
Storage Management Technical Specification,
Part 5 Filesystems

Version 1.6.1, Revision 6

Abstract: This SNIA Technical Position defines an interface between WBEM-capable clients and
servers for the secure, extensible, and interoperable management of networked storage.

This document has been released and approved by the SNIA. The SNIA believes that the
ideas, methodologies and technologies described in this document accurately represent
the SNIA goals and are appropriate for widespread distribution. Suggestions for revision
should be directed to http://www.snia.org/feedback/.

SNIA Technical Position

November 30, 2016

Revision History

Revision 1
Date

 25 May 2012

SCRs Incorporated and other changes
File Export Manipulation Subprofile (SMIS-160-Addenda-Draft-SCR00008)
 - Updated the File Export Manipulation Profile CIM Elements Tables to support SMB 2.2
File Server Manipulation Subprofile (SMIS-160-Addenda-Draft-SCR00009)
 - Updated the File Server Manipulation Profile CIM Elements Tables to support SMB 2.2
Filesystem Performance Profile (SMIS-160-Addenda-Draft-SCR00007)
 - Updated Filesystem Performance Profile to support additional metrics and a Session ElementType

Revision 2
Date

 27 August 2013

SCRs Incorporated and other changes
Filesystems part number changed to Part 5, per ISO request change re SMI-S 1.5
Filesystem Performance Profile
 - Rolled forward Updates per SMIS-150-Errata-SCR0004: Clarify Indications in the Switch Profile
Filesystem Quotas Profile
 - Rolled forward Updates per SMIS-150-Errata-SCR00047: Fix Filesystem Quotas mof problems
File Server Manipulation
 - Rolled forward updates per SMIS-150-Errata-SCR00046: Fix File Server Manipulation mof problems and
SMIS-150-Errata-SCR00050: NAS Network Port & File Server Manipulation fixes for iSCSI
 - Updated per SMIS-160-Addenda-Draft-SCR00021: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation
profiles.
File Export Manipulation
 - Rolled forward updates per SMIS-150-Errata-SCR00048: Clarified that CIM_FileShare subclasses,
Clarified that CIM_FileShare subclasses, Fixed the CreateExportedShare and ModifyExportedShare
methods to match the "fixed" mof for SNIA_FileExportService, Removed SNIA classes (SNIA_FileShare,
SNIA_HostedShare and SNIA_SharedElement).
Filesystem Manipulation
 - Updated per SMIS-160-Addenda-Draft-SCR00021: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation
profiles.
Filesystem Replication Services Profile
 - Added this new profile per SMIS-160-Addenda-Draft-SCR00022: Add FileSystem Replication Services
to 1.6.1
FileSystems
 - Updated per SMIS-160-Addenda-Draft-SCR00021.00: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation
profiles.
2

 File Export
 - Updated per SMIS-160-Addenda-Draft-SCR00021.00: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation
profiles.
NAS Network Port
 - Rolled forward updates per SMIS-150-Errata-SCR00050: NAS Network Port & File Server Manipulation
fixes for iSCSI
References
 - Updated per SMIS-160-Addenda-Draft-SCR00021.001: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation
profiles.

Comments
Editorial notes and DRAFT material are displayed.

Revision 3
Date

4 December 2013

SCRs Incorporated and other changes
File Export
- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (a): Element Naming.
- Specialized SAPAvailableForFileShare for efficient enumerations per SMIS-160-Addenda-Experimental-
SCR00023, Replaced SAPAvailableForElement with SAP_AvailableForFileShare.

File Export Manipulation Subprofile
- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (a): Element Naming,
GetElementNameCapabilities.
- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (c): Modeling for
FileShare Access Control List, FileExportService.AssignPrivilegeToFileShare.
- Specialized SAPAvailableForFileShare for efficient enumerations per SMIS-160-Addenda-Experimental-
SCR00023, Replaced SAPAvailableForElement with SAP_AvailableForFileShare.

Filesystem Profile
- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (a):
ElementCapabilities association, Element Naming.

Filesystem Manipulation Subprofile
- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (a): Element Naming,
FileSystemCapabilities.GetElementNameCapabilities.

FileSystem Replication Services Profile
- Promoted the profile from Draft to Experimental per SMIS-160-Addenda-Draft-SCR00022.

NAS Network Port
- Specialized SAPAvailableForFileShare for efficient enumerations per SMIS-160-Addenda-Experimental-
SCR00023, Replaced SAPAvailableForElement with SAP_AvailableForFileShare.

Comments
Editorial notes are displayed.

DRAFT material is hidden.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 3

Revision 4
Date

25 February, 2014

SCRs Incorporated and other changes
None

Comments
Editorial notes and DRAFT material are hidden.

Revision 5
Date

11 August 2014

SCRs Incorporated and other changes
Filesystem Copy Services Profile
- Removed per SMIS-150-Errata-SCR00045

Remote Filesystem Copy Services
- Removed per SMIS-150-Errata-SCR00045

Annex: SMI-S Information Model
- CIM version updated to V2.41 per TSG ballot -- Correct CIM Schema Version in SMI-S.

Comments
Editorial notes and DRAFT material are hidden.

Revision 6
Date

11 October 2016

SCRs Incorporated and other changes
Filesystem Profile
- Per Mantis 4371, two recipes were removed: 8.6.7 Get the FileShares and shared File path of this
 FileSystem on all File Servers and 8.6.8 Get the FileShares and shared File path of this FileSystem
 on the specified FileServer.

Comments
Editorial notes and DRAFT material are hidden.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage
Management Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/
4

1

2
3
4

5

6
7
8
9

10

11

12
13

14
15
16
17

18

19
20
21
22
23
24

25
26
27
28

29
30
31
32

33
34
35
36

37

38

39
40
41
42
43
44
45
USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no altera-
tion, and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License

Copyright (c) 2014-2016, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 5

46
47
48
49
50
51
52

53
54
55
56
57
58

59

60
61
62
63
64
65
66
67
68
69

70

71
72
73
74
75
DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2016 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed
Management Task Force (DMTF). The CIM classes that are documented have been developed and
reviewed by both the SNIA and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.
6

76
77

78

79
80
81
82
83
84
85
86
87

88

89
90
91
92
93
94
95
96
97
98
99

100
101

102

103
104
105
INTENDED AUDIENCE
This document is intended for use by individuals and companies engaged in developing, deploying, and
promoting interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA)
organization.

CHANGES TO THE SPECIFICATION
Each publication of this specification is uniquely identified by a three-level identifier, comprised of a
version number, a release number and an update number. The current identifier for this specification is
version 1.2.0. Future publications of this specification are subject to specific constraints on the scope of
change that is permissible from one publication to the next and the degree of interoperability and
backward compatibility that should be assumed between products designed to different publications of
this standard. The SNIA has defined three levels of change to a specification:

• Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x.x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

• Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of
the specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

• Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.x.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

Maturity Level
In addition to informative and normative content, this specification includes guidance about the maturity
of emerging material that has completed a rigorous design review but has limited implementation in
commercial products. This material is clearly delineated as described in the following sections. The
typographical convention is intended to provide a sense of the maturity of the affected material, without
altering its normative content. By recognizing the relative maturity of different sections of the standard, an
implementer should be able to make more informed decisions about the adoption and deployment of
different portions of the standard in a commercial product.

This specification has been structured to convey both the formal requirements and assumptions of the
SMI-S API and its emerging implementation and deployment lifecycle. Over time, the intent is that all
content in the specification will represent a mature and stable design, be verified by extensive
implementation experience, assure consistent support for backward compatibility, and rely solely on
content material that has reached a similar level of maturity. Unless explicitly labeled with one of the
subordinate maturity levels defined for this specification, content is assumed to satisfy these
requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three
subordinate levels of implementation maturity that identify important aspects of the content’s increasing
maturity and stability. Each subordinate maturity level is defined by its level of implementation
experience, its stability and its reliance on other emerging standards. Each subordinate maturity level is
identified by a unique typographical tagging convention that clearly distinguishes content at one maturity
model from content at another level.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 7

106
107
108
109
110
111

112
113
114

115

116
117
118
119
120

121

122
123
124

125

126
127
128

129
130
131
Experimental Maturity Level
No material is included in this specification unless its initial architecture has been completed and
reviewed. Some content included in this specification has complete and reviewed design, but lacks
implementation experience and the maturity gained through implementation experience. This content is
included in order to gain wider review and to gain implementation experience. This material is referred to
as “Experimental”. It is presented here as an aid to implementers who are interested in likely future
developments within the SMI specification. The contents of an Experimental profile may change as
implementation experience is gained. There is a high likelihood that the changed content will be included
in an upcoming revision of the specification. Experimental material can advance to a higher maturity level
as soon as implementations are available. Figure 1 is a sample of the typographical convention for
Experimental content.

Implemented Maturity Level
Profiles for which initial implementations have been completed are classified as “Implemented”. This
indicates that at least two different vendors have implemented the profile, including at least one provider
implementation. At this maturity level, the underlying architecture and modeling are stable, and changes
in future revisions will be limited to the correction of deficiencies identified through additional
implementation experience. Should the material become obsolete in the future, it must be deprecated in a
minor revision of the specification prior to its removal from subsequent releases. Figure 2 is a sample of
the typographical convention for Implemented content.

Stable Maturity Level
Once content at the Implemented maturity level has garnered additional implementation experience, it
can be tagged at the Stable maturity level. Material at this maturity level has been implemented by three
different vendors, including both a provider and a client. Should material that has reached this maturity
level become obsolete, it may only be deprecated as part of a minor revision to the specification. Material
at this maturity level that has been deprecated may only be removed from the specification as part of a
major revision. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. As a result, Profiles at or above the Stable
maturity level shall not rely on any content that is Experimental. Figure 3 is a sample of the typographical
convention for Implemented content

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

IMPLEMENTED

Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag
8

.

Finalized Maturity Level
Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying
the requirements for the Stable maturity level, content at the Finalized maturity level must solely depend
upon or refine material that has also reached the Finalized level. If specification content depends upon
material that is not under the control of the SNIA, and therefore not subject to its maturity level
definitions, then the external content is evaluated by the SNIA to assure that it has achieved a
comparable level of completion, stability, and implementation experience. Should material that has
reached this maturity level become obsolete, it may only be deprecated as part of a major revision to the
specification. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. Over time, it is hoped that all specification
content will attain this maturity level. Accordingly, there is no special typographical convention, as there is
with the other, subordinate maturity levels. Unless content in the specification is marked with one of the
typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material
Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections
identified as “Deprecated” contain material that is obsolete and not recommended for use in new
development efforts. Existing and new implementations may still use this material, but shall move to the
newer approach as soon as possible. The maturity level of the material being deprecated determines how
long it will continue to appear in the specification. Implemented content shall be retained at least until the
next revision of the specialization, while Stable and Finalized material shall be retained until the next
major revision of the specification. Providers shall implement the deprecated elements as long as it
appears in the specification in order to achieve backward compatibility. Clients may rely on deprecated
elements, but are encouraged to use non-deprecated alternatives when possible.

Deprecated sections are documented with a reference to the last published version to include the
deprecated section as normative material and to the section in the current specification with the
replacement. Figure 4 contains a sample of the typographical convention for deprecated content.

STABLE

Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

DEPRECATED

Content that has been deprecated appears here.

DEPRECATED

Figure 4 - Deprecated Tag
SMI-S 1.6.1 Revision 6 SNIA Technical Position 9

10

Contents
Revision History ... 2
List of Figures .. 15
List of Tables.. 17
Foreword.. 27
1 Scope .. 29
2 Normative References... 31

2.1 General ... 31
2.2 Approved references... 31
2.3 References under development .. 31
2.4 Other references ... 31

3 Definitions, Symbols, Abbreviations, and Conventions ... 33
3.1 General ... 33
3.2 Definitions ... 33

4 File Export Profile .. 35
4.1 Description .. 35
4.2 Health and Fault Management Consideration... 38
4.3 Cascading Considerations .. 38
4.4 Supported Profiles, Subprofiles, and Packages.. 38
4.5 Methods of the Profile ... 38
4.6 Client Considerations and Recipes ... 38
4.7 CIM Elements.. 39

5 File Export Manipulation Subprofile... 47
5.1 Description .. 47
5.2 Health and Fault Management Considerations... 53
5.3 Cascading Considerations .. 55
5.4 Supported Subprofiles and Packages... 55
5.5 Methods of the Profile ... 56
5.6 Client Considerations and Recipes ... 69
5.7 CIM Elements.. 80

6 File Server Manipulation Subprofile... 97
6.1 Synopsis.. 97
6.2 Description .. 97
6.3 Supported Profiles, Subprofiles, and Packages.. 103
6.4 Methods of the Profile ... 104
6.5 Client Considerations and Recipes ... 112
6.6 Registered Name and Version .. 112
6.7 CIM Elements.. 112

7 File Storage Profile .. 129
7.1 Description .. 129
7.2 Health and Fault Management Consideration... 130
7.3 Cascading Considerations .. 130
7.4 Supported Profiles, Subprofiles, and Packages.. 132
7.5 Methods of the Profile ... 132
7.6 Client Considerations and Recipes ... 133
7.7 CIM Elements.. 133

8 Filesystem Profile .. 135
8.1 Description .. 135
8.2 Health and Fault Management Consideration... 138
SMI-S 1.6.1 Revision 6 SNIA Technical Position 11

8.3 Cascading Considerations .. 139
8.4 Supported Profiles, Subprofiles, and Packages.. 139
8.5 Methods of the Profile ... 139
8.6 Client Considerations: Use Cases .. 140
8.7 CIM Elements.. 147

9 Filesystem Manipulation Subprofile... 159
9.1 Description .. 159
9.2 Health and Fault Management Considerations... 166
9.3 Cascading Considerations .. 167
9.4 Supported Subprofiles and Packages... 167
9.5 Methods of the Profile ... 168
9.6 Client Considerations and Recipes ... 186
9.7 CIM Elements.. 206

10 Filesystem Performance Profile... 231
10.1 Synopsis.. 231
10.2 Description .. 231
10.3 Implementation.. 233
10.4 Methods of the Profile ... 237
10.5 Use Cases... 242
10.6 CIM Elements.. 246

11 Filesystem Quotas Profile.. 275
11.1 Synopsis.. 275
11.2 Description .. 275
11.3 Health and Fault Management Considerations... 279
11.4 Supported Profiles, Subprofiles, and Packages.. 279
11.5 Methods of the Profile ... 279
11.6 Client Considerations and sample code.. 281
11.7 CIM Elements.. 288

12 NAS Head Profile .. 295
12.1 Description .. 295
12.2 Health and Fault Management Considerations... 305
12.3 Cascading Considerations .. 306
12.4 Supported Subprofiles and Packages... 306
12.5 Methods of the Profile ... 306
12.6 Client Considerations and Recipes ... 307
12.7 CIM Elements.. 307

13 Self-Contained NAS Profile ... 323
13.1 Description .. 323
13.2 Health and Fault Management Considerations... 331
13.3 Cascading Considerations .. 332
13.4 Supported Subprofiles and Packages... 332
13.5 Methods of the Profile ... 332
13.6 Client Considerations and Recipes ... 333
13.7 CIM Elements.. 333

14 NAS Network Port Profile .. 345
14.1 Synopsis.. 345
14.2 Description .. 345
14.3 Implementation.. 345
14.4 Health and Fault Management Considerations... 350
14.5 Cascading Considerations .. 351
12

14.6 Methods .. 351
14.7 Use Cases... 352
14.8 CIM Elements.. 352

15 Host Filesystem Profile.. 367
15.1 Synopsis.. 367
15.2 Description .. 368
15.3 Implementation.. 370
15.4 Methods of the Profile ... 373
15.5 Client Considerations and Recipes ... 374
15.6 CIM Elements.. 378

16 FileSystem Replication Services Profile .. 397
16.1 Synopsis.. 397
16.2 Description .. 397
16.3 Implementation.. 413
16.4 Methods .. 415
16.5 Use Cases... 447
16.6 CIM Elements.. 448

Annex A (informative) SMI-S Information Model.. 475
Annex B (Informative) State Transitions from Storage to File Shares ... 477
SMI-S 1.6.1 Revision 6 SNIA Technical Position 13

14

List of Figures

Figure 1 - Experimental Maturity Level Tag ... 8
Figure 2 - Implemented Maturity Level Tag ... 8
Figure 3 - Stable Maturity Level Tag.. 9
Figure 4 - Deprecated Tag... 9
Figure 5 - File Export Instance... 36
Figure 6 - File Export Manipulation Subprofile Instance .. 49
Figure 7 - Capabilities and Settings for Exported File Share Creation... 52
Figure 8 - File Server Classes and Associations (Read only view).. 99
Figure 9 - File Server Configuration classes and association.. 101
Figure 10 - File Storage Instance... 130
Figure 11 - Cascading File Storage ... 131
Figure 12 - Filesystem Instance... 136
Figure 13 - LocalFileSystem Creation Instance Diagram... 160
Figure 14 - Capabilities and Settings for Filesystem Creation ... 165
Figure 15 - Filesystem Performance Subprofile Summary Instance Diagram 233
Figure 16 - Filesystem Quotas Instance Diagram.. 278
Figure 17 - NAS Head Profiles and Subprofiles... 297
Figure 18 - NAS Head Instance ... 298
Figure 19 - NAS Storage Instance ... 300
Figure 20 - NAS Head Cascading Support Instance.. 302
Figure 21 - Self-Contained NAS Profile and Subprofiles ... 325
Figure 22 - Self-Contained NAS Instance.. 326
Figure 23 - NAS Storage Instance ... 328
Figure 24 - NAS Support for Front-end Network Ports .. 346
Figure 25 - Optional NAS TCP Interface Modeling .. 347
Figure 26 - Mandatory NAS Ethernet Port Modeling.. 348
Figure 27 - Host Filesystem Profiles, Subprofiles and Package .. 369
Figure 28 - Host Filesystem Instance Diagram.. 370
Figure 29 - Host Filesystem support for Cascading... 372
Figure 30 - Replication Service Discovery ... 399
Figure 31 - I Local File System Replication.. 401
Figure 32 - Remote File System Replication.. 402
Figure 33 - Group Instance Diagram.. 403
Figure 34 - Associated Group and Elements ... 404
Figure 35 - One-to-Many Association .. 405
Figure 36 - Sample CopyState and ProgressStatus Transitions.. 408
Figure 37 - Local Replication with ReplicationEntity .. 409
Figure 38 - Remote replication with ReplicationEntity.. 410
Figure 39 - Multi-Hop Replication... 410
Figure 40 - SettingDefineState... 411
Figure 41 - SynchronizationAspect Instance Diagram... 412
Figure 42 - FileSystem Replication Service support for Cascading... 414
Figure 43 - Cascading and Replication Groups ... 415
SMI-S 1.6.1 Revision 6 SNIA Technical Position 15

Figure B.1 State Transitions From LogicalDisk to FileShare ... 478
16

List of Tables

Table 1 - Related Profiles for File Export ... 35
Table 2 - FileShare OperationalStatus .. 38
Table 3 - CIM Elements for File Export.. 39
Table 4 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share).............................. 40
Table 5 - SMI Referenced Properties/Methods for CIM_ConcreteDependency.. 40
Table 6 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-

bilities to FileShare) .. 41
Table 7 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare) 41
Table 8 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (FileShare)........ 41
Table 9 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting) 42
Table 10 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share) 43
Table 11 - SMI Referenced Properties/Methods for CIM_FileShareSettingData (FileShare).............................. 44
Table 12 - SMI Referenced Properties/Methods for CIM_HostedShare.. 44
Table 13 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)............................... 44
Table 14 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare .. 45
Table 15 - SMI Referenced Properties/Methods for CIM_SharedElement.. 45
Table 16 - Related Profiles for File Export Manipulation ... 47
Table 17 - Operational Status for FileExport Service .. 54
Table 18 - Operational Status for File Server ComputerSystem ... 54
Table 19 - FileExportManipulation Methods .. 56
Table 20 - Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings 58
Table 21 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare 60
Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare 63
Table 23 - Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare 66
Table 24 - SMI-S File Export Supported Capabilities Patterns.. 80
Table 25 - CIM Elements for File Export Manipulation .. 80
Table 26 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share).............................. 83
Table 27 - SMI Referenced Properties/Methods for CIM_ConcreteDependency.. 83
Table 28 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration) 84
Table 29 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting).................... 84
Table 30 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share) 84
Table 31 - SMI Referenced Properties/Methods for CIM_FileStorage (Subelement).. 85
Table 32 - SMI Referenced Properties/Methods for CIM_HostedService ... 86
Table 33 - SMI Referenced Properties/Methods for CIM_HostedShare.. 86
Table 34 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement) ... 86
Table 35 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)............................... 87
Table 36 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare .. 88
Table 37 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement .. 88
Table 38 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)................... 88
Table 39 - SMI Referenced Properties/Methods for CIM_SharedElement.. 89
Table 40 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities) 89
Table 41 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES Capabilities)... 90
Table 42 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting) 91
Table 43 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined).................. 92
Table 44 - SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configuration) 94
Table 45 - SMI Referenced Properties/Methods for SNIA_FileExportService... 95
Table 46 - Operational Status for File Server ComputerSystem ... 103
Table 47 - Supported Profiles for File Server Manipulation ... 103
SMI-S 1.6.1 Revision 6 SNIA Technical Position 17

Table 48 - Array Element Mappings for TemplateGoalSettings and SupportedGoalSettings 105
Table 49 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings.................................. 105
Table 50 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer 106
Table 51 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer........................ 108
Table 52 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer........................ 109
Table 53 - Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface........................... 110
Table 54 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyIPInterface....................... 110
Table 55 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteIPInterface....................... 111
Table 56 - CIM Elements for File Server Manipulation .. 112
Table 57 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to CIFS-

SettingData).. 114
Table 58 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to DNS-

SettingData).. 115
Table 59 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to IPInter-

faceSettingData)... 115
Table 60 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NFS-

SettingData).. 115
Table 61 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NIS-

SettingData).. 116
Table 62 - SMI Referenced Properties/Methods for CIM_DNSSettingData .. 116
Table 63 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-

vice to FileServerCapabilities) .. 116
Table 64 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-

vice to FileServerConfigurationCapabilities)... 117
Table 65 - SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem FileServer

to FileServerSettings) ... 117
Table 66 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to IP-

ProtocolEndpoint) ... 118
Table 67 - SMI Referenced Properties/Methods for CIM_HostedDependency ... 118
Table 68 - SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer System to File-

ServerConfigurationService) .. 118
Table 69 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to

NetworkVLAN.)... 119
Table 70 - SMI Referenced Properties/Methods for CIM_NetworkVLAN .. 119
Table 71 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSettingData)........... 120
Table 72 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSettingData) 120
Table 73 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServerSettings) 120
Table 74 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceSettingData)121
Table 75 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSettingData) 121
Table 76 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSettingData)........... 121
Table 77 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem FileServer

to FileServerSettings) ... 122
Table 78 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData.. 122
Table 79 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities.. 123
Table 80 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities 124
Table 81 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationService 125
Table 82 - SMI Referenced Properties/Methods for SNIA_FileServerSettings ... 126
Table 83 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData... 126
Table 84 - SMI Referenced Properties/Methods for SNIA_NFSSettingData... 127
Table 85 - SMI Referenced Properties/Methods for SNIA_NISSettingData .. 128
Table 86 - Cascaded Storage.. 132
18

Table 87 - CIM Elements for File Storage ... 133
Table 88 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent... 133
Table 89 - Related Profiles for Filesystem... 135
Table 90 - Filesystem OperationalStatus... 138
Table 91 - CIM Elements for Filesystem.. 147
Table 92 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From) 148
Table 93 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-

bilities to LocalFileSystem) ... 149
Table 94 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem) 149
Table 95 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)......... 149
Table 96 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (LocalFileSys-

tem) .. 150
Table 97 - SMI Referenced Properties/Methods for CIM_FileStorage .. 150
Table 98 - SMI Referenced Properties/Methods for CIM_FileSystemSetting.. 151
Table 99 - SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required) 152
Table 100 - SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)..................... 152
Table 101 - SMI Referenced Properties/Methods for CIM_LocalFileSystem ... 152
Table 102 - SMI Referenced Properties/Methods for CIM_LogicalFile... 154
Table 103 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable ... 154
Table 104 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem.. 155
Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting..................... 155
Table 106 - Related Profiles for Filesystem Manipulation... 159
Table 107 - LocalFileSystem OperationalStatus... 166
Table 108 - Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification 168
Table 109 - Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings................................ 170
Table 110 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize 171
Table 111 - Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettings ... 174
Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem 177
Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem 182
Table 114 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem.................... 185
Table 115 - Filesystem Manipulation Supported Capabilities Patterns... 206
Table 116 - CIM Elements for Filesystem Manipulation ... 206
Table 117 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From) 209
Table 118 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

ties)... 209
Table 119 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration

Capabilities).. 210
Table 120 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default) 210
Table 121 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem) 211
Table 122 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)........ 211
Table 123 - SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)....... 211
Table 124 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabilities)........ 212
Table 125 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting) 212
Table 126 - SMI Referenced Properties/Methods for CIM_HostedFileSystem... 212
Table 127 - SMI Referenced Properties/Methods for CIM_HostedService .. 213
Table 128 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined FS Set-

tings)... 213
Table 129 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined Local Ac-

cess Settings) ... 214
Table 130 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (Default) 214
SMI-S 1.6.1 Revision 6 SNIA Technical Position 19

Table 131 - SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities.. 215
Table 132 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities 215
Table 133 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService........................... 218
Table 134 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)......... 218
Table 135 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Settings)......... 220
Table 136 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable ... 221
Table 137 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem.. 222
Table 138 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities 223
Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting..................... 225
Table 140 - Related Profiles for Filesystem Performance .. 231
Table 141 - Summary of Element Types by Profile .. 235
Table 142 - Creation, Deletion and Modification Methods in the Filesystem Performance Subprofile 237
Table 143 - Summary of Statistics Support by Element ... 242
Table 144 - Formulas and Calculations - Calculated Statistics for a Time Interval... 244
Table 145 - Filesystem Performance Subprofile Supported Capabilities Patterns ... 245
Table 146 - CIM Elements for Filesystem Performance ... 246
Table 147 - SMI Referenced Properties/Methods for CIM_AssociatedFileSystemStatisticsManifestCollection

(Client defined collection) ... 248
Table 148 - SMI Referenced Properties/Methods for CIM_AssociatedFileSystemStatisticsManifestCollection

(Provider defined collection) ... 249
Table 149 - SMI Referenced Properties/Methods for CIM_ElementCapabilities .. 249
Table 150 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File Share

Stats) .. 250
Table 151 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port Stats) 250
Table 152 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesystem Stats) 251
Table 153 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element Type

Stats) .. 251
Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData 252
Table 155 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsCapabilities 258
Table 156 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined) 259
Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support).... 261
Table 158 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Client De-

fined)... 264
Table 159 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Provider

Defined) .. 264
Table 160 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsService.................................... 265
Table 161 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)........................... 267
Table 162 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)...................................... 267
Table 163 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)..................... 268
Table 164 - SMI Referenced Properties/Methods for CIM_HostedService .. 268
Table 165 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined

collection) ... 268
Table 166 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of predefined col-

lection) .. 269
Table 167 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-

tion)... 269
Table 168 - SMI Referenced Properties/Methods for CIM_StatisticsCollection.. 270
Table 169 - Related Profiles for FileSystem Quotas... 275
Table 170 - CIM Elements for FileSystem Quotas.. 288
Table 171 - SMI Referenced Properties/Methods for SNIA_FSDomainIdentity ... 289
Table 172 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement 289
20

Table 173 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal.................................. 289
Table 174 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree .. 290
Table 175 - SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities ... 290
Table 176 - SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry... 291
Table 177 - SMI Referenced Properties/Methods for SNIA_FSQuotaIndication .. 291
Table 178 - SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService............................... 292
Table 179 - SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord ... 293
Table 180 - Related Profiles for NAS Head .. 295
Table 181 - InstModification Events for ComputerSystem.. 303
Table 182 - InstModification Events for LogicalDisk ... 304
Table 183 - Bellwether AlertIndication Events for ComputerSystem .. 304
Table 184 - Bellwether AlertIndication Events for LogicalDisk.. 305
Table 185 - Standard Messages used by NAS Head ... 305
Table 186 - CIM Elements for NAS Head... 307
Table 187 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System).................... 309
Table 188 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server) 310
Table 189 - SMI Referenced Properties/Methods for CIM_ConcreteComponent... 311
Table 190 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to

Service) .. 312
Table 191 - SMI Referenced Properties/Methods for CIM_FilterCollection (NAS Head Predefined FilterCol-

lection) .. 312
Table 192 - SMI Referenced Properties/Methods for CIM_HostedCollection (NAS Head to predefined Filter-

Collection)... 312
Table 193 - SMI Referenced Properties/Methods for CIM_HostedDependency .. 313
Table 194 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

bilities) .. 313
Table 195 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus

Bellwether Alert) ... 314
Table 196 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus)..... 315
Table 197 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bell-

wether Alert) ... 315
Table 198 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus) 316
Table 199 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)... 317
Table 200 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection

to NAS Head Filters)... 318
Table 201 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent) 319
Table 202 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks) 320
Table 203 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)............................ 321
Table 204 - Related Profiles for Self-contained NAS System... 323
Table 205 - InstModification Events for ComputerSystem.. 330
Table 206 - InstModification Events for LogicalDisk ... 330
Table 207 - Bellwether AlertIndication Events for ComputerSystem .. 331
Table 208 - Bellwether AlertIndication Events for LogicalDisk.. 331
Table 209 - Standard Messages used by NAS Head ... 332
Table 210 - CIM Elements for Self-contained NAS System.. 333
Table 211 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System).................... 335
Table 212 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server) 336
Table 213 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to

Service) .. 337
Table 214 - SMI Referenced Properties/Methods for CIM_FilterCollection (Self-contained NAS Predefined

FilterCollection)... 337
SMI-S 1.6.1 Revision 6 SNIA Technical Position 21

Table 215 - SMI Referenced Properties/Methods for CIM_HostedCollection (Self-contained NAS to pre-
defined FilterCollection).. 338

Table 216 - SMI Referenced Properties/Methods for CIM_HostedDependency .. 338
Table 217 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

bilities) .. 338
Table 218 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus

Bellwether Alert) ... 339
Table 219 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus)..... 340
Table 220 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bell-

wether Alert) ... 341
Table 221 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus) 342
Table 222 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS) .. 342
Table 223 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection

to Self-contained NAS Filters) .. 344
Table 224 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks) 344
Table 225 - Related Profiles for NAS Network Port .. 345
Table 226 - InstModification Events for NetworkPort.. 349
Table 227 - InstModification Events for ProtocolEndpoint .. 350
Table 228 - Bellwether AlertIndication Events for NetworkPort .. 350
Table 229 - NetworkPort OperationalStatus ... 351
Table 230 - ProtocolEndpoint OperationalStatus.. 351
Table 231 - Standard Messages used by NAS Head ... 351
Table 232 - CIM Elements for NAS Network Port... 352
Table 233 - SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)... 354
Table 234 - SMI Referenced Properties/Methods for CIM_BindsTo (TCP) .. 355
Table 235 - SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint ... 355
Table 236 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to Net-

workPort) .. 355
Table 237 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to Net-

workPort) .. 356
Table 238 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to IP-

ProtocolEndpoint) ... 356
Table 239 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)......................... 356
Table 240 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP).. 357
Table 241 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN) 357
Table 242 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP) 357
Table 243 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint ... 358
Table 244 - SMI Referenced Properties/Methods for CIM_LANEndpoint... 359
Table 245 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to

NetworkVLAN.)... 360
Table 246 - SMI Referenced Properties/Methods for CIM_NetworkPort .. 361
Table 247 - SMI Referenced Properties/Methods for CIM_NetworkVLAN ... 362
Table 248 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS) 363
Table 249 - SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)............................... 364
Table 250 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint ... 364
Table 251 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData.. 365
Table 252 - Related Profiles for Host Filesystem.. 367
Table 253 - Discovery of the Filesystem Volumes.. 374
Table 254 - Expansion of a Filesystem... 375
Table 255 - Replication of a Filesystem.. 375
Table 256 - Quiesce a Filesystem .. 376
22

Table 257 - Unquiesce a Filesystem... 376
Table 258 - Filesystem quiesce timeout ... 377
Table 259 - Retrieve File Information.. 377
Table 260 - CIM Elements for Host Filesystem .. 378
Table 261 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow).................................... 380
Table 262 - SMI Referenced Properties/Methods for CIM_Dependency (Systems) .. 381
Table 263 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

ties)... 381
Table 264 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to

Service) .. 382
Table 265 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (FilesystemConfigura-

tionService to Host Filesystem RegisteredProfile) ... 382
Table 266 - SMI Referenced Properties/Methods for CIM_FilterCollection (Host Filesystem Predefined Filter-

Collection)... 383
Table 267 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources) 383
Table 268 - SMI Referenced Properties/Methods for CIM_HostedCollection (Host Filesystem to predefined

FilterCollection)... 383
Table 269 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) 384
Table 270 - SMI Referenced Properties/Methods for CIM_HostedService .. 384
Table 271 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

bilities) .. 384
Table 272 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Extent OperationalStatus) 385
Table 273 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus) 386
Table 274 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Shadow) ... 387
Table 275 - SMI Referenced Properties/Methods for CIM_LogicalFile... 388
Table 276 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (LogicalDisk) 389
Table 277 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)........... 389
Table 278 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection

to Host Filesystem Filters) .. 390
Table 279 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)............. 390
Table 280 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow) 390
Table 281 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent.. 391
Table 282 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement 391
Table 283 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement.. 392
Table 284 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent) 392
Table 285 - SMI Referenced Properties/Methods for CIM_SystemDevice (LogicalDisks) 393
Table 286 - SMI Referenced Properties/Methods for SNIA_AllocatedResources .. 393
Table 287 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities 394
Table 288 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService........................... 394
Table 289 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem.. 395
Table 290 - SMI Referenced Properties/Methods for SNIA_RemoteResources .. 396
Table 291 - Related Profiles for Filesystem Replication Services .. 397
Table 292 - Key Components ... 398
Table 293 - Comparing SyncTypes .. 400
Table 294 - CopyStatus Values .. 406
Table 295 - Indications.. 413
Table 296 - Extrinsic Method for Group Management .. 416
Table 297 - Extrinsic Method for Replication Management .. 416
Table 298 - Extrinsic Method for Getting Supported Capabilities ... 417
Table 299 - Selected CreateElementReplica optional parameters .. 421
SMI-S 1.6.1 Revision 6 SNIA Technical Position 23

Table 300 - Selected CreateGroupReplica optional parameters .. 423
Table 301 - Selected CreateListReplica optional parameters... 425
Table 302 - SyncTypes... 435
Table 303 - Mode.. 435
Table 304 - Locality... 435
Table 305 - ReplicationTypes ... 435
Table 306 - Features... 436
Table 307 - Group Features.. 438
Table 308 - Consistency ... 439
Table 309 - Operations ... 439
Table 310 - Comparison of Similar Operations... 441
Table 311 - SettingsDefineState Operations .. 442
Table 312 - Thin Provisioning Features .. 443
Table 313 - Components .. 444
Table 314 - Default Consistency... 444
Table 315 - Default Group Persistency... 444
Table 316 - Copy Methodologies .. 445
Table 317 - Target Element Suppliers .. 446
Table 318 - ThinProvisioningPolicy... 446
Table 319 - Connection Features ... 447
Table 320 - Storage Compression Features... 447
Table 321 - CIM Elements for Filesystem Replication Services ... 448
Table 322 - SMI Referenced Properties/Methods for CIM_ElementCapabilities .. 452
Table 323 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities.............. 452
Table 324 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized .. 455
Table 325 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint) 458
Table 326 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-

Point) .. 459
Table 327 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources) 459
Table 328 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and

RemoteReplicationCollection) .. 459
Table 329 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and

ReplicationGroup)... 460
Table 330 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) 460
Table 331 - SMI Referenced Properties/Methods for CIM_HostedService .. 461
Table 332 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)........... 461
Table 333 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to Re-

moteReplicationCollection)... 461
Table 334 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)............. 462
Table 335 - SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection.................................. 462
Table 336 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint .. 462
Table 337 - SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection.................................. 463
Table 338 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint 464
Table 339 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage... 464
Table 340 - SMI Referenced Properties/Methods for CIM_ReplicationEntity ... 465
Table 341 - SMI Referenced Properties/Methods for CIM_ReplicationGroup .. 465
Table 342 - SMI Referenced Properties/Methods for CIM_ReplicationService .. 466
Table 343 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData ... 467
Table 344 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement 470
Table 345 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
24

vice and RemoteReplicationCollection).. 470
Table 346 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-

vice and ReplicationEntity) ... 471
Table 347 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-

vice and ReplicationGroup) .. 471
Table 348 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup

and SynchronizationAspect)... 471
Table 349 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and

SynchronizationAspect) .. 472
Table 350 - SMI Referenced Properties/Methods for CIM_SharedSecret.. 472
Table 351 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect ... 473
Table 352 - SMI Referenced Properties/Methods for SNIA_AllocatedResources .. 474
Table 353 - SMI Referenced Properties/Methods for SNIA_RemoteResources .. 474
SMI-S 1.6.1 Revision 6 SNIA Technical Position 25

26

1

2
3
4
5
6
7
8
9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24
25
26
Foreword

The Filesystems part of the Storage Management Technical Specification contains Profiles and other clauses
for management of devices and programs that support filesystems. A filesystem is a specific formatting of
storage for storing and accessing files on external storage. This part describes how filesystems are
created, modified and deleted, as well as how they can be found and reported. This part also describe
modeling for how filesystems are exported for access from remote systems. The filesystem profiles use
information from other parts of the Storage Management Technical Specifications. Specifically, they
reference profiles in the Common Profiles and the Block Devices parts of the specification. This part
describes how these profiles are used in filesystem profiles.

Parts of this Standard
This standard is subdivided in the following parts:

• Storage Management Technical Specification, Part 1 Overview, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 5 Filesystems, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 6 Fabric, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 7 Host Elements, 1.6.1 Rev 6

• Storage Management Technical Specification, Part 8 Media Libraries, 1.6.1 Rev 6

SNIA Web Site
Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address
Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage Networking
Industry Association, 4360 ArrowsWest Drive, Colorado Springs, Colorado 80907, U.S.A.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 27

28

1

2
3
4
5
6

7
8
9

10
11

12

13
14

15

16
17

18
19
20
21

22

23
24

25

26
27
28

29

30
31
32

33

34
35
36
37

38

39
40

41
1 Scope

The Filesystems part of the Storage Management Technical Specification defines management profiles for
Autonomous (top level) profiles for programs and devices whose central function is providing support and
access to file data. In addition, it provides documentation of component profiles (or subprofiles) that deal
with filesystems and management interface functions that may be used by other autonomous profiles not
included in this part of the specification.

There is an informative annex that describes how storage is mapped from block storage to file shares
exported by the filesystem and the mechanisms involved in that establishing those mappings. This annex
is recommended for getting an overview of how the filesystem models work.

This version of the Filesystems part of the Storage Management Technical Specification includes two
autonomous profiles:

• The NAS Head Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users and gets
its storage from a SAN (array devices attached to the NAS Head device).

• The Self-Contained NAS Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users, but gets
its storage from disk drives that are internal to the NAS device (instead of externally attached arrays).

In addition to these autonomous profiles, this part of the specification defines a number of component
profiles, which are used by the autonomous NAS profiles and might also be used by other autonomous
profiles that feature filesystem elements and services. The component profiles (subprofiles) defined in
this version of the specification include:

• The File Export (component) Profile

This component profile defines the elements used to model the exporting of filesystems or directories for any
autonomous profile that exports file data to remote systems.

• The File Export Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
the file shares (the representation of exported filesystems or directories) for any autonomous profile that
provides manipulation of exported filesystems or directories.

• The File Storage (component) Profile

This component profile defines the elements used to model the storage of filesystems on logical disks. This
profile does not have services for maintaining the mapping of filesystems to logical disks. These services are
addressed in the Filesystem Manipulation Profile.

• The Filesystem (component) Profile

This component profile defines the elements used to model filesystems and its related elements, such as
logical files, directories and information on how the filesystem is addressed when mounted to a specific
system. The services for defining and maintaining the information in the Filesystem Profile are contained in the
Filesystem Manipulation Profile.

• The Filesystem Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
filesystems and their related elements.

• The Filesystem Quotas (component) Profile
SMI-S 1.6.1 Revision 6 SNIA Technical Position 29

42
43
This component profile defines the elements used to model the elements associated with creating, maintaining
and reporting on quotas on various filesystem elements.
30

1

2

3

4
5
6

7

8

9

10

11

12

13

14

15

16
17
2 Normative References

2.1 General
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.2 Approved references
ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]

2.3 References under development
Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6

Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6

Storage Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

2.4 Other references
DMTF DSP0214:2004 CIM Operations over HTTP

DMTF DSP1034:2012, Simple Identity Management Profile 1.1.0
http://dmtf.org/sites/default/files/standards/documents/DSP1034_1.1.0.pdf
SMI-S 1.6.1 Revision 6 SNIA Technical Position 31

32

1

2

3
4

5

6

7

8

9

10

11

12

13
14

15

16

17

18
19

20

21

22

23
24

25

26
27

28

29
30

31

32

33

34

35

36
37
3 Definitions, Symbols, Abbreviations, and Conventions

3.1 General
For the purposes of this document, the definitions, symbols, abbreviations, and conventions given in
Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6 and the following apply.

3.2 Definitions
3.2.1
CIFS
Common Internet File System

3.2.2
Directory
A subtree within a filesystem

A directory may contain files or other directories.

3.2.3
File
A logical file in a filesystem

3.2.4
file server
a system configuration that supports the exporting of files and files systems

Note 1 to entry: A file server may be a virtual system element.

3.2.5
file share
sharing protocols applied to a directory. A directory is exported to remote users through a file share

3.2.6
filesystem
a filesystem in which files are named and placed logically for storage and retrieval

3.2.7
FS quota
a quota (hard or soft limit) placed on filesystem resource usage

3.2.8
logical disk
block storage on which filesystems are built

Note 1 to entry: A logical disk would be formatted for a particular filesystem.

3.2.9
NAS
Network Attached Storage

In the context of this specification this refers to devices that serve files to a network

3.2.10
NAS head
a NAS device that gets its physical storage from one or more arrays that are externally attached to the
NAS device

3.2.11
NFS
Network File System
SMI-S 1.6.1 Revision 6 SNIA Technical Position 33

3.2.12
Self-Contained NAS
a NAS device that has its own internal (to the NAS device) storage

3.2.13
quota
a hard or soft limit defined for users, user groups or resource collections on the amount of resources that
may be consumed
34

 File Export Profile

1

2

3

4

5

6

7

8

9

10

11

12
13
14
15

16
17

18

19
20
21
22
23
STABLE

4 File Export Profile

4.1 Description

4.1.1 Synopsis

Profile Name: File Export (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 354 describes the related profiles for File Export.

Central Class: CIM_FileShare

Scoping Class: CIM_ComputerSystem

4.1.2 Overview

The File Export Profile is a subprofile for autonomous profiles that support exporting of filesystems.
Specifically, in this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles. In
some of these autonomous profiles the File Export is required. In others it may not be. See the parent
profile to see if this profile is required or not.

EXPERIMENTAL

NOTE The ExportedFileShareSetting is defined as SNIA_ classes. While this is defined to hold new properties, the CIM version of
this class will be supported for backward compatibility.

EXPERIMENTAL

4.1.3 Implementation

Figure 5: "File Export Instance" illustrates the classes mandatory for modeling the export of File Shares
for the filesystem profiles. This profile is supported by the Self-contained NAS and the NAS Head
Profiles. Figure 5 shows the ComputerSystem that hosts the LocalFileSystem (“filesystem host”) as
different from the ComputerSystem hosting the FileShare (“File server”). While they may be different
ComputerSystems, they may also be the same ComputerSystem instance.

Table 354 - Related Profiles for File Export

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional
SMI-S 1.6.1 Revision 6 SNIA Technical Position 35

File Export Profile

24
25
26
27

28
29

30
31
The referencing profile shall model any File Shares that have been exported to the network. A File Share
shall be represented as a FileShare instance with associations to the ComputerSystem that hosts the
share (via HostedShare), to the ExportedFileShareSetting (via FileShareSettingData) and to the
ProtocolEndpoint (via ������������������������) through which the Share can be accessed.

NOTE In Figure 5 the FileShare shown is intended to represent a subclass of CIM_FileShare (e.g., CIFSShare or NFSShare). It is
not intended to imply that either should be represented by CIM_FileShare (which does not indicate the type of file share).

EXPERIMENTAL

The FileShare also has a SharedElement association to the LocalFileSystem on which the share is
based.

EXPERIMENTAL

Figure 5 - File Export Instance
36

 File Export Profile

32
33

34
35
36

37

38
39
40

41
42
43

44
45
46

47
48
49
50

51

52
53
54
55
56
57
EXPERIMENTAL

The FileShare may also have an ElementCapabilities association to an EnabledLogicalUnitCapabilities to
identify naming and requested state change capabilities.

EXPERIMENTAL

DEPRECATED

In addition, there may also be an association between the FileShare and the LogicalFile that the share
represents (via ConcreteDependency). This is provided for backward compatibility with previous releases
of the standard.

DEPRECATED

4.1.3.1 Associations to FileShare
The SAPAvailableForFileShare is a many to many association. That is, multiple FileShares may be
exported through the same ProtocolEndpoint and multiple ProtocolEndpoints may support the same
FileShare (CIFSShare or NFSShare).

The SharedElement association between the FileShare (CIFSShare or NFSShare) and a LocalFileSystem
is many to one association. Zero or more FileShares may be associated to one LocalFileSystem. But
each FileShare (CIFSShare or NFSShare) shall only reference one LocalFileSystem.

DEPRECATED

The ConcreteDependency association between the FileShare and the LogicalFile is a many to one
association. Zero or more FileShares may be associated to one LogicalFile. But each FileShare shall only
reference one LogicalFile.

DEPRECATED

The FileShareSettingData association between the FileShare (CIFSShare or NFSShare) and the
ExportedFileShareSetting is a one to one association. That is, a FileShare (CIFSShare or NFSShare)
shall have an ExportedFileShareSetting and that ExportedFileShareSetting shall be associated to exactly
one FileShare (CIFSShare or NFSShare).

EXPERIMENTAL

4.1.3.2 Element Naming

The name of a FileShare may be changed. The existence of the EnabledLogicalElementCapabilities
instance associated to the FileShare indicates that the FileShare can be named. If
ElementNameEditSupported is set to TRUE, then the ElementName of the associated FileShare may be
modified. The ElementNameMask property provides the regular expression that expresses the limits of
the name; see 4.7.x for the class definition for EnabledLogicalElementCapabilities for details for this
property.

EXPERIMENTAL
SMI-S 1.6.1 Revision 6 SNIA Technical Position 37

File Export Profile

58

59
60

61

62

63

64

65

66

67

68

69

70

71

72
73

74

75

76

77

78

79

80

81

82

83
84
4.2 Health and Fault Management Consideration
The File Export Profile supports state information (e.g., OperationalStatus) on the following element of
the model:

• FileShares that are exported (See section 4.2.1)

4.2.1 OperationalStatus for FileShares

Table 2 shows FileShare operationalStatus.

4.3 Cascading Considerations
None

4.4 Supported Profiles, Subprofiles, and Packages
See section 4.1.1 for this information.

4.5 Methods of the Profile

4.5.1 Extrinsic Methods of the Profile

None

4.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

4.6 Client Considerations and Recipes

4.6.1 List Existing FileShares on the system

A client shall be able to find FileShares attached to a system (e.g., a file server) by doing an association
traversal from the ComputerSystem that represents the system using the HostedShare association.

Table 2 - FileShare OperationalStatus

OperationalStatus Description

OK FileShare is online

Error FileShare has a failure. This could be due to a filesystem failure.

Stopped FileShare is disabled

Unknown
38

 File Export Profile

85

86

87

88
89

90

91
4.7 CIM Elements
Table 3 describes the CIM elements for File Export.

4.7.1 CIM_CIFSShare (Exported File Share)

The CIM_CIFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.
Created By: External
Modified By: External

Table 3 - CIM Elements for File Export

Element Name Requirement Description

4.7.1 CIM_CIFSShare (Exported File Share) Optional Represents the CIFS sharing characteristics of a
particular file element.

4.7.2 CIM_ConcreteDependency Optional Deprecated. Represents an association between a
FileShare element and the actual shared LogicalFile or
Directory on which it is based. This is provided for
backward compatibility.

4.7.3 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to FileShare)

Optional Experimental. Expressed the ability for the file share to be
named or have its state changed.

4.7.4 CIM_ElementSettingData (FileShare) Mandatory Deprecated. Associates a FileShare (CIFSShare or
NFSShare) and ExportedFileShareSetting elements.

4.7.5 CIM_EnabledLogicalElementCapabilities
(FileShare)

Optional Experimental. This class is used to express the naming
and possible requested state change possibilities for file
shares.

4.7.6 CIM_ExportedFileShareSetting (Setting) Mandatory The configuration settings for an Exported FileShare that
is a setting for a FileShare (CIFSShare or NFSShare)
available for exporting.

4.7.7 CIM_FileShare (Exported File Share) Mandatory Represents the sharing characteristics of a particular file
element.

4.7.8 CIM_FileShareSettingData (FileShare) Mandatory Experimental. Associates a FileShare (CIFSShare or
NFSShare) and ExportedFileShareSetting elements.

4.7.9 CIM_HostedShare Mandatory Represents that a shared element is hosted by a File
Server Computer System.

4.7.10 CIM_NFSShare (Exported File Share) Optional Represents the NFS sharing characteristics of a particular
file element.

4.7.11 CIM_SAPAvailableForFileShare Mandatory Represents the association between a ProtocolEndpoint
to the file share that is being accessed through that SAP.

4.7.12 CIM_SharedElement Mandatory Associates a FileShare (CIFSShare or NFSShare) to the
LocalFileSystem on which it is based.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileShare AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a FileShare.
PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileShare AND
SourceInstance.CIM_FileShare::OperationalStatus <>
PreviousInstance.CIM_FileShare::OperationalStatus

Optional CQL -Change of Status of a FileShare. PreviousInstance
is optional, but may be supplied by an implementation of
the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 39

File Export Profile

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107
Deleted By: External
Requirement: Optional

Table 4 describes class CIM_CIFSShare (Exported File Share).

4.7.2 CIM_ConcreteDependency

Deprecated.
Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 5 describes class CIM_ConcreteDependency.

4.7.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to FileShare)
Experimental.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 4 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section 4.7.7 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.7.7 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.7 CIM_FileShare
(Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.7 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Table 5 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The Share that represents the LogicalFile being shared.
40

 File Export Profile

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122
Table 6 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to FileShare).

4.7.4 CIM_ElementSettingData (FileShare)

Deprecated.
Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 7 describes class CIM_ElementSettingData (FileShare).

4.7.5 CIM_EnabledLogicalElementCapabilities (FileShare)

Experimental.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 8 describes class CIM_EnabledLogicalElementCapabilities (FileShare).

Table 6 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to FileShare)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the file share.

ManagedElement Mandatory The FileShare.

Table 7 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)

Properties Flags Requirement Description & Notes

IsDefault N Optional Not Specified in this version of the Profile.

IsCurrent N Optional Not Specified in this version of the Profile.

IsNext N Optional Not Specified in this version of the Profile.

IsMinimum N Optional Not Specified in this version of the Profile.

IsMaximum N Optional Not Specified in this version of the Profile.

ManagedElement Mandatory The FileShare (CIFSShare or NFSShare).

SettingData Mandatory The settings define on creation of the FileShare.

Table 8 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (FileShare)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The moniker for the instance.

ElementNameEditSupport
ed

Mandatory Denotes whether a file share can be named.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 41

File Export Profile

123

124

125

126

127

128
4.7.6 CIM_ExportedFileShareSetting (Setting)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 9 describes class CIM_ExportedFileShareSetting (Setting).

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this file share may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

GetElementNameCapabilit
ies()

Conditional Conditional requirement: Required if File Export Manipulation is
implemented.

Table 9 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the setting.

ElementName Mandatory A user-friendly name for the Setting.

FileSharingProtocol Mandatory The file sharing protocol supported by this share. NFS (2) and CIFS (3)
are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing protocol. A share
may support multiple versions of the same protocol.

InitialEnabledState N Optional Valid values are '1|2|3|7|8|9' for ('Other' | 'Enabled' | 'Disabled' | 'In Test' |
'Deferred' | 'Quiesce').

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is '1'.

DefaultUserIdSupported N Optional Valid values are '2|3|4' for ('No Default User Id' | 'System-Specified Default
User Id' | 'Share-Specified Default User Id').

RootAccess N Optional Valid values are '2|3' for ('No Root Access' | 'Allow Root Access').

AccessPoints N Optional Valid values are '2|3|4|5' for ('None' | 'Service Default' | 'All' | 'Named
Points').

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

DefaultReadWrite N Optional Not Specified in this version of the Profile.

DefaultExecute N Optional Not Specified in this version of the Profile.

ExecuteSupport N Optional Not Specified in this version of the Profile.

WritePolicy N Optional Not Specified in this version of the Profile.

Table 8 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (FileShare)

Properties Flags Requirement Description & Notes
42

 File Export Profile

129

130
131

132

133

134

135

136

137

138

139

140

141

142
4.7.7 CIM_FileShare (Exported File Share)

SMI-S treats CIM_FileShare as an abstract class. It is mandatory because an implementation shall
instantiate either (or both) CIM_CIFSShare or CIM_NFSShare.
Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 10 describes class CIM_FileShare (Exported File Share).

4.7.8 CIM_FileShareSettingData (FileShare)

Experimental.
Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 10 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the path to the
directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is useful when
importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in section 4.2.1.

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 43

File Export Profile

143

144

145

146

147

148

149

150

151
152

153

154

155

156

157
Table 11 describes class CIM_FileShareSettingData (FileShare).

4.7.9 CIM_HostedShare

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 12 describes class CIM_HostedShare.

4.7.10 CIM_NFSShare (Exported File Share)

The CIM_NFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.
Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 13 describes class CIM_NFSShare (Exported File Share).

Table 11 - SMI Referenced Properties/Methods for CIM_FileShareSettingData (FileShare)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The FileShare (CIFSShare or NFSShare).

SettingData Mandatory The settings define on creation of the FileShare.

Table 12 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile.

Dependent Mandatory The Share that is hosted by a Computer System.

Antecedent Mandatory The Computer System that hosts the FileShare. This can be the top level
or non-top level system, or a virtual file server. But it shall be a File Server
(Dedicated='16').

Table 13 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section 4.7.7 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.7.7 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.7 CIM_FileShare
(Exported File Share).
44

 File Export Profile

158

159

160

161

162

163

164

165

166

167

168

169
4.7.11 CIM_SAPAvailableForFileShare

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 14 describes class CIM_SAPAvailableForFileShare.

4.7.12 CIM_SharedElement

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 15 describes class CIM_SharedElement.

STABLE

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.7 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Table 14 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare

Properties Flags Requirement Description & Notes

FileShare Mandatory The file share that is made available through a SAP. In the File Export
subprofile, these are FileShares configured for either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare. This shall
have a value of '4200' (NFS) or '4201' (CIFS).

Table 15 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is exporting some contained file or directory as a
FileShare.

SameElement Mandatory The FileShare (CIFSShare or NFSShare) that exposes a contained file or
directory of the LocalFileSystem as an exported object.

Table 13 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 45

File Export Profile
46

1

2

3

4

5

6

7

8

9

10

11

12
13
14
15
16
17
18

19
20

21
22
23
24
25
26
27
28
EXPERIMENTAL

5 File Export Manipulation Subprofile

5.1 Description

5.1.1 Synopsis

Profile Name: File Export Manipulation (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 16 describes the related profiles for File Export Manipulation.

Central Class: FileExportService

Scoping Class: File server ComputerSystem element (with Dedicated property containing ”16”)

5.1.2 Overview

The File Export Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It
makes use of elements of the filesystem subprofiles and supports creation, modification and deletion of
FileShares that are exported by the File Export Subprofile. A number of other profiles and subprofiles
also make use of elements of the filesystem subprofile and will be referred to in this specification as
“filesystem related profiles” -- these include but are not limited to the filesystem subprofile, the Filesystem
Manipulation Subprofile, the File Export Subprofile, the NAS Head Profile, the Self-Contained NAS
Profile, and so on.

In this release of SMI-S, the autonomous profiles that use the File Export Manipulation Subprofile are the
NAS Head and Self-Contained NAS Profiles.

Annex B, "(Informative) State Transitions from Storage to File Shares" describes the states that a storage
element, initially an unused LogicalDisk, goes through before it can be exported as a CIFS or NFS file
share. The Filesystem Manipulation Subprofile provides the methods to create the filesystem as a
LocalFileSystem and make it locally accessible at a file server ComputerSystem (associated to the file
server ComputerSystem via the LocalAccessAvailable association). This profile (the File Export
Manipulation Profile) provides the methods to "Export a file share" from the file server that allows the file
server to share its contents with remote operational users. Sharing the contents of a LocalFileSystem can
be from the root directory or some contained internal directory, or some contained internal file. When a

Table 16 - Related Profiles for File Export Manipulation

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

File Export SNIA 1.6.1 Mandatory

Indication SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional

File Export Manipulation Subprofile

29
30
31
32
33

34
35

36
37
38
39
40
41
42
43

44
45
directory (root or otherwise) is shared, all files and sub-directories of that directory are also automatically
shared (recursively). The semantics of sharing are ultimately controlled by the Authorization profiles and
by the filesystem implementation, so sharing cannot violate the access rules specified internally to the
filesystem. In addition to specifying the object (file or directory) to be shared, the filesystem
implementation shall specify the protocol to use (CIFS, NFS, or other protocol) for sharing.

SMI-S uses a FileShare (CIFSShare or NFSShare) element to represent the externally accessible file
share. A SharedElement association will exist between the FileShare (CIFSShare or NFSShare) and the
LocalFileSystem. The FileShare.Name property indicates the shared object (it is the filesystem-specific
path to the contained file or directory that is being shared). The format of Name is specific to the
filesystem type indicated by the associated FileSystemSetting.ActualFileSystemType property; the
LocalFileSystem.PathnameSeparatorString property indicates the "separator string" that may be used to
split the PathName into the components of a hierarchical path name from the root of the associated
filesystem (indicated by the LocalFileSystem).
48

 File Export Manipulation Subprofile

46

47

48

49
50

51
52
53
54
55
56
57

58
59
60
61
5.1.3 Instance Diagrams

5.1.3.1 File Export Creation classes and associations
Figure 6: "File Export Manipulation Subprofile Instance" illustrates the constructs involved with creating a

FileShare (CIFSShare or NFSShare) for a File Export Subprofile. This summarizes the mandatory classes
and associations for this subprofile. Specific areas are discussed in later sections.

The FileExportService provides configuration support for exporting elements ('files' and ’directories’) of a
LocalFileSystem as FileShare (CIFSShare or NFSShare) elements. A FileExportService is hosted by the
file server ComputerSystem that exports the directories/files (these would be the file server
ComputerSystems in the filesystem subprofile that were given local access to the filesystem). FileShares
are accessed through ServiceAccessPoint(s) hosted by the file server ComputerSystem. FileShares are
associated with the FileExportService via ServiceAffectsElement and with the ServiceAccessPoint(s) via
SAPAvailableToElement.

If a filesystem-related profile supports the File Export Manipulation Subprofile, it shall have at least one
FileExportService element. This FileExportService shall be hosted on the top level ComputerSystem of
the File Export Subprofile (which shall be a file server ComputerSystem element in the filesystem related
profiles). The methods offered are CreateFileShare, ModifyFileShare, and ReleaseFileShare.

Figure 6 - File Export Manipulation Subprofile Instance
SMI-S 1.6.1 Revision 6 SNIA Technical Position 49

File Export Manipulation Subprofile

62
63
64
65

66
67
68
69
70
71
72

73
74
75
76

77
78
79
80
81

82
83

84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

103
104
105
106
107

108
109
110

111
112
Associated to the FileExportService (via ElementCapabilities) shall be one FileExportCapabilities element
that describes the capabilities of the service. It identifies the methods supported, whether the methods
support Job Control or not, the protocols that the created file share can support, and whether or not the
file share shall be made available after creation.

For each file sharing protocol that is supported, there shall be one ExportedFileShareCapabilities
element that defines the range of capabilities supported for that particular file sharing protocol. The
ExportedFileShareCapabilities elements shall be associated via ElementCapabilities to the
FileExportService. One of the ExportedFileShareCapabilities may be identified as a default (by setting
the property ElementCapabilities.IsDefault). The default ExportedFileShareCapabilities element also
indicates the default file sharing protocol to be supported. These defaults apply if any of the extrinsic
methods of the FileExportService are invoked with a NULL value for the Capabilities parameter.

Each ExportedFileShareCapabilities element is defined by a set of ExportedFileShareSettings that are
associated to it by the SettingsDefineCapabilities association. These ExportedFileShareSettings may be
structured to indicate a range of supported and unsupported property values and shall have the same
value for the FileSharingProtocol property as the ExportedFileShareCapabilities element.

For the convenience of clients the File Export Manipulation Subprofile may populate a set of “pre-defined”
ExportedFileShareSettings for each of the ExportedFileShareCapabilities. These shall be associated to
the ExportedFileShareCapabilities via the SettingsDefineCapabilities association -- the association shall
have its SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and
theSettingsDefineCapabilities.ValueRole property set to "Supported".

NOTE That they are pre-defined and therefore exist at all times does not imply that these ExportedFileShareSettings must be
made persistent by the implementation.

The ExportedFileShareCapabilities instance supports the CreateGoalSettings method, described in detail
in , "Table 19 shows methods and instances for FileExportManipulation.". This method supports
establishing one client-defined ExportedFileShareSettings (as a goal).

CreateGoalSettings takes an array of embedded SettingData elements as the input TemplateGoalSettings
and SupportedGoalSettings parameters and may generates an array of embedded SettingData elements
as the output SupportedGoalSettings parameter. However, this profile only uses a single embedded
ExportedFileShareSettings element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded ExportedFileShareSettings element as
output (SupportedGoalSettings). If a client supplies a NULL ExportedFileShareSettings (i.e., the empty
string) as input to this method, the returned ExportedFileShareSettings structure shall be a default setting
for the parent ExportedFileShareCapabilities. If the input (the embedded ExportedFileShareSettings) is
not NULL, the method may return a “best fit” to the requested setting. The client may iterate on the
CreateGoalSettings method until it acquires a setting that suits its needs. This embedded settings
structure may then be used when the CreateFileShare or ModifyFileShare methods are invoked. The
details of how iterative negotiation can work are discussed in 5.5.1.1,
"ExportedFileShareCapabilities.CreateGoalSettings". Note that the file sharing protocol indicated by the
FileSharingProtocol property is invariant in all of these interactions. It is an error if the client changes the
FileSharingProtocol property for a Setting and submits it as a goal to the Capabilities element that
provided the original Setting.

NOTE It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back mechanism is
needed. This profile does not require negotiation -- an implementation may support only a set of pre-defined correlated point
settings that a client can preload and use without modification. The implementation could also support only settings whose
properties are selectable from an arithmetic progression or from a fixed enumeration, so that the client may construct a goal setting
that is guaranteed to be supported without negotiation.

NOTE That a client has obtained a goal setting supported by the implementation does not guarantee that a create or modify
request will succeed. Such a setting only specifies a supported static configuration not that the current dynamic environment has
the resources to implement a specific request.

Armed with the goal (the embedded ExportedFileShareSettings element), a reference to a
LocalFileSystem, and a path to a file or directory contained within that LocalFileSystem, the client can
50

 File Export Manipulation Subprofile

113
114
115

116

117
118
119

120

121

122

123

124

125
126
127

128
129

130
131

132
133
134

135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
now use the CreateFileShare method to create the file share for export. The CreateFileShare method
creates a FileShare element, and a new ExportedFileShareSettings instance as well as several
necessary associations. These associations are:

• HostedFileShare association between the FileShare and the file server ComputerSystem that hosts it.

• SharedElement association between the FileShare and the LocalFileSystem. In addition, the FileShare
element specifies the pathname for the shared element (file or directory) relative to the root of the
LocalFileSystem (using the Name property).

EXPERIMENTAL)

• FileShareSettingData to associate the FileShare to the ExportedFileShareSetting defined for it

EXPERIMENTAL

• For backward compatibility with previous releases of SMI-S:

• The file or directory of the LocalFileSystem that is being shared is represented as a LogicalFile

• A FileStorage association is created between the LogicalFile and the LocalFileSystem

• A ConcreteDependency association is created between the FileShare and the LogicalFile.

• In addition, optional parameters to the method can cause other classes to be created:

• DefaultUserId could create a Privilege (see 5 File Export Manipulation Subprofile of Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6) associated to the FileShare as
AuthorizationTarget and to a UserIdentity as AuthorizationSource

• RootAccessHosts array parameter could create root access Privileges from a number of remote Host
ComputerSystems to the FileShare (also using the Security Authorization Subprofile)

• AccessPointPorts array parameter could create SAPAvailableForFileShare associations to a number of
ProtocolEndPoints representing TCP/IP ports through which access is provided to this FileShare.

EXPERIMENTAL

To determine if the implementation supports supplying the ElementName during the creation of a
FileShare and to determine the supported methods to modify the ElementName of the existing FileShare,
invoke the method ExportedFileShareCapabilities.GetElementNameCapabilities.

EXPERIMENTAL

The ReleaseFileShare method is straightforward -- it deletes the FileShare and the
ExportedFileShareSetting, and the associations to those elements (HostedFileShare, the
FileShareSettingData element, SharedElement, all the������������������������� associations and all
Privileges that reference this FileShare as an AuthorizationTarget). Any ComputerSystem elements
created to represent remote hosts with root access to this FileShare that have no further references may
also be removed. A LogicalFile element associated to the LocalFileSystem via FileStorage will not
necessarily be deleted (the implementation may keep track of the other users of this element and be able
to delete it). For similar reasons, a ProtocolEndPoint created as a result of being specified in the
AccessPointPorts parameter may not be deleted. In both these cases, if the element has no associations
other than the scoping one (FileStorage to LocalFileSystem for LogicalFile and HostedAccessPoint to
ComputerSystem for ProtocolEndPoint) the provider may stop surfacing it at any time.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 51

File Export Manipulation Subprofile

153
154
155
156
157

158

159
160

161
162
163

164
165

166
167
168
169
The ModifyFileShare method modifies an existing FileShare -- this requires a new
ExportedFileShareSetting element to be used as a goal. But not any ExportedFileShareSetting will do;
the client shall use the ExportedFileShareCapabilities.CreateGoalSettings method which would have
been used to create the file share, or an appropriate compatible ExportedFileShareCapabilities instance.
The CreateGoalSettings method is used to establish a new ExportedFileShareSetting goal (as with the
original file share creation, it may be necessary to iterate on the CreateGoalSettings method). Since only
properties controlled by Settings can be changed by ModifyFileShare, elements surfaced as a side-effect
of creating or modifying a file share (i.e., any ComputerSystems created to represent remote hosts with
root access or an ProtocolEndPoints created to represent access points for the share, or any user id
created as a default user id) cannot be deleted, though new ones can be created and/or added), the
effect of ModifyFileShare is to change some properties of the FileShare or of the associated
ExportedFileShareSetting.

5.1.3.2 Finding File Export Services, Capabilities and Pre-defined Settings
When creating a file share the first step is to determine what can be created. Figure 7 illustrates an
instance diagram showing the elements that shall exist for supporting fileshare creation.

At least one FileExportService shall exist if the Filesystem Profile has implemented the File Export
Manipulation Subprofile. The instance(s) of this service can be found by following the HostedService
association and filtering on the target class of FileExportService.

NOTE If no service is found from the Top Level file server ComputerSystem, the client should look for other component file server
ComputerSystems that may be hosting the service. This is not recommended, but permitted.

Figure 7 - Capabilities and Settings for Exported File Share Creation
52

 File Export Manipulation Subprofile

170
171
172
173
174
175
176

177
178
179
180
181
182
183
184
185

186

187

188
189

190
191

192

193
194

195
196
197

198

199

200

201

202

203
An instance of the FileExportCapabilities shall be associated to the FileExportService via the
ElementCapabilities association. A client should follow this association (filtering on the result value of
"CIM_FileExportCapabilities") to inspect the configuration capabilities that are supported. The client
would choose between the file sharing protocols specified in the array property FileSharingProtocol.

For each entry in the FileSharingProtocol array, there shall be one instance of
ExportedFileShareCapabilities with the same value for the FileSharingProtocol property that shall be
associated to the FileExportService using the ElementCapabilities association (filtering on the result
value of "CIM_ExportedFileShareCapabilities"). This ExportedFileShareCapabilities element shall specify
the supported capabilities for that FileSharingProtocol using a collection of ExportedFileShareSetting
elements. These ExportedFileShareSetting shall be associated the ExportedFileShareCapabilities via
SettingsDefineCapabilities.

An implementation may support a set of pre-defined ExportedFileShareSetting that clients could use
directly if desired. The SettingsDefineCapabilities association from the ExportedFileShareCapabilities to
the pre-defined ExportedFileShareSettings shall have the PropertyPolicy property be "Correlated", the
ValueRole property be "Supported" and the ValueRange property be "Point". Other pre-defined
combinations of property values may be specified by ExportedFileShareSetting whose
SettingsDefineCapabilities association has the PropertyPolicy be "Independent", ValueRole property be
"Supported" and the ValueRange array property contain "Minimums", "Maximums", or "Increment". These
settings can be used by the client to compose ExportedFileShareSetting that are more likely to be directly
usable.

EXPERIMENTAL

5.1.3.3 Modeling for FileShare Access Control Lists
An implementation shall support "Read" (5) and "Write" (6) for CIM_AssociatedPrivileges.Activities[]

To assign an ID with a privilege to a share, a client will invoke the method
AssignPrivelegeToExportedShare providing a list of Identities, the Share and the Activities.

Groups are optional and only shown as informational, but a client will need to know to check for Accounts,
UserContact or Group in the case an implementation has the support. If a client traverses
AssignedIdentity from an Identity, the client could receive one of these three types of instances.

The AssociatedPrivilege class contains the following properties:

• Subject

• Target

• UseKey

• PrivilegeGranted (shall support at least true)

• Activities

The modification and deletion of AssociatedPrivelege can be done by intrinsic methods (ModifyInstance
and DeleteInstance).

EXPERIMENTAL

5.2 Health and Fault Management Considerations
The key elements of this profile are the FileExportService and the file server ComputerSystem. For the
computer system, see 25.1.5 Computer System Operational Status in Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 53

File Export Manipulation Subprofile

204
205

206

207

208
209
210

211
212
213
214

215

216
5.2.1 OperationalStatus for FileExportService

Table 17 shows operational status for FileExport services.

5.2.2 OperationalStatus for File Server ComputerSystem

Table 18 shows operational status for File Server ComputerSystem.

Table 17 - Operational Status for FileExport Service

Primary OperationalStatus Description

2 “OK” The service is running with good status

3 “Degraded” The service is operating in a degraded mode. This could be due to the health
state of the underlying file server, or of the storage being degraded or in error.

4 “Stressed” The services resources are stressed

5 “Predictive Failure” The service might fail because some resource or component is predicted to fail

6 “Error” An error has occurred causing the service to become unavailable. Operator
intervention through SMI-S to restore the service may be possible.

6 “Error” An error has occurred causing the service to become unavailable. Automated
recovery may be in progress.

7 “Non-recoverable Error” The service is not functioning. Operator intervention through SMI-S will not fix
the problem.

8 “Starting” The service is in process of initialization and is not yet available operationally.

 9 “Stopping” The service is in process of stopping, and is not available operationally.

10 “Stopped” The service cannot be accessed operationally because it is stopped -- if this
did not happened because of operator intervention or happened in real-time,
the OperationalStatus would have been “Lost Communication” rather than
“Stopped”.

11 “In Service” The service is offline in maintenance mode, and is not available operationally.

13 “Lost Communications” The service cannot be accessed operationally -- if this happened because of
operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The service is stopped but in a manner that may have left it in an inconsistent
state.

15 “Dormant” The service is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error” The service is in an error state, or may be OK but not accessible, because a
supporting entity is not accessible.

Table 18 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description

2 “OK” The file server is running with good status

3 “Degraded” The file server is operating in a degraded mode. This could be due to the
health state of some component of the ComputerSystem, due to load by other
applications, or due to the health state of backend or front-end network
interfaces.

