. The primordial StorageExtents, with the

Figure 173 - Storage tiers based on QoS

Pool1:
StoragePool

volume1:
StorageVolume

TierDomain

volume2:
StorageVolume

extent1:
CompositeExtent

//SSD//RAID 1

extent2:
CompositeExtentt

//RAID 10

extent3:
StorageExtent

//JBOD

extent4:
StorageExtent

//JBOD

extent5:
CompositeExtent

//RAID 0

tier1:
StorageTier

tier2:
StorageTier

AssociatedComponentExtent

AllocatedfromStoragePool

AllocatedfromStoragePool

MemberOfCollection

AssociatedElementTier

MemberOfCollection

AssociatedElementTier

ConcreteDependency

cap2:
StorageTierCapabilities

// QoS
Low Availability

ElementCapabilities

cap1:
StorageTierCapabilities

// QoS
Highly Available

ElementCapabilities

AssociatedResourcePool

96

97

Automated Storage Tiering Profile

1068

ExtentDiscriminator property set to ‘SNIA:DiskDrive,SNIA:Pool Component’, are directly associated to
DiskDrives, via the MediaPresent association (see the Disk Drive Lite subprofile).

Figure 174 - StorageTiers based on Primordial StorageExtents

Pool1:
StoragePool

TierDomain

volume:
StorageVolume

extent1:
StorageExtent

//SSD
 //SSD
 ExtentDiscriminator =

 'SNIA:DiskDrive'

extent2:
StorageExtent

 //SSD
 ExtentDiscriminator =
 'SNIA:DiskDrive'

extent3:
StorageExtent

 //SATA
 ExtentDiscriminator =

 'SNIA:DiskDrive'

extent4:
StorageExtent

 //SATA
 ExtentDiscriminator =

 'SNIA:DiskDrive'

tier1:
StorageTier

tier2:
StorageTier

MemberOfCollection

AssociatedElementTier

MemberOfCollection

ConcreteDependency

cap2:
StorageTierCapabilities

// QoS

ElementCapabilities

cap1:
StorageTierCapabilities

// QoS

ElementCapabilities

StorageTier as a collection of Primordial
StorageExtents.

AllocatedfromStoragePool

TierSetting1:
TierSettingData

SettingsDefineCapabilities

SettingsDefineCapabilities
TierSetting2:

TierSettingData

AssociatedResourcePool

98

99

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1069

31.1.7 StorageTier and StoragePool

There is a correlation between storage tiers and storage pools since storage volumes allocated from a
storage pool also have an association to one or more storage tiers. However, a StorageTier represents a
collection of resources, which are identified as a tier; whereas, a StoragePool represents a pool of
resources, which contain the elements such as a StorageVolume.

For example it is possible to divide up a storage pool based on disk drive technologies (and/or protection)
into storage tiers--for example, all SSD drives into tier1, FC drives into tier2, and SATA drives into tier3.

Alternatively, it is possible to create a storage tier from one or more storage pools--for example, one or
more storage pools that are based on SSD drives can be grouped into tier1, one or more storage pools
that are based on FC drives can be grouped into tier2, etc.

31.1.8 TierDomain

A tier domain is a collection of storage tiers. The storage tiers belonging to a tier domain are associated
to the TierDomain via the ConcreteDependency association. TierDomains are associated to the top level
ComputerSystem via the SystemComponent association.

The underlying storage pools are associated to one or more tier domains via the
AssociatedResourcePool association.

The storage elements subject to storage tiering are restricted to move between storage tiers in the same
tier domain. In Figure 175, there are two tier domains. In this configuration, for example, the storage
tiering subsystem may move a storage element allocated from storage pool 3 to storage pool 1, which is
associated to tier 1.

The property DataMovement indicates whether data movement is automatic or manual, as follows:

• Auto: Movement of data happens automatically based on the collected statistics.

• Manual: The actual movement of data happens when requested by a client. The data movement is still based
on the collected statistics.

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Automated Storage Tiering Profile

1070

Figure 175 - Two TierDomain Configuration

ComputerSystemTier Domain 1

Pool1:
StoragePool

//SSD

Pool2:
StoragePoolt

//SATA

Pool4:
StoragePool

//SATA

Pool5:
StoragePool

//SSD

Pool3:
StoragePool

//SATA

Pool6:
StoragePool

//SSD

Tier1:
StorageTier

Tier3:
StorageTier

SystemComponent

MemberOfCollection

ConcreteDependency

A configuration with two TierDomains

AssociatedResourcePool

Tier2:
StorageTier

MemberOfCollection

Tier4:
StorageTier

MemberOfCollection MemberOfCollection

Tier Domain 2

SystemComponent

ConcreteDependency

AssociatedResourcePool

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1071

31.1.9 Support for Sub-LUN tiering

An implementation may support storage tiering for Sub-LUNs. Such support involves automatic
movement of only certain, “heavily used”, extents of a storage volume to more performant storage tiers --
as opposed to moving all the extents of the storage volume. Figure 176 shows a storage volume that is
associated to two different storage tiers. See the TierServiceCapabilities in section 31.1.10.

Figure 176 - A volume associated to two storage tiers

Pool1:
StoragePool

StorageSetting

volume1:
StorageVolume

TierDomain

Pool2:
StoragePool

extent1:
StorageExtent

//SSD

extent3:
StorageExtent

//SATA

extent4:
StorageExtent

//SATA

extent2:
StorageExtent

//SSD

extent5:
StorageExtent

//SATA

tier1:
StorageTier

tier2:
StorageTier

AssociatedComponentExtent

AssociatedComponentExtent

AllocatedfromStoragePool

AllocatedfromStoragePool

ElementSettingData

AssociatedElementTier

AssociatedElementTier

MemberOfCollection

ConcreteDependency

MemberOfCollection

124

125

126

127

128

Automated Storage Tiering Profile

1072

31.1.10Storage Tiering Capabilities

The single instance of the class TierServiceCapabilities describes various capabilities of the storage
tiering feature. Clients should examine the TierServiceCapabilities instance to determine the specific
capabilities of the storage tiering implementation.

The property TierServiceCapabilities.SupportedFeatures is an array indicating the supported features of
the storage tiering service. Table 742 show the possible values for this property.

The property TierServiceCapabilities.SupportedTierFeatures is an array indicating the supported tier
features.

31.2 Methods of the Profile

The Automated Storage Tiering Profile has a number of extrinsic methods for storage tier management.

All of the Profile extrinsic methods return one of the following status codes. Depending on the error
condition, a method may return additional error codes and/or throw an appropriate exception to indicate
the error encountered.

Furthermore, the Profile relies on a number of intrinsic methods such as ModifyInstance for modifying
properties such as ElementName.

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

Table 742 - SupportedFeatures

Feature

System Creates StorageTiers

Client Can Create StorageTiers

System Creates TierDomains

Client Can Create TierDomains

Supports SubLUN

Table 743 - SupportedTierFeatures

Storage Tier Features

StorageTiers Based On Performance Only

StorageTiers Based On QoS Only

StorageTiers Based On Performance and QoS

StorageTiers Based On Other Characteristics

StorageTiers Can Overlap

StorageTiers Can Be Empty

StorageTiers In Multiple TierDomains

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1073

• 4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 744 summarizes the extrinsic methods:.

31.2.1 CreateStorageTier

uint32 TierService.CreateStorageTier(

 [IN, Description (

 "A end user relevant name. If null, then a "

 "system supplied default name may be used.")]

 string ElementName,

 [IN, Description (

 "List of elements to use to create a storage "

 "tier. ")]

 CIM_LogicalElement REF Members[],

 [IN, Description (

 "If provided, it overrides the default tiering "

 "setting data that is used. "),

 EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [IN, Description (

 "The Quality of Service per the properties "

 "of supplied StorageSetting.")]

 CIM_ManagedElement REF Goal,

 [IN, Description (

 "Array of references to CIM_StoragePool "

 "instances. ")]

 CIM_AdminDomain REF TierDomain[],

 [IN (false), OUT, Description (

 "Reference to the job (may be Null if job is "

 "completed).")]

 CIM_ConcreteJob REF Job,

Table 744 - Extrinsic Methods

Method Described in

CreateStorageTier() See 31.2.1

DeleteStorageTier() See 31.2.2

AddToStorageTier() See 31.2.3

RemoveFromStorageTier() See 31.2.4

CreateTierDomain() See 31.2.5

DeleteTierDomain() See 31.2.6

ModifyStorageTierDomainAssociation() See 31.2.7

GetStorageTierCandidateObjects() See 31.2.8

RequestDataMovementStateChange() See 31.2.9

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

Automated Storage Tiering Profile

1074

 [IN (false), OUT, Description (

 "Reference to the created StorageExtentTier.")]

 CIM_StorageTier REF StorageTier);

This method allows a client to create a storage tier based on the supplied information. For example, it is
possible to create a storage tier based on the storage extents of a storage pool that are utilizing the SSD
technology. In this case, the parameter Members[0] is set to reference the desired storage pool,
TierSettingData.Technology property set to SSD, and TierSettingData.StorageObjectType to
ComponentsOfStoragePool.

Basically, the more parameters specified, the narrower the criteria for selecting the storage objects
comprising a storage tier.

The parameters are as follows:

• ElementName: An end-user relevant name for the element being created. If null, then a system supplied
name may be used. The value will be stored in the 'ElementName' property for the created element.

• Members: List of elements (e.g., StorageExtents) to use to create a storage tier. If null, locate storage object
from other parameters -- for example, from TierSettingData.

• TierSettingData: Its properties are used to populate the applicable properties of the created storage tier -- for
example, RelativePerformanceOrder. Additionally, its other properties are used to narrow the selection
criteria for the locating appropriate storage objects for the tier -- for example, Technology, with values such as
SSD, Mixed, etc.

• Goal: The definition for the StorageSetting to locate storage objects with the desired Quality of Service.

• TierDomain: As an input, the created storage tier will be associated to this array of TierDomains. If null, the
implementation may create a TierDomain, or associate the created storage tier to existing TierDomains. As
an output, it will contain references to the TierDomains that the system decided to use or create.

• Job: If a Job is created as a side effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

• StorageTier: Refers to the created storage tier. If a job is created, this parameter may be null. Use the
AffectedJobElement association to locate the created storage tier once the job completes.

Method Notes:

• Any required associations are created in addition to the instance of the StorageTier.

31.2.2 DeleteStorageTier

uint32 TierService.DeleteStorageTier(

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_StorageTier REF StorageTier,

 [IN] Boolean Force);

Parameters:

• StorageTier: A reference to the storage tier to be deleted.

• Force: The implementation may not allow a storage tier to be deleted if the storage tier is associated with
underlying storage elements. In such situations specify \"true\" to force the deletion of the storage tier.

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1075

This method allows a client to delete a storage tier. All associations to the deleted storage tier are also
removed as part of the action.

31.2.3 AddToStorageTier

uint32 TierService.AddToStorageTier(

 [IN] CIM_LogicalElement REF Members[],

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [IN] CIM_ManagedElement REF Goal,

 [IN] CIM_ResourcePool REF InPools[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_StorageTier REF StorageTier);

This method allows a client to add storage objects to an existing storage tier.

31.2.4 RemoveFromStorageTier

uint32 TierService.RemoveFromStorageTier(

 [IN] CIM_LogicalElement REF Members[],

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_StorageTier REF StorageTier);

This method allows a client to remove storage objects from an existing storage tier. If empty storage tiers
are not supported by the implementation, deleting all members will delete the storage tier.

31.2.5 CreateTierDomain

 uint32 TierService.CreateTierDomain(

 [IN] string ElementName,

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_AdminDomain REF TierDomain);

This method allows a client to create a new TierDomain.

31.2.6 DeleteTierDomain

 uint32 TierService.DeleteTierDomain(

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] Boolean Force,

 [IN] CIM_AdminDomain REF TierDomain);

This method allows a client to delete a TierDomain. If TierDomain is associated to storage tiers, the call
will fail. However, if the Force parameter is set to true, the associated storage tiers will also be deleted
unless the associated storage tiers are also associated to other TierDomains.

31.2.7 ModifyStorageTierDomainAssociation

 uint32 TierService.ModifyStorageTierDomainAssociation(

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

Automated Storage Tiering Profile

1076

 [IN] CIM_AdminDomain REF RemoveFromTierDomain,

 [IN] CIM_AdminDomain REF AddToTierDomain,

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [OUT] CIM_ConcreteJob REF Job,

 [IN] CIM_StorageTier REF StorageTier);

This method allows a client to modify associations between a storage tier and tier domains.

If the parameter RemoveFromTierDomain is null, the storage tier will not be removed from an existing
TierDomain. If the parameter AddToTierDomain is null, the storage tier will not be added to a TierDomain.

For example, to just add a storage tier to an existing TierDomain, do not supply the
RemoveFromTierDomain parameter, but supply the parameter AddToTierDomain. Alternatively, to just
remove a storage tier from a TierDomain without adding it to another TierDomain, supply the
RemoveFromTierDomain, but do not supply the AddToTierDomain.

31.2.8 GetStorageTierCandidateObjects

 uint32 TierService.GetStorageTierCandidateObjects(

 [IN] CIM_LogicalElement REF InElements[],

 [IN, EmbeddedInstance ("CIM_TierSettingData")]

 string TierSettingData,

 [IN] CIM_ManagedElement REF Goal,

 [OUT] CIM_ConcreteJob REF Job,

 [OUT] CIM_LogicalElement REF Candidates[]);

This method returns an array of storage objects that can form a storage tier. The selection criteria is
based on the input parameters. The more input parameters, the narrower the search criteria. For
example, it is possible to specify to return the candidate storage objects based on all storage extents of a
storage pool, i.e., ConcreteComponents, that utilize solid state technology by supplying the appropriate
InPools and TierSettingData.

31.2.9 RequestDataMovementStateChange

 uint32 TierDomain.RequestDataMovementStateChange(

 [IN, Description (

 "Specifies the requested state. "

 "Possible values are as follows: \n"

 "Start: begin manual data movement. \n"

 "Stop: stop manual data movement. \n"

 "Pause: pause data movement. \n"

 "Resume: resume data movement."),

 ValueMap { "2", "3", "4", "5", "..", "0x8000.."},

 Values { "Start", "Stop", "Pause", "Resume",

 "DMTF Reserved", "Vendor Reserved" }]

 uint16 RequestedState,

 [IN, Description (

 "A timeout period that specifies the maximum amount "

 "of time that the client expects the transition to "

 "the new state to take. The interval format must be "

 "used to specify the TimeoutPeriod. A value of 0 or "

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1077

 "a null parameter indicates that the client has no "

 "time requirements for the transition. \n"

 "If this property does not contain 0 or null and "

 "the implementation does not support this "

 "parameter, a return code of \'Use Of Timeout "

 "Parameter Not Supported\' must be returned.")]

 datetime TimeoutPeriod,

 [IN, Description (

 "Specifies to data and time for the indicated "

 "new requested state. If null, data movement "

 "starts as soon as possible.")]

 datetime StartTime,

 [IN, Description (

 "Specifies the duration for data movement."

 "The interval format must be used. A value of "

 "0 or a null parameter indicates there is "

 "no time limit.")]

 datetime DataMovementInterval);

Requests that the state of manual data movement to be changed to the value specified in the
RequestedState parameter. Invoking this method multiple times could result in earlier requests being
overwritten or lost.

The property TierDomain.DataMovementState indicates the current state of data movement activity for
the given TierDomain -- for example, “In Progress”, “Completed”, etc. -- see the MOF file for the list of
states.

31.3 Client Considerations and Recipes

31.3.1 Automated Storage Tiering

In general, there are two possible implementations of storage tiering. One, where the storage array
manages the storage tiers, including creating the storage tiers. Two, all the clients need to do is to create
the storage tiers and tier domains.

In both implementations, the storage array monitors the activities of the storage elements (e.g., volumes)
and moves the storage elements to the appropriate storage tiers (with
StorageTier.RelativePerformanceOrder having a value less than or equal to
StorageVolume.RelativePerformanceOrder or one of the values in the RelativePerformanceOrderSet).

The following steps are recommended:

• Review the Discovery section to determine if Storage Tiering is supported. See section 31.

• Examine the storage tiering capabilities to determine whether a client needs to create the storage tiers or not.
See 31.1.10 "Storage Tiering Capabilities".

31.3.2 Creating StorageVolumes with Storage Tiering

Clients can create a new storage volume and request the newly created storage volume to be placed in
an appropriate storage tier. To do so, clients need to create an instance of AdvancedStorageSetting
(using the method StorageCapabilities.CreateSetting) and set the properties
AdvancedStorageSetting.InitialStorageTieringSelection and
AdvancedStorageSetting.RelativePerformanceOrderLimit (or InitialRelativePerformanceOrderSet) as

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Automated Storage Tiering Profile

1078

desired, by calling the intrinsic method ModifyInstance. Then, when calling the method
StorageConfigurationService.CreateOrModifyElementFromStoragePool, supply the advanced storage
setting. Alternatively, clients can set the property AdvancedStorageSetting.InitialStorageTierMethodology
and let the system decide the appropriate storage tier. For example, clients can specify a newly created
StorageVolume to be placed in a storage tier that has the “Highest Performance” by supplying the
argument AdvancedStorageSetting.InitialStorageTierMethodology=”Highest Performance” to the
StorageConfigurationService.CreateOrModifyElementFromStoragePool method.

31.4 CIM Elements

Table 745 describes the CIM elements for Automated Storage Tiering.

Table 745 - CIM Elements for Automated Storage Tiering

Element Name Requirement Description

31.4.1 CIM_AdvancedStorageSetting Optional Representation of a StorageSetting. StorageSettings are
covered in Block Services Package. Additional
propperties are added for storage tiering.

31.4.2 CIM_AssociatedElementTier Conditional Experimental. Conditional requirement: Required if
storage tiering is supported. Define the association
between an element and one or more storage tiers.

31.4.3 CIM_AssociatedResourcePool Optional Experimental. Associates an object inherited from System
to a dependent ResourcePool such as a StoragePool.

31.4.4 CIM_ConcreteDependency (TierDomain to
StorageTier)

Optional Associates storage tiers to tier domains.

31.4.5 CIM_ElementCapabilities Mandatory Associates TierServiceCapabilities and TierService.

31.4.6 CIM_HostedService Mandatory

31.4.7 CIM_MemberOfCollection (Identifies
StorageExtents comprising a tier)

Optional Associates a storage extent to a storage tier.

31.4.8 CIM_MemberOfCollection (Identifies StoragePools
comprising a tier)

Optional Associates a storage pool to a storage tier.

31.4.9 CIM_MemberOfCollection (Identifies
StorageVolumes comprising a tier)

Optional Identifies a storage volume contributing to a storage tier.

31.4.10 CIM_MemberOfCollection (Identifies primordial
StorageExtents comprising a tier)

Optional Associates a primordial storage extent to a storage tier.

31.4.11 CIM_ServiceAffectsElement (Between
TierService and StorageTier)

Optional Associates TierService to StorageTier.

31.4.12 CIM_ServiceAffectsElement (Between
TierService and TierDomain)

Optional Associates TierService to TierDomain.

31.4.13 CIM_SettingsDefineCapabilities (Between
StorageTierCapabilities and TierSettingData)

Optional Associates StorageTierCapabilities to TierSettingData.

31.4.14 CIM_SettingsDefineCapabilities (Between
TierServiceCapabilities and TierSettingData)

Optional Associates TierServiceCapabilities to TierSettingData.

31.4.15 CIM_StorageTier Mandatory Experimental. This class represents a collection of
storage objects, such as a collection of storage objects
identified as a storage tier.

31.4.16 CIM_StorageTierCapabilities Optional A subclass of StorageCapabilities that defines the
Capabilities of a storage tier.

344

345

346

347

348

349

350

351

352

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1079

31.4.1 CIM_AdvancedStorageSetting

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 746 describes class CIM_AdvancedStorageSetting.

31.4.17 CIM_StorageVolume (Constituent) Conditional Conditional requirement: Referenced from Pools from
Volumes - Constituent StorageVolume is mandatory. The
CIM_StorageVolume is an augmented version of the
CIM_StorageVolume defined in the Block Services
package. See CIM_StorageVolume in section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.51 CIM_StorageVolume.

31.4.18 CIM_StorageVolume (Regular) Mandatory The CIM_StorageVolume is an augmented version of the
CIM_StorageVolume defined in the Block Services
package. See CIM_StorageVolume in section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.51 CIM_StorageVolume.

31.4.19 CIM_SystemComponent (TierDomain to
ComputerSystem)

Optional Storage TierDomains on a system.

31.4.20 CIM_TierDomain Mandatory TierDomain representing one or more storage tiers.

31.4.21 CIM_TierService Mandatory Experimental. The TierService class provides methods to
allow a client to manage storage tiers. Methods are
described in the Extrinsic Methods clause.

31.4.22 CIM_TierServiceCapabilities Mandatory Experimental. A subclass of Capabilities that defines the
Capabilities of a TierService. An instance of
TierServiceCapabilities is associated with a TierService
using ElementCapabilities.

31.4.23 CIM_TierSettingData Optional Experimental. Contains special options for use by
methods of TierService.

Table 746 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

Table 745 - CIM Elements for Automated Storage Tiering

Element Name Requirement Description

353

354

355

356

357

358

Automated Storage Tiering Profile

1080

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

InitialStorageTierMethodol
ogy

MN Optional Enumeration indicating the initial storage tier for the element. "None" or
null means this element is not subject to storage tiering. Values:

 0: None

 3: Implementation Decides

 4: Highest Performance

 5: Lowest Performance

 6: Highest Availability

7: Lowest Availability.

Table 746 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1081

31.4.2 CIM_AssociatedElementTier

Experimental. Define the association between an element and one or more storage tiers.

Created By: Extrinsic: static

Modified By: Extrinsic: static

Deleted By: Extrinsic: Static

Requirement: Required if storage tiering is supported.

Table 747 describes class CIM_AssociatedElementTier.

InitialStorageTieringSelecti
on

MN Optional Use this value to set the property StorageTieringSelection of the
associated element. Storage tiering examines StorageTieringSelection to
determine whether to use RelativePerformanceOrder or
RelativePerformanceOrderSet for selecting an appropriate storage tier. A
value of 0 or null indicates the associated element is not subject to storage
tiering. Values:

 0: Unknown

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder
Limit

MN Optional The storage tiering limit applied to the element. This property indicates
RelativePerformanceOrder not to exceed this value. For example: A
system has storage tiers with RelativePerformanceOrder of 1, 3, and 5. If
the request is to create a new storage volume with
StorageSetting.RelativePerformanceOrderLimit of 2, the newly created
storage volume is placed in a storage tier with RelativePerformanceOrder
of 1.

InitialRelativePerformance
OrderSet

MN Optional A set of values. The associated element can only be placed in storage
tiers that have a RelativePerformanceOrder value included in this set.

StorageTieringFrozen MN Optional If true, and the storage element is under the control of the tiering
subsystem, the element's tiering associations will remain frozen -- no data
relocation between tiers.

Table 747 - SMI Referenced Properties/Methods for CIM_AssociatedElementTier

Properties Flags Requirement Description & Notes

Allocated Mandatory Indicates what portion of the element is associated with (allocated from)
this storage tier. None: Indicates the element is associated with this
storage tier; however, currently none of the element's blocks are allocated
from this storage tier. Values:

 2: All

 3: Partial

4: None.

GroupComponent Mandatory A storage tier.

PartComponent Mandatory Any element subject to storage tiering.

Table 746 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes

359

360

361

362

363

364

365

366

367

Automated Storage Tiering Profile

1082

31.4.3 CIM_AssociatedResourcePool

Experimental. Associates an object inherited from System to a dependent ResourcePool such as a
StoragePool.

Created By: Extrinsic: static

Modified By: Extrinsic: static

Deleted By: Extrinsic: Static

Requirement: Optional

Table 748 describes class CIM_AssociatedResourcePool.

31.4.4 CIM_ConcreteDependency (TierDomain to StorageTier)

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 749 describes class CIM_ConcreteDependency (TierDomain to StorageTier).

31.4.5 CIM_ElementCapabilities

Associates TierServiceCapabilities and TierService.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 750 describes class CIM_ElementCapabilities.

Table 748 - SMI Referenced Properties/Methods for CIM_AssociatedResourcePool

Properties Flags Requirement Description & Notes

Antecedent Mandatory A ResourcePool such as StoragePool.

Dependent Mandatory A tier domain.

Table 749 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (TierDomain to StorageTier)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Tier Domain.

Dependent Mandatory A Storage Tier.

Table 750 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory Instance of CIM_TierServiceCapabilities.

ManagedElement Mandatory Instance of CIM_TierService.

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1083

31.4.6 CIM_HostedService

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 751 describes class CIM_HostedService.

31.4.7 CIM_MemberOfCollection (Identifies StorageExtents comprising a tier)

Associates a storage extent to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 752 describes class CIM_MemberOfCollection (Identifies StorageExtents comprising a tier).

31.4.8 CIM_MemberOfCollection (Identifies StoragePools comprising a tier)

Associates a storage pool to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 753 describes class CIM_MemberOfCollection (Identifies StoragePools comprising a tier).

Table 751 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Tier Service hosted on the System.

Table 752 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageExtents
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage extent or a composite storage extent.

Table 753 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StoragePools
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage pool.

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

Automated Storage Tiering Profile

1084

31.4.9 CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier)

Identifies a storage volume contributing to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 754 describes class CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier).

31.4.10CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a tier)

Associates a primordial storage extent to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 755 describes class CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a
tier).

31.4.11CIM_ServiceAffectsElement (Between TierService and StorageTier)

Associates TierService to StorageTier.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 754 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageVolumes
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage volume.

Table 755 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies primordial Stora-
geExtents comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A primordial storage extent.

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1085

Table 756 describes class CIM_ServiceAffectsElement (Between TierService and StorageTier).

31.4.12CIM_ServiceAffectsElement (Between TierService and TierDomain)

Associates TierService to TierDomain.

Created By: Extrinsic: Static

Modified By: Extrinsic: Static

Deleted By: Extrinsic: Static

Requirement: Optional

Table 757 describes class CIM_ServiceAffectsElement (Between TierService and TierDomain).

31.4.13CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and TierSettingData)

Associates StorageTierCapabilities to TierSettingData.

Requirement: Optional

Table 758 describes class CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and
TierSettingData).

31.4.14CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and TierSettingData)

Associates TierServiceCapabilities to TierSettingData.

Requirement: Optional

Table 756 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
StorageTier)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Service.

AffectedElement Mandatory Storage Tier.

Table 757 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
TierDomain)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Service.

AffectedElement Mandatory Tier Domain.

Table 758 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between StorageT-
ierCapabilities and TierSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to StorageTierCapabilities.

PartComponent Mandatory Reference to TierSettingData.

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

Automated Storage Tiering Profile

1086

Table 759 describes class CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and
TierSettingData).

31.4.15CIM_StorageTier

Experimental. This class represents a collection of storage objects, such as a collection of storage
objects identified as a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Mandatory

Table 760 describes class CIM_StorageTier.

Table 759 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between TierService-
Capabilities and TierSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to TierServiceCapabilities.

PartComponent Mandatory Reference to TierSettingData.

Table 760 - SMI Referenced Properties/Methods for CIM_StorageTier

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

ElementName Optional User-friendly name.

RelativePerformanceOrder Mandatory A number starting from 0 to indicate the relative performance
characteristics of the storage tier. The smaller the number, the higher the
performance characteristics.

StorageObjectType Optional indicates the type of storage objects comprising a storage tier. Values:

 2: StorageVolume

 3: LogicalDisk

 4: StorageExtent

 5: StoragePool

 6: ComponentsOfStoragePool

 7: ElementsOfStoragePool

 8: External StoragePool

9: Primordial StorageExtent.

443

444

445

446

447

448

449

450

451

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1087

31.4.16CIM_StorageTierCapabilities

A subclass of StorageCapabilities that defines the Capabilities of a storage tier.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Technology Optional The technology of the underlying disk drives used. Mixed: a storage tier
consists of a mix of different disk drive technologies. Values:

 2: Not Applicable

 3: Solid State Drive

 4: Fibre Channel

 5: SATA

 6: SAS

 7: Mixed

8: Hard Disk Drive.

State M Optional This property indicates whether the storage tier is actively being used or
not. Values:

 2: Enabled

3: Disabled.

Dynamic M Optional If true any new storage objects added to the system that have a similar
performance characteristics (and QoS) to this tier become part of this tier
automatically. If false, after the storage tier is created, any newly
introduced storage objects need to be added to the storage tier manually.

DeleteOnEmptyElement M Optional If true and empty storage tiers are allowed, the storage tier will be deleted
when the last element is removed from the storage tier. If empty storage
tiers are not allowed, the storage tier will be deleted automatically when
the storage tier becomes empty.

Percentage M Optional A value between 0 to 100 to indicate the maximum percentage of the
underlying capacity that can be used for storage tiering activities. For
example, a value of 80 indicates no more than 80 percent of the storage
tier can be used for automated tiering. The remaining 20 percent of the
underlying storage is set aside for elements that do not participate in
automated storage tiering.

TotalCapacity Optional The total capacity of the storage tier in bytes.

Table 760 - SMI Referenced Properties/Methods for CIM_StorageTier

Properties Flags Requirement Description & Notes

452

453

454

455

456

457

Automated Storage Tiering Profile

1088

Table 761 describes class CIM_StorageTierCapabilities.

Table 761 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In addition, the
user-friendly name can be used as a index property for a search or query.
(Note: ElementName does not have to be unique within a namespace) If
the capabilities are fixed, then this property should be used as a means for
the client application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6 (StoragePool or
StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports no single point
of failure. Values are: FALSE = does not support no single point of failure,
and TRUE = supports no single point of failure.

NoSinglePointOfFailureDef
ault

Mandatory Indicates the default value for the NoSinglePointOfFailure property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefa
ult

Mandatory PackageRedundancyDefault describes the default number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of members or
columns, a storage element will have when created or modified using this
capability. A NULL means that the setting of stripe length is not supported
at all or not supported at this level of storage element allocation or
assignment.

458

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1089

31.4.17CIM_StorageVolume (Constituent)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyElementFromStoragePool

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Pools from Volumes - Constituent StorageVolume is mandatory.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a storage element
will have when created or modified using this capability. A NULL means
that the setting of the parity is not supported at all or is not supported at
this level of storage element allocation or assignment.

UserDataStripeDepthDefa
ult

Optional UserDataStripeDepthDefault describes what the number of bytes forming
a stripe that a storage element will have when created or modified using
this capability. A NULL means that the setting of stripe depth is not
supported at all or not supported at this level of storage element allocation
or assignment.

StorageTierCharacteristics Optional Indicates the storage tiering capabilities. Values:

 2: BasedOnPerformance Only

 3: BasedOnQOS Only

4: BasedOnPerformance And BasedOnQOS.

RelativePerformanceOrder
Min

Optional Indicates the minimum value for RelativePerformanceOrder that this
storage tier can have. The minimum value for RelativePerformanceOrder,
which represents the highest level of performance.

RelativePerformanceOrder
Max

Optional Indicates the maxmimum value for RelativePerformanceOrder that this
storage tier can have. The maximum value for RelativePerformanceOrder,
which represents the lowest level of performance.

RelativePerformanceOrder
Default

Optional Indicates the default value of RelativePerformanceOrder for the storage
tier -- the smaller the RelativePerformanceOrder, the more performant the
storage tier.

CreateSetting() Conditional Conditional requirement: Support for StorageConfigurationService.
Generate a setting to use as a goal for creating or modifying storage
elements.

GetSupportedStripeLength
s()

Optional List the possible discrete stripe lengths supported at this time of this
method's execution.

GetSupportedStripeLength
Range()

Optional List the possible stripe length ranges supported at the time of this
method's execution.

GetSupportedParityLayout
s()

Optional List the possible parity layouts supported at the time of this method's
execution.

GetSupportedStripeDepths
()

Optional List the possible stripe depths supported at the time of this method's
execution.

GetSupportedStripeDepth
Range()

Optional List the possible stripe depth ranges supported at the time of this method's
execution.

Table 761 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes

459

460

461

462

463

Automated Storage Tiering Profile

1090

Table 762 describes class CIM_StorageVolume (Constituent).

Table 762 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Optional

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

464

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1091

31.4.18CIM_StorageVolume (Regular)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyElementFromStoragePool

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 763 describes class CIM_StorageVolume (Regular).

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Pool
Component'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted by a client
application.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
storage volume when the volume relocation is ongoing.

StorageTieringSelection N Optional Storage tiering examines this property to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for selecting
an appropriate storage tier. A value of 0 or null indicates the element is not
subject to storage tiering. Values:

 0: None

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder N Optional A storage volume can be associated with one or more storage tiers with
equal or smaller StorageTier.RelativePerformanceOrder. The smaller the
RelativePerformanceOrder, the more performant the tier.

RelativePerformanceOrder
Set

N Optional A set of RelativePerformanceOrder values. The volume can only be
associated with storage tiers that have a RelativePerformanceOrder value
included in this set.

Table 763 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Table 762 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes

465

466

467

468

469

470

Automated Storage Tiering Profile

1092

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Optional

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted by a client
application.

Table 763 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1093

31.4.19CIM_SystemComponent (TierDomain to ComputerSystem)

Storage TierDomains on a system.

Created By: Extrinsic: CreateTierDomain

Modified By: Static

Deleted By: Extrinsic: DeleteTierDomain

Requirement: Optional

Table 764 describes class CIM_SystemComponent (TierDomain to ComputerSystem).

31.4.20CIM_TierDomain

TierDomain representing one or more storage tiers.

Created By: Extrinsic: CreateTierDomain

Modified By: Static

Deleted By: Extrinsic: DeleteTierDomain

Requirement: Mandatory

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
storage volume when the volume relocation is ongoing.

StorageTieringSelection N Optional Storage tiering examines this property to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for selecting
an appropriate storage tier. A value of 0 or null indicates the element is not
subject to storage tiering. Values:

 0: None

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder N Optional A storage volume can be associated with one or more storage tiers with
equal or smaller StorageTier.RelativePerformanceOrder. The smaller the
RelativePerformanceOrder, the more performant the tier.

RelativePerformanceOrder
Set

N Optional A set of RelativePerformanceOrder values. The volume can only be
associated with storage tiers that have a RelativePerformanceOrder value
included in this set.

Table 764 - SMI Referenced Properties/Methods for CIM_SystemComponent (TierDomain to ComputerSys-
tem)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to top-level ComputerSystem.

PartComponent Mandatory Reference to the TierDomain.

Table 763 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes

471

472

473

474

475

476

477

478

479

480

481

482

483

Automated Storage Tiering Profile

1094

Table 765 describes class CIM_TierDomain.

31.4.21CIM_TierService

Experimental. Base class for Automatic Storage Tiering.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 766 describes class CIM_TierService.

Table 765 - SMI Referenced Properties/Methods for CIM_TierDomain

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Name of Class.

Name Mandatory An arbitrary name (implementation dependent).

NameFormat Mandatory Dependent on the arbitrary name chosen.

ElementName Optional A user friendly name for the storage tier domain (implementation
dependent).

OtherIdentifyingInfo Mandatory For a storage tier domain, this property shall contain the value 'TIER'.

IdentifyingDescriptions Mandatory For a storage TIER AdminDomain, this property shall contain the value
'SNIA:DetailedType' in the index for the OtherIdentifyingInfo of 'TIER'.

DataMovement MN Optional Specifies if data movement is automatic or requires manual intervention.
Values:

 2: Auto

3: Manual.

DataMovementState MN Optional Indicates the state of data movement that requires manual intervention.
Values:

 0: Not Applicable

 2: Waiting for Approval

 3: Waiting for Scheduled Time

 4: In Progress

 5: Stopped

 6: Paused

 7: Aborted

8: Completed.

RequestDataMovementSta
teChange()

Conditional Conditional requirement: Required if manual data movement is supported.

Table 766 - SMI Referenced Properties/Methods for CIM_TierService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

484

485

486

487

488

489

490

491

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1095

31.4.22CIM_TierServiceCapabilities

Experimental. A subclass of Capabilities that defines the Capabilities of a TierService. An instance of
TierServiceCapabilities is associated with a TierService using ElementCapabilities.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 767 describes class CIM_TierServiceCapabilities.

CreationClassName Mandatory

Name Mandatory

CreateStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

DeleteStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

AddToStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

RemoveFromStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

CreateTierDomain() Conditional Conditional requirement: Required if client manages tier domains.

DeleteTierDomain() Conditional Conditional requirement: Required if client manages tier domains.

ModifyStorageTierDomain
Association()

Conditional Conditional requirement: Required if client manages tier domains.

GetStorageTierCandidate
Objects()

Conditional Conditional requirement: Required if client manages tier domains.

Table 767 - SMI Referenced Properties/Methods for CIM_TierServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

SupportedFeatures Mandatory Enumeration indicating the supported features of the storage tiering
service. Values:

 2: System Creates StorageTiers

 3: Client Can Create StorageTiers

 4: System Creates TierDomains

 5: Client Can Create TierDomains

6: Supports SubLUN.

Table 766 - SMI Referenced Properties/Methods for CIM_TierService

Properties Flags Requirement Description & Notes

492

493
494

495

496

497

498

499

Automated Storage Tiering Profile

1096

SupportedTierFeatures Mandatory Enumeration indicating the supported features of the storage tiers. Values:

 2: StorageTiers Based On Performance Only

 3: StorageTiers Based On QoS Only

 4: StorageTiers Based On Performance and QoS

 5: StorageTiers Based On Other Characteristics

 6: StorageTiers Can Overlap

 7: StorageTiers Can Be Empty

8: StorageTiers In Multiple TierDomains.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects that can be used to
form a storage tier. ComponentsOfStoragePool: In calling the method
CreateStorageTier, it is possible to supply one or StoragePools and
request the storage tiers to be created based on the
"ConcreteComponents" of the StoragePools, i.e. StorageExtents.
ElementsOfStoragePool: Storage tier is comprised of elements, e.g.
volumes, allocated from a StoragePool. Values:

 2: StorageVolume

 3: LogicalDisk

 4: StorageExtent

 5: StoragePool

 6: ComponentsOfStoragePool

 7: ElementsOfStoragePool

 8: External StoragePool

9: Primordial StorageExtent.

SupportedAsynchronousA
ctions

Mandatory Identify methods using job control. Values:

 2: CreateStorageTier

 3: AddToStorageTier

 4: RemoveFromStorageTier

 5: CreateTierDomain

 6: DeleteTierDomain

 7: ModifyStorageTierDomainAssociation

8: GetStorageTierCandidateObjects.

SupportedSynchronousAct
ions

Mandatory Identify methods not using job control. Values:

 2: CreateStorageTier

 3: AddToStorageTier

 4: RemoveFromStorageTier

 5: CreateTierDomain

 6: DeleteTierDomain

 7: ModifyStorageTierDomainAssociation

8: GetStorageTierCandidateObjects.

Table 767 - SMI Referenced Properties/Methods for CIM_TierServiceCapabilities

Properties Flags Requirement Description & Notes

 Automated Storage Tiering Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1097

31.4.23CIM_TierSettingData

Experimental. Contains special options for use by methods of TierService.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 768 describes class CIM_TierSettingData.

SupportedCompression Optional Indicates if the Automated Storage Tiering subsystem has the capability to
compress storage volumes that are subject to tiering. Values:

 2: ThinlyProvisioned

3: ThicklyProvisioned.

SupportedDataMovement Optional Indicates the supported data movement choices that are available. Values:

 2: Auto

3: Manual.

Table 768 - SMI Referenced Properties/Methods for CIM_TierSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

RelativePerformanceOrder
Goal

MN Optional An integer starting from 0 to indicate the performance characteristic of the
storage tier. The smaller the number, the higher the performance
characteristics.

RelativePerformanceOrder
Min

MN Optional Indicates the minimum value for RelativePerformanceOrder that this
storage tier can have. Basically, the minimum value for
RelativePerformanceOrder represents the highest level of performance.

RelativePerformanceOrder
Max

MN Optional Indicates the maxmimum value for RelativePerformanceOrder that this
storage tier can have. Basiclly, the maximum value for
RelativePerformanceOrder represents the lowest level of performance.

StorageTierCharacteristics MN Optional Indicates the storage tier charateristics. Performance generally relates to
the underlying technology, for example, Solid State versus Fibre Channel
drives. QoS refers to the Quality of Service, for example, RAID protected
versus unprotected. Values:

 2: BasedOnPerformance Only

 3: BasedOnQOS Only

4: BasedOnPerformance And BasedOnQOS.

Table 767 - SMI Referenced Properties/Methods for CIM_TierServiceCapabilities

Properties Flags Requirement Description & Notes

500

501

502

503

504

505

506

Automated Storage Tiering Profile

1098

EXPERIMENTAL

Technology MN Optional The technology of the underlying disk drives used. Not Applicable: Storage
tier is not based on technology of underlying components. Mixed: a
storage tier consists of a mix of different disk drive technologies. Values:

 2: Not Applicable

 3: Solid State Drive

 4: Fibre Channel

 5: SATA

 6: SAS

 7: Mixed

8: Hard Disk Drive.

InitialState MN Optional This property indicates the intial state of the storage tier. The default value
is 2. Values:

 2: Enabled

3: Disabled.

Dynamic MN Optional If true any new extents added to the system that have a similar
performance characteristics (and QoS) to this tier become part of this tier
automatically. If false, the new extents needs to be added to this tier
manually. The default value is false.

DeleteOnEmptyElement MN Optional If true and empty storage tier are allowed, the storage tier will be deleted
when the last element is removed from the storage tier. If empty storage
tier are not allowed, the storage tier will be deleted automatically when the
storage tier becomes empty. The default value is false.

Percentage MN Optional A value between 0 to 100 to indicate the maximum percentage of the
underlying capacity that can be used for storage tiering activities. For
example, a value of 80 indicates no more than 80 percent of the storage
tier can be used for automated tiering. The remaining 20 percent of the
underlying storage is set aside for elements that do not participate in
automated storage tiering.

CompressionIdleInterval MN Optional Number of days data on a volume must be idle before the Automated
Storage Tiering subsystem starts compressing the data. Valid interval
must be in number of days between 1 and 365.

CompressionRate MN Optional A number between 1 and 10 to indicate the rate at which the Automated
Storage Tiering subsystem compresses the data. The smaller the number,
the higher the rate of compression.

Table 768 - SMI Referenced Properties/Methods for CIM_TierSettingData

Properties Flags Requirement Description & Notes

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1099

EXPERIMENTAL

Clause 32: Automated Storage Tiering Policy Profile

32.1 Synopsis

Profile Name: Automated Storage Tiering Policy (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.35.0

Table 769 describes the related profiles for Automated Storage Tiering Policy.

Central Class: CIM_TierPolicyService

Scoping Class: CIM_TierPolicyService

32.2 Description

This component profile introduces the necessary classes to allow clients to create and manage the
policies for automated storage tiering.

The Automated Storage Tiering Policy Profile is a specialization of the existing Automated Storage Tiering
profile.

There are implementations that completely manage the automated storage tiering. However, there are
also implementations that allow clients to specify the policy by which the automated storage tiering
manages the data movement and placement of the data subject to storage tiering. Furthermore, clients
have the ability to specify the time period, such as time of day, which a policy is in effect.

32.2.1 Policies

Policies direct the automated storage tiering of the storage array. Policies may specify when certain
tiering activities should take place.

Instances of the class TierPolicyRule represent the storage tiering policies that are in effect. An
implementation may have two types of policy rules -- one for collecting statistics about the workload
activities, such as I/Os, for given components, and another policy rule for the actual movement of data
between storage tiers.

Table 769 - Related Profiles for Automated Storage Tiering Policy

Profile Name Organization Version Requirement Description

Block Services SNIA 1.6.1 Mandatory

Pools from Volumes SNIA 1.4.0 Optional

Job Control SNIA 1.5.0 Optional

Extent Composition SNIA 1.6.0 Optional

Disk Drive Lite SNIA 1.6.0 Optional

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Automated Storage Tiering Policy Profile

1100

As an example, a “data movement” policy rule may indicate that no more than 10% of the space
requirement of a StorageVolume to come from tier1, 20% from tier2, and 70% from tier3.

A policy rule may apply to the entire storage array (GlobalRule), or to a specific component (LocalRule)
such as a StorageVolume or storage volumes belonging to a DeviceMaskingGroup.

32.2.2 Key Components

Table 770 shows a list of key classes used in this profile.

32.3 Implementation

32.3.1 Automated Storage Tiering Policy Discovery

Figure 177 depicts the Automated Storage Tiering Policy discovery instance diagram.

As shown in Figure 178, the single instance of the class TierPolicyService and its methods provide the
mechanism for managing storage tiering policies.

The implementation may create the “global” TierPolicyRules automatically. Clients may also be able to
create the “local” TierPolicyRules -- see the capabilities for what the implementation supports.

Table 770 - Key Classes

Class Name Notes

TierPolicyService The main class for this profile. It contains methods for
manipulating storage tiering policies.

TierPolicyServiceCapabilities Contains a set of properties and methods that describe
the capabilities of tiering policy service.

TierPolicyRule Describes the tiering policy rules

AssociatedTierPolicy Associates TierPolicyRule to storage tiers.

TierPolicySetAppliesToElement Associates TierPolicyRule to ManagedElements.

Figure 177 - Automated Storage Tiering Policy Discovery

ComputerSystem

// Array

TierPolicyService

HostedService

TierPolicyServiceCapabilities

ElementCapabilities

27

28

29

30

31

32

33

34

35

36

37

38

39

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1101

Global TierPolicyRules (with the property RuleDiscriminator set to “SNIA:GlobalRule”) are only
associated to the TierPolicyService. Local TierPolicyRules (with the property RuleDiscriminator set to
“SNIA:LocalRule”) are associated to ManagedElements such as StorageVolumes and/or
DeviceMaskingGroups.

An instance of the TierPolicySettingData associated to the TierPolicyServiceCapabilities includes
properties that apply to all storage tiers and storage elements subject to storage tiering. For example, If
the implementation supports automatic storage pool allocation
(TierPolicyServiceCapabilities.SupportsAutomaticStoragePoolAllocation), by setting the property
TierPolicySettingData.AutomaticStoragePoolAllocationEnabled to true, when a thinly provisioned storage
element (such as a StorageVolume) subject to storage tiering needs additional storage capacity and the
storage pool that the storage element is allocated from is out of free capacity, the system allocates the
additional storage capacity from another storage pool in the same tiering policy that is associated to the
storage volume.

32.3.2 Time Period

The property TierPolicyRule.TimePeriodCondition specifies the time period for this tier policy rule. For
example, the TimePeriodCondition may indicate this TierPolicyRule is active at all times. Alternatively,
TimePeriodCondition may indicate the time period is an associated instance of
PolicyTimePeriodCondition to the TierPolicyRule (see Figure 179) or to a PolicyTimePeriodCondition
associated to a global TierPolicyRule (see Figure 178).