4 “Stressed” The file server resources are stressed
54

 File Export Manipulation Subprofile

217

218
219

220
5.3 Cascading Considerations
Not Applicable.

5.4 Supported Subprofiles and Packages
See section 5.1.1 for this information.

5 “Predictive Failure” The file server might fail because some resource or component is predicted to
fail

6 “Error” An error has occurred causing the ComputerSystem to become unavailable.
Operator intervention through SMI-S to restore the service may be possible.

6 “Error” An error has occurred causing the ComputerSystem to become unavailable.
Automated recovery may be in progress.

7 “Non-recoverable Error” The file server ComputerSystem is not functioning. Operator intervention
through SMI-S will not fix the problem.

8 “Starting” The ComputerSystem is in process of initialization and is not yet available
operationally.

 9 “Stopping” The ComputerSystem is in process of stopping, and is not available
operationally.

10 “Stopped” The ComputerSystem cannot be accessed operationally because it is stopped
-- if this did not happened because of operator intervention or happened in
real-time, the OperationalStatus would have been “Lost Communication”
rather than “Stopped”.

11 “In Service” The ComputerSystem is offline in maintenance mode, and is not available
operationally.

13 “Lost Communications” The ComputerSystem cannot be accessed operationally -- if this happened
because of operator intervention it would have been “Stopped” rather than
“Lost Communication”.

14 “Aborted” The ComputerSystem is stopped but in a manner that may have left it in an
inconsistent state.

15 “Dormant” The ComputerSystem is offline; and the reason for not being accessible is
unknown.

16 “Supporting Entity in Error” The ComputerSystem is in an error state, or may be OK but not accessible,
because a supporting entity is not accessible.

Table 18 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 55

File Export Manipulation Subprofile

221

222

223

224

225

226
227
228
229
230
231
232

233

234
5.5 Methods of the Profile

5.5.1 Extrinsic Methods of the Profile

Table 19 shows methods and instances for FileExportManipulation.

5.5.1.1 ExportedFileShareCapabilities.CreateGoalSettings
This extrinsic method of the ExportedFileShareCapabilities class validates support for a caller-proposed
ExportedFileShareSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage
of this method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings
parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
ExportedFileShareSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
ExportedFileShareSetting. As such, these settings do not exist in the implementation but are the
responsibility of the client.

Table 19 - FileExportManipulation Methods

Method Created Instances Deleted Instances Modified Instances

SNIA_CreateExportedShare FileShare (Export)

ExportedFileShareSetting

FileShareSettingData

HostedShare

SharedElement

 SAPAvailableForFileShare

ServiceAffectsElement

LogicalFile (or Directory) (for bc
to 1.1)

ProtocolEndPoint

N/A N/A

SNIA_ModifyExportedShare ExportedFileShareSetting

FileShare (Export)

ProtocolEndPoint

ReleaseExportedShare N/A FileShare (Export)

ExportedFileShareSetting

FileShareSettingData

HostedShare

SharedElement

ServiceAffectsElement

ProtocolEndPoint

LogicalFile

N/A

AssignPrivilegeToExportedSha
re

N/A N/A

CreateGoalSettings N/A N/A N/A

GetElementNameCapabilities N/A N/A N/A
56

 File Export Manipulation Subprofile

235
236
237
238

239

240
241
242
243

244
245
246
247
248

249
250

251
252
253
254
255
256

257

258
259
260
261
262
263
264
If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

5.5.1.1.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges with respect to the filesystem, the filesystem
host, or the file server or the file share. During negotiation, the client will show the current state to the
user -- the SupportedGoalSettings received to date (either the latest or some subset), the
TemplateGoalSettings proposed (the most recent, but possibly more). But the administrator needs a
representation of what is available, possibly the range or sets of values that the different setting
properties can take. Some decisions are assumed to have been made already, such as the file-sharing
protocol to be used or the filesystem element to be shared or the resources allocated for providing local
access to the filesystem from the file server.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified using
ExportedFileShareSettings -- these points can be further qualified to indicate whether these are
supported (or not), and even whether they represent some ideal point in the space -- a "minimum", or a
"maximum", or an "optimal" point. Other settings can provide ranges for properties -- by specifying a
minimum, a maximum, and an increment an arithmetic progression of values can be specified (a
continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
ExportedFileShareSetting elements that are associated to the ExportedFileShareCapabilities via SettingDefi-
nesCapabilities association with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"

• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the ExportedFileShareSet-
ting elements that are associated to the ExportedFileShareCapabilities via
SettingDefinesCapabilities association with the following property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"
SMI-S 1.6.1 Revision 6 SNIA Technical Position 57

File Export Manipulation Subprofile

265
266

267
268
269
270
271
272
273
274

275
276
277
278
279

280
281
282
283

284
285
286

287

288

289

290
291
292
293

294

295

296

297
298
• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

5.5.1.1.2 Signature and Parameters of CreateGoalSettings
Table 20 describes the parameters for Extrinsic Method
ExportedFileShareCapabilities.CreateGoalSettings.

EXPERIMENTAL

5.5.1.2 ExportedFileShareCapabilities.GetElementNameCapabilities
This method indicates if ElementName can be specified as a part of invoking an appropriate method of
FileExportService to create a new FileShare. Additional, the returned data includes the methods that can
be used to modify the ElementName of existing FileShare.

uint32 GetElementNameCapabilities(

[OUT,

ValueMap { "2", "3", "4", "..", "32768..65535" },

Values { "ElementName can be supplied during creation",

"ElementName can be modified with InvokeMethod",

"ElementName can be modified with intrinsic method",

Table 20 - Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string EmbeddedInstance ("SNIA_ExportedFileShareSetting")

TemplateGoalSettings is a string array containing embedded
instances of class ExportedFileShareSetting, or a derived class.
This parameter specifies the client’s requirements and is used to
locate matching settings that the implementation can support.

SupportedGoalSettings[] INOUT string EmbeddedInstance ("SNIA_ExportedFileShareSetting")

SupportedGoalSettings is a string array containing embedded
instances of class ExportedFileShareSetting, or a derived class.
On input, it specifies a previously returned set of Settings that
the implementation could support. On output, it specifies a new
set of Settings that the implementation can support. If the output
set is identical to the input set, both client and implementation
may conclude that this is the best match for the
TemplateGoalSettings that is available.
If the output does not match the input and the non-NULL output
does not match the non-NULL TemplateGoalSettings, then the
method shall return "Alternative Proposed".
If the output is NULL, the method shall return an “Failed”.

Normal Return

Status uint32 "Success",
"Failed",
"Timeout",
"Alternative Proposed"

Error Returns

Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination of
Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.
58

 File Export Manipulation Subprofile

299

300
301
302

303

304

305

306

307

308

309

310

311

312
"DMTF Reserved", "Vendor Specific" }]

uint32 SupportedFeatures[],

[OUT] string ElementNameMask,

[OUT] uint16 MaxElementNameLen);

The parameters are:

• SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a FileShare. For example, the value of "ElementName can be supplied during
creation" indicates the method such as CreateExportedShare() accepts the ElementName when creating a
new FileShare. An empty array indicates ElementNaming for ElementType is not supported.

• MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.

• ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

EXPERIMENTAL

5.5.1.3 FileExportServices.SNIA_CreateExportedShare
This extrinsic method creates a FileShare providing access to a contained sub-element of a
LocalFileSystem (either a LogicalFile or its sub-class Directory). A reference to the created FileShare is
returned as the output parameter TheShare. This FileShare element is hosted by the same file server
ComputerSystem that hosts the FileExportService. The LocalFileSystem whose element is exported shall
be locally accessible to the file server ComputerSystem (and need not be hosted by it), as represented by
the LocalAccessAvailable association from the file server ComputerSystem to the LocalFileSystem.

The LocalFileSystem whose sub-element is being exported is specified by the input parameter Root. The
input string parameter SharedElementPath specifies a pathname from the root directory of the Root to the
sub-element to be exported. If SharedElementPath is NULL or the empty string, it specifies the root
directory of Root. The format of SharedElementPath is implementation-specific -- the most common
format is as a sequence of directory names separated by a character or short string indicated by the
FileSystemSetting.PathNameSeparatorString property.

NOTE The root directory of Root is the base from which a path to the LogicalFile being shared is specified. In the simplest and
possibly the most common case, the LogicalFile element is the root directory of Root and the path is NULL or the empty string.

The desired settings for the FileShare are specified by the Goal parameter (a string-valued
EmbeddedInstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element
shall be created that represents the settings of the created FileShare and will be associated via
FileShareSettingData to the FileShare. (This ExportedFileShareSetting may be identical to the Goal or
may be its equivalent). The created element shall be returned as the output Goal parameter.

The input Goal parameter can be NULL, in which case the ExportedFileShareSetting associated with the
default ExportedFileShareCapabilities of the FileExportService is used as the goal. In that case, the
following references to Goal are to the output value of the Goal parameter.

If Goal.DefaultUserIdSupported="Share-Specified Default User Id" and the input parameter DefaultUserId
is not NULL, the FileShare will support the specified user id as the default user when the share is
accessed. This access privilege will be represented by creating instances of the Privilege class as
described in the Security Authorization Subprofile. The Security Authorization Subprofile shall be used for
fine-grained access to, or modification of, the default user.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 59

File Export Manipulation Subprofile

313

314
315
316
317

318

319
320
321
322
323
324

325

326
327
328
329
330
331

332
333
334
335
336
337

338
339

340
341
342
343
344

345
346
347

348
349
350
351
352

353
354

355
356
NOTE If the Security Authorization Subprofile is not supported, this parameter may be set at creation but cannot be accessed later.
It can only be replaced with a new DefaultUserId using the SNIA_ModifyExportedShare method.

NOTE The format of the user id is not specified by this subprofile. If a security principal subprofile or a Filesystem Quotas
Subprofile is defined, the user id format defined therein may be used.

If Goal.RootAccess="Allow Root Access" then the input parameter RootAccessHosts will be an array of
URIs of ComputerSystems from which root access will be permitted. This access privilege will be
represented by creating instances of the Privilege class as described in the Security Authorization
Subprofile. The Security Authorization Subprofile shall be used for fine-grained access to, or modification
of, the set of hosts with root access.

NOTE If the Security Authorization Subprofile is not supported, this parameter may be set at creation but cannot be accessed later.
It can only be replaced by specifying a new RootAccessHosts array using the SNIA_ModifyExportedShare method.

NOTE The computer systems may not be managed by this implementation, so they may not be represented by ComputerSystem
references.

If Goal.AccessPoints="Named Points", then the input parameter AccessPointPorts will be an array of
references to ProtocolEndpoints that provide access to this FileShare. This will be represented by
creating instances of the SAPAvailableForFileShare association between the FileShare and the specified
ProtocolEndpoint. Fine-grained access to this set of ProtocolEndpoints or modification this set can be
performed using the SNIA_ModifyExportedShare method.

NOTE This changes the type of the AccessPointPorts parameter from a string array in the previous version to an array of
references to ProtocolEndpoints (or more generally to ServiceAccessPoints).

5.5.1.3.1 Signature and Parameters of SNIA_CreateExportedShare
Table 21 shows parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare.

Table 21 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

Parameter Name Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the FileShare being created. If
NULL, then a system-supplied default name can be used.

The value shall be stored in the 'ElementName' property for the
created element.

Comment IN string An end user relevant comment for the FileShare being created.
If NULL, then a system-supplied default comment can be used.

The value shall be stored in the 'Description' property for the
created element.

Job OUT, REF CIM_ConcreteJo
b

Reference to the job (may be null if job completed).

Root IN, REF SNIA_LocalFile
System

A reference indicating a LocalFileSystem element whose sub-
element is being exported. The LocalFileSystem shall be locally
available (either explicitly or implicitly) to the file server
ComputerSystem that hosts the FileExportService.
60

 File Export Manipulation Subprofile

357
358
359
360
361

362
363

364
365

366
367
368
369
370

371
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

392

393
SharedElementPath IN, OUT string An opaque string representing a path to the shared element
from the root directory of the FileSystem indicated by the Root
parameter. The format of this is as a sequence of directory
names (from the \”root\”) separated by the
PathNameSeparatorString property.

Multiple paths could lead to the same element but the access
rights or other privileges could be specific to the path. The client
needs to specify the path.

If SharedElementPath is NULL or is the empty string, it indicates
the \”root\” directory of the filesystem indicated by Root.

The value shall be stored in the 'Name' property for the created
element.

Goal IN, OUT, EI string EmbeddedInstance ("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the specified
FileShare element is to be shared or exported by the
FileExportService. This is an element of the
SNIA_ExportedFileShareSetting class, or a derived class,
encoded as a string-valued embedded object parameter. If
NULL or the empty string, the default configuration will be
specified by the FileExportService.

TheShare OUT, REF CIM_FileShare If successful, this returns a reference to the created file share.

DefaultUserId IN, OUT, REF,
NULL allowed,

CIM_identity A reference to a concrete derived class of CIM_Identity that
indicates the user id to use for default access to this share. A
NULL value on input indicates that no user id is requested. A
NULL value on output indicates that no user id has been
assigned, even by default. The provider is expected to surface
this access using the Authorization Subprofile.

A default user id per share is not supported by the CIFS
Protocol so this is ignored if the Goal specifies creating a
CIFSShare.

RootAccessHosts[] IN, OUT, URI,
NULL allowed

string An array of strings that specify the hosts that have root access
to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess property is set to
'Allow Root Access'. Each entry specifies a host by a URI. All
entries up to the first empty string are allowed root access; the
entries after the first empty string are denied root access. If this
parameter is NULL, root access will be denied to all hosts,
effectively overriding the value of the property
SNIA_ExportedFileShareSetting.RootAccess. If the first entry is
the empty string, root access will be allowed from all hosts, and
subsequent entries will be denied root access. The provider is
expected to surface this access using the Authorization
Subprofile. This property needs to be an array of URIs because
the remote host may not be known to the provider and therefore
a reference to the host may not exist.

Root Access is not supported by the CIFS Protocol so this is
ignored if the Goal specifies creating a CIFSShare.

Table 21 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

Parameter Name Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 61

File Export Manipulation Subprofile
5.5.1.4 FileExportServices.SNIA_ModifyExportedShare
This extrinsic method modifies a FileShare element that is exporting a contained sub-element of a
LocalFileSystem (either a LogicalFile or its sub-class Directory). The FileShare is specified by the
reference parameter TheShare. TheShare cannot be NULL and it shall be hosted by the same file server
ComputerSystem that hosts the FileExportService. The input parameters Root and SharedElementPath
shall be NULL or shall be the same as the corresponding parameters when the FileShare was created
(i.e., these cannot be changed using this method).

The precise constraint is that the sub-element shall not be changed even if the Root and
SharedElementPath are different. For instance, this would allow a different path that leads to the same
sub-element. However, this subprofile does not allow this flexibility.

The new desired settings for the FileShare are specified by the input parameter Goal (a string-valued
EmbeddedInstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element that
represents the settings of the created FileShare (either identical to the Goal or its equivalent) will be
associated via FileShareSettingData to the FileShare. The implementation shall modify the existing
ExportedFileShareSetting. The Setting that is actually established will be returned as the output
parameter Goal.

The Goal parameter can be NULL on input, in which case, the settings for the FileShare are not changed.
This can happen if this method is being called to provide new values for DefaultUserId, RootAccessHosts,
or AccessPointPorts without changing any settings. In that case, the following references to Goal are to
the output value or the parameter.

AccessPointPorts[] IN, OUT, REF,
NULL Allowed

CIM_ServiceAcc
essPoints

An array of references to the ProtocolEndpoints that can
connect to this Share, if the
SNIA_ExportedFileShareSetting.AccessPoints property is set to
'Named Ports'.

If the parameter is NULL, all access points will be denied
access, effectively overriding the value of the property
ExportedFileShareSetting.AccessPoints.

If the array has multiple entries and the first entry in the array is
NULL, all access points supported by the service will be
supported, and subsequent entries will be denied access.

The provider is expected to surface these access rights
(whether granted or denied) using the Authorization Subprofile.
Any AccessPoints granted access via this parameter will also be
associated to this share with SAPAvailableForFileShare. If the
AccessPoint is not already enabled it will appear in a disabled
state.

The CIFS protocol does not support multiple ProtocolEndpoints,
so this is ignored if the Goal specifies creating a CIFSShare.

Normal Return

Status OUT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

Table 21 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

Parameter Name Qualifier Type Description & Notes
62

 File Export Manipulation Subprofile

394

395
396
397
398
399
400

401
402
403

404
405
406
407
408
409

410
411
412
413
If Goal.DefaultUserIdSupported="Share-Specified Default User Id" and the input parameter DefaultUserId
is not NULL, the FileShare will support the specified user id as the default user when the share is
accessed. Any existing DefaultUserId specified will be overridden. This access privilege will be
represented by creating instances of the Privilege class as described in the Security Subprofile. The
Security Subprofile shall also be used to access or modify this privilege. If DefaultUserId is NULL, the
existing specification will not be changed.

NOTE If the Security Subprofile is not supported, this parameter may be set but cannot be accessed later. It can only be replaced
with a new DefaultUserId using the SNIA_ModifyExportedShare method.

If Goal.RootAccess="Allow Root Access" then the non-NULL input parameter RootAccessHosts will be an
array of URIs of ComputerSystems from which root access will be permitted. This access privilege will be
represented by creating instances of the Privilege class as described in the Security Subprofile. Any
existing specification of root access by hosts will be overridden. If RootAccessHosts is NULL, the existing
specification will not be changed.

NOTE If the Security Subprofile is not supported, this parameter may be set at creation but cannot be accessed later. It can only
be replaced by specifying a new RootAccessHosts array using the SNIA_ModifyExportedShare method.

If Goal.AccessPoints="Named Points", then the non-NULL input parameter AccessPointPorts will be an
array of references to ProtocolEndpoints that provide access to this FileShare. This will be represented
by creating instances of the SAPAvailableForFileShare association between the FileShare and the
specified ProtocolEndpoint. Any existing specification of access points to the FileShare will be
overridden. If AccessPointPorts is NULL, the existing specification will not be changed.

NOTE This changes the type of the AccessPointPorts parameter from a string array to an array of references to ProtocolEndpoints
(or more generally to ServiceAccessPoints).

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this
method if the FileShare is in use and the method requires that no operations be in progress during that
execution.

NOTE The WaitTime and InUseOptions parameters are supported if the ExportedFileShareCapabilities.SupportedProperties
includes the "RequireInUseOptions" option. This requires a change to the MOF that may not show up in this document as
enumerations are not documented in the spec.

5.5.1.4.1 Signature and Parameters of SNIA_ModifyExportedShare
Table 22 shows parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare.

Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Name Qualifier Type Description & Notes

ElementName IN string A new end-user relevant name for the FileShare being modified.
If NULL or the empty string, the existing name stored in the
'ElementName' property for the created element not be
changed.

Comment IN string A new end-user relevant comment for the FileShare being
modified. If NULL or the empty string, the existing comment
stored in the 'Description' property will not be changed.

Job OUT, REF CIM_ConcreteJo
b

Reference to the job (may be null if job completed).
SMI-S 1.6.1 Revision 6 SNIA Technical Position 63

File Export Manipulation Subprofile

414
415
416
417
418
419

420
421

422
423
424
425
426

427
428

429
430
431
432
433

434
435

436
437
438

439
440
441

442

443
Root IN, OUT, REF CIM_ManagedEl
ement

A reference indicating a LocalFileSystem element whose sub-
element is being exported. In the
SNIA_ModifyExportedSharemethod, this shall not indicate a
different filesystem from the one indicated when the file share
was created (even if the reference is to a different instance of
LocalFileSystem).

If Root is NULL on input it is ignored.

As an OUT parameter, a reference to the LocalFileSystem is
returned.

SharedElementPath IN, OUT string A string representing a path to the shared element from the root
directory of the LocalFileSystem indicated by Root.

The SNIA_ModifyExportedShare method cannot be used to
change the object indicated by the path, but the path itself can
be different as multiple paths could lead to the same element.
Such a change may have side-effects, for instance, the access
rights or other privileges could be specific to the path.

If SharedElementPath is NULL, it indicates no change to the
current path. If SharedElementPath consists of a single empty
string, it indicates the root directory of the FileSystem indicated
by Root.

As an OUT parameter, the current path is returned.

The value shall be stored in the 'Name' property for the created
element.

Goal IN, OUT, EI string EmbeddedInstance ("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the specified
FileShare element is to be shared or exported by the
FileExportService. This is an element of the
SNIA_ExportedFileShareSetting class, or a derived class,
encoded as a string-valued embedded instance parameter. If
NULL or the empty string, the current setting will be re-applied.

As an OUT parameter, the current Setting is returned.

TheShare IN, OUT, REF CIM_FileShare As an IN Parameter, it specifies the share that is to be modified
or whose settings are being queried. As an OUT Parameter, this
specifies the share if the request is successful.

DefaultUserId IN, OUT, REF,
NULL allowed,

CIM_identity As an IN parameter, this is a reference to a concrete derived
class of CIM_Identity that indicates the user id to use for default
access to this share. A NULL value indicates no change to the
existing user id, if one has been specified. The provider is
expected to surface this access using Authorization subprofile.
As an OUT Parameter, this returns a reference to the current
DefaultUserId.

A default user per share is not supported by the CIFS Protocol
so this is ignored if the file share is a CIFSShare.

Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Name Qualifier Type Description & Notes
64

 File Export Manipulation Subprofile
RootAccessHosts[] IN, OUT, URI,
NULL allowed

string An array of strings that specify the hosts that have root access
to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess property is set to
'Allow Root Access'. Each entry specifies a host by a URI. The
set of hosts specified is added to the existing set of hosts with
root access.

If this parameter is NULL, root access will be denied to all hosts,
including the ones currently allowed root access, effectively
overriding the value of the property
SNIA_ExportedFileShareSetting.RootAccess.

Each entry specifies a host by a URI. All entries up to the first
empty string are allowed root access; the entries after the first
empty string are denied root access.

If the first entry is the empty string, root access will continue to
be allowed from the existing hosts, and subsequent entries in
the array will be denied root access.

The provider is expected to surface this access using the
Authorization subprofile.

This property needs to be an array of URIs because the remote
host may not be known to the provider and therefore a reference
to the host may not exist.

Root Access is not supported by the CIFS Protocol so this is
ignored if the Goal specifies creating a CIFSShare.

AccessPointPorts[] IN, OUT, REF,
NULL Allowed

CIM_ServiceAcc
essPoints

An array of references to the ProtocolEndpoints that can
connect to this Share, if the
SNIA_ExportedFileShareSettings.AccessPoints property is set
to 'Named Ports'. The set of access points specified in the array
is added to the existing set of access points.

If the parameter is NULL, all access points will be denied
access, effectively overriding the value of the property
SNIA_ExportedFileShareSetting.AccessPoints.

If the first entry in the array is NULL, existing access points
supported by the service will be supported, and subsequent
entries in the array will be access points that are denied access.

The provider is expected to surface these access rights
(whether granted or denied) using the Authorization subprofile.
Any AccessPoints granted access via this parameter will also be
associated to this share with SAPAvailableForFileShare. If the
AccessPoint is not already enabled it will appear in a disabled
state.

The CIFS protocol does not support multiple ProtocolEndpoints,
so this is ignored if the Goal specifies creating a CIFSShare.

InUseOptions IN uint16 An enumerated integer that specifies the action that the provider
should take if the FileShare is still in use when this request is
made. The WaitTime parameter indicates the specified time
used for this function.

This option is only relevant if the FileShare needs to be made
unavailable while the request is being executed.

Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Name Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 65

File Export Manipulation Subprofile
5.5.1.5 FileExportServices.ReleaseExportedShare
This is an extrinsic method that will delete a FileShare specified by the parameter TheShare and delete
any associated instances and associations that are no longer needed. The deleted instances will include
the Directory (or LogicalFile) if it had been created only for the purpose of representing the shared sub-
element.

NOTE Deleting the Directory or LogicalFile deletes only the representation of the file or directory for management and does not
delete the underlying operational element

The deleted associations include HostedShare, FileShareSettingData, and any elements and
associations created to support the DefaultUserId, RootAccessHosts, and AccessPointPorts parameters.
In addition, the ExportedFileShareSetting will be deleted if appropriate.

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this
method if the FileShare is in use and the method requires that no operations be in progress during that
execution.

NOTE The WaitTime and InUseOptions parameters are supported if the ExportedFileShareCapabilities.SupportedProperties
includes the "RequireInUseOptions" option.

5.5.1.5.1 Signature and Parameters of ReleaseExportedShare
Table 23 shows parameters for Extrinsic Method FileExportServices.ReleaseExportedShare.

WaitTime IN uint32 An integer that indicates the time (in seconds) that the provider
needs to wait before executing this request if it cannot be done
while the FileShare is in use. If WaitTime is not zero, the method
will create a job, if supported by the provider, and return
immediately. If the provider does not support asynchronous
jobs, there is a possibility that the client could time-out before
the job is completed.

The combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence, then
Execute Request' and will be performed asynchronously if
possible.

Normal Return

Status OUT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

Table 23 - Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter Name Qualifier Type Description & Notes

Job OUT, REF CIM_ConcreteJo
b

Reference to the job (may be null if job completed).

TheShare IN, OUT, REF CIM_FileShare As an IN Parameter, it specifies the share that is to be modified
or whose settings are being queried. As an OUT Parameter, this
specifies the share if the request is successful.

Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Name Qualifier Type Description & Notes
66

 File Export Manipulation Subprofile

444

445
446
447
448

449
450

451
452
453

454
455
456

457
458

459

460
EXPERIMENTAL

5.5.1.6 FileExportService.AssignPrivilegeToFileShare
This method assigns all of the supplied activities to the specified Identities and creates the appropriate
model.

uint32 AssignPrivilegeToExportedShare(

 [Required, Description (

 "The list of Identities to assign privilege to share.")]

 CIM_Identity REF Identities[],

 [Required, Description (

 "The Activities to assign to the share. The "

 "Activities are defined in the "

 "CIM_AssociatedPrivilege.Activities property."),

 ValueMap { "2", "3", "4", "5", "6", "7", "8", "9",

 "10", "11", "12", "13", "14", "15", "16", "17",

 "18", "19", "20", "21", "22", "23", "24", "25",

 "26", ".." },

 Values { "Create", "Delete", "Detect", "Read", "Write",

 "Execute", "Deny Create", "Deny Delete",

InUseOptions IN uint16 An enumerated integer that specifies the action that the provider
should take if the FileShare is still in use when this request is
made. The WaitTime parameter indicates the specified time
used for this function.

This option is only relevant if the FileShare needs to be made
unavailable while the request is being executed.

WaitTime IN uint32 An integer that indicates the time (in seconds) that the provider
needs to wait before executing this request if it cannot be done
while the FileShare is in use. If WaitTime is not zero, the method
will create a job, if supported by the provider, and return
immediately. If the provider does not support asynchronous
jobs, there is a possibility that the client could time-out before
the job is completed.

The combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence, then
Execute Request' and will be performed asynchronously if
possible.

Normal Return

Status OUT uint32 ValueMap{}, Values{}

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

Table 23 - Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter Name Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 67

File Export Manipulation Subprofile

461
462

463

464
465
466

467

468

469

470

471

472

473

474

475
 "Deny Detect", "Deny Read", "Deny Write",

 "Deny Execute",

 "Authorize to Grant/Deny Authorization",

 "Authorize to Create", "Authorize to Delete",

 "Authorize to Detect", "Authorize to Read",

 "Authorize to Write", "Authorize to Execute",

 "Authorize to Deny Create",

 "Authorize to Deny Delete",

 "Authorize to Deny Detect",

 "Authorize to Deny Read", "Authorize to Deny Write",

 "Authorize to Deny Execute", "DMTF Reserved" },

 ModelCorrespondence {

 "CIM_AssociatedPrivilege.Activities" }]

 uint16 Activities[],

 [Required, Description (

 "The FileShare to assign the privileges.")]

 CIM_FileShare REF FileShare)

The parameters to this method are:

• Identities[] - The identities to which privileges are being granted

• Activities[] - The privileges that are being granted to the identities

• FileShare - The reference to the FileShare to which privileges are being assigned.

The possible return codes are:

• 0 - Completed with No Error

• 1 - Not Supported

• 2 - Failed

• 3 - Activities Not Supported

• 4 - Identity Not Found

• 5 - File Share Not Found

EXPERIMENTAL

5.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames
68

 File Export Manipulation Subprofile

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509
510

511

512

513
• EnumerateInstances

• EnumerateInstanceNames

5.6 Client Considerations and Recipes

EXPERIMENTAL

Conventions used in all the filesystem related profiles for recipes:

• When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is used without further validation. Real code will need to be more robust.

• In SMI-S, Values and Valuemap members as equivalent. In real code, client-side magic is required to convert
the integer representation into the string form given in the MOF.

• Error returns using the CIM_Error mechanism are not explicitly handled; the client shall implement handlers
for these asynchronous returns.

• These recipes do not show the details of negotiating a setting acceptable to both client and provider.

• The recipes do not show the details of managing a Job if a method returns after setting one up.

All the recipes show very simple examples of the operations that should be supported. Some recipes
have been simplified so that they would not even be minimally useful to a real client, but only show how
more complete functionality would be implemented.

5.6.1 Creation of a FileShare for Export
// DESCRIPTION

// GOAL: Create an NFS or CIFS FileShare that makes a specified

// directory or file of a filesystem available to clients

// and supports the properties specified in the array

// parameter $propertynames[].

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file server ComputerSystem host of the FileExportService

// will also be the host of the FileShare that will be

// made available to NFS or CIFS clients.

//

// FUNCTION CreateFileSystemShare

// This function takes a filesystem and a file server host

// ComputerSystem and creates a file share that will

// support the specified properties.

// INPUT Parameters:

// sharetype: The file sharing protocol (NFS or CIFS) that this

// share should support.

// fs: A reference to the LocalFileSystem whose element is

// to be shared.

// server: A reference to the file server ComputerSystem that

// provides local access to the filesystem $fs.

// fspath: A path to the sub-element that is to be shared.

// name: A name for the created file share.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 69

File Export Manipulation Subprofile

514

515

516

517

518

519

520
521

522
523

524
525

526

527

528
529
530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552
// comment: A comment to be associated with the created file share.

// propnames: An array of property names that the capabilities

// element should support.

// propvals: An array of property values corresponding to the

// property names that specify values for those properties.

// OUTPUT Parameters:

// fssh: A reference to the newly created FileShare element

// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub CreateFileSystemShare(IN String $sharetype, // CIFS, NFS, etc.

 IN REF CIM_FileSystem $fs, // the filesystem

 IN REF CIM_ComputerSystem $server // the File Server

 IN String $fspath, // subpath in the filesystem,
or ““

 IN String $name,

 IN String $comment,

 IN String[] $propnames, // names of desired properties

 IN String[] $propvals, // values of desired
properties

 OUT REF CIM_FileShare $fssh,

 OUT REF CIM_Job $job)

{

 //

 // Get the service and capabilities

 //

//// &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,

 “Antecedent”,

 “Dependent”)->[0];

 // Assumption: There is only one FileExportService per File Server

 //

 // Get an ExportedFileShareCapabilities from the FileExportService

 // via the ElementCapabilities association to the ComputerSystem

 // (it’s indexed by NFS/CIFS/other sharing service and possibly

 // other properties)

 // Note: NFS and CIFS are two capabilities of the same service
70

 File Export Manipulation Subprofile

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571
572

573

574

575

576
577

578

579

580

581

582

583

584
585

586

587

588

589

590

591

592

593

594

595

596

597

598
 // with different values of the FileSharingProtocol property

 // In this example, we look for the

 // ExportedFileShareCapabilities.IsDefault property to get a

 // default sharetype.

 //

 $efscapabilities = Associators($feservice,

 “CIM_ElementCapabilities”

 “SNIA_ExportedFileShareCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {

 #j = 0;

 while (($efscapability = $efscapabilities->[#j]) != NULL) {

 if (($sharetype == ““) && $efscapability.IsDefault ||

 ($efscapabilities->[#j].FileSharingProtocol == $sharetype)) {

 $sharetype = $efscapability.FileSharingProtocol;

 // Should check here that the properties named in

 // $propnames-[] are supported by this capabilities

 // element. If not, the method should fail as this profile

 // does not support multiple capabilities with the same

 // file sharing protocol that may have different.

 break;

 }

 #j++;

 }

 // Handle the error if any

 if (#j == $efscapabilities-[].length) {

 <indicate error>

 return false;

 }

 //

 // Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to
get

 // the next goal for EFSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 &CreateGoal($efscapability, NULL, $goal);

 //

 // Inspect Goal and modify properties as desired.

 //
SMI-S 1.6.1 Revision 6 SNIA Technical Position 71

File Export Manipulation Subprofile

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633
634

635

636

637

638

639

640

641

642

643

644
 #i = 0;

 while ($propnames->[#i] != NULL) {

 $goal.$propnames->[#i] = $propvals->[#i];

 #i++;

 }

 // Iterate over the goal at least once

 &CreateGoal($efscapability, $goal, $settings);

 #i = 0;

 while ($propnames->[#i] != NULL) {

 // funky syntax for propnames property of settings

 if ($settings.$propnames->[#i] != $propvals->[#i]) {

 //

 // give up

 //

 return false;

 }

 #i++;

 }

 // Verify that the filesystem is locally accessible

 // Does this fileserver have local access -- if not, there is no setting!

 $laassocs->[] = ReferenceNames($server,

 “SNIA_LocalAccessAvailable”,

 “CIM_FileSystem”

 $fs);

 if ($laassocs->[] == NULL || $laassocs->[].length != 1) {

 {

 // If the filesystem is not locally accessible from the server

 // there is no setting to be found

 return false;

 }

 $laassoc = $laassocs->[0];

 //

 // Get all the LocallyAccessibleFileSystemSettings

 // associated with the CIM_FileSystem (via ElementSettingData)

 //

 $lasettings->[] = Associators($fs,

 “CIM_ElementSettingData”,

 “SNIA_LocallyAccessibleFileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($lasettings->[] == NULL || $lasettings->[].length == 0) {

 // This is an ERROR but for now we return with no results
72

 File Export Manipulation Subprofile

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687
 return NULL;

 }

 #i = 0;

 $lasetting = NULL;

 while ($lasettings->[#i] != NULL) {

 // Get the association that points to this setting

 $reference->[] = References($lasettings->[#i],

 “CIM_ElementSettingData”,

 “SettingData”);

 // There should be exactly one association to this SettingData

 if ($reference->[] == NULL || $reference->[].length != 1) {

 // This is an error -- should we continue?

 continue;

 // return NULL;

 }

 // The following test assumes that we only look at a setting

 // that is marked as IsCurrent. There may be many such

 // settings but they will be scoped to other file servers.

 if ($reference->[0].IsCurrent == “Is Current”) {

 // Is this scoped to the fileserver?

 $servers = Associators($settings->[#i],

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($servers->[] != NULL && $servers->[].length != 0 && $servers->[0]
== $fileserver) {

 $lasetting = GetInstance($lasettings->[#i]);

 break;

 }

 }

 #i++;

 }

 // if not found return NULL

 if ($lasetting == NULL) {

 return false;

 }

 //

 // Note, this profile uses the filesystem $fs as the Root

 // parameter to CreateExportedShare and does not support

 // other classes.

 // The fspath is a string that is FileSystemType-specific

 // If path is NULL or empty, it

 // identifies the root directory of the File System.

 //
SMI-S 1.6.1 Revision 6 SNIA Technical Position 73

File Export Manipulation Subprofile

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716
717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732
// $feservice.CreateExportedShare($name, $comment,

// $job, $fs, $fspath, $settings, $fssh);

 #result = $feservice.CreateExportedShare(

 $name, // share name

 $comment, // comment associated with share

 $job, // OUTPUT parameter if needed

 $fs, // file system of the shared element

 $fspath, // relative path to shared element

 $settings, // EmbeddedInstance of Goal

 $fssh, // OUTPUT parameter -- reference to File Share

 NULL, // $defaultUserId -- not being set in this example

 NULL, // $RootAccessHosts[] -- not being set

 NULL // $AccessPointPEs[] -- not being set

)

 // Should handle failure and other errors here.

 return true;

}

5.6.2 Modification of an Exported FileShare
// DESCRIPTION

// GOAL: Modify the creation-time settings of a NFS or

// CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through

// SMI-S.

// 2. The file share has been defined with an associated

// ExportedFileShareSettings element and hosted on an

// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides

// this method.

//

// FUNCTION ModifyFileSystemShare

// This function modifies the settings and some mutable

// properties of an existing file share hosted by the

// same ComputerSystem as the host of the service.

// This routine cannot be used to change

// the filesystem, the sharetype, or the file server.

// It can be used to change the name, the comment, and

// setting property values.

// INPUT Parameters:

// name: A new name for the file share.

// comment: A comment to be associated with the created file share.

// fssh: A reference to the newly created FileShare element

// propnames: An array of property names that the capabilities
74

 File Export Manipulation Subprofile

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777
// element should support.

// propvals: An array of property values corresponding to the

// property names that specify values for those properties.

// OUTPUT Parameters:

// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub ModifyFileSystemShare(IN String $name,

 IN String $comment,

 IN CIM_FileShare $fssh,

 IN String $propnames[],

 IN String $propvals[],

 OUT CIM_Job $job)

{

 //

 // Get a client-side copy of the ExportedFileShareSetting

 // associated with the ExportedFileShare (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fssh,

 “CIM_ElementSettingData”,

 “CIM_ExportedFileShareSetting”,

 “ManagedElement”,

 “SettingData”)->[0];

 #i = 0;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i].Name);

 break;

 }

 }

 //

 // Get the sharetype from the FileSystemShare

 // -- this cannot be changed by this method

 //

 $sharetype = $setting.FileSharingProtocol;

 //

 // Get the File Server

 //

// &GetFileExportServer($fs, $server);

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)
SMI-S 1.6.1 Revision 6 SNIA Technical Position 75

File Export Manipulation Subprofile

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821
 // There should be exactly one.

 $server = Associators($fssh,

 “CIM_HostedFileShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the service and capabilities

 //

// &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,

 “Antecedent”,

 “Dependent”)->[0];

 // Assumption: There is only one FileExportService per File Server

 //

 // Get an ExportedFileShareCapabilities from the FileExportService

 // via the ElementCapabilities association to the ComputerSystem

 // (it’s indexed by NFS/CIFS/other sharing service and possibly

 // other properties)

 // Note: NFS and CIFS are two capabilities of the same service

 // with different values of the FileSharingProtocol property

 // The $sharetype must match the property

 // ExportedFileShareCapabilities.FileSharingProtocol.

 //

 $efscapabilities = Associators($feservice,

 “CIM_ElementCapabilities”

 “SNIA_ExportedFileShareCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {

 #j = 0;

 while (($efscapability = $efscapabilities->[#j]) != NULL) {

 if ($efscapabilities->[#j].FileSharingProtocol == $sharetype) {

 // Should check here that the properties named in

 // $propnames-[] are supported by this capabilities

 // element. If not, the method should fail as this profile

 // does not support multiple capabilities with the same

 // file sharing protocol that may have different.

 break;
76

 File Export Manipulation Subprofile

822

823

824

825

826

827

828

829

830

831

832

833

834
835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867
 }

 #j++;

 }

 // Handle the error if any

 if (#j == $efscapabilities-[].length) {

 <indicate error>

 return false;

 }

 //

 // Modify the copied ExportedFileShareSetting to the new

 // desired properties

 //

 #i = 0;

 while ($propnames->[#i] != NULL) {

 // Note funky syntax for accessing a named property of

 // the setting

 $setting.$propnames->[#i] = $propvals->[#i];

 }

 // Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to
get

 // the next goal for EFSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 &CreateGoal($efscapability, $setting, $newsetting);

 // Did we get a goal back?

 if ($newsetting==MULL)

 #i = 0;

 while ($propnames->[#i] != NULL) {

 if ($newsetting.$propnames->[#i] != $propvals->[#i]) {

 //

 // give up

 //

 return NULL;

 }

 #i++;

 }

 //

 #result = feservice.ModifyExportedShare(
SMI-S 1.6.1 Revision 6 SNIA Technical Position 77

File Export Manipulation Subprofile

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889
890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911
 $name, // new name (no change if NULL)

 $comment, // new comment (no change if NULL)

 $job, // OUTPUT parameter if needed

 NULL, // $rootfilesystem - Cannot be changed

 NULL, // $Subelement -- cannot be changed

 $newsetting, // EmbeddedInstance of Goal

 $fssh, // reference to File Share

 NULL, // $defaultUserId -- not being changed in this example

 NULL, // $RootAccessHosts[] -- not being changed

 NULL, // $AccessPointPEs[] -- not being changed

 NULL, // $InUseOptions -- take default

 NULL // $WaitTime -- take default

)

 // Should handle failure and other errors here.

 return TRUE;

}

5.6.3 Removal of an Exported FileShare
// DESCRIPTION

// GOAL: UnExport an exported NFS or CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through

// SMI-S.

// 2. The file share has been defined with an associated

// ExportedFileShareSettings element and hosted on an

// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides

// this method.

//

// FUNCTION UnExportFileSystemShare

// This function removes an NFS or CIFS file share that is

// hosted by the same ComputerSystem as the host of the

// service.

// INPUT Parameters:

// fssh: A reference to the newly created FileShare element

// force: Whether the method should force all clients of the

// file share to be disconnected.

// waittime: The time in seconds to wait before implementing the

// specified force option (default 300 seconds).

// notification: A string used to notify clients that the file

// share is going to be unavailable. This is included in

// the alert indication sent to clients that subscribe for

// them (but... shouldn’t this go to operational clients?)

// OUTPUT Parameters:
78

 File Export Manipulation Subprofile

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955
// job: A reference to a ConcreteJob that is executing a long-term job.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub UnExportFileSystemShare(IN REF CIM_FileShare $fssh,

 IN uint16 $force,

 IN uint32 $waittime,

 IN String $notification,

 OUT REF CIM_Job $job);

{

 //

 // If waittime > 0, set force to 2 to distinguish between

 // a force with no wait and a force with wait

 // -- see the specification of ReleaseExportedShare.

 //

 if ($force > 0 && $waittime > 0) {

 $force = 2;

 }

 //

 // clients of the share may have registered for an indication

 // when a share is disconnected

 //

 <send indication -- see indications recipes>

 // Get the File Server

 //

// &GetFileExportServer($fs, $server);

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $server = Associators($fssh,

 “CIM_HostedFileShare”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get a FileExportService via the HostedService association to

 // the file server ComputerSystem

 //

 $feservice = Associators($server,

 “CIM_HostedService”,

 “SNIA_FileExportService”,

 “Antecedent”,
SMI-S 1.6.1 Revision 6 SNIA Technical Position 79

File Export Manipulation Subprofile

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998
 “Dependent”)->[0];

 //

 // Call ReleaseExportedShare() with the $force and $waittime values

 // which tell the share to wait for the specified time

 // if there are any clients still connected.

 //

 $feservice.ReleaseExportedShare($job, $fssh, $force, $waittime);

 // Should handle failure and other errors here.

 return TRUE;

}

EXPERIMENTAL

5.6.4 File Export Manipulation Supported Capabilities Patterns

Table 24 lists the capabilities patterns that are formally recognized by SMI-S 1.2.0 for determining
capabilities of various implementations:

NOTE Asterisk (*) means any state is valid.

5.7 CIM Elements
Table 25 describes the CIM elements for File Export Manipulation.

Table 24 - SMI-S File Export Supported Capabilities Patterns

FileSharingProtocols SynchronousMethods AsynchronousMethods InitialExportState

NFS, CIFS Export Creation, Export
Modification, Export Deletion

Null *

NFS, CIFS Null Export Creation, Export
Modification, Export Deletion

*

NFS, CIFS Null Null Null

Table 25 - CIM Elements for File Export Manipulation

Element Name Requirement Description

5.7.1 CIM_CIFSShare (Exported File Share) Optional Represents the CIFS sharing characteristics of a
particular file element.

5.7.2 CIM_ConcreteDependency Optional

Represents an association between a (CIFSShare or
NFSShare) FileShare element and the actual shared
LogicalFile or Directory on which it is based. This is
provided for backward compatibility with previous
releases of SMI-S.
80

 File Export Manipulation Subprofile

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013
1014

1015
5.7.3 CIM_ElementCapabilities (FES Configuration) Mandatory Associates the File Export Service to the
FileExportCapabilities element that describes the service
capabilities.

5.7.4 CIM_ElementSettingData (FileShare Setting) Mandatory Associates a (CIFSShare or NFSShare) FileShare and
ExportedFileShareSetting elements.

5.7.5 CIM_FileShare (Exported File Share) Mandatory Represents the sharing characteristics of a particular file
element.

5.7.6 CIM_FileStorage (Subelement) Conditional Conditional requirement: Required if parent profile is NAS
Head. or Required if parent profile is a Self-contained
NAS System.

Represents that a file or directory that is made available
for export is contained by a LocalFileSystem specified as
a dangling reference.

5.7.7 CIM_HostedService Mandatory Associates the File Export Service to the hosting File
Server Computer System.

5.7.8 CIM_HostedShare Mandatory Represents that a shared element is hosted by a
ComputerSystem.

5.7.9 CIM_LogicalFile (Subelement) Conditional Conditional requirement: Required if parent profile is NAS
Head. or Required if parent profile is a Self-contained
NAS System.

 A LogicalFile (or Directory subclass) that is a sub-
element of a LocalFileSystem that is made available for
export via a fileshare hosted on a ComputerSystem. This
is included for backward compatibility with previous
releases of SMI-S.

5.7.10 CIM_NFSShare (Exported File Share) Optional Represents the NFS sharing characteristics of a particular
file element.

5.7.11 CIM_SAPAvailableForFileShare Mandatory Represents the association between a
ServiceAccessPoint to the shared element that is being
accessed through that SAP.

5.7.12 CIM_ServiceAffectsElement Mandatory Associates the File Export Service to the elements that
the service manages (such as a FileShare configured for
exporting a LogicalFile).

5.7.13 CIM_SettingsDefineCapabilities (Pre-defined) Optional Represents the association between a
ExportedFileShareCapabilities and a predefined
ExportedFileShareSetting element that specifies what the
Capabilities can support.

5.7.14 CIM_SharedElement Mandatory Associates a (CIFSShare or NFSShare) FileShare to the
LocalFileSystem on which it is based.

5.7.15 SNIA_ElementCapabilities (FES Capabilities) Mandatory Associates the File Export Service to at least one
ExportedFileShareCapabilities element that indicates that
support is available for managing an exported FileShare
for at least one of the file sharing protocols recognized by
this profile. These include: "NFS"/2, "CIFS"/3, "DAFS"/4,
"WebDAV"/5, "HTTP"/6, or "FTP"/7.

5.7.16 SNIA_ExportedFileShareCapabilities (FES
Capabilities)

Mandatory This element represents the Capabilities of the File Export
Service for managing FileShares of a specific file sharing
protocol (and version). The file sharing protocol is
specified by the FileSharingProtocol and
ProtocolVersions properties.

Table 25 - CIM Elements for File Export Manipulation

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 81

File Export Manipulation Subprofile

1016

1017
5.7.1 CIM_CIFSShare (Exported File Share)

The CIM_CIFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.
Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

5.7.17 SNIA_ExportedFileShareSetting (FileShare
Setting)

Mandatory The configuration settings for an Exported FileShare; i.e.,
a setting for a FileShare available for exporting.

 This setting may have been created or modified by the
extrinsic methods of this profile. Note that CIFS allows in-
band creation, modification, or deletion of FileShares;
also, some systems might define preexistent FileShares.
All of these will be surfaced.

5.7.18 SNIA_ExportedFileShareSetting (Pre-defined) Optional This element represents a predefined configuration
settings for exported FileShares that is used to define a
Capabilities element associated with the
FileExportService.

5.7.19 SNIA_FileExportCapabilities (FES Configuration) Mandatory This element represents the management capabilities of
the File Export Service.

5.7.20 SNIA_FileExportService Mandatory The File Export Service provides the methods to create
and export file elements as shares.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FileShare

Mandatory Creation of an exported file share.

This indication returns the newly created FileShare.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FileShare

Mandatory Deletion of an exported file share.

This indication returns the model path to the deleted file
share and its unique instance id. (Question: Should this
return the pathname of the shared directory as well?)
Note that a model path is like a CIM object path but not
exactly the same.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileShare AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of state of a FileShare.

PreviousInstance is optional, but may be supplied by an
implementation of the subprofile.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileShare AND
SourceInstance.CIM_FileShare::OperationalStatus <>
PreviousInstance.CIM_FileShare::OperationalStatus

Optional CQL -Change of state of a FileShare.

PreviousInstance is optional, but may be supplied by an
implementation of the subprofile.

Table 25 - CIM Elements for File Export Manipulation

Element Name Requirement Description
82

 File Export Manipulation Subprofile

1018

1019
1020

1021
Table 26 describes class CIM_CIFSShare (Exported File Share).

5.7.2 CIM_ConcreteDependency

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Optional

Table 27 describes class CIM_ConcreteDependency.

5.7.3 CIM_ElementCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 26 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section 4.7.7 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.7.7 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.7 CIM_FileShare
(Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.7 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Table 27 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Antecedent Mandatory The LogicalFile that is being shared.

Dependent Mandatory The (CIFSShare or NFSShare) Share that represents the LogicalFile
being shared.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 83

File Export Manipulation Subprofile

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036
Table 28 describes class CIM_ElementCapabilities (FES Configuration).

5.7.4 CIM_ElementSettingData (FileShare Setting)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 29 describes class CIM_ElementSettingData (FileShare Setting).

5.7.5 CIM_FileShare (Exported File Share)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 30 describes class CIM_FileShare (Exported File Share).

Table 28 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The FileExportCapabilities.

ManagedElement Mandatory The FileExportService.

Table 29 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)

Properties Flags Requirement Description & Notes

IsCurrent N Optional Is always true in this version of the subprofile because we only support
one setting per share. However support for the other flags, specifically,
IsDefault and IsNext, could be added in future releases.

IsDefault N Optional Not Specified in this version of the Profile.

IsNext N Optional Not Specified in this version of the Profile.

IsMinimum N Optional Not Specified in this version of the Profile.

IsMaximum N Optional Not Specified in this version of the Profile.

ManagedElement Mandatory The (CIFSShare or NFSShare) FileShare used for exporting an element.

SettingData Mandatory A Setting that specifies possible configurations of the FileShare. In this
version, we default this to isCurrent="true".

Table 30 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.
84

 File Export Manipulation Subprofile

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049
5.7.6 CIM_FileStorage (Subelement)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained
NAS System.

Table 31 describes class CIM_FileStorage (Subelement).

5.7.7 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Name Mandatory This shall be an opaque string that uniquely identifies the path to the
directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is useful when
importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in the Health and Fault
Management Clause.

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

Table 31 - SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)

Properties Flags Requirement Description & Notes

PartComponent Mandatory The file or directory that is made available for export.

GroupComponent Mandatory The local filesystem that contains the exported file or directory.

Table 30 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 85

File Export Manipulation Subprofile

1050

1051

1052

1053

1054
1055

1056

1057

1058

1059

1060

1061
Table 32 describes class CIM_HostedService.

5.7.8 CIM_HostedShare

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 33 describes class CIM_HostedShare.

5.7.9 CIM_LogicalFile (Subelement)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained
NAS System.

Table 34 describes class CIM_LogicalFile (Subelement).

Table 32 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting Computer System.

Dependent Mandatory The FileExportService.

Table 33 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile.

Dependent Mandatory The CIFS or NFS share that is hosted by a Computer System.

Antecedent Mandatory The Computer System that hosts a FileShare. It may be any system, but
the system shall have Dedicated=16 (File Server).

Table 34 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory CIM Class of the Computer System that hosts the filesystem of this File.

CSName Mandatory Name of the Computer System that hosts the filesystem of this File.

FSCreationClassName Mandatory CIM Class of the LocalFileSystem on the Computer System that contains
this File.

FSName Mandatory Name of the LocalFileSystem on the Computer System that contains this
File.
86

 File Export Manipulation Subprofile

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073
1074

1075
5.7.10 CIM_NFSShare (Exported File Share)

The CIM_NFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.
Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 35 describes class CIM_NFSShare (Exported File Share).

5.7.11 CIM_SAPAvailableForFileShare

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

CreationClassName Mandatory CIM Class of this instance of LogicalFile.

Name Mandatory Name of this LogicalFile.

Table 35 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section 4.7.7 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.7.7 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.7 CIM_FileShare
(Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.7 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Table 34 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 87

File Export Manipulation Subprofile

1076

1077
1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088
Table 36 describes class CIM_SAPAvailableForFileShare.

5.7.12 CIM_ServiceAffectsElement

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 37 describes class CIM_ServiceAffectsElement.

5.7.13 CIM_SettingsDefineCapabilities (Pre-defined)

Created By: Static_or_External
Modified By: External
Deleted By: External
Requirement: Optional

Table 38 describes class CIM_SettingsDefineCapabilities (Pre-defined).

Table 36 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare

Properties Flags Requirement Description & Notes

FileShare Mandatory The element that is made available through a SAP. In the File Export
subprofile, these are (CIFSShare or NFSShare) FileShares configured for
either export.

AvailableSAP Mandatory The ProtocolEndpoint that is available to this (CIFSShare or NFSShare)
FileShare. This shall be 4200 (NFS) or 4201 (CIFS).

Table 37 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the element. We allow
Other to support vendor extensions. The standard values are 1 (Other)
and 5 (Manages).

OtherElementEffectsDescr
iptions

Mandatory A description of other element effects that this association might be
exposing.

AffectedElement Mandatory The (CIFSShare or NFSShare) FileShare.

AffectingElement Mandatory The FileExportService.

Table 38 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory

ValueRole Mandatory

ValueRange Mandatory
88

 File Export Manipulation Subprofile

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101
5.7.14 CIM_SharedElement

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 39 describes class CIM_SharedElement.

5.7.15 SNIA_ElementCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 40 describes class SNIA_ElementCapabilities (FES Capabilities).

5.7.16 SNIA_ExportedFileShareCapabilities (FES Capabilities)

GroupComponent Mandatory An Exported FileShare Capabilities element that is defined by a collection
of ExportedFileShareSetting Settings.

PartComponent Mandatory A Exported FileShare Setting that provides a point or a partial definition for
a Exported FileShare Capabilities element.

Table 39 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is sharing a directory or file through a FileShare
alter ego.

SameElement Mandatory The (CIFSShare or NFSShare) FileShare that is the alter ego for a
directory or file in a LocalFileSystem.

Table 40 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)

Properties Flags Requirement Description & Notes

Characteristics Mandatory If this array enum includes the value mapped to "Default", it indicates that
the ExportedFileShareCapabilities element identified by this association is
the default to be used for any extrinsic method of the associated
FileExportService element.

Capabilities Mandatory The FileExportCapabilities. The FileSharingProtocol in these capabilities
shall be 2 (NFS), 3 (CIFS), 4 (DAFS), 5 (WebDAV), 6 (HTTP) or 7 (FTP).

ManagedElement Mandatory The FileExportService.

Table 38 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 89

File Export Manipulation Subprofile

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 41 describes class SNIA_ExportedFileShareCapabilities (FES Capabilities).

5.7.17 SNIA_ExportedFileShareSetting (FileShare Setting)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 41 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES Capabilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a capability of a File Export Service.

ElementName Mandatory A provider supplied user-Friendly Name for this Capabilities element.

FileSharingProtocol Mandatory This identifies the single file sharing protocol (e.g., NFS or CIFS) that this
Capabilities represents.

ProtocolVersions Optional An array listing the versions of the protocol specified by the
FileSharingProtocol property. A NULL value or entry indicates support for
all versions of this protocol.

 At this point there is no standard mechanism for naming versions of CIFS
or NFS, so this is being made optional. If the property is NULL, all versions
of the protocol are supported.

SupportedProperties Mandatory This is the list of configuration properties (of ExportedFileShareSetting)
that are supported for specification at creation time by this Capabilities
element.

Properties that can appear in this array are: "DefaultReadWrite" ("2"),
"DefaultExecute" ("3"), "DefaultUserId" ("4"), "RootAccess" ("5"),
"WritePolicy" ("6"), "AccessPoints" ("7"), and "InitialEnabledState" ("8").

CASupported Optional This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel IO, this
feature is somewhat analogous to capabilities available in NFSv4.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a ExportedFileShareSetting
that is a supported variant of a ExportedFileShareSetting passed in as an
embedded IN parameter TemplateGoalSettings[0]. The method returns
the supported ExportedFileShareSetting as an embedded OUT parameter
SupportedGoalSettings[0].
90

 File Export Manipulation Subprofile

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124
Table 42 describes class SNIA_ExportedFileShareSetting (FileShare Setting).

Table 42 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique ID for the Setting.

ElementName Mandatory A client-defined user-friendly name for the Setting.

FileSharingProtocol Optional The file sharing protocol supported by this share. NFS (2) and CIFS (3)
are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing protocol. A share
may support multiple versions of the same protocol. A NULL value or a
NULL entry indicates support for all versions.

 At this point there is no standard mechanism for naming versions of CIFS
or NFS, so this is being made optional.

InitialEnabledState N Optional This indicates the enabled/disabled states initially set for a created
FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3" ("Disabled"), "7" ("In
Test"), "8" ("Deferred") or "9" ("Quiesce")

 Note: We need to rethink the usage of this property once the file share
has been created. Maybe it should apply to when the file share is re-
activated when the share or system is rebooted after a shutdown. With the
current definition, neither this nor OtherEnabledState make sense.

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is "1" ("Other").

DefaultUserIdSupported N Optional Indicates whether the associated FileShare will use a default user id to
control access to the share if the id of the importing client is not provided.

 Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Valid values are "2" ("No Default User Id"), "3" ("System-Specified Default
User Id") or "4" ("Share-Specified Default User Id").

RootAccess N Optional Indicates whether the associated FileShare will support default access
privileges to administrative users from specified hosts.

 Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root Access").

AccessPoints N Optional An enumerated value that specifies the service access points that are
available to this FileShare element by default (to be used by clients for
connections). Any ServiceAccessPoint elements that actually connect to
this FileShare element will be associated to it by a
CIM_SAPAvailableForFileShare association.

 Note: The resulting access privileges shall be surfaced using the
Authorization subprofile. The default or built-in access points can always
be overridden by the privileges explicitly defined through the Authorization
subprofile.

 Valid values are "2" ("None"), "3" ("Service Default"), "4" ("All") or "5"
("Named Points").

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

DefaultReadWrite N Optional Not Specified in this version of the Profile.

DefaultExecute N Optional Not Specified in this version of the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 91

File Export Manipulation Subprofile

1125
5.7.18 SNIA_ExportedFileShareSetting (Pre-defined)

Created By: Static_or_External
Modified By: External
Deleted By: External
Requirement: Optional

Table 43 describes class SNIA_ExportedFileShareSetting (Pre-defined).

ExecuteSupport N Optional Not Specified in this version of the Profile.

WritePolicy N Optional Not Specified in this version of the Profile.

Table 43 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this Setting element.

ElementName Mandatory A provider supplied user-friendly name for this Setting element.

FileSharingProtocol Mandatory The file sharing protocol to which this Setting element applies. The entries
in the ProtocolVersions property identify the specific versions of the
protocol that are supported. This profile only supports "NFS" (2) and
"CIFS" (3).

ProtocolVersions Optional This array identifies the versions of the file sharing protocol (specified by
FileSharingProtocol) to which this Setting element applies. If NULL, it
indicates support for all versions.

 At this point there is no standard mechanism for naming versions of CIFS
or NFS, so this is being made optional.

InitialEnabledState Optional This indicates the enabled/disabled states initially set for a created
FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3" ("Disabled"), "7" ("In
Test"), "8" ("Deferred") or "9" ("Quiesce").

OtherEnabledState Optional A vendor-specific description of the initial enabled state of a created
fileshare if InitialEnabledState=1("Other").

DefaultUserIdSupported Optional Indicates whether a FileShare created or modified by using this Setting
element will use a default user id to control access to the share if the id of
the importing client is not provided.

 Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

 Valid values are "2" ("No Default User Id"), "3" ("System-Specified Default
User Id") or "4" ("Share-Specified Default User Id").

RootAccess Optional Indicates whether a FileShare created or modified by using this Setting
element will support default access privileges to administrative users from
specific hosts specified at creation time.

 Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root Access").

Table 42 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)

Properties Flags Requirement Description & Notes
92

 File Export Manipulation Subprofile

1126

1127

1128

1129

1130

1131
5.7.19 SNIA_FileExportCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

AccessPoints Optional An enumerated value that specifies the service access points that are
available to a FileShare created or modified by using this Setting element
by default (to be used by clients for connections). These default access
points can always be overridden by the privileges explicitly defined by a
supported authorization mechanism(s). Any ServiceAccessPoints that
actually connect to this share will be associated to it by
CIM_SAPAvailableForFileShare.

 Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

 Valid values are "2" ("None"), "3" ("Service Default"), "4" ("All") or "5"
("Named Points").

CASupported Optional This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel IO, this
feature is somewhat analogous to capabilities available in NFSv4.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

DefaultReadWrite Optional Indicates the default privileges that are supported for read and write
authorization when creating or modifying a FileShare using this Setting
element.

 Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Not Specified in this version of the Profile.

DefaultExecute Optional Indicates the default privileges that are supported for execute
authorization when creating or modifying a FileShare using this Setting
element.

 Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Not Specified in this version of the Profile.

ExecuteSupport Optional Indicates if the sharing mechanism provides specialized support for
executing a shared element when creating or modifying a FileShare using
this Setting element (for instance, does it provide paging support for text
pages).

Not Specified in this version of the Profile.

WritePolicy Optional Indicates whether writes through a FileShare (created or modified by using
this Setting element) to the shared element will be handled synchronously
or asynchronously by default.

 This policy may be overridden or surfaced using the Policy subprofile.

Not Specified in this version of the Profile.

Table 43 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 93

File Export Manipulation Subprofile

1132

1133

1134

1135

1136
Table 44 describes class SNIA_FileExportCapabilities (FES Configuration).

5.7.20 SNIA_FileExportService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 44 - SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configuration)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the capabilities of a File Export Service.

ElementName Mandatory A provider supplied user-friendly name for this Capabilities element.

FileSharingProtocol Mandatory An array listing all the protocols for file sharing supported by the
FileExportService represented by this FileExportCapabilities element.
Duplicate entries are permitted because the corresponding entry in the
ProtocolVersions array property indicates the supported version of the
protocol.

 Each entry must correspond to an ExportedFileShareCapabilities element
associated via ElementCapabilities to the FileExportService -- the
FileSharingProtocol and ProtocolVersion properties of that element must
match the entry.

ProtocolVersions Optional An array listing all the versions of the file sharing protocol specified in the
corresponding entry of the FileSharingProtocol array property. A NULL
entry indicates support for all versions of the protocol.

 At this point there is no standard mechanism for naming versions of CIFS
or NFS, so this property is optional in this subprofile.

SupportedSynchronousMe
thods

N Mandatory An array listing the extrinsic methods of the FileExportService that can be
called synchronously.

 Note: Every supported method shall be listed either in this property or in
the SupportedAsynchronousMethods array property.

SupportedAsynchronousM
ethods

N Mandatory An array listing the extrinsic methods of the FileExportService that can be
called synchronously.

 Note: Every supported method shall be listed either in this property or in
the SupportedSynchronousMethods array property.

InitialEnabledState Optional This represents the state of initialization of a FileShare on initial creation.

CASupported Optional This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel IO, this
feature is somewhat analogous to capabilities available in NFSv4.
94

 File Export Manipulation Subprofile

1137

1138

1139

1140

1141

1142
Table 45 describes class SNIA_FileExportService.

EXPERIMENTAL

Table 45 - SMI Referenced Properties/Methods for SNIA_FileExportService

Properties Flags Requirement Description & Notes

ElementName Mandatory A provider supplied user-friendly name for this Service.

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the
Service.

SystemName Mandatory The name of the Computer System hosting the Service.

CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

SNIA_SNIA_CreateExportedShare() Mandatory Create a FileShare element configured for exporting a file or
directory as a share.

SNIA_ModifyExportedShare() Mandatory Modify the configuration of a FileShare element setup to export
a file or directory as a share.

ReleaseExportedShare() Mandatory Delete the FileShare element that is exporting a file or directory
as a share, thus releasing that element.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 95

File Export Manipulation Subprofile

1143
96

1

2

3

4

5

6

7

8

9

10

11
12
13
14
15
16
17

18
19

20
21
22
23
24
25
26
27
28

29

30

31

32

33

34

35
36
37
EXPERIMENTAL

6 File Server Manipulation Subprofile

6.1 Synopsis
Profile Name: File Server Manipulation

Version: 1.5.0

Organization: SNIA

CIM schema version: 2.18

Central Class: FileServerConfigurationService

Scoping Class: ComputerSystem

6.2 Description

6.2.1 Overview

The File Server Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It
makes use of elements of the filesystem subprofiles and supports creation and deletion of Virtual File
Servers and the modification of both virtual and non-virtual File Servers. A number of other profiles and
subprofiles also make use of elements of the filesystem subprofile and will be referred to in this
specification as “filesystem-related profiles” -- these include, but are not limited to, the filesystem
subprofile, the Filesystem Manipulation Subprofile, the File Export Subprofile, the NAS Head Profile, the
Self-Contained NAS Profile.

In this release of SMI-S, the autonomous profiles that use the File Server Manipulation Subprofile are the
NAS Head and Self-Contained NAS Profiles.

A File Server is a computer system that is attached to a network and provides resources to allow client
systems access to filesystem resources in the form of CIFS Shares and/or NFS Exports. A File Server
can be either a physical computer system or can be a virtual system that is hosted by a physical computer
system. A physical File Server can neither be created nor deleted but may have properties that can be
modified via configuration actions. A virtual File Server can be created, deleted, and modified via
configuration actions. The number of virtual File Servers that may be created is system dependent. This
profile models both physical and virtual File Servers. Extrinsic methods are provided for the creation and
deletion of virtual File Servers. Extrinsic methods are also provide for the modification of properties in
both physical and virtual File Servers.

This profile supports viewing and configuring the following property “areas” of a File Server:

• NFS Exports

• CIFS Shares

• Ethernet port properties including VLAN tagging.

• DNS Settings

• NIS Settings

A given implementation may choose to support a strict read only view of the File Server configuration or
may provide any combination of capabilities for modifying any and all of the above property areas for the
File Server.

File Server Manipulation Subprofile

38
39
40
41

42
43
44
45
46

47

48

49
50
51
Throughout this subprofile, the term File Server will be synonymous for “ComputerSystem with
Dedicated[]=”FileServer”. The term virtual File Server describes a File Server that has its “USAGE”
property set to “Virtual File Server”. A non-virtual (physical) File Server cannot have its “USAGE” property
set to “Virtual File Server”.

The profile models a File Server from a “read only” perspective and a “configuration” perspective. The
read only perspective defines the objects and attributes that describe a File Server instance. The
configuration perspective defines the permitted actions on the File Server for creating, deleting, and
modifying instances. By providing these two perspectives, this profile takes the place of having two
separate profiles.

6.2.2 Instance Diagrams

6.2.2.1 File Server classes and associations (read-only view)
Figure 8: "File Server Classes and Associations (Read only view)" illustrates the constructs that are
involved in defining a File Server. This summarizes the “read only” view of the classes and associations
for this subprofile.
98

 File Server Manipulation Subprofile

52

53
54
55

56
57
58
59
60
Figure 8 - File Server Classes and Associations (Read only view)

The File Server is modeled as a ComputerSystem whose Dedicated property is set to “FileServer” (16).
There are two types of File Servers supported: Virtual File Servers and non-Virtual File Servers (which
would be a physical File Server).

A Virtual File Server will have a HostedDependency association on another top level Computer System
such as a NAS Head or Self-Contained NAS for example. This top level ComputerSystem has a
HostedService association with FileServerConfigurationService, which provides the anchor point for the
FileServerConfigurationCapabilities and FileServerCapabilities. These capabilities identify the level of
support for File Servers by an implementation. For example, if the SynchronousMethodsSupported and
SMI-S 1.6.1 Revision 6 SNIA Technical Position 99

File Server Manipulation Subprofile

61
62

63
64
65

66
67
68
69

70
71
72

73
74
75
76
77
78

79
80
81
82

83
84
85

86
87

88
89

90
91
92
AsynchronousMethodsSupported are empty or NULL, then the implementation is a read-only
implementation of the profile.

A File Server can also be the top level ComputerSystem. In that case, the Dedicated array would contain
“FileServer” and either “NAS Head” or “Self-contained NAS”. In this case, the File Server would be
considered a non-Virtual File Server.

A Virtual File Server is hosted on a ComputerSystem. This may be a physical control unit or some other
hardware system that has the EthernetPort through which the File Server will serve files via CIFS and/or
NFS. The HostedDependency association is used to relate the Virtual File Server with the hosting
ComputerSystem.

A non-Virtual File Server shall not have a HostedDependency association with another ComputerSystem.
Instead, if the File Server ComputerSystem is not the top level system, then it shall have a ComponentCS
association with the top level ComputerSystem.

FileServerSettings captures the settings of the File Server. It has ConcreteComponent associations with
other setting data that capture the File Server’s settings for CIFS, NFS, NIS, DNS, and its IP Interface(s).
The minimal implementation only needs to support the File Server ComputerSystem because the
FileServerSettings is conditionally supported. The FileServerCapabilities contains several booleans that
tell a client the set of File Server related features that an implementation supports. The conditional
associations associated with FileServerSettings are based on the values for these booleans.

The File Server has two separate associations with FileServerSettings. SettingsDefineState is used to
represent the current state of the File Server’s setting data while ElementSettingData is used to capture
the setting data used to initially create or modify the File Server. In the read-only case, there will be no
ElementSettingData association.

NOTE There is only an ElementSettingData between the IPInterfaceSettingData and the IPProtocolEndpoint. The
IPProtocolEndpoint has at most one IPInterfaceSettingData and it represents the settings used to initially create or modify the
IPProtocolEndpoint. Also note that multiple (CIFS or NFS) ProtocolEndpoints may be bound to a single IPProtocolEndpoint.

The NISSettingData and DNSSettingData if present are used to resolve hosts and user names when
authenticating hosts and users.

The implementation can provide either a read-only view of the File Servers or may provide extrinsics for
configuring existing and/or new File Servers.

A client can determine if a read-only implementation is provided by inspecting the two
FileServerConfigurationCapabilities arrays SynchronousMethodsSupported and
AsynchronousmethodsSupported. If they are both empty or null, then the implementation is read-only.
100

 File Server Manipulation Subprofile

93

94
95

96
97
98

99
100
101
102
6.2.2.2 File Server Configuration classes and associations

Figure 9: "File Server Configuration classes and association" illustrates the constructs that are involved
in configuring a File Server.

The top level ComputerSystem has a HostedService association with FileServerConfigurationService that
defines the extrinsics that can be used to manage a File Server. There are 3 methods for managing a File
Server and 3 methods for managing additional IPInterfaces for a given File Server.

FileServerConfigurationCapabilities lists the extrinsics that can be called synchronously or
asychronously. It is associated with the FileServerConfigurationService via the ElementCapabilities
association. It also has several boolean properties that inform clients if the implementation is able to
configure CIFS, NFS, NIS, DNS, and VLAN Tagging.

Figure 9 - File Server Configuration classes and association
SMI-S 1.6.1 Revision 6 SNIA Technical Position 101

File Server Manipulation Subprofile

103
104
105
106
107
108
109

110
111

112
113
114
115
116
117
118
119

120
121
122
123

124
125
126

127
128
129
130
131

132

133

134
135

136
137
138
139

140

141
142
143
In addition to the set of booleans that indicate the set of File Server features supported by the
implementation, FileServerCapabilities also provides one method CreateGoalSettings that can be used to
arrive at a set of viable SettingData instances that can be used for creating or modifying a File Server. It
also is associated with FileServerConfigurationService via ElementCapabilities. It may have associations
with SettingData instances that reflect the Default settings for the File Server. The
SettingsDefineCapabilities association (with ValueRole=”Default”) is used to capture these default
SettingData instances.

Only Virtual File Servers can be created or deleted. Non-Virtual File Servers can have properties
modified, but cannot be deleted.

The extrinsic methods that create Virtual File Servers can take any combination of SettingData instances
that are used to instantiate the File Server. The implementation can remember these initial SettingData
instances via the ElementSettingData association between the File Server and FileServerSettings. After
the File Server is created, the SettingsDefineState association between the File Server and
FileServerSettings defines the actual settings of the File Server. Modifications to either a Virtual or non-
Virtual File Server will be reflected in the SettingData instances associated via the SettingsDefineState
association. A non-Virtual File Server may not have SettingData instances associated via the
ElementSettingData association.

The FileServerConfigurationCapabilities instance contains several booleans that indicate if certain
properties of the File Server can be configured or modified. For those properties that cannot be
configured/modified, attempting to instantiate or modify them via a creation/modification extrinsic shall be
an error.

If neither CIFSSettingData nor NFSSettingData are specified at creation time, and the implementation
supports either or both of them, then instances shall be created by the implementation based on the
settings in FileServerCapabilities. The “Enabled” property of the instances created will be set to “false”.

When a Virtual File Server is created or when it has additional IPInterfaces associated with it, an instance
of NetworkVLAN may be created if VLAN tagging should be associated with the IPInterface.
NetworkVLAN instances are associated with the specific IPProtocolEndpoint to capture the VLAN tag to
be used when doing I/O on that IP interface. The properties VLANid and MTU in IPInterfaceSettingData
specify the values to use when creating the NetworkVLAN instance.

6.2.3 Health and Fault Management Consideration

6.2.3.1 OperationalStatus for File Server ComputerSystem
This section describes the operational status for Virtual File Servers. Non-Virtual File Server operation
status information is covered in both the NAS Head and Self-Contained NAS Subprofiles.

A File Server’s operational status will be influenced by the operational status of the ComputerSystem that
is hosting it via HostedDependency. For example, if the hosting ComputerSystem is “Stopped”, then the
status of the File Server will be “Stopped”. Providers must take this into account when formulating the
status of the File Server.

Table 46 describes the operational status for File Server ComputerSystem.
102

 File Server Manipulation Subprofile

144

145

146

147

148

6.2.4 Cascading Considerations

Not Applicable.

6.3 Supported Profiles, Subprofiles, and Packages

Table 47 describes the supported profiles for File Server Manipulation.

Table 46 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description

2 “OK” The File Server is running with good status

3 “Degraded” The File Server is operating in a degraded mode. This could be due to the
health state of some component of the ComputerSystem, due to load by other
applications, or due to the health state of backend or front-end network
interfaces.

4 “Stressed” The File Server resources are stressed

5 “Predictive Failure” The File Server might fail because some resource or component is predicted
to fail

6 “Error” An error has occurred causing the File Server to become unavailable.
Operator intervention through SMI-S to restore the service may be possible.

6 “Error” An error has occurred causing the File Server to become unavailable.
Automated recovery may be in progress.

7 “Non-recoverable Error” The File Server is not functioning. Operator intervention through SMI-S will not
fix the problem.

8 “Starting” The File Server is in process of initialization and is not yet available
operationally.

 9 “Stopping” The File Server is in process of stopping, and is not available operationally.

10 “Stopped” The File Server cannot be accessed operationally because it is stopped -- if
this did not happened because of operator intervention or happened in real-
time, the OperationalStatus would have been “Lost Communication” rather
than “Stopped”.

11 “In Service” The File Server is offline in maintenance mode, and is not available
operationally.

13 “Lost Communications” The File Server cannot be accessed operationally -- if this happened because
of operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The File Server is stopped but in a manner that may have left it in an
inconsistent state.

15 “Dormant” The File Server is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error” The File Server is in an error state, or may be OK but not accessible, because
a supporting entity is not accessible.

Table 47 - Supported Profiles for File Server Manipulation

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Optional

Job Control SNIA 1.5.0 Optional
SMI-S 1.6.1 Revision 6 SNIA Technical Position 103

File Server Manipulation Subprofile

149

150

151

152
153

154
155
156
157
158
159

160
161
162

163
164
165

166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181

182
183
6.4 Methods of the Profile
This section describes each extrinsic method supported by this profile.

6.4.0.1 FileSystemCapabilities.CreateGoalSettings
This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
Settings.

The client shall pass six array elements in the TemplateGoalSettings parameter and six array elements in
the SupportedGoalSettings parameter. Each array element represents a configurable aspect of a
FileServer. A given array element in index “y” in TemplateGoalSettings will be of the same class/type as
that in array element in index “y” in SupportedGoalSettings. As each array element in both parameters
takes an EmbeddedInstance, this implies that they do not exist in the provider’s implementation but are
the responsibility of the client to create and manage.

Any or all of the TemplateGoalSetting array elements may be the empty string to represent a NULL entry.
This method will return a default CIM_Settings subclass object in SupportedGoalSettings corresponding
to each TemplateGoalSettings array element that is an empty string.

If any of the TemplateGoalSettings array elements specify values that cannot be supported, this method
shall return an appropriate error and should return a best match in the corresponding
SupportedGoalSettings array element.

When providing EmbeddedInstances as input for any of the SupportedGoalSettings array elements, the
instance should specify a previously returned CIM_Setting that the implementation could support. On
output, this same array element specifies a new CIM_Setting that the implementation can support. If the
output array element is identical to the input array element, both client and implementation may conclude
that this is the best match for that particular SupportedGoalSettings array element. If the output array
elements do not match the corresponding TemplateGoalSettings array elements and if any of the input
SupportedGoalSettings array elements do not match the output array elements provided in
SupportedGoalSettings, then the method must return "Alternative Proposed". If any of the output array
elements are empty strings (representing the fact that no valid CIM_Setting could be found), the method
must return an “Failed”.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. As stated above, to assist the implementation in tracking the progress of the negotiation, the
client may pass previously returned values of SupportedGoalSettings array elements as new input values
of SupportedGoalSettings. The implementation may determine that a step has not resulted in progress if
the input and output values of any SupportedGoalSettings array elements are the same. A client may
infer from the same result that the TemplateGoalSettings array element(s) must be modified.

The array elements in TemplateGoalSettings and SupportedGoalSettings shall have the index -
EmbeddedInstance mappings shown in Table 48.
104

 File Server Manipulation Subprofile

184
 Table 49 details of the method signature and return results.

Table 48 - Array Element Mappings for TemplateGoalSettings and SupportedGoalSettings

Array Indice EmbeddedInstance

0 SNIA_FileServerSettings

1 SNIA_IPInterfaceSettingData

2 SNIA_CIFSSettingData

3 SNIA_NFSSettingData

4 SNIA_NISSettingData

5 CIM_DNSSettingData

Table 49 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string This contains an array of 6 elements, each of which being an
EmbeddedInstance of a CIM_Setting subclass.

Each of the array elements shall contain either an empty string to
represent a “NULL” entry, or shall contain an EmbeddedInstance.

Each array element contains a specific CIM_Setting subclass as
follows:

0: EmbeddedInstance ("SNIA_FileServerSettings")

1: EmbeddedInstance ("SNIA_IPInterfaceSettingData")

2: EmbeddedInstance ("SNIA_CIFSSettingData")

3: EmbeddedInstance ("SNIA_NFSSettingData")

4: EmbeddedInstance ("SNIA_NISSettingData")

5: EmbeddedInstance ("CIM_DNSSettingData")

SupportedGoalSettings[] INOUT string This contains an array of 6 elements, each of which being an
EmbeddedInstance of a CIM_Setting subclass.

On input, each of the array elements shall contain an either an
empty string to represent a “NULL” entry, or shall contain an
EmbeddedInstance. If it contains an EmbeddedInstance, then this
instance specifies a previously returned CIM_Setting that the
implementation could support. On output, it specifies a new
CIM_Setting that the implementation can support.

Each array element contains a specific CIM_Setting subclass as
follows:

0: EmbeddedInstance ("SNIA_FileServerSettings")

1: EmbeddedInstance ("SNIA_IPInterfaceSettingData")

2: EmbeddedInstance ("SNIA_CIFSSettingData")

3: EmbeddedInstance ("SNIA_NFSSettingData")

4: EmbeddedInstance ("SNIA_NISSettingData")

5: EmbeddedInstance ("CIM_DNSSettingData")

Normal Return
SMI-S 1.6.1 Revision 6 SNIA Technical Position 105

File Server Manipulation Subprofile

185

186
187
188

189
190
191

192
193
194
195
196
197
198

199
200
201
202

203
204

205
6.4.0.2 Signature and Parameters of FileServerConfigurationService.CreateFileServer
This extrinsic creates a new FileServer. The method takes several “goal” parameters that represent
different configurable aspects of the FileServer. Each of these parameters can be NULL, an empty string,
or will contain an EmbeddedInstance.

If a given parameter is NULL or an empty string, a default instance will be selected by the provider using
the corresponding element associated to the FileServerConfigurationService by the
DefaultElementCapabilities association. This element that is used will be returned in the parameter.

When creating a new FileServer, the client can decide to what degree the new FileServer will be
configured by providing the parameters of those aspects that should be configured. For example, to
create a FileServer with a minimum configuration, the client could provide just the ElementName. The
newly created FileServer will take on the configuration defaults as specified by the elements associated
with FileServerService via the SettingsDefineCapabilities association (with ValueRole=”Default”). Later,
the client may modify any of these default settings via the ModifyFileServer and ModifyIPInterface
methods.

When creating a new FileServer, the client may associate a single IP Interface with the FileServer. If a
client wishes to associate more than one IP Interface with the FileServer, the AddIPInterface method
should be used. It allows the client to specify the additional IP information, Hosting ComputerSystem, and
EthernetPort for the new IP Interface.

A client may change an existing IP Interface by using the ModifyIPInterface method. It allows the client to
modify the IP Interface, Hosting ComputerSystem, and/or EtheretPort.

Table 50 details the parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer.

Status uint32 ValueMap{}, Values{}

"Success",
“Not Supported”,
“Unknown”,
"Failed",
"Timeout",
“Invalid Parameter”,
"Alternative Proposed"

Error Returns

Invalid Property Value OUT,
Indication

CIM_Error A single named property of an instance parameter (either reference
or embedded) has an invalid value

Invalid Combination of Values OUT,
Indication

CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

Table 50 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the File Server being created.
The value shall be stored in the 'ElementName' property for the
created element. This parameter shall not be NULL or the
empty string.

Job OUT, REF CIM_Concrete
Job

Reference to the job (may be null if job completed).

Table 49 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes
106

 File Server Manipulation Subprofile
TheElement OUT, REF CIM_Compute
rSystem

The newly created FileServer.

FileServerSettings IN, OUT, EI,
NULL allowed

string EmbeddedInstance ("SNIA_FileServerSettings")

The FileServerSettings for the newly created FileServer.

If NULL or the empty string, a default FileServerSettings shall
be used and returned on output.

IPInterfaceSettingData IN,OUT, EI,
NULL allowed

string EmbeddedInstance ("CIM_IPInterfaceSettingData")

The IPInterfaceSettingData that specifies the IP Interface that
the FileServer will use for servicing all CIFS and NFS requests.

If NULL or the empty string, a default IPInterfaceSettingData
shall be used and returned on output.

CIFSSettingData IN,OUT, EI,
NULL allowed

string EmbeddedInstance ("SNIA_CIFSSettingData")

The CIFSSettingData that specifies the CIFS settings for the
FileServer being created.

If this is NULL, the FileServer shall not have CIFS enabled and
the resulting CIFSSettingData instance created shall have its
“Enabled” property set to false. The CIFSSettingData instance
will be returned on output.

NFSSettingData IN,OUT, EI,
NULL allowed

string EmbeddedInstance ("SNIA_NFSSettingData")

The NFSSettingData that specifies the NFS settings for the
FileServer being created.

If this is NULL, the FileServer shall not have NFS enabled and
the resulting NFSSettingData instance created shall have its
“Enabled” property set to false. The NFSSettingData instance
will be returned on output.

DNSSettingData IN, EI, NULL
allowed,

string EmbeddedInstance ("CIM_DNSSettingData")

The DNSSettingData that specifies the DNS settings for the
FileServer being created.

If this is NULL, the FileServer shall not have access to a DNS
server and a DNSSettingData instance shall not be instantiated
for the FileServer.

NISSettingData IN, EI, NULL
allowed,

string EmbeddedInstance ("CIM_DNSSettingData")

The NISSettingData that specifies the NIS settings for the
FileServer being created.

If this is NULL, the FileServer shall not have access to a NIS
server and a NISSettingData instance shall not be instantiated
for the FileServer.

NASComputerSystem IN, REF CIM_Compute
rSystem

Either the NAS Head or Self-contained NAS system that the
FileServer shall be a component system of.

HostingComputerSystem IN, REF CIM_Compute
rSystem

The HostingComputerSystem identifies the ComputerSystem
that will host the FileServer.

EthernetPort IN, REF CIM_Ethernet
Port

The EthernetPort identifies the hardware port that the File
Server will use for IP mount requests.

Normal Return

Table 50 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 107

File Server Manipulation Subprofile

206

207
208
209

210
6.4.0.3 Signature and Parameters of FileServerConfigurationService.ModifyFileServer
This extrinsic modifies the settings for an existing FileServer. All settings except IPInterfaceSettingData,
Hosting ComputerSystem, and EthernetPort may be modified. To modify the IPInterfaceSettingData,
Hosting ComputerSystem, and/or EthernetPort properties, use the ModifyIPInterface extrinsic.

Table 51 details the parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer.

Status uint32 "Job Completed with No Error",

"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property Value OUT,
Indication

CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination of Values OUT,
Indication

CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

Table 51 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter Name Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_ComputerS
ystem

The FileServer that is to be modified.

Job OUT, REF CIM_ConcreteJo
b

Reference to the job (may be null if job completed).

ElementName IN, NULL
allowed

string An end user relevant name for the File Server being modified.

FileServerSettings IN, NULL
allowed

string EmbeddedInstance ("SNIA_FileServerSettings")

If non-NULL, this specifies the new FileServerSettings for the
FileServer

If NULL, then the FileServerSettings of the FileServer shall not
be modified.

CIFSSettingData IN, NULL
allowed,

string EmbeddedInstance ("SNIA_CIFSSettingData")

IF non-NULL, this specifies the new CIFS settings for the
FileServer. If the “Enabled” property set to false, CIFS will be
disabled for the FileServer.

If NULL, then the CIFS setting of the FileServer shall not be
modified.

NFSSettingData IN, NULL
allowed,

string EmbeddedInstance ("SNIA_NFSSettingData")

IF non-NULL, this specifies the new NFS settings for the
FileServer. If the “Enabled” property set to false, NFS will be
disabled for the FileServer.

If NULL, then the NFS setting of the FileServer shall not be
modified.

Table 50 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes
108

 File Server Manipulation Subprofile

211

212

213
6.4.0.4 Signature and Parameters of FileServerConfigurationService.DeleteFileServer
This extrinsics deletes an existing FileServer.

Table 52 describes the parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer.

DNSSettingData IN, NULL
allowed,

string EmbeddedInstance ("CIM_DNSSettingData")

IF non-NULL, this specifies the new DNS settings for the
FileServer.

If NULL, then the DNS setting of the FileServer shall not be
modified.

NISSettingData IN, NULL
allowed,

string EmbeddedInstance ("CIM_DNSSettingData")

IF non-NULL, this specifies the new NIS settings for the
FileServer.

If NULL, then the NIS setting of the FileServer shall not be
modified.

Normal Return

Status uint32 "Job Completed with No Error",

"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

CannotModify OUT, Indication CIM_Error The FileServer is in a state in which it cannot be modified.

Table 52 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer

Parameter
Name

Qualifier Type Description & Notes

FileServer IN,REF CIM_ComputerS
ystem

The FileServer that is to be deleted.

Job OUT, REF CIM_ConcreteJo
b

Reference to the job (may be null if job completed).

Normal Return

Status uint32 "Job Completed with No Error",

"Failed",

"Method Parameters Checked - Job Started"

Error Returns

CannotDelete OUT, Indication CIM_Error The FileServer is in a state in which it cannot be deleted.

Table 51 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter Name Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 109

File Server Manipulation Subprofile

214

215
216
217

218

219

220
221

222
223
6.4.0.5 Signature and Parameters of FileServerConfigurationService.AddIPInterface
This extrinsic adds a new IPInterface to an existing FileServer. The FileServer will respond to requests
issued to this new IP address. The number of IP addresses that a FileServer can respond on is system
dependent and the use of CreateGoalSettings to verify a new IP address is recommended.

Table 53 describes the parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface.

6.4.0.6 Signature and Parameters of FileServerConfigurationService.ModifyIPInterface
This extrinsic modifies an existing IPInterface associated with a FileServer. The IPInterfaceSettingData,
the Hosting ComputerSystem, and/or the EthernetPort may be modified.

Table 54 describes the parameters for Extrinsic Method
FileServerConfigurationService.ModifyIPInterface.

Table 53 - Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface

Parameter
Name

Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_ComputerS
ystem

The FileServer to which the IPInterface will be added.

Job OUT, REF CIM_ConcreteJo
b

Reference to the job (may be null if job completed).

IPInterfaceSettingDa
ta

IN string EmbeddedInstance ("CIM_IPInterfaceSettingData")

The IPInterfaceSettingData that specifies the settings of the IP
Interface to be added to the FileServer.

HostingComputerSy
stem

IN, REF CIM_ComputerS
ystem

The ComputerSystem that will host the File Server for the new
IP Interface

EthernetPort IN, REF CIM_EthernetPo
rt

The EthernetPort identifies the hardware port that the File
Server will use for mount requests on the new IPAddress.

Normal Return

Status uint32 "Job Completed with No Error",

"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

Table 54 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyIPInterface

Parameter Name Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_ComputerS
ystem

The FileServer from which the IPInterface will be modified.

IPInterfaceSettingData IN,REF SNIA_IPInterfac
eSettingData

The IPInterfaceSettingData that is to be modified.

This is used to identify which IPInterfaceSettingData instance to
modify.
110

 File Server Manipulation Subprofile

224

225

226
227
6.4.0.7 Signature and Parameters of FileServerConfigurationService.DeleteIPInterface
This extrinsic deletes an existing IPInterface associated with a FileServer.

Table 55 describes the parameters for Extrinsic Method
FileServerConfigurationService.DeleteIPInterface.

Job OUT, REF CIM_ConcreteJo
b

Reference to the job (may be null if job completed).

NewIPInterfaceSettingDa
ta

IN, NULL
allowed

string EmbeddedInstance ("CIM_IPInterfaceSettingData")

If non-NULL, the IPInterfaceSettingData that will replace an
existing IPInterfaceSettingData instance in the FileServer.

If NULL, then the IPInterfaceSettingData will not be modified.

HostingComputerSystem IN, REF, NULL
allowed

CIM_ComputerS
ystem

If non-NULL, the new ComputerSystem that will host the
IPInterface.

If NULL, the current ComputerSystem hosting the IPInterface
will remain unchanged.

EthernetPort IN, REF, NULL
allowed

CIM_EthernetPo
rt

If non-NULL, the EthernetPort identifies the new hardware port
for the IPInterface.

If NULL, the current EthernetPort setting will not be changed.

Normal Return

Status uint32 "Job Completed with No Error",

"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Table 55 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteIPInterface

Parameter
Name

Qualifier Type Description & Notes

FileServer IN,OUT,REF CIM_ComputerS
ystem

The FileServer from which the IPInterface will be deleted.

IPInterfaceSettingDa
ta

IN,REF SNIA_IPInterfac
eSettingData

The IPInterfaceSettingData that is to be deleted.

This is used to identify which IPInterfaceSettingData instance to
delete from the FileServer.

Job OUT, REF CIM_ConcreteJo
b

Reference to the job (may be null if job completed).

Normal Return

Status uint32 "Job Completed with No Error",

"Failed",

"Method Parameters Checked - Job Started"

Table 54 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyIPInterface

Parameter Name Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 111

File Server Manipulation Subprofile

228

229

230

231

232

233

234
6.5 Client Considerations and Recipes
Not defined in this standard. (Under consideration for a future standard.)

6.6 Registered Name and Version
File Server Manipulation version 1.6.1 (Component Profile)

CIM Schema Version: 2.18

6.7 CIM Elements
Table 56 describes the CIM elements for File Server Manipulation.

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Table 56 - CIM Elements for File Server Manipulation

Element Name Requirement Description

6.7.1 CIM_ConcreteComponent (FileServerSettings to
CIFSSettingData)

Conditional Conditional requirement: CIFS shares are supported by
the provider. Represents the association between a
FileServerSettings and CIFSSettingData.

6.7.2 CIM_ConcreteComponent (FileServerSettings to
DNSSettingData)

Conditional Conditional requirement: The DNSSettingData is
supported by the provider. Represents the association
between a FileServerSettings and DNSSettingData.

6.7.3 CIM_ConcreteComponent (FileServerSettings to
IPInterfaceSettingData)

Conditional Conditional requirement: There is an instance of
IPInterfaceSettingData. Represents the association
between a FileServerSettings and IPInterfaceSettingData.

6.7.4 CIM_ConcreteComponent (FileServerSettings to
NFSSettingData)

Conditional Conditional requirement: NFS Exports are supported by
the provider. Represents the association between a
FileServerSettings and NFSSettingData.

6.7.5 CIM_ConcreteComponent (FileServerSettings to
NISSettingData)

Conditional Conditional requirement: NIS (Network Information
System)is supported by the provider. Represents the
association between a FileServerSettings and
NISSettingData.

6.7.6 CIM_DNSSettingData Conditional Conditional requirement: The DNSSettingData is
supported by the provider. This element represents the
DNS setting data to be used by a file server.

6.7.7 CIM_ElementCapabilities
(FileServerConfigurationService to
FileServerCapabilities)

Mandatory This associates the File Server Configuration Service to
the Capabilities element that represents the capabilities
supported by all File Servers.

6.7.8 CIM_ElementCapabilities
(FileServerConfigurationService to
FileServerConfigurationCapabilities)

Mandatory This associates the File Server Configuration Service to
the ConfigurationCapabilities element that represents the
capabilities that it supports.

6.7.9 CIM_ElementSettingData (ComputerSystem
FileServer to FileServerSettings)

Optional Associates a File Server with the FileServerSettings that
were used to initially create the File Server.

Table 55 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteIPInterface

Parameter
Name

Qualifier Type Description & Notes
112

 File Server Manipulation Subprofile
6.7.10 CIM_ElementSettingData (IPInterfaceSettingData
to IPProtocolEndpoint)

Optional The IPProtocolEndpoint associated with the
IPInterfaceSettingData.

6.7.11 CIM_HostedDependency Optional Associates a Virtual File Server to the Computer System
hosting it. This association will not exist for non-Virtual
File Servers.

6.7.12 CIM_HostedService (Hosting Computer System to
FileServerConfigurationService)

Mandatory Associates the FileServerConfigurationService with the
hosting computer system.

6.7.13 CIM_MemberOfCollection (The
IPProtocolEndpoint to NetworkVLAN.)

Conditional Conditional requirement: The NetworkVLAN is supported
by the provider. Associates an IPProtocolEndpoint to
NetworkVLAN.

6.7.14 CIM_NetworkVLAN Conditional Conditional requirement: The NetworkVLAN is supported
by the provider. This element represents the virtual LAN
(VLAN) tag settings for an IP interface. In the context of a
file server, it represents the VLAN information.

6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData) Conditional Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates CIFSSettingData with
FileServerCapabilities.

6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData) Conditional Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates DNSSSettingData
with FileServerCapabilities.

6.7.17 CIM_SettingsDefineCapabilities
(FileServerSettings)

Conditional Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates FileServerSettings
with FileServerCapabilities.

6.7.18 CIM_SettingsDefineCapabilities
(IPInterfaceSettingData)

Conditional Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates
IPInterfaceSettingData with FileServerCapabilities.

6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData) Conditional Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates NFSSSettingData
with FileServerCapabilities.

6.7.20 CIM_SettingsDefineCapabilities (NISSettingData) Conditional Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates NISSSettingData with
FileServerCapabilities.

6.7.21 CIM_SettingsDefineState (ComputerSystem
FileServer to FileServerSettings)

Conditional Conditional requirement: The FileServer
ComputerSystem has a FileServerSettings associated
with it. The FileServer's state represented by its
FileServerSettings.

6.7.22 SNIA_CIFSSettingData Conditional Conditional requirement: CIFS shares are supported by
the provider. This class contains the CIFS settings for the
File Server.

6.7.23 SNIA_FileServerCapabilities Mandatory The capabilities of the File Server.

6.7.24 SNIA_FileServerConfigurationCapabilities Mandatory This element represents the management Capabilities of
the File Server Configuration Service. If the two arrays of
extrinsic methods (SynchronousMethodsSupported and
AsynchronousMethodsSupported) are empty, then the
implementation is readonly.

Table 56 - CIM Elements for File Server Manipulation

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 113

File Server Manipulation Subprofile

235

236

237

238

239

240

241

242

243

244

245
6.7.1 CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)

Created By: External
Modified By: Static
Deleted By: External
Requirement: CIFS shares are supported by the provider.

Table 57 describes class CIM_ConcreteComponent (FileServerSettings to CIFSSettingData).

6.7.2 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)

Created By: External
Modified By: Static
Deleted By: External
Requirement: The DNSSettingData is supported by the provider.

6.7.25 SNIA_FileServerConfigurationService Mandatory The File Server Configuration Service provides the
methods to manipulate File Servers.

6.7.26 SNIA_FileServerSettings Conditional Conditional requirement: The FileServer
ComputerSystem has a FileServerSettings associated
with it. This class contains the settings for the File Server.

6.7.27 SNIA_IPInterfaceSettingData Optional This class contains the settings for single IP interface.

6.7.28 SNIA_NFSSettingData Conditional Conditional requirement: NFS Exports are supported by
the provider. This class contains the NFS settings for the
File Server.

6.7.29 SNIA_NISSettingData Conditional Conditional requirement: NIS (Network Information
System)is supported by the provider. This class contains
the NIS settings for the File Server.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_Computer_System AND ANY
SourceInstance.CIM_Computer_System::Dedicated[*] =
16

Optional CQL -Creation of a File Server element.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_Computer_System AND ANY
SourceInstance.CIM_Computer_System::Dedicated[*] =
16

Optional CQL -Deletion of a File Server element.

Table 57 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to CIFS-
SettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings.

PartComponent Mandatory The CIFSSettingData.

Table 56 - CIM Elements for File Server Manipulation

Element Name Requirement Description
114

 File Server Manipulation Subprofile

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262
Table 58 describes class CIM_ConcreteComponent (FileServerSettings to DNSSettingData).

6.7.3 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)

Created By: External
Modified By: Static
Deleted By: External
Requirement: There is an instance of IPInterfaceSettingData.

Table 59 describes class CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData).

6.7.4 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)

Created By: External
Modified By: Static
Deleted By: External
Requirement: NFS Exports are supported by the provider.

Table 60 describes class CIM_ConcreteComponent (FileServerSettings to NFSSettingData).

6.7.5 CIM_ConcreteComponent (FileServerSettings to NISSettingData)

Created By: External
Modified By: Static
Deleted By: External

Table 58 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to DNS-
SettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings.

PartComponent Mandatory The DNSSettingData.

Table 59 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to IPInter-
faceSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings.

PartComponent Mandatory The IPInterfaceSettingData.

Table 60 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NFS-
SettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings.

PartComponent Mandatory The NFSSettingData.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 115

File Server Manipulation Subprofile

263

264

265

266

267

268

269

270

271

272

273

274

275

276
277
Requirement: NIS (Network Information System)is supported by the provider.

Table 61 describes class CIM_ConcreteComponent (FileServerSettings to NISSettingData).

6.7.6 CIM_DNSSettingData

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: The DNSSettingData is supported by the provider.

Table 62 describes class CIM_DNSSettingData.

6.7.7 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 63 describes class CIM_ElementCapabilities (FileServerConfigurationService to
FileServerCapabilities).

Table 61 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NISSet-
tingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerSettings.

PartComponent Mandatory The NISSettingData.

Table 62 - SMI Referenced Properties/Methods for CIM_DNSSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the DNSSettingData.

DomainName Mandatory The DNS domain to use for looking up addresses.

DNSServerAddresses Mandatory The addresses of DNS servers to contact. The array specifies the order in
which the DNS servers will be contacted.

Table 63 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-
vice to FileServerCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server Configuration Service.

Capabilities Mandatory The File Server Capabilties element.
116

 File Server Manipulation Subprofile

278
279

280

281

282

283

284
285

286

287

288

289

290

291

292

293

294

295

296
6.7.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapa-
bilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 64 describes class CIM_ElementCapabilities (FileServerConfigurationService to
FileServerConfigurationCapabilities).

6.7.9 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 65 describes class CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings).

6.7.10 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 64 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-
vice to FileServerConfigurationCapabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server Configuration Service.

Capabilities Mandatory The File Server Configuration Capabilties element.

Table 65 - SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem FileServer
to FileServerSettings)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server ComputerSystem.

SettingData Mandatory The FileServerSettings.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 117

File Server Manipulation Subprofile

297

298

299

300

301

302

303

304

305

306

307

308

309
310

311
Table 66 describes class CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint).

6.7.11 CIM_HostedDependency

Created By: Extrinsic: CreateFileServer
Modified By: Static
Deleted By: Extrinsic: DeleteFileServer
Requirement: Optional

Table 67 describes class CIM_HostedDependency.

6.7.12 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 68 describes class CIM_HostedService (Hosting Computer System to
FileServerConfigurationService).

6.7.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)

Table 66 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to
IPProtocolEndpoint)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The IPProtocolEndpoint.

SettingData Mandatory The IPInterfaceSettingData.

Table 67 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File Server
ComputerSystem is a File Server and shall have Dedicated=16 (File
Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting ComputerSystem may be the
top level NAS ComputerSystem or an Multiple Computer System (non-top
level) system.

Table 68 - SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer System to File-
ServerConfigurationService)

Properties Flags Requirement Description & Notes

Dependent Mandatory The File Server Configuration Service.

Antecedent Mandatory The hosting ComputerSystem.
118

 File Server Manipulation Subprofile

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327
328
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: The NetworkVLAN is supported by the provider.

Table 69 describes class CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.).

6.7.14 CIM_NetworkVLAN

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: The NetworkVLAN is supported by the provider.

Table 70 describes class CIM_NetworkVLAN.

6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 69 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to
NetworkVLAN.)

Properties Flags Requirement Description & Notes

Member Mandatory The IPProtocolEndpoint.

Collection Mandatory The NetworkVLAN.

Table 70 - SMI Referenced Properties/Methods for CIM_NetworkVLAN

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the NetworkVLAN.

VLANId Mandatory The VLAN id that is to be associated with an IP interface. The id shall be
included in all IP packets being sent through an IP interface.

TransmissionSize Mandatory The maximum transmission unit size that is associated with an IP
Interface.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 119

File Server Manipulation Subprofile

329

330

331

332

333

334
335

336

337

338

339

340

341
342

343

344

345

346

347
Table 71 describes class CIM_SettingsDefineCapabilities (CIFSettingData).

6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 72 describes class CIM_SettingsDefineCapabilities (DNSSettingData).

6.7.17 CIM_SettingsDefineCapabilities (FileServerSettings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 73 describes class CIM_SettingsDefineCapabilities (FileServerSettings).

6.7.18 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Table 71 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The CIFSSettingData reference.

Table 72 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The CIFSSettingData reference.

Table 73 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServerSettings)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The FileServerSetting reference.
120

 File Server Manipulation Subprofile

348
349

350

351

352

353

354

355
356

357

358

359

360

361

362
363

364

365

366
Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 74 describes class CIM_SettingsDefineCapabilities (IPInterfaceSettingData).

6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 75 describes class CIM_SettingsDefineCapabilities (NFSSettingData).

6.7.20 CIM_SettingsDefineCapabilities (NISSettingData)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 76 describes class CIM_SettingsDefineCapabilities (NISSettingData).

6.7.21 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)

Created By: External

Table 74 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The IPInterfaceSettingData reference.

Table 75 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The NFSSettingData reference.

Table 76 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSettingData)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The FileServerCapabilities reference.

PartComponent Mandatory The NISSSettingData reference.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 121

File Server Manipulation Subprofile

367

368

369

370

371

372

373

374

375

376
Modified By: Static
Deleted By: External
Requirement: The FileServer ComputerSystem has a FileServerSettings associated with it.

Table 77 describes class CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings).

6.7.22 SNIA_CIFSSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyCIFS
Deleted By: Extrinsic: DeleteFileServer
Requirement: CIFS shares are supported by the provider.

Table 78 describes class SNIA_CIFSSettingData.

Table 77 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem FileServer
to FileServerSettings)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The File Server ComputerSystem.

SettingData Mandatory The FileServerSettings.

Table 78 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the CIFSSettingData.

Enabled Mandatory This boolean indicates if CIFS is enabled on the File Server.

Charset Optional Specifies the character set to be used by the File Server when servicing
CIFS Shares. The values are 0|1|2 ('Standard-ASCII'|'IBM-437','IBM-850').
If absent, then "Standard-ASCII" is assumed.

UseTCPOnly Optional This boolean if set to 'true' allows only TCP transport connections. If
'false', then both TCP and Netbios transport connections are allowed. The
default value is 'false'.

NETBIOSName Optional The NetBIOS name of the FileServer.

WINSIP Optional An array of IP Addresses of Windows Internet Name Servers.

AuthenticationDomain Mandatory Name of CIFS domain to which the File Server is joined. Represents either
the NTLM domain or the ActiveDirectory domain.

AuthenticationMode Mandatory Specifies if authentication is to be performed against either NTLM or
ActiveDirectory domains. Valid values are 'NTLM' or 'ActiveDirectory'.

UseKerberos Optional Determines how ActiveDirectory authentication is performed. If 'true', limit
ActiveDirectory authentication to use Kerberos. Otherwise do not limit to
Kerberos only.

UseOpportunisticLocking Optional This boolean determines if opportunistic locking should be used by CIFS
FileServer. If 'true', enable opportunistic locking.

SMBSigningOnly Optional This boolean determines if CIFS clients are allowed to connect if they use
SMB signing for security. If 'true', then require clients to use SMB signing.
Otherwise, do not require.
122

 File Server Manipulation Subprofile

377

378

379

380

381

382
6.7.23 SNIA_FileServerCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 79 describes class SNIA_FileServerCapabilities.

ClientsConnectAnonymou
sly

Optional This boolean dictates if the FileServer joins the CIFS Domain Controller
anonymously or if a user and password are required. If 'true', then join
anonymously. Otherwise, use DomainControllerUser and
DomainControllerPassword to join.

JoinDomainAnonymously Optional This boolean dictates if the FileServer joins the CIFS Domain Controller
anonymously or if a user and password are required. If 'true', then join
anonymously. Otherwise, use DomainControllerUser and
DomainControllerPassword to join.

DomainControllerUser Optional User name to use when the Fileserver joins the CIFS Domain Controller.

DomainControllerPasswor
d

Optional Password to use when joining the CIFS Domain Controller.

CIFSDomainController Optional Name of the CIFS Domain Controller.

CASupported Optional This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel IO, this
feature is somewhat analogous to capabilities available in NFSv4.

MultiChannelSupported Optional This property applies to CIFS/SMB protocol only. If it is true, it means that
"Multi-Channel" feature is supported for CIFS/SMB. Multi-Channel (MPIO)
- Provides the ability to access multiple Ethernet links as a logical pool
supporting multiple SMB sessions and providing native bandwidth
aggregation, link failover, MPIO intelligence. This feature enables the use
of multiple physical network interfaces in an SMB 2.2 client and server.
This enhancement in SMB 2.2 provides capabilities analogous to those
currently available in NFSv4.

ProtocolVersions Optional An array of strings listing the versions of the CIFS file sharing protocol
supported by the File Server.

Table 79 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the FileServerCapabilities element of a File
Server Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

FileServerSettingsSupport
ed

Mandatory Indicates if FileServerSettings is supported for the FileServer.
FileServerSettings will be supported if the value is "true".

CIFSSupported Mandatory Indicates if CIFS Shares are supported by the FileServer. CIFS Shares will
be supported if the value is "true".

Table 78 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 123

File Server Manipulation Subprofile

383

384

385

386

387

388
6.7.24 SNIA_FileServerConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 80 describes class SNIA_FileServerConfigurationCapabilities.

NFSSupported Mandatory Indicates if NFS Exports are supported by the FileServer. NFS Exports will
be supported if the value is "true".

NISSupported Mandatory Indicates if NIS (Network Information System) is supported by the
FileServer. NIS will be supported if the value is "true".

DNSSupported Mandatory Indicates if DNS is supported by the FileServer. DNS will be supported if
the value is "true".

NetworkVLANSupported Mandatory Indicates if network VLAN Tagging is supported by the FileServer. VLAN
tagging will be supported if the value is "true".

ScaleOutSupported Mandatory Indicates if ScaleOut is supported by the FileServer. ScaleOut will be
supported if the value is "true".

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of Settings that are a
supported variant of the Settings passed as embedded instances via IN
parameters. The method returns the supported Settings in OUT
parameters, each containing an array of embedded instances. Many of the
IN parameters are optional, and if left NULL result in NULL being returned
in the corresponding OUT parameters.

Table 80 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this element representing the capabilities of a
File Server Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

SynchronousMethodsSupp
orted

N Mandatory The Service supports a number of extrinsic methods -- this property
identifies the ones that can be called synchronously. Note: A supported
method shall be listed in this property or in the
AsynchronousMethodsSupported property or both.

AsynchronousMethodsSup
ported

N Mandatory The Service supports a number of extrinsic methods -- this property
identifies the ones that can be called asynchronously. Note: A supported
method shall be listed in this property or in the
SynchronousMethodsSupported property or both.

CanConfigureCIFS Mandatory Indicates if the CIFS Settings can be configured. The settings can be
configured if the value is "true".

CanConfigureNFS Mandatory Indicates if the NFS Settings can be configured. The settings can be
configured if the value is "true".

CanConfigureNIS Mandatory Indicates if the NIS (Network Information Service) Settings can be
configured. The settings can be configured if the value is "true".

Table 79 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities

Properties Flags Requirement Description & Notes
124

 File Server Manipulation Subprofile

389

390

391

392

393

394

395

396

397

398

399
6.7.25 SNIA_FileServerConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 81 describes class SNIA_FileServerConfigurationService.

6.7.26 SNIA_FileServerSettings

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: The FileServer ComputerSystem has a FileServerSettings associated with it.

CanConfigureDNS Mandatory Indicates if the DNS Settings can be configured. The settings can be
configured if the value is "true".

CanConfigureNetworkVLS
N

Mandatory Indicates if the network VLAN Tagging Settings can be configured. The
settings can be configured if the value is "true".

Table 81 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClassNam
e

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key.

CreateFileServer() Mandatory Create a new instance of File Server.

ModifyFileServer() Mandatory Modify an existing File Server. This is used to modify FileServerSettings,
CIFSSettingData, NFSSettingData, DNSSettingData, or NISSettingData.

DeleteFileServer() Mandatory Delete an existing File Server.

AddIPInterface() Optional Add a new IPInterface to an existing File Server.

ModifyIPInterface() Optional Modify an IPInterface associated with an existing File Server.

DeleteIPInterface() Optional Delete an IPInterface associated with an existing File Server.

Table 80 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 125

File Server Manipulation Subprofile

400

401

402

403

404

405

406
Table 82 describes class SNIA_FileServerSettings.

6.7.27 SNIA_IPInterfaceSettingData

Created By: Extrinsic: CreateFileServer | AddIPInterface
Modified By: Extrinsic: ModifyIPInterface
Deleted By: Extrinsic: DeleteFileServer | DeleteIPInterface
Requirement: Optional

Table 83 describes class SNIA_IPInterfaceSettingData.

Table 82 - SMI Referenced Properties/Methods for SNIA_FileServerSettings

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the FileServerSettings.

HostLookupOrder Optional Specifies the services and order to use them for host lookup. An array of
elements with these values: 'DNS','NIS', 'None', or 'UploadedFile'.
'UploadedFile' refers to the uploaded file of host names.

UserLoginLookupOrder Optional Specifies the services and order to use them for user lookup. An array of
elements with these values: 'DNS','NIS', 'None', or 'UploadedFile'. 'file'
'UploadedFile' refers to the uploaded file of user passwords.

NFSCIFSAccountMapping Optional Controls the mapping of accounts between NFS and CIFS. Valid values
are 'None', 'All', or 'Domain'. If 'None', then no account mapping is
performed. If 'All', then mapping is done for all CIFS domains. If 'Domain',
then mapping is done for the users in the CIFS domain specified in
AccountMappingDomain.

AccountMappingDomain Optional If NFSCIFSAccountMapping = 'Domain', then this property will contain the
name of the domain to use for NFS to CIFS account mapping.

Table 83 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData

Properties Flags Requirement Description & Notes

IPAddress Mandatory The IPAddress that will be used by the File Server. This can be either an
IPv4 or IPv6 address.

AddressType Mandatory The IPAddress format. This can be either "IPv4" or "IPv6".

SubnetMask Mandatory The subnet mask that will be used by the File Server.

IPv6PrefixLength Conditional Conditional requirement: Required if the array property
SNIA_IPInterfaceSettingData.AddressType contains the string \IPv6\'.'If
AddressType specifies IPv6, then this specifies the prefix length for the
IPv6 address in IPAddress.

VLANId Optional If present contains the ID of the VLAN that this IP setting will be
associated with.

MTU Optional If present contains the maximum transmission unit to be used for this IP
setting. If not present, then the default of 1500 will be used.

RSSCapable Optional This property is used to indicate whether this IPInterface is Receive-side
Scaling (RSS) capable or not. Receive-side Scaling (RSS)- Receive-Side
Scaling resolves the single-processor bottleneck by allowing the receive
side network load from a network adapter to be shared across multiple
processors. RSS enables packet receive-processing to scale with the
number of available processors.
126

 File Server Manipulation Subprofile

407

408

409

410

411

412

413

414

415

416

417
6.7.28 SNIA_NFSSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyNFS
Deleted By: Extrinsic: DeleteFileServer
Requirement: NFS Exports are supported by the provider.

Table 84 describes class SNIA_NFSSettingData.

6.7.29 SNIA_NISSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: NIS (Network Information System)is supported by the provider.

RDMACapable Optional This property is used to indicate whether this IPInterface is Remote Direct
Memory Access (RDMA) capable or not. Remote Direct Memory Access
Protocol (RDMA) - Accelerated I/O delivery model which works by
allowing application software to bypass most layers of software and
communicate directly with the hardware.

LinkSpeed Optional Speed of this IPInterface in bits per second.

Table 84 - SMI Referenced Properties/Methods for SNIA_NFSSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the NFSSettingData.

Enabled Mandatory This boolean indicates if NFS is enabled on the File Server.

Charset Optional Specifies the character set to be used by the File Server when servicing
CIFS Shares. The values are 0|1|2 ('Standard-ASCII'|'UTF8'|'ISO-8859-1').
If absent, then 'ISO-8859-1' is assumed.

MaximumTCPConnections Optional This specifies the number of concurrent TCP connections that are allowed
for the NFS protocol. If set to 0, then TCP will be disabled for NFS.

Port Optional The port the File Server listens for mount requests. If absent, default to
2049.

NonNFSuid Optional User ID to use for requests from non-NFS access. If absent, default to -1.

NonNFSgid Optional Group ID to use for requests from non-NFS access. If absent, default to -1.

UseReservedPorts Optional This boolean specifies that the File Server will only allow NFS mount
requests from client machine TCP/IP ports less than 1024. If 'true', only
allow mount requests from ports less than 1024. Othewise, allow mount
requests from any client port.

OnlyRootChown Optional This boolean specifies if the root user is allowed to issue chown (change
ownership) requests. If 'true', then only let root user issue chown request.
Otherwise, allow any user to issue chown requests.

Table 83 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 127

File Server Manipulation Subprofile

418
 Table 85 describes class SNIA_NISSettingData.

EXPERIMENTAL

Table 85 - SMI Referenced Properties/Methods for SNIA_NISSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the NISSettingData.

DomainName Mandatory NIS Domain Name.

ServerIP Mandatory An array of IP Addresses IP Addresses of NIS Servers.
128

 File Storage Profile

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16
17
18
STABLE

7 File Storage Profile

7.1 Description

7.1.1 Synopsis

Profile Name: File Storage (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.18

Related Profiles for File Storage: Not defined in this standard.

Central Class: N/A

Scoping Class: ComputerSystem

7.1.2 Overview

The File Storage Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in
this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles.

7.1.3 Implementation

Figure 10: "File Storage Instance" illustrates the mandatory and optional classes for the modeling of file
storage for the profiles that support filesystems. This profile is supported by the Self-contained NAS and
the NAS Head Profiles.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 129

File Storage Profile

19
20
21
22
23
24

25
26
27

28

29

30

31
32
33

34

35
36
37
38
39
The File Storage Profile models the mapping of filesystems to LogicalDisks. For the NAS Head and Self-
contained NAS Profiles each filesystem shall be established on one LogicalDisk. The relationship
between the LocalFileSystem and the LogicalDisk is represented by the ResidesOnExtent association.
This association is listed as conditional on the parent profile being either the NAS Head or the Self-
contained NAS Profile. The LogicalDisk may be a LogicalDisk as defined in the Block Services Package
or part of the parent profile.

The FileStorage Profile is a “read-only” profile. That is, the methods for creating, modifying or deleting a
LocalFileSystem are external to the File Storage Profile. The SMI-S prescribed way of performing these
functions are covered by the Filesystem Manipulation Profile.

7.2 Health and Fault Management Consideration
None.

EXPERIMENTAL

7.3 Cascading Considerations
In some cases, the parent profile does not implement Block Services Package. In this case, the parent
profile would implement a LogicalDisk that is “imported” from another profile (e.g., a Volume Management
Profile). This section discusses those cascading considerations.

7.3.1 Cascaded Resources

A File Storage profile may get its storage from the operating system (HDR Profile), a volume manager, an
Array or Storage Virtualizer. As such, there is a cascading relationship between the File Storage Profile
and the profiles (e.g., Volume Management Profiles) that provide the storage for the File Storage Profile.
Figure 11: "Cascading File Storage" illustrates the constructs to be used to model this cascading
relationship.

Figure 10 - File Storage Instance
130

 File Storage Profile

40
41
42
43
44
45
46

47

48
49
50
51
52
53
54
Figure 11: "Cascading File Storage" shows two filesystems (LocalFileSystem). Both reside on one
LogicalDisk. But the LogicalDisk on the right is a composite of lower level LogicalDisks. The storage that
is imported from the remote profile are LogicalDisks at the lowest level of the Filesystem Profile. So, in
the first (left side) case, the LogicalIdentity is between the LogicalDisk on which the filesystem resides to
the imported LogicalDisk (or StorageVolume). In the second case (the right side) the LogicalIdentity is
between the “lowest level” LogicalDisks in Volume Composition and the imported LogicalDisks (or
StorageVolumes).

NOTE LogicalIdentity is an abstract class and would be subclassed by an implementation.

The ComputerSystem in the Filesystem Profile would be the computer system that hosts the filesystem.
The “Virtual” ComputerSystem is the top level ComputerSystem of the HDR, Volume Manager, Array or
Storage Virtualizer. There shall be a Dependency association between these computer systems.
LogicalDisks (or StorageVolumes) that are in use by the Filesystem Profile would have a
MemberOfCollection association to the SNIA_AllocatedResources collection. All the LogicalDisks (or
StorageVolumes) that the Filesystem Profile can see (including the ones that are allocated) would have a
MemberOfCollection association to the SNIA_RemoteResources instance.

Figure 11 - Cascading File Storage
SMI-S 1.6.1 Revision 6 SNIA Technical Position 131

File Storage Profile

55
56
57

58

59

60
61
62

63

64

65

66

67

68
69

70
71
72

73

74

75

76

77

78

79

80
81

82
The RemoteServiceAccessPoint associated to the virtual computer system via SAPAvailableForFileShare
would be information on the management interface for the HDR, Volume Manager, Array or Storage
Virtualizer.

Table 86 provides the specific cascading information for cascading file storage.

7.3.2 Ownership Privileges

In support of the cascading File Storage, an implementation may assert ownership over the LogicalDisks
(or StorageVolumes) that they import. If the Volume Management implementation supports Ownership,
the File Storage implementation may assert ownership using the following Privileges:

• Activity - Execute

• ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

• FormatQualifier - Method

NOTE HDR does not support Block Storage Resource Ownership, so this cannot be supported if the underlying profile is HDR.

7.3.3 Limitations on Cascading Subprofile

The File Storage Profile support for cascading places the following limitations and restrictions on the
Cascading Subprofile:

• Dependency - The Dependency may exist, even when there are no resources that are imported. This
signifies that the File Storage implementation has discovered the Volume Management or HDR Profile, but
has no access to any of their LogicalDisks.

EXPERIMENTAL

7.4 Supported Profiles, Subprofiles, and Packages
See section 7.1.1 for this information.

7.5 Methods of the Profile

7.5.1 Extrinsic Methods of the Profile

None

NOTE The methods for defining the various mappings would be handled by the Filesystem Manipulation Subprofile.

7.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

Table 86 - Cascaded Storage

File Storage
Resource

Leaf Profile Leaf Resource Association Notes

LogicalDisk Volume Management or
HDR

LogicalDisk LogicalIdentity

LogicalDisk Array or Storage
Virtualizer

StorageVolume LogicalIdentity
132

 File Storage Profile

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97
98

99
• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

7.6 Client Considerations and Recipes
None.

7.7 CIM Elements
Table 87 describes the CIM elements for File Storage.

7.7.1 CIM_ResidesOnExtent

Created By: External
Modified By: Static
Deleted By: External
Requirement: NAS Profiles require that LocalFileSystems reside on one LogicalDisk. or NAS Profiles
require that LocalFileSystems reside on one LogicalDisk.

Table 88 describes class CIM_ResidesOnExtent.

STABLE

Table 87 - CIM Elements for File Storage

Element Name Requirement Description

7.7.1 CIM_ResidesOnExtent Conditional Conditional requirement: NAS Profiles require that
LocalFileSystems reside on one LogicalDisk. or NAS
Profiles require that LocalFileSystems reside on one
LogicalDisk. Represents the association between a local
FileSystem and the underlying LogicalDisk that it is built
on.

Table 88 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement Description & Notes

Dependent Mandatory The LocalFileSystem that is built on top of a LogicalDIsk.

Antecedent Mandatory The LogicalDIsk that underlies a LocalFileSystem.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 133

File Storage Profile
134

 Filesystem Profile

1

2

3

4

5

6

7

8

9

10

11
12
13
14
15
16

17
18

19

20
21
22
23
24
25
26
STABLE

8 Filesystem Profile

8.1 Description

8.1.1 Synopsis

Profile Name: Filesystem (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 89 describes the related profiles for Filesystem.

Central Class: LocalFileSystem

Scoping Class: ComputerSystem

The Filesystem Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this
release of SMI-S, this includes the NAS Head and the Self-Contained NAS Profiles. A number of other
profiles and subprofiles make use of elements of the Filesystem Profile and will be referred to in this
specification as “filesystem-related profiles” -- these include but are not limited to the Filesystem
Manipulation Subprofile, File Export Subprofile, File Export Manipulation Subprofile, NAS Head Profile,
and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are
described in Annex B (Informative) State Transitions from Storage to File Shares.

8.1.2 Instance Diagrams

Figure 12: "Filesystem Instance" illustrates the mandatory, optional, and conditional classes for the
modeling of filesystems for the profiles that support filesystems. This profile is supported by the Self-
contained NAS and the NAS Head Profiles. The dashed box contains the elements that this profile
supports -- the elements outside the dashed box depend on other profiles or subprofiles for their
maintenance (creation, deletion, and modification).There are two ComputerSystems shown outside the
box that represent different dedicated roles that could be performed by different actual computers (or
could be performed by a single computer).

Table 89 - Related Profiles for Filesystem

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional
SMI-S 1.6.1 Revision 6 SNIA Technical Position 135

Filesystem Profile

27

28
29
30
31

32
33
34

35
36
37
38
39
40

41
42
43

A filesystem shall be represented in the model as an instance of LocalFileSystem. A LocalFileSystem
instance shall have a ResidesOnExtent association to a LogicalDisk (shown, but outside this profile). A
client would determine the size (in bytes) of a filesystem by inspecting the size of the LogicalDisk on
which the LocalFileSystem resides.

NOTE The filesystem-related profiles build LocalFileSystems on a LogicalDisk(s). In the cases supported in this release of SMI-S,
one LocalFileSystem may be established on one LogicalDisk. In a future release, more elaborate mappings may exist between
FileSystems and one or more LogicalDisks.

The LocalFileSystem shall have a HostedFileSystem association to a ComputerSystem. Normally this will
be the top level ComputerSystem of the parent profile (typically one of the filesystem-related profiles such
as the NAS Head or the Self-Contained NAS Profile). However, if the Multiple Computer System
Subprofile is implemented, the HostedFileSystem may be associated to a component ComputerSystem.
See 30 Multiple Computer System Subprofile in Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6.

The LocalFileSystem element may also have an ElementSettingData association to the
FileSystemSetting for that filesystem. However, the FileSystemSetting and ElementSettingData are
optional in this profile.

Figure 12 - Filesystem Instance

.

136

 Filesystem Profile

44
45

46
47
48
49
50

51
52
53
54

55

56
57
58
59
60
61
62
63
64
65

66
67

68
69
70
71

72

73
74
75
76
77
78

79
80
81
82
83
84
EXPERIMENTAL

The LocalFileSystem may also have an ElementCapabilities association to an
EnabledLogicalUnitCapabilities to identify naming and requested state change capabilities.

EXPERIMENTAL

There may be zero or more FileShare elements associated to the LocalFileSystem element via the
SharedElement association. An implementation would be required to populate only those FileShare
elements representing files (or directories) that are exported using a supported file sharing protocol (such
as CIFS or NFS). The path to the file or directory from the root of the LocalFileSystem is specified by the
FileShare.PathName property.

NOTE In order to support backward compatibility with the NAS Head and Self-contained NAS Profiles in previous SMI-S releases,
the class LogicalFile (shown outside the dashed box in the figure) and two associations (ConcreteDependency outside the dashed
box and FileStorage shown inside the dashed box) must be supported. These duplicate the functionality provided by specifying
FileShare.PathName, at the cost of requiring that certain LogicalFiles, but not all, be surfaced.

EXPERIMENTAL

8.1.2.1 Local Access Requirement
In addition, if the property LocalFileSystem.LocalAccessDefinitionRequired is set to true, the filesystem
must be made exportable via a file server. In that case, there shall be a LocalAccessAvailable association
from the LocalFileSystem element to the file server ComputerSystem and, optionally, a
LocallyAccessibleFileSystemSettings element associated via an ElementSettingData association to the
LocalFileSystem. The LocallyAccessibleFileSystemSettings element is an instance of ScopedSettingData
and is associated to the file server ComputerSystem via a ScopedSetting association. The ScopedSetting
association indicates that this setting is constrained by the associated file server. The
LocalAccessAvailable association is required but conditional on LocalAccessDefinitionRequired being
true, while the LocallyAccessibleFileSystemSettings element and the ScopedSetting association are not
required (i.e., optional).

NOTE They are still conditional on LocalAccessDefinitionRequired being true, but in this version of SMI-S, that is not represented
in the XML file.

Since LocalAccessAvailable is an association, there can only be ONE instance per LocalFileSystem for
each FileServer. This is a common restriction. For each LocalAccessAvailable association, there should
only be zero (if optionally not implemented) or one (if optionally implemented) instances of
LocallyAccessibleFileSystemSettings.

8.1.2.2 Directory Service Use
A filesystem needs to be supported by a directory service that resolves user and group identifiers
(referred to as UID, GID, or SID) to specific operational users and groups. The enumerated property
LocalFileSystem.DirectoryServiceUsage indicates the kind of support a filesystem requires from a
directory service -- the options include “Not Used”, “Optional”, and “Required”. If “Required”, the
filesystem will be associated to a computer system that provides infrastructure support for such identity
resolution.

The directory service may be hosted by any ComputerSystem, but it must be accessible in real-time to
the ComputerSystem that makes the filesystem available to operational users -- this is either a file server
ComputerSystem (one may already be required if LocalFileSystem.LocalAccessDefinitionRequired is
true, but it is optional otherwise) or the ComputerSystem hosting the filesystem. The directory service
may be “natively” hosted on that ComputerSystem (file server or filesystem host) or may be identified by
that ComputerSystem in some way.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 137

Filesystem Profile

85
86
87

88
89
90
91
92
93

94

95
96
97
98
99

100

101

102
103

104
105

106

107
The support relationship between a LocalFileSystem element and the ComputerSystem that identifies
and uses the directory service shall be represented by a Dependency association with the
ComputerSystem element as the Antecedent and the LocalFileSystem element as the Dependent.

In the instance diagram above, the Dependency association has been shown between the
LocalFileSystem and a file server ComputerSystem (with Dedicated[]=”16”). A LocalFileSystem element
shall only identify one ComputerSystem for directory service access. In addition, the consistency of
filesystem security implementation requires that all the file server ComputerSystems that make a
filesystem locally available must use the same directory service or use mutually consistent directory
services.

EXPERIMENTAL

EXPERIMENTAL

8.1.2.3 Element Naming
The name of a FileSystem may be changed. The existence of the EnabledLogicalElementCapabilities
instance associated to the FileSystem indicates that the FileSystem can be named. If
ElementNameEditSupported is set to TRUE, then the ElementName of the associated FileSystem may be
modified. The ElementNameMask property provides the regular expression that expresses the limits of
the name; see 8.7.5 for the class definition for EnabledLogicalElementCapabilities for details for this
property.

EXPERIMENTAL

8.2 Health and Fault Management Consideration
The Filesystem Profile supports state information (e.g., OperationalStatus) on the following elements of
the model:

• Local filesystems (See Table 100 - SMI Referenced Properties/Methods for CIM_HostedFileSystem
(LocalFileSystem))

8.2.1 OperationalStatus for Filesystems

Table 90 describes each filesystem OperationalStatus.

Table 90 - Filesystem OperationalStatus

Primary OperationalStatus Description

2 “OK” The filesystem has good status

3 “Degraded” The filesystem is operating in a degraded mode. This could be due to the
health state of the underlying storage being degraded or in error.

4 “Stressed” The filesystem resources are stressed

5 “Predictive Failure” The filesystem might fail because some resource or component is predicted to
fail

6 “Error” An error has occurred causing the filesystem to become unavailable. Operator
intervention through SMI-S (managing the LocalFileSystem) to restore the
filesystem may be possible.

6 “Error” An error has occurred causing the filesystem to become unavailable.
Automated recovery may be in progress.
138

 Filesystem Profile

108
109

110
111

112

113

114

115

116

117

118

119

120
121

122

123
8.3 Cascading Considerations
None.

8.4 Supported Profiles, Subprofiles, and Packages
See section 8.1.1 for this information.

8.5 Methods of the Profile

8.5.1 Extrinsic Methods of the Profile

None.

8.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

7 “Non-recoverable Error” The filesystem is not functioning. Operator intervention through SMI-S will not
fix the problem.

8 “Starting” The filesystem is in process of initialization and is not yet available
operationally.

 9 “Stopping” The filesystem is in process of stopping, and is not available operationally.

10 “Stopped” The filesystem cannot be accessed operationally because it is stopped -- if this
did not happened because of operator intervention or happened in real-time,
the OperationalStatus would have been “Lost Communication” rather than
“Stopped”.

11 “In Service” The filesystem is offline in maintenance mode, and is not available
operationally.

13 “Lost Communications” The filesystem cannot be accessed operationally -- if this happened because
of operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The filesystem is stopped but in a manner that may have left it in an
inconsistent state.

15 “Dormant” The filesystem is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error” The filesystem is in an error state, or may be OK but not accessible, because a
supporting entity is not accessible.

Table 90 - Filesystem OperationalStatus

Primary OperationalStatus Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 139

Filesystem Profile

124

125

126

127

128

129

130
131
132

133

134

135

136

137

138

139

140

141

142

143
144
145
146
147

148
149

150

151

152

153

154

155

156
8.6 Client Considerations: Use Cases
The following client use cases are supported by this profile:

• List existing filesystems hosted by the referencing profile (parent filesystem-related profile).

• Get FileSystemSettings for a filesystem

• Get the ComputerSystem that hosts a filesystem

• Get all file servers and access paths that have local access to this fileSystem

• Get the access path to this filesystem on the specified file server

• Get the Local Access Settings for this FileSystem on the specified File Server

• Get the FileShares and shared file path of this filesystem on all file servers

• Get the FileShares and shared file path of this filesystem on the specified fileserver

EXPERIMENTAL

These use cases have been elaborated as prototype recipes in the following sections.

8.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related pro-
file

// DESCRIPTION

// Goal: Locate all LocalFileSystems hosted on the top level

// ComputerSystem of the Filesystem Profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the top level ComputerSystem was previously

// discovered and is defined in the $System-> variable.

//

// FUNCTION ListFileSystems

// This function takes a given top level ComputerSystem and locates

// the LocalFileSystems which it hosts or are hosted by any component

// ComputerSystem.

// INPUT Parameters:

// System: A reference to the top level ComputerSystem of

// the Filesystem Profile.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: An array of reference(s) to the LocalFileSystems

// hosted by the top level ComputerSystem or component

// ComputerSystems. It returns NULL if it does not find

// any hosted LocalFileSystems.

sub CIMInstance[] ListFileSystems(REF CIM_ComputerSystem $System->) {

 // Step 1. Locate the LocalFileSystems hosted directly by the

 // top-level ComputerSystem of the Filesystem Profile.
140

 Filesystem Profile

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201
 #FSProps[] = {“CSCreationClassName”, “CSName”, “CreationClassName”,

 “Name”, “OperationalStatus”, “CaseSensitive”, “CasePreserved”,

 “MaxFileNameLength”, “FileSystemType”,

 “MultipleDisksSupported”,

 “LocalAccessDefinitionRequired”,

 “PathNameSeparatorString” }

 $filesystems[] = Associators($System->,

 “CIM_HostedFileSystem”,

 “CIM_LocalFileSystem”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #FSProps[])

 // Step 2. Locate all the component ComputerSystems of the top level

 // ComputerSystem of the Filesystem Profile implementation.

 // This assumes that the top level ComputerSystem of the Filesystem

 // Profile is the same as the top level ComputerSystem of the

 // Multiple Computer System Subprofile. This recipe does not

 // check if this assumption is correct.

 try {

 REF CIM_ComputerSystem $ComponentSystems->[] =

 AssociatorNames($System->,

 “CIM_ComponentCS,

 “CIM_ComputerSystem”,

 “GroupComponent”,

 “PartComponent”)

 // Step 3. Locate the LocalFileSystems hosted by the component

 // ComputerSystem and add to the list of found LocalFileSystems.

 if ($ComponentSystems->[] != null &&

 $ComponentSystems->[].length > 0) {

 REF CIM_FileSystem $ComponentFS[]

 #fsCounter = $filesystems[].length

 for (#i in $ComponentSystems->[]) {

 $ComponentFS[] =

 Associators($ComponentSystems->[#i],

 “CIM_HostedFileSystem”,

 “CIM_LocalFileSystem”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 #FSProps[])

 if ($ComponentFS[] != null && $ComponentFS[].length > 0) {

 for (#j in $ComponentFS->[]) {
SMI-S 1.6.1 Revision 6 SNIA Technical Position 141

Filesystem Profile

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246
 $filesystems[#fsCounter] = $ComponentFS[#j]

 #fsCounter++

 }

 }

 }

 }

 } catch (CIMException $Exception) {

 // ComponentCS may not be included in the model implemented at all if

 // the Multiple Computer System Subprofile is not supported.

 if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {

 return $filesystems[]

 }

 <ERROR! An unexpected failure occured>

 }

 return $filesystems[]

}

// MAIN

$HostedFileSystems[] = ListFileSystems($TopLevelComputerSystem->)

8.6.2 Get FileSystemSettings for a FileSystem
// DESCRIPTION

// Goal: Get the FileSystemSettings associated with a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. There is only one setting for the file system

//

// FUNCTION GetFSSetting

// This function takes a given LocalFileSystem and returns the

// FileSystemSetting element that specifies its configuration.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem .

// OUTPUT Parameters:

// setting: A reference to the FileSystemSetting element is returned.

// RESULT:

// Returns: Nothing

//

sub GetFSSetting(IN REF CIM_LocalFileSystem $fs,

 OUT CIM_FileSystemSetting $setting)

{

 //

 // Get a reference to the FileSystemSetting associated with the

 // LocalFileSystem (via ElementSettingData association)

 $setting = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,
142

 Filesystem Profile

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293
 “ManagedElement”,

 “SettingData”)->[0];

}

8.6.3 Get the ComputerSystem that hosts a FileSystem
// DESCRIPTION

// Goal: Get the ComputerSystem that hosts a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

//

// FUNCTION GetFileSystemHost

// This function takes a given LocalFileSystem and returns the

// ComputerSystem that hosts it.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// system: A reference to the hosting ComputerSystem is returned.

// RESULT:

// Returns: Nothing

//

sub GetFileSystemHost(IN REF CIM_LocalFileSystem $fs,

 OUT CIM_ComputerSystem $system)

{

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

}

// Retained for backward compatability with SMI-S 1.1

sub GetFSServer(IN REF CIM_FileSystem $fs,

 OUT CIM_ComputerSystem $system)

{

GetFileSystemHost($fs, $system);

}

8.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem
// DESCRIPTION

// Goal: Get the file server ComputerSystems that access the

// LocalFileSystem and the local access points on those

// ComputerSystems

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 143

Filesystem Profile

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
//

// FUNCTION GetFileSystemServersAndPaths

// This function takes a given LocalFileSystem and returns the

// file server ComputerSystems that have local access to it

// and the local access points on those ComputerSystems.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// systems: An array of references to the file server ComputerSystems.

// paths: An array of strings that are the local access points on the

// corresponding file server

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemServersAndPaths(IN REF CIM_LocalFileSystem $fs,

 OUT REF CIM_ComputerSystem $systems[],

 OUT string #paths[])

{

 REF CIM_LocalAccessAvailable $assocs->[] = References($fs,

 “SNIA_LocalAccessAvailable”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”);

 #counter = 0;

 if ($assocs->[] != null && $assocs->[].length > 0) {

 #count = $assocs->[].length;

 for (#i in $assocs->[]) {

 $systems->[#counter] = $assocs->[#i].FileServer;

 #paths->[#counter] = $assocs->[#i].LocalAccessPoints;

 #counter++;

 }

 }

 return #counter;

}

8.6.5 Get the Access Path to this FileSystem on the specified File Server
// DESCRIPTION

// Goal: Get the local access point to this LocalFileSystem on the

// specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously

// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerPath

// This function takes a given LocalFileSystem and file server
144

 Filesystem Profile

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386
// ComputerSystem that has access to the filesystem and returns

// the local access point on that file server ComputerSystem.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: A string representing the local access path to the

// filesystem on the file server

//

sub string GetFileSystemServerPath(IN REF CIM_FileSystem $fs,

 IN REF CIM_ComputerSystem $server)

{

 REF CIM_LocalAccessAvailable $assocs->[] = References($fs,

 “SNIA_LocalAccessAvailable”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”);

 #path = ““;

 if ($assocs->[] != null && $assocs->[].length > 0) {

 for (#i in $assocs->[]) {

 if ($server == $assocs->[#i].FileServer) {

 #path = $assocs->[#i].LocalAccessPoint;

 break;

 }

 }

 }

 return #path;

}

8.6.6 Get the Local Access Settings for this FileSystem on the specified File Server
// DESCRIPTION

// Goal: Get the LocallyAccessibleFileSystemSetting for this

// LocalFileSystem on the specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously

// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerAccessSettings

// This function takes a given LocalFileSystem and file server

// ComputerSystem that has access to the filesystem and returns

// the LocallyAccessibleFileSystemSetting for that filesystem

// in the context of that file server ComputerSystem

// INPUT Parameters:
SMI-S 1.6.1 Revision 6 SNIA Technical Position 145

Filesystem Profile

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415
416

417

418
419

420

421

422

423

424

425

426

427

428
429

430

431

432

433
// fs: A reference to the LocalFileSystem.

// server: A reference to the file server ComputerSystem.

// OUTPUT Parameters:

// setting: A reference to the SNIA_LocallyAccessibleFileSystemSetting

// RESULT:

// Returns: Nothing

// (Optionally) A string containing the setting as an EmbeddedInstance

//

sub GetFileSystemServerAccessSettings(IN REF CIM_FileSystem $fs,

 IN REF CIM_ComputerSystem $server,

 OUT REF SNIA_LocallyAccessibleFileSystemSetting
setting)

{

 REF SNIA_LocallyAccessibleFileSystemSetting $settings->[] =
AssociatorNames($fs,

 “CIM_ElementSettingData”,

 “SNIA_LocallyAccessibleFileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 $setting = NULL;

 $settingEI = ““;

 if ($settings->[] != null && $settings->[].length > 0) {

 for (#i in $settings->[]) {

 // Find the server that scopes this setting; assumes at least one is
returned

 REF CIM_ComputerSystem scope = AssociatorNames($settings->[#i],

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “ScopedSettingData,

 “ManagedElement”)->[0];

 if ($server == $scope) {

 $setting = $settings->[#i];

 $settingEI = $setting->GetInstance();

 break;

 }

 }

 } else {

 // There is no setting => it is defaulted by the server and opaque to the
client

 // Is this an Error?

 #ERROR(“Cannot find LocallyAccessibleFileSystemSetting for
LocalFileSystem.”);

 }

 return $settingEI;

}

146

 Filesystem Profile

434

435

436

437

438

439

440

441

442

443
444

445

446
447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480
EXPERIMENTAL

8.7 CIM Elements
Table 91 describes the CIM elements for Filesystem.

Table 91 - CIM Elements for Filesystem

Element Name Requirement Description

8.7.1 CIM_Dependency (Uses Directory Services From) Conditional Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is either
"Required" or "Optional". Associates a ComputerSystem
that indicates a directory service that supports the
dependent LocalFileSystem.

8.7.2 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to LocalFileSystem)

Optional Experimental. Expressed the ability for the file system to
be named or have its state changed.

8.7.3 CIM_ElementSettingData (FileSystem) Optional Associates a LocalFileSystem to its FileSystemSetting
element.

8.7.4 CIM_ElementSettingData (Local Access Required) Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a LocalFileSystem to
LocallyAccessibleFileSystemSetting elements, one for
each file server that has local access.

8.7.5 CIM_EnabledLogicalElementCapabilities
(LocalFileSystem)

Optional Experimental. This class is used to express the naming
and possible requested state change possibilities for file
systems.

8.7.6 CIM_FileStorage Mandatory Associates a LogicalFile (or Directory) to the
LocalFileSystem that contains it. This is provided for
backward compatibility with previous versions of SMI-S.

8.7.7 CIM_FileSystemSetting Optional This element represents the configuration settings of a
filesystem represented by a LocalFileSystem.

8.7.8 CIM_HostedDependency (Local Access Required) Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a file server ComputerSystem to the
LocallyAccessibleFileSystemSetting elements that get
scoping information from that file server.

8.7.9 CIM_HostedFileSystem (LocalFileSystem) Mandatory Associates a LocalFileSystem to the ComputerSystem
that hosts it.

8.7.10 CIM_LocalFileSystem Mandatory Represents a filesystem in a Filesystem-related profile.

8.7.11 CIM_LogicalFile Mandatory In an earlier release of SMI-S, the Filesystem-related
profiles made a limited set of LogicalFiles (or Directory
subclass) instances visible (these were any file or
directory that was exported as a share. This element is
required by the profiles to maintain backward compatibility
for clients conforming to earlier versions of SMI-S.

8.7.12 SNIA_LocalAccessAvailable Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a LocalFileSystem to a file server
ComputerSystem that can export files or directories as
shares.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 147

Filesystem Profile

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527
8.7.1 CIM_Dependency (Uses Directory Services From)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either "Required" or "Optional".

Table 92 describes class CIM_Dependency (Uses Directory Services From).

8.7.2 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to LocalFileSystem)

Experimental.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

8.7.13 SNIA_LocalFileSystem Optional Represents a filesystem in a Filesystem-related profile.

8.7.14 SNIA_LocallyAccessibleFileSystemSetting Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
This element represents the configuration settings of a
LocalFileSystem that can be made locally accessible (i.e.,
can have a file or directory made accessible to
operational users) from a file server ComputerSystem.
This Setting provides further details on the functionality
supported and the parameters of that functionality when
locally accessible.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LocalFileSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a filesystem.
PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LocalFileSystem AND
SourceInstance.CIM_LocalFileSystem::OperationalStatus
<>
PreviousInstance.CIM_LocalFileSystem::OperationalStat
us

Optional CQL -Change of Status of a filesystem. PreviousInstance
is optional, but may be supplied by an implementation of
the Profile.

Table 92 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s) that support
user, group and other security principal identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other security
principal identities is supported by the antecedent ComputerSystem.

Table 91 - CIM Elements for Filesystem

Element Name Requirement Description
148

 Filesystem Profile

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572
Table 93 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
LocalFileSystem).

8.7.3 CIM_ElementSettingData (FileSystem)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 94 describes class CIM_ElementSettingData (FileSystem).

8.7.4 CIM_ElementSettingData (Local Access Required)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 95 describes class CIM_ElementSettingData (Local Access Required).