The instances of PolicyTimePeriodCondition associated to global TierPolicyRules are intended to reduce
the need for numerous instances of PolicyTimePeriodCondition associated to local TierPolicyRules.

Figure 178 - Additional Tiering Policy Components

ComputerSystem

// Array

TierPolicyService

HostedService

TierPolicyServiceCapabilities

ElementCapabilities

TierPolicyRule

Activity = “Workload statistics
collection”
RuleDiscriminator =
‘SNIA:GlobalRule’

ServiceAffectsElement

TierPolicyRule

Activity = “Data movement”
RuleDiscriminator =
‘SNIA:GlobalRule’

TierPolicyRule

Activity = “Data movement”
RuleDiscriminator =
‘SNIA:LocalRule’

TierPolicySettingData

SettingsDefineCapabilities

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Automated Storage Tiering Policy Profile

1102

For example, if TierPolicyRule.TimePeriodCondition has a value of “Global”, it indicates a
PolicyTimePeriodCondition associated to a “global” TierPolicyRule. In this case, the instrumentation first
locates an appropriate TierPolicyRule before utilizing its associated PolicyTimePeriodCondition. The
TierPolicyRules are tailored for data movement, workload data collection, and thin or thick provisioning.

If the property TierPolicyRule.TimePeriodCondition has the value of 'Not Available', it indicates the
instrumentation does not make the “time period” associated to a TierPolicyRule available to clients.

If the property TierPolicyRule.TimePeriodCondition has the value of 'None', it indicates the policy rule
currently does not have an associated time period condition.

32.3.3 PolicyTimePeriodCondition

The associated instances of PolicyTimePeriodCondition specify when an enabled TierPolicyRule is active
(on) or not active (off). If the property PolicySetValidityPeriod.ConditionNegated is false, the
PolicyTimePeriodCondition indicates the time period when the TierPolicyRule is active.

Figure 179 shows two instances of PolicyTimePeriodCondition, one for the time period the “Data
movement” TierPolicyRule is active, and one for the time period the “Workload statistics collection”
TierPolicyRule is inactive.

Figure 179 - PolicyTimePeriodCondition

PolicySetValidityPeriod

ConditionNegated = false
(time period the rule is on)

PolicySetValidityPeriod

ConditionNegated = true
(time period the rule is off)

StorageVolume or DeviceMaskingGroup :
CIM_ManagedElement

TierPolicyRule

Activity = “Data
movement”
RuleDiscriminator =
‘SNIA:LocalRule’

PolicyTimePeriodCondition

TierPolicySetAppliesToElement

TierPolicyRule

Activity = “Workload
statistics collection”
RuleDiscriminator =
‘SNIA:LocalRule’

TierPolicySetAppliesToElement

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1103

32.3.4 ManagedElements Subject to Tiering

ManagedElements, such as StorageVolumes or DeviceMaskingGroups, subject to storage tiering can be
associated to “global” TierPolicyRules, “local” TierPolicyRules or both.

Figure 180 shows a ManagedElement that is associated to two local TierPolicyRules -- one for data
movement, and another for workload statistics collection. The optional associated
PolicyTimePeriodConditions specifies the time period the space allocated to the ManagedElement is
moved to the appropriate storage tiers. Effectively, the parts of the ManagedElement that are accessed
more frequently are moved to the storage tiers that have higher performance characteristics.

The workload statistics collection TierPolicyRule specifies to use an appropriate
PolicyTimePeriodConditions associated to a global TierPolicyRule.

If more than one TierPolicyRules for the same or overlapping time period are associated (via the
TierPolicySetAppliesToElement association) to the same ManagedElement, the associated
TierPolicyRule with lower TierPolicySetAppliesToElement.RulePriority value has higher precedence.

In the case where there are overlapping “global” and “local” policy rules associated with a managed
element, the local policy rule has precedence.

The instance of AdvancedStorageSetting associated to the ManagedElement (e.g. StorageVolume or
DeviceMaskingGroup) contains the properties pertaining to storage tiering. If the instance of
AdvancedStorageSetting is associated to a group of elements (e.g. DeviceMaskingGroup), then, the
instance properties apply to all elements of the group.

Figure 180 - ManagedElement Subject to Tiering

Tier1 :
CIM_StorageTier

Tier2 :
CIM_StorageTier

Tier3 :
CIM_StorageTier

AssociatedTierPolicy

MaxPercentAllocated = 10

AssociatedTierPolicy

MaxPercentAllocated = 70

AssociatedTierPolicy

MaxPercentAllocated = 20

StorageVolume or DeviceMaskingGroup :
CIM_ManagedElement

TierPolicyRule

Activity = “Data
movement”
RuleDiscriminator =
‘SNIA:LocalRule’
TimePeriodCondition =
“Associated Time Period”

PolicyTimePeriodCondition

TierPolicySetAppliesToElement

PolicySetValidityPeriod

TierPolicyRule

Activity = “Workload
statistics collection”
RuleDiscriminator =
‘SNIA:LocalRule’
TimePeriodCondition =
“Global”

TierPolicySetAppliesToElement

AdvancedStorageSetting

ElementSettingData

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Automated Storage Tiering Policy Profile

1104

32.3.5 Tiering Policy Capabilities

The single instance of the class TierPolicyServiceCapabilities describes various capabilities of the
storage tiering policy feature. Clients should examine the TierPolicyServiceCapabilities instance to
determine the specific capabilities of the storage tiering policy implementation.

The property TierPolicyServiceCapabilities.SupportedPolicyFeatures is an array indicating the supported
features of the storage tiering policy service. Figure 771 shows the possible values for this property.

32.3.6 Health and Fault Management Consideration

None

32.4 Methods

The Automated Storage Tiering Policy Profile has a number of extrinsic methods for storage tier
management.

All of the profile extrinsic methods return one of the following status codes. Depending on the error
condition, a method may return additional error codes and/or throw an appropriate exception to indicate
the error encountered.

Furthermore, the profile relies on a number of intrinsic methods such as ModifyInstance for modifying
properties such as PolicyRuleName.

• 0: (Job) Completed with no error

• 1: Method not supported

• 4: Failed

• 5: Invalid Parameter

• 4096: Method Parameters Checked - Job Started

For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Figure 772 summarizes the extrinsic methods (class TierPolicyService).

Table 771 - SupportedPolicyFeatures

Features

System creates policies

Client can create policies

Storage tier can belong to multiple policies

Policy shall account for total allocation

Supports global TierPolicyRule

Supports local TierPolicyRule

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1105

32.4.1 CreateStorageTierPolicyRule

This method allows a client to create a storage tier policy based on the supplied information.

 uint32 CreateStorageTierPolicyRule(

 [IN, Description (

 "A end user relevant name for the created policy "

 "rule. If null, then a system supplied default name "

 "may be used.")]

 string PolicyRuleName,

 [IN, Description (

 "Indicates the purpose of the policy rule. Data "

 "movement: Rule to be applied for data movement. "

 "Workload statistics collection: Rule is in effect "

 "for collecting statistics about the managed "

 "element. If null, defaults to Data movement."),

 ValueMap { "2", "3", "..", "0x8000.." },

 Values { "Data movement",

 "Workload statistics collection", "DMTF Reserved",

 "Vendor Specific" }]

 uint16 Activity,

 [IN, Description (

 "Indicates whether the created policy is set to "

 "Enabled or Disabled. If null, the policy is set to "

 "Enabled."),

 ValueMap { "2", "3", "..", "0x8000.." },

 Values { "Enabled", "Disabled", "DMTF Reserved",

 "Vendor Specific" },

 ModelCorrespondence { "CIM_TierPolicyRule.Enabled" }]

 uint16 PolicyState,

 [IN, Description (

 "List of storage tiers to associate to this policy. "

 "If null, no tiers will be associated to this "

 "policy."),

 ArrayType ("Indexed"),

 ModelCorrespondence {

 "CreateStorageTierPolicyRule.MaxPercentAllocated" }]

 CIM_StorageTier REF Tiers[],

 [IN, Description (

Table 772 - Extrinsic Methods

Method Described in

CreateStorageTierPolicyRule See 32.4.1

DeleteStorageTierPolicyRule See 32.4.2

ModifyStorageTierPolicyRule See 32.4.3

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Automated Storage Tiering Policy Profile

1106

 "The percentage of the capacity that is allocated "

 "from the corresponding storage tier. This array is "

 "index-correlated with the array Tiers."),

 Units ("Percent"),

 ArrayType ("Indexed"),

 MinValue (0),

 MaxValue (100),

 ModelCorrespondence {

 "CreateStorageTierPolicyRule.Tiers" },

 PUnit ("percent")]

 uint16 MaxPercentAllocated[],

 [IN, Description (

 "Associate these elements to the created policy.")]

 CIM_ManagedElement REF InElements[],

 [IN, Description (

 "If provided, it supplies additional information to "

 "incorporate in a policy rule. For example, the "

 "RulePriority."),

 EmbeddedInstance ("CIM_TierPolicySettingData")]

 string TierPolicySettingData,

 [IN, Description (

 "If provided, it represents the time periods during "

 "which the policy is active. If not provided, the "

 "implementation decides."),

 EmbeddedInstance ("CIM_PolicyTimePeriodCondition")]

 string PolicyTimePeriodCondition,

 [IN, Description (

 "If true, the supplied "

 "PolicyTimePeriodCondition should be negated -- "

 "the time period the rule shall not "

 "be in effect. If false, it specifies the time "

 "period the rule shall be in effect. "

 "If NULL, the property shall have the value "

 "of false."),

 ModelCorrespondence {

 "CreateStorageTierPolicyRule.PolicyTimePeriodCondition" }]

 boolean ConditionNegated,

 [IN, Description (

 "If provided, sets "

 "TierPolicyRule.TimePeriodCondition. If not "

 "provided, the implementation sets the value "

 "based on whether the parameter "

 "PolicyTimePeriodCondition is supplied."),

 ValueMap { "2", "3", "4", "5", "6",

 "..", "0x8000.." },

 Values { "Implementation Decides", "Not Available",

 "All The Time", "Associated Time Period", "Global",

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1107

 "DMTF Reserved", "Vendor Specific" },

 ModelCorrespondence {

 "TierPolicyRule.TimePeriodCondition",

 "CreateStorageTierPolicyRule.PolicyTimePeriodCondition" }]

 uint16 TimePeriodCondition,

 [IN (false), OUT, Description (

 "Reference to the job (may be NULL if job is completed)."

)]

 CIM_ConcreteJob REF Job,

 [IN (false), OUT, Description (

 "Reference to the created PolicyRule.")]

 CIM_PolicyRule REF PolicyRule);

32.4.2 DeleteStorageTierPolicyRule

This method allows a client to delete a storage tier policy.

uint32 DeleteStorageTierPolicyRule(

 [IN, Required, Description (

 "Storage policy rule to delete.")]

 CIM_PolicyRule REF PolicyRule,

 [IN (false), OUT, Description (

 "Reference to the job (may be NULL if job is completed).")]

 CIM_ConcreteJob REF Job,

 [IN, Description (

 "If the policy is actively being used, the system "

 "may prevent the policy to be deleted. By passing "

 "true for this parameter, the system will attempt "

 "to delete an active policy.")]

 boolean Force);

32.4.3 ModifyStorageTierPolicyRule

This method allows a client to modify a storage tiering policy.

The parameter "Operation" specifies the modification to be performed, and the parameter PolicyRule
indicates the policy rule that is to be modified. As for the other parameters, only the applicable
parameters for the requested operation are necessary.

Table 773 shows the required parameters for the requested operation.

Table 773 - Parameters for ModifyStorageTierPolicyRule

Operation PolicyRule Additional Parameters

2 (“Rename PolicyRuleName”) <ObjectPath of PolicyRule> PolicyRuleName

3 (“Add Tiers to Policy”) <ObjectPath of PolicyRule> Tiers[], MaxPercentAllocated[]

Note: These are parallel arrays.

4 (“Remove Tiers from Policy”) <ObjectPath of PolicyRule> Tiers[]

5 (“Add InElements to Policy”) <ObjectPath of PolicyRule> InElements[]

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Automated Storage Tiering Policy Profile

1108

 uint32 ModifyStorageTierPolicyRule(

 [IN, Description ("The Operations to perform."),

 ValueMap { "2", "3", "4", "5", "6", "7", "8",

 "9", 10", "..", "0x8000.." },

 Values { "Rename PolicyRuleName",

 "Add Tiers to Policy", "Remove Tiers from Policy",

 "Add InElements to Policy",

 "Remove InElements from Policy",

 "Update MaxPercentAllocated",

 "Add PolicyTimePeriodCondition",

 "Remove PolicyTimePeriodCondition",

 "Modify PolicyTimePeriodCondition",

 "DMTF Reserved", "Vendor Specific" }]

 uint16 Operation,

 [IN, Description (

 "A new name for the policy rule. "

 "Effectively, renaming the policy rule.")]

 string PolicyRuleName,

 [IN, Description (

 "List of storage tiers to associate to this policy."),

 ArrayType ("Indexed"),

 ModelCorrespondence {

 "ModifyStorageTierPolicyRule.MaxPercentAllocated" }]

 CIM_StorageTier REF Tiers[],

 [IN, Description (

 "The percentage of the capacity that is allocated "

 "from the corresponding storage tier. This array is "

 "index-correlated with the array Tiers."),

 Units ("Percent"),

 ArrayType ("Indexed"),

 MinValue (0),

 MaxValue (100),

 ModelCorrespondence {

 "CreateStorageTierPolicyRule.Tiers" },

 PUnit ("percent")]

6 (“Remove InElements from Policy”) <ObjectPath of PolicyRule> InElements[]

7 (“Update MaxPercentAllocated”) <ObjectPath of PolicyRule> Tiers[], MaxPercentAllocated[]

Note: These are parallel arrays.

8 (“Add PolicyTimePeriodCondition”) <ObjectPath of PolicyRule> PolicyTimePeriodCondition

9 (“Remove PolicyTimePeriodCondition”) <ObjectPath of PolicyRule> PolicyTimePeriodCondition

10 (“Modify PolicyTimePeriodConditions”) <ObjectPath of PolicyRule> PolicyTimePeriodCondition

Table 773 - Parameters for ModifyStorageTierPolicyRule

Operation PolicyRule Additional Parameters

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1109

 uint16 MaxPercentAllocated[],

 [IN, Description (

 "Associate the elements to the policy.")]

 CIM_ManagedElement REF InElements[],

 [IN, Description (

 "If provided, it supplies additional information to "

 "incorporate in a policy rule. For example, the "

 "RulePriority."),

 EmbeddedInstance ("CIM_TierPolicySettingData")]

 string TierPolicySettingData,

 [IN, Description (

 "If provided, it represents the time periods during "

 "which the policy is active. If not provided, the "

 "implementation decides."),

 EmbeddedInstance ("CIM_PolicyTimePeriodCondition")]

 string PolicyTimePeriodCondition,

 [IN, Description (

 "If true, the supplied "

 "PolicyTimePeriodCondition should be negated -- "

 "the time period the rule shall not "

 "be in effect. If false, it specifies the time "

 "period the rule shall be in effect. "

 "If NULL, the property shall have the value "

 "of false."),

 ModelCorrespondence {

 "ModifyStorageTierPolicyRule.PolicyTimePeriodCondition" }]

 boolean ConditionNegated,

 [IN (false), OUT, Description (

 "Reference to the job (may be NULL if job is completed)."

)]

 CIM_ConcreteJob REF Job,

 [Required, IN, Description (

 "Reference to the PolicyRule to be modified.")]

 CIM_PolicyRule REF PolicyRule);

32.5 Use Cases

Storage tiering policies may be created and managed by the implementation. Clients may also be able to
create and manage policies associated with storage tiering.

The implementation may support “global” and/or “local” tiering policy rules. The elements subject to
storage tiering may be associated to global, local, or both tiering policy rules.

32.5.1 Use Case -- Is Storage Tiering Policy is supported ?

• Discover the TierPolicyService, using HostedService association to top level computer system

• Locate the associated TierPolicyCapabilities, using the ElementCapabilities association to TierPolicyService

• Examine the property TierPolicyCapabilities.SupportsTieringPolicies

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Automated Storage Tiering Policy Profile

1110

32.6 CIM Elements

Table 774 describes the CIM elements for Automated Storage Tiering Policy.

Table 774 - CIM Elements for Automated Storage Tiering Policy

Element Name Requirement Description

32.6.1 CIM_AdvancedStorageSetting Optional Representation of a StorageSetting. StorageSettings are
covered in Block Services Package. Additional
propperties are added for storage tiering.

32.6.2 CIM_AssociatedElementTier Conditional Experimental. Conditional requirement: Required if
storage tiering is supported. Define the association
between an element and one or more storage tiers.

32.6.3 CIM_AssociatedResourcePool Optional Experimental. Associates an object inherited from System
to a dependent ResourcePool such as a StoragePool.

32.6.4 CIM_AssociatedTierPolicy Optional Experimental. Defines the association between a
TierPolicyRule and a storage tier.

32.6.5 CIM_ConcreteDependency (TierDomain to
StorageTier)

Optional Associates storage tiers to tier domains.

32.6.6 CIM_ElementCapabilities Mandatory Associates TierPolicyServiceCapabilities and
TierPolicyService.

32.6.7 CIM_ElementSettingData Optional

32.6.8 CIM_HostedService Mandatory

32.6.9 CIM_MemberOfCollection (Identifies
StorageExtents comprising a tier)

Optional Associates a storage extent to a storage tier.

32.6.10 CIM_MemberOfCollection (Identifies
StoragePools comprising a tier)

Optional Associates a storage pool to a storage tier.

32.6.11 CIM_MemberOfCollection (Identifies
StorageVolumes comprising a tier)

Optional Identifies a storage volume contributing to a storage tier.

32.6.12 CIM_MemberOfCollection (Identifies primordial
StorageExtents comprising a tier)

Optional Associates a primordial storage extent to a storage tier.

32.6.13 CIM_PolicySetValidityPeriod Optional Experimental. Defines the association between a
TierPolicyRule and a PolicyTimePeriodCondition.

32.6.14 CIM_PolicyTimePeriodCondition Optional Experimental. Provides a means of representing the time
periods during which a policy rule is in effect.

32.6.15 CIM_ServiceAffectsElement (Between
TierPolicyService and TierPolicyRule)

Optional Associates tier policy service to policy rule.

32.6.16 CIM_ServiceAffectsElement (Between
TierService and StorageTier)

Optional Associates TierService to StorageTier.

32.6.17 CIM_ServiceAffectsElement (Between
TierService and TierDomain)

Optional Associates TierService to TierDomain.

32.6.18 CIM_SettingsDefineCapabilities (Between
StorageTierCapabilities and TierSettingData)

Optional Associates StorageTierCapabilities to TierSettingData.

32.6.19 CIM_SettingsDefineCapabilities (Between
TierServiceCapabilities and TierSettingData)

Optional Associates TierServiceCapabilities to TierSettingData.

32.6.20 CIM_StorageTier Mandatory Experimental. This class represents a collection of
storage objects, such as a collection of storage objects
identified as a storage tier.

313

314

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1111

32.6.1 CIM_AdvancedStorageSetting

Created By: Extrinsic: StorageCapabilities.CreateSetting

Modified By: Static

Deleted By: Static

Requirement: Optional

32.6.21 CIM_StorageTierCapabilities Optional A subclass of StorageCapabilities that defines the
Capabilities of a storage tier.

32.6.22 CIM_StorageVolume (Constituent) Conditional Conditional requirement: Referenced from Pools from
Volumes - Constituent StorageVolume is mandatory. The
CIM_StorageVolume is an augmented version of the
CIM_StorageVolume defined in the Block Services
package. See CIM_StorageVolume in section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.51 CIM_StorageVolume.

32.6.23 CIM_StorageVolume (Regular) Mandatory The CIM_StorageVolume is an augmented version of the
CIM_StorageVolume defined in the Block Services
package. See CIM_StorageVolume in section Storage
Management Technical Specification, Part 4 Block
Devices, 1.6.1 Rev 6 5.8.51 CIM_StorageVolume.

32.6.24 CIM_SystemComponent (TierDomain to
ComputerSystem)

Optional Storage TierDomains on a system.

32.6.25 CIM_TierDomain Mandatory TierDomain representing one or more storage tiers.

32.6.26 CIM_TierPolicyRule Optional Experimental. Inherited from CIM_PolicyRule to include
properties specific to storage tiering.

32.6.27 CIM_TierPolicyService Mandatory Experimental. The TierPolicyService class provides
methods to allow a client to manage storage tiering
policies. Methods are described in the Extrinsic Methods
clause.

32.6.28 CIM_TierPolicyServiceCapabilities Mandatory Experimental. A subclass of Capabilities that defines the
Capabilities of a TierPolicyService. An instance of
TierPolicyServiceCapabilities is associated with a
TierPolicyService using ElementCapabilities.

32.6.29 CIM_TierPolicySetAppliesToElement Optional Experimental. Defines the association between a
TierPolicyRule and a ManagedElement.

32.6.30 CIM_TierPolicySettingData Optional Experimental. Contains various options for use by the
TierPolicyService methods to offer clients additional
controls to manipulate a policy associated with storage
tiering.

Table 774 - CIM Elements for Automated Storage Tiering Policy

Element Name Requirement Description

315

316

317

318

319

Automated Storage Tiering Policy Profile

1112

Table 775 describes class CIM_AdvancedStorageSetting.

Table 775 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of SettingData. In addition, the
user-friendly name can be used as a index property for a search of query.
(Note: Name does not have to be unique within a namespace.).

NoSinglePointOfFailure Mandatory Indicates the desired value for No Single Point of Failure. Possible values
are false = single point of failure, and true = no single point of failure.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data to be maintained. Examples would be RAID 5 where 1 copy is
maintained and RAID 1 where 2 or more copies are maintained. Possible
values are 1 to n.

DataRedundancyGoal Mandatory

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices to be used. Package redundancy describes how many disk
spindles or logical devices can fail without data loss including, at most,
one spare. Examples would be RAID5 with a Package Redundancy of 1,
RAID6 with 2. Possible values are 0 to n.

PackageRedundancyGoal Mandatory

ExtentStripeLength Optional ExtentStripeLength describes the desired stripe length goal.

ExtentStripeLengthMin Optional ExtentStripeLengthMin describes the minimum acceptable stripe length.

ExtentStripeLengthMax Optional ExtentStripeLengthMax describes the maximum acceptable stripe length.

ParityLayout Optional ParityLayout describes the desired parity layout. The value may be 1 or 2
(Non-rotated Parity or Rotated Parity).

UserDataStripeDepth Optional UserDataStripeDepth describes the desired stripe depth.

UserDataStripeDepthMin Optional UserDataStripeDepthMin describes the minimum acceptable stripe depth.

UserDataStripeDepthMax Optional UserDataStripeDepthMax describes the maximum acceptable stripe
depth.

ChangeableType Mandatory This property informs a client if the setting can be modified. It also tells the
client how long this setting is expected to remain in the model. If the
implementation allows it, the client can use the property to request that the
setting's existence be not transient.

StorageExtentInitialUsage Optional The Usage value to be used when creating a new storage element.

StoragePoolInitialUsage Optional The Usage value to be used when creating a new storage pool.

320

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1113

32.6.2 CIM_AssociatedElementTier

Experimental. Define the association between an element and one or more storage tiers.

Created By: Extrinsic: static

Modified By: Extrinsic: static

Deleted By: Extrinsic: Static

Requirement: Required if storage tiering is supported.