8.7.5 CIM_EnabledLogicalElementCapabilities (LocalFileSystem)

Experimental.
Created By: Static
Modified By: Static

Table 93 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to LocalFileSystem)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The capabilities object associated with the file system.

ManagedElement Mandatory The LocalFileSystem.

Table 94 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem.

SettingData Mandatory The settings established on the LocalFileSystem when first created or as
modified.

Table 95 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified when first
created or established later.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 149

Filesystem Profile

573

574
Deleted By: Static
Requirement: Optional

Table 96 describes class CIM_EnabledLogicalElementCapabilities (LocalFileSystem).

8.7.6 CIM_FileStorage

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 97 describes class CIM_FileStorage.

8.7.7 CIM_FileSystemSetting

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 96 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (LocalFileSys-
tem)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory The moniker for the instance.

ElementNameEditSupport
ed

Mandatory Denotes whether a file system can be named.

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte
d

Optional Expresses the states to which this file system may be changed using the
RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

GetElementNameCapabilit
ies()

Conditional Conditional requirement: Required if Filesystem Manipulation is
implemented.

Table 97 - SMI Referenced Properties/Methods for CIM_FileStorage

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile.

PartComponent Mandatory The LogicalFile contained in the LocalFileSystem.
150

 Filesystem Profile

575

576

577

578

579

580

581

582

583

584

585

586
Table 98 describes class CIM_FileSystemSetting.

8.7.8 CIM_HostedDependency (Local Access Required)

Table 98 - SMI Referenced Properties/Methods for CIM_FileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A user-friendly name for this FileSystemSetting element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemSetting
represents.

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower case
characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects that this
filesystem may be used to provide and provides further details in
corresponding entries in other attributes.

NumberOfObjectsMin Mandatory This is an array that specifies the minimum number of objects of the type
specified by the corresponding entry in ObjectTypes[].

NumberOfObjectsMax Mandatory This is an array that specifies the maximum number of objects of the type
specified by the corresponding entry in ObjectTypes[].

NumberOfObjects Mandatory This is an array that specifies the expected number of objects of the type
specified by the corresponding entry in ObjectTypes[].

ObjectSize Mandatory This is an array that specifies the expected size of a typical object of the
type specified by the corresponding entry in ObjectTypes[].

ObjectSizeMin Mandatory This is an array that specifies the minimum size of an object of the type
specified by the corresponding entry in ObjectTypes[].

ObjectSizeMax Mandatory This is an array that specifies the minimum size of an object of the type
specified by the corresponding entry in ObjectTypes[].

FilenameReservedCharact
erSet

Optional This string or character array specifies the characters reserved (i.e., not
allowed) for use in filenames of a filesystem with this setting.

DataExtentsSharing Optional This specifies whether a filesystem with this setting supports the creation
of data blocks (or storage extents) that are shared between files.

CopyTarget Optional This specifies that, if possible, support should be provided for using a
filesystem created with this setting as a target of a Copy operation.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-8) supported
for filenames by a filesystem with this setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3 names) supported
for filenames by a filesystem with this setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported by a filesystem
with this setting.

SupportedLockingSemanti
cs

Optional This array specifies the set of file access/locking semantics supported by a
filesystem with this setting.

SupportedAuthorizationPro
tocols

Optional This array specifies the kind of file authorization protocols supported by a
filesystem with this setting.

SupportedAuthenticationPr
otocols

Optional This array specifies the kind of file authentication protocols supported by a
filesystem with this setting.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 151

Filesystem Profile

587
588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604
Created By: External
Modified By: Static
Deleted By: External
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 99 describes class CIM_HostedDependency (Local Access Required).

8.7.9 CIM_HostedFileSystem (LocalFileSystem)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 100 describes class CIM_HostedFileSystem (LocalFileSystem).

8.7.10 CIM_LocalFileSystem

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 101 describes class CIM_LocalFileSystem.

Table 99 - SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that provides the scope for the
LocallyAccessibleFileSystemSetting.

Dependent Mandatory The local access settings of the LocalFileSystem, established when first
created or as modified later, that is dependent on some information
provided by the file server that is the scoping ComputerSystem.

Table 100 - SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that hosts a LocalFileSystem.

PartComponent Mandatory The LocalFileSystem that represents the hosted filesystem.

Table 101 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory The CIM class of the hosting ComputerSystem element.

CSName Mandatory The Name property of the hosting ComputerSystem element.

CreationClassName Mandatory The CIM class of this LocalFileSystem element.
152

 Filesystem Profile

605

606

607

608

609

610

611

612

613

614

615

616

617

618
8.7.11 CIM_LogicalFile

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Name Mandatory A unique name for this LocalFileSystem element in the context of the
hosting ComputerSystem.

OperationalStatus Mandatory The current operational status of the filesystem represented by this
LocalFileSystem element.

Root Optional A path that specifies the "mount point" of the filesystem in an unitary
computer system that is both the host of the filesystem and is the file
server that makes it available.

BlockSize Optional The size of a block in bytes for certain filesystem types that require a fixed
block size when creating a filesystem.

FileSystemSize Optional The total current size of the filesystem in blocks.

AvailableSpace Optional The space available currently in the filesystem in blocks. NOTE: This
value is an approximation as it can vary continuously when the filesystem
is in use.

ReadOnly Optional Indicates that this is a read-only filesystem that does not allow
modifications to contained files and directories.

EncryptionMethod Optional Indicates if files are encrypted by the filesystem implementation and the
method of encryption.

CompressionMethod Optional Indicates if files are compressed by the filesystem implementation before
being stored, and the methods of compression.

CaseSensitive Mandatory Whether this filesystem is sensitive to the case of characters in filenames.

CasePreserved Mandatory Whether this filesystem implementation preserves the case of characters
in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames by the filesystem implementation.

MaxFileNameLength Mandatory The length of the longest filename supported by the filesystem
implementation.

FileSystemType Mandatory This is a string that matches FileSystemSetting.ActualFileSystemType
property used to create the filesystem.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE: This value is
an approximation as it can vary continuously when the filesystem is in use.

Table 101 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 153

Filesystem Profile

619

620
Table 102 describes class CIM_LogicalFile.

8.7.12 SNIA_LocalAccessAvailable

Created By: External
Modified By: Static
Deleted By: External
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 103 describes class SNIA_LocalAccessAvailable.

8.7.13 SNIA_LocalFileSystem

Created By: External
Modified By: External
Deleted By: External

Table 102 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory Class Name of the ComputerSystem that hosts the filesystem containing
this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the filesystem
containing this file.

FSCreationClassName Mandatory Class Name of the LocalFileSystem that represents the filesystem
containing this file.

FSName Mandatory The Name property of the LocalFileSystem that represents the filesystem
containing this file.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents the file.

Name Mandatory The Name property of the LogicalFile that represents the file.

ElementName Mandatory The pathname from the root of the containing LocalFileSystem to this
LogicalFile. The root of the LocalFileSystem is indicated if this is NULL or
the empty string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of directories from
the root, the separator string is specified by the
SNIA_LocalFileSystem.PathNameSeparatorString property.

Table 103 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement Description & Notes

LocalAccessPoint Optional The name used by the file server ComputerSystem to identify the
filesystem. Sometimes referred to as a mount-point.

For many UNIX-based systems, this will be a qualified full pathname.

For Windows systems this could also be the drive letter used for the
LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file server
ComputerSystem.

FileServer Mandatory The ComputerSystem that will be able to export shares from this
LocalFileSystem.
154

 Filesystem Profile

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637
Requirement: Optional

Table 104 describes class SNIA_LocalFileSystem.

8.7.14 SNIA_LocallyAccessibleFileSystemSetting

Created By: External
Modified By: External
Deleted By: External
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 105 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 104 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes

LocalAccessDefinitionReq
uired

Mandatory This boolean property indicates whether or not this LocalFileSystem must
be made locally accessible ("mounted") from a file server
ComputerSystem before it can be shared or otherwise made available to
operational clients.

PathNameSeparatorString Mandatory This indicates the string of characters used to separate directory
components of a canonically formatted path to a file from the root of the
filesystem. This string is expected to be specific to the
ActualFileSystemType and so is vendor/implementation dependent.
However, by surfacing it we make it possible for a client to parse a
pathname into the hierarchical sequence of directories that compose it.

DirectoryServiceUsage Optional This enumeration indicates whether the filesystem supports security
principal information and therefore requires support from a file server that
uses one or more directory services. If the filesystem requires such
support, there must be a concrete subclass of Dependency between the
LocalFileSystem element and the specified file server ComputerSystem.
The values supported by this property are:

 "Not Used" indicates that the filesystem will not support security principal
information and so will not require support from a directory service.

 "Optional" indicates that the filesystem may support security principal
information. If it does, it will require support from a directory service and
the Dependency association described above must exist.

 "Required" indicates that the filesystem supports security principal
information and will require support from a directory service. The
Dependency association described above must exist.

Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this LocallyAccessibleFileSystemSetting element.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 155

Filesystem Profile

638

639

640

641

642
InitialEnabledState Optional InitialEnabledState is an integer enumeration that indicates the enabled/
disabled states initially set for a locally accessible filesystem (LAFS). The
element functions by passing commands onto the underlying filesystem,
and so cannot indicate transitions between requested states because
those states cannot be requested. The following text briefly summarizes
the various enabled/disabled initial states:

 Enabled (2) indicates that the element will execute commands, will
process any queued commands, and will queue new requests.

 Disabled (3) indicates that the element will not execute commands and
will drop any new requests.

 In Test (7) indicates that the element will be in a test state.

 Deferred (8) indicates that the element will not process any commands
but will queue new requests.

 Quiesce (9) indicates that the element is enabled but in a restricted mode.
The element's behavior is similar to the Enabled state, but it only
processes a restricted set of commands. All other requests are queued.

OtherEnabledState Optional A string describing the element's initial enabled/disabled state when the
InitialEnabledState property is set to 1 ("Other"). This property MUST be
set to NULL when InitialEnabledState is any value other than 1.

FailurePolicy Optional An enumerated value that specifies if the operation to make a filesystem
locally accessible to a scoping ComputerSystem should be attempted one
or more times in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by the
corresponding RetriesMax property of the setting.

RetriesMax Optional An integer specifying the maximum number of attempts that should be
made by the scoping ComputerSystem to make a LocalFileSystem locally
accessible. A value of '0' specifies an implementation-specific default.

RequestRetryPolicy Optional An enumerated value representing the policy that is supported by the
operational file server on a request to the operational filesystem that either
failed or left the file server hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout happens, or, to
try repeatedly. If the request can be performed in the background, the
request will be tried repeatedly until stopped.

TransmissionRetriesMax Optional An integer specifying the maximum number of retransmission attempts to
be made from the operational file server to the operational filesystem
when the transmission of a request fails or makes the file server hang. A
value of '0' specifies an implementation-specific default. This is only
relevant if there is a transmission channel between the file server and the
underlying filesystem.

RetransmissionTimeoutMi
n

Optional An integer specifying the minimum number of milliseconds that the
operational file server must wait before assuming that a request to the
operational filesystem has failed. '0' indicates an implementation-specific
default. This is only relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions Optional An enumerated value that specifies if a local cache is supported by the
operational file server when accessing the underlying operational
filesystem.

BuffersSupport Optional An array or enumerated values that specifies the buffering mechanisms
supported by the operational file server for accessing the underlying
operational filesystem." If supported, other properties will establish the
level of support. If the property is NULL or the empty array, buffering is not
supported.

Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
156

 Filesystem Profile

643

644

645

646

647

648

649

650

651

652
ReadBufferSizeMin Optional An integer specifying the minimum number of bytes that must be allocated
to each buffer used for reading. A value of '0' specifies an implementation-
specific default.

ReadBufferSizeMax Optional An integer specifying the maximum number of bytes that may be allocated
to each buffer used for reading. A value of '0' specifies an implementation-
specific default.

WriteBufferSizeMin Optional An integer specifying the minimum number of bytes that must be allocated
to each buffer used for writing. A value of '0' specifies an implementation-
specific default.

WriteBufferSizeMax Optional An integer specifying the maximum number of bytes that may be allocated
to each buffer used for writing. A value of '0' specifies an implementation-
specific default.

AttributeCaching Optional An array of enumerated values that specify whether attribute caching is (or
is not) supported by the operational file server when accessing specific
types of objects from the underlying operational filesystem. The object
type and the support parameters are specified in the corresponding
AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

 Object types contained by a filesystem that can be accessed locally are
represented by an entry in these arrays. The entry in the AttributeCaching
array can be 'On', 'Off', or 'Unknown'. Implementation of this feature
requires support from other system components, so it is quite possible that
specifying 'On' may still not result in caching behavior. 'Unknown' indicates
that the access operation will try to work with whatever options the
operational file server and filesystem can support. In all cases,
AttributeCachingTimeMin and AttributeCachingTimeMax provide the
minimum and maximum time for which the attributes can be cached.
When this Setting is used as a Goal, the client may specify 'Unknown', but
the Setting in the created object should contain the supported setting,
whether 'On' or 'Off'.

AttributeCachingObjects Optional An array of enumerated values that specify the attribute caching support
provided to various object types by the operational file server when
accessing the underlying operational filesystem. These", types represent
the types of objects stored in a filesystem -- files and directories as well as
others that may be defined in the future. The corresponding properties,
AttributeCaching, AttributeCachingTimeMin, and
AttributeCachingTimeMax provide the supported features for the type of
object. 'None' and 'All' cannot both be specified; if either one is specified, it
must be the first entry in the array and the entry is interpreted as the
default setting for all objects. If neither 'None' or 'All' are specified, the
caching settings for other objects are defaulted by the implementation. If
'Rest' is specified, the entry applies to all known object types other than
the named ones. If 'Unknown' is specified it applies to object types not
known to this application (this can happen when foreign filesystems are
made locally accessible).

AttributeCachingTimeMin Optional An array of integers specifying, in milliseconds, the minimum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache. When
used as a Goal, a value of '0' indicates an implementation-specific default.

AttributeCachingTimeMax Optional An array of integers specifying, in milliseconds, the maximum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache. When
used as a Goal, a value of '0' indicates an implementation-specific default.

Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 157

Filesystem Profile

653

654

655

656

657

658

659

660

661
 STABLE

ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy set on the
operational filesystem and supported by the operational file server when
accessing it. 'Read Only' specifies that the access to the operational
filesystem by the operational file server is set up solely for reading. 'Read/
Write' specifies that the access to the operational filesystem by the
operational file server is set up for both reading and writing. 'Force Read/
Write' specifies that 'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is intended for use when
the associated filesystem has been made 'Read Only' by default, as might
happen if it were created to be the target of a Synchronization or Mirror
operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be enforced on
the operational filesystem by the operational file server when accessing it.
'Enforce None' does not enforce locks. 'Enforce Write' does not allow
writes to locked files. 'Enforce Read/Write' does not allow reads or writes
to locked files.

EnableOnSystemStart Optional An enumerated value that specifies if local access from the operational file
server to the operational filesystem should be enabled when the file server
is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that expresses the
client's expectations about access to elements contained in the
operational filesystem. The provider is expected to surface this access
using the CIM privilege model.

ExecutePref Optional An enumerated value that specifies if support should be provided on the
operational file server for executing elements contained in the operational
filesystem accessed through this local access point. This may require
setting up specialized paging or execution buffers either on the operational
file server or on the operational filesystem side (as appropriate for the
implementation). Note that this does not provide any rights to actually
execute any element but only specifies support for such execution, if
permitted.

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that expresses the
client's expectations about privileged access by appropriately privileged
System Administrative users on the operational file server ('root' or
'superuser') to the operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege model.

 Support for the privileged access might require setup at both the
operational file server as well as the operational filesystem, so there is no
guarantee that the request can be satisfied.

Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
158

1

2

3

4

5

6

7

8

9

10

11

12

13
14
15
16
17
18

19
20

21
EXPERIMENTAL

9 Filesystem Manipulation Subprofile

9.1 Description

9.1.1 Synopsis

Profile Name: Filesystem Manipulation (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 106 describes the related profiles for Filesystem Manipulation.

Central Class: FileSystemConfigurationService

Scoping Class: ComputerSystem

9.1.2 Overview

The Filesystem Manipulation Profile is a subprofile provides support for configuring and manipulating
filesystems in the context of filesystem profiles (currently consisting of the NAS Head and the Self-
Contained NAS Profiles). A number of other profiles and subprofiles make use of elements of the
filesystem profiles and will be referred to in this specification as “filesystem-related profiles” -- these
include, but are not limited to, the Filesystem Subprofile, File Export Subprofile, File Export Manipulation
Subprofile, and NAS Head Profile.

The state transitions involved when an appropriate storage element is transformed into a filesystem are
described in Annex B (Informative) State Transitions from Storage to File Shares.

9.1.3 Instance Diagrams

9.1.3.1 Filesystem Creation classes and associations
Figure 13: "LocalFileSystem Creation Instance Diagram" illustrate the constructs involved with creating a
LocalFileSystem for a Filesystem Profile. This summarizes the mandatory classes and associations for
this subprofile. Specific areas are discussed in later sections.

Table 106 - Related Profiles for Filesystem Manipulation

Profile Name Organization Version Requirement Description

Job Control SNIA 1.5.0 Optional

Filesystem SNIA 1.6.1 Mandatory

Indication SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional

Volume Composition SNIA 1.5.0 Optional

Filesystem Manipulation Subprofile

22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

37

38
39
40
If a filesystem-related profile supports the Filesystem Manipulation Subprofile, it shall have at least one
instance of the FileSystemConfigurationService. This service shall be hosted on the top level

Figure 13 - LocalFileSystem Creation Instance Diagram
160

 Filesystem Manipulation Subprofile

41
42
ComputerSystem of the filesystem-related profile. The methods offered are SNIA_CreateFileSystem,
SNIA_ModifyFileSystem, and DeleteFileSystem.

Associated to the FileSystemConfigurationService (via ElementCapabilities) shall be one instance of
FileSystemConfigurationCapabilities that describes the capabilities of the service. It identifies the
methods supported, whether the methods support Job Control or not, the types of filesystems that are
supported, and whether or not the filesystem shall be made operationally available after creation.

For each type of filesystem that can be created, there shall be one FileSystemCapabilities element that
defines the range of capabilities supported for that particular filesystem type. An ElementCapabilities
association links each FileSystemCapabilities to the FileSystemConfigurationService. One of these
FileSystemCapabilities may also be identified as a default capability (by setting “Default” as one of the
entries in the array property Characteristics of its ElementCapabilities association). This default
FileSystemCapabilities element is used when the client does not specify a goal element when requesting
the SNIA_CreateFileSystem method. The default FileSystemCapabilities element implicitly indicates the
default filesystem type to be used for creation.

For the convenience of clients a Filesystem Manipulation Profile may populate a set of “pre-defined”
FileSystemSettings for each of the FileSystemCapabilities. These shall be associated to the
FileSystemCapabilities via the SettingsDefineCapabilities association (the association must have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and the
SettingsDefineCapabilities.ValueRole property must include "Supported" as an entry) and shall be for the
same filesystem type as the associated capabilities element (same value for the ActualFileSystemType
property in both classes).

NOTE That they are pre-defined and exist at all times does not imply that these FileSystemSettings must be made persistent by
the implementation -- rather it should be possible for the implementation to regenerate them if requested, though a simple re-
generating implementation may not necessarily scale.

The FileSystemCapabilities element supports three methods: CreateGoalSettings,
GetRequiredStorageSize and GetElementNameCapabilities. These methods are described in detail in
9.5.1, "Extrinsic Methods of the Profile". The basic function of the first two is to establish at least one
client-approved FileSystemSettings element (as a goal) and to determine the size of the LogicalDisk
required to support the desired filesystem.

CreateGoalSettings takes an array of embedded-instance SettingData elements as the input
TemplateGoalSettings and SupportedGoalSettings parameters and can generate an array of embedded-
instance SettingData elements as the output SupportedGoalSettings parameter. However, in this profile,
SMI-S only uses a single embedded-instance FileSystemSetting element in the input parameters (both
TemplateGoalSettings and SupportedGoalSettings) and generate a single valid embedded-instance
FileSystemSetting element as output (SupportedGoalSettings). If a client supplies a NULL (or the empty
string) FileSystemSetting as input to this method, the returned FileSystemSetting embedded-instance
shall be a default setting for the ActualFileSystemType of the FileSystemCapabilities. If the input (the
embedded-instance FileSystemSetting element) is not NULL, the method may return a “best fit” to the
requested setting. The client may iterate on this method until it acquires a setting that suits its needs.
This embedded-instance settings structure may be used when the SNIA_CreateFileSystem or
SNIA_ModifyFileSystem methods are invoked. The details of how iterative negotiation can work are
discussed in 9.5.1.1, "FileSystemCapabilities.CreateGoalSettings". Note that the FileSystemType
remains unchanged in all of these interactions. It is an error if the client or server changes the
FileSystemType unilaterally.

NOTE It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back mechanism is
needed. This profile does not require negotiation -- an implementation may support only a set of pre-defined correlated point
settings that a client can preload and use without modification. The implementation could also support only settings whose
properties are selectable from an arithmetic progression or from a fixed enumeration, so that the client may construct a goal setting
that is guaranteed to be supported without negotiation.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 161

Filesystem Manipulation Subprofile

43
44

45
46
47
48

49
50
51
52
53
54
55
56

57
58
59
60
61
62
63

64
65
66

67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89
90
91
NOTE That a client has obtained a goal setting supported by the implementation does not guarantee that a create or modify
request will succeed. Such a setting only specifies a supported static configuration not that the current dynamic environment has
the resources to implement a specific request.

After obtaining a goal FileSystemSetting, the next step is to determine the LogicalDisk size required to
support the FileSystemSetting. This is done by invoking the
FileSystemCapabilities.GetRequiredStorageSize method of this subprofile. The inputs are the embedded-
instance FileSystemSetting structure and an embedded-instance StorageSetting structure that describes
the quality of service the client wants for the storage (e.g., data redundancy, package redundancy, etc.).
The method returns three numbers corresponding to the StorageSetting: the expected size, the minimum
size, and a maximum usable size. The client would use these numbers in specifying or evaluating the
appropriate LogicalDisk(s) on which to create the FileSystem. The method also returns as output the
actual StorageSetting used as an EmbeddedInstance structure (assuming that these can be substituted
for the input StorageSetting).

NOTE This profile recommends that GetRequiredStorageSize() be used only if a LocalFileSystem is to be created on a single
LogicalDisk. If the intent is to use more than one LogicalDisk for the LocalFileSystem, this profile recommends using the
SNIA_CreateFileSystem method to make the implementation create or select the LogicalDisks to use.

• Armed with the FileSystem goal (the embedded-instance FileSystemSetting structure) and one or more
LogicalDisks, the client can now use the SNIA_CreateFileSystem method to create the filesystem. The
SNIA_CreateFileSystem method creates a LocalFileSystem instance, and a new FileSystemSetting instance
as well as several necessary associations. These associations are:

• HostedFileSystem association between the LocalFileSystem and the ComputerSystem that hosts it

• ResidesOnExtent association between the filesystem and one of the LogicalDisk(s) for the filesystem data

NOTE Even when multiple LogicalDisks are created or used for the LocalFileSystem, only one LogicalDisk will have the
ResidesOnExtent association.

• ElementSettingData to associate the filesystem to the FileSystemSetting defined for it

SNIA_CreateFileSystem allows LogicalDisks to be obtained from a number of StoragePools using an
array of embedded-instance StorageSettings. The SNIA_CreateFileSystem implementation must use the
capabilities of the StoragePools (and the associated StorageConfigurationService) to create the
necessary LogicalDisks. The LogicalDisks used for this purpose are returned as output values for the
InExtents parameter.

EXPERIMENTAL

To determine if the implementation supports supplying the ElementName during the creation of a file
system and to determine the supported methods to modify the ElementName of the existing file system,
invoke the method FileSystemCapabilities.GetElementNameCapabilities.

EXPERIMENTAL

If the property FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
SNIA_CreateFileSystem method provides the optional parameters for establishing local access
("mounting") from file server ComputerSystems, the LocalFileSystem.LocalAccessDefinitionRequired will
be set to true and the LocalFileSystem will need to be made locally accessible from the specified file
server ComputerSystems. The following elements are created:

• A LocalAccessAvailable association representing local access by a file server ComputerSystem to the
LocalFileSystem from within its namespace is created using the provided (or defaulted)
LocallyAccessibleFileSystemSetting parameter (as an EmbeddedInstance parameter). This association goes
between the File Server ComputerSystem and the LocalFileSystem; its LocalAccessPoint property specifies
the local access point (or "mount-point") in the file server ComputerSystem.
162

 Filesystem Manipulation Subprofile

92
93
94

95
96
97
98
99

100
101
102
103
104

105
106
107

108
109
110
111

112

113

114
115

116

117
118
119

120
121
122
123
124

125
126
127

128
129
130
131
132
• An instance of LocallyAccessibleFileSystemSetting is optionally created and associated to:

• The LocalFileSystem via an optional ElementSettingData association.

• The file server ComputerSystem via an optional HostedDependency (ScopedSetting) association (this
represents that a LocalFileSystem could be mounted on many file server ComputerSystems with different
"mount" parameters, so these parameters are specific to the pair of LocalFileSystem and file server
ComputerSystem).

• For backward compatibility with previous releases of SMI-S:

• The root directory of the LocalFileSystem is represented as a LogicalFile

• A FileStorage association is created between the LogicalFile and the LocalFileSystem

The DeleteFileSystem method is straightforward -- it deletes the LocalFileSystem and the
FileSystemSetting, and the associations to those instances (HostedFileSystem, both ElementSettingData
elements, ResidesOnExtent, LocalAccessAvailable, and LocallyAccessibleFileSystemSetting). Any
created LogicalFiles associated to the LocalFileSystem via FileStorage will also be deleted as a side-
effect of deleting the LocalFileSystem (so there is no separate requirement necessary for backward
compatibility). The implementation may delete the LogicalDisk(s), however, this is not required by this
profile. If the LogicalDisk(s) are not deleted, they become available for use in another
SNIA_CreateFileSystem operation.

The SNIA_ModifyFileSystem method modifies an existing LocalFileSystem -- this requires a new
FileSystemSetting structure to be used as a goal. But not any FileSystemSetting structure will do -- the
client must use one created with the same FileSystemCapabilities.CreateGoalSettings method that would
have been used to create the filesystem, or an appropriate compatible FileSystemCapabilities instance.
The CreateGoalSettings method is used to establish a new FileSystemSetting goal (as with the original
filesystem creation, it may be necessary to iterate on the CreateGoalSettings method). Since only
properties controlled by Settings can be changed by SNIA_ModifyFileSystem (i.e., the LogicalDisk(s)
already created cannot be changed, though new ones can be created and/or added), the effect of
SNIA_ModifyFileSystem is to change some properties of the LocalFileSystem or of the associated
FileSystemSetting.

NOTE Depending on what property is being modified, it may also be necessary to invoke the GetRequiredStorageSize method to
verify that the current LogicalDisk still supports the new goals.

9.1.3.1.1 Dependency on support for Locally Accessible Filesystem Capabilities
Both SNIA_CreateFileSystem and SNIA_ModifyFileSystem need a LocallyAccessibleFileSystemSetting
element for each file server ComputerSystem. The client first obtains a
LocallyAccessibleFileSystemCapabilities element by following ElementCapabilities association from the
FileSystemConfigurationService to a LocallyAccessibleFileSystemCapabilities that is associated via
ScopedCapabilities (HostedDependency) to the File Server ComputerSystem.

NOTE It is expected that there will only be one LocallyAccessibleFileSystemCapabilities element per file server ComputerSystem.
All the variability can be found by following SettingsDefineCapabilities to LocallyAccessibleFileSystemSetting elements. It is a
requirement that the LocallyAccessibleFileSystemSettings that define the LocallyAccessibleFileSystemCapabilities be associated
via HostedDependency (ScopedSetting) to the same file server ComputerSystem as the one indicated by the HostedDependency
(ScopedCapabilities).

The client calls LocallyAccessibleFileSystemCapabilities.CreateGoalSettings() with the appropriate
parameters.to obtain an appropriate LocallyAccessibleFileSystemSetting element -- CreateGoalSettings
can be used to negotiate if necessary.

9.1.3.1.2 Dependency on support for Directory Services
A filesystem may support security principal identifiers associated with filesystem objects for access
(typically, read/write/execute) as well as for tracking usage (as would be needed for supporting user and/
or group quotas). If the filesystem supports such identifiers, it would requires support from a directory
SMI-S 1.6.1 Revision 6 SNIA Technical Position 163

Filesystem Manipulation Subprofile

133
134
135
136
137

138

139

140
141
142
143

144

145

146

147
148
149
150
151
152
153
154

155
156
157
158
159
160

161
162
163
164
165
166
167
168
169
170

171
172

173

174
175
176
service for validating these identifiers (relating them to accounts and other user-related information).
Operationally, computer systems (and not filesystems) are associated to directory services or configured
for directory services. Directory service configurations of computer systems are much more complex than
needed or appropriate for filesystems. This makes it easier to make the filesystem depend on a computer
system, usually a file server, for providing access to directory services for resolving security principal
identifiers.

A filesystem that requires support from a directory service will have the property DirectoryServicesUsage
of its LocalFileSystem element set to ”Required”. In that case, there shall be a Dependency association
between the LocalFileSystem element and a file server ComputerSystem.element (with Dedicated=”16”).
The associated file server must be configured for access to directory services that it provides for the
filesystem.

NOTE If DirectoryServicesUsage is “Optional”, a client can look for the Dependency association to determine if the filesystem
supports security principal identifiers. This is not supported in this release of the profile.

9.1.3.1.3 Summary of this profile
This profile consists of the following classes, associations, and methods:

3) One LocallyAccessibleFileSystemCapabilities scoped to the file server ComputerSystem

4) ElementCapabilities association to the FileSystemConfigurationService

5) SettingsDefineCapabilities association to LocallyAccessibleFileSystemSetting

6) LocallyAccessibleFileSystemSetting for defining LocallyAccessibleFileSystemCapabilities

7) HostedDependency (ScopedSetting) association from the File Server ComputerSystem to Locally-
AccessibleFileSystemSetting

8) A HostedDependency association from the same file server ComputerSystem to the defined Locally-
AccessibleFileSystemCapabilities

9) LocallyAccessibleFileSystemCapabilities.CreateGoalSettings extrinsic method to create LocallyAc-
cessibleFileSystemSetting elements scoped to the file server ComputerSystem to use as Goals.
Note that this method is different from the method described as part of the FileSystemCapabilities
element.

10) A Dependency association from the LocalFileSystem element to a file server ComputerSystem.
164

 Filesystem Manipulation Subprofile

177
178

179
180
181
182
183

184
185
186

187

188
189
190
191
192
193
194
195
196

197
198
199
200
201

202
203

204

205

206

207

208

209

210
211

212
213

214
215
216
217

218
9.1.3.2 Finding FileSystem Configuration Services, Capabilities and Pre-defined Settings
When creating a filesystem the first step is to determine what can be created. Figure 14 -, "Capabilities
and Settings for Filesystem Creation" illustrates an instance diagram showing the instances that shall
exist for supporting filesystem creation.

At least one FileSystemConfigurationService shall exist if the Filesystem Profile has implemented the
Filesystem Manipulation Subprofile. The instance(s) of this service can be found by following the
HostedService association filtering on the target class of FileSystemConfigurationService.

NOTE If no service is found from the Top Level ComputerSystem, the client should look for component computer systems that may
be hosting the service. This is not recommended, but permitted.

An instance of the FileSystemConfigurationCapabilities shall be associated to the
FileSystemConfigurationService via the ElementCapabilities association. A client should follow this
association (filtering on the result value of "FileSystemConfigurationCapabilities") to inspect the
configuration capabilities that are supported. The client would choose between the filesystem types
specified in the array property SupportedActualFileSystemTypes.

Figure 14 - Capabilities and Settings for Filesystem Creation
SMI-S 1.6.1 Revision 6 SNIA Technical Position 165

Filesystem Manipulation Subprofile

219

220
221
222

223
224
225

226
227

228
229

230
231
For each entry in the SupportedActualFileSystemTypes array, there shall be one instance of
FileSystemCapabilities with the same value for the ActualFileSystemType property that shall be
associated to the FileSystemConfigurationService using the ElementCapabilities association (filtering on
the result value of FileSystemCapabilities). This FileSystemCapabilities element shall specify the
supported capabilities for that ActualFileSystemType using a collection of FileSystemSettings. These
FileSystemSettings shall be associated to the FileSystemCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined FileSystemSettings that clients could use directly if
desired. The SettingsDefineCapabilities association from the FileSystemCapabilities to the pre-defined
FileSystemSettings shall have the PropertyPolicy property be "Correlated", the ValueRole property be
"Supported" and the ValueRange property be "Point". Other pre-defined combinations of property values
may be specified by FileSystemSettings whose SettingsDefineCapabilities association has the
PropertyPolicy be "Independent", ValueRole property be "Supported" and the ValueRange array property
contain "Minimums", "Maximums", or "Increment" (see 9.5.1.1.1 for further details on the interpretation of
the ValueRange property). These settings can be used by the client to compose FileSystemSettings that
are more likely to be directly usable.

9.2 Health and Fault Management Considerations
The key element of this profile is the FileSystemConfigurationService and the hosting ComputerSystem.
The operational status of the hosting ComputerSystem should possibly be part of the referring
autonomous profile (NAS Head or SC NAS), the Filesystem Subprofile or in the Multiple Computer
System Subprofile.

9.2.1 OperationalStatus for FileSystemConfigurationService

9.2.2 OperationalStatus for LocalFileSystem

Table 107 describes the Operational status for LocalFileSystem.

Table 107 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description

2 “OK” The filesystem has good status

2 “OK” 4 “Stressed” The filesystem resources are stressed

2 “OK” 5 “Predictive Failure” The filesystem might fail because some
resource or component is predicted to
fail

2 “OK” 16 “Supporting Entity in Error” The filesystem may be OK, but is not
accessible because a supporting entity
is not accessible.

3 “Degraded” The filesystem is operating in a
degraded mode. This could be due to
the health state of the underlying storage
being degraded or in error.

6 “Error” An error has occurred causing the
filesystem to become unavailable.
Operator intervention through SMI-S
(managing the LocalFileSystem) to
restore the filesystem may be possible.

6 “Error” An error has occurred causing the
filesystem to become unavailable.
Automated recovery may be in progress.
166

 Filesystem Manipulation Subprofile

232
233
234

235
236
237
238
239
240

241
242
243
244
245
246
247
248
249

250

251
252
253
254

255
256

257

258
259
260

261

262
263

264
9.3 Cascading Considerations
Not defined in this standard. (Under Consideration for a future standard.)

9.4 Supported Subprofiles and Packages
See 9.1.1 for this information.

6 “Error” 7 “Non-recoverable Error” The filesystem is not functioning.
Operator intervention through SMI-S will
not fix the problem.

6 “Error” 16 “Supporting Entity in Error” The filesystem is in an error state
because a supporting entity is not
accessible.

8 “Starting” The filesystem is in process of
initialization and is not yet available
operationally.

 9 “Stopping” The filesystem is in process of stopping,
and is not available operationally.

10 “Stopped” The filesystem cannot be accessed
operationally because it is stopped -- if
this did not happened because of
operator intervention or happened in
real-time, the OperationalStatus would
have been “Lost Communication” rather
than “Stopped”.

11 “In Service” The filesystem is offline in maintenance
mode, and is not available operationally.

13 “Lost Communications” The filesystem cannot be accessed
operationally -- if this happened because
of operator intervention it would have
been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The filesystem is stopped but in a
manner that may have left it in an
inconsistent state.

15 “Dormant” The filesystem is offline; and the reason
for not being accessible is unknown.

Table 107 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 167

Filesystem Manipulation Subprofile
9.5 Methods of the Profile

9.5.1 Extrinsic Methods of the Profile

Table 108 details the filesystem manipulation methods that cause Instance Creation, Deletion or
Modification.

Table 108 - Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification
Method Created Instances Deleted Instances Modified Instances

FileSystemConfigurationService.
SNIA_CreateFileSystem LocalFileSystem

FileSystemSetting
ElementSettingData
ResidesOnExtent
HostedFileSystem

LogicalDisk(s)
StorageSetting(s)

LocalAccessAvailable(s)
LocallyAccessibleFileSy

stemSetting(s)
ElementSettingData(s)

HostedDependency
Dependency

N/A StoragePool(s)
LogicalDisk(s)

FileSystemConfigurationS
ervice.DeleteFileSystem

LocalFileSystem
FileSystemSetting

ElementSettingData
ResidesOnExtent
HostedFileSystem

LocalAccessAvailable(s)
LocallyAccessibleFileSy

stemSetting(s)
ElementSettingData(s)

HostedDependency
Dependency

N/A

FileSystemConfigurationS
ervice.SNIA_ModifyFileSy

stem

(IF REQUESTED)
LogicalDisk(s)

StorageSetting(s)
LocalAccessAvailable

LocallyAccessibleFileSy
stemSetting

ElementSettingData(s)
HostedDependency

(if Local Access is
modified)

LocalAccessAvailable
LocallyAccessibleFileSy

stemSetting
ElementSettingData(s)

HostedDependency

FileSystemSetting (if
changed)

ResidesOnExtent (if
added)

FileSystemCapabilities.Cr
eateGoalSettings N/A N/A N/A

LocallyAccessibleFileSyss
temCapabilities.CreateGo

alSettings
N/A N/A N/A

FileSystemCapabilities.Ge
tRequiredStorageSize N/A N/A N/A

GetElementNameCapabili
ties N/A N/A N/A
168

 Filesystem Manipulation Subprofile

265

266

267

268

269

270

271
272
9.5.1.1 FileSystemCapabilities.CreateGoalSettings
This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
FileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this
method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
FileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type FileSystemSetting. As
such, these settings do not exist in the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

9.5.1.1.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges with respect to the filesystem or the filesystem
host. During negotiation, the client will show the current state to the user -- the SupportedGoalSettings
received to date (either the latest or some subset), the TemplateGoalSettings proposed (the most recent,
but possibly more). But the administrator needs a representation of what is available, possibly the range
or sets of values that the different setting properties can take. Some decisions are assumed to have been
made already, such as the type of filesystem to be created and the number of LogicalDisks to use and
their StorageSettings. It is possible that the LogicalDisks for use by this filesystem have already been
designated by the user; if not, the StoragePool(s) from which they will be created is already designated or
will be selected by an independent process.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified using
FileSystemSettings -- these points can be further qualified to indicate whether these are supported (or
not), and even whether they represent some ideal point in the space -- a "minimum", or a "maximum", or
an "optimal" point. Other settings can provide ranges for properties -- by specifying a minimum, a
maximum, and an increment an arithmetic progression of values can be specified (a continuous range
can be specified with a zero increment). Specifying a set of supported values for a property that do not
follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

1) Client considers only the canned settings that are specified exactly. The canned settings are specified by the
FileSystemSettings that are associated to the FileSystemCapabilities via SettingDefinesCapabilities associa-
tion with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"
SMI-S 1.6.1 Revision 6 SNIA Technical Position 169

Filesystem Manipulation Subprofile

273

274
275
276

277
278
279
280

281
282

283
284
285
286
287
288

289

290
291
292
293
294
295
296
297
298
299

300
301
302
303
304
305
306
307

308
309
310
311
312
• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the FileSystemSettings
that are associated to the FileSystemCapabilities via SettingDefinesCapabilities association with the
following property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

9.5.1.1.2 Signature and Parameters of FileSystemCapabilities.CreateGoalSettings
Table 109 describes the parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings.

9.5.1.2 GetRequiredStorageSize
This extrinsic method returns the minimum, expected, and maximum size for a LogicalDisk that would
support a filesystem specified by the input FileSystemGoal parameter. The caller may provide relevant

Table 109 - Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Parameter
Name

Qualifier Type Description & Notes

TemplateGoalSetting
s[]

IN string EmbeddedInstance ("SNIA_FileSystemSetting")

TemplateGoalSettings is a string array containing embedded
instances of class FileSystemSetting, or a derived class. This
parameter specifies the client’s requirements and is used to
locate matching settings that the implementation can support.

SupportedGoalSettin
gs[]

INOUT string EmbeddedInstance("SNIA_FileSystemSetting")

SupportedGoalSettings is a string array containing embedded
instances of class FileSystemSetting, or a derived class. On
input, it specifies a previously returned set of Settings that the
implementation could support. On output, it specifies a new set
of Settings that the implementation can support. If the output set
is identical to the input set, both client and implementation may
conclude that this is the best match for the
TemplateGoalSettings that is available.
If the output does not match the input and the non-NULL output
does not match the non-NULL TemplateGoalSettings, then the
method must return "Alternative Proposed".
If the output is NULL, the method must return an “Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout",
"Alternative Proposed"

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.
170

 Filesystem Manipulation Subprofile

313
314
315
316

317
318
319

320

321

322

323
324
325
326

327

328

329

330
settings of the LogicalDisk via the ExtentSetting parameter. The minimum, maximum, and expected sizes
are returned as output parameters.

If the input FileSystemGoal is NULL, the implementation may return an error or use a default
FileSystemSetting associated with this FileSystemCapabilities element. The actual FileSystemSetting
used is returned as an OUT parameter.

If the input ExtentSetting parameter is NULL or is an empty array, the implementation may use a default
StorageSetting associated with the StorageConfigurationService hosted on the same ComputerSystem as
the FileSystemConfigurationService associated with this FileSystemCapabilities element. The actual
StorageSetting used is returned as an OUT parameter.

NOTE The actual FileSystemSetting and StorageSetting used are being returned as OUT parameters. This is a non-backward-
compatible change from SMI-S 1.1.

9.5.1.2.1 Signature and Parameters of GetRequiredStorageSize
Table 110 describes the parameters for Extrinsic Method
FileSystemCapabilities.GetRequiredStorageSize.

Table 110 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter
Name

Qualifier Type Description & Notes

FileSystemGoal INOUT, EI string EmbeddedInstance ("SNIA_FileSystemSetting")

FileSystemGoal is an Embedded Instance element of class
CIM_FileSystemSetting, or a derived class, that specifies the
settings for the FileSystem to be created.
If NULL on input, a default for this FileSystemCapabilities is
used.
On output, this returns the actual FileSystemSetting that was
used.

ExtentSetting INOUT, EI string EmbeddedInstance("CIM_StorageSetting")

ExtentSetting is an Embedded Instance element of class
CIM_StorageSetting, or a derived class, that specifies the
settings for the LogicalDisk to be used for building this
FileSystem.
If NULL on input, a default StorageSetting will be obtained from
a StorageConfigurationService hosted on the same
ComputerSystem as this FileSystemConfigurationService.
On output, this returns the actual StorageSetting that was used.
If the output is NULL, the method must return an “Failed”.

ExpectedSize OUT uint64 An integer that indicates the size of the storage extent that this
FileSystem is expected to need. An entry value of 0 indicates
that there is no expected size.

MinimumSizeAccept
able

OUT uint64 An integer that indicates the size of the smallest storage extent
that would support the specified FileSystem. A value of 0
indicates that there is no minimum size.

MaximumSizeUsabl
e

OUT uint64 An integer that indicates the size of the largest storage extent
that would be usable for the specified FileSystem. A value of 0
indicates that there is no maximum size.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout"
SMI-S 1.6.1 Revision 6 SNIA Technical Position 171

Filesystem Manipulation Subprofile

331

332
333
334
335

336
337
338

339
340
341
342

343
344

345

346

347
EXPERIMENTAL

9.5.1.3 FileSystemCapabilities.GetElementNameCapabilities
This method indicates if ElementName can be specified as a part of invoking an appropriate method of
FileSystemConfigurationService to create a new file system. Additionally, the returned data includes the
methods that can be used to modify the ElementName of existing file systems.

uint32 GetElementNameCapabilities(

[OUT,

ValueMap { "2", "3", "4", "..", "32768..65535" },

Values { "ElementName can be supplied during creation",

"ElementName can be modified with InvokeMethod",

"ElementName can be modified with intrinsic method",

"DMTF Reserved", "Vendor Specific" }]

uint32 SupportedFeatures[],

[OUT] string ElementNameMask,

[OUT] uint16 MaxElementNameLen);

The parameters are:

• SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a FileSystem. For example, the value of "ElementName can be supplied during
creation" indicates the method such as SNIA_CreateFileSystem() accepts the ElementName when creating
a new FileSystem. An empty array indicates ElementNaming for ElementType is not supported.

• MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.

• ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

EXPERIMENTAL

9.5.1.4 LocallyAccessibleFileSystemCapabilities.CreateGoalSettings
This extrinsic method of the LocallyAccessibleFileSystemCapabilities class validates support for a caller-
proposed LocallyAccessibleFileSystemSetting passed as the TemplateGoalSettings parameter. This

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

Table 110 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize (Continued)

Parameter
Name

Qualifier Type Description & Notes
172

 Filesystem Manipulation Subprofile

348

349
350
351

352

353

354

355

356

357

358

359

360

361

362

363
364
365
366

367
profile restricts the usage of this method to a single entry array for both TemplateGoalSettings and
SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
LocallyAccessibleFileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
LocallyAccessibleFileSystemSetting. As such, these settings do not exist in the implementation but are
the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

9.5.1.4.1 Client Considerations
It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges to the filesystem. During negotiation, the client
will show the current state to the user -- the SupportedGoalSettings received to date (either the latest or
some subset), the TemplateGoalSettings proposed (the most recent, but possibly more). But the
administrator needs a representation of what is available, possibly the range or sets of values that the
different setting properties can take. Some decisions are assumed to have been made already, such as
whether the local access is read-only or the file server that is going to access the filesystem.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified supported points in the
space of properties -- these points can be further qualified to indicate whether these are supported or not,
or whether they represent some ideal point in the space -- a "minimum", or a "maximum", or an "optimal"
point. Other settings can provide ranges for properties -- by specifying a minimum, a maximum, and an
increment an arithmetic progression of values can be specified (a continuous range can be specified with
a zero increment). Specifying a set of supported values for a property that do not follow some pattern is
possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
LocallyAccessibleFileSystemSetting elements that are associated to the LocallyAccessibleFileSystemCapa-
bilities via SettingDefinesCapabilities association with the following property values:

• SettingDefinesCapabilities.PropertyPolicy = "Correlated"

• SettingDefinesCapabilities.ValueRole = "Supported"

• SettingDefinesCapabilities.ValueRange = "Point"
SMI-S 1.6.1 Revision 6 SNIA Technical Position 173

Filesystem Manipulation Subprofile

368
369
370
371
372
373

374

375
376
377
378

379
380
381
382
383

384
385

386
387
388
389
390
391

392

393
394
395
396
397
398
399

400
401
402
403
404
405
406
407

408
409
410
411
412
2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the LocallyAccessibleFile-
SystemSetting elements that are associated to the LocallyAccessibleFileSystemCapabilities via
SettingDefinesCapabilities association with the following property values:

• SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

• The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

Comparing the two CreateGoalSettings extrinsic methods of this profile, the
FileSystemCapabilities.CreateGoalSettings() can be significantly more complex than
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings(). The client can choose to implement a
simpler negotiation protocol for one -- this specification does not mandate the extent to which the client
must use this protocol.

9.5.1.4.2 Signature and Parameters of CreateGoalSettings
Table 111 describes the parameters for Extrinsic Method
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings.

Table 111 - Parameters for Extrinsic Method

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string EmbeddedInstance
("SNIA_LocallyAccessibleFileSystemSetting")

TemplateGoalSettings is a string array containing embedded
instances of class LocallyAccessibleFileSystemSetting, or a
derived class. This parameter specifies the client’s requirements
that is used to locate matching settings that the implementation
can support.

SupportedGoalSettings[] INOUT string EmbeddedInstance("SNIA_LocallyAccessibleFileSystemSetting
")

SupportedGoalSettings is a string array containing embedded
instances of class LocallyAccessibleFileSystemSetting, or a
derived class. On input, it specifies a previously returned set of
Settings that the implementation could support. On output, it
specifies a new set of Settings that the implementation can
support. If the output set is identical to the input set, both client
and implementation may conclude that this is the best match for
the TemplateGoalSettings that is available.
If the output does not match the input and the non-NULL output
does not match the non-NULL TemplateGoalSettings, then the
method must return \"Alternative Proposed\".
If the output is NULL, the method must return an “Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout",
"Alternative Proposed"

Error Returns

Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value
174

 Filesystem Manipulation Subprofile

413
414
415
416

417
418
419

420

421

422

423
424
425
426

427

428

429
430
431
432
433

434

435
436
9.5.1.5 FileSystemConfigurationService.SNIA_CreateFileSystem
This extrinsic method creates a LocalFileSystem and returns it as the value of the parameter
TheElement. The desired settings for the LocalFileSystem are specified by the Goal parameter (a string-
valued EmbeddedInstance object of class FileSystemSetting).

filesystem vendors differ in their models for creating a filesystem. Some vendors require that the storage
element already exist; others create the storage element at the same time as the filesystem. Some
vendors require a local access point ("mount-point") that supports defining a name or pathname that
allows a file server to access the filesystem; others do not require any such object (though it could be
argued that they provide a default local access mechanism). This extrinsic method supports variant
mechanisms for specifying, at create time, storage element creation as well as local access by a file
server. The FileSystemConfigurationCapabilities associated with the FileSystemConfigurationServices
contains the property BlockStorageCreationSupport that specifies support for create-time storage
element creation; the property LocalAccessibilitySupport that specifies support for local access by a file
server at creation; the property DirectoryServerParameterSupported that specifies support for specifying
a file server that provides access to a Directory Service (if enabled separately).

To support backward compatibility with previous releases of SMI-S, an instance of Directory (a derived
class of LogicalFile) is created representing the root directory of the newly created filesystem. This
Directory element is associated to the LocalFileSystem via FileStorage.

A FileSystemSetting element that represents the settings of the LocalFileSystem (either identical to the
Goal or equivalent) shall be associated via ElementSettingData to the LocalFileSystem. The
implementation shall create a new FileSystemSetting for this purpose.

The output parameter TheElement shall contain a reference to the newly created LocalFileSystem. Even
if this operation does not complete but creates a job, an implementation may return a valid reference in
TheElement. If the job fails subsequently, it is possible for this reference to become invalid.

9.5.1.5.1 Specifying Storage Underlying the Filesystem
BlockStorageCreationSupport is an array of enumerated values that specifies if:

• An enumerated value that specifies whether the extrinsic methods may use an already existing LogicalDisk -
- this is either required, optional, or not allowed. If "Not Allowed", the Pools and ExtentSettings parameters
must be used to create LogicalDisk(s) for this LocalFileSystem and the InExtents parameter must be NULL. If
"Optional", either the Pools and ExtentSettings parameters or the InExtents parameter should be specified,
but not both. If "Required", on the InExtents parameter may be specified and the Pools and ExtentSettings
parameters must be NULL.

• (optional) An integer that specifies an upper limit to the number of storage elements that can be specified,
either as InExtents parameters or as Pools and ExtentSettings.

• (optional) An integer that specifies the number of distinct storage pools that the Pools parameters can specify
-- zero, if Pools is not supported or if there is no limit, and a specific number if there is a limit. In practice it is
expected that the value will be either zero or one.

• (optional) A truth value represented as ’0’ for false and ’1’ for true that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating that a default setting is to be used).

Invalid Combination of
Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

Table 111 - Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 175

Filesystem Manipulation Subprofile

437

438
439
440

441
442
443
444
445
446
447
448
449
450
451

452
453
454

455
456
457

458
459
460

461

462

463
464
465
466
The storage used for creating the LocalFileSystem is specified by the InExtents parameter that must be
an array of LogicalDisks. If InExtents is NULL and BlockStorageCreationSupport indicates that Pools are
optional or required, the parameter Pools must specify an array of StoragePools from which storage may
be allocated -- the requirements for the LogicalDisks allocated from this Pool is specified in the
ExtentSettings array parameter. The Pools may use an associated StorageConfigurationService. The
LocalFileSystem is associated to one of the LogicalDisk(s) via the ResidesOnExtent association. The
other LogicalDisks extend the distinguished LogicalDisk (as modeled by the Volume Composition
Subprofile).

9.5.1.5.2 Specifying Local Access to the Filesystem
LocalAccessibilitySupport is an enumeration that specifies whether the implementation requires a local
access specification, or makes it optional (thus using a vendor default), or does not require one ("local
access" does not have a meaning for the vendor).

The LocalFileSystem shall be hosted on the same ComputerSystem as the
FileSystemConfigurationService.

NOTE The requirement that the LocalFileSystem have the same host as the Service is too restrictive but this method can be
extended in the future with a FileSystemHost parameter (implicitly NULL in 1.2).

If LocalAccess is supported, whether optional or required, this method supports specifying one file server
ComputerSystem (the reference parameter FileServer) that is given local access to this filesystem. If
LocalAccess is optional, the FileServer parameter may be NULL. The local access name on the
FileServer is specified in the LocalAccessPoint string parameter -- if the implementation uses pathnames,
this will be formatted as a pathname (directory names separated by the PathNameSeparatorString). The
implementation could also use a differently formatted local access name (for instance, a simple name).
The settings to be used for this are specified in the LocalAccessSetting, an EmbeddedInstance element
of class LocallyAccessibleFileSystemSetting.

NOTE If a second file server ComputerSystem is to be given local access, the SNIA_ModifyFileSystem method would be used.

Corresponding to the LocalAccessPoint parameter, a LocalAccessAvailable association instance and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

• The LocalAccessAvailable association goes between the FileServer parameter and the created
LocalFileSystem (TheElement parameter).

• The LocalAccessAvailable.LocalAccessPoints property is set to the value of the LocalAccessPoint string.

• The LocallyAccessibleFileSystemSetting element has an ElementSettingData association to the
LocalFileSystem (TheElement).

• The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

If LocalAccess is supported, the FileServer parameter should not be NULL.

NOTE If it is NULL, the implementation may leave the filesystem operationally inaccessible -- however, this can be corrected by
calling the SNIA_ModifyFileSystem method. This is not an Error.

If LocalAccess is supported and the FileServer parameter is not NULL, the LocalAccessPoint string may
be NULL or the empty string. In this case, the LocalAccessSetting parameter should indicate the
implementation-specific default format. The default value that is used is returned as the OUT value of the
LocalAccessPoint parameter. It is an Error if the LocalAccessSetting parameter does not provide an
appropriate default mechanism for constructing a local access name.

The LocalAccessSetting parameter will return an EmbeddedInstance of the
LocallyAccessibleFileSystemSetting actually used on output.
176

 Filesystem Manipulation Subprofile

467
468

469
470

471
472
473

474
475

476
477
478
479
480
481
482
483

484

485
486
487
488
489
490
491
492
493

494
495
496

497
498

499
500

501
502
503
504
505
506
507
508

509

510
511
9.5.1.5.3 Specifying access to Directory Services
DirectoryServerParameterSupported is a property that specifies whether the filesystem must have access
to a file server that provides access to directory services so that security principal information may be
supported. If the newly created filesystem must be able to resolve such information, the DirectoryServer
parameter must be specified to the SNIA_CreateFileSystem method.

The DirectoryServer parameter specifies a file server ComputerSystem that is configured to access a
directory service that resolves security principal identifies (UIDs, GIDs, or SIDs) used by the filesystem.
This profile does not specify the configuration of any directory service (if there is one), any directory
server, or the file server that is specified by the DirectoryServer parameter. For operational efficiency
reasons, this must be a file server since security principal information such as usage and detection of
threshold violations must happen in real-time.

If the DirectoryServer is required and is specified, an association, a concrete subclass of Dependency,
shall be surfaced between the newly created LocalFileSystem element (as Dependent) and the specified
file server (as Antecedent). The SNIA_CreateFileSystem method will return a reference to this file server
as the return value of the parameter. In this case, the LocalFileSystem.DirectoryServiceUsage property
shall be set to “Supported”.

Any file server that is configured with write access to a filesystem must use the same or a compatible
directory service (effectively the same) as the file server indicated by the Dependency association.

9.5.2 Signature and Parameters of SNIA_CreateFileSystem

Table 112 describes the parameters for Extrinsic Method
FileSystemConfigurationService.SNIA_CreateFileSystem.

Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the FileSystem being
created. The value shall be stored in the 'ElementName'
property for the created element. This parameter shall not
be NULL or the empty string.

Job OUT, REF CIM_ConcreteJob Reference to the job (may be null if job completed).

Goal IN, OUT, EI string EmbeddedInstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the FileSystem. If
NULL or the empty string, a default FileSystemSetting shall
be specified by the FileSystemCapabiltiies element
associated to the FileSystemConfigurationService by the
DefaultElementCapabilities association. The actual
FileSystemSetting used is returned on output.

TheElement OUT, REF CIM_LocalFileSystem The newly created FileSystem.

InExtents[] IN, OUT, REF,
NULL allowed,

CIM_LogicalDisk The LogicalDisk(s) on which the created FileSystem shall
reside. If this is NULL, the Pools and ExtentSettings
parameters cannot be NULL and are used to create
LogicalDisk(s). The LogicalDisk(s) actually used will be
returned on output.

Pools[] IN, REF, NULL
allowed

CIM_StoragePool An array of concrete StoragePool elements corresponding
to the ExtentSettings parameter from which to create
LogicalDisks in case the InExtents parameter is NULL. If
InExtents is not NULL, this must be NULL.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 177

Filesystem Manipulation Subprofile

512
513

514

515
516

517
518

519

520
521

522
523
524
525
526

527
528

529

530
531
532
533

534
535
536
537
538
539

540
541
542
543
544

545
546
ExtentSettings[] IN, EI, NULL
Allowed

string EmbeddedInstance ("CIM_StorageSetting")

An array of embedded StorageSetting structures that
specify the settings to use for creating LogicalDisks if the
InExtents parameter is NULL and Pools is specified. Each
LogicalDisk will be created from the corresponding entry in
Pools, so each StorageSetting entry must be supported by
the capabilities of the corresponding Pools entry.

Sizes[] IN, OUT, NULL
Allowed

uint64 An array of numbers that specifies the size in bytes of the
LogicalDisks to be created corresponding to the Pools and
ExtentSettings parameters. The sum of Sizes should be at
least as much as (or greater than) the FileSystem size
needed.

FileServer IN, OUT, REF,
NULL Allowed

ComputerSystem A reference to a ComputerSystem element that will access
the created LocalFileSystem and is capable of exporting
the filesystem as a file share. The local access point with
respect to the file server is specified by the
LocalAccessPoint parameter. If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that local access points are supported but
implementation-defaulted, the corresponding entry in the
LocalAccessPoint parameter should be NULL or the empty
string as the LocalAccessPoint name is constructed as per
the vendor default algorithm. A LocalAccessAvailable
association is created between the FileServer and the
LocalFIleSystem. The parameters for local access are
specified by the LocalAccessSetting parameter.

Since this filesystem has just been created, the
LocalAccessSetting can support Write privileges. If the
LocalAccessSetting entry is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities associated to the
FileServer.

If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that a local access point is required and
FileServer is NULL, no LocalAccessAvailable associations
are created and the filesystem may not be accessible. This
shall not cause an Error.

On output, this parameter contains a reference to the actual
FileServer that has access to the created LocalFileSystem.

Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
178

 Filesystem Manipulation Subprofile

547

548

549
LocalAccessPoint IN, OUT, REF,
NULL Allowed

string A string to use as a pathname in the name space of the file
server ComputerSystem. The format of the string is vendor-
dependent and it should be considered opaque from the
client’s standpoint. It could be interpreted as a hierarchical
fully-qualified name for the local access point (say in a
Unix-based operating environment), or it could be a drive
letter (as in a Windows operating environment). A
LocalAccessAvailable association is created going between
the new LocalFileSystem and the FileServer parameter.
The LocalAccessAvailable.LocalAccessPoint property will
be set to this parameter.

The parameters for local access are specified by the
LocalAccessSetting parameter.

If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that local access points are required, then
LocalAccessPoint shall not be NULL or an empty string.

If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that local access points can be vendor-
defaulted, then LocalAccessPoint can be NULL or an
empty string and the implementation shall create a name
using a vendor-specific algorithm.

If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that local access points cannot be vendor-
defaulted, then LocalAccessPoint shall not be NULL and
the implementation shall not create a default pathname.
This is an Error.

On output, this parameter contains the actual
LocalAccessPoint used (including any name created by
vendor-default).

LocalAccessSetting IN, EI, OUT,
NULL Allowed

string EmbeddedInstance
("CIM_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting element
that specifies the settings to use to establish a local access
point. This element will be used to create a
LocalAccessAvailable association and will be cloned to
create a LocallyAccessibleFileSystemSetting element that
is scoped via HostedDependency (ScopedSetting) to the
FileServer and associated via ElementSettingData to the
LocalFileSystem.

If a LocallyAccessibleFileSystemSetting entry is NULL or
the empty string, the implementation shall use the default
provided by the LocallyAccessibleFileSystemCapabilities
element of the FileSystemConfigurationService that is
associated to the FileServer via CIM_Dependency. The
LocalAccessSetting may specify a Write Privilege.

The LocalAccessSetting actually used is returned as the
OUT EmbeddedInstance parameter.

Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 179

Filesystem Manipulation Subprofile
9.5.2.1 FileSystemConfigurationService.SNIA_ModifyFileSystem
This extrinsic method modifies a LocalFileSystem specified by the parameter TheElement. The desired
settings for the LocalFileSystem are specified by the Goal parameter (a string-valued EmbeddedInstance
object of class FileSystemSetting).

As with SNIA_CreateFileSystem, the FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationService specifies support for some of the optional behaviors of this method.
BlockStorageCreationSupport indicates whether this method only uses previously existing storage
elements or if it can create them at the same time as modifying or creating the filesystem. In addition this
can specify if additional LogicalDisks can be added to the existing set of LogicalDisks and whether the
implementation limits the number of LogicalDisks underlying a filesystem. LocalAccessibilitySupport
indicates whether the implementation requires support for local access points (or if they are optional or
not required at all).

DirectoryServer IN, OUT, NULL
Allowed

ComputerSystem A reference to a ComputerSystem element that has access
to directory services. The newly created filesystem can use
it to support security principal information associated with
filesystem objects, such as quotas for users and groups.
This is represented by providing a Dependency association
between the LocalFileSystem element and the
ComputerSystem indicated by this parameter. The
requirements for this parameter are further specified by
FileSystemConfigurationCapabilities.DirectoryServerParam
eterSupported.

If DirectoryServerParameterSupported specifies 'Not Used',
or 'Supported, Defaulted to FileServer', or 'Supported,
Defaulted to FileSystem host', it is an Error if
DirectoryServer is not NULL.

Otherwise, (i.e., if DirectoryServerParameterSupported
specifies 'Supported'), and if the DirectoryServer is not
NULL, the new filesystem will use the directory services
made available by the specified DirectoryServer. If
DirectoryServer is NULL, it will be defaulted to the
FileServer parameter. If the FileServer parameter is also
NULL, the DirectoryServer will be defaulted to the host of
the newly created filesystem.

On output, this parameter contains a reference to the actual
DirectoryServer if one was established.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been
requested.

Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem

Parameter
Name

Qualifier Type Description & Notes
180

 Filesystem Manipulation Subprofile
This element shall have a FileSystemSetting use ActualFileSystemType property is supported by the
FileSystemConfigurationService (as specified by the SupportedActualFileSystemTypes property of the
associated FileSystemConfigurationCapabilities). The existing LogicalDisks used by the LocalFileSystem
cannot be released by this method, but this method may add LogicalDisks. These LogicalDisks may be
specified by the InExtents parameter (if that is either required or optional) or, if InExtents is NULL (if
Pools are optional or required), the set of LogicalDisks is not changed. New LogicalDisks may also be
added by specifying an array of StoragePools in the Pools parameter and an array of StorageSettings that
can be used to create them.

If the operation would result in a change in the size of a filesystem, the ResidesOnExtent association
shall be used to determine how to implement the change. If the existing or additional LogicalDisk(s)
specified, or any additional LogicalDisks created, cannot support the goal size, an appropriate error value
shall be returned, and no action shall be taken. If the operation succeeds, the ResidesOnExtent
association shall reference the same LogicalDisk as before (however, the LogicalDisk will be built upon a
larger number of underlying LogicalDisks, as modeled by the Volume Composition Subprofile).

If the new Goal is different from the old FileSystemSetting element associated to the LocalFileSystem
element, then the implementation must change the setting properties of the LocalFileSystem. This may
be accomplished by modifying the old FileSystemSetting element directly, or by deleting it and then re-
creating a new FileSystemSetting element with the same InstanceId. Just like the old element, the new
FileSystemSetting element shall be associated to the LocalFileSystem element via an
ElementSettingData association.

If local access is supported, whether optional or required, any change is specified by providing the
FileServer parameter (which shall be a reference to a ComputerSystem). If a FileServer is not being
added to the set or modified or removed from the set, the FileServer parameter may be NULL.

If the specified FileServer does not duplicate a ComputerSystem that has already been specified as
having local access, this method adds it to the set. The pathname is specified by the LocalAccessPoint
string array parameter. The settings to be used for these are specified in the LocalAccessSetting, an
EmbeddedInstance element of class LocallyAccessibleFileSystemSetting.

If the specified FileServer duplicates a ComputerSystem that has already been specified as having local
access, this method either modifies the local access or removes it from the set. If the LocalAccessPoint
parameter is NULL or consists of an empty string, this call removes the FileServer from the set. If the
LocalAccessPoint parameter is not NULL but specifies the current path, then this call modifies the
settings of the local access -- the new settings are specified by the LocalAccessSetting parameter. If the
LocalAccessPoint parameter is not NULL but specifies a path other than the current path, then this call
modifies the pathname as well as the settings. If this filesystem is in operational use when such a request
is made, the request may have to be suspended until the filesystem can be put into an appropriate state
for making the change.

The settings to be used for adding or modifying are specified by the LocalAccessSetting parameter, an
EmbeddedInstance element of class LocallyAccessibleFileSystemSetting.

To add a local access point, a LocalAccessAvailable association and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

• A LocalAccessAvailable association goes between the FileServer parameter and the LocalFileSystem
(TheElement parameter).

• A LocalAccessAvailable.LocalAccessPoint property is set to the LocalAccessPoint string.

• A LocallyAccessibleFileSystemSetting element with a ElementSettingData association to the
LocalFileSystem (TheElement parameter).

• The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 181

Filesystem Manipulation Subprofile

550
551
552
553
554

555
556
557
558
559
NOTE The WaitTime and InUseOptions parameters are supported if the FileSystemCapabilities.SupportedProperties includes the
"RequireInUseOptions" option.

NOTE A client can identify all local access specifications for a filesystem by looking for the LocalAccessAvailable association from
the LocalFileSystem to a file server ComputerSystem and the LocallyAccessibleFileSystemSetting associated to the
LocalFileSystem via ElementSettingData and the same file server ComputerSystem via HostedDependency (ScopedSetting).

9.5.3 Signature and Parameters of SNIA_ModifyFileSystem

Table 113 describes the parameters for Extrinsic Method
FileSystemConfigurationService.SNIA_ModifyFileSystem.

Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem

Parameter
Name

Qualifier Type Description & Notes

ElementName IN, OUT string An end user relevant name for the filesystem being modified. If NULL, the
existing TheElement.ElementName property is not changed. If not NULL,
this parameter will supply a new name for the Element parameter. The
actual ElementName is returned as the output value.

Job OUT, REF CIM_Conc
reteJob

Reference to the job (may be null if job completed).

Goal IN, OUT, EI string EmbeddedInstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the filesystem specified by the
TheElement parameter. If NULL or the empty string, the settings for
TheElement will not be changed. If not NULL, this parameter will supply
new settings that replace or are merged with the current settings of
TheElement.

TheElement IN, REF CIM_Local
FileSystem

The LocalFileSystem element to modify.

InExtents[] IN, OUT, REF,
NULL
allowed,

CIM_Logic
alDisk

The LogicalDisk(s) used to extend the current set of LogicalDisks used for
the TheElement filesystem. If this is not NULL, the Pool and ExtentSettings
must be NULL. If both this and Pool are NULL, the current set will not be
changed. The current set of LogicalDisk(s) will be returned as the output.

Pools[] IN, REF,
NULL allowed

CIM_Stora
gePool

An array of concrete storage pools corresponding to the ExtentSettings
array parameter. These storage pools are used to create additional
LogicalDisks to extend the TheElement filesystem. The InExtents
parameter must be NULL and the ExtentSettings parameter must not be
NULL. Otherwise, the current set of LogicalDisks is not changed.

ExtentSettings[] IN, EI, NULL
Allowed

string EmbeddedInstance ("CIM_StorageSetting")

An array of embedded StorageSetting structures that specify the settings to
use for creating additional LogicalDisks for the TheElement filesystem. The
InExtents parameter must be NULL and Pools must be specified. Each
LogicalDisk will be created from the corresponding Pool, so each
StorageSetting entry must be supported by the capabilities of the
corresponding Pool entry.

Sizes[] IN,NULL
Allowed

uint64 An array of numbers that specifies the size in bytes of the LogicalDisks to
be created corresponding to the ExtentSettings array parameter.
182

 Filesystem Manipulation Subprofile

560

561
562
563

564
565
566
567
568
569
570
571

572
573
574
575
576
577
578
579

580
581
582
583
584
585

586
587
588
589
590
591

592
593
594

595
596
597
598

599
600
601
602
603
604
605
606
607
FileServer IN, OUT, REF,
NULL Allowed

REF
Computer
System

A reference to a ComputerSystem element representing a file server.

If this parameter is NULL, no change is made to the local access
configuration. If it is not NULL, the change to the configuration consists of
the following cases:

1.) If the FileServer does not already support local access to the
TheElement, it will be added and made capable of exporting the filesystem
as file shares. The local access point is specified by the LocalAccessPoint
parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points are vendor-defaulted, the corresponding entry in the
LocalAccessPoints parameter should be NULL or the empty string as the
LocalAccessPoint name is constructed by a vendor-default algorithm.

A LocalAccessAvailable association is created between the FileServer and
the TheElement. The parameters for local access are specified by the
LocalAccessSetting parameter, an EmbeddedInstance element of class
LocallyAccessibleFileSystemSetting.

If the LocalAccessSetting parameter is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities of the
FileSystemConfigurationService associated to the FileServer by
HostedDependency (ScopedSetting). At most one of the
LocalAccessSettings entries for all the file server ComputerSystems that
provide local access to this filesystem shall specify an element with Write
Privileges.

2) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is NULL or a set of empty strings, this will
remove the FileServer from the configured set. If there are existing
operational users of the TheElement filesystem, they will need to be
informed and the implementation might have to wait to reach a consistent
state before the request can be completed.

3) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is the same as the current configuration, then
this is a request to change the settings but not the local access point. The
LocalAccessSetting parameter will specify the new setting. Depending on
the precise change, the filesystem may need to suspend operations. If there
are existing operational users of the filesystem, they will need to be
informed and the implementation might have to wait to reach a consistent
state before the request can be completed.

4) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is different from the current configuration, then
this is equivalent to removing local access and then restoring it with different
settings. If there are existing operational users of the filesystem, they will
need to be informed and the implementation might have to wait to reach a
consistent state before the request can be completed. Note that existing
operational users will not be able to reconnect as the share name may have
changed.

Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem

Parameter
Name

Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 183

Filesystem Manipulation Subprofile

608
609

610
611

612
613

614

615
616

617
618

619
620

621
622

623
624
625

626
627

628
629

630

631

632

633
LocalAccessPoint IN, OUT, REF,
NULL Allowed

string A string to use as a pathname in the name space of the file server
ComputerSystem specified by the FileServer parameter. The format of the
string is vendor-dependent and it should be considered opaque to the client.
It could be interpreted as a hierarchical fully-qualified name for the local
access point (say in a Unix-based operating environment), or it could be a
drive letter (as in a Windows operating environment). A
LocalAccessAvailable association is created going between the
TheElement and the FileServer. The
LocalAccessAvailable.LocalAccessPoint property will be set to the value of
this parameter.

The parameters for local access are specified by the LocalAccessSetting
parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points are required, then LocalAccessPoint shall not be
NULL or an empty string if this is a new FileServer that does not have local
access to TheElement. This is an Error.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points can be vendor-defaulted, then LocalAccessPoint
can be NULL or an empty string and the implementation shall create a
name using a vendor-specific algorithm.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points cannot be vendor-defaulted, and this is a new
FileServer that does not have local access to TheElement, then
LocalAccessPoint shall not be NULL and the implementation shall not
create a default pathname. This is an Error.

On output, this parameter contains the actual LocalAccessPoint used
(including any name created by vendor-default).

LocalAccessSettin
g

IN, EI, OUT,
NULL Allowed

string EmbeddedInstance ("SNIA_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting element that specifies
the settings to use for establishing a local access point. Each entry will be
used to create or modify a LocalAccessAvailable association and will be
cloned to create a LocallyAccessibleFileSystemSetting element that is
scoped via ScopedSetting (or HostedDependency) to the file server
ComputerSystem specified by the FileServer parameter. The clone will be
associated via ElementSettingData to the LocalFileSystem.

If this parameter is NULL or the empty string, and a new value is needed,
the implementation shall use the default provided by the
LocallyAccessibleFileSystemCapabilities associated to the FileServer
parameter. The LocalAccessSetting actually used is returned as the OUT
parameter.

InUseOptions IN uint16 An enumerated integer that specifies the action to take if the filesystem is
still in operational use when this request is made. This option is only
relevant if the FileSystem needs to be made unavailable while the request is
being executed.

WaitTime IN uint32 An integer that indicates the time in seconds to wait before performing the
request on this filesystem. The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait (forever) until Quiescence,
then Execute Request.

Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem

Parameter
Name

Qualifier Type Description & Notes
184

 Filesystem Manipulation Subprofile
9.5.3.1 FileSystemConfigurationService.DeleteFileSystem
This is an extrinsic method that shall delete a LocalFileSystem specified by the parameter TheElement
and delete any associated elements and associations that are no longer needed. The deleted elements
include the LogicalFile/Directory and FileStorage, if they were surfaced; the LocalAccessAvailable
association, the LocallyAccessibleFileSystemSetting element and its associations, ElementSettingData,
HostedDependency (ScopedSetting); HostedFileSystem, ResidesOnExtent, and any associations that
might be orphaned by the deletion of TheElement. An implementation is not required to delete or re-
allocate the LogicalDisk(s) that TheElement used.

NOTE The WaitTime and InUseOptions parameters are supported if the FileSystemCapabilities.SupportedProperties includes the
"RequireInUseOptions" option.

9.5.4 Signature and Parameters of DeleteFileSystem.

Table 114 describes the parameters for Extrinsic Method
FileSystemConfigurationService.DeleteFileSystem.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT,
Indication

CIM_Error A single named property of an instance parameter (either reference or
embedded) has an invalid value

Invalid
Combination of
Values

OUT,
Indication

CIM_Error An invalid combination of named properties of an instance parameter (either
reference or embedded) has been requested.

Table 114 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter
Name

Qualifier Type Description & Notes

Job OUT, REF CIM_ConcreteJob Reference to the job (may be null if job completed).

TheElement IN, REF CIM_LocalFileSystem The filesystem element to delete.

InUseOptions IN uint16 An enumerated integer that specifies the action to take if
TheElement is still in use when this request is made. This
option is only relevant if the filesystem needs to be made
unavailable while the request is being executed.

WaitTime IN uint32 An integer that indicates the time in seconds to wait before
performing the request on TheElement filesystem. The
combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence,
then Execute Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem

Parameter
Name

Qualifier Type Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 185

Filesystem Manipulation Subprofile
9.5.5 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

9.6 Client Considerations and Recipes

EXPERIMENTAL

Conventions used in the NAS recipes:

• When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is (often) used without further validation. Real code will need to be more robust.

• SMI-S uses Values and Valuemap members as equivalent. In real code, client-side magic is required to
convert the integer representation into the string form given in the MOF.

• Error returns using the CIM_Error mechanism are not explicitly handled -- the client must implement handlers
for these asynchronous returns.

• These recipes do not show the details of negotiating a setting acceptable to both client and provider.

• The recipes do not show the details of managing a Job if a method returns after setting one up.

• All the recipes show very simple examples of the operations that should be supported. Some recipes have
been simplified so that they would not even be minimally useful to a real client, but only show how more
complete functionality would be implemented.

In the Filesystem Manipulation Profile recipes, the following subroutines are used (and provided here as
forward declarations):

sub CreateGoal(

IN REF CIM_FileSystemCapabilities $fscapability,

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error An invalid combination of named properties of an instance
parameter (either reference or embedded) has been
requested.

Table 114 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter
Name

Qualifier Type Description & Notes
186

 Filesystem Manipulation Subprofile
IN String $goalSetting,

INOUT String $supportedFileSystemSetting);

// The above subroutine uses the $fscapability.CreateGoalSettings method

// to get the single $supportedFileSystemSetting used in these recipes.

sub GetRequiredStorageSize(

IN REF CIM_FileSystemCapabilities $fscapability,

IN String $fssgoal,

IN String $ldSetting,

OUT uint64 $expectedsize,

OUT uint64 $minsize,

OUT uint64 $maxsize);

// The above subroutine uses the $fscapability.GetRequiredStorageSize

// method to get the single output size used in these recipes.

9.6.1 Creation of a FileSystem on a Storage Extent
//

// DESCRIPTION

// Goal: Create a LocalFilesystem on a LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of the created LocalFileSystem.

// 2. The client does not negotiate to get an acceptable setting but

// fails if one is not found

// 3. We do not use the FSCS to create a LogicalDisk from a StoragePool

// 4. We do not set up local access to a file server at this time

//

// FUNCTION CreateFileSystem

// This function takes a given ComputerSystem and LogicalDisk and

// constructs a filesystem that satisfies the requested property values.

// INPUT Parameters:

// hostsystem: A reference to the ComputerSystem.

// disk: A reference to the LogicalDisk on which to build the

// filesystem.

// desiredsize: An integer specifying the size of filesystem to

// build in bytes

// fsname: The string name of the filesystem

// filesystemtype: An integer enumeration of the filesystem type

// to construct

// otherpropertyname: An array of property names with corresponding

// values in the otherpropertyvalue parameter.

// otherpropertyvalue: An array of property values corresponding to the

// names in the otherpropertyname parameter.

// OUTPUT Parameters:

// fs: A reference to the LocalFileSystem that is built by this

// function.

// job: A reference to a job created by the implementation if this
SMI-S 1.6.1 Revision 6 SNIA Technical Position 187

Filesystem Manipulation Subprofile

634

635
636
637
638
639
640
641

642
643
644

645
646

647

648
649
// function will take a long time to complete.

// RESULT:

// Failure return consists of fs=NULL and job=NULL

// NOTES

// 1. This recipe does not show how to use the LocalAccess functionality

// to “mount” the file system to a mount-point of a file server.

sub CreateFileSystem(IN REF CIM_System $hostsystem,

 IN REF CIM_LogicalDisk $disk,

 IN uint64 $desiredsize,

 IN String $fsname,

 IN String $filesystemtype,

 IN String $otherpropertyname[], // array of property names

 IN String $otherpropertyvalue[], // corresponding array of
values

 OUT REF CIM_FileSystem $fs,

 OUT REF CIM_Job $job)

{

 //

 // Get the FileSystemConfigurationService of the NAS server using

 // a HostedService association

 //

 $fsconfigurators->[] = Associators($hostsystem,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $fs = NULL;

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error
188

 Filesystem Manipulation Subprofile

650

651
652

653

654

655

656

657

658

659

660

661

662
663

664
665

666
667

668

669
 $fs = NULL;

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if (($capability.ActualFileSystemType == $filesystemtype) ||

 (($filesystemtype == NULL) && ($capability.IsDefault))) {

 if ($otherpropertyname->[] == NULL || $otherpropertyname->[].length ==
““ ||

 Contains(%capability.SupportedProperties, $otherpropertyname->[]))
{

 // This Contains function is left to the client to implement

 // found a matching capabilities element

 //

 break;

 } else {

 // Found capabilities element failed to match

 $fs = NULL;

 $job = NULL;

 return;

 }

 #j++;

 }

 $capability = $capabilities->[#j];

 // If $filesystemtype was NULL or empty string the default was returned

 if ($filesystemtype == NULL || $filesystemtype == ““)

 $filesystemtype = $capability.ActualFileSystemType;

 // At this point the $capability will be for $filesystemtype

 //

 // Call FileSystemCapabilities.CreateGoalSettings(nullTemplate, Goal) to

 // get a seed goal for FileSystemSetting, or just use one of the provided

 // default settings associated with the FileSystemCapabilities via

 // SettingsDefineCapabilities.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 $fssgoal = NULL;

 CreateGoal($capability, NULL, $fssgoal);

 //

 // Inspect Goal and modify properties as desired.

 //
SMI-S 1.6.1 Revision 6 SNIA Technical Position 189

Filesystem Manipulation Subprofile

670
671
672

673

674
675

676
677
678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710
 #i = 0;

 while ($otherpropertyname[#i]) {

 // funky syntax on left-hand side -- dot-operator on an a variable

 $fssgoal.$otherpropertyname[#i] = $otherpropertyvalue[#i];

 #i++;

 }

 //

 // Call FSCSCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to get

 // the next goal for FSSetting -- iterate until satisfied or give up

 // (beware of infinite loops) Note: we don’t iterate here, just give

 // up if we don’t get what we want.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 CreateGoal($capability, $fssgoal, $fssgoal2);

 #i = 0;

 while ($otherpropertyname[#i]) {

 //

 // Note: this pseudocode doesn’t check to see if the property named

 // in $otherpropertyname[#i] is an array. This additional level

 // of horsing around is left as an exercise for the reader.

 //

 if ($fssgoal.$otherpropertyname[#i] != $otherpropertyvalue[#i] {

 { return NULL; } // give up

 }

 }

 //

 // Call FileSystemCapabilities.GetRequiredStorageSize(Goal,

 // DesiredUsableCapacity) to find out how large of a

 // LogicalDisk is needed.

 //

 // GetRequiredStorageSize returns the maximum and minimum

 // sizes that might be needed to satisfy the fssgoal2 request

 // If the LogicalDisk in use for the filesystem cannot be grown

 // upon demand, then it might be worth growing to $minsize (which

 // would be optimistic); if there is any reason to believe that

 // the user is underestimating what they will need, then it might

 // be worth growing to $maxsize (pessimistic); in the normal case,

 // plan to grow to $expectedsize.

 //

 $ldsetting = NULL;

 $requiredsize = $capability.GetRequiredStorageSize(
190

 Filesystem Manipulation Subprofile

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739
740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757
 $fssgoal2,

 $ldsetting, // NULL input, returns
setting

 $expectedsize,

 $minsize,

 $maxsize);

 //

 // If a disk of the required size is already available

 // Call CreateFileSystem(Goal, LogicalDisk)

 // else

 // Create LogicalDisk (see StorageExtent recipes)

 // Call CreateFileSystem(Goal, LogicalDisk)

 //

 if ($requiredsize > $disk.BlockSize * $disk.NumberOfBlocks) {

 <CreateDisk>($requiredsize, $newdisk);

 $disk = $newdisk;

 }

 $diskArray->[0] = $disk;

 $status = $fsconfigurator.CreateFileSystem(

 $fsname,

 $job, // Job returned if necessary

 $fssgoal2, // Filesystem Setting

 $fs, // Filesystem returned

 $diskArray->[], // LogicalDisk to use

 NULL // No storagepools

 NULL, // No settings to create LDs

 NULL, // No size parameters

 NULL, // No File server specified for Local Access

 NULL, // No local access points provided

 NULL // No local access settings

);

 //

 // not shown:

 // 1) Managing the $job if it’s not NULL,

 // 2) Looking at the status result to figure out what to do

 // 3) Managing any CIM_Errors that get returned asynchronously.

 //

 return $fs;

}

9.6.2 Increase the size of a FileSystem

//

// DESCRIPTION

// Goal: Increase the size of a FileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
SMI-S 1.6.1 Revision 6 SNIA Technical Position 191

Filesystem Manipulation Subprofile

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781
782

783
784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801
// 1. The ComputerSystem host of the FileSystemConfigurationService

// is also the host of the LocalFileSystem being modified.

// 2. The client does not negotiate to get an acceptable setting but

// fails if one is not found

// 3. Then desiredsize is greater than the current size

//

// FUNCTION CreateFileSystem

// This function takes a given LocalFileSystem and a desired

// increase in size in bytes and expands the size of the

// filesystem by at least the desired size.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// desiredsize: The desired size of the filesystem

// OUTPUT Parameters:

// job: A reference to a job created by the implementation if this

// function will take a long time to complete.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub IncreaseFileSystemSize(IN REF CIM_FileSystem $fs,

 IN REF uint64 $desiredsize,

 OUT CIM_Job $job)

{

 //

 // Get a client-side copy of the FileSystemSetting

 // associated with the CIM_FileSystem (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($settings ->[] == NULL || $settings ->[].length == 0) {

 // No FileSystemSetting found -- error

 $job = NULL;

 return;

 }

// One of the settings must be marked IsCurrent -- if not, there is an error

 #i = 0;

 $setting = NULL;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i]);

 break;
192

 Filesystem Manipulation Subprofile

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845
 }

 #i++;

 }

 if ($setting == NULL) {

 $job = NULL;

 return;

 }

 $fssnewgoal = $setting;

 // Note that this syntax conflicts with earlier use of funky syntax for

 // accessing properties. Also “add” method applied to an array-value

 // changes the array in-place

 $fssnewgoal.ObjectTypes->[].add(“Bytes”);

 $fssnewgoal.ObjectSizeMin->[].add($desiredsize);

 // Get the FileSystemCapabilities element from the hosting NAS Server

 //

 // a) Get the ActualFileSystemType from the FileSystemSetting

 //

 $filesystemtype = $fssnewgoal.ActualFileSystemType;

 //

 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // via the HostedService association. There is exactly one,

 // but check that one is found.

 //

 $fsconfigurators->[] = Associators($system,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];
SMI-S 1.6.1 Revision 6 SNIA Technical Position 193

Filesystem Manipulation Subprofile

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863
864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893
 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if ($capability.ActualFileSystemType == $filesystemtype)

 break;

 #j++;

 }

 if (#j == $capabilities->[].length) {

 // No Capabilities for this filesystem type was found -- error

 $job = NULL;

 return;

 } else

 $capability = $capabilities->[#j];

 //

 // Call FileSystemCapabilities.GetRequiredStorageSize(NewGoal,

 // DesiredUsableCapacity) to find out how large of a

 // LogicalDisk is needed

 //

 // Changed from: $requiredsize =
$capability.GetRequiredStorageSize($fssnewgoal,

 $ldsetting = ““;

 $requiredsize = GetRequiredStorageSize($capability,

 $fssnewgoal,

 $ldsetting, // Returns actual setting used

 $disksize,

 $diskminsize,

 $diskmaxsize);

 //

 // Get Underlying LogicalDisk using ResidesOnExtent association

 // There must be exactly one
194

 Filesystem Manipulation Subprofile

894

895

896

897

898

899

900

901

902

903

904
905
906
907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936
 //

 $disk = Associators($fs,

 “CIM_ResidesOnExtent”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”)->[0];

 //

 // If disk is not large enough, increase size of underlying SE

 //

 $job = NULL;

 if ($disksize < $disk.BlockSize * $disk.NumberOfBlocks) {

 <increase size of logical disk, returning a job in $job if

 necessary -- see storage extent recipes>

 }

 //

 // The filesystem itself doesn’t need modification, so we’re done

 //

 // This is NOT correct. The ModifyFileSystem method must be called

 // with the new file system setting so that the filesystem can be

 // modified as needed.

 // It isn’t clear what the call would be -- probably specify NULL for

 // the InExtents parameter and the desiredsize parameter would indicate

 // that the filesystem was being resized.

 // Operationally, the appended storage space would need to be formatted

 // as inodes and their inode numbers would need to be legitimized in

 // the filesystem meta-data.

 //

 // The call would be

 // $fsconfigurator.ModifyFileSystem(

 // NULL, // Keep the old element name for the filesystem

 // $job, // return Job if created

 // $fssgoal, // Goal setting

 // $fs, // filesystem

 // NULL, // Don’t add any logicaldisks

 // NULL, // No storage pools

 // NULL, // No LogicalDisk settings

 // $disksize, // New LD size

 // NULL, // No File server for local access

 // NULL, // No Local access point name

 // NULL, // No Local access setting

 // NULL, // Default in use option

 // NULL, // Default wait time

 //);

 //

}

SMI-S 1.6.1 Revision 6 SNIA Technical Position 195

Filesystem Manipulation Subprofile

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980
9.6.3 Modify a FileSystem’s Settings
//

// DESCRIPTION

// Goal: Modify the settings and other properties of a LocalFileSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of the LocalFileSystem to be modified.

// 2. The client does not negotiate to get an acceptable setting but

// fails if one is not found.

// 3. This recipe only shows how the number of supported objects

// of a particular type is modified. The model can be easily

// extended to other individual properties of the LocalFileSystem.

// 4. The CreateFileSystem method uses an array of property names

// and values and can be useful to show how ModifyFileSystem

// may change many propertynames in a single call at the same time.

//

// FUNCTION ModifyFileSystemObjectLimits

// This function takes a given LocalFileSystem and a specification

// of an object type (file and/or directories) to be supported

// and modifies the filesystem (increases its size) so that it

// satisfies the newly requested size.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// objecttype: The object type whose support is being modified

// minobjects: The minimum number of objects of the specified

// type to be supported.

// maxobjects: The maximum number of objects of the specified

// type to be supported.

// expectedobjects: The client’s expectations of the number of

// objects of the specified type to be supported.

// OUTPUT Parameters:

// objecttype: The object type whose support has being modified

// minobjects: The minimum number of objects of the specified

// type that will be supported by the implementation.

// maxobjects: The maximum number of objects of the specified

// type that will be supported by the implementation.

// expectedobjects: The implementation’s expectations of the

// number of objects of the specified type to be supported.

// job: A reference to the job implementing the ModifyFileSystem

// method, if necessary.

// RESULT:

// None

// NOTES

// 1. This recipe does not show how to specify multiple object

// types at the same time.

// 2. This recipe does not show how to change the local access
196

 Filesystem Manipulation Subprofile

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024
// setup (add or delete local access).

sub ModifyFileSystemObjectLimits(IN REF CIM_FileSystem $fs,

 IN OUT uint64 $objecttype,

 IN OUT uint64 $minobjects,

 IN OUT uint64 $maxobjects,

 IN OUT uint64 $expectedobjects,

 OUT REF CIM_Job $job)

{

 //

 // Get a client-side copy of the FileSystemSetting

 // associated with the CIM_FileSystem (via ElementSettingData

 // association) using GetInstance

 //

 $settings = Associators($fs,

 “CIM_ElementSettingData”,

 “CIM_FileSystemSetting”,

 “ManagedElement”,

 “SettingData”);

 if ($settings ->[] == NULL || $settings ->[].length == 0) {

 // No FileSystemSetting found -- error

 $job = NULL;

 return;

 }

// One of the settings must be marked IsCurrent -- if not, there is an error

 #i = 0;

 $setting = NULL;

 while ($settings->[#i] != NULL) {

 if ($settings->[#i].IsCurrent) {

 $setting = GetInstance($settings->[#i]);

 break;

 }

 #i++;

 }

 if ($setting == NULL) {

 $job = NULL;

 return;

 }

 $fssnewgoal = $setting;

 // Get the FileSystemCapabilities element from the hosting NAS Server

 //

 // a) Get the ActualFileSystemType from the FileSystemSetting

 //

 $filesystemtype = $setting.ActualFileSystemType;

 //
SMI-S 1.6.1 Revision 6 SNIA Technical Position 197

Filesystem Manipulation Subprofile

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034
1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070
 // Get the ComputerSystem for the filesystem (via HostedFileSystem association)

 // There should be exactly one.

 $system = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “PartComponent”,

 “GroupComponent”)->[0];

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // via the HostedService association. There is exactly one.

 //

 $fsconfigurators->[] = Associators($system,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Find FSCapabilities that supports $filesystemtype

 // as the ActualFileSystemType using ElementCapabilities

 // association from FSConfigurationService.

 //

 // There is only one Capability of a particular ActualFileSystemType

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

 “CIM_FileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 if ($capabilities->[] == null || $capabilities->[].length == 0) {

 // No Capabilities found -- error

 $job = NULL;

 return;

 }

 #j = 0;

 while($capability = $capabilities->[#j]) {

 if ($capability.ActualFileSystemType == $filesystemtype)

 break;

 #j++;

 }
198

 Filesystem Manipulation Subprofile

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117
 if (#j == $capabilities->[].length) {

 $job = NULL;

 return;

 } else

 $capability = $capabilities->[#j];

 //

 // Find the index in the object arrays that contains

 // the object type of interest

 //

 #i = 0;

 while($typ = $fssnewgoal.ObjectTypes->[#i]) {

 if ($typ == $objecttype)

 { break; }

 #i++;

 }

 //

 // if the specified type isn’t there, add it

 //

 if ($typ != $objecttype) {

 $fssnewgoal.ObjectTypes->[#i] = $objecttype;

 }

 //

 // modify the other params associated with the object type

 //

 $fssnewgoal.NumberOfObjectsMin->[#i] = $minobjects;

 $fssnewgoal.NumberOfObjectsMax->[#i] = $maxobjects;

 $fssnewgoal.NumberOfObjects->[#i] = $expectedobjects;

 //

 // Call FSCSCapabilities.CreateGoalSettings(Goal-N’, Goal-N) to get the next

 // goal for FSSetting -- iterate until satisfied or give up (beware

 // infinite loops) Note: we don’t iterate here, just give up.

 //

 // The function used is CreateGoal instead of CreateGoalSettings

 // because the CreateGoalSettings method takes arrays

 // as parameters and we only want to pass single-entry arrays

 // The implementation details are left to the client.

 CreateGoal($capability, $fssnewgoal, $fssgoal2);

 if ($fssgoal2.ActualFileSystemType != $filesystemtype) {

 $job = NULL;

 return;

 }

 // Since this may increase the size of the file system it is necessary to

 // pass in a new extent or a new logical disk or a pool that can provide
SMI-S 1.6.1 Revision 6 SNIA Technical Position 199

Filesystem Manipulation Subprofile

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163
 // the storage.

 //

 // call ModifyFileSystem (management of $job and any CIM_Error not

 // shown)

 //

 $fsconfigurator.ModifyFileSystem(

 NULL, // Keep the old element name for the filesystem

 $job, // return Job if created

 $fssgoal2, // Goal setting

 $fs, // filesystem

 NULL, // Don’t add any logicaldisks

 NULL, // No storage pools

 NULL, // No LogicalDisk settings

 NULL, // No LD sizes

 NULL, // No File server for local access

 NULL, // No Local access point name

 NULL, // No Local access setting

 NULL, // Default in use option

 NULL, // Default wait time

);

 return $fs;

}

9.6.4 Delete a FileSystem and return underlying StorageExtent
//

// DESCRIPTION

// Goal: Delete a filesystem and return underlying LogicalDisk

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// is also the host of the created LocalFileSystem.

// 2. The filesystem is built on a single LogicalDisk

// 3. The LogicalDisk is not automatically returned to a StoragePool

// but is left allocated to the NAS Server and available for use

// by a filesystem client.

// 4. No job is needed

//

// FUNCTION DeleteFileSystem

// This function deletes a given LocalFileSystem and

// returns a reference to the LogicalDisk on which it resided

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// disk: A reference to the LogicalDisk is returned.

// RESULT:

// Success or Failure
200

 Filesystem Manipulation Subprofile

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205
// NOTES

// 1. This recipe does not show how to clean up any local access

// or file shares that may have been set up for accessing the

// filesystem.

// 2. To “wipe” or zero out the filesystem, the client must either

// use client-level operations over a filesystem or FileShare

// prior to deleting the filesystem, or by vendor-specific

// operations on the LogicalDisk after deleting the filesystem.

//

sub DeleteFileSystem(IN REF CIM_FileSystem $fs, OUT REF CIM_LogicalDisk $disk)

{

 //

 // Get underlying LogicalDisk using ResidesOnExtent association

 // In SMI-S 1.2. we assume that there will be exactly one

 //

 $disks->[] = Associators($fs,

 “CIM_ResidesOnExtent”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”)->[0];

 if ($disks->[] == null || $disks->[].length == 0) {

 // No LogicalDisk found -- error

 $disk = NULL;

 return;

 }

 $disk = $disks->[0];

 //

 // Get the NAS Server of the filesystem using

 // a HostedFileSystem association. There should be

 // exactly one filesystem host.

 $hosts->[] = Associators($fs,

 “CIM_HostedFileSystem”,

 “CIM_ComputerSystem”,

 “Antecedent”,

 “Dependent”);

 if ($hosts->[] == null || $hosts->[].length == 0) {

 // No ComputerSystem found -- error

 $disk = NULL;

 return;

 }

 $hostsystem= $hosts->[0];

 //

 // Get the FileSystemConfigurationService of the NAS server using

 // a HostedService association
SMI-S 1.6.1 Revision 6 SNIA Technical Position 201

Filesystem Manipulation Subprofile

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250
 //

 $fsconfigurators->[] = Associators($hostsystem,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {

 // No FileSystemConfigurationService found -- error

 $fs = NULL;

 $job = NULL;

 return;

 }

 $fsconfigurator = $fsconfigurators->[0];

 //

 // Call DeleteFileSystem(FS) (error checking not shown)

 //

 $fsconfigurator.DeleteFileSystem($job, $fs);

 return;

}

9.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem
//

// DESCRIPTION

// GOAL: Get a LocallyAccessibleFileSystemCapabilities from a

// filesystem host that is dependent on a specific file server

// and supports the properties specified in the array

// parameter $propertynames[].

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of any LocalFileSystem that will be

// made locally accessible using a capabilities element.

//

// FUNCTION GetLocallyAccessibleFileSystemCapabilities

// This function takes a filesystem host ComputerSystem and

// gets a capabilities element for making a filesystem

// locally accessible on a file server ComputerSystem.

// INPUT Parameters:

// hostsystem: A reference to the ComputerSystem that hosts

// filesystems.

// fileserver: A reference to the file server ComputerSystem that

// provides local access to filesystems.

// propertynames: An array of property names that the capabilities

// element should support.

// OUTPUT Parameters:
202

 Filesystem Manipulation Subprofile

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293
// allcapabilities: An array of references to the capabilities

// for local access on the file server.

// RESULT:

// Success or Failure

// NOTES

// 1.

sub GetLocallyAccessibleFileSystemCapabilities(

 IN REF CIM_ComputerSystem $hostsystem,

 IN REF CIM_ComputerSystem $fileserver,

 IN String $propertynames[],

 OUT REF SNIA_LocallyAccessibleFileSystemCapabilities $allcapabilities[])

{

 //

 // Get the FileSystemConfigurationService from the ComputerSystem

 // $hostsystem via the HostedService association

 //

 $fsconfigurators->[] = Associators($hostsystem,

 “CIM_HostedService”,

 “CIM_FileSystemConfigurationService”,

 “Antecedent”,

 “Dependent”);

 #i = 0;

 #k = 0; // the index for $allcapabilities.

 while ($fsconfigurator = $fsconfigurators->[#i]) {

 #i++;

 //

 // Find LocallyAccessibleFileSystemCapabilities that supports the

 // file server using ElementCapabilities association from

 // FSConfigurationService.

 // If client does not care about the file server ($fileserver = NULL),

 // return all the LocallyAccessibleFileSystemCapabilities that

 // are associated to the FileSystemConfigurationService

 // There is one and only one LocallyAccessibleFileSystemCapabilities

 // for each server+FileSystemConfigurationService pair.

 // The SupportedProperties property lists the supported setting

 // properties.

 //

 $capabilities->[] = Associators($fsconfigurator,

 “CIM_ElementCapabilities”,

“SNIA_LocallyAccessibleFileSystemCapabilities”,

 “ManagedElement”,

 “Capabilities”);

 // Skip to next if empty

 if ($capabilities->[] == NULL ||$capabilities->[].length == 0) continue;

 #j = 0;

 while($capability = $capabilities->[#j]) {
SMI-S 1.6.1 Revision 6 SNIA Technical Position 203

Filesystem Manipulation Subprofile

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339
 #j++;

 if (propertyname == NULL || propertyname == ““ ||

 Contains($capability.SupportedProperties, propertyname)) {

 // If the server is null then skip the next step

 if ($server != NULL) {

 $capservers[] = Associators($capability,

 “SNIA_ScopedCapability”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($capservers == NULL || $capservers->[].length != 1 ||

 $server != $capservers->[0])

 continue;

 }

 $allcapabilities->[#k] = $capability;

 #k++;

 }

 }

 }

 return;

}

9.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem
// DESCRIPTION

// GOAL: Get a LocallyAccessibleFileSystemSetting from a

// filesystem host that is dependent on a specific file server

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem host of the FileSystemConfigurationService

// will also be the host of any LocalFileSystem that will be

// made locally accessible using a capabilities element.

//

// FUNCTION GetLocallyAccessibleFileSystemSetting

// This function takes a filesystem host ComputerSystem and

// gets a capabilities element for making a filesystem

// locally accessible on a file server ComputerSystem.

// INPUT Parameters:

// filesystem: A reference to the LocalFileSystem that is to

// be made locally accessible from a file server.

// fileserver: A reference to the file server ComputerSystem that

// provides local access to filesystems.

// OUTPUT Parameters:

// setting: An embedded instance of a LocallyAccessibleFileSystemSetting

// that supports making the filesystem locally accessible.

// RESULT:

// Success or Failure

// NOTES
204

 Filesystem Manipulation Subprofile

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379
// 1.

sub GetLocallyAccessibleFileSystemSetting(

 IN REF CIM_FileSystem $filesystem,

 IN REF CIM_ComputerSystem $fileserver,

 OUT String(“SNIA_LocallyAccessibleFileSystemSetting”) $setting)

{

 // Does this fileserver have local access to this filesystem

 // -- if not, there is no setting!

 $localaccess->[] = ReferenceNames($filesystem,

 “SNIA_LocalAccessAvailable”,

 “FileSystem”);

 if ($localaccess->[] == NULL || $localaccess->[].length == 0)

 return;

 //

 // Get all the LocallyAccessibleFileSystemSettings

 // associated with the CIM_FileSystem (via ElementSettingData

 //

 $assoc = References($filesystem,

 “CIM_ElementSettingData”,

 “ManagedElement”);

 if ($assoc->[] == NULL || $assoc->[].length == 0) {

 // This is an ERROR but for now we return with no results

 return;

 }

 #i = 0;

 while ($assoc->[#i] != NULL) {

 if ($assoc->[#i].IsCurrent) {

 // Is this scoped to the fileserver?

 $servers = Associators($assoc->[#i].SettingData,

 “CIM_ScopedSetting”,

 “CIM_ComputerSystem”,

 “Dependent”,

 “Antecedent”);

 if ($servers->[] != NULL && $servers->[].length != 0 && $servers->[0]
== $fileserver) {

 $setting = GetInstance($assoc->[#i].SettingData);

 return;

 }

 }

 #i++;

 }

 $setting = NULL;

}

SMI-S 1.6.1 Revision 6 SNIA Technical Position 205

Filesystem Manipulation Subprofile

1380

1381

1382
1383

1384
1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418
EXPERIMENTAL

9.6.7 Filesystem Manipulation Supported Capabilities Patterns

Table 115, “Filesystem Manipulation Supported Capabilities Patterns” lists the patterns that are formally
recognized by this version of the specification for determining capabilities of various NAS
implementations:

Table 115 - Filesystem Manipulation Supported Capabilities Patterns

9.7 CIM Elements
Table 116 describes the CIM elements for Filesystem Manipulation.

Supported
ActualFileSystem

Types

Supported
Synchronous

Methods

Supported
Asynchronous

Methods

Initial
Availability

Any none none none

Any

SNIA_CreateFileSystem,
DeleteFileSystem,

SNIA_ModifyFileSystem,
CreateGoalSettings,

GetRequiredStorageSizes

none Any

Any CreateGoalSettings,
GetRequiredStorageSizes

SNIA_CreateFileSystem,
DeleteFileSystem,

SNIA_ModifyFileSystem
Any

Table 116 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description

9.7.1 CIM_Dependency (Uses Directory Services From) Conditional Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is either
'Required' or 'Optional'. Associates a ComputerSystem
that indicates a directory service that supports the
dependent LocalFileSystem.

9.7.2 CIM_ElementCapabilities (FS Configuration
Capabilities)

Mandatory In this subprofile, associates the Filesystem Configuration
Service to the Capabilities element that represents the
capabilities that it supports.

9.7.3 CIM_ElementCapabilities (Local Access
Configuration Capabilities)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'.

 In this subprofile, associates the Filesystem
Configuration Service to the Capabilities instance that
represents the capabilities for Local Access that it
supports.

9.7.4 CIM_ElementCapabilities (Non-Default) Optional In this subprofile, associates the Filesystem Configuration
Service to the FileSystemCapabilities elements that
represent all the types of filesystems that are not the
default type of file system and can be configured.
206

 Filesystem Manipulation Subprofile

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449
1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466
9.7.5 CIM_ElementSettingData (Attached to Filesystem) Optional Associates a FileSystemSetting element to a
LocalFileSystem. One of these association elements is
created by SNIA_CreateFileSystem when the
LocalFileSystem is first created.

 The profile does not specify how other instances of this
association may be surfaced by the implementation.

9.7.6 CIM_ElementSettingData (Local Access Required) Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'. Associates a
LocalFileSystem and the
LocallyAccessibleFileSystemSetting elements.

9.7.7 CIM_HostedDependency (Attached to File System) Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a Local Access configuration setting to the file
server ComputerSystem that provides the operational
scope for its functionality.

9.7.8 CIM_HostedDependency (Predefined Capabilities) Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'. Associates a
Local Access Capabilities to the File Server that provides
the operational scope for its functionality. All of the
Settings associated to the referenced Capabilities
element must be scoped by the same File Server
ComputerSystem. This scoping allows the
CreateGoalSetting method of the Capabilities element to
know which File Server provides the scope for any Goal
element that it creates.

9.7.9 CIM_HostedDependency (Predefined Setting) Optional Associates a predefined
SNIA_LocallyAccessibleFileSystemSetting to the file
server ComputerSystem that provides the operational
scope for its functionality.

9.7.10 CIM_HostedFileSystem Mandatory Associates a LocalFileSystem to the ComputerSystem
that hosts it.

9.7.11 CIM_HostedService Mandatory In this subprofile, associates the Filesystem Configuration
Service to the hosting ComputerSystem. This is expected
to be the top-level ComputerSystem of the parent
Filesystem Profile.

9.7.12 CIM_SettingsDefineCapabilities (Predefined FS
Settings)

Optional These Setting elements provide detailed information
about the FileSystemSettings supported by the
associated FileSystemCapabilities element.

9.7.13 CIM_SettingsDefineCapabilities (Predefined Local
Access Settings)

Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'. The Setting
elements that are associated to this Capabilities element
are scoped to the File Server ComputerSystem that
provides the operational context for local access.

9.7.14 SNIA_ElementCapabilities (Default) Optional This entry represents the single default
FileSystemCapabilities element for the Filesystem
Configuration Service.

Table 116 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 207

Filesystem Manipulation Subprofile

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479
1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508
9.7.15 SNIA_FileSystemCapabilities Mandatory This element represents the Capabilities of the Filesystem
Configuration Service for managing Filesystems. The
Service can be associated with multiple
FileSystemCapabilities elements, one per
ActualFileSystemType property value. For each value that
is in the array property
FileSystenConfigurationCapabilities.SupportedActualFile
SystemTypes, there will be exactly one corresponding
FileSystemCapabilities element with the matching
ActualFileSystemType property.

9.7.16 SNIA_FileSystemConfigurationCapabilities Mandatory This element represents the management Capabilities of
the Filesystem Configuration Service.

9.7.17 SNIA_FileSystemConfigurationService Mandatory The Filesystem Configuration Service provides the
methods to manipulate file systems.

9.7.18 SNIA_FileSystemSetting (Attached to FileSystem) Optional This element represents the configuration settings of a
LocalFileSystem. One instance of this class is created by
the SNIA_CreateFileSystem extrinsic method when the
LocalFileSystem was created.

 This profile does not specify how other instances of this
class might be created.

9.7.19 SNIA_FileSystemSetting (Predefined FS Settings) Optional This element represents sample configuration settings
usable for creating or modifying a LocalFileSystem. It
represents "predefined" settings supported by the
FileSystemConfigurationService and is associated with a
FileSystemCapabilities element by a
SettingsDefineCapabilities association. The
FileSystemSetting.ActualFileSystemType property must
specify the same value as the associated
FileSystemCapabilities.ActualFileSystemType property.

9.7.20 SNIA_LocalAccessAvailable Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a LocalFileSystem to a File Server Computer
System that can export files or directories as shares.

9.7.21 SNIA_LocalFileSystem Mandatory Represents a LocalFileSystem hosted by and made
available through a ComputerSystem (usually the top-
level ComputerSystem of a Filesystem Profile).

9.7.22 SNIA_LocallyAccessibleFileSystemCapabilities Conditional Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'. The element
represents the Local Access configuration Capabilities of
the File System Configuration Service. This class
provides a CreateGoalSettings method that will return a
SNIA_LocallyAccessibleFileSystemSetting element as an
EmbedddInstance that may be used for making a
filesystem locally accessible to a file server
ComputerSystem (by the methods
SNIA_CreateFileSystem and SNIA_ModifyFileSystem).
Since the returned EmbeddedInstance setting element is
an instance of a ScopedSetting class, it must be
associated with a ComputerSystem via
ScopedSettingData when it is instantiated.

Table 116 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description
208

 Filesystem Manipulation Subprofile

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538
1539

1540

1541

1542

1543

1544

1545

1546

1547
9.7.1 CIM_Dependency (Uses Directory Services From)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either 'Required' or 'Optional'.

Table 117 describes class CIM_Dependency (Uses Directory Services From).

9.7.2 CIM_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 118 describes class CIM_ElementCapabilities (FS Configuration Capabilities).

9.7.23 SNIA_LocallyAccessibleFileSystemSetting Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
This element represents the configuration settings of a
LocalFileSystem that has a contained file or directory that
has been made locally accessible from a file server
ComputerSystem. This Setting provides further details on
the functionality supported and the parameters of that
functionality when locally accessible.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA SNIA_LocalFileSystem

Mandatory CQL -Creation of a LocalFileSystem element.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA SNIA_LocalFileSystem

Mandatory Modification of a LocalFileSystem element.

Table 117 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s) that support
user, group and other security principal identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other security
principal identities is supported by the antecedent ComputerSystem.

Table 118 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-
ties)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Filesystem Configuration Service.

Capabilities Mandatory The Filesystem Configuration Capabilities element.

Table 116 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 209

Filesystem Manipulation Subprofile

1548

1549
1550
1551

1552

1553
1554
1555

1556

1557
9.7.3 CIM_ElementCapabilities (Local Access Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 119 describes class CIM_ElementCapabilities (Local Access Configuration Capabilities).

9.7.4 CIM_ElementCapabilities (Non-Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 120 describes class CIM_ElementCapabilities (Non-Default).

9.7.5 CIM_ElementSettingData (Attached to Filesystem)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Optional

Table 119 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration
Capabilities)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The Filesystem Configuration Service.

Capabilities Mandatory The Filesystem Configuration Capabilities element.

Table 120 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default)

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory
210

 Filesystem Manipulation Subprofile
Table 121 describes class CIM_ElementSettingData (Attached to Filesystem).

9.7.6 CIM_ElementSettingData (Local Access Required)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 122 describes class CIM_ElementSettingData (Local Access Required).

9.7.7 CIM_HostedDependency (Attached to File System)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 123 describes class CIM_HostedDependency (Attached to File System).

9.7.8 CIM_HostedDependency (Predefined Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Table 121 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem element representing a filesystem.

SettingData Mandatory The configuration of the LocalFileSystem.

Table 122 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified on creation or
modification.

Table 123 - SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping File Server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 211

Filesystem Manipulation Subprofile
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 124 describes class CIM_HostedDependency (Predefined Capabilities).

9.7.9 CIM_HostedDependency (Predefined Setting)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 125 describes class CIM_HostedDependency (Predefined Setting).

9.7.10 CIM_HostedFileSystem

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

Table 126 describes class CIM_HostedFileSystem.

9.7.11 CIM_HostedService

Table 124 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabilities)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The SNIA_LocallyAccessibleFileSystemCapabilities that is scoped by the
file server ComputerSystem.

Table 125 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

Table 126 - SMI Referenced Properties/Methods for CIM_HostedFileSystem

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The ComputerSystem that hosts a LocalFileSystem. The Dedicated
property must be one of 24 (NAS Head), 25 (SC NAS), 16 (File Server).

PartComponent Mandatory The hosted filesystem.
212

 Filesystem Manipulation Subprofile

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 127 describes class CIM_HostedService.

9.7.12 CIM_SettingsDefineCapabilities (Predefined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 128 describes class CIM_SettingsDefineCapabilities (Predefined FS Settings).

9.7.13 CIM_SettingsDefineCapabilities (Predefined Local Access Settings)

Created By: Static
Modified By: Static

Table 127 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory The Filesystem Configuration Service.

Antecedent Mandatory The hosting ComputerSystem. This can be the top level system or a
component ComputerSystem of the Multiple Computer System profile.

Table 128 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined FS Set-
tings)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory PropertyPolicy defines whether or not the non-null, non-key properties of
the associated FileSystemSetting element are treated independently or as
a correlated set.

ValueRole Mandatory ValueRole specifies the semantics of the non-null, non-key properties of
the associated FileSystemSetting element, such as whether they are
supported or unsupported, and if supported, whether they are a default
and/or an optimal value or an average of some kind.

ValueRange Mandatory ValueRange specifies the semantics of the non-null, non-key properties of
the associated FileSystemSetting element, such as whether they are point
properties, or whether they represent maximum or minimum values for the
properties. If some properties already have maximums and/or minimums
specified by another FileSystemSetting instance, this could specify
increments of the property value that are supported.

GroupComponent Mandatory A Filesystem Capabilities element that is defined by a collection of
filesystem settings.

PartComponent Mandatory A filesystem setting that provides a point or a partial definition for a
Filesystem Capabilities element.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 213

Filesystem Manipulation Subprofile

1570

1571

1572

1573

1574
1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587
Deleted By: Static
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 129 describes class CIM_SettingsDefineCapabilities (Predefined Local Access Settings).

9.7.14 SNIA_ElementCapabilities (Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 130 describes class SNIA_ElementCapabilities (Default).

9.7.15 SNIA_FileSystemCapabilities

Table 129 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined Local
Access Settings)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory PropertyPolicy defines whether or not the non-null, non-key properties of
the associated SNIA_LocallyAccessibleFileSystemSetting instance are
treated independently or as a correlated set.

ValueRole Mandatory ValueRole specifies the semantics of the non-null, non-key properties of
the associated SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are supported or unsupported, and if supported, whether
they are a default and/or an optimal value or an average of some kind.

ValueRange Mandatory ValueRange specifies the semantics of the non-null, non-key properties of
the associated SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are point properties, or whether they represent maximum
or minimum values for the properties. If some properties already have
maximums and/or minimums specified by another
SNIA_LocallyAccessibleFileSystemSetting instance, this could specify
increments of the property value that are supported.

GroupComponent Mandatory A Capabilities element of the filesystem that is defined by a collection of
SNIA_LocallyAccessibleFileSystemSetting elements, each being scoped
to the File Server ComputerSystem with which it can be used.

PartComponent Mandatory A SNIA_LocallyAccessibleFileSystemSetting that provides a point or a
partial definition for a SNIA_LocallyAccessibleFileSystemCapabilities
element.

Table 130 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (Default)

Properties Flags Requirement Description & Notes

Characteristics Optional

Capabilities Mandatory

ManagedElement Mandatory
214

 Filesystem Manipulation Subprofile

1588

1589

1590

1591

1592

1593
1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 131 describes class SNIA_FileSystemCapabilities.

9.7.16 SNIA_FileSystemConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 132 describes class SNIA_FileSystemConfigurationCapabilities.

Table 131 - SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the FileSystemCapabilities element of a
Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemCapabilities
represents.

SupportedProperties Mandatory This is the list of configuration properties (of FileSystemSetting) that are
supported for specification at creation time by this FileSystemCapabilities
element.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of FileSystemSettings
that is a supported variant of an array of FileSystemSettings passed in as
an embedded IN parameter. The method returns the supported
FileSystemSetting in an array of embedded OUT parameters. This profile
only supports arrays with a single entry.

GetRequiredStorageSize() Optional This extrinsic method supports determining the storage space
requirements for a filesystem specified by the combination of a
FileSystemSetting and a StorageSetting. The StorageSetting specifies the
required redundancy, multiple Logical Disk usage, and other storage
mapping considerations, while the FileSystemSetting transforms client
quality-of-service specifications to storage resource requirements.

Table 132 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this element representing the capabilities of a
Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

SupportedActualFileSyste
mTypes

Mandatory The Service can be associated with multiple Capabilities elements, one
per ActualFileSystemType property value. This property lists all of the
supported ActualFileSystemTypes. Each entry in this array must have
exactly one corresponding FileSystemCapabilities element with that entry
as the value of the ActualFileSystemType property.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 215

Filesystem Manipulation Subprofile

1606
1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621
SupportedSynchronousMe
thods

N Mandatory The Service supports a number of extrinsic methods -- this property
identifies the ones that can be called synchronously. A supported method
shall be listed in this property or in the SupportedAsynchronousMethods
property or both.

SupportedAsynchronousM
ethods

N Mandatory The Service supports a number of extrinsic methods -- this property
identifies the ones that can be called asynchronously. A supported method
shall be listed in this property or in the SupportedSynchronousMethods
property or both.

InitialAvailability Mandatory This property represents the state of availability of a LocalFileSystem on
initial creation using the FileSystemConfigurationService associated with
this Capabilities element.

LocalAccessibilitySupport Optional This specifies whether a LocalFileSystem created or modified by this
FileSystemConfigurationService needs to be made locally accessible at a
local access point before a file server ComputerSystem can make it
available to operational clients or for export as a share. This is typical of
some NAS and filesystem implementations. If not specified, the default is
"Local Access Not Required".

Table 132 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes
216

 Filesystem Manipulation Subprofile

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635
9.7.17 SNIA_FileSystemConfigurationService

BlockStorageCreationSup
port

Optional BlockStorageCreationSupport is an ordered array of enumerated values
that place a number of restrictions on the use of parameters for
SNIA_CreateFileSystem and SNIA_ModifyFileSystem.

 1. The first entry is an enumerated value that specifies if an already
existing LogicalDIsk may be used -- this is either required, optional, or not
allowed. "Not Allowed" indicates that the Pools and ExtentSettings
parameters must be used to create LogicalDisk(s) for this filesystem and
the InExtents parameter must be NULL. "Optional" indicates that either the
Pools and ExtentSettings parameters or the InExtents parameter should
be specified, but not both. "Required" indicates that the InExtents
parameter may be specified and the Pools and ExtentSettings parameters
must be NULL.

 2. (optional) An integer that specifies an upper limit to the number of
StorageElements that can be specified, either as InExtents parameters or
as Pools and ExtentSettings.

 3. (optional) An integer that specifies the number of distinct pools that the
Pools parameters can specify -- zero, if Pools is not supported or if there is
no limit, and a specific number if there is a limit. In practice we expect that
the value will be either zero or one.

 4. (optional) A boolean value, represented by '0' for false and '1' for true,
that indicates whether an entry in the ExtentSettings array parameter can
be NULL (indicating that a default setting is to be used).

DirectoryServerParameter
Supported

Optional This enumeration indicates support for the DirectoryServer parameter to
the extrinsic method
FileSystemConfigurationService.SNIA_CreateFileSystem(). The options
are:

 'Not Used' indicates that the filesystem does not support security principal
information associated with filesystem objects. The LocalFileSystem will
not be associated to a DirectoryServer.

 'Supported' indicates that the filesystem supports security principal
information associated with filesystem objects. The LocalFileSystem will
be associated to a directory server ComputerSystem. And the
DirectoryServer parameter of SNIA_CreateFileSystem is required. If it is
not specified, it will be defaulted to the FileServer parameter in the same
call. If the FileServer parameter is also not specified, the DirectoryServer
parameter will be defaulted to the host of the
FileSystemConfigurationService.

 'Supported, Defaulted to FileServer' indicates that the filesystem supports
security principal information associated with filesystem objects. The
LocalFileSystem will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of SNIA_CreateFileSystem is NOT
supported, but is automatically defaulted to the FileServer parameter of
the same call. If the FileServer parameter is not specified, the
DirectoryServer parameter will be defaulted to the host of the
FileSystemConfigurationService.

 'Supported, Defaulted to FileSystem host' indicates that the filesystem
supports security principal information associated with filesystem objects.
The LocalFileSystem will be associated to a directory server
ComputerSystem. The DirectoryServer parameter of
SNIA_CreateFileSystem is NOT supported, but is automatically defaulted
to the host of the FileSystem created by SNIA_CreateFileSystem().

Table 132 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 217

Filesystem Manipulation Subprofile

1636

1637
1638

1639

1640

1641

1642

1643

1644

1645

1646
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 133 describes class SNIA_FileSystemConfigurationService.

9.7.18 SNIA_FileSystemSetting (Attached to FileSystem)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Optional

Table 134 describes class SNIA_FileSystemSetting (Attached to FileSystem).

Table 133 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClassName Mandatory The CIM Class name of the ComputerSystem hosting the Service.

SystemName Mandatory The Name property of the ComputerSystem hosting the Service.

CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

SNIA_CreateFileSystem() Mandatory Creates a LocalFileSystem as specified by parameters and Capabilities of
the service and returns a reference to it. If appropriate and supported, a
Job may be created and a reference to the Job will be returned.

SNIA_ModifyFileSystem() Optional Modifies a LocalFileSystem indicated by a reference and as specified by
referenceparameters and Capabilities of the service. If appropriate and
supported, a Job may be created and a reference to the Job will be
returned.

DeleteFileSystem() Mandatory Deletes a LocalFileSystem indicated by reference. If appropriate and
supported, a Job may be created and a reference to the Job will be
returned.

Table 134 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a FileSystemSetting element.

ElementName Mandatory A client defined user-friendly name for this FileSystemSetting element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemSetting
represents.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents) that are shared
between files.

CopyTarget Optional This specifies if support should be provided for using the created
filesystem as a target of a Copy operation.
218

 Filesystem Manipulation Subprofile

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657
9.7.19 SNIA_FileSystemSetting (Predefined FS Settings)

Created By: Static
Modified By: Static

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower case
characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects that this
filesystem may be used to provide and provides further details in
corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of objects of the type
specified by the corresponding entry in ObjectTypes[] that will be
supportable by the LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMax Optional This is an array that specifies the maximum number of objects of the type
specified by the corresponding entry in ObjectTypes[] that can be
supported by the LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjects Optional This is an array that specifies the expected number of objects of the type
specified by the corresponding entry in ObjectTypes[].

ObjectSize Optional This is an array that specifies the expected size of a typical object of the
type specified by the corresponding entry in ObjectTypes[].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object of the type
specified by the corresponding entry in ObjectTypes[] that will be
supported by the LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an object of the type
specified by the corresponding entry in ObjectTypes[] that can be
supported by the LocalFileSystem configured by this FileSystemSetting
element.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-8) supported
for filenames by the LocalFileSystem configured by this FileSystemSetting
element.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3 names) supported
for filenames by the LocalFileSystem configured by this FileSystemSetting
element.

FilenameLengthMax Optional This specifies the maximum length of a filename that will be supported by
the FileSystem configured by this FileSystemSetting element.

FilenameReservedCharact
erSet

Optional This string or character array specifies the characters reserved (i.e., not
allowed) for use in filenames that will be required by the FileSystem
configured by this FileSystemSetting element.

SupportedLockingSemanti
cs

Optional This array specifies the set of file access/locking semantics supported by
the FileSystem configured by this FileSystemSetting element.

SupportedAuthorizationPro
tocols

Optional This array specifies the kind of file authorization protocols supported by
the FileSystem configured by this FileSystemSetting element.

SupportedAuthenticationPr
otocols

Optional This array specifies the set of file authentication protocols that can be
supported by the FileSystem configured by this FileSystemSetting
element.

Table 134 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 219

Filesystem Manipulation Subprofile
Deleted By: Static
Requirement: Optional

Table 135 describes class SNIA_FileSystemSetting (Predefined FS Settings).

Table 135 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Settings)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A provider supplied user-friendly name for this FileSystemSetting element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemSetting
represents. It shall match the corresponding property of
FileSystemCapabilities.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents) that are shared
between files.

CopyTarget Optional This specifies if support should be provided for using the created
filesystem as a target of a Copy operation.

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower case
characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects that this
filesystem may be used to provide and provides further details in
corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of objects of the type
specified by the corresponding entry in ObjectTypes[] that will be
supportable by a LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMax Optional This is an array that specifies the maximum number of objects of the type
specified by the corresponding entry in ObjectTypes[] that can be
supported by a LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjects Optional This is an array that specifies the expected number of objects of the type
specified by the corresponding entry in ObjectTypes[].

ObjectSize Optional This is an array that specifies the expected size of a typical object of the
type specified by the corresponding entry in ObjectTypes[].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object of the type
specified by the corresponding entry in ObjectTypes[] that will be
supportable by a LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an object of the type
specified by the corresponding entry in ObjectTypes[] that can be
supported by a LocalFileSystem configured by this FileSystemSetting
element.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-8) supported
for filenames by a filesystem with this setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3 names) supported
for filenames by a filesystem with this setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported by a filesystem
with this setting.
220

 Filesystem Manipulation Subprofile

1658
9.7.20 SNIA_LocalAccessAvailable

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 136 describes class SNIA_LocalAccessAvailable.

9.7.21 SNIA_LocalFileSystem

The following properties of LocalFileSystem are defined by the MOF, but the way we model
LocalFileSystem has changed significantly. The setting/configuration properties are not supported using
these properties, and so all of these are "Not Supported". The run-time properties will be supported by a
statistics/performance profile and that has yet to be defined.
Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

FilenameReservedCharact
erSet

Optional This string or character array specifies the characters reserved (i.e., not
allowed) for use in filenames that will be required by a filesystem with this
setting.

SupportedLockingSemanti
cs

Optional This array specifies the set of file access/locking semantics supported by a
filesystem with this setting.

SupportedAuthorizationPro
tocols

Optional This array specifies the kind of file authorization protocols supported by a
filesystem with this setting.

SupportedAuthenticationPr
otocols

Optional This array specifies the kind of file authentication protocols supported by a
filesystem with this setting.

Table 136 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement Description & Notes

LocalAccessPoint Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true. The name used by
the file server to identify the filesystem. Sometimes referred to as a mount-
point. For many UNIX-based systems, this will be a qualified full
pathname. For Windows systems this could also be the drive letter used
for the LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file server
ComputerSystem.

FileServer Mandatory The file server ComputerSystem that will be able to export shares from
this LocalFileSystem.

Table 135 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Settings)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 221

Filesystem Manipulation Subprofile

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669
Table 137 describes class SNIA_LocalFileSystem.

Table 137 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes

LocalAccessDefinitionReq
uired

Mandatory This boolean property indicates whether or not a LocalFileSystem with this
FileSystemSetting must be made locally accessible ("mounted") from a file
server ComputerSystem before it can be shared or otherwise made
available to operational clients.

PathNameSeparatorString Mandatory This indicates the string of characters used to separate directory
components of a canonically formatted path to a file from the root of the
filesystem. This string is expected to be specific to the
ActualFileSystemType and so is vendor/implementation dependent.
However, by surfacing it we make it possible for a client to parse a
pathname into the hierarchical sequence of directories that compose it.

DirectoryServiceUsage Optional This enumeration indicates whether the filesystem supports security
principal information and therefore requires support from a file server that
uses one or more directory services. If the filesystem requires such
support, there must be a concrete subclass of Dependency between the
LocalFileSystem element and the specified file server ComputerSystem.
The values supported by this property are:

 'Not Used' indicates that the filesystem will not support security principal
information and so will not require support from a directory service.

 'Optional' indicates that the filesystem may support security principal
information. If it does, it will require support from a directory service and
the Dependency association described above must exist.

 'Required' indicates that the filesystem supports security principal
information and will require support from a directory service. The
Dependency association described above must exist.

CSCreationClassName Mandatory The CIM class name of the hosting ComputerSystem.

CSName Mandatory The Name property of the hosting ComputerSystem.

CreationClassName Mandatory The CIM class name of the this element.

Name Mandatory A unique name for this LocalFileSystem in the context of the hosting
ComputerSystem.

EnabledState Optional Current state of enablement of the LocalFileSystem.

OtherEnabledState Optional Vendor-specific state of the LocalFileSystem indicated by EnabledState =
1("Other").

TimeOfLastStateChange Optional A timestamp indicating when the state was last changed.

RequestedState Optional Not supported.

OperationalStatus Mandatory The current operational status of the LocalFileSystem.

Root Optional A path that specifies the "mount point" of the filesystem in an unitary
computer system that is both the host of the filesystem and is the file
server that makes it available.

BlockSize Mandatory The size of a block in bytes that the implementation used as a fixed block
size when creating this filesystem.

FileSystemSize Mandatory The total current size of the filesystem in blocks.

AvailableSpace Mandatory The space available currently in the filesystem in blocks.

ReadOnly Optional Indicates that this is a read-only filesystem that does not allow
modifications.
222

 Filesystem Manipulation Subprofile

1670

1671

1672
9.7.22 SNIA_LocallyAccessibleFileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 138 describes class SNIA_LocallyAccessibleFileSystemCapabilities.

EncryptionMethod Optional Indicates if files are encrypted and the method of encryption.

CompressionMethod Optional Indicates if files are compressed before being stored, and the methods of
compression..

CaseSensitive Optional Whether this filesystem is sensitive to the case of characters in filenames.

CasePreserved Optional Whether this filesystem preserves the case of characters in filenames
when saving and restoring.

CodeSet Optional The codeset used in filenames.

MaxFileNameLength Optional The length of the longest filename supported by the implementation.

ClusterSize Optional Not supported.

FileSystemType Optional This is a string that matches FileSystemSetting.ActualFileSystemType
property used to create the filesystem.

 Pragmatically, this property should be ignored.

NumberOfFiles Optional The actual current number of files in the filesystem. This value is an
approximation as it can vary continuously when the filesystem is in use.

IsFixedSize Optional Indicates that the filesystem cannot be expanded or shrunk.

ResizeIncrement Optional The size by which to increase the size of the filesystem when requested.

RequestStateChange() Optional Not supported.

Table 138 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the
SNIA_LocallyAccessibleFileSystemCapabilities associated to a
Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this
SNIA_LocallyAccessibleFileSystemCapabilities element.

Table 137 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 223

Filesystem Manipulation Subprofile

1673

1674

1675
9.7.23 SNIA_LocallyAccessibleFileSystemSetting

Created By: Extrinsic: SNIA_CreateFileSystem

SupportedProperties Mandatory An array of property names of the LocallyAccessibleFileSystemSetting
that this SNIA_LocallyAccessibleFileSystemCapabilities element
supports.

 2 'FailurePolicy'

 3 'RetriesMax'

 4 'InitialEnabledState'

 5 'RequestRetryPolicy'

 6 'TransmissionRetriesMax'

 7 'RetransmissionTimeout'

 8 'CachingOptions'

 9 'ReadBufferSize'

 10 'WriteBufferSize'

 11 'AttributeCaching'

 12 'ReadWritePolicy'

 13 'LockPolicy'

 14 'EnableOnSystemStart'

 15 'ReadWritePref'

 16 'ExecutePref'

17 'RootAccessPref'.

SupportedObjectsForAttrib
uteCaching

Optional If AttributeCaching is supported, this specifies the array of objects that can
be set up for caching. A subset of these entries will become the entries of
the AttributeCachingObjects property in the Setting.

 These classes represent types of objects stored in a filesystem
implementation -- files and directories as well as others that may be
defined in the future. The corresponding Setting properties,
AttributeCaching, AttributeCachingTimeMin, and
AttributeCachingTimeMax provide the supported features for the type of
object. 'None' and 'All' cannot both be specified; if either one is specified, it
must be the first entry in the array and the entry is interpreted as the
default setting for all objects. If neither 'None' or 'All' are specified, the
caching settings for other objects are defaulted by the implementation. If
'Rest' is specified, the entry applies to all known object types other than
the named ones. If 'Unknown' is specified it applies to object types not
known to this application (this can happen when foreign file systems are
mounted.

 0 'Unknown'

 1 'None'

 2 'All'

 3 'Rest'

 4 'File'

5 'Directory'.

Table 138 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes
224

 Filesystem Manipulation Subprofile

1676

1677

1678

1679

1680

1681

1682

1683
1684
1685

1686

1687

1688

1689
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem or SNIA_ModifyFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 139 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for a LocallyAccessibleFileSystemSetting.

ElementName Mandatory A user-friendly name for this LocallyAccessibleFileSystemSetting element.

InitialEnabledState Optional InitialEnabledState is an integer enumeration that indicates the enabled/
disabled states initially set for a locally accessible filesystem (LAFS). The
element functions by passing commands onto the underlying filesystem,
and so cannot indicate transitions between requested states because
those states cannot be requested. The following text briefly summarizes
the various enabled/disabled initial states:

 'Enabled' (2) indicates that the element will execute commands, will
process any queued commands, and will queue new requests.

 'Disabled' (3) indicates that the element will not execute commands and
will drop any new requests.

 'In Test' (7) indicates that the element will be in a test state.

 'Deferred' (8) indicates that the element will not process any commands
but will queue new requests.

 'Quiesce' (9) indicates that the element is enabled but in a restricted
mode. The element's behavior is similar to the Enabled state, but it only
processes a restricted set of commands. All other requests are queued.

OtherEnabledState Optional A string describing the element's initial enabled/disabled state when the
InitialEnabledState property is set to 1 ("Other"). This property MUST be
set to NULL when InitialEnabledState is any value other than 1.

FailurePolicy Optional An enumerated value that specifies if the operation to make a FileSystem
locally accessible to a scoping ComputerSystem should be attempted one
or more times in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by the
corresponding RetriesMax property of the setting.

RetriesMax Optional An integer specifying the maximum number of attempts that should be
made by the scoping ComputerSystem to make a filesystem locally
accessible. A value of "0" specifies an implementation-specific default.

RequestRetryPolicy Optional An enumerated value representing the policy that is supported by the
operational file server on a request to the operational filesystem that either
failed or left the file server hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout happens, or, to
try repeatedly. If the request can be performed in the background, the
request will be tried repeatedly until stopped.

TransmissionRetriesMax Optional An integer specifying the maximum number of retransmission attempts to
be made from the operational file server to the operational filesystem
when the transmission of a request fails or makes the file server hang. A
value of "0" specifies an implementation-specific default. This is only
relevant if there is a transmission channel between the file server and the
underlying filesystem.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 225

Filesystem Manipulation Subprofile

1690
RetransmissionTimeoutMin Optional An integer specifying the minimum number of milliseconds that the
operational file server must wait before assuming that a request to the
operational filesystem has failed. "0" indicates an implementation-specific
default. This is only relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions Optional An enumerated value that specifies if a local cache is supported by the
operational file server when accessing the underlying operational
filesystem.

BuffersSupport Optional An array or enumerated values that specifies the buffering mechanisms
supported by the operational file server for accessing the underlying
operational filesystem." If supported, other properties will establish the
level of support. If the property is NULL or the empty array, buffering is not
supported.

ReadBufferSizeMin Optional An integer specifying the minimum number of bytes that must be allocated
to each buffer used for reading. A value of "0" specifies an
implementation-specific default.

ReadBufferSizeMax Optional An integer specifying the maximum number of bytes that may be allocated
to each buffer used for reading. A value of "0" specifies an
implementation-specific default.

WriteBufferSizeMin Optional An integer specifying the minimum number of bytes that must be allocated
to each buffer used for writing. A value of "0" specifies an implementation-
specific default.

WriteBufferSizeMax Optional An integer specifying the maximum number of bytes that may be allocated
to each buffer used for writing. A value of "0" specifies an implementation-
specific default.

AttributeCaching Optional An array of enumerated values that specify whether attribute caching is (or
is not) supported by the operational file server when accessing specific
types of objects from the underlying operational filesystem. The object
type and the support parameters are specified in the corresponding
AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

 Filesystem object types that can be accessed locally are represented by
an entry in these arrays. The entry in the AttributeCaching array can be
"On", "Off", or "Unknown". Implementation of this feature requires support
from other system components, so it is quite possible that specifying "On"
may still not result in caching behavior. "Unknown" indicates that the
access operation will try to work with whatever options the operational file
server and filesystem can support. In all cases, AttributeCachingTimeMin
and AttributeCachingTimeMax provide the minimum and maximum time
for which the attributes can be cached. When this Setting is used as a
Goal, the client may specify "Unknown", but the Setting in the created
object should contain the supported setting, whether "On" or "Off".

Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
226

 Filesystem Manipulation Subprofile

1691

1692

1693

1694

1695
1696

1697
AttributeCachingObjects Optional An array of enumerated values that specify the attribute caching support
provided to various object types by the operational file server when
accessing the underlying operational filesystem. These", types represent
the types of objects stored in a FileSystem -- files and directories as well
as others that may be defined in the future. The corresponding properties,
AttributeCaching, AttributeCachingTimeMin, and
AttributeCachingTimeMax provide the supported features for the type of
object. "None" and "All" cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is interpreted as the
default setting for all objects. If neither "None" or "All" are specified, the
caching settings for other objects are defaulted by the implementation. If
"Rest" is specified, the entry applies to all known object types other than
the named ones. If "Unknown" is specified it applies to object types not
known to this application (this can happen when foreign file systems are
mounted.

AttributeCachingTimeMin Optional An array of integers specifying, in milliseconds, the minimum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache. When
used as a Goal, a value of "0" indicates an implementation-specific
default.

AttributeCachingTimeMax Optional An array of integers specifying, in milliseconds, the maximum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache. When
used as a Goal, a value of "0" indicates an implementation-specific
default.

ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy set on the
operational filesystem and supported by the operational file server when
accessing it. 'Read Only' specifies that the access to the operational
filesystem by the operational file server is set up solely for reading. 'Read/
Write' specifies that the access to the operational filesystem by the
operational file server is set up for both reading and writing. 'Force Read/
Write' specifies that 'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is intended for use when
the associated FileSystem has been made 'Read Only' by default, as
might happen if it were created to be the target of a Synchronization or
Mirror operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be enforced on
the operational filesystem by the operational file server when accessing it.
'Enforce None' does not enforce locks. 'Enforce Write' does not allow
writes to locked files. 'Enforce Read/Write' does not allow reads or writes
to locked files.

EnableOnSystemStart Optional An enumerated value that specifies if local access from the operational file
server to the operational filesystem should be enabled when the file server
is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that expresses the
client's expectations about access to elements contained in the
operational filesystem. The provider is expected to surface this access
using the CIM privilege model.

Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 227

Filesystem Manipulation Subprofile

1698

1699
EXPERIMENTAL

ExecutePref Optional An enumerated value that specifies if support should be provided on the
operational file server for executing elements contained in the operational
filesystem accessed through this local access point. This may require
setting up specialized paging or execution buffers either on the operational
file server or on the operational filesystem side (as appropriate for the
implementation). Note that this does not provide any rights to actually
execute any element but only specifies support for such execution, if
permitted.

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that expresses the
client's expectations about privileged access by appropriately privileged
System Administrative users on the operational file server ("root" or
"superuser") to the operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege model.

 Support for the privileged access might require setup at both the
operational file server as well as the operational filesystem, so there is no
guarantee that the request can be satisfied.

Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
228

 Filesystem Manipulation Subprofile

1700

1701

1702

1703
SMI-S 1.6.1 Revision 6 SNIA Technical Position 229

Filesystem Manipulation Subprofile
230

1

2

3

4

5

6

7

8
9

10

11

12

13

14
15
16
17

18
19
20

21
22
23
24
EXPERIMENTAL

Clause 11: Filesystem Performance Profile

11.1 Synopsis
Profile Name: Filesystem Performance (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.38

Table 140 describes the related profiles for Filesystem Performance.

NOTE Each of these subprofiles is mandatory if the element in question is to be metered. For example, in order to keep statistics
on exported file shares, it will be necessary for File Shares to be modeled through the use of the File Export Subprofile.

Central Class: FileSystemStatisticsService

Scoping Class: ComputerSystem

11.2 Description

11.2.1 Overview

The Filesystem Performance Subprofile defines classes and methods for managing filesystem-related
performance information. It is a subprofile for use with autonomous profiles that directly support
filesystems, which in this release of SMI-S specifically includes the NAS Head and the Self-Contained
NAS Profiles.

One of the key application disciplines for managing storage is Performance Management. In order to
manage performance, a number of processes need to be in place, including the ability to measure the
performance and saturation points of components within the storage network.

There are currently no common statistics defined that can be used to manage multiple vendor filesystem-
related entities (such as File Servers) from a performance perspective. This subprofile defines specific
measurements and methods to make common statistics available to client applications regarding
filesystem-related entities. Examples of such statistics include:

Table 140 - Related Profiles for Filesystem Performance

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.6.1 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported = "102" (Local Filesystem
statistics support).

File Export SNIA 1.6.1 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported = "103" (Exported File Share
statistics support).

NAS Network Port SNIA 1.5.0 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported = "104" (Exporting Port
statistics support).

Filesystem Performance Profile

25

26

27

28
29

30
31
32

33
34

35
36
37

38
39

40
41

42
43
44
45
46

47
48
49
50

51
52
53

54

55

56

57
58
59
60

61
62
63
64
65
• The read, write and other I/O operation counts for a filesystem or a file share,

• The cumulative elapsed time required for the I/O operations to complete,

• The number of bytes transferred per unit of time.

Particular areas related to Performance Management that can make use of the statistics provided by the
Filesystem Performance Subprofile include:

• Filesystem utilization (e.g., "hot-spot" and trend analyses; tracking usage efficiency by monitoring response
times and IOPS/throughput rates; identifying over-utilization and contention that is leading to performance
degradation).

• Diagnostics and problem determination (e.g., identifying bottlenecks, "point(s) of pain", etc., especially at an
upper level within the overall "I/O operation stack").

• Tuning (e.g., determining allocation/reallocation of particular filesystems and/or file placements in the efforts
to meet overall performance goals and/or other Service Level Agreements; determining the impact of the
underlying storage and applicable network provisioning upon filesystem performance and utilization).

• Workload characterization (e.g., characterizing particular filesystem usage with possible correlation to
associated applications).

• Modeling and planning (e.g., enabling the use of empirical metrics as the input/basis for various modeling and
planning exercises related to filesystem and overall storage concerns).

Performance Measurement within the context of filesystems is the key deliverable that is the focus of this
subprofile. Of particular importance, the statistics provided by the Filesystem Performance Subprofile can
help facilitate a "top-down" approach within the areas noted above (i.e., by reflecting performance
information that is directly related to and seen by/at a "top-most" component within the overall I/O
operation processing stack).

NOTE Performance analysis is broader than simply filesystems and related entities such as File Servers. Complete analysis
requires performance information from hosts, fabric and the underlying storage systems. Theses are (or will be) addressed
separately as part of the appropriate profiles (e.g., the Block Server Performance Subprofile, which includes further discussion
regarding Performance Management).

The Filesystem Performance Subprofile provides statistics, which are associated with fundamental
elements that can comprise a filesystem-related entity (such as a NAS Head or a Self-Contained NAS).
These elements include:

• Filesystems

• Exported file shares

• Network-interface ports used to export file shares

In order to monitor and manage the aforementioned elements, it is necessary to identify performance
counters for each of these elements and to externalize an interface so that client applications can retrieve
the counter values when they so desire. The function of this subprofile is to support such client
applications.

The Filesystem Performance Subprofile augments the profiles and subprofiles for those autonomous
profiles within this release of SMI-S that directly support filesystems. Instead of being an isolated
subprofile, this subprofile adds modeling constructs to existing profiles and subprofiles. Together these
enhancements make up the Filesystem Performance Subprofile (as would be registered in the Server
Profile as a RegisteredSubprofile).
232

 Filesystem Performance Profile

66

67

68
69

70
71
72
11.3 Implementation

11.3.1 Performance Additions Overview

Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram" provides an overview of the
model. The shaded grey boxes show the new classes added by the Filesystem Performance Subprofile.

NOTE Not all properties defined for the statistics classes are shown within Figure 15: "Filesystem Performance Subprofile
Summary Instance Diagram". That is, there are additional properties (both mandatory and optional) that are included within the
statistical classes. These properties can be found in 11.6 "CIM Elements".

Figure 15 - Filesystem Performance Subprofile Summary Instance Diagram
SMI-S 1.6.1 Revision 6 SNIA Technical Position 233

Filesystem Performance Profile

73
74
75
76

77
78
79
80

81
82
83

84
85
86

87
88

89
90
91
92

93
94
95
96

97
98
99

100
101

102
103
104
105
106
107
108
109
110
111
Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram" shows a single instance of
StatisticsCollection for the entire profile. The ComputerSystem (i.e., the "top level" computer system
depicted within the figure) is that of the autonomous profile (e.g., a NAS Head or a Self-Contained NAS)
which utilizes the Filesystem Performance Subprofile.