InitialStorageTierMethodol
ogy

MN Optional Enumeration indicating the initial storage tier for the element. "None" or
null means this element is not subject to storage tiering. Values:

 0: None

 3: Implementation Decides

 4: Highest Performance

 5: Lowest Performance

 6: Highest Availability

7: Lowest Availability.

InitialStorageTieringSelecti
on

MN Optional Use this value to set the property StorageTieringSelection of the
associated element. Storage tiering examines StorageTieringSelection to
determine whether to use RelativePerformanceOrder or
RelativePerformanceOrderSet for selecting an appropriate storage tier. A
value of 0 or null indicates the associated element is not subject to storage
tiering. Values:

 0: Unknown

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder
Limit

MN Optional The storage tiering limit applied to the element. This property indicates
RelativePerformanceOrder not to exceed this value. For example: A
system has storage tiers with RelativePerformanceOrder of 1, 3, and 5. If
the request is to create a new storage volume with
StorageSetting.RelativePerformanceOrderLimit of 2, the newly created
storage volume is placed in a storage tier with RelativePerformanceOrder
of 1.

InitialRelativePerformance
OrderSet

MN Optional A set of values. The associated element can only be placed in storage
tiers that have a RelativePerformanceOrder value included in this set.

StorageTieringFrozen MN Optional If true, and the storage element is under the control of the tiering
subsystem, the element's tiering associations will remain frozen -- no data
relocation between tiers.

Table 775 - SMI Referenced Properties/Methods for CIM_AdvancedStorageSetting

Properties Flags Requirement Description & Notes

321

322

323

324

325

326

Automated Storage Tiering Policy Profile

1114

Table 776 describes class CIM_AssociatedElementTier.

32.6.3 CIM_AssociatedResourcePool

Experimental. Associates an object inherited from System to a dependent ResourcePool such as a StoragePool.

Created By: Extrinsic: static

Modified By: Extrinsic: static

Deleted By: Extrinsic: Static

Requirement: Optional

Table 777 describes class CIM_AssociatedResourcePool.

32.6.4 CIM_AssociatedTierPolicy

Experimental. Defines the association between a TierPolicyRule and a storage tier.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 778 describes class CIM_AssociatedTierPolicy.

Table 776 - SMI Referenced Properties/Methods for CIM_AssociatedElementTier

Properties Flags Requirement Description & Notes

Allocated Mandatory Indicates what portion of the element is associated with (allocated from)
this storage tier. None: Indicates the element is associated with this
storage tier; however, currently none of the element's blocks are allocated
from this storage tier. Values:

 2: All

 3: Partial

4: None.

GroupComponent Mandatory A storage tier.

PartComponent Mandatory Any element subject to storage tiering.

Table 777 - SMI Referenced Properties/Methods for CIM_AssociatedResourcePool

Properties Flags Requirement Description & Notes

Antecedent Mandatory A ResourcePool such as StoragePool.

Dependent Mandatory A tier domain.

Table 778 - SMI Referenced Properties/Methods for CIM_AssociatedTierPolicy

Properties Flags Requirement Description & Notes

MaxPercentAllocated Mandatory The maximum percentage of the capacity of the element that can be
allocated from the storage tier. Must be an integer value between 0 and
100.

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1115

32.6.5 CIM_ConcreteDependency (TierDomain to StorageTier)

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 779 describes class CIM_ConcreteDependency (TierDomain to StorageTier).

32.6.6 CIM_ElementCapabilities

Associates TierPolicyServiceCapabilities and TierPolicyService. The class definition specializes the CIM_ElementCapabilities definition in the
Automated Storage Tiering profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most
column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 780 describes class CIM_ElementCapabilities.

32.6.7 CIM_ElementSettingData

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Antecedent Mandatory A policy rule.

Dependent Mandatory A storage tier.

Table 779 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (TierDomain to StorageTier)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Tier Domain.

Dependent Mandatory A Storage Tier.

Table 780 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities (overridden) Mandatory Instance of CIM_TierPolicyServiceCapabilities.

ManagedElement
(overridden)

Mandatory Instance of CIM_TierPolicyService.

Table 778 - SMI Referenced Properties/Methods for CIM_AssociatedTierPolicy

Properties Flags Requirement Description & Notes

342

343

344

345

346

347

348

349
350
351

352

353

354

355

356

357

358

359

360

361

Automated Storage Tiering Policy Profile

1116

Table 781 describes class CIM_ElementSettingData.

32.6.8 CIM_HostedService

The class definition specializes the CIM_HostedService definition in the Automated Storage Tiering profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 782 describes class CIM_HostedService.

32.6.9 CIM_MemberOfCollection (Identifies StorageExtents comprising a tier)

Associates a storage extent to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 783 describes class CIM_MemberOfCollection (Identifies StorageExtents comprising a tier).

Table 781 - SMI Referenced Properties/Methods for CIM_ElementSettingData

Properties Flags Requirement Description & Notes

IsDefault Mandatory An enumerated integer indicating that the referenced setting is a default
setting for the element, or that this information is unknown. Value shall be
0,1 or 2 (Unknown or Is Default or Is Not Default).

IsCurrent Mandatory An enumerated integer indicating that the referenced setting is currently
being used in the operation of the element, or that this information is
unknown. Value shall be 0,1 or 2 (Unknown or Is Default or Is Not Default).

ManagedElement Mandatory StorageVolume or CIM_DeviceMaskingGroup.

SettingData Mandatory The AdvancedStorageSetting that is associated with the Storage Volume
or Device Masking Group.

Table 782 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent (overridden) Mandatory The hosting System.

Dependent (overridden) Mandatory The Tier Policy Service hosted on the System.

Table 783 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageExtents
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage extent or a composite storage extent.

362

363

364
365

366

367

368

369

370

371

372

373

374

375

376

377

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1117

32.6.10CIM_MemberOfCollection (Identifies StoragePools comprising a tier)

Associates a storage pool to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 784 describes class CIM_MemberOfCollection (Identifies StoragePools comprising a tier).

32.6.11CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier)

Identifies a storage volume contributing to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 785 describes class CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier).

32.6.12CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a tier)

Associates a primordial storage extent to a storage tier.

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Optional

Table 784 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StoragePools
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage pool.

Table 785 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies StorageVolumes
comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A storage volume.

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

Automated Storage Tiering Policy Profile

1118

Table 786 describes class CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a
tier).

32.6.13CIM_PolicySetValidityPeriod

Experimental. Defines the association between a TierPolicyRule and a PolicyTimePeriodCondition.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 787 describes class CIM_PolicySetValidityPeriod.

32.6.14CIM_PolicyTimePeriodCondition

Experimental. Provides a means of representing the time periods during which a policy rule is in effect.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 788 describes class CIM_PolicyTimePeriodCondition.

Table 786 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Identifies primordial Stora-
geExtents comprising a tier)

Properties Flags Requirement Description & Notes

Collection Mandatory Instance of CIM_StorageTier.

Member Mandatory A primordial storage extent.

Table 787 - SMI Referenced Properties/Methods for CIM_PolicySetValidityPeriod

Properties Flags Requirement Description & Notes

GroupComponent Mandatory PolicyRules and/or groups of rules that are currently applied to an
Element.

PartComponent Mandatory CIM_PolicyTimePeriodCondition to which the TierPolicyRule applies.

Table 788 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

PolicyRuleName Mandatory A user-friendly rule name. Defaults to 'NO RULE', as recommended by
DMTF.

PolicyConditionName Mandatory A user-friendly condition name. Defaults to 'NO RULE', as recommended
by DMTF.

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1119

32.6.15CIM_ServiceAffectsElement (Between TierPolicyService and TierPolicyRule)

Associates tier policy service to policy rule.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 789 describes class CIM_ServiceAffectsElement (Between TierPolicyService and TierPolicyRule).

32.6.16CIM_ServiceAffectsElement (Between TierService and StorageTier)

Associates TierService to StorageTier.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 790 describes class CIM_ServiceAffectsElement (Between TierService and StorageTier).

PolicyRuleCreationClassN
ame

Mandatory A user-friendly name. Defaults to 'NO RULE', as recommended by DMTF.

DayOfMonthMask Optional Day Of Month Mask. See MOF for format.

DayOfWeekMask Optional An array of Day Of Week Mask. See MOF for format.

LocalOrUtcTime Optional Local Or UTC Time. 1 indicates Local Time, 2 indicates UTC Time.

MonthOfYearMask Optional An array of Month Of Year Mask. See MOF for format.

TimeOfDayMask Optional Time Of Day Mask. See MOF for format.

TimePeriod Optional Time Period. See MOF for format.

Table 789 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierPolicySer-
vice and TierPolicyRule)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Policy Service.

AffectedElement Mandatory Tier Policy Rule.

Table 790 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
StorageTier)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Service.

AffectedElement Mandatory Storage Tier.

Table 788 - SMI Referenced Properties/Methods for CIM_PolicyTimePeriodCondition

Properties Flags Requirement Description & Notes

414

415

416

417

418

419

420

421

422

423

424

425

426

427

Automated Storage Tiering Policy Profile

1120

32.6.17CIM_ServiceAffectsElement (Between TierService and TierDomain)

Associates TierService to TierDomain.

Created By: Extrinsic: Static

Modified By: Extrinsic: Static

Deleted By: Extrinsic: Static

Requirement: Optional

Table 791 describes class CIM_ServiceAffectsElement (Between TierService and TierDomain).

32.6.18CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and TierSettingData)

Associates StorageTierCapabilities to TierSettingData.

Requirement: Optional

Table 792 describes class CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and
TierSettingData).

32.6.19CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and TierSettingData)

Associates TierServiceCapabilities to TierSettingData.

Requirement: Optional

Table 793 describes class CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and
TierSettingData).

32.6.20CIM_StorageTier

Experimental. This class represents a collection of storage objects, such as a collection of storage objects identified as a storage tier.

Table 791 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between TierService and
TierDomain)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Tier Service.

AffectedElement Mandatory Tier Domain.

Table 792 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between StorageT-
ierCapabilities and TierSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to StorageTierCapabilities.

PartComponent Mandatory Reference to TierSettingData.

Table 793 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Between TierService-
Capabilities and TierSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to TierServiceCapabilities.

PartComponent Mandatory Reference to TierSettingData.

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1121

Created By: Extrinsic: CreateStorageTier

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTier

Requirement: Mandatory

Table 794 describes class CIM_StorageTier.

Table 794 - SMI Referenced Properties/Methods for CIM_StorageTier

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

ElementName Optional User-friendly name.

RelativePerformanceOrder Mandatory A number starting from 0 to indicate the relative performance
characteristics of the storage tier. The smaller the number, the higher the
performance characteristics.

StorageObjectType Optional indicates the type of storage objects comprising a storage tier. Values:

 2: StorageVolume

 3: LogicalDisk

 4: StorageExtent

 5: StoragePool

 6: ComponentsOfStoragePool

 7: ElementsOfStoragePool

 8: External StoragePool

9: Primordial StorageExtent.

Technology Optional The technology of the underlying disk drives used. Mixed: a storage tier
consists of a mix of different disk drive technologies. Values:

 2: Not Applicable

 3: Solid State Drive

 4: Fibre Channel

 5: SATA

 6: SAS

 7: Mixed

8: Hard Disk Drive.

State M Optional This property indicates whether the storage tier is actively being used or
not. Values:

 2: Enabled

3: Disabled.

Dynamic M Optional If true any new storage objects added to the system that have a similar
performance characteristics (and QoS) to this tier become part of this tier
automatically. If false, after the storage tier is created, any newly
introduced storage objects need to be added to the storage tier manually.

DeleteOnEmptyElement M Optional If true and empty storage tiers are allowed, the storage tier will be deleted
when the last element is removed from the storage tier. If empty storage
tiers are not allowed, the storage tier will be deleted automatically when
the storage tier becomes empty.

447

448

449

450

451

Automated Storage Tiering Policy Profile

1122

32.6.21CIM_StorageTierCapabilities

A subclass of StorageCapabilities that defines the Capabilities of a storage tier.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 795 describes class CIM_StorageTierCapabilities.

Percentage M Optional A value between 0 to 100 to indicate the maximum percentage of the
underlying capacity that can be used for storage tiering activities. For
example, a value of 80 indicates no more than 80 percent of the storage
tier can be used for automated tiering. The remaining 20 percent of the
underlying storage is set aside for elements that do not participate in
automated storage tiering.

TotalCapacity Optional The total capacity of the storage tier in bytes.

Table 795 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The user-friendly name for this instance of Capabilities. In addition, the
user-friendly name can be used as a index property for a search or query.
(Note: ElementName does not have to be unique within a namespace) If
the capabilities are fixed, then this property should be used as a means for
the client application to correlate between capabilities and device
documentation.

ElementType Mandatory Enumeration indicating the type of instance to which this
StorageCapabilities applies. Shall be either 5 or 6 (StoragePool or
StorageConfigurationService).

NoSinglePointOfFailure Mandatory Indicates whether or not the associated instance supports no single point
of failure. Values are: FALSE = does not support no single point of failure,
and TRUE = supports no single point of failure.

NoSinglePointOfFailureDef
ault

Mandatory Indicates the default value for the NoSinglePointOfFailure property.

DataRedundancyMin Mandatory DataRedundancyMin describes the minimum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyMax Mandatory DataRedundancyMax describes the maximum number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

DataRedundancyDefault Mandatory DataRedundancyDefault describes the default number of complete copies
of data that can be maintained. Examples would be RAID 5 where 1 copy
is maintained and RAID 1 where 2 or more copies are maintained.
Possible values are 1 to n.

Table 794 - SMI Referenced Properties/Methods for CIM_StorageTier

Properties Flags Requirement Description & Notes

452

453

454

455

456

457

458

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1123

PackageRedundancyMin Mandatory PackageRedundancyMin describes the minimum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyMax Mandatory PackageRedundancyMax describes the maximum number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

PackageRedundancyDefa
ult

Mandatory PackageRedundancyDefault describes the default number of spindles or
logical devices that can be used. Package redundancy describes how
many disk spindles or logical devices can fail without data loss including,
at most, one spare. Examples would be RAID5 with a Package
Redundancy of 1, RAID6 with 2. Possible values are 0 to n.

ExtentStripeLengthDefault Optional Describes what the default stripe length, the number of members or
columns, a storage element will have when created or modified using this
capability. A NULL means that the setting of stripe length is not supported
at all or not supported at this level of storage element allocation or
assignment.

ParityLayoutDefault Optional ParityLayoutDefault describes what the default parity a storage element
will have when created or modified using this capability. A NULL means
that the setting of the parity is not supported at all or is not supported at
this level of storage element allocation or assignment.

UserDataStripeDepthDefa
ult

Optional UserDataStripeDepthDefault describes what the number of bytes forming
a stripe that a storage element will have when created or modified using
this capability. A NULL means that the setting of stripe depth is not
supported at all or not supported at this level of storage element allocation
or assignment.

StorageTierCharacteristics Optional Indicates the storage tiering capabilities. Values:

 2: BasedOnPerformance Only

 3: BasedOnQOS Only

4: BasedOnPerformance And BasedOnQOS.

RelativePerformanceOrder
Min

Optional Indicates the minimum value for RelativePerformanceOrder that this
storage tier can have. The minimum value for RelativePerformanceOrder,
which represents the highest level of performance.

RelativePerformanceOrder
Max

Optional Indicates the maxmimum value for RelativePerformanceOrder that this
storage tier can have. The maximum value for RelativePerformanceOrder,
which represents the lowest level of performance.

RelativePerformanceOrder
Default

Optional Indicates the default value of RelativePerformanceOrder for the storage
tier -- the smaller the RelativePerformanceOrder, the more performant the
storage tier.

CreateSetting() Conditional Conditional requirement: Support for StorageConfigurationService.
Generate a setting to use as a goal for creating or modifying storage
elements.

GetSupportedStripeLength
s()

Optional List the possible discrete stripe lengths supported at this time of this
method's execution.

GetSupportedStripeLength
Range()

Optional List the possible stripe length ranges supported at the time of this
method's execution.

Table 795 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes

Automated Storage Tiering Policy Profile

1124

32.6.22CIM_StorageVolume (Constituent)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyElementFromStoragePool

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Referenced from Pools from Volumes - Constituent StorageVolume is mandatory.

Table 796 describes class CIM_StorageVolume (Constituent).

GetSupportedParityLayout
s()

Optional List the possible parity layouts supported at the time of this method's
execution.

GetSupportedStripeDepths
()

Optional List the possible stripe depths supported at the time of this method's
execution.

GetSupportedStripeDepth
Range()

Optional List the possible stripe depth ranges supported at the time of this method's
execution.

Table 796 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Optional

Table 795 - SMI Referenced Properties/Methods for CIM_StorageTierCapabilities

Properties Flags Requirement Description & Notes

459

460

461

462

463

464

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1125

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Pool
Component'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted by a client
application.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
storage volume when the volume relocation is ongoing.

Table 796 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes

Automated Storage Tiering Policy Profile

1126

32.6.23CIM_StorageVolume (Regular)

Created By: Extrinsic: StorageConfigurationService.CreateOrModifyElementFromStoragePool

Modified By: Static

Deleted By: Extrinsic: StorageConfigurationService.ReturnToStoragePool

Requirement: Mandatory

Table 797 describes class CIM_StorageVolume (Regular).

StorageTieringSelection N Optional Storage tiering examines this property to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for selecting
an appropriate storage tier. A value of 0 or null indicates the element is not
subject to storage tiering. Values:

 0: None

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder N Optional A storage volume can be associated with one or more storage tiers with
equal or smaller StorageTier.RelativePerformanceOrder. The smaller the
RelativePerformanceOrder, the more performant the tier.

RelativePerformanceOrder
Set

N Optional A set of RelativePerformanceOrder values. The volume can only be
associated with storage tiers that have a RelativePerformanceOrder value
included in this set.

Table 797 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory Identifier for this volume; based of datapath standards such as SCSI or
ATAPI.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescriptions Optional

Table 796 - SMI Referenced Properties/Methods for CIM_StorageVolume (Constituent)

Properties Flags Requirement Description & Notes

465

466

467

468

469

470

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1127

NameFormat Mandatory The type of identifier in the Name property. The valid values for
StorageVolumes are:

1 (Other)

2 (VPD83NAA6)

3 (VPD83NAA5)

4 (VPD83Type2)

5 (VPD83Type1)

6 (VPD83Type0)

7 (SNVM)

8 (NodeWWN)

9 (NAA)

10 (EUI64)

11 (T10VID).

NameNamespace Mandatory The namespace that defines uniqueness for the NameFormat.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant). In addition, the secondary OperationalStatus may be 19
(Relocating) with 2|3|15 (OK or Degraded or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Mandatory

NoSinglePointOfFailure Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

Primordial Mandatory Shall be false.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Allocated'.

CanDelete Optional Experimental. Indicates if the volume is able to be deleted by a client
application.

NumExtentsMigrating Optional Experimental. The number of Extents in the process of migrating for this
storage volume when the volume relocation is ongoing.

Table 797 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes

Automated Storage Tiering Policy Profile

1128

32.6.24CIM_SystemComponent (TierDomain to ComputerSystem)

Storage TierDomains on a system.

Created By: Extrinsic: CreateTierDomain

Modified By: Static

Deleted By: Extrinsic: DeleteTierDomain

Requirement: Optional

Table 798 describes class CIM_SystemComponent (TierDomain to ComputerSystem).

32.6.25CIM_TierDomain

TierDomain representing one or more storage tiers.

Created By: Extrinsic: CreateTierDomain

Modified By: Static

Deleted By: Extrinsic: DeleteTierDomain

Requirement: Mandatory

Table 799 describes class CIM_TierDomain.

StorageTieringSelection N Optional Storage tiering examines this property to determine whether to use
RelativePerformanceOrder or RelativePerformanceOrderSet for selecting
an appropriate storage tier. A value of 0 or null indicates the element is not
subject to storage tiering. Values:

 0: None

 2: Use RelativePerformanceOrder

3: Use RelativePerformanceOrderSet.

RelativePerformanceOrder N Optional A storage volume can be associated with one or more storage tiers with
equal or smaller StorageTier.RelativePerformanceOrder. The smaller the
RelativePerformanceOrder, the more performant the tier.

RelativePerformanceOrder
Set

N Optional A set of RelativePerformanceOrder values. The volume can only be
associated with storage tiers that have a RelativePerformanceOrder value
included in this set.

Table 798 - SMI Referenced Properties/Methods for CIM_SystemComponent (TierDomain to ComputerSys-
tem)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to top-level ComputerSystem.

PartComponent Mandatory Reference to the TierDomain.

Table 799 - SMI Referenced Properties/Methods for CIM_TierDomain

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Name of Class.

Name Mandatory An arbitrary name (implementation dependent).

Table 797 - SMI Referenced Properties/Methods for CIM_StorageVolume (Regular)

Properties Flags Requirement Description & Notes

471

472

473

474

475

476

477

478

479

480

481

482

483

484

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1129

32.6.26CIM_TierPolicyRule

Experimental. Inherited from CIM_PolicyRule to include properties specific to storage tiering.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 800 describes class CIM_TierPolicyRule.

NameFormat Mandatory Dependent on the arbitrary name chosen.

ElementName Optional A user friendly name for the storage tier domain (implementation
dependent).

OtherIdentifyingInfo Mandatory For a storage tier domain, this property shall contain the value 'TIER'.

IdentifyingDescriptions Mandatory For a storage TIER AdminDomain, this property shall contain the value
'SNIA:DetailedType' in the index for the OtherIdentifyingInfo of 'TIER'.

DataMovement MN Optional Specifies if data movement is automatic or requires manual intervention.
Values:

 2: Auto

3: Manual.

DataMovementState MN Optional Indicates the state of data movement that requires manual intervention.
Values:

 0: Not Applicable

 2: Waiting for Approval

 3: Waiting for Scheduled Time

 4: In Progress

 5: Stopped

 6: Paused

 7: Aborted

8: Completed.

RequestDataMovementSta
teChange()

Conditional Conditional requirement: Required if manual data movement is supported.

Table 800 - SMI Referenced Properties/Methods for CIM_TierPolicyRule

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

PolicyRuleName Mandatory A user-friendly name of this policy rule.

Table 799 - SMI Referenced Properties/Methods for CIM_TierDomain

Properties Flags Requirement Description & Notes

485

486

487

488

489

490

491

Automated Storage Tiering Policy Profile

1130

32.6.27CIM_TierPolicyService

Experimental. Base class for Automatic Storage Policy Tiering. The class definition specializes the CIM_TierService definition in the Automated
Storage Tiering profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 801 describes class CIM_TierPolicyService.

Activity Mandatory Indicates which tiering activity this rule applies to. Values:

 2: Data movement

3: Workload statistics collection.

RuleDiscriminator Mandatory Experimental. This is array of values that shall contain either
'SNIA:GlobalRule' or 'SNIA:LocalRule'.

Enabled Mandatory Indicates whether this policy rule is administratively enabled or disabled.
Values:

 1: Enabled

2: Disabled.

TimePeriodCondition MN Optional Specifies the time period for this policy rule. If Null, the implementation
decides. Values:

 0: Unknown

 2: Implementation Decides

 3: Not Available

 4: All The Time

 5: Associated Time Period

 6: Global

7: None.