The StatisticsCollection is the anchor point from which all statistics being kept by the profile can be found.
Statistics are defined as a FileSystemStatisticalData class, instances of which hold the statistics for
particular metered elements (e.g., filesystems and file shares). The particular type of metered element is
recorded in the instance of FileSystemStatisticalData within the ElementType property.

All of the statistics instances are related to the elements that they meter via the ElementStatisticalData
association (e.g., FileSystemStatisticalData for a File Share can be found from the File Share by
traversing the ElementStatisticalData association).

All of the statistics instances kept within the profile are associated to the one StatisticsCollection
instance. Access to all of the statistics for the profile is through the StatisticsCollection. The
StatisticsCollection has a HostedCollection association to the "top level" computer system of the profile.

Note that statistics may be kept for a number of elements within the profile, including elements within
subprofiles. The particular elements that are metered are:

• Local filesystem. This provides a summary of all statistics for a particular filesystem (i.e., an instance of
LocalFileSystem). For example, all file read I/O operations (ReadIOs) directed to a particular filesystem.
These statistics are kept within the FileSystemStatisticalData instances, with one for each filesystem within
the system.

• Exported file share. This provides a summary of all statistics for a particular file share that is exported (i.e.,
an instance of FileShare as described within the File Export Profile). For example, all file read I/O operations
(ReadIOs) directed to a particular file share that is exported to the network. These statistics are kept within
the FileSystemStatisticalData instances, with one for each FileShare within the system.

• Exporting port. This provides a summary of all statistics for a particular port through which a file share being
exported can be accessed (i.e., an instance of ProtocolEndpoint through which a FileShare can be accessed
as described within the File Export Profile). For example, all file read I/O operations (ReadIOs) directed to a
particular file share exporting port. These statistics are kept within the FileSystemStatisticalData instances,
with one for each file share exporting port within the system.

Finally, Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram" illustrates the
FileSystemStatisticsService for Bulk retrieval of all the statistics data and the creation of manifest
collections. These methods (which are provided in a manner akin to that provided by the Block Server
Performance Subprofile) will be discussed later. They are shown here for completeness. Associated with
the FileSystemStatisticsService is a FileSystemStatisticsCapabilities instance that identifies the specific
capabilities implemented by the filesystem performance statistics support. Specifically, it includes an
"ElementsSupported" property that identifies the elements for which statistics are kept; the
FileSystemStatisticsCapabilities instance also identifies the various retrieval mechanisms (e.g., Extrinsic,
Association Traversal, Indications and/or Query) that are implemented (i.e., supported) by the filesystem
statistics support.
234

 Filesystem Performance Profile

112

113
114

115
116
117

118

119
120
121
122
123
124

125

126
127
128
129
130
131
132
133

134

135
136
137
138
139

140
141
142
143
144
145
146
147

148
149
150
11.3.2 Summary of FileSystemStatisticsData support by Profile

Table 141 defines the Element Types (for FileSystemStatisticsData instances) that may be supported by
profile.

YES means that this specification defines the element type for the profile, but actual support by any given
implementation would be implementation dependent. NO means that this specification does not specify
this element type for the profile.

11.3.3 Profile Registration Profile Support for the Filesystem Performance Subprofile

At the top of Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram" there is a
dashed box that illustrates a part of the Profile Registration Profile for the autonomous profile (e.g., a
NAS Head or a Self-Contained NAS) that utilizes the Filesystem Performance Subprofile. The part
illustrated represents the particulars for the Filesystem Performance Subprofile. If performance support
has been implemented, then there shall be a RegisteredSubprofile instance for the Filesystem
Performance Subprofile.

11.3.4 Default Manifest Collection

Associated with the instances of the StatisticsCollection shall be a provider-supplied (Default)
CIM_FileSystemManifestCollection that represents the statistics properties that are kept by the profile.
The default manifest collection is indicated by the IsDefault property (=True) of the
CIM_FileSystemManifestCollection. For each metered object (element) of the profile implementation, the
default manifest collection will have exactly one manifest that will identify which properties are included
for that metered object. If an object is not metered, then there shall not be a manifest for that element
type. If an element type (e.g., Local filesystem) is metered, then there shall be a manifest for that element
type.

11.3.5 Client Defined Manifest Collection

Manifest collections are either provider-supplied (CIM_FileSystemManifestCollection.IsDefault=True) for
the profile implementation or client-defined collections
(CIM_FileSystemManifestCollection.IsDefault=False). Client-defined collections are used to indicate the
specific statistics properties that the client would like to retrieve using the GetStatisticsCollection method.
For a discussion of provider-supplied manifest collections, see 11.3.4.

Client-defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client-defined manifest collection is identified by the IsDefault property
of the collection set to False. For each element type of the filesystem statistics class (e.g., Local
filesystem, exported file share, etc.), a manifest can be defined that identifies which specific properties of
the particular statistics class element type are to be returned on a GetStatisticsCollection request. Each
of the element types of the filesystem statistics class may have no or one manifest in any given manifest
collection. This is illustrated in Figure 15: "Filesystem Performance Subprofile Summary Instance
Diagram".

In Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram", manifest classes are
defined for filesystems (LocalFileSystem) and exported file shares (FileShare). Each property of the
manifest is a Boolean that indicates whether the property is to be returned (true) or omitted (false).

Table 141 - Summary of Element Types by Profile

ElementType NAS Head Self-Contained NAS

Local filesystem YES YES

Exported File Share YES YES

Exporting Port YES YES
SMI-S 1.6.1 Revision 6 SNIA Technical Position 235

Filesystem Performance Profile

151
152
153
154
155
156
157
158
159

160
161
162

163
164

165

166
167
168
169
170
171
172
173

174
175
176
177

178
179
180
181
182

183

184
185
186

187
188
189

190

191
192
193
194

195

196
197
Multiple client-defined manifest collections can be defined in the profile. Consequently, different clients or
different client applications can define different manifests for different application needs. A manifest
collection can completely omit a whole set of statistics pertaining to a particular element type; for
example, no ProtocolEndPoint statistics (i.e., filesystem performance statistics associated with the
element type of "Exporting Port", which represents a port through which a File Share can be accessed
from the network) are included within the client-defined manifest collection shown in Figure 15:
"Filesystem Performance Subprofile Summary Instance Diagram". Since manifest collections are "client
objects", they are named (ElementName) by the client for the client's convenience. The CIM server will
generate an instance ID to uniquely identify the manifest collection in the CIM Server.

Client-defined manifest collections are created using the CreateManifestCollection method. Manifests are
added or modified using the AddOrModifyManifest method. A manifest may be removed from the manifest
collection by using the RemoveManifests method.

NOTE Use of manifest collections is optional with the GetStatisticsCollection method. If NULL for the manifest collection is passed
on input, then all statistics instances are assumed (i.e., all available statistics will be returned).

11.3.6 Capabilities Support for Filesystem Performance Subprofile

There are two dimensions to determining what is supported with a Filesystem Performance Subprofile
implementation. First, there are the RegisteredSubprofiles supported by the autonomous profile (e.g., a
NAS Head or a Self-Contained NAS Profile) that utilizes the Filesystem Performance Subprofile. In order
to support statistics for a particular class of metered element, the corresponding object shall be modeled.
So, if a NAS Head (for example) has not implemented the File Export Subprofile, then it shall not
implement the FileSystemStatisticalData for "Exported File Share" in the Filesystem Performance
Subprofile (and implementation of the File Export Subprofile does not guarantee implementation of the
FileSystemStatisticalData for exported file shares).

Both of these dimensions are captured in the FileSystemStatisticsCapabilities class instance. This class
instance is not created nor modified by Clients; rather, it is populated by the provider and has three
properties of interest (as discussed within the following sections). The second dimension is techniques
supported for retrieving statistics and manipulating manifest collections.

For the methods-supported properties described below (namely, SynchronousMethodsSupported and
AsynchronousMethodsSupported), any or all of the respective values can be missing (e.g., the arrays can
be NULL). If all of the methods supported are NULL, then manifest collections are not supported and
neither GetStatisticsCollection nor Query are supported for the retrieval of statistics. This leaves
enumerations or association traversals as the only methods for retrieving the statistics.

11.3.6.1 ElementsSupported
This property within the FileSystemStatisticsCapabilities class defines a list of element types for which
statistical data is available. For this release of SMI-S, the values of interest are "Local Filesystem",
"Exported File Share" and “Exporting Port”.

To be a valid implementation of the Filesystem Performance Subprofile, at least one of the values listed
for ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can
be identified.

11.3.6.2 SynchronousMethodsSupported
This property within the FileSystemStatisticsCapabilities class defines the synchronous mechanisms that
are supported for retrieving statistics and for defining and modifying filters for statistics retrieval. For this
release of SMI-S, the values of interest are "Exec Query", "Indications", "Query Collection",
"GetStatisticsCollection", "Manifest Creation", "Manifest Modification", and "Manifest Removal".

11.3.6.3 AsynchronousMethodsSupported
This property within the FileSystemStatisticsCapabilities class defines the asynchronous mechanisms
that are supported for retrieving statistics. For this release of SMI-S, this should be NULL.
236

 Filesystem Performance Profile

198

199
200
201
202

203
204

205

206

207

208

209

210

211

212
213

214

215
216
217
218
219

220

221
222

223

224

225
11.3.6.4 ClockTickInterval
An internal clocking interval for all timer counters kept in the system implementation, measured in
microseconds (i.e., the unit of measure in the timers, measured in microseconds). Time counters are
considered to be monotonically increasing counters that contain "ticks". Each tick represents one clock
tick interval.

For example, if ClockTickInterval contained a value of 32, then each time counter tick would represent 32
microseconds.

11.3.7 Health and Fault Management Consideration

Not defined in this version of the specification.

11.3.8 Cascading Considerations

Not applicable

11.4 Methods of the Profile

11.4.1 Extrinsic Methods of the Profile

11.4.1.1 Overview
The methods supported by this subprofile are summarized in Table 142 and detailed within the sections
that follow it.

11.4.1.2 GetStatisticsCollection
This extrinsic method retrieves statistics in a well-defined bulk format. The set of statistics returned by
this method is determined by the list of element types passed into the method and the manifests for those
types contained in the supplied manifest collection. The statistics are returned through a well-defined
array of strings that can be parsed to retrieve the desired statistics as well as limited information about
the elements that those metrics describe.

GetStatisticsCollection(

[IN (false), OUT, Description(Reference to the job(shall be null in this
version of SMI-S.)]

CIM_ConcreteJob REF Job,

[IN, Description(Element types for which statistics should be returned)

ValueMap { "1", "102", "103", "104", "..", "0x8000.." },

Table 142 - Creation, Deletion and Modification Methods in the Filesystem Performance Subprofile

Method Created Instances Deleted Instances Modified
Instances

GetStatisticsCollection None None None

CreateManifestCollection FileSystemStatisticsManifestCollection

AssociatedFileSystemStatisticsManife
stCollection

None None

AddOrModifyManifest FileSystemStatisticsManifest(subclass)

MemberOfCollection

None FileSystemStatistics
Manifest(subclass)

RemoveManifest None FileSystemStatisticsManife
st(subclass)

MemberOfCollection

None
SMI-S 1.6.1 Revision 6 SNIA Technical Position 237

Filesystem Performance Profile

226
227

228

229
230
231
232
233
234
235
236

237

238
239
240

241

242

243

244

245

246
247

248

249

250
251
252

253
254

255
256

257
258
259

260
261
262

263
264

265
266
267
268
269

270
271
272
Values { "Other", "Local Filesystem", "Exported File Share", "Exporting Port",
"DMTF Reserved", "Vendor Specific" }]

uint16 ElementTypes[],

[IN, Description ("An array of strings that specify the particular "Other"
element(s) when the ElementType property above includes
the ElementType value of 1 (i.e., "Other"). Each
string within this array identifies a separate "Other"
element and duplicate string values are NOT allowed.
This property should be set to NULL when the
ElementType property does not include the value of
1.")]

 string OtherElementTypeDescriptions[],

[IN, Description(The manifest collection that contains the manifests which list
the metrics that should be returned for each element
type)]

CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description("Specifies the format of the Statistics output parameter")

ValueMap { "2" } ,

Values ("CSV")]

uint16 StatisticsFormat,

[OUT, Description(The statistics for all the elements as determined by the
Elements and ManifestCollection parameters)]

string Statistics[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Method Parameters Checked - Job Started", "Element Not Supported", "Statistics
Format Not Supported", "Method Reserved", "Vendor Specific"}

NOTE In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This method should
always return NULL for the Job parameter.

If the ElementTypes[] array is empty, then no data is returned. If the ElementTypes[] array is NULL, then
the ElementTypes[] parameter is ignored and all data specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is NULL,
then the default manifest collection is used. (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

NOTE The ElementTypes[] and ManifestCollection parameters may identify different sets of element types. The effect of this will
be for the implementation to return statistics for the element types that are in both lists (that is, the intersection of the two lists).
This intersection could be empty. In this case, no data will be returned.

For the current version of SMI-S, the only recognized value for StatisticsFormat is "CSV". The method
may support other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstanceIDs that may be used to
correlate with the FileSystemStatisticalData instances, a simple CSV format is sufficient and the most
efficient human-readable format for transferring bulk statistics. More specifically, the following rules
constrain that format and define the content of the String[] Statistics output parameter to the Get Statistics
Collection() method:

• The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings will not exceed 64K bytes. And a single statistics record will not span Array
entries.
238

 Filesystem Performance Profile

273

274

275
276

277
278
279

280
281
282
283

284
285

286
287
288
289

290
291
292

293
294
295
296
297

298
299
300

301
302
303

304
305
306
307

308

309

310

311

312

313

314

315

316
• There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:

• a line-feed character

• the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

• Each statistics record shall contain the InstanceID of the FileSystemStatisticalData instance, the value map
(number) of the ElementType of the metered object, and one value for each property that the relevant
FileSystemStatisticsManifest specifies as "true".

• Each value in a record shall be separated from the next value by a Semi-colon (";"). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record. A client reading a record it has received would ignore white-space
between values.

• The InstanceID value is an opaque string that shall correspond to the InstanceID property from
FileSystemStatisticalData instance.

• For the convenience of client software that needs to be able to correlate InstanceIDs between different
GetStatisticsCollection method invocations, the InstanceID for FileSystemStatisticalData instance shall be
unique across all instances of the FileSystemStatisticalData class. It is not sufficient that InstanceID is unique
across subclasses of FileSystemStatisticalData.

• The ElementType value shall be a decimal string representation of the Element Type number (e.g., "102" for
Local Filesystem). The StatisticTime shall be a string representation of DateTime. All other values shall be
decimal string representations of their statistical values.

• Null values shall be included in records for which a statistic is returned (specified by the manifest or by a lack
of manifest for a particular element type) but there is no meaningful value available for the statistic. A NULL
statistic is represented by placing a semi-colon (;) in the record without a value at the position where the
value would have otherwise been included. A record in which the last statistic has a NULL value shall end in
a semi-colon (;).

• The first three values in a record shall be the InstanceID, ElementType and StatisticTime values from the
FileSystemStatisticalData instance. The remaining values shall be returned in the order in which they are
defined by the MOF for the FileSystemStatisticsManifest class or subclass the record describes.

As an additional convention, a provider should return all the records for a particular element type in
consecutive String elements, and the order of the element types should be the same as the order in which
the element types were specified in the input parameter to GetStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 local filesystems and 5
exported file shares, assuming that 6 statistics were specified in the FileSystemStatisticsManifest
instance for both local filesystems and exported file shares. The sixth statistic is unavailable for local
filesystems, and the fourth statistic is unavailable for exported file shares:

<METHODRESPONSE NAME="GetStatisticsCollection">

<RETURNVALUE PARAMTYPE="uint32">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="Statistics" PARAMTYPE="string">

<VALUE.ARRAY>

<VALUE>
SMI-S 1.6.1 Revision 6 SNIA Technical Position 239

Filesystem Performance Profile

317
318

319
320

321
322

323
324

325
326

327

328

329
330

331
332

333
334

335
336

337
338

339

340

341

342

343

344
345

346

347
348

349

350

351

352

353

354

355
356

357

358
359
360
361
LOCALFILESYSTEMSTATS1;102;20060811133015.0000010-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS2;102;20060811133015.0000020-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS3;102;20060811133015.0000030-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS4;102;20060811133015.0000040-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS5;102;20060811133015.0000050-
300;11111;22222;33333;44444;55555;

</VALUE>

<VALUE>

EXPORTFILESHARESTATS1;103;20060811133015.0000100-
300;11111;22222;33333;;55555;66666

EXPORTFILESHARESTATS2;103;20060811133015.0000110-
300;11111;22222;33333;;55555;66666

EXPORTFILESHARESTATS3;103;20060811133015.0000120-
300;11111;22222;33333;;55555;66666

EXPORTFILESHARESTATS4;103;20060811133015.0000130-
300;11111;22222;33333;;55555;66666

EXPORTFILESHARESTATS5;103;20060811133015.0000140-
300;11111;22222;33333;;55555;66666

</VALUE>

</VALUE.ARRAY>

</PARAMVALUE>

</METHODRESPONSE>

11.4.1.3 CreateManifestCollection
This extrinsic method creates a new manifest collection whose members serve as a filter for metrics
retrieved through the GetStatisticsCollection method.

CreateManifestCollection(

[IN, Description(The collection of statistics that will be filtered using the new
manifest collection)]

CIM_StatisticsCollection REF Statistics,

[IN, Description(Client-defined name for the new manifest collection)

string ElementName,

[OUT, Description(Reference to the new manifest collection)]

CIM_FileSystemManifestCollection REF ManifestCollection);

Error returns are:

{ "Ok", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Vendor Specific" }

11.4.1.4 AddOrModifyManifest
This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A
client supplies a manifest collection within which the new manifest collection will be placed or an existing
manifest will be modified, the element type of the statistics that the manifest will filter, and a list of
statistics that should be returned for that element type using the GetStatisticsCollection method.
240

 Filesystem Performance Profile

362

363
364

365

366

367

368
369

370

371
372
373
374

375

376
377

378

379
380
381

382

383
384

385

386

387
388
389
390

391
392
393

394

395

396

397

398

399

400

401

402

403
404
405
AddOrModifyManifest(

[IN, Description(Manifest collection that the manifest is or should be a member
of)]

CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(The element type whose statistics the manifest will filter)

ValueMap { "1", "102", "103", "104", "..", "0x8000.." },

Values { "Other", "Local Filesystem", "Exported File Share", "Exporting Port",
"DMTF Reserved", "Vendor Specific" }]

uint16 ElementType,

 [IN, Description ("A string describing the type of element when the ElementType
property above is set to 1 (i.e., "Other"). This
property should be set to NULL when the ElementType
property is any value other than 1.")]

 string OtherElementTypeDescription,

[IN, Description(The client-defined string that identifies the manifest created or
modified by this method)

string ElementName,

[IN, Description(The statistics that will be included by the manifest filter; that
is, the statistics that will be supplied through the
GetStatisticsCollection method)

string StatisticsList[],

 [OUT, Description(The Manifest that is created or modified on the successful
execution of this method)]

CIM_FileSystemManifest REF Manifest);

Error returns are:

{ "Success", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Element Not Supported", "Metric not
supported", "ElementType Parameter Missing", "Method
Reserved", "Vendor Specific" }

If the StatisticsList[] array is empty, then only InstanceID and ElementType will be returned when the
manifest is referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is
assumed (i.e., all supported properties will be included).

NOTE This would be the FileSystemStatisticsManifest from the default manifest collection.

11.4.1.5 RemoveManifests
This is an extrinsic method that removes manifests from the manifest collection.

RemoveManifests(

[IN, Description(Manifest collection from which the manifests will be removed)]

CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(List of manifests to be removed from the manifest collection)

CIM_FileSystemStatisticsManifest REF Manifest[]);

Error returns are:

{ "Success", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid
Parameter", "Method Reserved", "Manifest not found",
"Method Reserved", "Vendor Specific" }
SMI-S 1.6.1 Revision 6 SNIA Technical Position 241

Filesystem Performance Profile

406

407
408

409

410
411
412
413

414

415
416
417
418

419

420

421
422
11.4.2 Intrinsic Methods of this Profile
NOTE Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection, FileSystemStatisticalData,
MemberOfCollection or ElementStatisticalData.

11.4.2.1 DeleteInstance (of a FileSystemStatisticsManifestCollection)
This will delete the FileSystemStatisticsManifestCollection where IsDefault=False, the
AssociatedFileSystemStatisticsManifestCollection association to the StatisticsCollection and all manifests
collected by the manifest collection (and the MemberOfCollection associations to the
FileSystemStatisticsManifestCollection).

11.4.2.2 Association Traversal
One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the
individual Statistics following the MemberOfCollection association. This shall be supported by all
implementations of the Filesystem Performance Subprofile and would be available to clients if the
provider does not support the EXEC QUERY or GetStatisticsCollection approaches.

11.5 Use Cases

11.5.1 Summary of Statistics Support by Element

Not all statistics properties are kept for all elements. Table 143 illustrates the statistics properties that are
kept for each of the metered elements.

Table 143 - Summary of Statistics Support by Element

Statistic Property Local
Filesystem

Exported
File Share

Exporting
Port

Other

StatisticTime R R R R

TotalIOs R R R R

TotalBytesTransferred R R R N

ReadIOs R R N N

WriteIOs R R N N

OtherIOs R R N N

MetadataReadIOs O O N N

MetadataWriteIOs O O N N

TotalIOTimeCounter O O O N

TotalIdleTimeCounter O O O N

ReadIOTimeCounter O O N N

BytesRead O O N N

WriteIOTimeCounter O O N N

BytesWritten O O N N

MetadataBytesRead O O N N

MetadataBytesWritten O O N N

PercentDurableOpens N O N N

PercentResilientOpens N O N N

PercentPersistentOpens N O N N
242

 Filesystem Performance Profile
AverageReadResponseTime N O N N

AverageWriteResponseTime N O N N

AverageRequestResponseTime N O N N

BytesReadPerSec N O N N

TotalBytesReceived N O N N

BytesReceivedPerSec N O N N

TotalBytesSent N O N N

BytesSentPerSec N O N N

BytesTranferredPerSec N O N N

BytesWrittenPerSec N O N N

FilesOpenedPerSec N O N N

TotalOpenFileCount N O N N

CurrentPendingRequests N O N N

ReadRequestsProcessedPerSec N O N N

TotalRequestsReceived N O N N

RequestsReceivedPerSec N O N N

TotalDurableHandleReopenCount N O N N

TotalFailedDurableHandleReopenCount N O N N

TotalFailedResilientHandleReopenCount N O N N

CurrentOpenFileCount N O N N

TotalResilientHandleReopenCount N O N N

TotalPersistentHandleReopenCount N O N N

TotalFailedPersistentHandleReopenCount N O N N

TreeConnectCount N O N N

WriteRequestsProcessedPerSec N O N N

TotalMetadataRequestsReceived N O N N

MetadataRequestsReceivedPerSec N O N N

AverageTimePerDataRequest N O N N

AverageBytesPerDataRequest N O N N

AverageBytesPerReadRequest N O N N

AverageBytesPerWriteRequest N O N N

AverageReadQueueLength N O N N

AverageWriteQueueLength N O N N

AverageDataQueueLength N O N N

Table 143 - Summary of Statistics Support by Element

Statistic Property Local
Filesystem

Exported
File Share

Exporting
Port

Other
SMI-S 1.6.1 Revision 6 SNIA Technical Position 243

Filesystem Performance Profile

423

424

425

426

427
428

429
430
431
432

433
434
435
436

437
438

439
440
441

442

443
444
445

446
447
448
The legend is:

R - Required

O - Optional

N - Not specified

A complete list of definitions of the metered elements as defined by the ElementType property of
FileSystemStatisticalData is below:

• ElementType = 1 (Other) - This is used by the provider to specify a filesystem-related metered element other
than one explicitly declared (e.g., "Local Filesystem" below) within the list of element types supported by the
Filesystem Performance Subprofile in this release of SMI-S. If the ElementType is "Other", then information
describing the metered element should be provided in the "OtherElementTypeDescription" string property.

• ElementType = 102 (Local Filesystem) - This is a filesystem that would be a LocalFileSystem in the
Filesystem Profile. It is a target for I/O operations that would include file I/O operations for storing and
retrieving the contents of a file maintained by the filesystem, I/O operations directed to directories maintained
by the filesystem, and other I/O operations performed to manage the filesystem and its contents.

• ElementType = 103 (Exported File Share) - This is a FileShare in the File Export Subprofile; it is a file share
that is exported to a network.

• ElementType = 104 (Exporting Port) - This is a port through which a file share being exported can be
accessed. It is a ProtocolEndPoint through which a FileShare can be accessed as described within the File
Export Profile.

11.5.2 Formulas and Calculations

Table 4 identifies the set of statistics that are recommended for various elements associated with
filesystems. Once collected, these metrics can be further enhanced through the definition of formulas and
calculations that create additional "derived" statistics.

Table 144 defines a set of such derived statistics as pertain to a calculated time interval. These calculated
statistics are by no means the only possible derivations but serve as examples of commonly requested
statistics.

DataBytesPerSec N O N N

DataRequestsPerSec N O N N

CurrentDataQueueLength N O N N

Table 144 - Formulas and Calculations - Calculated Statistics for a Time Interval

New statistic Formula

TimeInterval delta StatisticTime

I/O rate delta TotalIOs / TimeInterval

I/O average response time delta TotalIOTimeCounter / delta TotalIOs

Read average response time delta ReadIOTimeCounter / delta ReadIOs

Write average response time delta WriteIOTimeCounter / delta WriteIOs

Table 143 - Summary of Statistics Support by Element

Statistic Property Local
Filesystem

Exported
File Share

Exporting
Port

Other
244

 Filesystem Performance Profile

449

450
451

452

453
454
455

456
457

458

459
11.5.3 Filesystem Performance Supported Capabilities Patterns

The Filesystem Performance Subprofile in this release of SMI-S formally recognizes the Capabilities
patterns summarized in Table 145.

An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or
neither. But if the implementation supports GetStatisticsCollection, it shall support Synchronous
execution.

If manifest collections are supported, then ALL three methods shall be supported (creation, modification
and removal).

11.5.4 Client Considerations and Recipes

Not defined in this version of the specification.

Average Read Size delta BytesRead / delta ReadIOs

Average Write Size delta BytesWritten / delta WriteIOs

% Read 100 * (delta ReadIOs / delta TotalIOs)

% Write 100 * (delta WriteIOs / delta TotalIOs)

Table 145 - Filesystem Performance Subprofile Supported Capabilities Patterns

Element Supported SynchronousMethods
Supported

AsynchronousMethods Supported

Any (at least one) NULL NULL

Any (at least one) Neither GetStatisticsCollection nor Exec
Query

NULL

Any (at least one) GetStatisticsCollection NULL

Any (at least one) Any NULL

Any (at least one) Exec Query NULL

Any (at least one) GetStatisticsCollection, Exec Query NULL

Any (at least one) "Manifest Creation", "Manifest
Modification", and "Manifest Removal”

NULL

Any (at least one) "Indications", "Query Collection” NULL

Table 144 - Formulas and Calculations - Calculated Statistics for a Time Interval

New statistic Formula
SMI-S 1.6.1 Revision 6 SNIA Technical Position 245

Filesystem Performance Profile

460

461
11.6 CIM Elements
Table 146 describes the CIM elements for Filesystem Performance.

Table 146 - CIM Elements for Filesystem Performance

Element Name Requirement Description

11.6.1
CIM_AssociatedFileSystemStatisticsManifestCollection
(Client defined collection)

Conditional Conditional requirement: Clients can create manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported. This is an association between the
StatisticsCollection and a client defined manifest
collection.

11.6.2
CIM_AssociatedFileSystemStatisticsManifestCollection
(Provider defined collection)

Mandatory This is an association between the StatisticsCollection
and a provider supplied (predefined) manifest collection
that defines the filesystem statistics properties supported
by the profile implementation.

11.6.3 CIM_ElementCapabilities Mandatory This associates the FileSystemStatisticsCapabilities to
the FileSystemStatisticsService.

11.6.4 CIM_ElementStatisticalData (Exported File Share
Stats)

Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTypesSupp
orted = "103" (Exported File Share statistics support).

This associates a FileSystemStatisticalData instance to
the exported File Share for which the statistics are
collected.

11.6.5 CIM_ElementStatisticalData (Exporting Port Stats) Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTypesSupp
orted = "104" (Exporting Port statistics support).

This associates a FileSystemStatisticalData instance to
the exporting Port for which the statistics are collected.

11.6.6 CIM_ElementStatisticalData (Local Filesystem
Stats)

Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTypesSupp
orted = "102" (Local Filesystem statistics support).

This associates a FileSystemStatisticalData instance to
the local filesystem for which the statistics are collected.

11.6.7 CIM_ElementStatisticalData (OTHER Element
Type Stats)

Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTypesSupp
orted = "1" (OTHER element type statistics support).

This associates a FileSystemStatisticalData instance to a
provider-specified other element for which the statistics
are collected.

11.6.8 CIM_FileSystemStatisticalData Mandatory The CIM_FileSystemStatisticalData class defines the
filesystem statistics properties that may be kept for a
metered element of a system that provides filesystem
support (such as a NAS Head or a Self-Contained NAS).
Examples of such metered elements include
LocalFileSystem (Local Filesystem) and FileShare
(Exported File Share).

11.6.9 CIM_FileSystemStatisticsCapabilities Mandatory This defines the statistics capabilities supported by the
implementation of the profile.
246

 Filesystem Performance Profile
11.6.10 CIM_FileSystemStatisticsManifest (Client
Defined)

Conditional Conditional requirement: Clients can modify manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported. An instance of this class defines the
filesystem statistics properties of interest to the client for
one element type.

11.6.11 CIM_FileSystemStatisticsManifest (Provider
Support)

Mandatory An instance of this class defines the filesystem statistics
properties supported by the profile implementation for one
element type.

11.6.12 CIM_FileSystemStatisticsManifestCollection
(Client Defined)

Conditional Conditional requirement: Clients can create manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported. An instance of this class defines one client
defined collection of filesystem statistics manifests (one
manifest for each element type).

11.6.13 CIM_FileSystemStatisticsManifestCollection
(Provider Defined)

Mandatory An instance of this class defines the predefined collection
of default filesystem statistics manifests (one manifest for
each element type).

 CIM_FileSystemStatisticsService Mandatory This is a Service that provides (optional) services of bulk
statistics retrieval and manifest set manipulation methods.

11.6.14 CIM_HostedCollection (Client Defined) Conditional Conditional requirement: Clients can create manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or Clients can create manifests as identified
by
CIM_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported. This would associate a client defined
FileSystemStatisticsManifestCollection to the top level
system for the profile (e.g., a NAS Head).

11.6.15 CIM_HostedCollection (Default) Mandatory This would associate a default
FileSystemStatisticsManifestCollection to the top level
system for the profile (e.g., a NAS Head).

 CIM_HostedCollection (Provider Supplied) Mandatory This would associate the StatisticsCollection to the top
level system for the profile (e.g., NAS Head).

11.6.16 CIM_HostedService Mandatory This associates the FileSystemStatisticsService to the
ComputerSystem that hosts it.

11.6.17 CIM_MemberOfCollection (Member of client
defined collection)

Conditional Conditional requirement: Clients can modify manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported. This would associate Manifests to client-
defined manifest collections.

11.6.18 CIM_MemberOfCollection (Member of predefined
collection)

Mandatory This would associate predefined Manifests to the default
manifest collection.

11.6.19 CIM_MemberOfCollection (Member of statistics
collection)

Mandatory This would associate all filesystem statistics instances to
the StatisticsCollection.

11.6.20 CIM_StatisticsCollection Mandatory This would be a collection point for all filesystem statistics
that are kept for metered elements of a system that
provides filesystem support (such as a NAS Head or a
Self-Contained NAS).

Table 146 - CIM Elements for Filesystem Performance

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 247

Filesystem Performance Profile

462

463
464
465
466

467
468

469
470
471

472

473

474

475
476
11.6.1 CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

The CIM_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
CIM_FileSystemStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it
applies. Client defined manifest collections identify the Manifests (statistic properties) for retrieval of
filesystem statistics.
CIM_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.
There will be one instance of the CIM_AssociatedFileSystemStatisticsManifestCollection class, for each
client defined manifest collection that has been created.
Created By: Extrinsic: CreateManifestCollection
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 147 describes class CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined
collection).

11.6.21
SNIA_AssociatedFileSystemStatisticsManifestCollection
(Client defined collection)

Conditional Deprecated. Conditional requirement: Clients can create
manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported.

11.6.22
SNIA_AssociatedFileSystemStatisticsManifestCollection
(Provider defined collection)

Mandatory Deprecated.

11.6.23 SNIA_FileSystemStatisticalData Mandatory Deprecated.

11.6.24 SNIA_FileSystemStatisticsCapabilities Mandatory Deprecated.

11.6.25 SNIA_FileSystemStatisticsManifest (Client
Defined)

Conditional Deprecated. Conditional requirement: Clients can modify
manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported.

11.6.26 SNIA_FileSystemStatisticsManifest (Provider
Support)

Mandatory Deprecated.

11.6.27 SNIA_FileSystemStatisticsManifestCollection
(Client Defined)

Conditional Deprecated. Conditional requirement: Clients can create
manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported.

11.6.28 SNIA_FileSystemStatisticsManifestCollection
(Provider Defined)

Mandatory Deprecated.

11.6.29 SNIA_FileSystemStatisticsService Mandatory Deprecated.

Table 147 - SMI Referenced Properties/Methods for
CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

Properties Flags Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection applies.

ManifestCollection Mandatory A client defined manifest collection.

Table 146 - CIM Elements for Filesystem Performance

Element Name Requirement Description
248

 Filesystem Performance Profile

477
478

479

480
481
482
483

484

485
486

487

488

489

490

491
492

493

494
495
496
497
498
499
500

501

502

503

504

505
11.6.2 CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

The CIM_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
CIM_FileSystemStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it
applies. The default manifest collection defines the CIM_FileSystemStatisticalData properties that are
supported by the profile implementation.
CIM_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.
One instance of the CIM_AssociatedFileSystemStatisticsManifestCollection shall exist for the default
manifest collection if the Filesystem Performance Subprofile is implemented.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 148 describes class CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined
collection).

11.6.3 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,
CIM_FileSystemStatisticsService) and their Capabilities (e.g., CIM_FileSystemStatisticsCapabilities).
Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates
the instantiation of the CIM_ElementCapabilities association for the referenced instance of Capabilities.
ElementCapabilities describes the existence requirements and context for the referenced instance of
ManagedElement. Specifically, the ManagedElement shall exist and provides the context for the
Capabilities.
CIM_ElementCapabilities is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 149 describes class CIM_ElementCapabilities.

Table 148 - SMI Referenced Properties/Methods for
CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

Properties Flags Requirement Description & Notes

Statistics Mandatory The StatisticsCollection to which the manifest collection applies.

ManifestCollection Mandatory The default manifest collection.

Table 149 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element (FileSystemStatisticsService).

Capabilities Mandatory The Capabilities instance associated with the FileSystemStatisticsService.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 249

Filesystem Performance Profile

506

507

508
509
510
511
512

513

514

515

516

517
518

519

520

521
522
523
524
525
526

527

528

529

530

531
532
11.6.4 CIM_ElementStatisticalData (Exported File Share Stats)

CIM_ElementStatisticalData is an association that relates an exported File Share to its statistics. Note
that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific File Share that is being exported.
CIM_ElementStatisticalData is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "103"
(Exported File Share statistics support).

Table 150 describes class CIM_ElementStatisticalData (Exported File Share Stats).

11.6.5 CIM_ElementStatisticalData (Exporting Port Stats)

CIM_ElementStatisticalData is an association that relates an exporting Port to its statistics. This exporting
Port is a ProtoEndPoint through which a file share that is being exported can be accessed. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific exporting Port.
CIM_ElementStatisticalData is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "104"
(Exporting Port statistics support).

Table 151 describes class CIM_ElementStatisticalData (Exporting Port Stats).

11.6.6 CIM_ElementStatisticalData (Local Filesystem Stats)

CIM_ElementStatisticalData is an association that relates a local filesystem to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the

Table 150 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File Share Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to an exported FileShare for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
exported FileShare.

Table 151 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a ProtocolEndPoint port for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
exporting Port.
250

 Filesystem Performance Profile

533

534

535
536
537
538
539

540

541

542

543

544
545

546

547

548
549
550
551
552
553
554
555
556
557

558

559

560

561
instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific local filesystem.
CIM_ElementStatisticalData is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "102"
(Local Filesystem statistics support).

Table 152 describes class CIM_ElementStatisticalData (Local Filesystem Stats).

11.6.7 CIM_ElementStatisticalData (OTHER Element Type Stats)

CIM_ElementStatisticalData is an association that relates a provider-specified other element to its
statistics. This other element is a filesystem-related managed element whose type is not explicitly
declared within the list of ElementTypesSupported values defined within
CIM_FileSystemStatisticsCapabilities. Information describing the metered element in this case should
also be provided in the CIM_FileSystemStatisticalData.OtherElementTypeDescription property for the
referenced instance of the FileSystemStatistics. Note that the cardinality of the ManagedElement
reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics.
ElementStatisticalData describes the existence requirements and context for the FileSystemStatistics,
relative to the specific metered element.
CIM_ElementStatisticalData is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "1"
(OTHER element type statistics support).

Table 153 describes class CIM_ElementStatisticalData (OTHER Element Type Stats).

Table 152 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesystem Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a LocalFileSystem for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
local filesystem.

Table 153 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element Type
Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to the provider-specified managed element for which the
Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
provider-specified managed element.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 251

Filesystem Performance Profile

562
563

564

565

566

567
568
569
570

571

572

573

574

575
11.6.8 CIM_FileSystemStatisticalData

CIM_FileSystemStorageStatisticalData is subclassed from CIM_StatisticalData.
Instances of this class will exist for each of the metered elements if the "ElementTypesSupported"
property of the CIM_FileSystemStatisticsCapabilities indicates that the metered element is supported. For
example, if "Local Filesystem" is identified in the "ElementTypesSupported" property, then this indicates
support for metering of the local filesystem.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 154 describes class CIM_FileSystemStatisticalData.

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes

InstanceID Mandatory The InstanceID for a FileSystemStatisticalData instance shall be unique
across all instances of the FileSystemStatisticalData class.

StatisticTime Mandatory The time that the most recent measurement was taken, relative to the
object (managed element) where the statistics were collected. (Time
stamp in CIM 2.2 specification format).

ElementType Mandatory Defines the role that the metered element (object) played for which this
statistics record was collected. This value is required AND the current
version of SMI-S specifies the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share", "Exporting
Port"}.

OtherElementTypeDescript
ion

Mandatory A string describing the type of element when the ElementType property of
this class (or any of its subclasses) is set to 1 (i.e., "Other"). This property
should be set to NULL when the ElementType property is any value other
than 1.

TotalIOs Mandatory The cumulative count of file I/O operations for the object, including
metadata I/O operations.

TotalBytesTransferred Conditional Conditional requirement: This property is required if the ElementType is
102, 103, or 104. The cumulative count of bytes transferred for all of the
file I/O operations as defined in "TotalIOs" above.

Note: This is not specified for the "Other" ElementType.

ReadIOs Conditional Conditional requirement: This property is required if the ElementType is
102 or 103. The cumulative count of file I/O operations that were directed
to the object and that performed a transfer of data from the file contents.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

WriteIOs Conditional Conditional requirement: This property is required if the ElementType is
102 or 103. The cumulative count of file I/O operations that were directed
to the object and that performed a transfer of data to the file contents.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.
252

 Filesystem Performance Profile
OtherIOs Conditional Conditional requirement: This property is required if the ElementType is
102 or 103. The cumulative count of file I/O operations that were directed
to the object and that did not perform a transfer of data either to or from
the file contents. This count excludes metadata I/ O operations (both read
and write). File "open", "close", and "lock" I/O operations are examples of
an "OtherIO" I/O operation.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

MetadataReadIOs Optional The cumulative count of file I/O operations that were directed to the object
and that performed a read transfer of metadata. "Get Attributes" and
"Read Directory" I/O operations are examples of a Metadata read I/O
operation.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

MetadataWriteIOs Optional The cumulative count of file I/O operations that were directed to the object
and that performed a write transfer of metadata. "Set Attributes" I/O
operations are an example of a Metadata write I/O operation.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

TotalIOTimeCounter Optional The cumulative elapsed I/O operation time (number of ClockTickIntervals)
for all file I/O operations as defined in "TotalIOs" above. The I/O operation
response time is added to this counter at the completion of each
measured I/O operation using ClockTickInterval units. The
TotalIOTimeCounter value can be divided by the total number of I/O
operations (TotalIOs) to obtain an I/O operation average response time.

Note: This is not specified for the "Other" ElementType.

TotalIdleTimeCounter Optional The cumulative elapsed idle time using ClockTickInterval units. That is, the
cumulative number of ClockTickIntervals for all idle time within the object,
with "idle time" being that time during which no I/O operations were being
processed by the object.

Note: This is not specified for the "Other" ElementType.

ReadIOTimeCounter Optional The cumulative elapsed I/O operation time for all Read I/O operations (that
is, the cumulative elapsed time for all Read I/O operations as defined in
"ReadIOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

BytesRead Optional The cumulative count of bytes read (that is, the cumulative count of bytes
transferred by all Read I/O operations as defined in "ReadIOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

WriteIOTimeCounter Optional The cumulative elapsed I/O operation time for all Write I/O operations (that
is, the cumulative elapsed time for all Write I/O operations as defined in
"WriteIOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

BytesWritten Optional The cumulative count of bytes written (that is, the cumulative count of
bytes transferred by all Write I/O operations as defined in "WriteIOs"
above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 253

Filesystem Performance Profile
MetadataBytesRead Optional The cumulative count of metadata bytes read (that is, the cumulative count
of bytes transferred by all Metadata read I/O operations as defined in
"MetadataReadIOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

MetadataBytesWritten Optional The cumulative count of metadata bytes written (that is, the cumulative
count of bytes transferred by all Metadata write I/O operations as defined
in "MetadataWriteIOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

PercentDurableOpens Optional The percentage of total opens for which clients requested durability.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

PercentResilientOpens Optional The percentage of total opens for which clients requested resiliency.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

PercentPersistentOpens Optional The percentage of total handles for which clients requested persistency.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageReadResponseTi
me

Optional The average number of seconds that elapse between the time at which a
read request to this share is received and the time at which the SMB2 File
Server sends the corresponding response.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageWriteResponseTi
me

Optional The average number of seconds that elapse between the time at which a
write request to this share is received and the time at which the SMB2 File
Server sends the corresponding response.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageRequestResponse
Time

Optional The average number of seconds that elapse between the time at which
the SMB2 File Server receives a request for this share and the time at
which the SMB2 File Server sends the corresponding response.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

BytesReadPerSec Optional The rate, in seconds, at which data is being read from this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalBytesReceived Optional The number of bytes that have been received for requests related to this
share. This value includes application data as well as SMB2 protocol data
(such as packet headers).

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

BytesReceivedPerSec Optional The rate at which bytes are being received for requests related to this
share. This value includes application data as well as SMB2 protocol data
(such as packet headers).

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes
254

 Filesystem Performance Profile
TotalBytesSent Optional The number of bytes that have been sent by the SMB2 File Server related
to this share to its clients since the server started. This value includes both
data bytes and protocol bytes.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

BytesSentPerSec Optional The rate, in seconds, at which bytes are being sent from the SMB2 File
Server related to this share to its clients. This value includes both data
bytes and protocol bytes.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

BytesTranferredPerSec Optional The sum of bytes transferred/sec related to this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

BytesWrittenPerSec Optional The rate, in seconds, at which data is being written to this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

FilesOpenedPerSec Optional The rate, in seconds, at which files are being opened for the SMB2 File
Server's clients on this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalOpenFileCount Optional The number of files that have been opened by the SMB2 File Server on
behalf of its clients on this share since the server started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

CurrentPendingRequests Optional The number of requests related to this share that are waiting to be
processed by the SMB2 File Server.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

ReadRequestsProcessedP
erSec

Optional Read requests processed/sec related to this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalRequestsReceived Optional The number of requests that have been received for this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

RequestsReceivedPerSec Optional The rate at which requests are being received for this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalDurableHandleReope
nCount

Optional The number of durable opens on this share that have been recovered after
a temporary network disconnect since the SMB2 File Server started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalFailedDurableHandle
ReopenCount

Optional The number of durable opens on this share that could not be recovered
after a temporary network disconnect since the SMB2 File Server Started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 255

Filesystem Performance Profile
TotalFailedResilientHandle
ReopenCount

Optional The number of resilient opens on this share that could not be recovered
after a temporary network disconnect since the SMB2 File Server Started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

CurrentOpenFileCount Optional The number of file handles that are currently open in this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalResilientHandleReop
enCount

Optional The number of resilient opens on this share that have been recovered
after a temporary network disconnect since the SMB2 File Server started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalPersistentHandleReo
penCount

Optional The number of persistent opens on this share that have been recovered
after a temporary network disconnect since the SMB2 File Server started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalFailedPersistentHandl
eReopenCount

Optional The number of persistent opens on this share that could not be recovered
after a temporary network disconnect since the SMB2 File Server Started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TreeConnectCount Optional The number of tree connects to this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

WriteRequestsProcessedP
erSec

Optional Write requests processed/sec related to this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalMetadataRequestsRe
ceived

Optional The total number of metadata requests received related to this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

MetadataRequestsReceive
dPerSec

Optional The rate, in seconds, at which metadata requests are being sent to this
share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageTimePerDataRequ
est

Optional The average number of seconds that elapse between the time at which a
read or write request to this share is received and the time at which the
SMB2 File Server processes the request.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageBytesPerDataReq
uest

Optional The average number of bytes per read or write request.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageBytesPerReadReq
uest

Optional The average number of bytes per read request.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes
256

 Filesystem Performance Profile
11.6.9 CIM_FileSystemStatisticsCapabilities

An instance of the CIM_FileSystemStatisticsCapabilities class defines the specific support provided with
the filesystem statistics implementation. Note: There would be zero or one instance of this class in a
profile. There would be none if the profile did not support the Filesystem Performance Subprofile. There
would be exactly one instance if the profile did support the Filesystem Performance Subprofile.
CIM_FileSystemStatisticsCapabilities class is subclassed from CIM_Capabilities.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

AverageBytesPerWriteReq
uest

Optional The average number of bytes per write request.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageReadQueueLengt
h

Optional The average number of read requests that were queued for this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageWriteQueueLengt
h

Optional The average number of write requests that were queued for this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageDataQueueLength Optional The average number of read and write requests that were queued for this
share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

DataBytesPerSec Optional The rate, in seconds, at which data is being written to or read from this
share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

DataRequestsPerSec Optional The rate, in seconds, at which read or write requests are received for this
share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

CurrentDataQueueLength Optional The current number of read or write requests outstanding on this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

SampleInterval N Optional Not Specified in this version of the Profile.

StartStatisticTime N Optional Not Specified in this version of the Profile.

ResetSelectedStats() Optional Not Specified in this version of the Profile.

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 257

Filesystem Performance Profile

576

577
578
579
580

581

582

583

584

585

586
Table 155 describes class CIM_FileSystemStatisticsCapabilities.

11.6.10CIM_FileSystemStatisticsManifest (Client Defined)

The CIM_FileSystemStatisticsManifest class is a Concrete class that defines the
CIM_FileSystemStorageStatisticalData properties that should be returned on a GetStatisticsCollection
request.
CIM_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.
In order for a client defined instance of the CIM_FileSystemStatisticsManifest class to exist, all of the
manifest collection manipulation functions shall be identified in the "SynchronousMethodsSupported"
property of the CIM_FileSystemStatisticsCapabilities
(FileSystemStatisticsCapabilities.SynchronousMethodsSupported = "6") instance, AND a client must
have created at least ONE instance of CIM_FileSystemStatisticsManifestCollection.
Created By: Extrinsic: AddOrModifyManifest
Modified By: Extrinsic: AddOrModifyManifest
Deleted By: Extrinsic: RemoveManifests
Requirement: Clients can modify manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 155 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

ElementTypesSupported Mandatory ValueMap { "1", "102", "103", "104"},

Values {"Other", "Local Filesystem", "Exported File Share", "Exporting
Port"}.

SynchronousMethodsSupp
orted

Mandatory This property is mandatory, but the array may be empty.

ValueMap { "2", "3", "4", "5", "6", "7", "8"},

Values {"Exec Query", "Indications", "QueryCollection",
"GetStatisticsCollection", "Manifest Creation", "Manifest Modification",
"Manifest Removal" }.

AsynchronousMethodsSup
ported

Optional Not supported in current version of SMI-S.

ClockTickInterval Mandatory An internal clocking interval for all timers in the subsystem, measured in
microseconds (Unit of measure in the timers, measured in microseconds).

Time counters are monotonically increasing counters that contain "ticks".
Each tick represents one ClockTickInterval. If ClockTickInterval contained
a value of 32 then each time counter tick would represent 32
microseconds.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

CreateGoalSettings() Optional Not Specified in this version of the Profile.
258

 Filesystem Performance Profile

587

588
589
590

591

592
593
594
595
596

597

598

599

600
601

602
Table 156 describes class CIM_FileSystemStatisticsManifest (Client Defined).

Table 156 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Client defined string that identifies the manifest.

InstanceID Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstanceID opaquely and
uniquely identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of
SMI-S specifies the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File
Share", "Exporting Port"}.

OtherElementTypeDescription Mandatory A string describing the type of element when the
ElementType property of this class (or any of its
subclasses) is set to 1 (i.e., "Other"). This property
should be set to NULL when the ElementType
property is any value other than 1.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeTotalBytesTransferred Mandatory

IncludeReadIOs Mandatory

IncludeWriteIOs Mandatory

IncludeOtherIOs Mandatory

IncludeMetadataReadIOs Mandatory

IncludeMetadataWriteIOs Mandatory

IncludeTotalIOTimeCounter Mandatory

IncludeTotalIdleTimeCounter Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeBytesRead Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeBytesWritten Mandatory

IncludeMetadataBytesRead Mandatory

IncludeMetadataBytesWritten Mandatory

IncludePercentDurableOpens Mandatory

IncludePercentResilientOpens Mandatory

IncludePercentPersistentOpens Mandatory

IncludeAverageReadResponseTime Mandatory

IncludeAverageWriteResponseTime Mandatory

IncludeAverageRequestResponseTime Mandatory

IncludeBytesReadPerSec Mandatory
SMI-S 1.6.1 Revision 6 SNIA Technical Position 259

Filesystem Performance Profile
IncludeTotalBytesReceived Mandatory

IncludeBytesReceivedPerSec Mandatory

IncludeTotalBytesSent Mandatory

IncludeBytesSentPerSec Mandatory

IncludeBytesTranferredPerSec Mandatory

IncludeBytesWrittenPerSec Mandatory

IncludeFilesOpenedPerSec Mandatory

IncludeTotalOpenFileCount Mandatory

IncludeCurrentPendingRequests Mandatory

IncludeReadRequestsProcessedPerSec Mandatory

IncludeTotalRequestsReceived Mandatory

IncludeRequestsReceivedPerSec Mandatory

IncludeTotalDurableHandleReopenCount Mandatory

IncludeTotalFailedDurableHandleReopenC
ount

Mandatory

IncludeTotalFailedResilientHandleReopenC
ount

Mandatory

IncludeCurrentOpenFileCount Mandatory

IncludeTotalResilientHandleReopenCount Mandatory

IncludeTotalPersistentHandleReopenCount Mandatory

IncludeTotalFailedPersistentHandleReopen
Count

Mandatory

IncludeTreeConnectCount Mandatory

IncludeWriteRequestsProcessedPerSec Mandatory

IncludeTotalMetadataRequestsReceived Mandatory

IncludeMetadataRequestsReceivedPerSec Mandatory

IncludeAverageTimePerDataRequest Mandatory

IncludeAverageBytesPerDataRequest Mandatory

IncludeAverageBytesPerReadRequest Mandatory

IncludeAverageBytesPerWriteRequest Mandatory

IncludeAverageReadQueueLength Mandatory

IncludeAverageWriteQueueLength Mandatory

IncludeAverageDataQueueLength Mandatory

IncludeDataBytesPerSec Mandatory

IncludeDataRequestsPerSec Mandatory

IncludeCurrentDataQueueLength Mandatory

Table 156 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes
260

 Filesystem Performance Profile
11.6.11CIM_FileSystemStatisticsManifest (Provider Support)

The CIM_FileSystemStatisticsManifest class is a Concrete class that defines the
CIM_FileSystemStatisticalData properties that are supported by the Provider. These Manifests are
established by the Provider for the default manifest collection.
CIM_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.
At least one Provider supplied instance of the CIM_FileSystemStatisticsManifest class shall exist, if the
Filesystem Performance Subprofile is supported.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 157 describes class CIM_FileSystemStatisticsManifest (Provider Support).

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

IncludeStartStatisticTime N Optional Not Specified in this version of the Profile.

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Provider defined string that identifies the manifest in the context
of the Default Manifest Collection.

InstanceID Mandatory The instance Identification. Within the scope of the instantiating
Namespace, InstanceID opaquely and uniquely identifies an
instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S specifies
the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}.

OtherElementTypeDescription Mandatory A string describing the type of element when the ElementType
property of this class (or any of its subclasses) is set to 1 (i.e.,
"Other"). This property should be set to NULL when the
ElementType property is any value other than 1.

IncludeStatisticTime Mandatory

IncludeTotalIOs Mandatory

IncludeTotalBytesTransferred Mandatory

IncludeReadIOs Mandatory

IncludeWriteIOs Mandatory

IncludeOtherIOs Mandatory

IncludeMetadataReadIOs Mandatory

IncludeMetadataWriteIOs Mandatory

Table 156 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 261

Filesystem Performance Profile

603

604
605
606

607

608
609

610

611

612

613

614
IncludeTotalIOTimeCounter Mandatory

IncludeTotalIdleTimeCounter Mandatory

IncludeReadIOTimeCounter Mandatory

IncludeBytesRead Mandatory

IncludeWriteIOTimeCounter Mandatory

IncludeBytesWritten Mandatory

IncludeMetadataBytesRead Mandatory

IncludeMetadataBytesWritten Mandatory

IncludePercentDurableOpens Mandatory

IncludePercentResilientOpens Mandatory

IncludePercentPersistentOpens Mandatory

IncludeAverageReadResponseTi
me

Mandatory

IncludeAverageWriteResponseTi
me

Mandatory

IncludeAverageRequestRespons
eTime

Mandatory

IncludeBytesReadPerSec Mandatory

IncludeTotalBytesReceived Mandatory

IncludeBytesReceivedPerSec Mandatory

IncludeTotalBytesSent Mandatory

IncludeBytesSentPerSec Mandatory

IncludeBytesTranferredPerSec Mandatory

IncludeBytesWrittenPerSec Mandatory

IncludeFilesOpenedPerSec Mandatory

IncludeTotalOpenFileCount Mandatory

IncludeCurrentPendingRequests Mandatory

IncludeReadRequestsProcessed
PerSec

Mandatory

IncludeTotalRequestsReceived Mandatory

IncludeRequestsReceivedPerSec Mandatory

IncludeTotalDurableHandleReope
nCount

Mandatory

IncludeTotalFailedDurableHandle
ReopenCount

Mandatory

IncludeTotalFailedResilientHandle
ReopenCount

Mandatory

IncludeCurrentOpenFileCount Mandatory

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes
262

 Filesystem Performance Profile
11.6.12CIM_FileSystemStatisticsManifestCollection (Client Defined)

An instance of a client defined CIM_FileSystemStatisticsManifestCollection defines the set of Manifests
to be used in the retrieval of filesystem statistics by the GetStatisticsCollection method.
CIM_FileSystemStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.
In order for a client defined instance of the CIM_FileSystemStatisticsManifestCollection class to exist,
then all the manifest collection manipulation functions shall be identified in the
"SynchronousMethodsSupported" property of the CIM_FileSystemStatisticsCapabilities instance and a
client must have created a Manifest Collection..
Created By: Extrinsic: CreateManifestCollection

IncludeTotalResilientHandleReop
enCount

Mandatory

IncludeTotalPersistentHandleReo
penCount

Mandatory

IncludeTotalFailedPersistentHand
leReopenCount

Mandatory

IncludeTreeConnectCount Mandatory

IncludeWriteRequestsProcessed
PerSec

Mandatory

IncludeTotalMetadataRequestsRe
ceived

Mandatory

IncludeMetadataRequestsReceiv
edPerSec

Mandatory

IncludeAverageTimePerDataReq
uest

Mandatory

IncludeAverageBytesPerDataReq
uest

Mandatory

IncludeAverageBytesPerReadRe
quest

Mandatory

IncludeAverageBytesPerWriteRe
quest

Mandatory

IncludeAverageReadQueueLengt
h

Mandatory

IncludeAverageWriteQueueLengt
h

Mandatory

IncludeAverageDataQueueLength Mandatory

IncludeDataBytesPerSec Mandatory

IncludeDataRequestsPerSec Mandatory

IncludeCurrentDataQueueLength Mandatory

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

IncludeStartStatisticTime N Optional Not Specified in this version of the Profile.

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 263

Filesystem Performance Profile
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 158 describes class CIM_FileSystemStatisticsManifestCollection (Client Defined).

11.6.13CIM_FileSystemStatisticsManifestCollection (Provider Defined)

An instance of a default CIM_FileSystemStatisticsManifestCollection defines the set of Manifests that
define the properties supported for each ElementType supported for the implementation. It can also be
used by clients in retrieval of Filesystem statistics by the GetStatisticsCollection method.
CIM_FileSystemStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.
At least ONE CIM_FileSystemStatisticsManifestCollection shall exist if the Filesystem Performance
Subprofile is implemented. This would be the default manifest collection that defines the properties
supported by the implementation.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 159 describes class CIM_FileSystemStatisticsManifestCollection (Provider Defined).

Table 158 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Client
Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A client defined user-friendly name for the manifest collection. It is set
during creation of the Manifest Collection through the ElementName
parameter of the CreateManifestCollection method.

IsDefault Mandatory Denotes whether or not this manifest collection is a provider defined
default manifest collection. For the client defined manifest collections this
is set to "false".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

Table 159 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Provider
Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For the default manifest collection, this should be set to "DEFAULT".

IsDefault Mandatory Denotes whether or not this manifest collection is a provider defined
default manifest collection. For the default manifest collection this is set to
"true".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.
264

 Filesystem Performance Profile

615

616
617

618

619
620
621
622

623

624

625

626
627

628

629

630
631
632
CIM_FileSystemStatisticsService
The CIM_FileSystemStatisticsService class provides methods for statistics retrieval and Manifest
Collection manipulation.
The CIM_FileSystemStatisticsService class is subclassed from CIM_Service.
There shall be an instance of the CIM_FileSystemStatisticsService, if the Filesystem Performance
Subprofile is implemented. It is not necessary to support any methods of the service, but the service shall
be populated.
The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the CIM_FileSystemStatisticsCapabilities.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 160 describes class CIM_FileSystemStatisticsService.

Table 160 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

OperationalStatus N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

Started N Optional Not Specified in this version of the Profile.

PrimaryOwnerName N Optional Not Specified in this version of the Profile.

PrimaryOwnerContact N Optional Not Specified in this version of the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 265

Filesystem Performance Profile

633

634
635
636

637

638

639

640

641

642

643
644

645

646
647
648

649
650

651

652

653

654

655
11.6.14CIM_HostedCollection (Client Defined)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Filesystem Performance Subprofile, it is used to
associate a client-defined FileSystemStatisticsManifestCollections to the top level Computer System.
CIM_HostedCollection is subclassed from CIM_HostedDependency.
Created By: Static
Modified By: Static
Deleted By: Static

GetStatisticsCollection() Conditional Conditional requirement: Clients can get statistics collections using the
GetStatisticsCollection as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or
Clients can get statistics collections using the GetStatisticsCollection as
identified by
CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported.S
upport for this method is conditional on
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or
CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported
containing '5' (GetStatisticsCollection). This method retrieves all statistics
kept for the profile as directed by a manifest collection.

CreateManifestCollection() Conditional Conditional requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or
Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported.S
upport for this method is conditional on
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or
CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported
containing '6' (Manifest Creation). This method is used to create client
defined manifest collections.

AddOrModifyManifest() Conditional Conditional requirement: Clients can modify manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or
Clients can modify manifests as identified by
CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported.S
upport for this method is conditional on
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or
CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported
containing '7' (Manifest Modification). This method is used to add or
modify filesystem statistics manifests in a client defined manifest
collection.

RemoveManifests() Conditional Conditional requirement: Clients can remove manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or
Clients can remove manifests as identified by
CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported.S
upport for this method is conditional on
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or
CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported
containing '8' (Manifest Removal). This method is used to remove a
filesystem statistics manifest from a client defined manifest collection.

RequestStateChange() Optional Not Specified in this version of the Profile.

StopService() Optional Not Specified in this version of the Profile.

StartService() Optional Not Specified in this version of the Profile.

Table 160 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsService

Properties Flags Requirement Description & Notes
266

 Filesystem Performance Profile
Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported or Clients can create manifests as
identified by CIM_FileSystemStatisticsCapabilities.AsynchronousMethodsSupported.

Table 161 describes class CIM_HostedCollection (Client Defined).

11.6.15CIM_HostedCollection (Default)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Filesystem Performance Subprofile, it is used to
associate the default (provider-defined) FileSystemStatisticsManifestCollection to the top level Computer
System.
CIM_HostedCollection is subclassed from CIM_HostedDependency.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 162 describes class CIM_HostedCollection (Default).

CIM_HostedCollection (Provider Supplied)
CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Filesystem Performance Subprofile, it is used to
associate the StatisticsCollection to the top level Computer System.
CIM_HostedCollection is subclassed from CIM_HostedDependency.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 161 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory A client defined FileSystemStatisticsManifestCollection.

Table 162 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The provider defined FileSystemStatisticsManifestCollection.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 267

Filesystem Performance Profile

656

657
658
659
660

661

662

663

664

665
666
667

668

669

670
671
672
673
674

675

676

677

678
Table 163 describes class CIM_HostedCollection (Provider Supplied).

11.6.16CIM_HostedService

CIM_HostedService is an association between a Service (CIM_FileSystemStatisticsService) and the
System (ComputerSystem) on which the functionality resides. Services are weak with respect to their
hosting System. Heuristic: A Service is hosted on the System where the Filesystems or SoftwareFeatures
that implement the Service are located.
CIM_HostedService is subclassed from CIM_HostedDependency.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 164 describes class CIM_HostedService.

11.6.17CIM_MemberOfCollection (Member of client defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in a client-defined manifest
collection.
Created By: Extrinsic: AddOrModifyManifest
Modified By: Static
Deleted By: Extrinsic: RemoveManifests
Requirement: Clients can modify manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 165 describes class CIM_MemberOfCollection (Member of client defined collection).

Table 163 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The StatisticsCollection.

Table 164 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Service hosted on the System.

Table 165 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined
collection)

Properties Flags Requirement Description & Notes

Collection Mandatory A client defined manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.
268

 Filesystem Performance Profile

679

680

681

682
683
684
685

686

687

688

689

690

691

692

693
694
695
696

697

698

699

700

701
11.6.18CIM_MemberOfCollection (Member of predefined collection)

This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 166 describes class CIM_MemberOfCollection (Member of predefined collection).

11.6.19CIM_MemberOfCollection (Member of statistics collection)

This use of MemberOfCollection is to collect all FileSystemStorageStatisticalData instances (in the
StatisticsCollection). Each association is created as a side effect of the metered object getting created.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 167 describes class CIM_MemberOfCollection (Member of statistics collection).

11.6.20CIM_StatisticsCollection

The CIM_StatisticsCollection collects all filesystem statistics kept by the profile. There is one instance of
the CIM_StatisticsCollection class and all individual metered element statistics can be accessed by using
association traversal (using MemberOfCollection) from the StatisticsCollection.
CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 166 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of predefined col-
lection)

Properties Flags Requirement Description & Notes

Collection Mandatory The provider defined default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.

Table 167 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-
tion)

Properties Flags Requirement Description & Notes

Collection Mandatory The collection of all filesystem statistics data instances.

Member Mandatory The individual filesystem statistics data Instance that is part of the set.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 269

Filesystem Performance Profile

702

703

704
705

706

707

708

709
710

711

712

713

714

715

716

717

718

719

720
721
Table 168 describes class CIM_StatisticsCollection.

11.6.21SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

Deprecated. This is a trivial subclass of CIM_AssociatedFileSystemStatisticsManifestCollection. It is
provided for the convenience of clients.
Created By: Extrinsic: CreateManifestCollection
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

11.6.22SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

Deprecated. This is a trivial subclass of CIM_AssociatedFileSystemStatisticsManifestCollection. It is
provided for the convenience of clients.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

11.6.23SNIA_FileSystemStatisticalData

Deprecated. This is a trivial subclass of CIM_FileSystemStatisticalData. It is provided for the convenience
of clients.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

11.6.24SNIA_FileSystemStatisticsCapabilities

Deprecated. This is a trivial subclass of CIM_FileSystemStatisticsCapabilities. It is provided for the
convenience of clients.

Table 168 - SMI Referenced Properties/Methods for CIM_StatisticsCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SampleInterval Mandatory Minimum recommended polling/sampling interval for a system that
provides filesystem support (e.g., NAS Head or Self-Contained NAS). It is
set by the provider and cannot be modified.

TimeLastSampled Mandatory Time statistics table by object was last updated (Time Stamp in SMI 2.2
specification format).

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.
270

 Filesystem Performance Profile

722

723

724

725

726

727

728
729
730

731

732

733

734

735

736

737

738
739

740

741

742
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

11.6.25SNIA_FileSystemStatisticsManifest (Client Defined)

Deprecated. This is a trivial subclass of CIM_FileSystemStatisticsManifest. It is provided for the
convenience of clients.
Created By: Extrinsic: AddOrModifyManifest
Modified By: Extrinsic: AddOrModifyManifest
Deleted By: Extrinsic: RemoveManifests
Requirement: Clients can modify manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

11.6.26SNIA_FileSystemStatisticsManifest (Provider Support)

Deprecated. This is a trivial subclass of CIM_FileSystemStatisticsManifest. It is provided for the
convenience of clients.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

11.6.27SNIA_FileSystemStatisticsManifestCollection (Client Defined)

Deprecated. This is a trivial subclass of CIM_FileSystemStatisticsManifestCollection. It is provided for the
convenience of clients.
Created By: Extrinsic: CreateManifestCollection
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

11.6.28SNIA_FileSystemStatisticsManifestCollection (Provider Defined)

Deprecated. This is a trivial subclass of CIM_FileSystemStatisticsManifestCollection. It is provided for the
convenience of clients.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

11.6.29SNIA_FileSystemStatisticsService

Deprecated. This is a trivial subclass of CIM_FileSystemStatisticsService. It is provided for the
convenience of clients.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 271

Filesystem Performance Profile

743
744

745

746
747

748

749

750

751

752

753
754

755

756

757

758

759

760
761

762

763

764

765

766

767
768

769

770

771

772
773

774

775
776

777
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

EXPERIMENTAL
272

 Filesystem Performance Profile

778

779

780

781

782
783

784

785

786

787
788

789

790
791

792

793

794

795

796

797
798

799

800

801

802
SMI-S 1.6.1 Revision 6 SNIA Technical Position 273

Filesystem Performance Profile
274

 Filesystem Quotas Profile

1

2

3

4

5

6

7

8

9

10
11

12
13
14
15
16
17
18
19
20
21
22

23

24
25
EXPERIMENTAL

12 Filesystem Quotas Profile

12.1 Synopsis
Profile Name: FileSystem Quotas (Component Profile)

Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.18

Table 169 describes the related profiles for FileSystem Quotas.

• Central Class: LocalFileSystem

• Scoping Class: ComputerSystem

12.2 Description
The Filesystem Quotas Profile is intended to provide management of quotas on the use of filesystem
resources--raw space and inodes especially--by the common filesystem principals. User, group and tree
quotas are modeled. Trees means directories (rooted directory hierarchy structures) within filesystems.
Some systems allow quotas only on directories that have some special distinguishing feature, others
allow them on arbitrary directories.

Quota systems work by keeping statistics-in real time-on the space used by each monitored principal/
container pair e.g. a user and her home share. They then trigger events when filesystem writes cause the
space used by the principal to exceed some threshold. There are four common varieties of quota
thresholds:

1. Hard. Hitting a hard quota threshold causes subsequent writes by the principal to the affected container to
fail. In POSIX, the error returned to the client is ENOSPC (no space). An indication is also thrown.

2. Soft. A soft threshold causes the system to issue a warning. Systems variously issue warnings via CLI,
SNMP traps, pop-up windows at the user station, audit log entries, email and other proprietary methods. This
profile provides required indications for this purpose.

3. Soft, with grace period. This type of quota is really a refinement of soft quotas. It functions like a soft quota
until the grace period expires, at which point it begins behaving like a hard quota.

4. Monitoring. When a monitoring quota is in effect, there are no thresholds, and no warnings are issued. This
type of quota is useful because the underlying system keeps track of the relevant usage statistics in real time

Table 169 - Related Profiles for FileSystem Quotas

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.6.1 Mandatory

Indication SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional

Job Control SNIA 1.5.0 Optional
SMI-S 1.6.1 Revision 6 SNIA Technical Position 275

Filesystem Quotas Profile

26
27
28

29
30
31
32

33
34

35
36
37

38
39

40
41
42
43

44
45
46
47

48
49

50

51
52
53

54
55
56

57

58

59
60

61
62
63

64

65
66

67

68
69
for all quotas. A monitoring quota permits an administrator to simply issue a command to print a quota report
instead of having to do a complete filesystem scan to get the usage information of interest.

In general, it is not possible to have a quota system that meets the above semantics without some level of
access to the data path. More loosely coupled systems may need to relax the semantics of the hard limit,
for example, and may not actually trigger an event until a file is closed, for example. This profile allows
these semantic variations.

Some systems allow "default" quotas for users, groups and/or trees. A default user quota, by way of
example, is used for every user of the system who does not have a quota entry specific to them.

12.2.1 Tree Quotas

Tree quotas are quotas on directory trees with an identifiable root. Mounts and symlinks are not followed.
In other words, a directory which contains nothing but mount points and symbolic links may satisfy a very
small quota, even though the amount of data addressable by entries in the container is large.

Hard links are another matter. The policy is system-dependent, but a common behavior is that if a file or
directory is hard-linked in two separate trees with separate tree quotas, the space used is charged
against both quotas.

Pure tree quotas apply no matter which principal does the writing. There are some caveats however.

• Root on some systems is not constrained by quotas.
• An entity with sufficient privilege may not be constrained by quotas on some systems (e.g. a Windows user

with BackupOperator privilege).
Some systems may support tree quotas only on directories with certain special characteristics.
Directories may be constrained to being top-level, for example. This profile does not specify a means for
determining whether a given directory may have a tree quota set on it.

12.2.2 User Quotas

User quotas are limits on how much space a principal with a given User ID can use. They may be either
global or restricted by namespace tree, as well as by filesystem.

12.2.3 Group Quotas

Group quotas set limits on how much all the members of a group with a given Group ID can use in the
aggregate. They are not, therefore, quotas which apply to each member of a group. This follows Unix
usage. Group quotas only work on systems which have the concept of a primary group id (PGID), as the
system needs to know which group to charge writes against. As NTFS does not have the concept of a
primary group, it does not do group quotas. (Note: There is a primary group field that can be discovered
on a file in NTFS. This is for POSIX support, however, and does not always contain anything meaningful)

Group quotas may be global or applicable to a given namespace tree and/or filesystem.

12.2.4 Container Boundaries

Quotas may be system-wide, or scoped to an individual filesystem. Not all systems support both of these,
however, so provision is made for both. The SupportedPrincipalTypes array in the FSQuotaCapabilities
class distinguishes between User, Group, Tree, User-Tree and Group-Tree quotas as follows:

• User Quotas and Group quotas are described in 12.2.2 and 12.2.3.
• A Tree Quota is a limit on the storage (or other limit such as number of inodes) used by a directory tree. This

quota is not specific to a user or a group but applies to all users and groups creating files and directories
within the tree.

• A User-Tree quota is a limit on the storage used by a user within a directory tree and is applied in parallel with
the Tree Quota (both must be satisfied).
276

 Filesystem Quotas Profile

70
71
72
73

74

75

76
77
78

79

80
81
82

83
84

85
86

87
88

89

90
91

92

93

94
95

96

97
98
99

100

101

102
103
104
105

106

107

108
109
110
111
112
• A Group-Tree quota is a limit on the aggregate storage used by a group of users within a directory tree and is
applied in parallel with the Tree Quota (both must be satisfied).

If a Tree is configured with a Tree Quota as well as User-Tree and Group-Tree quotas, they must all be
satisfied.

12.2.5 Quota types

Quotas are usually limits on disk space. Some systems, however, also support limits on the number of
files and/or directories.

12.2.6 Class design considerations

12.2.6.1 New Classes
This profile uses several new classes—FSDomainIdentity, FSQuotaCapabilities, FSQuotaReportRecord,
FSQuotaConfigEntry, FSQuotaManagementService, and FSQuotaIndication

12.2.6.1.1 FSDomainIdentity
Due to the in-band nature of quota tracking, the identifier of the principal being managed needs to be
small and easily optimized. Traditional systems use Unix UIDs and GIDs, which are 32-bit quantities, or
SIDs which are short strings. To tie these into CIM, this new class is specified. Each instance contains a
string with the UID, GID or SID, respectively, in it, and enums for the type of domain and principal.

12.2.6.1.2 FSQuotaCapabilities
This Capabilities subclass lists the properties in a FSQuotaConfigEntry that are supported by the
underlying system. The client shall not attempt to set any properties which are not listed as supported in
the instance of this class associated to the service. It shall instead always populate unsupported
properties with null.

There shall exist exactly one instance of this class per FSQuotaManagementService instance.

12.2.6.1.3 FSQuotaReportRecord
When running a quota report, the underlying system generally issues a text file, each line or group of
lines representing the status of a filesystem principal with respect to one quota configuration entry. There
may be hundreds of thousands of these records, and they are not keyed, meaning that there is no way to
go back and fetch any given one of them. Therefore FSQuotaReportRecord is derived from a new
proposed abstract root class called ReportRecord, which carries the Indication qualifier. Note that this
qualifier does not mean that these classes are subclasses of CIM_Indication. It's used because it's the
only way, currently, to construct a class in CIM which does not require a key.

12.2.6.1.4 FSQuotaConfigEntry
An FSQuotaConfigEntry instance represents a single quota entry supported by the system. For example,
one FSFQuotaConfigEntry instance may specify that on filesystem “foo,” in directory “/bar,” the user “joe”
is restricted to 1GB of space, and should receive a warning at 0.97GB.

A quota entry has been defined as a complex of several classes and associations. If implementation
experience turns up performance considerations related to this, this design may need to be revisited.

Many systems do not support any method of identifying individual FSQuotaConfigEntry instances, as they
simply represent lines in a text file, and the underlying system may not care about duplicates or conflicts.
However, FSQuotaConfigEntry instances need to be modified; this corresponds to editing the
corresponding line in the file. Therefore, if the underlying system does not expose a key, one may be
created by composing the PrincipalID property, a unique reference to the FileSystem or ComputerSystem
to which the entry applies (from the association FSQuotaAppliesToElement), the TreeName property (if a
tree quota), the measured quantity type (the ResourceType property), the quota type (QuotaType
property), and its default status (the Default property). An implementation may expose the algorithm used
SMI-S 1.6.1 Revision 6 SNIA Technical Position 277

Filesystem Quotas Profile

113
114

115

116
117
118

119
120

121
122
123
124
125
126
127
128
129
130
131
132

133
134
135

136
137
138
139

140

141
142
143

144

145
146

147

148
149
150

151
152
153
to compose the key so that the client may decompose it, but this is not required by this version of the
profile. Upon creation of a new quota instance, clients shall verify that no quota with the same key already
exists. Upon modification of an instance, clients shall modify all instances whose keys match that
instance key.

• PrincipalID: This indicates a user by the user’s UID or SID, or a group by the group’s GID or SID, or it can be
the empty string. It is interpreted in the context of a directory service specified for the file server
ComputerSystem that is associated to the FileSystem by a Dependency association.

• InstanceID. This property is a unique identifier for this FSQuotaConfigEntry. This property shall be unique in
the presence of multiple instances of ComputerSystem and FileSystem, and multiple properties of
QuotaType, Default, ResourceType and PrincipalID. It may be constructible by the client, but this profile does
not specify this format.

12.2.6.1.5 FSQuotaManagementService
The FSQuotaManagementService provides the interface to the underlying system for most operations
which are overtly related to quotas. There shall be at most one instance of a
FSQuotaManagementService for each underlying ComputerSystem.

12.2.6.1.6 FSQuotaIndication
The FSQuotaIndication class provides information about threshold crossing events, meaning that a quota
has just been exceeded.

12.2.7 Instance Diagram

Figure 16: "Filesystem Quotas Instance Diagram" shows the Filesystem Quotas instance diagram.

Figure 16 - Filesystem Quotas Instance Diagram
278

 Filesystem Quotas Profile

154
155

156

157

158

159

160

161

162

163

164
165
166

167

168

169

170

171
12.3 Health and Fault Management Considerations
None currently applicable.

12.4 Supported Profiles, Subprofiles, and Packages
See section 12.1 for this information.

12.5 Methods of the Profile
All profile methods are contained in the FSQuotaManagementService.

12.5.1 FindQuotaEntries

uint32 FindQuotaEntries(

IN string IdentityId,

IN ManagedElement REF Element,

IN string Tree,

IN uint16 QuotaType,

OUT EmbeddedInstance("SNIA_FSQuotaConfigEntry")string QuotaEntries[],

Given a combination of inputs, FindQuotaEntries() searches the quota entry database on the managed
device for quota entries that match, and returns a list. On systems that support it, long-running queries
may return a job.

Possible quota entries are:

1) IdentityId

IdentityId is an optional string that can specify the UID, GID, or SID or can specify a pattern. The
following rules apply to IdentityId:

a) If IdentityId is NULL or the empty string, no identity-based quotas should be returned.

b) If IdentityID is NULL, default quotas will be returned.

c) If IdentityId is “*”, this matches all identity-based quotas entries.

d) IdentityId may also be a specific ID, or the prefix of an ID followed by "*". Standard prefix string
matching is used to determine which entries match in this case.

2) Element

Element is an optional reference to a ManagedElement (declared as CIM_ManagedElement REF
Element). The following rules apply to Element:

a) When a ComputerSystem is passed for Element, the returned entries may be default or other entries for
both the ComputerSystem and its contained FileSystems.

b) When a FileSystem is passed in for Element, only entries pertaining to that FileSystem shall be
returned. This may include default entries applicable to that FileSystem.

c) If NULL is passed in for Element, the FSQuotaManagementService assumes that the Computer-
System it is hosted on is the Element.

Element is an optional reference to a ComputerSystem or a LocalFileSystem, but is declared as a
reference to a ManagedElement, which is the only common parent class.

3) Tree

Tree is an optional string that identifies a tree (or trees) contained within a filesystem. The following rules
apply to Tree:
SMI-S 1.6.1 Revision 6 SNIA Technical Position 279

Filesystem Quotas Profile

172

173
174
175

176

177

178
179

180

181

182

183
184

185

186
187

188
189

190
191

192
193

194
195

196

197
198

199

200
201

202
203

204
205

206

207
208

209
a) A null or empty string indicates that no tree quota entries should be returned.

b) A “*” tree parameter matches all tree quota entries defined within the filesystem(s) indicated by
Element, if any.

c) If Tree contains a path, it matches that path only. On some systems, this may result in multiple
matches, one for the same-named tree in each of several filesystems.

d) Prefix string matching may be used for the Tree parameter. E.g. the path "/x/y/*" will match tree
quotas on both "/x/y/m" and "/x/y/p".

4) QuotaType

QuotaType is an enumerated optional parameter that describes what type of quota entries should be
returned. The following rules apply to QuotaType:

a) NULL or Unknown matches any entry (i.e., it is a wildcard).

b) If Tree is specified, then entries which are pure tree quotas (not user-tree or group-tree) match.

c) If User-Tree or Group-Tree is specified, then only user-tree or group-tree quotas match.

12.5.2 DeleteQuotaEntry
uint32 DeleteQuotaEntry(IN string EntryID);

This routine deletes a given quota entry from the managed device’s quota entry database. Recall that the
ManagedElement’s name is specified as part of a QuotaEntry’s InstanceID, above. A CIMOM managing
multiple devices may use that to find which device to address when deleting the actual entry.

12.5.3 ModifyQuotaEntry
uint32 ModifyQuotaEntry(

IN string EntryId,

IN EmbeddedInstance("SNIA_FSQuotaConfigEntry") string QuotaEntry,

OUT CIM_Job REF Job;

);

Given the InstanceID of an existing quota entry, ModifyQuotaEntry() replaces it with a new entry
specified as an EmbeddedInstance.

12.5.4 AddQuotaEntry
uint32 AddQuotaEntry(

IN EmbeddedInstance("SNIA_FSQuotaConfigEntry") string QuotaEntry,

OUT CIM_Job REF Job;

);

This routine adds a new quota entry to the quota entry database on the appropriate managed element.

The ConflictingEntriesUsage property in FSQuotaCapabilities (see 12 "Filesystem Quotas Profile") will
govern what happens if an entry already exists with the same combination of PrincipalID,
ManagedElement, TreeName, ResourceType, QuotaType, and Default.

12.5.5 GetQuotaReport
uint32 GetQuotaReport(

IN CIM_ManagedElement REF Element,
280

 Filesystem Quotas Profile

210

211

212

213

214
215
216

217

218

219

220

221

222

223
224

225

226

227

228

229

230

231
232
233

234

235

236

237

238

239

240

241

242

243

244

245
246
247

248
249
250
IN string Tree,

IN string User,

IN EmbeddedInstance("SNIA_FSDomainIdentity") string Group,

IN, OUT string Cursor,

IN, OUT uint64 NQuotas,

OUT CIM_Job REF Job,

OUT EmbeddedInstance("SNIA_FSQuotaReportRecord") string ReportRecs[];

);

This routine gets a quota report from a managed element. As there may be millions of records in this
report, a chunking mechanism is provided so that the client does not become overwhelmed by the
quantity of data furnished by the server.

The initial call to GetQuotaReport shall pass in NULL as a Cursor. Subsequent calls shall pass back the
cursor exactly as received from the server, without modification, as an indication of where to continue the
report from.

Clients which do not wish to use the chunking mechanism may pass a number such as 263 - 1 in NQuotas.

On many systems, the initial phase of preparing a quota report may take some time. A job is returned in
this case.

12.5.6 EnableQuotas
uint32 EnableQuotas(

IN Boolean OnOff,

IN CIM_ManagedElement element,

OUT CIM_Job REF Job

);

This routine turns quota management on or off on a given managed element. This routine shall always be
supported when the element is a CIM_ComputerSystem. On systems that support it, the
ManagedElement may alternatively be a filesystem. If an attempt is made to change the state on an
unsupported ManagedElement, the routine shall return an appropriate error (“Operation unsupported for
individual MEs of this type”).

12.5.7 InitializeQuotas
uint32 InitializeQuotas(

 IN CIM_ComputerSystem REF Server,

 OUT CIM_Job REF Job);

Some systems require an explicit initialization step before quotas may be used. If this step takes some
time, a job shall be returned. Systems which do not require this step shall return “Success”.

12.6 Client Considerations and sample code
Because quota management capabilities vary so widely from device to device, clients must be prepared
to receive "unsupported" errors. These can be kept to a minimum by inspecting the QuotaCapabilities of
the managed device. See the QuotaGetCapabilities routine in 12.6.1.

There are five fundamental operations on quotas:

1. Initialize the quota management system
2. Turn quota tracking on or off
3. Add or modify a quota table entry
4. Read the quota table
SMI-S 1.6.1 Revision 6 SNIA Technical Position 281

Filesystem Quotas Profile

251

252
253

254

255

256

257

258

259

260
261
262
263
264

265

266

267

268

269
270

271

272
273

274
275
276

277

278

279

280

281

282

283
284

285

286

287
5. Get a report on quota usage for one or all entries in the quota table
The QuotaManagementService class contains extrinsics for all of these things, so each task reduces to
getting the service instance and invoking the desired method.

The following example code is advisory.

EXPERIMENTAL

12.6.1 Common subroutines

In the Filesystem Quotas sample routines, the following subroutines are used (and declared inline here):

sub CIM_QuotaManagementService QuotaGetQMService(

IN REF CIM_System system);

{

services = Associators(system,

"CIM_HostedService",

"CIM_QuotaManagementService",

"Antecedent",

"Dependent",

false, false, NULL);

return services[0];

}

sub CIM_QuotaCapabilities QuotaGetCapabilities(

IN REF CIM_System system)

{

service = QuotaGetQMService(system);

caps = Associators(service,

"CIM_ElementCapabilities",

"CIM_QuotaCapabilities",

"CIM_ManagedElement",

"ManagedElement",

"Capabilities",

false, false, NULL);

return caps[0];

}

sub boolean QuotaSupportsPrincipalType(

IN REF CIM_System system,

IN uint16 type)

{

capabilities = QuotaGetCapabilities(system);

for(i = 0; capabilities.SupportedPrincipalTypes[i] != NULL; ++) {
282

 Filesystem Quotas Profile

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323
if (capabilities.SupportedPrincipalTypes[i] == type) {

return TRUE;

}

}

return FALSE;

}

All of the following routines may return errors indicating that the supplied managed element is not
supported. In most cases this will be because the operation (e.g. initializing quotas) is a system-wide
operation, and cannot be done on a per-filesystem basis.

EXPERIMENTAL

EXPERIMENTAL

12.6.2 Initialize quotas
sub uint_16 InitializeQuotas(

IN REF CIM_System system)

{

qms = QuotaGetQMService(system);

result = qms->InitializeQuotas(system, job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

}

EXPERIMENTAL

EXPERIMENTAL

12.6.3 Enable or disable quota tracking
//

// enable or disable quotas

//

// See the mof for the EnableQuotas extrinsic for possible

// return values

//

sub uint16 EnableQuotas(IN REF CIM_System system,

 IN REF CIM_ManagedElement me,

 IN boolean onoff)

{

qms = QuotaGetQMService(system);
SMI-S 1.6.1 Revision 6 SNIA Technical Position 283

Filesystem Quotas Profile

324
325
326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356
result = qms->EnableQuotas(onoff, me, job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

}

EXPERIMENTAL

EXPERIMENTAL

12.6.4 Add a quota entry
sub uint16 AddQuotaEntry(IN REF CIM_System system,

IN REF CIM_ManagedElement me,

IN String tree,

IN REF CIM_DomainIdentity principal,

IN uint64 hardlimit,

IN uint64 softlimit,

IN uint64 graceperiod,

IN boolean active,

IN string restype,

IN uint16 quotatype,

IN REF logicalfile,

IN REF me,

IN boolean default)

{

service = QuotaGetQMService(system);

entry = CreateInstance(“SNIA_FSQuotaConfigEntry”);

entry->HardLimit = hardlimit;

entry->SoftLimit = softlimit;

entry->SoftLimitGracePeriod = graceperiod;

entry->Active = active;

switch (restype) {

case “Bytes”: entry->ResourceType = 2;

case “Files”: entry->ResourceType = 3;

case “Directories”: entry->ResourceType = 4;

case “Files+Directories”: entry->ResourceType = 5;

case “Inodes”: entry->ResourceType = 6;

default: entry->ResourceType = 0;

 }

switch (quotatype) {

case “User”: entry->QuotaType = 2;

case “Group”: entry->QuotaType = 3;

case “Tree”: entry->QuotaType = 4;

default: entry->QuotaType = 0;
284

 Filesystem Quotas Profile

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398
}

if (principal != NULL) {

entry->PrincipalID = principal->PrincipalID;

else

entry->PrincipalID = NULL;

if (logicalfile != NULL) {

entry->TreeName = logicalfile->Name;

else

entry->TreeName = NULL;

entry->ManagedElement = me;

entry->Default = default;

entry->InstanceID = NULL;

result = service->AddQuotaEntry(entry, job);

//

// analyse error, if there is one: the above code

// cannot return ‘1’ or ‘3’, so only ‘2’ is left.

// And that means there’s already an identical

// entry, so declare victory and move on.

//

return result; // could return 0, if you prefer

}

EXPERIMENTAL

EXPERIMENTAL

12.6.5 Delete a quota entry
//

// See the mof for the DeleteQuotaEntry extrinsic for possible

// return values

//

sub uint16 DeleteQuotaEntry(IN REF CIM_System system,

 IN string entryid,

 OUT REF CIM_Job job)

{

service = QuotaGetQMService(system);

result = service->DeleteQuotaEntry(entryid);

return result;

}

EXPERIMENTAL
SMI-S 1.6.1 Revision 6 SNIA Technical Position 285

Filesystem Quotas Profile

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431
EXPERIMENTAL

12.6.6 Modify a quota entry
//

// There are many ways to modify a quota entry. Here are

// a couple examples

//

sub uint16 ModifyQuotaHardLimit(IN REF CIM_System system,

IN string entryid,

IN uint64 newlimit)

{

service = QuotaGetQMService(system);

entry = GetInstance(entryid);

entry->HardLimit = newlimit;

result = service->ModifyQuotaEntry(entryid, entry, job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return result;

sub uint16 SpecificUserToDefault(IN REF CIM_System system,

IN string uid)

{

//

// change Alice’s quota to be the default for

// all users

//

service = QuotaGetQMService(system);

//

// Need to search through all the quota entry instances

// for the given uid.

//

qes[] = EnumerateInstances(“SNIA_FSQuotaConfigEntry”,

true, false, false, false, “PrincipalID”);

foreach qe (qes[]) {

if (qe->PrincipalID == uid) {

qe->PrincipalID = NULL);

qe->Default = true;

return 0;

}

}

return 1; // not found
286

 Filesystem Quotas Profile

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471
}

EXPERIMENTAL

EXPERIMENTAL

12.6.7 Read the quota entries
//

// Warning: on some systems, this may return 10’s of

// thousands of entries

//

sub FSQuotaConfigEntry[] ReadQuotaEntries(IN REF CIM_System system)

{

service = QuotaGetQMService(system);

service->FindQuotaEntries(NULL, system, NULL, NULL, NULL,

qes[], job);

//

// See the Job Control profile for information on

// handling the job if one is returned.

//

return qes[];

}

EXPERIMENTAL

EXPERIMENTAL

12.6.8 Get a report on quota usage
sub FSQuotaReportRecord[] GetQuotaReport(IN REF CIM_System system)

{

cursor = NULL;

service = QuotaGetQMService(system);

nrecs = 1000;

r = service->GetQuotaReport(system, NULL, NULL, NULL,

cursor, nrecs, job, recs[]);

<manage job>;

<do something with recs>;

while (r != “No more data”) {

r = service->GetQuotaReport(system, NULL, NULL, NULL,

cursor, nrecs, job, recs[]);

<manage job>;

<do something with recs>;

}

}

}

SMI-S 1.6.1 Revision 6 SNIA Technical Position 287

Filesystem Quotas Profile

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503
EXPERIMENTAL

12.7 CIM Elements
Table 170 describes the CIM elements for FileSystem Quotas.

12.7.1 SNIA_FSDomainIdentity

Created By: CreateInstance_or_Static_or_External
Deleted By: Static
Requirement: Mandatory

Table 170 - CIM Elements for FileSystem Quotas

Element Name Requirement Description

12.7.1 SNIA_FSDomainIdentity Mandatory A small class containing the unique ID of a user or group
in a Unix or Windows domain.

12.7.2 SNIA_FSQuotaAppliesToElement Mandatory An association between a quota config entry and a
managed element.

12.7.3 SNIA_FSQuotaAppliesToPrincipal Mandatory An association between a quota config entry and a
filesystem principal entity.

12.7.4 SNIA_FSQuotaAppliesToTree Mandatory An association between a quota config entry and a
directory.

12.7.5 SNIA_FSQuotaCapabilities Mandatory The supported targets, quota types, resource types and
behaviors of the FSQuotaManagementService associated
to this class instance.

12.7.6 SNIA_FSQuotaConfigEntry Mandatory A single quota entry in the configuration database.

12.7.7 SNIA_FSQuotaIndication Optional An indication specially referring to quota events. Note that
the threshold and current value are passed in the parent
class, in ThresholdValue and ObservedValue.

12.7.8 SNIA_FSQuotaManagementService Mandatory Quota Management Service class.

12.7.9 SNIA_FSQuotaReportRecord Mandatory A class representing a single line in a quota report
generated by a call to the QuotaReport() extrinsic of the
FSQuotaManagementService.

12.7.10 SNIA_ReportRecord Mandatory An abstract keyless class proposed as the root of a tree of
report record classes.

SELECT * FROM SNIA_FSQuotaIndication WHERE
WhichLimit = 2

Mandatory Hard quota threshold crossed.

SELECT * FROM SNIA_FSQuotaIndication WHERE
WhichLimit = 3

Mandatory Soft quota threshold crossed.
288

 Filesystem Quotas Profile

504

505

506

507

508

509

510
Table 171 describes class SNIA_FSDomainIdentity.

12.7.2 SNIA_FSQuotaAppliesToElement

Created By: CreateInstance
Modified By: Extrinsic_or_External
Deleted By: DeleteInstance
Requirement: Mandatory

Table 172 describes class SNIA_FSQuotaAppliesToElement.

12.7.3 SNIA_FSQuotaAppliesToPrincipal

Created By: CreateInstance
Modified By: Extrinsic_or_External
Deleted By: DeleteInstance
Requirement: Mandatory

Table 173 describes class SNIA_FSQuotaAppliesToPrincipal.

12.7.4 SNIA_FSQuotaAppliesToTree

Created By: CreateInstance
Modified By: Extrinsic_or_External
Deleted By: DeleteInstance

Table 171 - SMI Referenced Properties/Methods for SNIA_FSDomainIdentity

Properties Flags Requirement Description & Notes

PrincipalID Mandatory The unique ID of a principal. This may be a UID, GID or a SID.

DomainType Mandatory The type of domain the Principal belongs to. Possible values are
"Unknown", "Other", "Unix", and "Active Directory".

PrincipalType Mandatory The type of Principal represented by this identity instance. Possible values
are "Unknown", "Other", "User" and "Group".

Table 172 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElement

Properties Flags Requirement Description & Notes

Antecedent Mandatory The managed element.

Dependent Mandatory The quota config entry.

Table 173 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal

Properties Flags Requirement Description & Notes

Antecedent Mandatory The filesystem principal.

Dependent Mandatory The quota config entry.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 289

Filesystem Quotas Profile

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528
Requirement: Mandatory

Table 174 describes class SNIA_FSQuotaAppliesToTree.

12.7.5 SNIA_FSQuotaCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 175 describes class SNIA_FSQuotaCapabilities.

12.7.6 SNIA_FSQuotaConfigEntry

Table 174 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToTree

Properties Flags Requirement Description & Notes

Antecedent Mandatory The filesystem directory tree.

Dependent Mandatory The quota config entry.

Table 175 - SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the capabilities instance.

ElementName Mandatory A user-friendly name for the instance in the format
SystemName:ManagedElementName:Capabilities.

SupportedTargetTypes Mandatory The target types supported by the Service. Possible values are
"ComputerSystem" and "FileSystem".

SupportedPrincipalTypes Mandatory An array of the types of Principal supported by the Service. Possible
values are "User", "Group", "User-tree", "Group-tree" and "Tree".

ConflictingEntriesUsage Mandatory The behavior of the system when it encounters quota entries with
duplicate keys.

SupportedResourceTypes Mandatory An array of resource types that may have quotas placed on them by this
Service. Possible values are"Unknown", "Other", "Bytes", "Files",
"Directories", "Files+Directories", "Inodes" and "Blocks".

DefaultSupported Mandatory An array that indicates which resource types may have default quotas set
upon them by this Service. Possible values are the same as for
SupportedResourceTypes.

IsActiveSettingPerEntrySu
pported

Mandatory Indicates whether quotas may be made active or inactive per entry.

IsMonitoredSettingPerEntr
ySupported

Mandatory Indicates whether quota monitoring may be turned on or off per entry.

IsGracePeriodSupported Mandatory Indicates whether a grace period may be set on a quota. If it can, then
crossing over a soft threshold for more then the period of time specified in
the grace period effectively converts the soft threshold to a hard limit,
cutting off further allocation of the resource.
290

 Filesystem Quotas Profile

529

530

531

532

533

534

535

536

537

538

539
Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 176 describes class SNIA_FSQuotaConfigEntry.

12.7.7 SNIA_FSQuotaIndication

Created By: External
Deleted By: Static
Requirement: Optional

Table 177 describes class SNIA_FSQuotaIndication.

Table 176 - SMI Referenced Properties/Methods for SNIA_FSQuotaConfigEntry

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique ID for the entry.

HardLimit Mandatory The hard limit for this quota.

SoftLimit Mandatory The soft limit for this quota.

SoftLimitGracePeriod Optional Length of the grace period, if any exists.

Active Optional Whether or not this quota is to be actively monitored. If NULL, the system
does not support activation of individual quotas.

Monitor Mandatory Whether or not this is a monitor-only quota. If this is TRUE, no
enforcement of any kind is done.

ResourceType Mandatory The type of resource being managed.

QuotaType Mandatory The type of quota to create (user, group, etc.).

TreeName Mandatory Path of the tree over which this quota is applicable, if any.

PrincipalID Mandatory The user or group being constrained by this quota, if any.

FileSystem Mandatory A The name of the FileSystem, if any, over which this quota is monitored.

Default Mandatory Whether or not this is a default quota.

Table 177 - SMI Referenced Properties/Methods for SNIA_FSQuotaIndication

Properties Flags Requirement Description & Notes

IdentityID Mandatory The InstanceID of the FSDomainIdentity involved in causing the event. If
there is none, NULL shall be passed in this property.

EntryID Mandatory The InstanceID of the FSQuotaConfigEntry involved in causing the event..

Path Mandatory The complete path of the tree involved in causing the event. If there is
none, NULL shall be passed in this property.

WhichLimit Mandatory Either "hard" or "soft".

ResourceType Mandatory "Bytes", "Files", "Directories","Files+Directories" or "Inodes".

QuotaType Mandatory Either "user", "group" or "tree".
SMI-S 1.6.1 Revision 6 SNIA Technical Position 291

Filesystem Quotas Profile

540

541

542

543

544

545
12.7.8 SNIA_FSQuotaManagementService

Created By: Static
Deleted By: Static
Requirement: Mandatory

Table 178 describes class SNIA_FSQuotaManagementService.

12.7.9 SNIA_FSQuotaReportRecord

Created By: Extrinsic
Deleted By: Static
Requirement: Mandatory

Limit Mandatory The limit set by the quota entry.

AmountUsed Optional Amount of resource actually used at the time the indication was
generated.

FileSystem Mandatory The Name of the FileSystem in which the event occurred.

Table 178 - SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

FindQuotaEntries() Mandatory Retrieve one or more quota entries based on a set of input criteria.

DeleteQuotaEntry() Mandatory Delete a specified quota entry.

ModifyQuotaEntry() Mandatory Modify a specified quota entry.

AddQuotaEntry() Mandatory Add a new quota entry.

GetQuotaReport() Mandatory Obtain a report on usage against the quota entries on a system.

EnableQuotas() Mandatory Turn quota monitoring on or off.

InitializeQuotas() Mandatory Initialize the quota reporting system.

Table 177 - SMI Referenced Properties/Methods for SNIA_FSQuotaIndication

Properties Flags Requirement Description & Notes
292

 Filesystem Quotas Profile

546

547

548

549

550

551

552

553

554

555
Table 179 describes class SNIA_FSQuotaReportRecord.

12.7.10SNIA_ReportRecord

Created By: Static
Deleted By: Static
Requirement: Mandatory

EXPERIMENTAL

Table 179 - SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord

Properties Flags Requirement Description & Notes

HardLimit Optional The hard threshold associated with this quota report record, if any.

SoftLimit Optional The soft threshold associated with this quota report record, if any.

SoftLimitGracePeriod Optional The grace period associated with the soft limit associated with this report
record, if any.

Active Optional Whether the quota associated with this report record is being actively
enforced. If not, this indicates the quota is being used for tracking
purposes only.

Monitored Optional Whether or not thresholds on this quota are being monitored. If a system
reports quotas that aren't being monitored, this value may be false.

ResourceType Mandatory The type of resource whose use is counted in this quota report record.

QuotaType Mandatory The type of Principal to which this quota applies. Possible values are
"Unknown", "Other", "User", "Group" and "Tree".

AmountUsed Mandatory The amount of resource used by the combination of Principal, Resource
type, Tree, and ManagedElement specified in the quota configuration
entry that generated this quota report record (and reported in other fields
in the record).

TreeName Optional The URI of the filesystem tree upon which the quota was set, if any.

PrincipalID Optional The FSDomainIdentity for the Principal associated with this quota report
record, if any.

FileSystem Optional The name of the filesystem over which the quota entry that generated the
report record was placed, if any.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 293

Filesystem Quotas Profile

556

557

558

559
294

1

2

3

4

5

6

7

8

STABLE

13 NAS Head Profile

13.1 Description

13.1.1 Synopsis

Profile Name: NAS Head (Autonomous Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.28

Table 180 describes the related profiles for NAS Head.

Table 180 - Related Profiles for NAS Head

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.6.1 Mandatory

File Storage SNIA 1.4.0 Mandatory

File Export SNIA 1.6.1 Mandatory

NAS Network Port SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional

Cascading SNIA 1.3.0 Optional

Access Points SNIA 1.3.0 Optional

Multiple Computer System SNIA 1.2.0 Optional

Software SNIA 1.4.0 Optional

Location SNIA 1.4.0 Optional

Extent Composition SNIA 1.6.0 Optional

Filesystem Manipulation SNIA 1.6.1 Optional

File Export Manipulation SNIA 1.6.1 Optional

File Server Manipulation SNIA 1.6.1 Optional

Filesystem Performance SNIA 1.6.1 Optional

FileSystem Quotas SNIA 1.5.0 Optional

Filesystem Copy Services SNIA 1.4.0 Optional

Job Control SNIA 1.5.0 Optional

SPI Initiator Ports SNIA 1.4.0 Optional

FC Initiator Ports SNIA 1.6.0 Optional

Device Credentials SNIA 1.3.0 Optional

Operational Power SNIA 1.5.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version 1.0.0

NAS Head Profile

9

10

11

12
13
14
15
16

17
18
19

20
21

22
23
Central Class: ComputerSystem

Scoping Class: ComputerSystem

13.1.2 Overview

The NAS Head Profile exports File elements (contained in a FileSystem) as FileShares. The storage for
the FileSystem is obtained from external SAN storage, for example, a Storage Array that exports Storage
Volumes as LUNs. The storage array may also provide storage to other hosts or devices (or other NAS
Heads), and the storage on the array might be visible to other external management tools, and may be
actively managed independently.

This profile models the necessary filesystem and NAS concepts and defines how the connections to the
underlying storage is managed. The details of how a Storage Array exports storage to the NAS Head is
not covered in this profile but is covered by the Array Profile.

The NAS Head Profile reuses a significant portion of 22 Storage Virtualizer Profile in Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6.

The NAS Head Profile and its subprofiles and packages are illustrated in Figure 17: "NAS Head Profiles
and Subprofiles".

Physical Package SNIA 1.5.0 Mandatory

Block Services SNIA 1.6.1 Mandatory

Health SNIA 1.2.0 Mandatory

Indication SNIA 1.5.0 Support for at
least one is
mandatory.

Deprecated.

Indications SNIA 1.6.0 Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version 1.2.0

Table 180 - Related Profiles for NAS Head

Profile Name Organization Version Requirement Description
296

 NAS Head Profile

24

25

26

27
28
29
.

13.1.3 Implementation

13.1.3.1 Summary Instance Diagram
Figure 18: "NAS Head Instance" illustrates the mandatory classes for the NAS Head Profile. This figure
shows all the classes that are mandatory for the NAS Head Profile. Later diagrams will review specific
sections of this diagram.

Figure 17 - NAS Head Profiles and Subprofiles
SMI-S 1.6.1 Revision 6 SNIA Technical Position 297

NAS Head Profile
Figure 18 - NAS Head Instance
298

 NAS Head Profile

30
31
32

33
34
35
36
37

38
39

40
41
42

43
44
45
46
47

48
49
50
51
52
53
54

55
56
57

58
59

60
61

62
63

64
65

66
67
68
69

70
71
The NAS Head Profile closely parallels the Storage Virtualizer Profile in how it models storage. Storage is
assigned to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of
holding local filesystems of the NAS.

As with the Storage Virtualizer Profile, the NAS Head StoragePools have StorageCapabilities associated
to the StoragePools via ElementCapabilities. Similarly, LogicalDisks that are allocated from those
StoragePools have StorageSettings, which are associated to the LogicalDisk via ElementSettingData.
StoragePools are hosted by a ComputerSystem that represents the NAS “top level” system, and the
StorageExtents have a SystemDevice association to the “top level” ComputerSystem.

NOTE As with Self-Contained NAS, the StoragePools may be hosted by a component ComputerSystem if the Profile has
implemented the Multiple Computer System Subprofile.

As with the Storage Virtualizer Profile, the “top level” ComputerSystem of the NAS Head does not (and
typically isn’t) a real ComputerSystem. It is merely the ManagedElement upon which all aspects of the
NAS offering are scoped.

A NAS Head may implement “Virtual File Servers” in addition to, or instead of, implementing File Servers
in the Top Level ComputerSystem or one of the Multiple Computer System ComputerSystems. A Virtual
File Server shall have a HostedDependency to either the top level NAS ComputerSystem or one of the
Multiple Computer System ComputerSystems. NOTE: A Virtual File Server shall not have a
ComponentCS association to the top level NAS ComputerSystem.

As with Storage Virtualizer Profile, the NAS Head draws its storage from an open SAN. That is, the actual
disk storage is addressable independent of the NAS Head. As a result, the NAS head shall model the
Initiator ports and the StorageExtents that it acquires from the SAN. The NAS Head supports at least one
of the Initiator Ports Subprofiles (the dashed box at the bottom of Figure 18: "NAS Head Instance") to
effect the support for backend ports. The NAS Head includes the Block Services Package to effect the
logical storage management (the dashed box just above the Initiator Ports dashed box in Figure 18:
"NAS Head Instance").

Everything above the LogicalDisk is specific to NAS (and does not appear in the Storage Virtualizer
Profile). LocalFileSystems are created on the LogicalDisks, LogicalFiles within those LocalFileSystems
are shared (FileShare) through ProtocolEndpoints associated with NetworkPorts.

NOTE The classes and associations in the dashed boxes are from the required packages and subprofiles (as indicated by the
labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with previous releases of
SMI-S. It represents a relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS profiles (NAS Head and Self-contained NAS) in
the File Storage Profile. In the NAS Head a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are
only shown here to illustrate where they would show up in the model should they be implemented.

In the base NAS Head profile, the classes and associations shown in Figure 18: "NAS Head Instance"
are automatically populated based on how the NAS Head is configured. Client modification of the
configuration (including configuring storage, creating extents, local filesystems and file shares) are
functions found in subprofiles of the NAS Head Profile.

EXPERIMENTAL

An instance of ImplementationCapabilities may be associated to the top level NAS Head
ComputerSystem. This Capabilities instance identifies the capacity optimization techniques supported by
SMI-S 1.6.1 Revision 6 SNIA Technical Position 299

NAS Head Profile

72
73

74

75
76

77
78
79
80

81
82
83
84
85

86
87
88
89

90
91
the implementation. An implementation may advertise that it supports “None”, "SNIA:Thin Provisioning",
"SNIA:Data Compression" or "SNIA:Data Deduplication".

EXPERIMENTAL

13.1.3.2 NAS Storage Model
Figure 19: "NAS Storage Instance" illustrates the classes mandatory for modeling of storage for the NAS
Head Profile.

The NAS Head Profile uses most of the classes and associations used by the Storage Virtualizer Profile
(including those in the Block Services Package). In doing this, it leverages many of the subprofiles that
are available for Storage Virtualizer Profiles. The classes and associations shown in Figure 19: "NAS
Storage Instance" are the minimum mandatory for read only access in the base profile.

Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled,
including the HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the
StoragePool. In addition, for NAS Heads, which get their storage from a SAN, the StorageExtents that
compose the primordial StoragePools shall also be modeled with ConcreteComponent associations to the
StoragePool to which they belong and they will be primordial.

In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks. A LogicalDisk
shall have an AllocatedFromStoragePool association to the StoragePool from which it is allocated. The
LogicalDisk shall have an ElementSettingData association to the settings that were used when the
LogicalDisk was created.

For manipulation of Storage, see Clause 5: Block Services Package of Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6. LogicalDisks are the ElementType that is supported for

Figure 19 - NAS Storage Instance
300

 NAS Head Profile

92
93
94
95

96

97
98

99

100
101
102

103

104
105

106

107
108
109
storage allocation functions (e.g., CreateOrModifyElementFromStoragePool and ReturnToStoragePool),
but the Block Services methods for managing LogicalDisks are optional for the NAS Head Profile. The
NAS Head Profile also supports (optionally) the Pool manipulation functions (e.g.,
CreateOrModifyStoragePool and DeleteStoragePool) of the Block Services Package.

13.1.3.3 NAS Head Use of Filesystem Profile (Mandatory)
The NAS Head Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the NAS
Head, the Filesystem Profile shall be supported. See 8 Filesystem Profile for details on this modeling.

13.1.3.4 NAS Head Use of File Storage Profile (Mandatory)
The NAS Head Profile uses the File Storage Profile for modeling of its file storage constructs. For the
NAS Head, the Filesystem Profile shall be supported. See 7 File Storage Profile for details on the file
storage modeling.

13.1.3.5 NAS Head Use of File Export Profile (Mandatory)
The NAS Head Profile uses the File Export Profile for modeling of its file export constructs. For the NAS
Head, the File Export Profile shall be supported. See 4 File Export Profile for details on this modeling.

13.1.3.6 NAS Head Use of NAS Network Ports Profile (Mandatory)
The NAS Head Profile uses the NAS Network Ports Profile for modeling of its file export constructs. For
the NAS Head, the NAS Network Ports Profile shall be supported. See 15 NAS Network Port Profile for
details on this modeling.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 301

NAS Head Profile

110

111
112
113

114
115
116
EXPERIMENTAL

13.1.3.7 NAS Head Support of Cascading
Figure 20: "NAS Head Cascading Support Instance" illustrates the NAS Head support for cascading.
Support for the Cascading Subprofile is optional (and the Cascading Subprofile is experimental). It is
provided here to illustrate stitching between the NAS Head and Array or Storage Virtualizer Profiles.

The lower dashed box in the figure illustrates the classes and associations of the Cascading Subprofile.
The dashed classes are virtual instances (copies cached from the Array or Storage Virtualizer Profile).
The other classes of the Cascading Subprofile represent NAS Head usage of those classes. For example,

Figure 20 - NAS Head Cascading Support Instance
302

 NAS Head Profile

117
118
119

120
121

122

123

124

125

126
the collection AllocatedResources collects all the Array volumes that are used in StoragePools of the
NAS Head. The RemoteResources collection collects all volumes that the NAS Head has discovered
(whether used or not).

The RemoteServiceAccessPoint is the URL of the management interface that the NAS Head uses for
managing the Array or Storage Virtualizer Profiles. This may or may not be an SMI-S Server URL.

EXPERIMENTAL

13.1.3.8 Indication Events

13.1.3.8.1 InstModification of ComputerSystem

EXPERIMENTAL

Table 181 identifies the standard OperationalStatus values and the events that are being indicated.

EXPERIMENTAL

13.1.3.8.2 InstModification of LogicalDisk

EXPERIMENTAL

Table 182 identifies the standard OperationalStatus values and the events that are being indicated.

Table 181 - InstModification Events for ComputerSystem

New OperationalStatus Event / Correlated Indications

OK The top level NAS system is fully operational.

An Error in the Top Level NAS system was corrected and the system is now fully
functional.

Self test is complete and the NAS system is fully operational

Degraded The system is running but with limitations.

Error The system is experiencing an error and is not functional.

Stopped The system has been stopped.

No contact The system status cannot be determined, due to no response from the system.

Starting The system is starting, but it not yet functional.

Stopping The system is stopping.

Lost communication The system status cannot be determined, due to communications problems.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 303

NAS Head Profile

127

128
129

130

131
132
133
134
EXPERIMENTAL

EXPERIMENTAL

13.1.3.9 Bellwether Indications

13.1.3.9.1 AlertIndication for ComputerSystem Bellwether
This AlertIndication signals the change in status (OperationalStatus) of a ComputerSystem as a
bellwether event. It is supported by a standard message (MessageID=FSM1). Table 183 shows the
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

13.1.3.9.2 AlertIndication for LogicalDisk Bellwether
This AlertIndication signals the change in status (OperationalStatus) of a LogicalDisk as a bellwether
event. It is supported by a standard message (MessageID=FSM3). Table 184 shows the

Table 182 - InstModification Events for LogicalDisk

New OperationalStatus Event / Correlated Indications

OK The logical disk is fully functional.

Degraded The logical disk is experiencing errors, but is still supporting data.

The Logical disk is rebuilding, so performance may suffer.

Error The logical disk has an error and is not usable.

Starting The logical disk is being brought online.

Dormant The logical disk is offline.

Table 183 - Bellwether AlertIndication Events for ComputerSystem

New OperationalStatus Implied Indications Inhibited

OK, Degraded, Error, Stopped

OperationalStatus changes to Elements with SystemDevice associations to this
ComputerSystem (LogicalDisks, …)

OperationalStatus changes to Elements with HostedService associations to this
ComputerSystem (FileSystemConfigurationService, FileExportService, …)

OperationalStatus changes to FileSystems with HostedFileSystem associations to
this ComputerSystem.

OperationalStatus changes to StoragePools with HostedStoragePool associations
to this ComputerSystem.

OperationalStatus changes to ProtocolEndpoints with HostedAccessPoint
associations to this ComputerSystem.

OperationalStatus changes to FileShares with HostedFileShare associations to
this ComputerSystem.

No contact, Starting, Stopping, Lost
communication

None
304

 NAS Head Profile

135

136
137
138
139

140

141
142

143

144
145

146
147

148

149

150

151

152

153
154
155

156
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

EXPERIMENTAL

13.2 Health and Fault Management Considerations
The NAS Head supports state information (e.g., OperationalStatus) on the following elements of the
model:

• Network Ports (See 15.4.1 "OperationalStatus for Network Ports")

• Back-end Ports (See 17.3.3 "Health and Fault Management Considerations" in Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6)

• ComputerSystems (See 25.1.5 Computer System Operational Status in Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6)

• FileShares that are exported (See 4.2.1 "OperationalStatus for FileShares")

• LocalFileSystems (See 8.2.1 "OperationalStatus for Filesystems")

• ProtocolEndpoints (See 15.4.2 "OperationalStatus for ProtocolEndpoints")

EXPERIMENTAL

13.2.1 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 185.

EXPERIMENTAL

Table 184 - Bellwether AlertIndication Events for LogicalDisk

New OperationalStatus Implied Indications Inhibited

OK, Degraded, Error, Stopped OperationalStatus changes to FileSystems with ResidesOn associations to this
LogicalDisk.

Unknown None

Table 185 - Standard Messages used by NAS Head

Message ID Message Name

FSM1 ComputerSystem bellwether alert

FSM3 LogicalDisk bellwether alert
SMI-S 1.6.1 Revision 6 SNIA Technical Position 305

NAS Head Profile

157

158
159
160
161

162

163
164
165
166

167
168

169

170
171

172

173
174
175

176

177

178

179
EXPERIMENTAL

13.3 Cascading Considerations
The NAS Head is a cascading profile, but the Cascading Subprofile is Experimental in this release of
SMI-S; see 24 Cascading Subprofile in Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6. As such, the Cascading Subprofile is defined as an optional subprofile. A NAS Head may
cascade storage. The cascading considerations for this are discussed in the following sections.

13.3.1 Cascading Resources for the NAS Head Profile

By definition, a NAS Head gets its storage from the network. As such, there is a cascading relationship
between the NAS Head Profile and the profiles (e.g., Array Profiles) that provide the storage for the NAS
Head. Figure 20: "NAS Head Cascading Support Instance" illustrates the constructs to be used to model
this cascading relationship.

• The NAS Head Cascaded Resources are Primordial StorageExtents (used to populate Primordial
StoragePools)

• The NAS Head obtains the storage for these from Array or Storage Virtualizer Profiles

• Each Primordial StorageExtent maps (via ConcreteIdentity) to a StorageVolume (from the Array or Storage
Virtualizer Profile).

13.3.2 Ownership Privileges Asserted by NAS Heads

In support of the Cascading NAS Heads may assert ownership over the StorageVolumes that they import.
If the Array or Storage Virtualizer implementation supports Ownership, NAS Heads would assert
ownership using the following Privilege:

• Activity - Execute

• ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

• FormatQualifier - Method

13.3.3 NAS Head Limitations on use of the Cascading Subprofile

The NAS Head support for Cascading places the following limitations and restrictions on the Cascading
Subprofile:

• The AllocationService is not supported. - Allocation is done as a side effect of assigning the extents to the
Primordial pool.

• CascadingDependency - The CascadingDependency may exist, even when there are no resources that are
imported. This signifies that the NAS Head has discovered the Array or Virtualizer, but has no access to any
of their volumes.

EXPERIMENTAL

13.4 Supported Subprofiles and Packages
See section 13.1.1 for this information.

13.5 Methods of the Profile

13.5.1 Extrinsic Methods of the Profile

None.
306

 NAS Head Profile

180

181
182

183
184

185
186
187

188

189

190

191

192

193

194
195

196

197

198

199

200

201

202

203

204

205
13.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

Manipulation functions are supported in subprofiles of the profile.

13.6 Client Considerations and Recipes
Not defined in this version of the specification.

13.7 CIM Elements
Table 186 describes the CIM elements for NAS Head.

Table 186 - CIM Elements for NAS Head

Element Name Requirement Description

13.7.1 CIM_ComputerSystem (Top Level System) Mandatory This declares that at least one computer system entry will
pre-exist. The Name property should be the Unique
identifier for the NAS Head. Associated to
RegisteredProfile.

13.7.2 CIM_ComputerSystem (Virtual File Server) Optional This represents a Virtual File Server, if one exists.

13.7.3 CIM_ConcreteComponent Optional Represents the association between a Primordial
StoragePool and the underlying StorageExtents that
compose it.

13.7.4 CIM_ElementCapabilities
(ImplementationCapabilities to Service)

Optional Experimental. Associates the top level NAS Head
ComputerSystem to the CIM_ImplementationCapabilities
supported by the implementation.

13.7.5 CIM_FilterCollection (NAS Head Predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

13.7.6 CIM_HostedCollection (NAS Head to predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

13.7.7 CIM_HostedDependency Optional Associates a Virtual File Server to the Computer System
hosting it. This is required if a Virtual File Server exists.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 307

NAS Head Profile

206

207
13.7.8 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

13.7.9 CIM_IndicationFilter (LogicalDisk
OperationalStatus Bellwether Alert)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the bellwether alert for
changes in the OperationalStatus of LogicalDisk
instances.

13.7.10 CIM_IndicationFilter (LogicalDisk
OperationalStatus)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

13.7.11 CIM_IndicationFilter (System OperationalStatus
Bellwether Alert)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the bellwether alert for
changes in the OperationalStatus of System instances.

13.7.12 CIM_IndicationFilter (System OperationalStatus) Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of System instances.

13.7.13 CIM_LogicalDisk (LD for FS) Mandatory Represents the single Storage Extent on which the NAS
Head will build a LocalFileSystem.

 CIM_MemberOfCollection (Predefined Filter Collection to
NAS Head Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the NAS Head predefined FilterCollection to the
predefined Filters supported by the NAS Head.

13.7.14 CIM_StorageExtent (Primordial Imported Extent) Optional This StorageExtent represents the LUNs
(StorageVolumes) imported from a storage device to the
NAS Head.

13.7.15 CIM_SystemDevice (Logical Disks) Mandatory This association links all LogicalDisks to the scoping
system.

13.7.16 CIM_SystemDevice (Storage Extents) Conditional Conditional requirement: This is required if primordial
StorageExtents exist. This association links all
StorageExtents to the scoping system.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatu
s <>
PreviousInstance.CIM_ComputerSystem::OperationalStat
us

Optional CQL -Change of Status of a NAS ComputerSystem
(controller).

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 13.1.3.8.1 InstModification of ComputerSystem.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="FSM1"

Optional CQL -This is a bellwether indication of a change of Status
of a NAS ComputerSystem (controller) and related
classes (LogicalDisks, Services, ProtocolEndpoints,
StoragePools, FileShares and FileSystems).

See 13.1.3.9.1 AlertIndication for ComputerSystem
Bellwether

Also see Storage Management Technical Specification,
Part 2 Common Architecture, 1.6.1 Rev 6 8.4.4.1
Message: System OperationalStatus Bellwether.

Table 186 - CIM Elements for NAS Head

Element Name Requirement Description
308

 NAS Head Profile

208

209

210
13.7.1 CIM_ComputerSystem (Top Level System)

Created By: Static
Modified By: External
Deleted By: Static
Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile instance shall have
RegisteredName set to 'NAS Head', RegisteredOrganization set to 'SNIA', and RegisteredVersion set to '1.6.0'.

Table 187 describes class CIM_ComputerSystem (Top Level System).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a NAS
ComputerSystem (controller).

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 13.1.3.8.1 InstModification of ComputerSystem.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of status of a LogicalDisk.

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 13.1.3.9.2 AlertIndication for LogicalDisk Bellwether.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="FSM3"

Optional CQL -This is a bellwether indication of a change of status
of a LogicalDisk.

See 13.1.3.9.2 AlertIndication for LogicalDisk Bellwether

Also see Storage Management Technical Specification,
Part 2 Common Architecture, 1.6.1 Rev 6 8.4.4.3
Message: LogicalDisk OperationalStatus Bellwether.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Optional CQL -Change of status of a LogicalDisk.

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 13.1.3.8.2 InstModification of LogicalDisk.

Table 187 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory The actual class of this object, e.g., Vendor_NASComputerSystem.

ElementName Mandatory User friendly name.

Name Mandatory Unique identifier for the NAS Head in a format specified by NameFormat.
For example, IP address or Vendor/Model/SerialNo.

OperationalStatus Mandatory Overall status of the NAS Head. The standard values are 2 (OK), 3
(Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10 (Stopped), 12 (No
contact) or 13 (Lost Communication).

NameFormat Mandatory Format for Name property.

Table 186 - CIM Elements for NAS Head

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 309

NAS Head Profile

211

212

213
214

215
13.7.2 CIM_ComputerSystem (Virtual File Server)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 188 describes class CIM_ComputerSystem (Virtual File Server).

PrimaryOwnerContact M Optional Owner of the NAS Head.

PrimaryOwnerName M Optional Contact details for owner.

Dedicated Mandatory This shall be a NAS Head (24).

OtherIdentifyingInfo C Mandatory An array of know identifiers for the NAS Head.

IdentifyingDescriptions C Mandatory An array of descriptions of the OtherIdentifyingInfo. Some of the
descriptions would be "Ipv4 Address", "Ipv6 Address" or "Fully Qualified
Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDescription
s

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

Table 188 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement Description & Notes

Dedicated Mandatory A Virtual File Server is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the NAS Head's Virtual File Servers (Eg Vendor/
Model/SerialNo+FS+Number).

Table 187 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes
310

 NAS Head Profile

216

217

218

219

220

221

222
13.7.3 CIM_ConcreteComponent

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 189 describes class CIM_ConcreteComponent.

OperationalStatus Mandatory Overall status of the Virtual File Server. The standard values are 2 (OK), 3
(Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10 (Stopped), 12 (No
contact) or 13 (Lost Communication).

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDescription
s

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

PrimaryOwnerContact N Optional Not Specified in this version of the Profile.

PrimaryOwnerName N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescriptions N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

Table 189 - SMI Referenced Properties/Methods for CIM_ConcreteComponent

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Primordial StoragePool that is built from the StorageExtent.

PartComponent Mandatory A StorageExtent that is part of a Primordial StoragePool.

Table 188 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 311

NAS Head Profile

223

224

225

226

227

228

229

230

231

232

233

234

235

236
237
238

239
240

241
13.7.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)

Experimental. Associates the top level NAS Head ComputerSystem to the
CIM_ImplementationCapabilities supported by the implementation.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 190 describes class CIM_ElementCapabilities (ImplementationCapabilities to Service).

13.7.5 CIM_FilterCollection (NAS Head Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A NAS
Head implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 191 describes class CIM_FilterCollection (NAS Head Predefined FilterCollection).

13.7.6 CIM_HostedCollection (NAS Head to predefined FilterCollection)

Experimental.
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 192 describes class CIM_HostedCollection (NAS Head to predefined FilterCollection).

Table 190 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to Service)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The top level NAS Head ComputerSystem that has
ImplementationCapabilities.

Table 191 - SMI Referenced Properties/Methods for CIM_FilterCollection (NAS Head Predefined FilterCol-
lection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:NAS Head'.

Table 192 - SMI Referenced Properties/Methods for CIM_HostedCollection (NAS Head to predefined Filter-
Collection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the NAS Head.

Antecedent Mandatory Reference to the top level System of the NAS Head.
312

 NAS Head Profile

242

243

244
245

246

247

248

249

250

251

252

253

254

255

256

257

258
13.7.7 CIM_HostedDependency

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 193 describes class CIM_HostedDependency.

13.7.8 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 194 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

13.7.9 CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the bellwether alert for changes
in the OperationalStatus of LogicalDisk instances. This is a special case of the CIM_IndicationFilter (pre-
defined) class as defined in the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static

Table 193 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File Server
ComputerSystem is a File Server and shall have Dedicated=16 (File
Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting ComputerSystem may be the
top level NAS ComputerSystem or an Multiple Computer System (non-top
level) system.

Table 194 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimiz
ations

Mandatory This array of strings lists the capacity optimization techiques that are
supported by the implementation. Valid string values are "none" |
"SNIA:Thin Provisioning" | "SNIA:Data Compression" | "SNIA:Data
Deduplication".
SMI-S 1.6.1 Revision 6 SNIA Technical Position 313

NAS Head Profile

259

260

261
262

263

264

265

266

267
Requirement: Optional

Table 195 describes class CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert).

13.7.10CIM_IndicationFilter (LogicalDisk OperationalStatus)
Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus of LogicalDisk instances. This is a
special case of the CIM_IndicationFilter (pre-defined) class as defined in the Indication Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 195 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus
Bellwether Alert)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:NAS
Head:LogicalDiskOperationalStatusBellwetherAlert'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity="SNIA" and
MessageID="FSM3".

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).
314

 NAS Head Profile

268

269
270

271

272

273

274

275

276

277
278
Table 196 describes class CIM_IndicationFilter (LogicalDisk OperationalStatus).

13.7.11CIM_IndicationFilter (System OperationalStatus Bellwether Alert)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the bellwether alert for changes
in the OperationalStatus of System instances. This is a special case of the CIM_IndicationFilter (pre-
defined) class as defined in the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 197 describes class CIM_IndicationFilter (System OperationalStatus Bellwether Alert).

Table 196 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6
42.8.3 CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:NAS Head:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance
ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6
42.8.3 CIM_IndicationFilter (pre-defined).

Table 197 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bell-
wether Alert)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).
SMI-S 1.6.1 Revision 6 SNIA Technical Position 315

NAS Head Profile

279

280

281

282

283

284

285
286

287

288

289

290
13.7.12CIM_IndicationFilter (System OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of System instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in
the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 198 describes class CIM_IndicationFilter (System OperationalStatus).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:NAS Head:SystemOperationalStatusBellwetherAlert'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE OwningEntity="SNIA" and
MessageID="FSM1".

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Table 198 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:NAS Head:SystemOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

Table 197 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bell-
wether Alert)

Properties Flags Requirement Description & Notes
316

 NAS Head Profile

291

292

293

294

295

296

297
13.7.13CIM_LogicalDisk (LD for FS)

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 199 describes class CIM_LogicalDisk (LD for FS).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatus <>
PreviousInstance.CIM_ComputerSystem::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Table 199 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory CIM Class of the NAS Head Computer System that is the host of this
LogicalDisk.

SystemName Mandatory Name of the NAS Head Computer System that hosts this LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DeviceID Mandatory Opaque identifier for the LogicalDisk.

OperationalStatus Mandatory A subset of operational status that is applicable for LogicalDisks in a NAS
Head. The standard values for this are 2 (OK), 3 (Degraded), 6 (Error), 8
(Starting) or 15 (Dormant).

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17). The standard
values for this are 0 (Other), 1 (Unknown), 2 (None/Not Applicable), 3
(Broken), 4 (Data Lost), 5 (Dynamic Reconfig), 6 (Exposed), 7
(Fractionally Exposed), 8 (Partially Exposed), 9 (Protection Disabled), 10
(Readying), 11 (Rebuild), 12 (Recalculate), 13 (Spare in Use), 14 (Verify In
Progress) or 15 (In-Band Access Granted).

Primordial Mandatory This represents a Concrete Logical Disk that is not primordial.

Name Mandatory Identifier for a local LogicalDisk that will be used for a filesystem; since this
logical disk will be referenced by a client, it must have a unique name. We
cannot constrain the format here, but the OS-specific format described in
the Block Services specification is not appropriate, so "Other" is used.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the NAS Head.
This shall be coded as "1" ("other").

Caption N Optional Not Specified in this version of the Profile.

Table 198 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 317

NAS Head Profile
CIM_MemberOfCollection (Predefined Filter Collection to NAS Head Filters)
Experimental. This associates the NAS Head predefined FilterCollection to the predefined Filters supported by the NAS Head.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 200 describes class CIM_MemberOfCollection (Predefined Filter Collection to NAS Head Filters).

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescriptions N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

SequentialAccess N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespace N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 200 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to NAS Head Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the NAS Head predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the NAS Head.

Table 199 - SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS)

Properties Flags Requirement Description & Notes
318

 NAS Head Profile

298

299

300
301

302

303

304

305

306

307

308
13.7.14CIM_StorageExtent (Primordial Imported Extent)

Created By: Static_or_External
Modified By: External
Deleted By: External
Requirement: Optional

Table 201 describes class CIM_StorageExtent (Primordial Imported Extent).

Table 201 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The CreationClassName for the scoping system.

SystemName Mandatory The System Name of the scoping system.

CreationClassName Mandatory CreationClassName indicates the name of the class or the subclass.

DeviceID Mandatory An ID that uniquely names the StorageExtent in the NAS Head.

BlockSize Mandatory The size (in bytes) of blocks.

NumberOfBlocks Mandatory The number of Blocks from the imported StorageVolume.

ExtentStatus Mandatory This shall contain ‘16’ (Imported).

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or Starting or
Dormant).

Name Mandatory Deprecated. Identifier for a remote LUN on a storage array; possibly, the
array ID plus LUN Node WWN.

Primordial Mandatory The StorageExtent imported from an Array is considered primordial in the
NAS Head.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescriptions N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 319

NAS Head Profile

309

310

311

312

313
13.7.15CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 202 describes class CIM_SystemDevice (Logical Disks).

13.7.16CIM_SystemDevice (Storage Extents)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: This is required if primordial StorageExtents exist.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

ConsumableBlocks N Optional Not Specified in this version of the Profile.

IsBasedOnUnderlyingRed
undancy

N Optional Not Specified in this version of the Profile.

SequentialAccess N Optional Not Specified in this version of the Profile.

NoSinglePointOfFailure N Optional Not Specified in this version of the Profile.

DataRedundancy N Optional Not Specified in this version of the Profile.

PackageRedundancy N Optional Not Specified in this version of the Profile.

DeltaReservation N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespace N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 202 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The LogicalDisk that is a part of a computer system.

Table 201 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)

Properties Flags Requirement Description & Notes
320

 NAS Head Profile

314

315

316

317

318

319

320
Table 203 describes class CIM_SystemDevice (Storage Extents).

STABLE

Table 203 - SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device.

PartComponent Mandatory The primordial StorageExtent that is imported to a computer system in the
NAS Head.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 321

NAS Head Profile
322

1

2

3

4

5

6

7

8

STABLE

14 Self-Contained NAS Profile

14.1 Description

14.1.1 Synopsis

Profile Name: Self-contained NAS System (Autonomous Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.28

Table 204 describes the related profiles for Self-contained NAS System.

Table 204 - Related Profiles for Self-contained NAS System

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.6.1 Mandatory

File Storage SNIA 1.4.0 Mandatory

File Export SNIA 1.6.1 Mandatory

NAS Network Port SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional

Access Points SNIA 1.3.0 Optional

Multiple Computer System SNIA 1.2.0 Optional

Software SNIA 1.4.0 Optional

Location SNIA 1.4.0 Optional

Extent Composition SNIA 1.6.0 Optional

Filesystem Manipulation SNIA 1.6.1 Optional

File Export Manipulation SNIA 1.6.1 Optional

File Server Manipulation SNIA 1.6.1 Optional

Filesystem Performance SNIA 1.6.1 Optional

FileSystem Quotas SNIA 1.5.0 Optional

Filesystem Copy Services SNIA 1.4.0 Optional

Job Control SNIA 1.5.0 Optional

Disk Drive Lite SNIA 1.6.0 Optional

SPI Initiator Ports SNIA 1.4.0 Optional

FC Initiator Ports SNIA 1.6.0 Optional

iSCSI Initiator Ports SNIA 1.2.0 Optional

Device Credentials SNIA 1.3.0 Optional

Operational Power SNIA 1.5.0 Optional Experimental.

Self-Contained NAS Profile

9

10

11

12
13
14
15
16

17
18
19
20
21

22
23
Central Class: ComputerSystem

Scoping Class: ComputerSystem

14.1.2 Overview

The Self-contained NAS (SC NAS) Profile exports File elements (contained in a filesystem) as
FileShares. The storage for the filesystem is obtained from captive storage. In the simplest case, this
could be a set of directly connected disks, but it could also be a captive storage array that is not shared
with any other hosts or devices (though it could be visible to external management tools and even
actively managed independently).

This profile models the necessary filesystem and NAS concepts and defines how the connections to the
underlying storage is managed. The details of how a directly attached set of disks is used by the SC NAS
Profile is covered as part of the Disk Drive or Disk Drive Lite Subprofile. The details of how an underlying
Storage Array might export storage to the SC NAS is not covered in this profile but is covered by 4 Array
Profile in Storage Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6.

The Self-Contained NAS Profile reuses a significant portion of 4 Array Profile in Storage Management
Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6.

Launch In Context DMTF 1.0.0 Optional Experimental.

Physical Package SNIA 1.5.0 Mandatory

Block Services SNIA 1.6.1 Mandatory

Health SNIA 1.2.0 Mandatory

Indication SNIA 1.5.0 Support for at
least one is
mandatory.

Deprecated.

Indications SNIA 1.6.0 Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version 1.2.0

Table 204 - Related Profiles for Self-contained NAS System

Profile Name Organization Version Requirement Description
324

 Self-Contained NAS Profile

24
25

26

27

28
29
30
The Self-Contained NAS Profile and its subprofiles and packages are illustrated in Figure 21: "Self-
Contained NAS Profile and Subprofiles".

14.1.3 Implementation

14.1.3.1 Summary Instance Diagram
Figure 22: "Self-Contained NAS Instance" illustrates the mandatory classes of the Self-Contained NAS
Profile. This figure shows all the classes that are mandatory for the Self-contained NAS Profile. Later
diagrams will review specific sections of this diagram

Figure 21 - Self-Contained NAS Profile and Subprofiles
SMI-S 1.6.1 Revision 6 SNIA Technical Position 325

Self-Contained NAS Profile

31
 .

Figure 22 - Self-Contained NAS Instance
326

 Self-Contained NAS Profile

32
33
34

35
36
37
38
39

40
41

42
43
44

45
46
47
48
49

50
51
52

53
54

55
56

57
58

59
60

61
62
63
64

65
66
67
68
The Self-Contained NAS Profile closely parallels the Array Profile in how it models storage. Storage is
assigned to StoragePools and LogicalDisks are allocated from those storage pools for the purpose of
holding local filesystems of the NAS.

As with the Array Profile, the Self-contained NAS StoragePools have StorageCapabilities associated to
the StoragePools via ElementCapabilities. Similarly, LogicalDisks have StorageSettings, which are
associated to the LogicalDisk via ElementSettingData. StoragePools are hosted by a ComputerSystem
that represents the NAS “top level” system, and the LogicalDisks have a SystemDevice association to the
“top level” ComputerSystem.

NOTE As with Arrays, the StoragePools may be hosted by a component ComputerSystem if the profile has implemented the
Multiple Computer System Subprofile.

As with Arrays, the “top level” ComputerSystem of the Self-Contained NAS does not (and typically isn’t) a
real ComputerSystem. It is merely the ManagedElement upon which all aspects of the NAS offering are
scoped.

A Self-Contained NAS may implement “Virtual File Servers” in addition to, or instead of, implementing
File Servers in the Top Level ComputerSystem or one of the Multiple Computer System
ComputerSystems. A Virtual File Server shall have a HostedDependency to either the top level NAS
ComputerSystem or one of the Multiple Computer System ComputerSystems. NOTE: A Virtual File Server
shall not have a ComponentCS association to the top level NAS ComputerSystem.

Everything above the LogicalDisk is specific to NAS (and does not appear in the Array Profile).
LocalFileSystems are created on the LogicalDisks, LogicialFiles within those LocalFileSystems are
shared (FileShare) through ProtocolEndpoints associated with NetworkPorts.

NOTE The classes and associations in the dashed boxes are from the required packages and subprofiles (as indicated by the
labels on the dashed boxes).

The ConcreteDependency association is provided for backward compatibility with SMI-S 1.1.0. It
represents a relationship between a FileShare and a Directory.

The ResidesOnExtent is conditional on the use by NAS profiles (NAS Head and Self-contained NAS) in
the File Storage Profile. In the Self-contained NAS a LocalFileSystem shall map to a LogicalDisk.

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are
only shown here to illustrate where they would show up in the model should they be implemented.

In the base Self-Contained NAS Profile, the classes and associations shown in Figure 22: "Self-
Contained NAS Instance" are automatically populated based on how the Self-Contained NAS is
configured. Client modification of the configuration (including configuring storage, creating extents, local
filesystems and file shares) are functions found in subprofiles of the profile.

EXPERIMENTAL

An instance of ImplementationCapabilities may be associated to the top level Self-contained NAS
ComputerSystem. This Capabilities instance identifies the capacity optimization techniques supported by
the implementation. An implementation may advertise that it supports “None”, "SNIA:Thin Provisioning",
"SNIA:Data Compression" or "SNIA:Data Deduplication".

EXPERIMENTAL
SMI-S 1.6.1 Revision 6 SNIA Technical Position 327

Self-Contained NAS Profile

69

70
71
72
73

74
75
76

77
78
79

80

81
82

83
84
85
86
87
EXPERIMENTAL

14.1.3.2 Combination Profile Considerations
Some devices combine the function of an array with the function of a Self-contained NAS. There are a
number of approaches that may be used to model such a device. One way is to present two seemly
independent profiles in the SAN (e.g., Array and SC NAS). In this case, there may be duplication of
instances. These duplicates would be recognized by clients via correlated ids.

Another approach would be to use one, shared top level ComputerSystem that reflects both the SC NAS
and the Array in its ComputerSystem.Dedicated property. In this case, care must be taken to ensure the
sharing of instances between the profiles do not conflict with their respective profile definitions.

For more information on the rules for combination profiles, see section B.6 of Annex B (normative)
Compliance with the SNIA SMI Specification in Storage Management Technical Specification, Part 2 Common
Architecture, 1.6.1 Rev 6.

EXPERIMENTAL

14.1.3.3 NAS Storage Model
Figure 23: "NAS Storage Instance" illustrates the classes mandatory for modeling of storage for the Self-
Contained NAS Profile.

The Self-Contained NAS Profile uses most of the classes and associations defined in the Array Profile
(including those in the Block Services Package). In doing this, it leverages many of the subprofiles that
are available for Array profiles. The classes and associations shown in Figure 23: "NAS Storage
Instance" are the minimum mandatory classes and associations of the Block Services Package for read
only access in the base profile.

Figure 23 - NAS Storage Instance
328

 Self-Contained NAS Profile

88
89
90
91
92
93

94
95
96

97
98
99

100
101
102
103

104

105
106
107

108

109
110
111

112

113
114
115

116

117
118
119
Storage for the NAS shall be modeled as logical storage. That is, StoragePools shall be modeled,
including the HostedStoragePool and ElementCapabilities to the StorageCapabilities supported by the
StoragePool. In addition, in order for storage to be used it shall be allocated to one or more LogicalDisks.
A LogicalDisk shall have an AllocatedFromStoragePool association to the StoragePool from which it is
allocated. And the LogicalDisk shall have an ElementSettingData association to the settings that were
used when the LogicalDisk was created.

NOTE At this level, the model for storage is the same for both the Self-Contained NAS Profile and the NAS Head Profile. In the
case of the Self-contained NAS, storage for the StoragePools is drawn from Disk Drives. Modeling of Disk Drives is Optional (See
11 Disk Drive Lite Subprofile of Storage Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6).

For manipulation of Storage, see Clause 5: Block Services Package in the Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6. For Self-Contained NAS, LogicalDisks are the ElementType
that is supported for storage allocation functions (e.g., CreateOrModifyElementFromStoragePool and
ReturnToStoragePool), but the Block Services methods for managing LogicalDisks are optional for the
Self-Contained NAS Profile. The Self-Contained NAS Profile also supports (optionally) the Pool
manipulation functions (e.g., CreateOrModifyStoragePool and DeleteStoragePool) of the Block Services
Package.

14.1.3.4 Self-Contained NAS Use of Filesystem Profile (Mandatory)
The Self-Contained NAS Profile uses the Filesystem Profile for modeling of its filesystem constructs. For
the Self-Contained NAS, the Filesystem Profile shall be supported. See 8 Filesystem Profile for details on
this modeling.

14.1.3.5 Self-Contained NAS Use of File Storage Profile (Mandatory)
The Self-Contained NAS Profile uses the File Storage Profile for modeling of its file storage constructs.
For the Self-Contained NAS, the Filesystem Profile shall be supported. See 7 File Storage Profile for
details on the file storage modeling.

14.1.3.6 Self-Contained NAS Use of File Export Profile (Mandatory)
The Self-Contained NAS Profile uses the File Export Profile for modeling of its file export constructs. For
the Self-Contained NAS, the File Export Profile shall be supported. See 4 File Export Profile for details on
this modeling.

14.1.3.7 Self-Contained NAS Use of NAS Network Ports Profile (Mandatory)
The Self-Contained NAS Profile uses the NAS Network Ports Profile for modeling of its file export
constructs. For the Self-Contained NAS, the NAS Network Ports Profile shall be supported. See NAS
Network Port Profile (15) for details on this modeling.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 329

Self-Contained NAS Profile

120

121

122

123

124
14.1.3.8 Indication Events

14.1.3.8.1 InstModification of ComputerSystem

EXPERIMENTAL

Table 205 identifies the standard OperationalStatus values and the events that are being indicated.

EXPERIMENTAL

14.1.3.8.2 InstModification of LogicalDisk

EXPERIMENTAL

Table 206 identifies the standard OperationalStatus values and the events that are being indicated.

EXPERIMENTAL

Table 205 - InstModification Events for ComputerSystem

New OperationalStatus Event / Correlated Indications

OK The top level NAS system is fully operational.

An Error in the Top Level NAS system was corrected and the system is now fully
functional.

Self test is complete and the NAS system is fully operational

Degraded The system is running but with limitations.

Error The system is experiencing an error and is not functional.

Stopped The system has been stopped.

No contact The system status cannot be determined, due to no response from the system.

Starting The system is starting, but it not yet functional.

Stopping The system is stopping.

Lost communication The system status cannot be determined, due to communications problems.

Table 206 - InstModification Events for LogicalDisk

New OperationalStatus Event / Correlated Indications

OK The logical disk is fully functional.

Degraded The logical disk is experiencing errors, but is still supporting data.

The Logical disk is rebuilding, so performance may suffer.

Error The logical disk has an error and is not usable.

Starting The logical disk is being brought online.

Dormant The logical disk is offline.
330

 Self-Contained NAS Profile

125

126
127

128

129
130
131
132

133

134
135
136
137
EXPERIMENTAL

14.1.3.9 Bellwether Indications

14.1.3.9.1 AlertIndication for ComputerSystem Bellwether
This AlertIndication signals the change in status (OperationalStatus) of a ComputerSystem as a
bellwether event. It is supported by a standard message (MessageID=FSM1). Table 207 shows the
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

14.1.3.9.2 AlertIndication for LogicalDisk Bellwether
This AlertIndication signals the change in status (OperationalStatus) of a LogicalDisk as a bellwether
event. It is supported by a standard message (MessageID=FSM3). Table 208 shows the
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

EXPERIMENTAL

14.2 Health and Fault Management Considerations
Self-Contained NAS supports state information (e.g., OperationalStatus) on the following elements of the
model:

• Network Ports (See 15.4.1 "OperationalStatus for Network Ports")

Table 207 - Bellwether AlertIndication Events for ComputerSystem

New OperationalStatus Implied Indications Inhibited

OK, Degraded, Error, Stopped

OperationalStatus changes to Elements with SystemDevice associations to this
ComputerSystem (LogicalDisks, …)

OperationalStatus changes to Elements with HostedService associations to this
ComputerSystem (FileSystemConfigurationService, FileExportService, …)

OperationalStatus changes to FileSystems with HostedFileSystem associations to
this ComputerSystem.