Table 801 - SMI Referenced Properties/Methods for CIM_TierPolicyService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e (overridden)

Mandatory

SystemName (overridden) Mandatory

CreationClassName
(overridden)

Mandatory

Name (overridden) Mandatory

CreateStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

DeleteStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

AddToStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

Table 800 - SMI Referenced Properties/Methods for CIM_TierPolicyRule

Properties Flags Requirement Description & Notes

492

493
494

495

496

497

498

499

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1131

32.6.28CIM_TierPolicyServiceCapabilities

Experimental. A subclass of Capabilities that defines the Capabilities of a TierPolicyService. An instance of TierPolicyServiceCapabilities is
associated with a TierPolicyService using ElementCapabilities. The class definition specializes the CIM_TierServiceCapabilities definition in the
Automated Storage Tiering profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most
column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 802 describes class CIM_TierPolicyServiceCapabilities.

RemoveFromStorageTier() Conditional Conditional requirement: Required if client manages storage tiers.

CreateTierDomain() Conditional Conditional requirement: Required if client manages tier domains.

DeleteTierDomain() Conditional Conditional requirement: Required if client manages tier domains.

ModifyStorageTierDomain
Association()

Conditional Conditional requirement: Required if client manages tier domains.

GetStorageTierCandidate
Objects()

Conditional Conditional requirement: Required if client manages tier domains.

CreateStorageTierPolicyR
ule() (added)

Conditional Conditional requirement: Required if client manipulates storage tiering
policies.

DeleteStorageTierPolicyRu
le() (added)

Conditional Conditional requirement: Required if client manipulates storage tiering
policies.

ModifyStorageTierPolicyR
ule() (added)

Conditional Conditional requirement: Required if client manipulates storage tiering
policies.

Table 802 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID (overridden) Mandatory

ElementName (overridden) Mandatory User Friendly name.

SupportedFeatures Mandatory Enumeration indicating the supported features of the storage tiering
service. Values:

 2: System Creates StorageTiers

 3: Client Can Create StorageTiers

 4: System Creates TierDomains

 5: Client Can Create TierDomains

6: Supports SubLUN.

Table 801 - SMI Referenced Properties/Methods for CIM_TierPolicyService

Properties Flags Requirement Description & Notes

500

501
502
503
504

505

506

507

508

509

Automated Storage Tiering Policy Profile

1132

SupportedTierFeatures Mandatory Enumeration indicating the supported features of the storage tiers. Values:

 2: StorageTiers Based On Performance Only

 3: StorageTiers Based On QoS Only

 4: StorageTiers Based On Performance and QoS

 5: StorageTiers Based On Other Characteristics

 6: StorageTiers Can Overlap

 7: StorageTiers Can Be Empty

8: StorageTiers In Multiple TierDomains.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects that can be used to
form a storage tier. ComponentsOfStoragePool: In calling the method
CreateStorageTier, it is possible to supply one or StoragePools and
request the storage tiers to be created based on the
"ConcreteComponents" of the StoragePools, i.e. StorageExtents.
ElementsOfStoragePool: Storage tier is comprised of elements, e.g.
volumes, allocated from a StoragePool. Values:

 2: StorageVolume

 3: LogicalDisk

 4: StorageExtent

 5: StoragePool

 6: ComponentsOfStoragePool

 7: ElementsOfStoragePool

 8: External StoragePool

9: Primordial StorageExtent.

SupportedAsynchronousA
ctions (overridden)

Mandatory Identify methods using job control. Values:

 2: CreateStorageTier

 3: AddToStorageTier

 4: RemoveFromStorageTier

 5: CreateTierDomain

 6: DeleteTierDomain

 7: ModifyStorageTierDomainAssociation

 8: GetStorageTierCandidateObjects

 9: DeleteStorageTier

 10: CreateStorageTierPolicyRule

 11: DeleteStorageTierPolicyRule

12: ModifyStorageTierPolicyRule.

Table 802 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities

Properties Flags Requirement Description & Notes

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1133

SupportedSynchronousAct
ions (overridden)

Mandatory Identify methods not using job control. Values:

 2: CreateStorageTier

 3: AddToStorageTier

 4: RemoveFromStorageTier

 5: CreateTierDomain

 6: DeleteTierDomain

 7: ModifyStorageTierDomainAssociation

 8: GetStorageTierCandidateObjects

 9: DeleteStorageTier

 10: CreateStorageTierPolicyRule

 11: DeleteStorageTierPolicyRule

12: ModifyStorageTierPolicyRule.

SupportedCompression Optional Indicates if the Automated Storage Tiering subsystem has the capability to
compress storage volumes that are subject to tiering. Values:

 2: ThinlyProvisioned

3: ThicklyProvisioned.

SupportedDataMovement Optional Indicates the supported data movement choices that are available. Values:

 2: Auto

3: Manual.

SupportsTieringPolicies
(added)

Mandatory Indicates if instrumentation supports policies for storage tiering. Values:

 true: Storage tiering policies are supported

false: Storage tiering is supported, but not tiering policies.

SupportedPolicyFeatures
(added)

Mandatory Enumeration indicating the supported features of the storage tiering
service. Values:

 2: System creates Policies

 3: Client can create Policies

 4: Storage tier can belong to multiple policies

 5: Policy shall account for total allocation

 6: Supports global TierPolicyRule

7: Supports local TierPolicyRule.

PolicyAppliesToElements
(added)

Mandatory Enumeration indicating the elements that are associated with a tiering
policy. Values:

 2: StorageVolume

 3: LogicalDisk

6: DeviceMaskingGroup.

SupportedProvisioningTyp
es (added)

Mandatory The policy rule applies to elements that have the indicated provisioning.
Values:

 2: ThinlyProvisioned

3: ThicklyProvisioned.

Table 802 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities

Properties Flags Requirement Description & Notes

Automated Storage Tiering Policy Profile

1134

32.6.29CIM_TierPolicySetAppliesToElement

Experimental. Defines the association between a TierPolicyRule and a ManagedElement.

Created By: Extrinsic: CreateStorageTierPolicyRule

Modified By: Static

Deleted By: Extrinsic: DeleteStorageTierPolicyRule

Requirement: Optional

Table 803 describes class CIM_TierPolicySetAppliesToElement.

SupportedDataMovement
Rates (added)

Mandatory TSpecifies how fast data should be moved between storage tiers. Values:

 2: Very High

 3: High

 3: Medium

 3: Slow

 3: Very Slow

3: Implementation Decides.

SupportedRemoteTieringC
oordination (added)

Optional Indicates if the Automated Storage Tiering subsystem has the capability to
coordinate with the remote site the tiering characteristics of the elements
involved in remote replication. Values:

 2: ThinlyProvisioned Mirror

 3: ThicklyProvisioned Mirror

 4: ThinlyProvisioned Clone

5: ThicklyProvisioned Clone.

SupportsAutomaticStorage
PoolAllocation (added)

Optional A boolean property to indicate if the system supports the following
capability. When a thinly provisioned storage element (such as
StorageVolume) subject to storage tiering needs additional storage
capacity and the storage pool the storage element is allocated from is out
of free capacity, the system allocates the additional storage capacity from
another storage pool in the same tiering policy that is associated to the
storage volume.

Table 803 - SMI Referenced Properties/Methods for CIM_TierPolicySetAppliesToElement

Properties Flags Requirement Description & Notes

RulePriority Mandatory A number between 0 and 100. In situations where more than one
PolicySet is associated to the ManagedElement, this property indicates
which policy has higher priority. The lower the number, the higher the
priority. A value of 0 indicates the implementation decides the priority of
the rule.

RemoteTieringCoordinatio
nEnabled

MN Optional If true, the Automated Storage Tiering subsystem will coordinate with the
remote site while considering tiering of elements involved in replication.

PolicySet Mandatory PolicyRules and/or groups of rules that are currently applied to an
Element.

ManagedElement Mandatory ManagedElement to which the TierPolicyRule applies.

Table 802 - SMI Referenced Properties/Methods for CIM_TierPolicyServiceCapabilities

Properties Flags Requirement Description & Notes

510

511

512

513

514

515

516

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1135

32.6.30CIM_TierPolicySettingData

Experimental. Contains various options for use by the TierPolicyService methods to offer clients additional controls to manipulate a policy
associated with storage tiering. This class is not instantiated. It is provided here to identify properties that can be set in the embedded instance
input to the method. The class definition specializes the CIM_TierSettingData definition in the Automated Storage Tiering profile. Properties or
methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Optional

Table 804 describes class CIM_TierPolicySettingData.

Table 804 - SMI Referenced Properties/Methods for CIM_TierPolicySettingData

Properties Flags Requirement Description & Notes

InstanceID (overridden) Mandatory

ElementName (overridden) Mandatory User Friendly name.

RelativePerformanceOrder
Goal (overridden)

MN Optional An integer starting from 0 to indicate the performance characteristic of the
storage tier. The smaller the number, the higher the performance
characteristics.

RelativePerformanceOrder
Min (overridden)

MN Optional Indicates the minimum value for RelativePerformanceOrder that this
storage tier can have. Basically, the minimum value for
RelativePerformanceOrder represents the highest level of performance.

RelativePerformanceOrder
Max (overridden)

MN Optional Indicates the maxmimum value for RelativePerformanceOrder that this
storage tier can have. Basiclly, the maximum value for
RelativePerformanceOrder represents the lowest level of performance.

StorageTierCharacteristics
(overridden)

MN Optional Indicates the storage tier charateristics. Performance generally relates to
the underlying technology, for example, Solid State versus Fibre Channel
drives. QoS refers to the Quality of Service, for example, RAID protected
versus unprotected. Values:

 2: BasedOnPerformance Only

 3: BasedOnQOS Only

4: BasedOnPerformance And BasedOnQOS.

Technology (overridden) MN Optional The technology of the underlying disk drives used. Not Applicable: Storage
tier is not based on technology of underlying components. Mixed: a
storage tier consists of a mix of different disk drive technologies. Values:

 2: Not Applicable

 3: Solid State Drive

 4: Fibre Channel

 5: SATA

 6: SAS

 7: Mixed

8: Hard Disk Drive.

InitialState (overridden) MN Optional This property indicates the intial state of the storage tier. The default value
is 2. Values:

 2: Enabled

3: Disabled.

517

518
519
520
521

522

523

524

525

526

Automated Storage Tiering Policy Profile

1136

Dynamic (overridden) MN Optional If true any new extents added to the system that have a similar
performance characteristics (and QoS) to this tier become part of this tier
automatically. If false, the new extents needs to be added to this tier
manually. The default value is false.

DeleteOnEmptyElement
(overridden)

MN Optional If true and empty storage tier are allowed, the storage tier will be deleted
when the last element is removed from the storage tier. If empty storage
tier are not allowed, the storage tier will be deleted automatically when the
storage tier becomes empty. The default value is false.

Percentage (overridden) MN Optional A value between 0 to 100 to indicate the maximum percentage of the
underlying capacity that can be used for storage tiering activities. For
example, a value of 80 indicates no more than 80 percent of the storage
tier can be used for automated tiering. The remaining 20 percent of the
underlying storage is set aside for elements that do not participate in
automated storage tiering.

CompressionIdleInterval MN Optional Number of days data on a volume must be idle before the Automated
Storage Tiering subsystem starts compressing the data. Valid interval
must be in number of days between 1 and 365.

CompressionRate MN Optional A number between 1 and 10 to indicate the rate at which the Automated
Storage Tiering subsystem compresses the data. The smaller the number,
the higher the rate of compression.

ProvisioningType (added) MN Optional Specifies the elements provisioning type that this rule applies to. Values:

 2: ThinlyProvisioned

 3: ThicklyProvisioned

 4: All

5: Not Applicable.

RulePriority (added) MN Optional A number between 0 and 100. In situations where more than one
PolicySet is associated to the ManagedElement, this property indicates
which policy has higher priority. The lower the number, the higher the
priority. A value of 0 indicates the implementation decides the priority of
the rule.

DataMovementRate
(added)

MN Optional Specifies how fast data should be moved between storage tiers. Values:

 2: Very High

 3: High

 4: Medium

 5: Slow

 6: Very Slow

 7: Implementation Decides

8: Not Applicable.

RemoteTieringCoordinatio
nEnabled (added)

MN Optional If true, the Automated Storage Tiering subsystem will coordinate with the
remote site while considering tiering of elements involved in replication.

AutomaticStoragePoolAllo
cationEnabled (added)

MN Optional If true, when a thinly provisioned storage element (such as a
StorageVolume) subject to storage tiering needs additional storage
capacity and the storage pool that the storage element is allocated from is
out of free capacity, the system allocates the additional storage capacity
from another storage pool in the same tiering policy that is associated to
the storage volume.

Table 804 - SMI Referenced Properties/Methods for CIM_TierPolicySettingData

Properties Flags Requirement Description & Notes

 Automated Storage Tiering Policy Profile

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1137

EXPERIMENTAL

Automated Storage Tiering Policy Profile

1138

 Annex A (informative) SMI-S Information Model

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1139

Annex A (informative) SMI-S Information Model

This standard is based on DMTF’s CIM schema, version 2.41. The DMTF schema is available in the
machine-readable Managed Object Format (MOF) format. DMTF MOFs are simultaneously released both
as an "Experimental" and a "Final" version of the schema. This provides developers with early access to
experimental parts of the models. Both versions are available at
 http://dmtf.org/standards/cim/cim_schema_v2410

Most SMI-S Profiles are primarily based on the DMTF Final MOFs. Content marked as “Experimental” or
“Implemented” may be based on DMTF’s Experimental MOFs. Some SMI-S Experimental Profiles may
also use classes with a SNIA_ prefix; MOFs from these classes are available from SNIA.

1

2

3

4

5

6

7

8

9

http://www.dmtf.org/standards/cim/cim_schema_v2290

1140

 Annex B (informative) Registry of StorageExtent Definitions

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1141

Annex B (informative) Registry of StorageExtent Definitions

EXPERIMENTAL

Table B.1 lists a registry of StorageExtent definitions in SMI-S and the properties that distinguish the
extents from each other.

These definitions are not mutually exclusive. That is, a single StorageExtent instance may satisfy multiple
of these definitions. For example, it would not be uncommon for a StorageExtent (Primordial Disk Drive
Extent) to also be a StorageExtent (Spare). However, some are mutually exclusive. For example, all the
extents defined in Extent Composition are mutually exclusive with the StorageExtent (Primordial Disk
Drive Extent). The Extent Composition extents all have Primordial='false' and the StorageExtent
(Primordial Disk Drive Extent) has Primordial='true'. So an instance cannot be both a disk drive
StorageExtent and an Extent Composition storage extent. The known valid combinations are discussed in
section B.3.

B.1 ExtentDiscriminator Definitions

The Values for ExtentDiscriminator are defined as follows:

SNIA:Pool Component - A StorageExtent (or CompositeExtent) that represents storage of a StoragePool,
but is not a remaining extent.

Table B.1 - Registry of StorageExtent Definitions

Extent (Usage) Profile Primordial ExtentDiscriminator

StorageExtent (Intermediate) Extent Composition 'false' 'SNIA:Intermediate'

StorageExtent (Pool Component) Extent Composition 'false' 'SNIA:Pool Component'

CompositeExtent (Composite
Intermediate)

Extent Composition 'false' 'SNIA:Intermediate' and
'SNIA:Composite'

CompositeExtent (Composite Pool
Component)

Extent Composition 'false' 'SNIA:Pool Component' and
'SNIA:Composite'

StorageExtent (Remaining) Extent Composition 'false' 'SNIA:Remaining'

StorageExtent (Primordial Disk Drive
Extent)

Disk Drive Lite 'true' 'SNIA:Pool Component' and
'SNIA:DiskDrive'

StorageExtent (Imported Extents) Storage Virtualizer 'true' 'SNIA:Pool Component' and
'SNIA:Imported'

StorageExtent (Spare) Disk Sparing either 'SNIA:Spare'

StorageVolume (Allocated) Block Services, Disk Sparing 'false' 'SNIA:Allocated'

LogicalDisk (Allocated) Block Services, Disk Sparing 'false' 'SNIA:Allocated'

StorageVolume (Constituent) Pools from Volumes 'false' 'SNIA:Pool Component'

StorageVolume (Shadow) Storage Virtualizer, NAS
Head, Replication Services

'false' 'SNIA:Shadow'

LogicalDisk (Shadow) Host Filesystem 'false' 'SNIA:Shadow'

LogicalDisk (Filesystem) NAS Head, Self-contained
NAS

'false' 'SNIA:Allocated' and
'SNIA:Reserved'

LogicalDisk (Intermediate) Volume Management 'false' 'SNIA:Intermediate'

LogicalDisk (Primordial) Volume Management 'true' 'SNIA:Imported'

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1142

SNIA:Intermediate - A StorageExtent (or CompositeExtent) that is neither a Pool Component nor a
Remaining Extent (it does not represent storage in the pool, remaining or otherwise).

SNIA:Composite - A StorageExtent that is a CompositeExtent.

SNIA:Remaining - A StorageExtent that has an AssociatedRemainingExtent to a StoragePool
(representing free storage in the StoragePool).

SNIA:DiskDrive - A StorageExtent that is the media on a Disk Drive.

SNIA:Imported - A StorageExtent that is imported from an external source.

SNIA:Spare - A StorageExtent that acts as a spare for other StorageExtents (and has the IsSpare
association).

SNIA:Allocated - A StorageExtent that is subclassed to StorageVolume or LogicalDisk, and has an
AllocatedFromStoragePool association from a Concrete StoragePool.

SNIA:Shadow - A StorageExtent (or subclass) that represents a StorageExtent in another autonomous
profile (e.g., the StorageVirtualizer has StorageVolumes (Shadow) that represent StorageVolumes
exported by Arrays).

SNIA:Reserved - A StorageExtent that is reserved for some system use within the autonomous profile
(e.g., in NAS profiles, an Allocated LogicalDisk is reserved for holding Filesystems).

B.2 Association Significance of the Various Extent Definitions

Each of the Extent Definitions has significance relative to the associations that may exist for the Extent
definition. This section lists the associations implied by the various definitions.

B.2.1 StorageExtent (Intermediate)

An intermediate StorageExtent has the following associations defined on it:

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Dependent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.2 StorageExtent (Pool Component)

A pool component StorageExtent has the following associations defined on it:

• The PartComponent of a ConcreteComponent to a "concrete" StoragePool (Mandatory, but Deprecated)

• The PartComponent of a AssociatedComponentExtent to a "concrete" StoragePool (Mandatory)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Dependent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.3 CompositeExtent (Composite Intermediate)

An intermediate CompositeExtent has the following associations defined on it:

.
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

 Annex B (informative) Registry of StorageExtent Definitions

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1143

• The Dependent on a CompositeExtentBasedOn (Optional)

• The Dependent on a BasedOn in striping cases (Optional)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.4 CompositeExtent (Composite Pool Component)

A pool component CompositeExtent has the following associations defined on it:

• The PartComponent of a ConcreteComponent to a "concrete" StoragePool (Mandatory, but Deprecated)

• The PartComponent of a AssociatedComponentExtent to a "concrete" StoragePool (Mandatory)

• The Dependent on a CompositeExtentBasedOn (Mandatory)

• The Antecedent of a BasedOn Association from a StorageVolume (or LogicalDisk) (Optional)

• The Antecedent of a "mid level" BasedOn association (Optional)

• The Antecedent on a CompositeExtentBasedOn (Optional)

B.2.5 StorageExtent (Remaining)

A remaining StorageExtent has the following associations defined on it:

• The Dependent of a "mid level Remaining" BasedOn association (Mandatory)

• The PartComponent of a AssociatedRemainingExtent to a "concrete" StoragePool (Mandatory)

• The PartComponent of a ConcreteComponent to a StoragePool (Mandatory, but Deprecated)

B.2.6 StorageExtent (Primordial Disk Drive Extent)

A Disk drive StorageExtent has the following associations defined on it:

• The Dependent of a MediaPresent to DiskDrive (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The PartComponent of a ConcreteComponent to a "Primordial" StoragePool (Mandatory, but Deprecated)

• The Antecedent of a "Bottom level" BasedOn association (Conditional on Extent Composition)

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

• The Dependent of a ProtocolControllerAccessesUnit to ProtocolController (Optional)

• The LogicalUnit of a SCSIInitiatorTargetLogicalUnitPath to Initiator & Target ProtocolEndpoints (Optional)

B.2.7 StorageExtent (Imported Extents)

An imported StorageExtent has the following associations defined on it:

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The PartComponent of a ConcreteComponent to a "Primordial" StoragePool (Mandatory, but Deprecated)

• The Antecedent of a "Bottom level" BasedOn association (Conditional on Extent Composition)

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

1144

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

B.2.8 StorageExtent (Spare)

A spare StorageExtent has the following associations defined on it:

• The Antecedent of an IsSpare association (Mandatory)

• The Antecedent of a Spared association (Mandatory)

• The PartComponent of a AssociatedComponentExtent to a "Primordial" StoragePool (Conditional on Extent
Composition)

• The PartComponent of a ConcreteComponent to a StoragePool

B.2.9 StorageVolume (Allocated)

An Allocated StorageVolume has the following associations defined on it:

• The ManagedElement of an ElementSettingData to a StorageSetting (Mandatory)

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The ManagedElement of an ElementCapabilities to a StorageCapabilities (Optional)

B.2.10 LogicalDisk (Allocated)

An Allocated LogicalDisk has the following associations defined on it:

• The ManagedElement of an ElementSettingData to a StorageSetting (Mandatory)

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

• The ManagedElement of an ElementCapabilities to a StorageCapabilities (Optional)

B.2.11 StorageVolume (Pool Component)

A Pool Component StorageVolume has the following associations defined on it:

• The Dependent of an AllocatedFromStoragePool to a "Concrete" StoragePool (Mandatory)

• The PartComponent of a SystemDevice to a ComputerSystem (Mandatory)

B.2.12 StorageVolume (Shadow)

A Shadow StorageVolume has the following associations defined on it:

• The PartComponent of a SystemDevice to a "Shadow" ComputerSystem (Mandatory)

• A SystemElement of a LogicalIdentity to an "Imported" StorageExtent (Mandatory)

• A member of a MemberOfCollection to a SNIA_AllocatedResources (Mandatory)

• A member of a MemberOfCollection to a SNIA_RemoteResources (Optional)

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

 Annex B (informative) Registry of StorageExtent Definitions

 SMI-S 1.6.1 Revision 6 SNIA Technical Position 1145

B.2.13 LogicalDisk (Shadow)

A Shadow LogicalDisk has the following associations defined on it:

• The PartComponent of a SystemDevice to a "Shadow" ComputerSystem (Mandatory)

• A SystemElement of a LogicalIdentity to an "Imported" StorageExtent (Mandatory)

• A member of a MemberOfCollection to a SNIA_AllocatedResources (Mandatory)

• A member of a MemberOfCollection to a SNIA_RemoteResources (Optional)

B.3 Example Valid Combinations of Extent Definitions

Table B.2 shows the known valid combinations of Extent Definitions. These refer to StorageExtent
instances that have multiple Usages.

B.4 Combinations of Extent Definitions not defined in this Release of the Standard

Currently, this release of the standard does not directly or indirectly support the combinations of Extent
Definitions. Some example of combinations not defined in this standard are identified in Table B.3.

Table B.2 - Example Valid Combinations of Extent Definitions

Extent Usage Extent
Usage

Primordial ExtentDiscriminators Notes

Primordial Disk
Drive Extent

Spare 'true' 'SNIA:Pool Component',
'SNIA:DiskDrive' and
'SNIA:Spare'

A disk drive extent may be a spare.

Imported Extents Spare 'true' 'SNIA:Pool Component',
'SNIA:Imported' and
'SNIA:Spare'

An imported extent may be a spare.

Composite Pool
Component

Spare 'false' 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:Spare'

A composite Pool component (a
concrete extent) may be a spare

Pool Component Spare 'false' 'SNIA:Pool Component' and
'SNIA:Spare'

A Pool Component (a concrete extent)
may be a spare

Table B.3 - Extent Combinations not defined in this Release of the Standard

Extent Usage Extent
Usage

Primordial ExtentDiscriminators Notes

Primordial Disk
Drive Extent

Intermediate Conflicted 'SNIA:Intermediate' and
'SNIA:DiskDrive'

An Intermediate Extent is always a
concrete extent

Imported Extents Intermediate Conflicted 'SNIA:Intermediate' and
'SNIA:Imported'

An Intermediate Extent is always a
concrete extent

Remaining Intermediate ‘false’ 'SNIA:Intermediate' and
'SNIA:Remaining'

An Intermediate Extent is used to
represent storage that is in use (and
remaining is free space).

Remaining Pool Component ‘false’ 'SNIA:Pool Component' and
'SNIA:Remaining'

A Remaining Extent represents
unallocated storage in a Pool and
cannot be a component of a Pool.

Primordial Disk
Drive Extent

Composite Pool
Component

Conflicted 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:DiskDrive'

An Composite Extent is always a
concrete extent and a drive extent is
primordial.

115

116

117

118

119

120

121

122

123

124

125

126

1146

Several of the rows in Table B.3 have the value “Conflicted” in the Primordial column. This means one
type of extent is supposed to have the value ‘true’ and the other type of extent is supposed to have the
value ‘false’. For example, the standard defines a “Primordial Disk Drive Extent” to always have
Primordial=’true’ and a “Composite Pool Component” to always have Primordial=’false’. So a “Primordial
Disk Drive Extent” can never be a “Composite Pool Component”.

EXPERIMENTAL

Imported Extents Composite Pool
Component

Conflicted 'SNIA:Pool Component',
'SNIA:Composite' and
'SNIA:Imported'

An Composite Extent is always a
concrete extent and an imported extent
is primordial.

Primordial Disk
Drive Extent

Imported
Extents

‘true’ 'SNIA:DiskDrive' and
'SNIA:Imported'

An extent cannot be both imported and
represent a DiskDrive

Spare Intermediate ‘false’ 'SNIA:Spare' and
'SNIA:Intermediate'

This version of the standard only
defines sparing of Pool Components

Spare Remaining ‘false’ 'SNIA:Spare' and
'SNIA:Remaining'

This version of the standard only
defines sparing of Pool Components

Table B.3 - Extent Combinations not defined in this Release of the Standard

Extent Usage Extent
Usage

Primordial ExtentDiscriminators Notes

127

128

129

130

131

	Revision History
	List of Figures
	List of Tables
	Foreword
	1 Scope
	2 Normative References
	2.1 Approved references
	2.2 References under development
	2.3 Other references

	3 Definitions, Symbols, Abbreviations, and Conventions
	4 Array Profile
	4.1 Description
	4.2 Health and Fault Management
	4.3 Cascading Considerations
	4.4 Supported Subprofiles and Packages
	4.5 Methods of the Profile
	4.6 Use Cases
	4.6.1 Discover the Capacity Optimization Support in an Array

	4.7 Registered Name and Version
	4.8 CIM Elements
	4.8.1 CIM_ComputerSystem (Top Level System)
	4.8.2 CIM_ElementCapabilities (ImplementationCapabilities to System)
	4.8.3 CIM_FilterCollection (Array Predefined FilterCollection)
	4.8.4 CIM_FilterCollection (Array ProfileSpecificLifecycleIndicationFilterCollection)
	4.8.5 CIM_HostedCollection (Array to ProfileSpecificLifecycleIndicationFilterCollection)
	4.8.6 CIM_HostedCollection (Array to predefined FilterCollection)
	4.8.7 CIM_ImplementationCapabilities (ImplementationCapabilities)
	4.8.8 CIM_IndicationFilter (Array System Creation)
	4.8.9 CIM_IndicationFilter (Array System Deletion)
	4.8.10 CIM_MemberOfCollection (Array ProfileSpecificLifecycleIndicationFilterCollection to Array Filters)
	4.8.11 CIM_MemberOfCollection (Predefined Filter Collection to Array Filters)
	4.8.12 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)
	4.8.13 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)
	4.8.14 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)
	4.8.15 CIM_SCSIProtocolController (All LUNs View)
	4.8.16 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)
	4.8.17 CIM_SystemDevice (System to SCSIProtocolController)

	Clause 5: Block Services Package
	5.1 Description
	5.1.1 General
	5.1.2 Storage Capacity States
	5.1.3 StoragePools
	5.1.4 Blocks, Metadata, and Capacity Reported
	5.1.5 StoragePool Management Instance Diagram
	5.1.6 StoragePool, StorageVolume and LogicalDisk Manipulation
	5.1.7 Declaring Storage Configuration Options
	5.1.8 StorageVolume Creation Instance Diagram
	5.1.9 Backward Compatibility
	5.1.10 Capacity Management
	5.1.11 Mapping of RAID levels to Data Redundancy and Package Redundancy
	5.1.12 Storage Setting Associations to Storage Capabilities
	5.1.13 The Usage Property
	5.1.14 Read-Only Model Requirements
	5.1.15 StorageExtent Conservation
	5.1.16 Formulas For Calculating Capacity
	5.1.17 Storage Element Manipulation
	5.1.18 Block Services Predefined Indications
	5.1.19 Storage Compression support in Block Services

	5.2 Health and Fault Management Considerations
	5.2.1 StoragePool OperationalStatus
	5.2.2 StorageVolume OperationalStatus
	5.2.3 LogicalDisk OperationalStatus

	5.3 Cascading Considerations
	5.4 Supported Profile, Subprofiles and Packages
	5.5 Methods of this Profile
	5.5.1 Extrinsic Methods on StorageCapabilities
	5.5.2 Intrinsic Methods on StorageSetting
	5.5.3 Extrinsic Methods on StorageConfiguration
	5.5.4 Extrinsic Methods on StoragePool
	5.5.5 Extrinsic Methods on StorageConfigurationCapabilities

	5.6 Client Considerations and Recipes
	5.6.1 Representative Instance Diagram
	5.6.2 Goals and Settings
	5.6.3 Representative StoragePool Creation Example
	5.6.4 Representative example of StorageVolume or LogicalDisk Creation
	5.6.5 Summarize the StoragePools in a block storage system and verify the capacity reported
	5.6.6 Conditional: Create StoragePool and Storage Element on Block Server (e.g., Array or Volume Manager)
	5.6.7 Conditional: Expand Storage Element on Block Server
	5.6.8 Conditional: Create Storage Element from Elements on Block Server
	5.6.9 Optional: Intentionally General a CIM Error

	5.7 Registered Name and Version
	5.8 CIM Elements
	5.8.1 CIM_AllocatedFromStoragePool (Pool from Pool)
	5.8.2 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)
	5.8.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)
	5.8.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)
	5.8.5 CIM_ElementCapabilities (ImplementationCapabilities to System)
	5.8.6 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)
	5.8.7 CIM_ElementCapabilities (StorageCapabilities to StoragePool)
	5.8.8 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	5.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)
	5.8.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)
	5.8.11 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)
	5.8.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or LogicalDisk)
	5.8.13 CIM_ElementSettingData
	5.8.14 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)
	5.8.15 CIM_EnabledLogicalElementCapabilities (For StoragePool)
	5.8.16 CIM_FilterCollection (Block Services Predefined FilterCollection)
	5.8.17 CIM_FilterCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection)
	5.8.18 CIM_HostedCollection (Block Services to ProfileSpecificLifecycleIndicationFilterCollection)
	5.8.19 CIM_HostedCollection (System to predefined IndicationFilters)
	5.8.20 CIM_HostedService
	5.8.21 CIM_HostedStoragePool
	5.8.22 CIM_ImplementationCapabilities (ImplementationCapabilities)
	5.8.23 CIM_IndicationFilter (Logical Disk Creation)
	5.8.24 CIM_IndicationFilter (Logical Disk Deletion)
	5.8.25 CIM_IndicationFilter (Logical Disk OperationalStatus)
	5.8.26 CIM_IndicationFilter (Storage Pool Creation)
	5.8.27 CIM_IndicationFilter (Storage Pool Deletion)
	5.8.28 CIM_IndicationFilter (Storage Pool TotalManagedSpace)
	5.8.29 CIM_IndicationFilter (Storage Volume Creation)
	5.8.30 CIM_IndicationFilter (Storage Volume Deletion)
	5.8.31 CIM_IndicationFilter (Storage Volume OperationalStatus)
	5.8.32 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)
	5.8.33 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)
	5.8.34 CIM_LogicalDisk
	5.8.35 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)
	5.8.36 CIM_MemberOfCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection to Block Services Filters)
	5.8.37 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)
	5.8.38 CIM_OwningJobElement
	5.8.39 CIM_StorageCapabilities
	5.8.40 CIM_StorageConfigurationCapabilities (Concrete)
	5.8.41 CIM_StorageConfigurationCapabilities (Global)
	5.8.42 CIM_StorageConfigurationCapabilities (Primordial)
	5.8.43 CIM_StorageConfigurationService
	5.8.44 CIM_StoragePool (Concrete)
	5.8.45 CIM_StoragePool (Empty)
	5.8.46 CIM_StoragePool (Primordial)
	5.8.47 CIM_StorageSetting
	5.8.48 CIM_StorageSettingWithHints
	5.8.49 CIM_StorageSettingsAssociatedToCapabilities
	5.8.50 CIM_StorageSettingsGeneratedFromCapabilities
	5.8.51 CIM_StorageVolume
	5.8.52 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

	Clause 6: Block Storage Views Profile
	6.1 Description
	6.1.1 Synopsis
	6.1.2 Overview
	6.1.3 Class Diagram for Block Storage Views View Classes
	6.1.4 Implementation

	6.2 Health and Fault Management Consideration
	6.3 Cascading Considerations
	6.4 Methods of the Profile
	6.4.1 Extrinsic Methods of the Profile
	6.4.2 Intrinsic Methods of the Profile

	6.5 Client Considerations and Recipes
	6.5.1 Use Cases
	6.5.2 Recipes

	6.6 CIM Elements
	6.6.1 CIM_AllocatedFromStoragePoolView (StoragePoolView to StoragePool)
	6.6.2 CIM_AllocatedFromStoragePoolView (Volume to StoragePoolView)
	6.6.3 CIM_AllocatedFromStoragePoolView (VolumeView to StoragePool)
	6.6.4 CIM_AllocatedFromStoragePoolViewView (PoolView to PoolView)
	6.6.5 CIM_AllocatedFromStoragePoolViewView (VolumeView to PoolView)
	6.6.6 CIM_BasedOnView (ExtentOnDriveExtent)
	6.6.7 CIM_BasedOnView (VolumeOnExtent)
	6.6.8 CIM_ConcreteComponentView
	6.6.9 CIM_ContainerView
	6.6.10 CIM_DiskDriveView
	6.6.11 CIM_DriveComponentViewView
	6.6.12 CIM_ElementCapabilities (View Capabilities)
	6.6.13 CIM_ElementStatisticalDataView (DiskDriveView)
	6.6.14 CIM_ElementStatisticalDataView (VolumeView)
	6.6.15 CIM_ElementView (DiskDrive)
	6.6.16 CIM_ElementView (StorageSetting)
	6.6.17 CIM_ElementView (Volume)
	6.6.18 CIM_ExtentComponentView
	6.6.19 CIM_HostedStoragePoolView
	6.6.20 CIM_MappingProtocolControllerView
	6.6.21 CIM_MaskingMappingExposedDeviceView
	6.6.22 CIM_MaskingMappingView
	6.6.23 CIM_ProtocolControllerForUnitView
	6.6.24 CIM_ReplicaPairView
	6.6.25 CIM_StoragePoolView
	6.6.26 CIM_SystemDeviceView (DiskDriveViews)
	6.6.27 CIM_SystemDeviceView (MappingProtocolControllerViews)
	6.6.28 CIM_SystemDeviceView (ReplicaPairViews)
	6.6.29 CIM_SystemDeviceView (VolumeViews)
	6.6.30 CIM_ViewCapabilities
	6.6.31 CIM_VolumeView
	6.6.32 SNIA_DiskDriveView

	7 Block Server Performance Subprofile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Overview
	7.1.3 Performance Data Rate

	7.2 Implementation
	7.2.1 Performance Additions Overview
	7.2.2 Performance Additions to base Array Profile
	7.2.3 Performance Additions to base Storage Virtualizer Profile
	7.2.4 Performance Additions to base Volume Management Profile
	7.2.5 Summary of BlockStorageStatisticsData support by Profile
	7.2.6 Server Profile Support for the Block Server Performance Subprofile
	7.2.7 Default Manifest Collection
	7.2.8 Performance Additions applied to Multiple Computer Systems
	7.2.9 Performance Additions to Backend Ports
	7.2.10 Performance Additions to Extent Composition
	7.2.11 Performance Additions to Disk Drives
	7.2.12 Performance Additions to SCSIArbitraryLogicalUnits (Controller LUNs)
	7.2.13 Performance Additions for Remote Mirrors
	7.2.14 Client Defined Manifest Collections
	7.2.15 Capabilities Support for Block Server Performance Subprofile

	7.3 Health and Fault Management Considerations
	7.4 Cascading Considerations
	7.5 Supported Subprofiles and Packages
	7.6 Methods of the Profile
	7.6.1 Extrinsic Methods of the Profile
	7.6.2 Intrinsic Methods of the Profile
	7.6.3 GetRateStatisticsCollection

	7.7 Client Considerations and Recipes
	7.7.1 Bulk Performance Statistics Gathering
	7.7.2 Building an Object Map of Metered Elements
	7.7.3 Retrieving Statistics for a Specific Volume
	7.7.4 Summary of Statistics Support by Element
	7.7.5 Formulas and Calculations
	7.7.6 Block Server Performance Supported Capabilities Patterns
	7.7.7 Correlation of Block Storage Statistics and Fabric Statistics

	7.8 CIM Elements
	7.8.1 CIM_AssociatedBlockStatisticsManifestCollection (Client defined collection)
	7.8.2 CIM_AssociatedBlockStatisticsManifestCollection (Provider defined collection)
	7.8.3 CIM_BlockStatisticsCapabilities
	7.8.4 CIM_BlockStatisticsManifest (Client Defined)
	7.8.5 CIM_BlockStatisticsManifest (Provider Support)
	7.8.6 CIM_BlockStatisticsManifestCollection (Client Defined)
	7.8.7 CIM_BlockStatisticsManifestCollection (Provider Defined)
	7.8.8 CIM_BlockStatisticsService
	7.8.9 CIM_BlockStorageStatisticalData
	7.8.10 CIM_ElementCapabilities
	7.8.11 CIM_ElementStatisticalData (Back end Port Stats)
	7.8.12 CIM_ElementStatisticalData (Component System Stats)
	7.8.13 CIM_ElementStatisticalData (Disk Stats)
	7.8.14 CIM_ElementStatisticalData (Extent Stats)
	7.8.15 CIM_ElementStatisticalData (Front end Port Stats)
	7.8.16 CIM_ElementStatisticalData (Logical Disk Stats)
	7.8.17 CIM_ElementStatisticalData (Remote Copy Stats)
	7.8.18 CIM_ElementStatisticalData (Top Level System Stats)
	7.8.19 CIM_ElementStatisticalData (Volume Stats)
	7.8.20 CIM_HostedCollection (Client Defined)
	7.8.21 CIM_HostedCollection (Default)
	7.8.22 CIM_HostedCollection (Provider Supplied)
	7.8.23 CIM_HostedService
	7.8.24 CIM_MemberOfCollection (Member of client defined collection)
	7.8.25 CIM_MemberOfCollection (Member of pre-defined collection)
	7.8.26 CIM_MemberOfCollection (Member of statistics collection)
	7.8.27 CIM_StatisticsCollection
	7.8.28 SNIA_BlockStatisticsCapabilities
	7.8.29 SNIA_BlockStatisticsManifest (Client Defined)
	7.8.30 SNIA_BlockStatisticsManifest (Provider Support)

	8 CKD Block Services Profile
	8.1 Description
	8.1.1 Overview
	8.1.2 Implementation

	8.2 Health and Fault Management Consideration
	8.3 Cascading Considerations
	8.4 Supported Profiles, Subprofiles, and Packages
	8.5 Methods of the Profile
	8.6 Client Considerations and Recipes
	8.7 Registered Name and Version
	8.8 CIM Elements
	8.8.1 CIM_AllocatedFromStoragePool (Pool from Pool)
	8.8.2 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)
	8.8.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)
	8.8.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)
	8.8.5 CIM_ElementCapabilities (ImplementationCapabilities to System)
	8.8.6 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)
	8.8.7 CIM_ElementCapabilities (StorageCapabilities to StoragePool)
	8.8.8 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	8.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)
	8.8.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)
	8.8.11 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)
	8.8.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or LogicalDisk)
	8.8.13 CIM_ElementSettingData
	8.8.14 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)
	8.8.15 CIM_EnabledLogicalElementCapabilities (For StoragePool)
	8.8.16 CIM_FilterCollection (Block Services Predefined FilterCollection)
	8.8.17 CIM_FilterCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection)
	8.8.18 CIM_HostedCollection (Block Services to ProfileSpecificLifecycleIndicationFilterCollection)
	8.8.19 CIM_HostedCollection (System to predefined IndicationFilters)
	8.8.20 CIM_HostedService
	8.8.21 CIM_HostedStoragePool
	8.8.22 CIM_ImplementationCapabilities (ImplementationCapabilities)
	8.8.23 CIM_IndicationFilter (Logical Disk Creation)
	8.8.24 CIM_IndicationFilter (Logical Disk Deletion)
	8.8.25 CIM_IndicationFilter (Logical Disk OperationalStatus)
	8.8.26 CIM_IndicationFilter (Storage Pool Creation)
	8.8.27 CIM_IndicationFilter (Storage Pool Deletion)
	8.8.28 CIM_IndicationFilter (Storage Pool TotalManagedSpace)
	8.8.29 CIM_IndicationFilter (Storage Volume Creation)
	8.8.30 CIM_IndicationFilter (Storage Volume Deletion)
	8.8.31 CIM_IndicationFilter (Storage Volume OperationalStatus)
	8.8.32 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)
	8.8.33 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)
	8.8.34 CIM_LogicalDisk
	8.8.35 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)
	8.8.36 CIM_MemberOfCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection to Block Services Filters)
	8.8.37 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)
	8.8.38 CIM_OwningJobElement
	8.8.39 CIM_StorageConfigurationCapabilities (Concrete)
	8.8.40 CIM_StorageConfigurationCapabilities (Global)
	8.8.41 CIM_StorageConfigurationCapabilities (Primordial)
	8.8.42 CIM_StorageConfigurationService
	8.8.43 CIM_StoragePool (Concrete)
	8.8.44 CIM_StoragePool (Empty)
	8.8.45 CIM_StoragePool (Primordial)
	8.8.46 CIM_StorageSettingWithHints
	8.8.47 CIM_StorageSettingsAssociatedToCapabilities
	8.8.48 CIM_StorageSettingsGeneratedFromCapabilities
	8.8.49 CIM_SystemDevice (System to StorageVolume or LogicalDisk)
	8.8.50 SNIA_StorageCapabilities
	8.8.51 SNIA_StorageSetting
	8.8.52 SNIA_StorageVolume

	9 Copy Services Subprofile
	9.1 Description
	9.1.1 Synopsis
	9.1.2 Overview
	9.1.3 Copy Services Discovery
	9.1.4 Copy Services Capabilities
	9.1.5 Replication modeling
	9.1.6 Associations
	9.1.7 Durable Names and Correlatable IDs of the Profile
	9.1.8 Accessibility to Created Elements
	9.1.9 Completion of Long Operations
	9.1.10 State Management For Associated Replicas
	9.1.11 Reporting Time of Synchronization
	9.1.12 State Transition Rules
	9.1.13 State Transitions
	9.1.14 Accessibility to Associations and Elements
	9.1.15 Host Access Restrictions
	9.1.16 Settings, Specialized Elements and Pools for Replicas
	9.1.17 Backward Compatibility
	9.1.18 Mutually Exclusive Capabilities
	9.1.19 Deleting the Target Elements
	9.1.20 Using StorageSettings for Replicas
	9.1.21 Finding and Creating Target Elements
	9.1.22 Using StoragePools for Replicas
	9.1.23 Thinly Provisioned Elements
	9.1.24 Indication Events

	9.2 Health and Fault Management Considerations
	9.2.1 Health Indications
	9.2.2 Replication Error Messages

	9.3 Cascading Considerations
	9.4 Supported Subprofiles and Packages
	9.5 Methods of the Profile
	9.5.1 Intrinsic Methods of the Profile
	9.5.2 Extrinsic Methods of the Profile

	9.6 Client Considerations and Recipes
	9.6.1 Discovery of Copy support and Capabilities
	9.6.2 Creating and Managing Replicas
	9.6.3 Using StorageSetting for Replicas
	9.6.4 Finding and Creating Target Elements
	9.6.5 Creating and Managing Pools for Delta Replicas
	9.6.6 Creating and Managing Mirrors
	9.6.7 Creating a Clone and Redirected Restore Operations
	9.6.8 Creating and Managing Snapshots
	9.6.9 Managing Background Copy
	9.6.10 Recipes
	9.6.11 Replica Modification
	9.6.12 Replica Creation Or Attachment

	9.7 CIM Elements
	9.7.1 CIM_ElementCapabilities (Associates ReplicationServiceCapabilities and ReplicationService)
	9.7.2 CIM_ElementCapabilities (Associates StorageReplicationCapabilities and StorageConfigurationService)
	9.7.3 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	9.7.4 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)
	9.7.5 CIM_HostedService (Replication Service)
	9.7.6 CIM_HostedService (Storage Configuration Service)
	9.7.7 CIM_ReplicaPoolForStorage
	9.7.8 CIM_ReplicationService
	9.7.9 CIM_ReplicationServiceCapabilities
	9.7.10 CIM_ReplicationSettingData
	9.7.11 CIM_SettingsDefineState
	9.7.12 CIM_StorageCapabilities
	9.7.13 CIM_StorageConfigurationCapabilities
	9.7.14 CIM_StorageConfigurationService
	9.7.15 CIM_StoragePool
	9.7.16 CIM_StorageReplicationCapabilities
	9.7.17 CIM_StorageSetting
	9.7.18 CIM_StorageSynchronized
	9.7.19 CIM_StorageSynchronized (Between StorageExtent elements)
	9.7.20 CIM_SynchronizationAspect

	10 Disk Drive Subprofile
	11 Disk Drive Lite Subprofile
	11.1 Description
	11.1.1 Base model
	11.1.2 Associations to external classes
	11.1.3 Active Management
	11.1.4 Diagram of CIM Elements
	11.1.5 Durable Names and Correlatable IDs of the Profile
	11.1.6 Conditional Associations to other profiles
	11.1.7 Optional Associations to other profiles

	11.2 Health and Fault Management Considerations
	11.2.1 Disk Drive Dependency

	11.3 Cascading Considerations
	11.4 Supported Profiles, Subprofiles and Packages
	11.5 Methods of this Profile
	11.5.1 Extrinsic Methods on Disk Drives

	11.6 Registered Name and Version
	11.7 CIM Elements
	11.7.1 CIM_ATAPort (Disk Drive Target ATA Port)
	11.7.2 CIM_ATAProtocolEndpoint (Disk Drive target ATA Protocol Endpoint)
	11.7.3 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)
	11.7.4 CIM_BasedOn (Bottom Level BasedOn)
	11.7.5 CIM_ConcreteComponent (Disk Extent to Primordial Pool)
	11.7.6 CIM_Container
	11.7.7 CIM_DeviceSAPImplementation (ATA)
	11.7.8 CIM_DeviceSAPImplementation (SCSI)
	11.7.9 CIM_DiskDrive
	11.7.10 CIM_ElementSoftwareIdentity
	11.7.11 CIM_FCPort (Disk Drive Target FC Port)
	11.7.12 CIM_FilterCollection (Disk Drive Lite Predefined FilterCollection)
	11.7.13 CIM_FilterCollection (Disk Drive Lite ProfileSpecificLifecycleIndicationFilterCollection)
	11.7.14 CIM_HostedCollection (System to ProfileSpecificLifecycleIndicationFilterCollection)
	11.7.15 CIM_HostedCollection (System to predefined IndicationFilters)
	11.7.16 CIM_IndicationFilter (Disk Drive Creation)
	11.7.17 CIM_IndicationFilter (Disk Drive Deletion)
	11.7.18 CIM_MediaPresent
	11.7.19 CIM_MemberOfCollection (Disk Drive Lite Filter Collection to FilterCollection)
	11.7.20 CIM_MemberOfCollection (Disk Drive Lite ProfileSpecificLifecycleIndicationFilterCollection to Disk Drive Lite Filters)
	11.7.21 CIM_MemberOfCollection (Predefined Filter Collection to Disk Drive Lite Filters)
	11.7.22 CIM_PhysicalPackage
	11.7.23 CIM_ProtocolControllerAccessesUnit
	11.7.24 CIM_Realizes
	11.7.25 CIM_ResourcePoolDriveDependency
	11.7.26 CIM_SAPAvailableForElement
	11.7.27 CIM_SASPort (Disk Drive Target SAS Port)
	11.7.28 CIM_SCSIInitiatorTargetLogicalUnitPath
	11.7.29 CIM_SCSIProtocolEndpoint (Disk Drive target SCSI Protocol Endpoint)
	11.7.30 CIM_SPIPort (Disk Drive Target Parallel SCSI Port)
	11.7.31 CIM_SoftwareIdentity
	11.7.32 CIM_StorageElementDriveDependency
	11.7.33 CIM_StorageExtent (Primordial Disk Drive Extent)
	11.7.34 CIM_SystemDevice (Disk Drive System)
	11.7.35 CIM_SystemDevice (Port System)
	11.7.36 CIM_SystemDevice (Storage Extent System)
	11.7.37 SNIA_DiskDrive

	12 Disk Sparing Subprofile
	12.1 Description
	12.1.1 Durable Names and Correlatable IDs of the Profile
	12.1.2 Sparing Model
	12.1.3 Modeling Fail Over, Past and Present
	12.1.4 Sparing Configuration and Control

	12.2 Health and Fault Management Considerations
	12.3 Cascading Conjurations
	12.4 Supported Subprofiles and Packages
	12.5 Methods of the Profile
	12.5.1 AssignSpares
	12.5.2 UnassignSpares
	12.5.3 GetAvailableSpareExtents
	12.5.4 FailOver
	12.5.5 RebuildStorageExtent
	12.5.6 CheckParityConsistency
	12.5.7 RepairParity
	12.5.8 CheckStorageElement

	12.6 Client Considerations and Recipes
	12.6.1 Determine if spare model is constructed correctly

	12.7 Registered Name and Version
	12.8 CIM Elements
	12.8.1 CIM_AssociatedComponentExtent (Spare to Storage Pool)
	12.8.2 CIM_ConcreteDependency (Extent to LogicalDisk)
	12.8.3 CIM_ConcreteDependency (Extent to Pool)
	12.8.4 CIM_ConcreteDependency (Extent to StorageVolume)
	12.8.5 CIM_ElementCapabilities
	12.8.6 CIM_HostedCollection (ComputerSystem to FailoverStorageExtentsCollection)
	12.8.7 CIM_HostedCollection (ComputerSystem to RedundancySet)
	12.8.8 CIM_HostedService (ComputerSystem to SpareConfigurationService)
	12.8.9 CIM_IsSpare
	12.8.10 CIM_LogicalDisk
	12.8.11 CIM_MemberOfCollection
	12.8.12 CIM_Spared
	12.8.13 CIM_StorageExtent (Spare)
	12.8.14 CIM_StoragePool
	12.8.15 CIM_StorageRedundancySet
	12.8.16 CIM_StorageVolume
	12.8.17 SNIA_FailoverStorageExtentsCollection
	12.8.18 SNIA_SpareConfigurationCapabilities
	12.8.19 SNIA_SpareConfigurationService

	13 Erasure Profile
	13.1 Description
	13.1.1 Existing Erasure standards

	13.2 Health and Fault Management Considerations
	13.3 Cascading Considerations
	13.4 Supported Profiles, Subprofiles, and Packages
	13.5 Methods of the Profile
	13.6 Client Considerations and Recipes
	13.6.1 Recipe 1: Volume Erasure
	13.6.2 Recipe 2: Volume Deletion

	13.7 Registered Name and Version
	13.8 CIM Elements
	13.8.1 CIM_AllocatedFromStoragePool
	13.8.2 CIM_LogicalDisk
	13.8.3 CIM_StoragePool
	13.8.4 CIM_StorageVolume
	13.8.5 SNIA_ErasureCapabilities
	13.8.6 SNIA_ErasureService
	13.8.7 SNIA_ErasureSetting

	14 Extent Composition Subprofile
	14.1 Description
	14.1.1 Decomposition
	14.1.2 Composition
	14.1.3 Model Element Summary
	14.1.4 Relation to other Packages and Subprofiles
	14.1.5 Remaining Extents
	14.1.6 Scenarios

	14.2 Health and Fault Management Considerations
	14.3 Cascading Considerations
	14.4 Supported Subprofiles and Packages
	14.5 Methods of the Profile
	14.6 Client Considerations and Recipes
	14.6.1 Traverse the virtualization hierarchy of a StorageVolume or LogicalDisk
	14.6.2 Find the Primordial Extents used by a Storage Volume or Logical Disk

	14.7 Registered Name and Version
	14.8 CIM Elements
	14.8.1 CIM_AssociatedComponentExtent (Pool Component to Concrete Pool)
	14.8.2 CIM_AssociatedRemainingExtent (Pool to its remaining extents)
	14.8.3 CIM_BasedOn (Mid level BasedOn)
	14.8.4 CIM_BasedOn (Top level BasedOn)
	14.8.5 CIM_CompositeExtent (Composite Intermediate)
	14.8.6 CIM_CompositeExtent (Composite Pool Component)
	14.8.7 CIM_CompositeExtentBasedOn
	14.8.8 CIM_ConcreteComponent (Pool Component to Concrete Pool)
	14.8.9 CIM_ConcreteComponent (Remaining Extent to Pool)
	14.8.10 CIM_FilterCollection (Extent Composition Predefined FilterCollection)
	14.8.11 CIM_HostedCollection (System to predefined Extent Composition IndicationFilters)
	14.8.12 CIM_MemberOfCollection (Extent Composition Filter Collection to FilterCollection)
	14.8.13 CIM_MemberOfCollection (Predefined Filter Collection to Extent Composition Filters)
	14.8.14 CIM_StorageExtent (Intermediate)
	14.8.15 CIM_StorageExtent (Pool Component)
	14.8.16 CIM_StorageExtent (Remaining)
	14.8.17 CIM_SystemDevice (Composite Extent System)
	14.8.18 CIM_SystemDevice (Storage Extent System)

	15 LUN Creation Subprofile
	16 Extent Mapping Subprofile
	17 LUN Mapping and Masking Subprofile
	17.1 Compatibility with SMI-S 1.0 clients.

	Clause 18: Masking and Mapping Subprofile
	18.1 Description
	18.1.1 Views and Paths
	18.1.2 Model Elements
	18.1.3 SCSIProtocolController Views
	18.1.4 Initiator ID Collections
	18.1.5 Default View / Default Logical Unit Access
	18.1.6 Arbitrary Logical Units
	18.1.7 Read-only verses Read-Write access
	18.1.8 Read-Only Volumes
	18.1.9 Finding Volumes that are not Mapped
	18.1.10 Limits on Map counts per Logical Unit
	18.1.11 Deactivated Logical Units
	18.1.12 SCSIProtocolController Properties
	18.1.13 Initiator Setting Data
	18.1.14 Durable Names and Correlatable IDs of the Profile
	18.1.15 Instrumentation Requirements
	18.1.16 Element Naming

	18.2 Health and Fault Management Considerations
	18.3 Cascading Considerations
	18.4 Supported Subprofiles, and Packages
	18.5 Methods of the Profile
	18.5.1 ExposePaths
	18.5.2 ExposePathsWithNameAndHostType
	18.5.3 HidePaths
	18.5.4 ExposeDefaultLUs
	18.5.5 HideDefaultLUs
	18.5.6 CreateStorageHardwareID
	18.5.7 DeleteStorageHardwareID
	18.5.8 CreateHardwareIDCollection
	18.5.9 AddHardwareIDsToCollection
	18.5.10 DeleteProtocolController
	18.5.11 GetElementNameCapabilities

	18.6 Client Considerations and Recipes
	18.6.1 Expose and Hide LUNs
	18.6.2 Set Host Mode for a Port
	18.6.3 Set Host Mode for a ProtocolController

	18.7 Registered Name and Version
	18.8 CIM Elements
	18.8.1 CIM_AuthorizedPrivilege
	18.8.2 CIM_AuthorizedSubject
	18.8.3 CIM_AuthorizedTarget
	18.8.4 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolController)
	18.8.5 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivilege)
	18.8.6 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and StorageHardwareID)
	18.8.7 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and SystemSpecificCollection)
	18.8.8 CIM_ControllerConfigurationService
	18.8.9 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfigurationService)
	18.8.10 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)
	18.8.11 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)
	18.8.12 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDManagementService)
	18.8.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)
	18.8.14 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)
	18.8.15 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)
	18.8.16 CIM_ElementSettingData (Associates Port and StorageClientSettingData)
	18.8.17 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)
	18.8.18 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)
	18.8.19 CIM_EnabledLogicalElementCapabilities
	18.8.20 CIM_HostedCollection
	18.8.21 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)
	18.8.22 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)
	18.8.23 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementService)
	18.8.24 CIM_MemberOfCollection
	18.8.25 CIM_PrivilegeManagementService
	18.8.26 CIM_ProtocolController
	18.8.27 CIM_ProtocolControllerForUnit
	18.8.28 CIM_ProtocolControllerMaskingCapabilities
	18.8.29 CIM_SAPAvailableForElement
	18.8.30 CIM_StorageClientSettingData
	18.8.31 CIM_StorageHardwareID
	18.8.32 CIM_StorageHardwareIDManagementService
	18.8.33 CIM_SystemSpecificCollection
	18.8.34 SNIA_ProtocolControllerMaskingCapabilities
	18.8.35 SNIA_StorageHardwareID
	18.8.36 SNIA_StorageHardwareIDManagementService

	19 Pool Manipulation Capabilities, and Settings Subprofile
	20 Storage Server Asymmetry Profile
	20.1 Description
	20.1.1 Overview
	20.1.2 Relationship to Multiple Computer System Subprofile
	20.1.3 Relationship to Masking and Mapping Subprofile
	20.1.4 Relationship to T10
	20.1.5 Behavior, Characteristics, and Capabilities
	20.1.6 Model

	20.2 Health and Fault Management Consideration
	20.3 Cascading Considerations
	20.4 Supported Profiles, Subprofiles, and Packages
	20.5 Methods of the Profile
	20.5.1 Assign Storage Resource Affinity

	20.6 Client Considerations and Recipes
	20.6.1 Determine which ports provide full bandwidth access to a storage element.

	20.7 Registered Name and Version
	20.8 CIM Elements
	20.8.1 CIM_AsymmetricAccessibility
	20.8.2 CIM_ElementCapabilities (To Top-level ComputerSystem)
	20.8.3 CIM_HostedCollection (Top-Level System to Load Group)
	20.8.4 CIM_HostedCollection (Top-Level System to Port Group)
	20.8.5 CIM_MemberOfCollection (SATA Target Port Group)
	20.8.6 CIM_MemberOfCollection (SB Target Port Group)
	20.8.7 CIM_MemberOfCollection (SCSI Target Port Group)
	20.8.8 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Pools)
	20.8.9 CIM_MemberOfCollection (Storage Resource Load Group aggregating Storage Volumes)
	20.8.10 CIM_MemberOfCollection (iSCSI Target Port Group)
	20.8.11 CIM_StorageConfigurationService
	20.8.12 CIM_StorageProcessorAffinity (StorageResourceLoadGroup)
	20.8.13 CIM_StorageProcessorAffinity (Target Port Group)
	20.8.14 CIM_StorageResourceLoadGroup (Load Groups)
	20.8.15 CIM_StorageServerAsymmetryCapabilities
	20.8.16 CIM_TargetPortGroup (Port Groups)

	21 Block Services Resource Ownership Subprofile
	21.1 Description
	21.1.1 Design considerations
	21.1.2 Privilege Propagation

	21.2 Client Considerations and Recipes

	22 Storage Virtualizer Profile
	22.1 Description
	22.1.1 Instance Diagram
	22.1.2 Storage Virtualization System
	22.1.3 Disk Drive Lite
	22.1.4 Controller Software
	22.1.5 Device Management Access
	22.1.6 Physical Modeling
	22.1.7 Services
	22.1.8 Ports
	22.1.9 Model Element Summary

	22.2 Health and Fault Management
	22.3 Storage Virtualizer Support for Cascading
	22.4 Supported Subprofiles and Packages
	22.5 Methods of the Profile
	22.6 Use Cases
	22.6.1 Discover the Capacity Optimization Support in an Storage Virtualizer

	22.7 Registered Name and Version
	22.8 CIM Elements
	22.8.1 CIM_AssociatedComponentExtent (Pool Component to Primordial Pool)
	22.8.2 CIM_ComputerSystem (Shadow)
	22.8.3 CIM_ComputerSystem (Top Level System)
	22.8.4 CIM_ConcreteComponent (Imported Extents to Primordial Pool)
	22.8.5 CIM_Dependency (Systems)
	22.8.6 CIM_ElementCapabilities (ImplementationCapabilities to System)
	22.8.7 CIM_FilterCollection (Storage Virtualizer Predefined FilterCollection)
	22.8.8 CIM_FilterCollection (Storage Virtualizer ProfileSpecificLifecycleIndicationFilterCollection)
	22.8.9 CIM_HostedCollection (Allocated Resources)
	22.8.10 CIM_HostedCollection (Remote Resources)
	22.8.11 CIM_HostedCollection (Storage Virtualizer to ProfileSpecificLifecycleIndicationFilterCollection)
	22.8.12 CIM_HostedCollection (Storage Virtualizer to predefined FilterCollection)
	22.8.13 CIM_ImplementationCapabilities (ImplementationCapabilities)
	22.8.14 CIM_IndicationFilter (Storage Virtualizer LogicalPort OperationalStatus)
	22.8.15 CIM_IndicationFilter (Storage Virtualizer Storage Volume OperationalStatus)
	22.8.16 CIM_IndicationFilter (Storage Virtualizer System Creation)
	22.8.17 CIM_IndicationFilter (Storage Virtualizer System Deletion)
	22.8.18 CIM_IndicationFilter (Storage Virtualizer System OperationalStatus)
	22.8.19 CIM_IndicationFilter (WQL Storage Virtualizer FCPort OperationalStatus)
	22.8.20 CIM_IndicationFilter (WQL Storage Virtualizer Storage Volume OperationalStatus)
	22.8.21 CIM_IndicationFilter (WQL Storage Virtualizer System OperationalStatus)
	22.8.22 CIM_LogicalIdentity (Shadow Storage Volume)
	22.8.23 CIM_MemberOfCollection (Allocated Resources)
	22.8.24 CIM_MemberOfCollection (Predefined Filter Collection to Storage Virtualizer Filters)
	22.8.25 CIM_MemberOfCollection (Remote Resources)
	22.8.26 CIM_MemberOfCollection (Storage Virtualizer ProfileSpecificLifecycleIndicationFilterCollection to Storage Virtualizer Filters)
	22.8.27 CIM_ProtocolControllerForUnit (Arbitrary LU for All LUNs View)
	22.8.28 CIM_ProtocolControllerForUnit (Storage volumes for All LUNs View)
	22.8.29 CIM_RemoteServiceAccessPoint (Shadow)
	22.8.30 CIM_ResourcePoolExtentDependency (PoolExtentDepedency)
	22.8.31 CIM_SAPAvailableForElement
	22.8.32 CIM_SCSIArbitraryLogicalUnit (Arbitrary LU)
	22.8.33 CIM_SCSIProtocolController (All LUNs View)
	22.8.34 CIM_StorageElementExtentDependency (ElementExtentDependency)
	22.8.35 CIM_StorageExtent (Imported Extents)
	22.8.36 CIM_StorageVolume (Shadow)
	22.8.37 CIM_SystemDevice (Shadow StorageVolumes)
	22.8.38 CIM_SystemDevice (System to SCSIArbitraryLogicalUnit)
	22.8.39 CIM_SystemDevice (System to SCSIProtocolController)
	22.8.40 CIM_SystemDevice (System to StorageExtent)
	22.8.41 SNIA_AllocatedResources
	22.8.42 SNIA_RemoteResources

	23 Volume Composition Profile
	23.1 Description
	23.1.1 Overview
	23.1.2 Relationship to Block Services Package
	23.1.3 Relationship to Extent Composition
	23.1.4 Model
	23.1.5 Quality of Service (QoS) Considerations
	23.1.6 Composite Stripe Length and Depth
	23.1.7 Examples

	23.2 Striped and Concatenated Composite Volumes
	23.3 Health and Fault Management Consideration
	23.4 Cascading Considerations
	23.5 Supported Profiles, Subprofiles, and Packages
	23.6 Methods of the Profile
	23.6.1 CreateOrModifyCompositeElement
	23.6.2 RemoveElementsFromElement
	23.6.3 ReturnElementToElements
	23.6.4 GetAvailableElements
	23.6.5 GetCompositeElements
	23.6.6 GetSupportedStripeLengths
	23.6.7 GetSupportedStripeLengthRange
	23.6.8 GetSupportedStripeDepths
	23.6.9 GetSupportedStripeDepthRange

	23.7 Client Considerations and Recipes
	23.7.1 Indications
	23.7.2 Recipe 1: Create Composite Volume
	23.7.3 Recipe 2: Delete Composite Volume

	23.8 Registered Name and Version
	23.9 CIM Elements
	23.9.1 CIM_CompositeExtent
	23.9.2 CIM_CompositeExtentBasedOn (Volume Composition)
	23.9.3 CIM_ElementCapabilities
	23.9.4 CIM_ElementSettingData
	23.9.5 CIM_HostedService (Associates ComputerSystem and the ElementCompositionService)
	23.9.6 CIM_StorageElementCompositionCapabilities
	23.9.7 CIM_StorageElementCompositionService
	23.9.8 CIM_StorageSetting
	23.9.9 CIM_StorageVolume

	24 Volume Management Profile
	24.1 Description
	24.1.1 Instance Diagram
	24.1.2 Input Class of the Volume Manager
	24.1.3 Export Class of the Volume Manager
	24.1.4 Initializing OS Disks for Volume Manager Use
	24.1.5 Creating Pools and Logical Volumes
	24.1.6 Storage Settings for Volumes
	24.1.7 Durable Names and Other Correlatable ids of the Profile

	24.2 Health and Fault Management Considerations
	24.3 Cascading Considerations
	24.4 Supported Subprofiles and Packages
	24.5 Methods of the Profile
	24.6 Client Considerations and Recipes
	24.6.1 Storage Configuration

	24.7 Registered Name and Version
	24.8 CIM Elements
	24.8.1 CIM_AllocatedFromStoragePool (LogicalDisk from Pool)
	24.8.2 CIM_AllocatedFromStoragePool (Pool from Pool)
	24.8.3 CIM_ComputerSystem
	24.8.4 CIM_ElementCapabilities
	24.8.5 CIM_ElementSettingData
	24.8.6 CIM_HostedStoragePool
	24.8.7 CIM_LogicalDisk
	24.8.8 CIM_StorageCapabilities
	24.8.9 CIM_StoragePool (Concrete)
	24.8.10 CIM_StoragePool (Primordial)
	24.8.11 CIM_StorageSetting
	24.8.12 CIM_SystemDevice

	25 Storage Element Protection SubProfile
	25.1 Description
	25.1.1 Overview
	25.1.2 Use Cases
	25.1.3 Functionality
	25.1.4 Class Model
	25.1.5 Access permission
	25.1.6 Retention period
	25.1.7 Protection State Transition
	25.1.8 Sample Usage Scenario

	25.2 Health and Fault Management Consideration
	25.3 Cascading Considerations
	25.4 Supported Profiles, Subprofiles, and Packages
	25.5 Methods of the Profile
	25.5.1 Protect

	25.6 Client Considerations and Recipes
	25.6.1 Start Volume Protection
	25.6.2 Extend the Retention Period

	25.7 Registered Name and Version
	25.8 CIM Elements
	25.8.1 CIM_ElementCapabilities
	25.8.2 CIM_HostedService
	25.8.3 SNIA_ElementProtectionSettingData
	25.8.4 SNIA_StorageProtectionCapabilities
	25.8.5 SNIA_StorageProtectionService
	25.8.6 SNIA_StorageProtectionSetting

	26 Replication Services Profile
	26.1 Description
	26.1.1 Synopsis
	26.1.2 Supported Profiles, Subprofiles, and Packages
	26.1.3 Overview
	26.1.4 Key Features
	26.1.5 Replication Services and Copy Services Profiles
	26.1.6 Key Components
	26.1.7 Replication Services Discovery
	26.1.8 Replication Services Capabilities
	26.1.9 SyncTypes
	26.1.10 Modes
	26.1.11 Locality of Target Elements
	26.1.12 Remote Replication
	26.1.13 Undiscovered Resources
	26.1.14 Multi-hop Replication
	26.1.15 Groups
	26.1.16 Associations
	26.1.17 Operations on List of Synchronizations
	26.1.18 State Management For Associated Replicas
	26.1.19 Unsynchronized and Skewed CopyStates
	26.1.20 Accessibility to Associations and Elements
	26.1.21 Host Access Restrictions
	26.1.22 Read Only Elements
	26.1.23 Deleting the Target Elements
	26.1.24 Completion of Long Operations
	26.1.25 Managing Background Copy
	26.1.26 Managing CopyPriority
	26.1.27 Using StorageSettings for Replicas
	26.1.28 Finding and Creating Target Elements
	26.1.29 Using StoragePools (e.g. ResourcePools) for Replicas
	26.1.30 Provider Configurations for Remote Replication
	26.1.31 Thinly Provisioned Elements
	26.1.32 Data Compressed Elements
	26.1.33 Indications

	26.2 Health and Fault Management Consideration
	26.3 Cascading Considerations
	26.3.1 ServiceAccessPoint and SharedSecret Instances
	26.3.2 Cascading Support

	26.4 Mapping of Copy Services and Replication Services Properties and Methods
	26.5 Methods of the Profile
	26.5.1 Group Management Methods
	26.5.2 Replication Management Methods
	26.5.3 Capabilities Methods
	26.5.4 Replication Services and Copy Services Properties and Methods Mapping

	26.6 Client Considerations and Recipes
	26.6.1 Creating and Managing Replicas

	26.7 Registered Name and Version
	26.8 CIM Elements
	26.8.1 CIM_ElementCapabilities
	26.8.2 CIM_GroupSynchronized
	26.8.3 CIM_HostedAccessPoint (ForProtocolEndpoint)
	26.8.4 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)
	26.8.5 CIM_HostedCollection (Allocated Resources)
	26.8.6 CIM_HostedCollection (Between ComputerSystem and RemoteReplicationCollection)
	26.8.7 CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)
	26.8.8 CIM_HostedCollection (Remote Resources)
	26.8.9 CIM_HostedService
	26.8.10 CIM_MemberOfCollection (Allocated Resources)
	26.8.11 CIM_MemberOfCollection (ProtocolEndpoints to RemoteReplicationCollection)
	26.8.12 CIM_MemberOfCollection (Remote Resources)
	26.8.13 CIM_MemberOfCollection (Storage elements to RemoteReplicationCollection)
	26.8.14 CIM_OrderedMemberOfCollection
	26.8.15 CIM_ProtocolEndpoint
	26.8.16 CIM_RemoteReplicationCollection
	26.8.17 CIM_RemoteServiceAccessPoint
	26.8.18 CIM_ReplicaPoolForStorage
	26.8.19 CIM_ReplicationEntity
	26.8.20 CIM_ReplicationGroup
	26.8.21 CIM_ReplicationService
	26.8.22 CIM_ReplicationServiceCapabilities
	26.8.23 CIM_ReplicationSettingData
	26.8.24 CIM_SAPAvailableForFileShare
	26.8.25 CIM_ServiceAffectsElement (Between ReplicationService and RemoteReplicationCollection)
	26.8.26 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)
	26.8.27 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)
	26.8.28 CIM_SettingsAffectSettings (Between SynchronizationAspect and child SynchronizationAspects)
	26.8.29 CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)
	26.8.30 CIM_SettingsDefineState (Between storage object and SynchronizationAspect)
	26.8.31 CIM_SharedSecret
	26.8.32 CIM_StorageSynchronized
	26.8.33 CIM_SynchronizationAspect
	26.8.34 SNIA_AllocatedResources
	26.8.35 SNIA_RemoteResources

	27 Pools from Volumes Profile
	27.1 Description
	27.1.1 Overview
	27.1.2 Terminology
	27.1.3 Relationship to Block Services Package
	27.1.4 Relationship to Extent Composition
	27.1.5 Class Model
	27.1.6 Model Elements
	27.1.7 Example

	27.2 Block Services Enhancements
	27.2.1 StoragePool Manipulation Methods
	27.2.2 Declaring Storage Configuration Options
	27.2.3 The Usage Property

	27.3 Health and Fault Management Considerations
	27.4 Cascading Considerations
	27.5 Supported Profiles, Subprofiles, and Packages
	27.6 Methods of the Profile
	27.6.1 CreateOrModifyStoragePool
	27.6.2 DeleteStoragePool
	27.6.3 Storage Element Modification

	27.7 Client Considerations and Recipes
	27.7.1 Client Considerations
	27.7.2 Recipe 1: Create StoragePool

	27.8 Registered Name and Version
	27.9 CIM Elements
	27.9.1 CIM_AllocatedFromStoragePool (Volume from Pool)
	27.9.2 CIM_ElementCapabilities
	27.9.3 CIM_StorageCapabilities
	27.9.4 CIM_StorageVolume
	27.9.5 CIM_SystemDevice
	27.9.6 SNIA_StorageConfigurationCapabilities
	27.9.7 SNIA_StoragePool
	27.9.8 SNIA_StorageSetting

	28 Group Masking and Mapping Profile
	28.1 Description
	28.1.1 Synopsis
	28.1.2 Overview
	28.1.3 Model Elements
	28.1.4 Device Numbers
	28.1.5 Group Masking and Mapping Capabilities

	28.2 Health and Fault Management Consideration
	28.3 Cascading Considerations
	28.4 Methods of the Profile
	28.4.1 CreateGroup
	28.4.2 DeleteGroup
	28.4.3 AddMembers
	28.4.4 RemoveMembers
	28.4.5 CreateMaskingView
	28.4.6 DeleteMaskingView
	28.4.7 ModifyMaskingView

	28.5 Client Considerations and Recipes
	28.5.1 Using Groups in Masking and Mapping

	28.6 Registered Name and Version
	28.7 CIM Elements
	28.7.1 CIM_AssociatedDeviceMaskingGroup
	28.7.2 CIM_AssociatedInitiatorMaskingGroup
	28.7.3 CIM_AssociatedTargetMaskingGroup
	28.7.4 CIM_AuthorizedPrivilege
	28.7.5 CIM_AuthorizedSubject
	28.7.6 CIM_AuthorizedTarget
	28.7.7 CIM_ConcreteDependency (Associates ControllerConfiguirationService and ProtocolController)
	28.7.8 CIM_ConcreteDependency (Associates PrivilegeManagementService and AuthorizedPrivilege)
	28.7.9 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and StorageHardwareID)
	28.7.10 CIM_ConcreteDependency (Associates StorageHardwareIDManagementService and SystemSpecificCollection)
	28.7.11 CIM_DeviceMaskingGroup
	28.7.12 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ControllerConfigurationService)
	28.7.13 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to ProtocolController)
	28.7.14 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareID)
	28.7.15 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageHardwareIDManagementService)
	28.7.16 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to SystemSpecificCollection)
	28.7.17 CIM_ElementCapabilities (System to ProtocolControllerMaskingCapabilities)
	28.7.18 CIM_ElementSettingData (Associates ComputerSystem and StorageClientSettingData)
	28.7.19 CIM_ElementSettingData (Associates Port and StorageClientSettingData)
	28.7.20 CIM_ElementSettingData (Associates ProtocolController and StorageClientSettingData)
	28.7.21 CIM_ElementSettingData (Associates StorageHardwareID and StorageClientSettingData)
	28.7.22 CIM_EnabledLogicalElementCapabilities
	28.7.23 CIM_GroupMaskingMappingCapabilities
	28.7.24 CIM_GroupMaskingMappingService
	28.7.25 CIM_HostedCollection
	28.7.26 CIM_HostedService (Associates ComputerSystem and ControllerConfigurationService)
	28.7.27 CIM_HostedService (Associates ComputerSystem and PrivilegeManagementService)
	28.7.28 CIM_HostedService (Associates ComputerSystem and StorageHardwareIDManagementService)
	28.7.29 CIM_InitiatorMaskingGroup
	28.7.30 CIM_MemberOfCollection
	28.7.31 CIM_PrivilegeManagementService
	28.7.32 CIM_ProtocolController
	28.7.33 CIM_ProtocolControllerForUnit
	28.7.34 CIM_SAPAvailableForElement
	28.7.35 CIM_ServiceAffectsElement (Between GroupMaskingMappingService and MaskingGroup)
	28.7.36 CIM_StorageClientSettingData
	28.7.37 CIM_StorageHardwareID
	28.7.38 CIM_StorageHardwareIDManagementService
	28.7.39 CIM_SystemSpecificCollection
	28.7.40 CIM_TargetMaskingGroup
	28.7.41 SNIA_ProtocolControllerMaskingCapabilities
	28.7.42 SNIA_StorageHardwareID
	28.7.43 SNIA_StorageHardwareIDManagementService

	29 Storage Relocation Profile
	29.1 Overview
	29.1.1 Storage Volume Relocation
	29.1.2 Logical Disk Relocation
	29.1.3 Storage Pool Relocation

	29.2 Model
	29.3 Implementation
	29.3.1 Capacity of StoragePool after StorageVolume relocation
	29.3.2 Capacity of StoragePool after StoragePool merge
	29.3.3 Capacity of StorageElement after be relocated onto new group of StorageExtents
	29.3.4 Track and control of Relocation progress
	29.3.5 Relocation Capabilities of Storage Pool

	29.4 Indications
	29.4.1 StorageVolume Relocation starts (msgID: DRM32)
	29.4.2 StorageVolume Relocation ends (msgID: DRM33)
	29.4.3 StoragePool Relocation starts (msgID: DRM34)
	29.4.4 StoragePool Relocation ends (msgID: DRM35)
	29.4.5 LogicalDisk Relocation starts (msgID: DRM36)
	29.4.6 LogicalDisk Relocation ends (msgID: DRM37)

	29.5 Health and Fault Management Consideration
	29.6 Cascading Considerations
	29.7 Mapping & Masking Considerations
	29.8 Supported Profiles, Subprofiles, and Packages
	29.9 Methods of the Profile
	29.9.1 RelocateStorageVolumesToStoragePool
	29.9.2 RelocateStoragePoolsToStoragePool
	29.9.3 RelocateStorageVolumeToStorageExtents
	29.9.4 RelocateStoragePoolToStorageExtents
	29.9.5 RelocateLogicalDiskToStorageExtents
	29.9.6 GetAvailableTargetRelocationExtents

	29.10 Client Considerations and Recipes
	29.10.2 Recipes

	29.11 Registered Name and Version
	29.12 CIM Elements
	29.12.1 CIM_AffectedJobElement (LogicalDisk to ConcreteJob)
	29.12.2 CIM_AffectedJobElement (StorageExtent to ConcreteJob)
	29.12.3 CIM_AffectedJobElement (StoragePool to ConcreteJob)
	29.12.4 CIM_AffectedJobElement (StorageVolume to ConcreteJob)
	29.12.5 CIM_ElementCapabilities (StorageConfigurationCapabilities to StoragePool)
	29.12.6 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageRelocationService)
	29.12.7 CIM_FilterCollection (Storage Relocation Predefined FilterCollection)
	29.12.8 CIM_FilterCollection (Storage Relocation ProfileSpecificAlertIndicationFilterCollection)
	29.12.9 CIM_HostedCollection (System to Storage Relocation ProfileSpecificAlertIndicationFilterCollection)
	29.12.10 CIM_HostedCollection (System to predefined IndicationFilters)
	29.12.11 CIM_HostedService (StorageRelocationService to ComputerSystem)
	29.12.12 CIM_IndicationFilter (LogicalDiskRelocationEnd)
	29.12.13 CIM_IndicationFilter (LogicalDiskRelocationStart)
	29.12.14 CIM_IndicationFilter (StoragePoolRelocationEnd)
	29.12.15 CIM_IndicationFilter (StoragePoolRelocationStart)
	29.12.16 CIM_IndicationFilter (VolumeRelocationEnd)
	29.12.17 CIM_IndicationFilter (VolumeRelocationStart)
	29.12.18 CIM_LogicalDisk
	29.12.19 CIM_MemberOfCollection (Predefined Filter Collection to Storage Relocation Filters)
	29.12.20 CIM_MemberOfCollection (Storage Relocation Filter Collection to FilterCollection)
	29.12.21 CIM_MemberOfCollection (Storage Relocation ProfileSpecificAlertIndicationFilterCollection to Storage Relocation Filters)
	29.12.22 CIM_OwningJobElement (StorageRelocationService to ConcreteJob)
	29.12.23 CIM_StorageConfigurationCapabilities (Concrete)
	29.12.24 CIM_StorageConfigurationCapabilities (Global)
	29.12.25 CIM_StorageConfigurationCapabilities (Primordial)
	29.12.26 CIM_StorageExtent (Relocatable)
	29.12.27 CIM_StoragePool (Concrete)
	29.12.28 CIM_StoragePool (Primordial)
	29.12.29 CIM_StorageRelocationService
	29.12.30 CIM_StorageVolume

	30 Thin Provisioning Profile
	30.1 Description
	30.1.1 Overview
	30.1.2 Background
	30.1.3 Model

	30.2 Health and Fault Management Consideration
	30.3 Cascading Considerations
	30.4 Supported Profiles, Subprofiles, and Packages
	30.5 Methods of the Profile
	30.5.1 StoragePool GetSupportedSizes() and GetSupportedSizeRanges()
	30.5.2 StorageSetting CreateSetting
	30.5.3 StorageConfigurationService CreateOrModifyStoragePool()
	30.5.4 StorageConfigurationService CreateOrModifyElementFromElements()
	30.5.5 StorageConfigurationService CreateOrModifyElementFromStoragePool()

	30.6 Client Considerations and Recipes
	30.6.1 Create a Pool from a Parent Pool
	30.6.2 Create a Pool from Extents
	30.6.3 Creating a Thinly Provisioned Volume
	30.6.4 Capacity Properties for Fully-provisioned RAID1 Volume
	30.6.5 Capacity Properties for Thin Provisioning

	30.7 Registered Name and Version
	30.8 CIM Elements
	30.8.1 CIM_AllocatedFromStoragePool (Pool from Pool)
	30.8.2 CIM_AllocatedFromStoragePool (Volume or LogicalDisk from Pool)
	30.8.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StorageVolume or LogicalDisk)
	30.8.4 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to StoragePool)
	30.8.5 CIM_ElementCapabilities (ImplementationCapabilities to System)
	30.8.6 CIM_ElementCapabilities (StorageCapabilities to StorageConfigurationService)
	30.8.7 CIM_ElementCapabilities (StorageCapabilities to StoragePool)
	30.8.8 CIM_ElementCapabilities (StorageConfigurationCapabilities to StorageConfigurationService)
	30.8.9 CIM_ElementCapabilities (StorageConfigurationCapabilities to concrete StoragePool)
	30.8.10 CIM_ElementCapabilities (StorageConfigurationCapabilities to primordial StoragePool)
	30.8.11 CIM_ElementCapabilities (Used to declare the naming capabilities of the StoragePool)
	30.8.12 CIM_ElementCapabilities (Used to declare the naming capabilities of the StorageVolume or LogicalDisk)
	30.8.13 CIM_ElementSettingData
	30.8.14 CIM_EnabledLogicalElementCapabilities (For StorageConfigurationService)
	30.8.15 CIM_EnabledLogicalElementCapabilities (For StoragePool)
	30.8.16 CIM_FilterCollection (Block Services Predefined FilterCollection)
	30.8.17 CIM_FilterCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection)
	30.8.18 CIM_FilterCollection (Thin Provisioning Predefined FilterCollection)
	30.8.19 CIM_FilterCollection (Thin Provisioning ProfileSpecificAlertIndicationFilterCollection)
	30.8.20 CIM_HostedCollection (Block Services to ProfileSpecificLifecycleIndicationFilterCollection)
	30.8.21 CIM_HostedCollection (System to Thin Provisioning ProfileSpecificAlertIndicationFilterCollection)
	30.8.22 CIM_HostedCollection (System to Thin Provisioning predefined IndicationFilters)
	30.8.23 CIM_HostedCollection (System to predefined IndicationFilters)
	30.8.24 CIM_HostedService
	30.8.25 CIM_HostedStoragePool
	30.8.26 CIM_ImplementationCapabilities (ImplementationCapabilities)
	30.8.27 CIM_IndicationFilter (Logical Disk Creation)
	30.8.28 CIM_IndicationFilter (Logical Disk Deletion)
	30.8.29 CIM_IndicationFilter (Logical Disk OperationalStatus)
	30.8.30 CIM_IndicationFilter (Storage Pool Creation)
	30.8.31 CIM_IndicationFilter (Storage Pool Deletion)
	30.8.32 CIM_IndicationFilter (Storage Pool TotalManagedSpace)
	30.8.33 CIM_IndicationFilter (Storage Volume Creation)
	30.8.34 CIM_IndicationFilter (Storage Volume Deletion)
	30.8.35 CIM_IndicationFilter (Storage Volume OperationalStatus)
	30.8.36 CIM_IndicationFilter (Thin Provisioning Critical)
	30.8.37 CIM_IndicationFilter (Thin Provisioning Threshold Cleared)
	30.8.38 CIM_IndicationFilter (Thin Provisioning Warning)
	30.8.39 CIM_IndicationFilter (WQL Logical Disk OperationalStatus)
	30.8.40 CIM_IndicationFilter (WQL Storage Volume OperationalStatus)
	30.8.41 CIM_LogicalDisk
	30.8.42 CIM_MemberOfCollection (Block Services Filter Collection to FilterCollection)
	30.8.43 CIM_MemberOfCollection (Block Services ProfileSpecificLifecycleIndicationFilterCollection to Block Services Filters)
	30.8.44 CIM_MemberOfCollection (Predefined Filter Collection to Block Services Filters)
	30.8.45 CIM_MemberOfCollection (Predefined Filter Collection to Thin Provisioning Filters)
	30.8.46 CIM_MemberOfCollection (Thin Provisioning Filter Collection to FilterCollection)
	30.8.47 CIM_MemberOfCollection (Thin Provisioning ProfileSpecificAlertIndicationFilterCollection to Thin Provisioning Filters)
	30.8.48 CIM_OwningJobElement
	30.8.49 CIM_StorageCapabilities
	30.8.50 CIM_StorageConfigurationCapabilities (Concrete)
	30.8.51 CIM_StorageConfigurationCapabilities (Global)
	30.8.52 CIM_StorageConfigurationCapabilities (Primordial)
	30.8.53 CIM_StorageConfigurationService
	30.8.54 CIM_StoragePool (Concrete)
	30.8.55 CIM_StoragePool (Empty)
	30.8.56 CIM_StoragePool (Primordial)
	30.8.57 CIM_StorageSetting
	30.8.58 CIM_StorageSettingWithHints
	30.8.59 CIM_StorageSettingsAssociatedToCapabilities
	30.8.60 CIM_StorageSettingsGeneratedFromCapabilities
	30.8.61 CIM_StorageVolume
	30.8.62 CIM_SystemDevice (System to StorageVolume or LogicalDisk)

	31 Automated Storage Tiering Profile
	31.1 Description
	31.1.1 Synopsis
	31.1.2 Supported Profiles, Subprofiles, and Packages
	31.1.3 Overview
	31.1.4 Key Components
	31.1.5 Automated Storage Tiering Discovery
	31.1.6 Storage Tiers
	31.1.7 StorageTier and StoragePool
	31.1.8 TierDomain
	31.1.9 Support for Sub-LUN tiering
	31.1.10 Storage Tiering Capabilities

	31.2 Methods of the Profile
	31.2.1 CreateStorageTier
	31.2.2 DeleteStorageTier
	31.2.3 AddToStorageTier
	31.2.4 RemoveFromStorageTier
	31.2.5 CreateTierDomain
	31.2.6 DeleteTierDomain
	31.2.7 ModifyStorageTierDomainAssociation
	31.2.8 GetStorageTierCandidateObjects
	31.2.9 RequestDataMovementStateChange

	31.3 Client Considerations and Recipes
	31.3.1 Automated Storage Tiering
	31.3.2 Creating StorageVolumes with Storage Tiering

	31.4 CIM Elements
	31.4.1 CIM_AdvancedStorageSetting
	31.4.2 CIM_AssociatedElementTier
	31.4.3 CIM_AssociatedResourcePool
	31.4.4 CIM_ConcreteDependency (TierDomain to StorageTier)
	31.4.5 CIM_ElementCapabilities
	31.4.6 CIM_HostedService
	31.4.7 CIM_MemberOfCollection (Identifies StorageExtents comprising a tier)
	31.4.8 CIM_MemberOfCollection (Identifies StoragePools comprising a tier)
	31.4.9 CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier)
	31.4.10 CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a tier)
	31.4.11 CIM_ServiceAffectsElement (Between TierService and StorageTier)
	31.4.12 CIM_ServiceAffectsElement (Between TierService and TierDomain)
	31.4.13 CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and TierSettingData)
	31.4.14 CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and TierSettingData)
	31.4.15 CIM_StorageTier
	31.4.16 CIM_StorageTierCapabilities
	31.4.17 CIM_StorageVolume (Constituent)
	31.4.18 CIM_StorageVolume (Regular)
	31.4.19 CIM_SystemComponent (TierDomain to ComputerSystem)
	31.4.20 CIM_TierDomain
	31.4.21 CIM_TierService
	31.4.22 CIM_TierServiceCapabilities
	31.4.23 CIM_TierSettingData

	Clause 32: Automated Storage Tiering Policy Profile
	32.1 Synopsis
	32.2 Description
	32.2.1 Policies
	32.2.2 Key Components

	32.3 Implementation
	32.3.1 Automated Storage Tiering Policy Discovery
	32.3.2 Time Period
	32.3.3 PolicyTimePeriodCondition
	32.3.4 ManagedElements Subject to Tiering
	32.3.5 Tiering Policy Capabilities
	32.3.6 Health and Fault Management Consideration

	32.4 Methods
	32.4.1 CreateStorageTierPolicyRule
	32.4.2 DeleteStorageTierPolicyRule
	32.4.3 ModifyStorageTierPolicyRule

	32.5 Use Cases
	32.5.1 Use Case -- Is Storage Tiering Policy is supported ?

	32.6 CIM Elements
	32.6.1 CIM_AdvancedStorageSetting
	32.6.2 CIM_AssociatedElementTier
	32.6.3 CIM_AssociatedResourcePool
	32.6.4 CIM_AssociatedTierPolicy
	32.6.5 CIM_ConcreteDependency (TierDomain to StorageTier)
	32.6.6 CIM_ElementCapabilities
	32.6.7 CIM_ElementSettingData
	32.6.8 CIM_HostedService
	32.6.9 CIM_MemberOfCollection (Identifies StorageExtents comprising a tier)
	32.6.10 CIM_MemberOfCollection (Identifies StoragePools comprising a tier)
	32.6.11 CIM_MemberOfCollection (Identifies StorageVolumes comprising a tier)
	32.6.12 CIM_MemberOfCollection (Identifies primordial StorageExtents comprising a tier)
	32.6.13 CIM_PolicySetValidityPeriod
	32.6.14 CIM_PolicyTimePeriodCondition
	32.6.15 CIM_ServiceAffectsElement (Between TierPolicyService and TierPolicyRule)
	32.6.16 CIM_ServiceAffectsElement (Between TierService and StorageTier)
	32.6.17 CIM_ServiceAffectsElement (Between TierService and TierDomain)
	32.6.18 CIM_SettingsDefineCapabilities (Between StorageTierCapabilities and TierSettingData)
	32.6.19 CIM_SettingsDefineCapabilities (Between TierServiceCapabilities and TierSettingData)
	32.6.20 CIM_StorageTier
	32.6.21 CIM_StorageTierCapabilities
	32.6.22 CIM_StorageVolume (Constituent)
	32.6.23 CIM_StorageVolume (Regular)
	32.6.24 CIM_SystemComponent (TierDomain to ComputerSystem)
	32.6.25 CIM_TierDomain
	32.6.26 CIM_TierPolicyRule
	32.6.27 CIM_TierPolicyService
	32.6.28 CIM_TierPolicyServiceCapabilities
	32.6.29 CIM_TierPolicySetAppliesToElement
	32.6.30 CIM_TierPolicySettingData

	Annex A (informative) SMI-S Information Model
	Annex B (informative) Registry of StorageExtent Definitions
	B.1 ExtentDiscriminator Definitions
	B.2 Association Significance of the Various Extent Definitions
	B.2.1 StorageExtent (Intermediate)
	B.2.2 StorageExtent (Pool Component)
	B.2.3 CompositeExtent (Composite Intermediate)
	B.2.4 CompositeExtent (Composite Pool Component)
	B.2.5 StorageExtent (Remaining)
	B.2.6 StorageExtent (Primordial Disk Drive Extent)
	B.2.7 StorageExtent (Imported Extents)
	B.2.8 StorageExtent (Spare)
	B.2.9 StorageVolume (Allocated)
	B.2.10 LogicalDisk (Allocated)
	B.2.11 StorageVolume (Pool Component)
	B.2.12 StorageVolume (Shadow)
	B.2.13 LogicalDisk (Shadow)

	B.3 Example Valid Combinations of Extent Definitions
	B.4 Combinations of Extent Definitions not defined in this Release of the Standard