OperationalStatus changes to StoragePools with HostedStoragePool associations
to this ComputerSystem.

OperationalStatus changes to ProtocolEndpoints with HostedAccessPoint
associations to this ComputerSystem.

OperationalStatus changes to FileShares with HostedFileShare associations to
this ComputerSystem.

No contact, Starting, Stopping, Lost
communication

None

Table 208 - Bellwether AlertIndication Events for LogicalDisk

New OperationalStatus Implied Indications Inhibited

OK, Degraded, Error, Stopped OperationalStatus changes to FileSystems with ResidesOn associations to this
LogicalDisk.

Unknown None
SMI-S 1.6.1 Revision 6 SNIA Technical Position 331

Self-Contained NAS Profile

138

139
140

141

142
143

144
145

146

147

148

149
150

151

152
153
154

155

156

157

158

159

160

161

162

163
• Back-end Ports (See 17.3.3 Health and Fault Management Considerations ofStorage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6)

• ComputerSystems (See 25.1.5 Computer System Operational Status of Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6)

• FileShares that are exported (See 4.2.1 OperationalStatus for FileShares)

• LocalFileSystems (See 8.2.1 OperationalStatus for Filesystems)

• ProtocolEndpoints (See 15.4.2 OperationalStatus for ProtocolEndpoints)

• DiskDrive (See 11.2 Health and Fault Management Considerations of Storage Management Technical
Specification, Part 4 Block Devices, 1.6.1 Rev 6)

EXPERIMENTAL

14.2.1 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 209.

EXPERIMENTAL

14.3 Cascading Considerations
Not Applicable.

14.4 Supported Subprofiles and Packages
See section 14.1.1 for this information.

14.5 Methods of the Profile

14.5.1 Extrinsic Methods of the Profile

None.

14.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

Table 209 - Standard Messages used by NAS Head

Message ID Message Name

FSM1 ComputerSystem bellwether alert

FSM3 LogicalDisk bellwether alert
332

 Self-Contained NAS Profile

164

165
166

167

168

169

170

171

172

173

174

175

176

177

178
• EnumerateInstances

• EnumerateInstanceNames

Manipulation functions are supported in subprofiles of the profile.

14.6 Client Considerations and Recipes
Not defined in this version of the specification.

14.7 CIM Elements
Table 210 describes the CIM elements for Self-contained NAS System.

Table 210 - CIM Elements for Self-contained NAS System

Element Name Requirement Description

14.7.1 CIM_ComputerSystem (Top Level System) Mandatory This declares that at least one computer system entry will
pre-exist. The Name property should be the Unique
identifier for the Self-contained NAS System. Associated
to RegisteredProfile.

14.7.2 CIM_ComputerSystem (Virtual File Server) Optional This represents a Virtual File Server, if one exists.

14.7.3 CIM_ElementCapabilities
(ImplementationCapabilities to Service)

Optional Experimental. Associates the top level Self-contained
NAS ComputerSystem to the
CIM_ImplementationCapabilities supported by the
implementation.

14.7.4 CIM_FilterCollection (Self-contained NAS
Predefined FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

14.7.5 CIM_HostedCollection (Self-contained NAS to
predefined FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

14.7.6 CIM_HostedDependency Optional Associates a Virtual File Server to the Computer System
hosting it. This is required if a Virtual File Server exists.

14.7.7 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

14.7.8 CIM_IndicationFilter (LogicalDisk
OperationalStatus Bellwether Alert)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the bellwether alert for
changes in the OperationalStatus of LogicalDisk
instances.

14.7.9 CIM_IndicationFilter (LogicalDisk
OperationalStatus)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of LogicalDisk instances.

14.7.10 CIM_IndicationFilter (System OperationalStatus
Bellwether Alert)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the bellwether alert for
changes in the OperationalStatus of System instances.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 333

Self-Contained NAS Profile
14.7.11 CIM_IndicationFilter (System OperationalStatus) Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of System instances.

14.7.12 CIM_LogicalDisk (Disk for FS) Mandatory Represents LogicalDisks used for building
LocalFileSystems.

14.7.13 CIM_MemberOfCollection (Predefined Filter
Collection to Self-contained NAS Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Self-contained NAS predefined FilterCollection to the
predefined Filters supported by the Self-contained NAS.

14.7.14 CIM_SystemDevice (Logical Disks) Mandatory This association links all LogicalDisks to the scoping
system.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatu
s <>
PreviousInstance.CIM_ComputerSystem::OperationalStat
us

Optional CQL -Change of Status of a NAS ComputerSystem
(controller).

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="FSM1"

Optional CQL -This is a bellwether indication of a change of Status
of a NAS ComputerSystem (controller) and related
classes (LogicalDisks, Services, ProtocolEndpoints,
StoragePools, FileShares and FileSystems).

See 14.1.3.9.1 AlertIndication for ComputerSystem
Bellwether

Also see Storage Management Technical Specification,
Part 2 Common Architecture, 1.6.1 Rev 6 8.4.4.1
Message: System OperationalStatus Bellwether.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a NAS
ComputerSystem (controller).

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of status of a LogicalDisk.

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 14.1.3.8.2 InstModification of LogicalDisk.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus

Optional CQL -Change of status of a LogicalDisk.

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 14.1.3.8.2 InstModification of LogicalDisk.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="FSM3"

Optional CQL -This is a bellwether indication of a change of status
of a LogicalDisk.

See 14.1.3.9.2 AlertIndication for LogicalDisk Bellwether

Also see Storage Management Technical Specification,
Part 2 Common Architecture, 1.6.1 Rev 6 8.4.4.3
Message: LogicalDisk OperationalStatus Bellwether.

Table 210 - CIM Elements for Self-contained NAS System

Element Name Requirement Description
334

 Self-Contained NAS Profile

179

180

181

182

183

184
185

186
14.7.1 CIM_ComputerSystem (Top Level System)

Created By: Static
Modified By: External
Deleted By: Static
Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The
RegisteredProfile instance shall have RegisteredName set to 'Self-contained NAS System',
RegisteredOrganization set to 'SNIA', and RegisteredVersion set to '1.6.0'.

Table 211 describes class CIM_ComputerSystem (Top Level System).

Table 211 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory The actual class of this object, e.g., Vendor_NASComputerSystem.

ElementName Mandatory User-friendly name.

Name Mandatory Unique identifier for the Self-contained NAS System in a format specified
by NameFormat. For example, IP address or Vendor/Model/SerialNo.

OperationalStatus Mandatory Overall status of the Self-contained NAS System. The standard values are
2 (OK), 3 (Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10 (Stopped), 12
(No contact) or 13 (Lost Communication).

NameFormat Mandatory Format for Name property.

PrimaryOwnerContact M Optional Owner of the Self-contained NAS System.

PrimaryOwnerName M Optional Contact details for owner.

Dedicated Mandatory This shall indicate that this computer system is dedicated to operation as a
Self-contained NAS (25).

OtherIdentifyingInfo C Mandatory An array of know identifiers for the Self-contained NAS.

IdentifyingDescriptions C Mandatory An array of descriptions of the OtherIdentifyingInfo. Some of the
descriptions would be "Ipv4 Address", "Ipv6 Address" or "Fully Qualified
Domain Name".

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 335

Self-Contained NAS Profile

187

188

189

190

191

192
14.7.2 CIM_ComputerSystem (Virtual File Server)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 212 describes class CIM_ComputerSystem (Virtual File Server).

OtherDedicatedDescription
s

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

Table 212 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement Description & Notes

Dedicated Mandatory A Virtual File Server is a File Server (16).

NameFormat Mandatory Format for Name property. This shall be "Other".

Name C Mandatory Unique identifier for the Self-contained NAS System's Virtual File Servers
(Eg Vendor/Model/SerialNo+FS+Number).

OperationalStatus Mandatory Overall status of the Virtual File Server. The standard values are 2 (OK), 3
(Degraded), 6 (Error), 8 (Starting), 9 (Stopping), 10 (Stopped), 12 (No
contact) or 13 (Lost Communication).

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

Roles N Optional Not Specified in this version of the Profile.

OtherDedicatedDescription
s

N Optional Not Specified in this version of the Profile.

ResetCapability N Optional Not Specified in this version of the Profile.

PrimaryOwnerContact N Optional Not Specified in this version of the Profile.

Table 211 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)

Properties Flags Requirement Description & Notes
336

 Self-Contained NAS Profile

193

194
195

196

197

198

199

200

201

202
203
204

205
206
14.7.3 CIM_ElementCapabilities (ImplementationCapabilities to Service)

Experimental. Associates the top level Self-contained NAS ComputerSystem to the
CIM_ImplementationCapabilities supported by the implementation.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 213 describes class CIM_ElementCapabilities (ImplementationCapabilities to Service).

14.7.4 CIM_FilterCollection (Self-contained NAS Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Self-
contained NAS implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 214 describes class CIM_FilterCollection (Self-contained NAS Predefined FilterCollection).

14.7.5 CIM_HostedCollection (Self-contained NAS to predefined FilterCollection)

Experimental.
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

PrimaryOwnerName N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescriptions N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

Table 213 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to Service)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The top level Self-contained NAS ComputerSystem that has
ImplementationCapabilities.

Table 214 - SMI Referenced Properties/Methods for CIM_FilterCollection (Self-contained NAS Predefined
FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Self-contained NAS'.

Table 212 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 337

Self-Contained NAS Profile

207

208

209

210
211

212

213

214

215

216

217

218

219

220

221

222
Table 215 describes class CIM_HostedCollection (Self-contained NAS to predefined FilterCollection).

14.7.6 CIM_HostedDependency

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 216 describes class CIM_HostedDependency.

14.7.7 CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 217 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

Table 215 - SMI Referenced Properties/Methods for CIM_HostedCollection (Self-contained NAS to pre-
defined FilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Self-contained NAS.

Antecedent Mandatory Reference to the top level System of the Self-contained NAS.

Table 216 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File Server
ComputerSystem is a File Server and shall have Dedicated=16 (File
Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting ComputerSystem may be the
top level NAS ComputerSystem or an Multiple Computer System (non-top
level) system.

Table 217 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.
338

 Self-Contained NAS Profile

223

224

225

226

227
228

229

230

231

232

233
14.7.8 CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the bellwether alert for changes
in the OperationalStatus of LogicalDisk instances. This is a special case of the CIM_IndicationFilter (pre-
defined) class as defined in the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 218 describes class CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert).

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimiz
ations

Mandatory This array of strings lists the capacity optimization techiques that are
supported by the implementation. Valid string values are "none" |
"SNIA:Thin Provisioning" | "SNIA:Data Compression" | "SNIA:Data
Deduplication".

Table 218 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus
Bellwether Alert)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6
42.8.3 CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:Self-contained
NAS:LogicalDiskOperationalStatusBellwetherAlert'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="FSM3".

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6
42.8.3 CIM_IndicationFilter (pre-defined).

Table 217 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 339

Self-Contained NAS Profile

234

235
236

237

238

239

240
241

242
14.7.9 CIM_IndicationFilter (LogicalDisk OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of LogicalDisk instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined
in the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 219 describes class CIM_IndicationFilter (LogicalDisk OperationalStatus).

14.7.10CIM_IndicationFilter (System OperationalStatus Bellwether Alert)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the bellwether alert for changes
in the OperationalStatus of System instances. This is a special case of the CIM_IndicationFilter (pre-
defined) class as defined in the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 219 - SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:Self-contained
NAS:LogicalDiskOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_LogicalDisk AND
SourceInstance.CIM_LogicalDisk::OperationalStatus <>
PreviousInstance.CIM_LogicalDisk::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).
340

 Self-Contained NAS Profile

243

244
245

246

247

248

249

250

251

252
253

254

255

256

257
Table 220 describes class CIM_IndicationFilter (System OperationalStatus Bellwether Alert).

14.7.11CIM_IndicationFilter (System OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of System instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in
the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 220 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bell-
wether Alert)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:Self-contained
NAS:SystemOperationalStatusBellwetherAlert'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section
Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="FSM1".

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 42.8.3 CIM_IndicationFilter (pre-defined).
SMI-S 1.6.1 Revision 6 SNIA Technical Position 341

Self-Contained NAS Profile

258

259

260

261

262

263

264
Table 221 describes class CIM_IndicationFilter (System OperationalStatus).

14.7.12CIM_LogicalDisk (Disk for FS)

Created By: Extrinsic_or_External
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 222 describes class CIM_LogicalDisk (Disk for FS).

Table 221 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:Self-contained NAS:SystemOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatus <>
PreviousInstance.CIM_ComputerSystem::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Table 222 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory CIM Class of the Self-contained NAS System Computer System that is the
host of this LogicalDisk.

SystemName Mandatory Name of the Self-contained NAS System Computer System that hosts this
LogicalDisk.

CreationClassName Mandatory CIM Class of this instance of LogicalDisk.

DeviceID Mandatory Opaque identifier for the LogicalDisk.
342

 Self-Contained NAS Profile
OperationalStatus Mandatory A subset of operational status that is applicable for LogicalDisks in a Self-
contained NAS System. The standard values for this are 2 (OK), 3
(Degraded), 6 (Error), 8 (Starting) or 15 (Dormant).

ExtentStatus Mandatory This LogicalDisk is neither imported (16) nor exported (17). The standard
values for this are 0 (Other), 1 (Unknown), 2 (None/Not Applicable), 3
(Broken), 4 (Data Lost), 5 (Dynamic Reconfig), 6 (Exposed), 7
(Fractionally Exposed), 8 (Partially Exposed), 9 (Protection Disabled), 10
(Readying), 11 (Rebuild), 12 (Recalculate), 13 (Spare in Use), 14 (Verify In
Progress) or 15 (In-Band Access Granted).

Primordial Mandatory This represents a Concrete Logical Disk that is not primordial.

NameFormat Mandatory The format of the Name appropriate for LogicalDisks in the Self-contained
NAS System. This should be coded as "1" ("other").

Name Mandatory Identifier for a local LogicalDisk that will be used for a filesystem; since this
storage extent will be referenced by a client, it needs to have a unique
name. We cannot constrain the format here, but the OS-specific format
described in the Block Services specification is not appropriate, so "Other"
is used.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescriptions N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

DataOrganization N Optional Not Specified in this version of the Profile.

Purpose N Optional Not Specified in this version of the Profile.

Access N Optional Not Specified in this version of the Profile.

ErrorMethodology N Optional Not Specified in this version of the Profile.

SequentialAccess N Optional Not Specified in this version of the Profile.

NameNamespace N Optional Not Specified in this version of the Profile.

OtherNameNamespace N Optional Not Specified in this version of the Profile.

OtherNameFormat N Optional Not Specified in this version of the Profile.

Table 222 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 343

Self-Contained NAS Profile

265

266
267

268
269

270
271

272

273

274

275

276

277
14.7.13CIM_MemberOfCollection (Predefined Filter Collection to Self-contained NAS Filters)

Experimental. This associates the Self-contained NAS predefined FilterCollection to the predefined
Filters supported by the Self-contained NAS.
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 223 describes class CIM_MemberOfCollection (Predefined Filter Collection to Self-contained NAS
Filters).

14.7.14CIM_SystemDevice (Logical Disks)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 224 describes class CIM_SystemDevice (Logical Disks).

STABLE

RequestStateChange() Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 223 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Self-contained NAS Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Self-contained NAS predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Self-contained NAS.

Table 224 - SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device. This shall be either the
top level NAS system or a multiple computer system non-top level system.

PartComponent Mandatory The LogicalDisk that is a part of a computer system.

Table 222 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)

Properties Flags Requirement Description & Notes
344

 NAS Network Port Profile

1

2
3
4
5
6
7

8

9

10

11

12

13

14

15

16

17
18
19
20
21

22

23
24
STABLE

15 NAS Network Port Profile

15.1 Synopsis
Profile Name: NAS Network Port (Component Profile)

Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.18

Table 225 describes the related profiles for NAS Network Port.

Central Class: CIM_ProtocolEndpoint

Scoping Class: CIM_ComputerSystem

15.2 Description
The NAS Network Port Profile models ProtocolEndpoints for file access (CIFS and NFS), TCP, IP and
LAN endpoints. It also models the Network port supported by the protocol endpoints. The methods for
manipulating these elements are covered by other profiles. This profile provides basic information in the
NAS models for addressing paths for accessing the NAS implementations for the purpose of data access
(front-end ports).

15.3 Implementation
Figure 24: "NAS Support for Front-end Network Ports" illustrates the classes for modeling of front end
NetworkPorts for the NAS profiles.

Table 225 - Related Profiles for NAS Network Port

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional
SMI-S 1.6.1 Revision 6 SNIA Technical Position 345

NAS Network Port Profile

25
26
27

28

29
30

31

32

33

34
35
The ProtocolEndpoint for NFS or CIFS shall be present and shall be associated to a ComputerSystem via
a HostedAccessPoint association. It shall also be associated to one or more NetworkPort(s) via the
DeviceSAPImplementation.

EXPERIMENTAL

The NetworkVLAN and the SNIA_IPInterfaceSettingData classes are optional. And their associations to
the IPProtocolEndpoint are conditional on the existence of these optional classes.

EXPERIMENTAL

For TCP/IP Interface modeling (which is optional) see section 15.3.1

For modeling of Network ports for NAS (which is mandatory) see section 15.3.2

15.3.1 The NAS TCP Interface

Figure 25: "Optional NAS TCP Interface Modeling" illustrates the classes for the optional modeling of
TCP/IP protocol stack for the NAS profiles.

Figure 24 - NAS Support for Front-end Network Ports
346

 NAS Network Port Profile

36
37
38
39
40

41

42
43
The modeling of the TCPProtocolEndpoint and IPProtocolEndpoint are optional. The associations from
(to) those classes are conditional on the existence of the classes. Like the NFS or CIFS
ProtocolEndpoint, the TCPProtocolEndpoint and IPProtocolEndpoint shall have HostedAccessPoint
associations to some ComputerSystem. Typically, this would be the same ComputerSystem that hosts the
NetworkPort. However this is not a requirement.

15.3.2 The NAS Ethernet Interface

Figure 26: "Mandatory NAS Ethernet Port Modeling" illustrates the classes for the mandatory modeling of
(front end) Network port for the NAS profiles.

Figure 25 - Optional NAS TCP Interface Modeling
SMI-S 1.6.1 Revision 6 SNIA Technical Position 347

NAS Network Port Profile

44
45
46
47

48
49
50
51
The NetworkPort shall be modeled and shall have an SystemDevice association to a ComputerSystem.
The ComputerSystem in the diagram may be the top level system for the self-contained NAS or any of its
component computer systems. The ComputerSystem that hosts the NFS or CIFS ProtocolEndpoint need
not be the same ComputerSystem associated to the NetworkPort via its SystemDevice association.

The modeling of the LANEndpoint is optional. The associations from (to) this class are conditional on the
existence of the LANEndpoint. Like the NFS or CIFS ProtocolEndpoint, the LANEndpoint shall have
HostedAccessPoint associations to some ComputerSystem. Typically, this would be the same
ComputerSystem that hosts the NetworkPort. However this is not a requirement.

Figure 26 - Mandatory NAS Ethernet Port Modeling
348

 NAS Network Port Profile

52

53

54

55

56
15.3.3 Indication Events

15.3.3.1 InstModification of NetworkPort

EXPERIMENTAL

Table 226 identifies the standard OperationalStatus values and the events that are being indicated.

EXPERIMENTAL

15.3.3.2 InstModification of ProtocolEndpoint

EXPERIMENTAL

Table 227 identifies the standard OperationalStatus values and the events that are being indicated.

Table 226 - InstModification Events for NetworkPort

New OperationalStatus Event / Correlated Indications

OK

An Error in the port was corrected and the Port is now online

The Port was enabled (and is online)

Self test is complete and the port is back online

Error

The port has been unplugged

The port is plugged in, but failed a self test

The port is dependent on another element that has failed (e.g., a controller).

CORRELATED INDICATION: InstModification of ComputerSystem

The port is not able to establish connections to remote system

Stopped

The port is implicitly disabled due to a physical condition in the port

The port is implicitly disabled due to a logical errors encountered on the port

The port was explicitly disabled by user action

The port was stopped due to a “parent” element (e.g., Controller) being stopped.

CORRELATED INDICATION: InstModification of ComputerSystem

In Service

The port is in self test by explicit user request

The port is in self test, due to errors encountered
SMI-S 1.6.1 Revision 6 SNIA Technical Position 349

NAS Network Port Profile

57

58

59
60

61

62
63
64
65

66

67
68

69

70

EXPERIMENTAL

EXPERIMENTAL

15.3.4 Bellwether Indications

15.3.4.1 AlertIndication for NetworkPort Bellwether
This AlertIndication signals the change in status (OperationalStatus) of a NetworkPort as a bellwether
event. It is supported by a standard message (MessageID=FSM002). Table 228 shows the
OperationalStatus values that may signal that changes may have occurred in related elements (Implied
Indications Inhibited).

EXPERIMENTAL

15.4 Health and Fault Management Considerations
The NAS Network Port Profile supports state information (e.g., OperationalStatus) on the following
elements of the model:

• Network Ports (See 15.4.1 OperationalStatus for Network Ports)

• ProtocolEndpoints (See 15.4.2 OperationalStatus for ProtocolEndpoints)

Table 227 - InstModification Events for ProtocolEndpoint

New OperationalStatus Event / Correlated Indications

OK ProtocolEndpoint is online

Error ProtocolEndpoint has a failure

Stopped ProtocolEndpoint is disabled

Unknown

Table 228 - Bellwether AlertIndication Events for NetworkPort

New OperationalStatus Implied Indications Inhibited

OK, Error, Stopped OperationalStatus changes to ProtocolEndpoints with DeviceSAPImplementation
associations to this NetworkPort.

OperationalStatus changes to FileShares with SAPAvailableForFileShare
associations to a ProtocolEndpoint with a DeviceSAPImplementation association
to this NetworkPort.

InService, Unknown None
350

 NAS Network Port Profile

71

72

73

74

75

76
77
78

79

80

81
15.4.1 OperationalStatus for Network Ports

Table 229 defines the network port OperationalStatus values supported by this standard.

15.4.2 OperationalStatus for ProtocolEndpoints

Table 229 defines the ProtocolEndpoint OperationalStatus values supported by this standard

EXPERIMENTAL

15.4.3 Standard Messages used by this Profile

The standard messages specific to this profile are listed in Table 231.

EXPERIMENTAL

15.5 Cascading Considerations
Not Applicable.

15.6 Methods

15.6.1 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

Table 229 - NetworkPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 230 - ProtocolEndpoint OperationalStatus

OperationalStatus Description

OK ProtocolEndpoint is online

Error ProtocolEndpoint has a failure

Stopped ProtocolEndpoint is disabled

Unknown

Table 231 - Standard Messages used by NAS Head

Message ID Message Name

FSM002 NetworkPort bellwether alert
SMI-S 1.6.1 Revision 6 SNIA Technical Position 351

NAS Network Port Profile

82

83

84
85

86

87

88

89

90

91

92

93

94
95

96

97

98

99
100

101
102

103

104
• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

15.6.2 Extrinsic Methods of the Profile

None. For creation of ProtocolEndpoints, see 5 File Export Manipulation Subprofile and 6 File Server
Manipulation Subprofile.

15.7 Use Cases
Not defined in this version of the specification.

Documentation of discovery use cases will be considered in a future release.

15.8 CIM Elements
Table 232 describes the CIM elements for NAS Network Port.

Table 232 - CIM Elements for NAS Network Port

Element Name Requirement Description

15.8.1 CIM_BindsTo (CIFS or NFS) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists. Associates a CIFS or NFS
ProtocolEndpoint to an underlying TCPProtocolEndpoint.
This is used in the NAS profiles to support the TCP/IP
Network protocol stack.

15.8.2 CIM_BindsTo (TCP) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists. (See the TCP Interface
Section) Associates a TCPProtocolEndpoint to an
underlying IPProtocolEndpoint. This is used in the NAS
Profiles to support the TCP/IP Network protocol stack.

15.8.3 CIM_BindsToLANEndpoint Conditional Conditional requirement: This is required if a
LANEndpoint exists. (See the TCP Interface Section)
Associates an IPProtocolEndpoint to an underlying
LANEndpoint in the NAS Profiles (to support the TCP/IP
Network protocol stack).

15.8.4 CIM_DeviceSAPImplementation (CIFS or NFS to
NetworkPort)

Mandatory Represents the association between a CIFS or NFS
ProtocolEndpoint and the NetworkPort that it supports.

15.8.5 CIM_DeviceSAPImplementation (LANEndpoint to
NetworkPort)

Conditional Conditional requirement: This is required if a
LANEndpoint exists. (See the Ethernet Interface Section)
Associates a logical front end Port (a NetworkPort) to the
LANEndpoint that uses that device to connect to a LAN.

15.8.6 CIM_ElementSettingData (IPInterfaceSettingData
to IPProtocolEndpoint)

Optional The IPProtocolEndpoint associated with the
IPInterfaceSettingData.

15.8.7 CIM_HostedAccessPoint (CIFS or NFS) Mandatory Represents the association between a CIFS or NFS front
end ProtocolEndpoint and the Computer System that
hosts it.
352

 NAS Network Port Profile
15.8.8 CIM_HostedAccessPoint (IP) Conditional Conditional requirement: This is required if an
IPProtocolEndpoint exists. (See the TCP Interface
Section) Represents the association between a front end
IPProtocolEndpoint and the Computer System that hosts
it.

15.8.9 CIM_HostedAccessPoint (LAN) Conditional Conditional requirement: This is required if a
LANEndpoint exists. (See the Ethernet Interface Section)
Represents the association between a front end
LANEndpoint and the Computer System that hosts it.

15.8.10 CIM_HostedAccessPoint (TCP) Conditional Conditional requirement: This is required if a
TCPProtocolEndpoint exists. (See the TCP Interface
Section) Represents the association between a front end
TCPProtocolEndpoint and the Computer System that
hosts it.

15.8.11 CIM_IPProtocolEndpoint Optional (See the TCP Interface Section) Represents the front-end
ProtocolEndpoint used to support the IP protocol
services.

15.8.12 CIM_LANEndpoint Optional (See the Ethernet Interface Section) Represents the front-
end ProtocolEndpoint used to support a Local Area
Network and its services.

15.8.13 CIM_MemberOfCollection (The
IPProtocolEndpoint to NetworkVLAN.)

Conditional Conditional requirement: The NetworkVLAN has been
defined. Associates an IPProtocolEndpoint to
NetworkVLAN.

15.8.14 CIM_NetworkPort Mandatory (See the Ethernet Interface Section) Represents the front
end logical port that supports access to a local area
network.

15.8.15 CIM_NetworkVLAN Optional This element represents the virtual LAN (VLAN) tag
settings for an IP interface. In the context of a file server, it
represents the VLAN information.

15.8.16 CIM_ProtocolEndpoint (CIFS or NFS) Mandatory Represents the front-end ProtocolEndpoint used to
support NFS and CIFS services.

15.8.17 CIM_SystemDevice (Network Ports) Mandatory (See the Ethernet Interface section) This association links
all NetworkPorts to the scoping system. This is used to
represent both front end and back end ports.

15.8.18 CIM_TCPProtocolEndpoint Optional (See the TCP Interface Section) Represents the front-end
ProtocolEndpoint used to support TCP services.

15.8.19 SNIA_IPInterfaceSettingData Optional This class contains the settings for single IP interface.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_NetworkPort AND
SourceInstance.CIM_NetworkPort::OperationalStatus <>
PreviousInstance.CIM_NetworkPort::OperationalStatus

Optional CQL -Change of Status of a Port.

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 15.3.3.1 InstModification of NetworkPort.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_NetworkPort AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a Port.

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 15.3.3.1 InstModification of NetworkPort.

Table 232 - CIM Elements for NAS Network Port

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 353

NAS Network Port Profile

105

106

107

108

109

110
15.8.1 CIM_BindsTo (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a TCPProtocolEndpoint exists.

Table 233 describes class CIM_BindsTo (CIFS or NFS).

15.8.2 CIM_BindsTo (TCP)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if an IPProtocolEndpoint exists.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity="SNIA" and MessageID="FSM002"

Optional CQL -This is a bellwether indication of a change of Status
of a Port and related classes (ProtocolEndpoints and
FileShares).

See 15.3.4.1 AlertIndication for NetworkPort Bellwether.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ProtocolEndpoint AND
SourceInstance.CIM_ProtocolEndpoint::OperationalStatu
s <>
PreviousInstance.CIM_ProtocolEndpoint::OperationalStat
us

Optional CQL -Change of Status of a ProtocolEndpoint

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 15.3.3.2 InstModification of ProtocolEndpoint.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ProtocolEndpoint AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Status of a
ProtocolEndpoint

PreviousInstance is optional, but may be supplied by an
implementation of the Profile.

See 15.3.3.2 InstModification of ProtocolEndpoint.

Table 233 - SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpoint that uses a lower level ProtocolEndpoint for
connectivity. The ProtocolIFType shall be 4200 (NFS) or 4201 (CIFS) in
the referenced ProtocolEndpoint.

Antecedent Mandatory The TCPProtocolEndpoint that supports a CIFS or NFS ProtocolEndpoint.

Table 232 - CIM Elements for NAS Network Port

Element Name Requirement Description
354

 NAS Network Port Profile

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127
Table 234 describes class CIM_BindsTo (TCP).

15.8.3 CIM_BindsToLANEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 235 describes class CIM_BindsToLANEndpoint.

15.8.4 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 236 describes class CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort).

15.8.5 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)

Created By: External

Table 234 - SMI Referenced Properties/Methods for CIM_BindsTo (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint that uses an IPProtocolEndpoint for
connectivity.

Antecedent Mandatory The IPProtocolEndpoint that supports a TCPProtocolEndpoint.

Table 235 - SMI Referenced Properties/Methods for CIM_BindsToLANEndpoint

Properties Flags Requirement Description & Notes

FrameType Mandatory Only supports 1="Ethernet" at this point.

Dependent Mandatory A IPProtocolEndpoint.

Antecedent Mandatory A LANEndpoint.

Table 236 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to Net-
workPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ProtocolEndpont that supports on the NetworkPort. The
ProtocolIFType shall be 4200 (NFS) or 4201 (CIFS) in the referenced
ProtocolEndpoint.

Antecedent Mandatory The NetworkPort supported by the Access Point.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 355

NAS Network Port Profile

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142
Modified By: Static
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 237 describes class CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort).

15.8.6 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 238 describes class CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint).

15.8.7 CIM_HostedAccessPoint (CIFS or NFS)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 239 describes class CIM_HostedAccessPoint (CIFS or NFS).

Table 237 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to Net-
workPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory A LANEndpoint that depends on a NetworkPort for connecting to its LAN
segment.

Antecedent Mandatory The Logical network adapter device that connects to a LAN.

Table 238 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to
IPProtocolEndpoint)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The IPProtocolEndpoint.

SettingData Mandatory The IPInterfaceSettingData.

Table 239 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

Dependent Mandatory The ServiceAccessPoint hosted on the file server. The ProtocolIFType
shall be 4200 (NFS) or 4201 (CIFS) in the referenced ProtocolEndpoint.

Antecedent Mandatory The Computer System hosting this Access Point. In the context of the
NAS Profiles, these are always file servers (Dedicated=16).
356

 NAS Network Port Profile

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159
15.8.8 CIM_HostedAccessPoint (IP)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if an IPProtocolEndpoint exists.

Table 240 describes class CIM_HostedAccessPoint (IP).

15.8.9 CIM_HostedAccessPoint (LAN)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a LANEndpoint exists.

Table 241 describes class CIM_HostedAccessPoint (LAN).

15.8.10CIM_HostedAccessPoint (TCP)

Created By: External
Modified By: Static
Deleted By: External
Requirement: This is required if a TCPProtocolEndpoint exists.

Table 242 describes class CIM_HostedAccessPoint (TCP).

Table 240 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The IPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 241 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)

Properties Flags Requirement Description & Notes

Dependent Mandatory The LANEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.

Table 242 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)

Properties Flags Requirement Description & Notes

Dependent Mandatory The TCPProtocolEndpoint hosted on the file server.

Antecedent Mandatory The Computer System hosting this Access Point.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 357

NAS Network Port Profile

160

161

162

163

164

165

166

167

168

169

170
15.8.11CIM_IPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 243 describes class CIM_IPProtocolEndpoint.

Table 243 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The CIM Class name of the Computer System hosting the Protocol
Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory (POSSIBLE NAS CONSTRAINT) The Format of the Name.

RequestedState Optional (DMTF Core/IP Interface).

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS Head. The
operational status of the PEP.

EnabledState Optional (DMTF Core/IP Interface).

OtherEnabledState Optional

TimeOfLastStateChange Optional

Description Conditional Conditional requirement: Required if parent profile is NAS Head. or
Required if parent profile is a Self-contained NAS System. This shall be
the IP protocol endpoints supported by the NAS Profiles.

ProtocolIFType Mandatory 4096="IP v4", 4097="IP v6", and 4098 is both. (Note that 1="Other" is not
supported).

IPv4Address Conditional Conditional requirement: This is required if an ProtocolIFType = 4096 or
4098. An IP v4 address in the format "A.B.C.D".

IPv6Address Conditional Conditional requirement: This is required if an ProtocolIFType = 4097 or
4098. An IP v6 address.

SubnetMask Conditional Conditional requirement: This is required if an ProtocolIFType = 4096 or
4098. An IP v4 subnet mask in the format "A.B.C.D".

PrefixLength Conditional Conditional requirement: This is required if an ProtocolIFType = 4097 or
4098. For an IPv6 address.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional (DMTF Core/IP Interface) Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.
358

 NAS Network Port Profile

171

172

173

174

175

176
15.8.12CIM_LANEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 244 describes class CIM_LANEndpoint.

OtherTypeDescription N Optional Not Specified in this version of the Profile.

BroadcastResetSupported N Optional Not Specified in this version of the Profile.

AddressOrigin N Optional (DMTF Core/IP Interface) Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 244 - SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The CIM Class name of the Computer System hosting the Protocol
Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Conditional Conditional requirement: Required if parent profile is a Self-contained NAS
System. or Required if parent profile is NAS Head. The unique name of
the Protocol Endpoint.

NameFormat Conditional Conditional requirement: Required if parent profile is a Self-contained NAS
System. or Required if parent profile is NAS Head. The Format of the
Name.

RequestedState Optional A NAS Head option.

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS Head. The
operational status of the PEP.

EnabledState Optional A NAS Head option.

OtherEnabledState Optional A NAS Head option.

TimeOfLastStateChange Optional A NAS Head option.

Description Conditional Conditional requirement: Required if parent profile is NAS Head. This shall
be the LAN protocol endpoints supported by the NAS Head.

ProtocolIFType Conditional Conditional requirement: Required if parent profile is a Self-contained NAS
System. or Required if parent profile is NAS Head. LAN endpoints
supported are: 1="Other",6="Ethernet CSMA/CD", 9="ISO 802.5 Token
Ring", 15="FDDI".

OtherTypeDescription Optional If the LAN endpoint is a vendor-extension specified by "Other" and a
description.

Table 243 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 359

NAS Network Port Profile

177

178

179

180

181
15.8.13CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: The NetworkVLAN has been defined.

Table 245 describes class CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.).

15.8.14CIM_NetworkPort

Created By: External
Modified By: External
Deleted By: External

LANID N Optional A unique id for the LAN segment to which this device is connected. The
value will be NULL if the LAN is not connected.

MACAddress Mandatory (POSSIBLE NAS CONSTRAINT) Primary Unicast address for this LAN
device.

AliasAddresses Mandatory (POSSIBLE NAS CONSTRAINT) Other unicast addresses supported by
this device.

GroupAddresses Mandatory (POSSIBLE NAS CONSTRAINT) Multicast addresses supported by this
device.

MaxDataSize Mandatory (POSSIBLE NAS CONSTRAINT) The max size of packet supported by
this LAN device.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional (DMTF Core/IP Interface) Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

BroadcastResetSupported N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 245 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to
NetworkVLAN.)

Properties Flags Requirement Description & Notes

Member Mandatory The IPProtocolEndpoint.

Collection Mandatory The NetworkVLAN.

Table 244 - SMI Referenced Properties/Methods for CIM_LANEndpoint

Properties Flags Requirement Description & Notes
360

 NAS Network Port Profile

182

183

184

185

186

187

188
Requirement: Mandatory

Table 246 describes class CIM_NetworkPort.

Table 246 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Network adapter that provides a network port.

OperationalStatus Mandatory The operational status of the adapter.

SystemCreationClassNam
e

Mandatory The CIM Class name of the Computer System hosting the Network Port.

SystemName Mandatory The name of the Computer System hosting the Network Port.

CreationClassName Mandatory The CIM Class name of the Network Port.

DeviceID Mandatory A unique ID for the device (in the context of the hosting System).

Speed Optional (Fabric/Extender).

MaxSpeed Optional (Fabric/Extender).

RequestedSpeed Optional

UsageRestriction Optional

PortType Optional (Fabric/Extender).

PortNumber Optional (Fabric/Extender) A unique number for the adapter in the context of the
hosting System.

PermanentAddress C Mandatory The hard-coded address of this port.

NetworkAddresses Conditional Conditional requirement: Required if parent profile is NAS Head. An array
of network addresses for this port.

LinkTechnology Optional (Fabric/Extender) 1="Other", 2="Ethernet", 3="IB", 4="FC", 5="FDDI",
6="ATM", 7="Token Ring", 8="Frame Relay", 9="Infrared",
10="BlueTooth", 11="Wireless LAN. The link technology supported by this
adapter.

OtherLinkTechnology Optional The vendor-specific "Other" link technology supported by this adapter.

FullDuplex Optional

AutoSense Optional

SupportedMaximumTrans
missionUnit

Optional

ActiveMaximumTransmissi
onUnit

Optional

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

Name N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional (DMTF Core/IP Interface) Not Specified in this version of the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 361

NAS Network Port Profile

189

190

191

192

193

194
15.8.15CIM_NetworkVLAN

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: Optional

Table 247 describes class CIM_NetworkVLAN.

15.8.16CIM_ProtocolEndpoint (CIFS or NFS)

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional (DMTF Core/IP Interface) Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

OtherIdentifyingInfo N Optional Not Specified in this version of the Profile.

IdentifyingDescriptions N Optional Not Specified in this version of the Profile.

AdditionalAvailability N Optional Not Specified in this version of the Profile.

LocationIndicator N Optional Not Specified in this version of the Profile.

OtherPortType N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

Reset() Optional Not Specified in this version of the Profile.

Table 247 - SMI Referenced Properties/Methods for CIM_NetworkVLAN

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the NetworkVLAN.

VLANId Mandatory The VLAN id that is to be associated with an IP interface. The id shall be
included in all IP packets being sent through an IP interface.

TransmissionSize Mandatory The maximum transmission unit size that is associated with an IP
Interface.

Table 246 - SMI Referenced Properties/Methods for CIM_NetworkPort

Properties Flags Requirement Description & Notes
362

 NAS Network Port Profile

195

196

197

198

199

200
Table 248 describes class CIM_ProtocolEndpoint (CIFS or NFS).

15.8.17CIM_SystemDevice (Network Ports)

Created By: Extrinsic_or_External_or_Static
Modified By: Extrinsic_or_External
Deleted By: Extrinsic_or_External
Requirement: Mandatory

Table 248 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The CIM Class name of the Computer System hosting the Protocol
Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Mandatory The Format of the Name.

RequestedState Optional

OperationalStatus Mandatory The operational status of the PEP.

EnabledState Optional

OtherEnabledState Optional

TimeOfLastStateChange Optional

Description Mandatory This shall be one of the NFS or CIFS protocol endpoints supported by the
NAS Profiles.

ProtocolIFType Mandatory This represents either NFS=4200 or CIFS=4201. Other protocol types are
specified in subclasses of ProtocolEndpoint.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescription N Optional Not Specified in this version of the Profile.

BroadcastResetSupported N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 363

NAS Network Port Profile

201

202

203

204

205

206

207

208

209

210

211

212
Table 249 describes class CIM_SystemDevice (Network Ports).

15.8.18CIM_TCPProtocolEndpoint

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 250 describes class CIM_TCPProtocolEndpoint.

Table 249 - SMI Referenced Properties/Methods for CIM_SystemDevice (Network Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Computer System that contains this device. This shall be either the
top level NAS system or a multiple computer system non-top level system.

PartComponent Mandatory The NetworkPort that is a part of a computer system.

Table 250 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory The CIM Class name of the Computer System hosting the Protocol
Endpoint.

SystemName Mandatory The name of the Computer System hosting the Protocol Endpoint.

CreationClassName Mandatory The CIM Class name of the Protocol Endpoint.

Name Mandatory The unique name of the Protocol Endpoint.

NameFormat Conditional Conditional requirement: Required if parent profile is a Self-contained NAS
System. or Required if parent profile is NAS Head. The Format of the
Name.

RequestedState Optional A NAS Head option.

OperationalStatus Conditional Conditional requirement: Required if parent profile is NAS Head. The
operational status of the PEP.

EnabledState Optional A NAS Head option.

OtherEnabledState Optional A NAS Head option.

TimeOfLastStateChange Optional A NAS Head option.

Description Conditional Conditional requirement: Required if parent profile is NAS Head. This shall
be the TCP protocol endpoints supported by the NAS Head.

ProtocolIFType Mandatory 4111="TCP". Note that no other protocol type is supported by this
endpoint.

PortNumber Mandatory The number of the TCP Port that this element represents.

Caption N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.
364

 NAS Network Port Profile

213

214

215

216

217

218
15.8.19SNIA_IPInterfaceSettingData

Created By: Extrinsic: CreateFileServer | AddIPInterface
Modified By: Extrinsic: ModifyIPInterface
Deleted By: Extrinsic: DeleteFileServer | DeleteIPInterface
Requirement: Optional

Table 251 describes class SNIA_IPInterfaceSettingData.

STABLE

HealthState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

OtherTypeDescription N Optional Not Specified in this version of the Profile.

BroadcastResetSupported N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

BroadcastReset() Optional Not Specified in this version of the Profile.

Table 251 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData

Properties Flags Requirement Description & Notes

IPAddress Mandatory The IPAddress that will be used by the File Server. This can be either an
IPv4 or IPv6 address.

AddressType Mandatory The IPAddress format. This can be either "IPv4" or "IPv6".

SubnetMask Conditional Conditional requirement: This is required if an ProtocolIFType = 4096 or
4098. The subnet mask that will be used by the File Server.

IPv6PrefixLength Conditional Conditional requirement: This is required if an ProtocolIFType = 4097 or
4098. If AddressType specifies IPv6, then this specifies the prefix length
for the IPv6 address in IPAddress.

VLANId Optional If present contains the ID of the VLAN that this IP setting will be
associated with.

MTU Optional If present contains the maximum transmission unit to be used for this IP
setting. If not present, then the default of 1500 will be used.

Table 250 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 365

NAS Network Port Profile
366

 Host Filesystem Profile

1

2

3
4
5
6
7
8

9
10

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31

32

33

34

35

36
EXPERIMENTAL

16 Host Filesystem Profile

16.1 Synopsis
Profile Name: Host Filesystem (Component Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.28

Table 252 describes the related profiles for Host Filesystem.

Central Class: SNIA_FileSystemConfigurationService

Scoping Class: CIM_ComputerSystem

Table 252 - Related Profiles for Host Filesystem

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.6.1 Mandatory

File Export SNIA 1.6.1 Optional

Access Points SNIA 1.3.0 Optional

Software SNIA 1.4.0 Optional

Filesystem Manipulation SNIA 1.6.1 Optional

File Export Manipulation SNIA 1.6.1 Optional

Filesystem Performance SNIA 1.6.1 Optional

FileSystem Quotas SNIA 1.5.0 Optional

Filesystem Copy Services SNIA 1.4.0 Optional

Job Control SNIA 1.5.0 Optional

Device Credentials SNIA 1.3.0 Optional

Health SNIA 1.2.0 Mandatory

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version 1.0.0

Indication SNIA 1.5.0 Support for at
least one is
mandatory.

Deprecated.

Indications SNIA 1.6.0 Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version 1.2.0
SMI-S 1.6.1 Revision 6 SNIA Technical Position 367

Host Filesystem Profile

37

38

39

40

41

42
43
44
45
46
47

48
49
50
51
52
53
16.2 Description

16.2.1 Overview

The Host Filesystem Profile is a component profile of the Base Server (host system) Profile (see 35 Base
Server Profile in the Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6). All
references to ComputerSystem in the Host Filesystem Profile implies a single instance for a customer
server or storage system as defined in the Base Server Profile. See Annex B (Informative) Host Profile
Deployment Guidelines in the Storage Management Technical Specification, Part 7 Host Elements, 1.6.1 Rev 6
for information on the use of host profiles with Base Server profile.

A host filesystem is a filesystem that runs on an application host and gets its storage from a volume
manager or host operating systems (Host Discovered Resources) storage. The storage obtained is visible
to external management tools and they may share their storage with other host applications. For
example, host filesystem might go to a volume manager for its storage. The volume manager provides
storage to the host filesystem, but may also supply storage to other host applications (e.g., a DataBase
manager) or to other host filesystems.

This profile defines how to model the host filesystem constructs, and how it reflects connections to and
storage from the volume manager or system below it.
368

 Host Filesystem Profile

54
55

56
57
The Host Filesystem Profile reuses many profiles and packages used by the NAS profiles. This is
illustrated in Figure 27: "Host Filesystem Profiles, Subprofiles and Package".

Figure 27 - Host Filesystem Profiles, Subprofiles and Package
SMI-S 1.6.1 Revision 6 SNIA Technical Position 369

Host Filesystem Profile

58

59

60
61
62

63
64
65
66

67
68

69
70

71
72
73
16.3 Implementation

16.3.1 Summary Instance Diagram

Figure 28: "Host Filesystem Instance Diagram" illustrates the mandatory classes for the host filesystem
(and the Base Server). This figure shows all the classes that are mandatory and some of the optional
classes (identified) for the Host Filesystem Profile.

The Host Filesystem Profile draws its storage from LogicalDisks provided by a volume manager or HDR
profile. The profile models the LogicalDisks that it gets from the underlying volume manager or HDR as
StorageExtents. The association between a LocalFileSystem and the StorageExtents it resides on is
ResidesOnExtent.

The Base Server ComputerSystem may not be a real ComputerSystem. It is merely the ManagedElement
upon which all aspects of the host filesystem offering are scoped.

LocalFileSystems are created on the StorageExtents and files within those LocalFileSystems may be
shared (FileShare) with remote users. The Filesystem Profile is a required profile.

The host filesystem augments the definition of the LocalFileSystem defined in the Filesystem Profile by
adding a method (GetFileProperties). If this method is supported, the support shall be indicated in the
FileSystemCapabilities.SupportedFeatures property.

Figure 28 - Host Filesystem Instance Diagram
370

 Host Filesystem Profile

74
75
76
77
78
79
80

81
82
83
84

85
86

87
88

89
90

91
92
93
94

95

96
97
98

99

100
101
102
The host filesystem also includes a FileSystemConfigurationService and a
FileSystemConfigurationCapabilities. These are the augmented instances of those defined by the
Filesystem Manipulation Profile. The Host Filesystem extends these with methods (Quiesce and
Unquiesce) and a property (SupportedFeatures). The Filesystem Manipulation Profile is optional, but the
FileSystemConfigurationService and the FileSystemConfigurationCapabilities are required by the Host
Filesystem Profile. If the Filesystem Manipulation Profile is not implemented, the Host Filesystem Profile
shall implement these two classes as defined by this profile.

EXPERIMENTAL

In addition to the FileSystemConfigurationCapabilities, an instance of ImplementationCapabilities may be
associated to the FileSystemConfigurationService. This Capabilities instance identifies the capacity
optimization techniques supported by the implementation. An implementation may advertise that it
supports “None”, "SNIA:Thin Provisioning", "SNIA:Data Compression" or "SNIA:Data Deduplication".

EXPERIMENTAL

The classes and associations in the dashed boxes are from the subprofiles (as indicated by the labels on
the dashed boxes).

The SharedElement association between the FileShare and the LocalFileSystem is required if FileShares
are implemented (the File Export Profile).

Also note that FileSystemSetting (and the corresponding ElementSettingData) are also optional. They are
only shown here to illustrate where they would show up in the model should they be implemented.

In the base Host Filesystem Profile, the model is automatically populated based on how the host
filesystem is configured. Client modification of the configuration (including configuring storage, creating
extents, local filesystems and file shares) are functions found in subprofiles of the Host Filesystem
Profile.

16.3.2 Host Filesystem Use of Filesystem Profile (Mandatory)

The Host Filesystem Profile uses the Filesystem Profile for modeling of its filesystem constructs. For the
host filesystem, implementation of the Filesystem Profile is mandatory. See 8 Filesystem Profile for
details on this modeling.

16.3.3 Host Filesystem Use of File Export Profile (Optional)

The Host Filesystem Profile uses the File Export Profile for modeling of its file export constructs. For the
host filesystem, implementation of the File Export Profile is optional. See 4 File Export Profile for details
on this modeling.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 371

Host Filesystem Profile

103

104
105
106

107
108
109
110

111

112
113

114
115

116
117
118
16.3.4 Host Filesystem Support of Cascading

Figure 29: "Host Filesystem support for Cascading" illustrates the host filesystem support for cascading.
Support for some of the elements for cascading are mandatory. The figure illustrates stitching between
the Host Filesystem and the Volume Management or HDR Profiles.

A host filesystem gets its storage from the operating system (HDR Profile) or a volume manager. As such,
there is a cascading relationship between the Host Filesystem Profile and the profiles (e.g., Volume
Management Profiles) that provide the storage for the host filesystem. Figure 29, “Host Filesystem
support for Cascading” illustrates the constructs to be used to model this cascading relationship.

• The Host Filesystem cascaded resources are StorageExtents (used to house filesystem data)

• The Host Filesystem obtains the storage for these from LogicalDisks in Volume Management or HDR
Profiles.

• Each StorageExtent used by the Host Filesystem maps (via LogicalIdentity) to a LogicalDisk (from the
Volume Management or HDR Profile).

The embedded dashed box in the figure illustrates the classes and associations of the cascading support.
The dashed classes are shadow instances (copies cached from the Volume Management or HDR Profile).
The other classes of the cascading support represent Host Filesystem usage of those classes. For

Figure 29 - Host Filesystem support for Cascading
372

 Host Filesystem Profile

119
120
121

122
123
124

125

126
127

128

129
130

131
132

133

134

135

136

137

138

139

140

141
142
143

144

145

146

147

148

149

150
151
152

153
154
example, the collection AllocatedResources collects all the volume manager or HDR volumes that are
used by the Host Filesystem. The RemoteResources collection collects all LogicalDisks that the Host
Filesystem has discovered (whether used or not).

The Dependency between the Base Server ComputerSystem and the shadow ComputerSystem may
exist, even when there are no resources that are imported. This signifies that the Host Filesystem has
discovered the Volume Management or HDR Profile, but has no access to any of their LogicalDisks.

Note: The Base Server and Shadow ComputerSystems may represent the same system.

The RemoteServiceAccessPoint is the URL of the management interface that the Host Filesystem uses
for managing the volume manager or HDR support. This may or may not be an SMI-S Server URL.

16.3.5 Health and Fault Management Consideration

The Host Filesystem Profile supports state information (e.g., OperationalStatus and HealthState) on the
following elements of the model:

• ComputerSystems (See 25 Health Package in Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6)

• FileShares that are exported (See 4 File Export Profile)

• LocalFileSystems (See 8 Filesystem Profile)

16.4 Methods of the Profile

16.4.1 Extrinsic Methods of the Profile

None

16.4.2 Extrinsic Methods in the Filesystem Profile

16.4.2.1 GetFileProperties
uint32 GetFileProperties(

IN string DirectoryName,

IN, OUT string Handle,

IN, OUT uint64 NumberOfFiles,

IN (false), OUT EmbeddedInstance("CIM_LogicalFile") string FileRecs[];

);

This method gets a set of file records from a filesystem. As there may be millions of records in this report,
a chunking mechanism is provided so that the client does not become overwhelmed by the quantity of
data furnished by the server.

The DirectoryName is an optional pathname for a directory to restrict the data returned. If this parameter
is NULL, then files are returned for all files in the filesystem.

The initial call to GetFileProperties shall pass in NULL as a Handle. Subsequent calls shall pass back the
Handle exactly as received from the server, without modification, as an indication of where to continue
the report from.

The NumberOfFiles is the number of files returned in a block of FileRecs. If NULL the provider will supply
a default number (and put that number in the parameter as output).
SMI-S 1.6.1 Revision 6 SNIA Technical Position 373

Host Filesystem Profile

155
156
157

158
159

160
161

162
163
164

165

166

167
168
169
170

171

172

173

174

175

176
177

178
179
180
181

182
183
184
185
186

187

188
189
16.4.3 Extrinsic Methods in the Filesystem Manipulation Profile

16.4.3.1 QuiesceFileSystem
uint32 QuiesceFilesystem(

IN, Required CIM_Filesystem REF TheElement,

IN, OUT datetime TimeOut,

IN (false), OUT CIM_Job REF Job;

);

This method temporarily suspends write operations to the underlying storage extents of a filesystem
specified by TheElement.

The TimeOut parameter identifies how long the system is to hold the filesystem in a quiesced state. The
default is 30 seconds. The purpose of the timeout is to prevent a filesystem from staying in a quiesced
state due to an application failure. That is, if the application does not do an unquiesce in the timeout
period, the provider may automatically do the unquiesce.

16.4.3.2 Unquiesce a Filesystem
uint32 UnquiesceFilesystem(

IN, Required CIM_Filesystem REF TheElement;

);

This method resumes write activity to the underlying storage extents of a filesystem specified by
TheElement.

16.4.4 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

16.5 Client Considerations and Recipes

16.5.1 Use Cases

16.5.1.1 Discovery of the Filesystem Volumes
Table 253 identifies the elements of the use case to discover the volumes on which a filesystem resides.

Table 253 - Discovery of the Filesystem Volumes

Use Case Element Description

Summary Given a Host Filesystem Profile, find the volumes (by their external name) on which a
filesystem resides
374

 Host Filesystem Profile

190
191

192

193

194

195
196

197
198

199

200
201

202

203

204

205

206

207

208

209

210

211

212
16.5.1.2 Expansion of a Filesystem
Table 254 identifies the elements of the use case to increase the size of a filesystem.

16.5.1.3 Replication of a Filesystem
Table 255 identifies the elements of the use case to create a point in time copy of a filesystem.

Basic Course of Events 1. Find the filesystem (using its name)
2. Find the related Volumes (that the filesystem is on)
3. Locate the external names of the volumes

Alternative Paths None

Exception Paths None

Triggers Discovery or rebuild of the filesystem configuration

Assumptions None

Preconditions The Base Server system of the profile has been discovered from profile registration and
ElementConformsToProfile.

Postconditions A list of volumes on which the filesystems exist.

Table 254 - Expansion of a Filesystem

Use Case Element Description

Summary Increase the size of the filesystem by a certain amount.

Basic Course of Events 1. Administrator identifies the filesystem and size to increase.
2. System responds operation is complete.

Alternative Paths None

Exception Paths Failure
2a. System responds that the filesystem cannot be extended. The filesystem is left
unchanged.
Invalid state: Filesystem state does not allow expansion.
2b. System cannot support the size increase requested (size too large)
2c. System cannot support expansion of a mounted filesystem
2d. System cannot support expansion given the current configuration of partitions
2e. Filesystem is in a transient state that does not allow expansion

Triggers Business need to increase the size of the filesystem.

Assumptions None

Preconditions Administrator has permission and access for the operation.

Postconditions The filesystem size is at least the original size plus the requested increment.

Table 255 - Replication of a Filesystem

Use Case Element Description

Summary Given a filesystem, create a point in time copy of the filesystem.

Basic Course of Events 1. Administrator identifies filesystem to copy.
2. Administrator signals that the copy should be created.
3. System responds that the copy is ready.

Table 253 - Discovery of the Filesystem Volumes

Use Case Element Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 375

Host Filesystem Profile

213

214

215
216
217
218

219

220
16.5.1.4 Quiesce a Filesystem
Table 256 identifies the elements of the use case to quiesce a filesystem.

16.5.1.5 Unquiesce a Filesystem
Table 257 identifies the elements of the use case to unquiesce a filesystem.

Alternative Paths Specify Storage
1a. Administrator identifies where (e.g., what storage extent) and maximum space that
may be used for the copy.

Exception Paths Failed
3. System responds that the copy could not be created.

Triggers Business need.

Assumptions There is no requirement that the copy increases the fault tolerance of the filesystem.

Preconditions Filesystem available.

Postconditions The copy is available.
The copy is self-consistent.

Table 256 - Quiesce a Filesystem

Use Case Element Description

Summary Temporarily suspends write operations to the underlying storage extents of a filesystem.

Basic Course of Events 1. Administrator identifies the filesystem.
2. System responds operation is complete.

Alternative Paths Provide timeout
1a. Administrator provides a maximum quiesce timeout.

Exception Paths Failure
2a. System responds that the write operations to the filesystem cannot be suspended.
The filesystem has the same operational state as before.
Filesystem already quiesced.
2b. System responds that the filesystem is already suspended. The filesystem has the
same operational state as before (and the request is ignored - timeout not extended)

Triggers Business need for the image of the filesystem on the underlying storage extents to be
complete and correct as of a known point in time.

Assumptions Any application that needs quiescing has been completed. (NOTE: because provider
cannot tell)

Preconditions Administrator has permission and access for the operation.

Postconditions The data residing on the underlying storage extents reflects the state of the filesystem at
some point in time between steps 1 and 2.
No write activity to the filesystem shall transfer to the underlying storage extents.
All future write activity should be blocked.

Table 257 - Unquiesce a Filesystem

Use Case Element Description

Summary Resume write activity to the underlying storage extents of a filesystem.

Table 255 - Replication of a Filesystem

Use Case Element Description
376

 Host Filesystem Profile

221
222
223
224

225

226

227
228
229
16.5.1.6 Filesystem quiesce timeout
Table 258 identifies the elements of the use case when a quiesced filesystem times out.

16.5.1.7 Retrieve File Information
Table 259 identifies the elements of the use case retrieving file information from a filesystem.

Basic Course of Events 1. Administrator identifies the filesystem
2. System responds operation is complete

Alternative Paths None

Exception Paths None

Triggers Business need for the quiesce operation has completed.

Assumptions None

Preconditions Administrator has permission and access for the operation.

Postconditions The selected filesystem is no longer quiesced.

Table 258 - Filesystem quiesce timeout

Use Case Element Description

Summary Resume write activity to the underlying storage extents of a filesystem after a timeout

Basic Course of Events 1. System responds operation is complete.

Alternative Paths None

Exception Paths None

Triggers The timeout has expired.

Assumptions None

Preconditions The filesystem is in a quiesced state.

Postconditions The selected filesystem is no longer quiesced.

Table 259 - Retrieve File Information

Use Case Element Description

Summary Get available information on files in a filesystem directory.

Basic Course of Events 1. Administrator identifies the filesystem and directory.
2. System responds

Alternative Paths None

Exception Paths Failure
2a. System responds that the directory identified was not found.
2b. System responds that the operation is not supported at this time

Triggers Business need for the information to support filesystem “information lifecycle
management” functions.

Assumptions The underlying filesystem supports the information being requested

Table 257 - Unquiesce a Filesystem

Use Case Element Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 377

Host Filesystem Profile

230

231

232
233
234

235

236

237

238
16.6 CIM Elements
Table 260 describes the CIM elements for Host Filesystem.

Preconditions Administrator has permission and access for the operation and the operation is
supported.

Postconditions Once all data has been returned, a new operation must initiated to get information about
the files.

Table 260 - CIM Elements for Host Filesystem

Element Name Requirement Description

16.6.1 CIM_ComputerSystem (Shadow) Mandatory 'Top level' system that represents a Volume Manager or
Host Discovered Resources.

16.6.2 CIM_Dependency (Systems) Mandatory This associates the Volume Manager or Host Discovered
Resources System to the Host Filesystem System.

16.6.3 CIM_ElementCapabilities (FS Configuration
Capabilities)

Mandatory Associates the Filesystem Configuration Service to the
Capabilities element that represents the capabilities that it
supports.

16.6.4 CIM_ElementCapabilities
(ImplementationCapabilities to Service)

Optional Experimental. Associates the Host Filesystem
configuration service to the
CIM_ImplementationCapabilities supported by the
implementation.

16.6.5 CIM_ElementConformsToProfile
(FilesystemConfigurationService to Host Filesystem
RegisteredProfile)

Mandatory Ties the FileSystemConfigurationService to the registered
profile for Host Filesystem.

16.6.6 CIM_FilterCollection (Host Filesystem Predefined
FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This is a collection
of predefined IndicationFilters to which a client may
subscribe.

16.6.7 CIM_HostedCollection (Allocated Resources) Mandatory This would associate the AllocatedResources collection to
the Base Server system for the Host Filesystem.

16.6.8 CIM_HostedCollection (Host Filesystem to
predefined FilterCollection)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections).

16.6.9 CIM_HostedCollection (Remote Resources) Conditional Conditional requirement: This is required if
SNIA_RemoteResources is modeled. This would
associate the RemoteResources collection to the Base
Server system for the Host Filesystem.

16.6.10 CIM_HostedService Mandatory Associates the Filesystem Configuration Service to the
Base Server ComputerSystem.

16.6.11 CIM_ImplementationCapabilities
(ImplementationCapabilities)

Optional Experimental. The capabilities of the profile
implementation.

Table 259 - Retrieve File Information

Use Case Element Description
378

 Host Filesystem Profile

239
240
241
242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
16.6.12 CIM_IndicationFilter (Extent OperationalStatus) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of StorageExtent instances.

16.6.13 CIM_IndicationFilter (System OperationalStatus) Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='3' (Predefined Filters). This is the 'pre-defined'
CIM_IndicationFilter instance for changes in the
OperationalStatus of System instances.

16.6.14 CIM_LogicalDisk (Shadow) Mandatory A shadow instance of a LogicalDisk that is imported to the
Host Filesystem Profile.

16.6.15 CIM_LogicalFile Optional This is an output of the GetFileProperties method on
SNIA_LocalFileSystem. It is never instantiated, but the
output follows this format.

16.6.16 CIM_LogicalIdentity (LogicalDisk) Mandatory Associates a Host Filesystem StorageExtent to a shadow
instance of an (imported) LogicalDisk.

16.6.17 CIM_MemberOfCollection (Allocated Resources) Mandatory This supports collecting LogicalDisks. This is required to
support the AllocatedResources collection.

16.6.18 CIM_MemberOfCollection (Predefined Filter
Collection to Host Filesystem Filters)

Conditional Experimental. Conditional requirement: Required if the
Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeat
ures='5' (Predefined Filter Collections). This associates
the Host Filesystem predefined FilterCollection to the
predefined Filters supported by the Host Filesystem.

16.6.19 CIM_MemberOfCollection (Remote Resources) Optional This supports collecting all Shadow instances of
LogicalDisk that the Host Filesystem has available to use.
This is optional when used to support the
RemoteResources collection (the RemoteResources
collection is optional).

16.6.20 CIM_RemoteServiceAccessPoint (Shadow) Optional CIM_RemoteServiceAccessPoint represents the
management interface to a Shadow system.

16.6.21 CIM_ResidesOnExtent Mandatory Represents the association between a local FileSystem
and the underlying storage extent(s) that it is built on.

16.6.22 CIM_SAPAvailableForElement Conditional Conditional requirement: This is required if
CIM_RemoteServiceAccessPoint is modeled. Represents
the association between a RemoteServiceAccessPoint
and the Shadow (Volume Manager or Host Discovered
Resources) System to which it provides access.

16.6.23 CIM_ServiceAffectsElement Mandatory Associates the Filesystem Configuration Service to the
filesystems that the service manages.

16.6.24 CIM_StorageExtent (Primordial Imported Extent) Mandatory Used to represent the storage imported from the OS (Host
Discovered Resources) or Volume Managers.

16.6.25 CIM_SystemDevice (LogicalDisks) Mandatory This association links shadow LogicalDisks to the
scoping (Shadow) system (of the Volume Manager or
Host Discovered Resources). This is used to associate
the shadow LogicalDisks with the System that manages
them.

Table 260 - CIM Elements for Host Filesystem

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 379

Host Filesystem Profile

258

259
16.6.1 CIM_ComputerSystem (Shadow)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 261 describes class CIM_ComputerSystem (Shadow).

16.6.26 SNIA_AllocatedResources Mandatory This is a SystemSpecificCollection for collecting
LogicalDisks that are being used by the Host Filesystem
profile (e.g., LogicalDisks that the filesystem is using).

16.6.27 SNIA_FileSystemConfigurationCapabilities Mandatory An extension of the FileSystemConfigurationCapabilities
defined in the Filesystem Manipulation Profile.

16.6.28 SNIA_FileSystemConfigurationService Mandatory An extension of the Filesystem Configuration Service that
adds filesystem methods.

16.6.29 SNIA_LocalFileSystem Mandatory Represents an extention of the LocalFileSystem defined
in the Filesystem Profile.

16.6.30 SNIA_RemoteResources Optional This is a SystemSpecificCollection for collecting Logical
Disks that may be allocated by the Host Filesystem Profile
(e.g., LogicalDisks that may be allocated to support a
filesystem).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatu
s <>
PreviousInstance.CIM_ComputerSystem::OperationalStat
us

Mandatory CQL -Change of Status of a ComputerSystem.
PreviousInstance is optional, but may be supplied by an
implementation of the Profile. See section 16.6.13
CIM_IndicationFilter (System OperationalStatus).

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_StorageExtent AND
SourceInstance.CIM_StorageExtent::OperationalStatus
<>
PreviousInstance.CIM_StorageExtent::OperationalStatus

Mandatory CQL -Change of status of a StorageExtent.
PreviousInstance is optional, but may be supplied by an
implementation of the Profile. See section 16.6.12
CIM_IndicationFilter (Extent OperationalStatus).

Table 261 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the shadow system. E.g., IP address.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory

IdentifyingDescriptions C Mandatory

OperationalStatus Mandatory Overall status of the shadow system, as seen by the Host Filesystem.

NameFormat Mandatory Format for Name property.

Table 260 - CIM Elements for Host Filesystem

Element Name Requirement Description
380

 Host Filesystem Profile
16.6.2 CIM_Dependency (Systems)

CIM_Dependency is an association between a shadow System (Volume Manager or Host Discovered
Resources) and the Host Filesystem System (ComputerSystem). The specific nature of the dependency
is determined by associations between resources (StorageExtents) of the Host Filesystem system and
resources (LogicalDisks) of the shadow system.
CIM_Dependency is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 262 describes class CIM_Dependency (Systems).

16.6.3 CIM_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 263 describes class CIM_ElementCapabilities (FS Configuration Capabilities).

Dedicated Mandatory Indicates that this computer system is dedicated to operation as a shadow
system.

PrimaryOwnerContact M Optional Contact a details for owner.

PrimaryOwnerName M Optional Owner of the shadow system.

Table 262 - SMI Referenced Properties/Methods for CIM_Dependency (Systems)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Base Server System.

Dependent Mandatory The shadow System (system of the Volume Manager or Host Discovered
Resources).

Table 263 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-
ties)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The Filesystem Configuration Capabilities element.

ManagedElement Mandatory The Filesystem Configuration Service.

Table 261 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 381

Host Filesystem Profile

260

261

262

263

264

265

266

267
268
269

270

271

272

273
16.6.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)

Experimental. Associates the Host Filesystem configuration service to the
CIM_ImplementationCapabilities supported by the implementation.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 264 describes class CIM_ElementCapabilities (ImplementationCapabilities to Service).

16.6.5 CIM_ElementConformsToProfile (FilesystemConfigurationService to Host Filesystem Reg-
isteredProfile)

The CIM_ElementConformsToProfile ties FileSystemConfigurationService to the registered profile for
Host Filesystem.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 265 describes class CIM_ElementConformsToProfile (FilesystemConfigurationService to Host
Filesystem RegisteredProfile).

16.6.6 CIM_FilterCollection (Host Filesystem Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A Host
Filesystem implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 264 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities
to Service)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The ImplementationCapabilities.

ManagedElement Mandatory The host FileSystemConfigurationService that has
ImplementationCapabilities.

Table 265 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (FilesystemConfigura-
tionService to Host Filesystem RegisteredProfile)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A FileSystemConfigurationService instance that represents the Host
Filesystem.

ConformantStandard Mandatory RegisteredProfile instance describing the Host Filesystem profile.
382

 Host Filesystem Profile

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289
290

291
Table 266 describes class CIM_FilterCollection (Host Filesystem Predefined FilterCollection).

16.6.7 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Host Filesystem Profile, it is used to associate the
Allocated Resources to the Base Server Computer System.
CIM_HostedCollection is subclassed from CIM_HostedDependency.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 267 describes class CIM_HostedCollection (Allocated Resources).

16.6.8 CIM_HostedCollection (Host Filesystem to predefined FilterCollection)

Experimental.
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 268 describes class CIM_HostedCollection (Host Filesystem to predefined FilterCollection).

16.6.9 CIM_HostedCollection (Remote Resources)
CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a Collection that only has meaning
in the context of a System, and/or whose elements are restricted by the definition of the System. In the Host Filesystem Profile, it is used to
associate the Remote Resources to the Base Server Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Table 266 - SMI Referenced Properties/Methods for CIM_FilterCollection (Host Filesystem Predefined Fil-
terCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this class within the
Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be 'SNIA:Host Filesystem'.

Table 267 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 268 - SMI Referenced Properties/Methods for CIM_HostedCollection (Host Filesystem to predefined
FilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the Host Filesystem.

Antecedent Mandatory Reference to the Base Server System.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 383

Host Filesystem Profile

292

293

294

295

296
297

298

299
300
301

302
303

304

305

306
307
308

309

310

311

312

313
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_RemoteResources is modeled.

Table 269 describes class CIM_HostedCollection (Remote Resources).

16.6.10CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 270 describes class CIM_HostedService.

16.6.11CIM_ImplementationCapabilities (ImplementationCapabilities)

Experimental. The capabilities (features) of the profile implementation.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 271 describes class CIM_ImplementationCapabilities (ImplementationCapabilities).

Table 269 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 270 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory The Filesystem Configuration Service.

Antecedent Mandatory The Base Server ComputerSystem.

Table 271 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory An opaque, unique id for the implementation capability of an
implementation.
384

 Host Filesystem Profile

314

315

316

317
318

319

320

321
322
323

324

325

326

327

328

329

330

331

332

333

334
16.6.12CIM_IndicationFilter (Extent OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of StorageExtent instances.This is a special case of the CIM_IndicationFilter (pre-defined) class as
defined in the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 272 describes class CIM_IndicationFilter (Extent OperationalStatus).

ElementName Optional A provider supplied user-friendly name for this
CIM_ImplementationCapabilities element.

SupportedCapacityOptimiz
ations

Mandatory This array of strings lists the capacity optimization techiques that are
supported by the implementation. Valid string values are "none" |
"SNIA:Thin Provisioning" | "SNIA:Data Compression" | "SNIA:Data
Deduplication".

Table 272 - SMI Referenced Properties/Methods for CIM_IndicationFilter (Extent OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:Host Filesystem:ExtentOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_StorageExtent AND
SourceInstance.CIM_StorageExtent::OperationalStatus <>
PreviousInstance.CIM_StorageExtent::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Table 271 - SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-
bilities)

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 385

Host Filesystem Profile

335

336

337

338

339

340

341

342

343

344
345

346

347

348

349
350
16.6.13CIM_IndicationFilter (System OperationalStatus)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for changes in the OperationalStatus
of System instances. This is a special case of the CIM_IndicationFilter (pre-defined) class as defined in
the Indication Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='3' (Predefined Filters).

Table 273 describes class CIM_IndicationFilter (System OperationalStatus).

16.6.14CIM_LogicalDisk (Shadow)

A shadow instance of a remote LogicalDisk that is imported to the Host Fileystem profile. If the Host
Fileystem has access to the Volume Management or Host Discovered Resources profile, the data in this
class should reflect what the Host Filesystem obtains from that profile. If the Host Filesystem does not
have access to the Volume Management or Host Discovered Resources profile, then this should be filled
out as best can be done.
The properties in this class table are the properties as defined by either Volume Management, Block
Services or Host Discovered Resources. If a property is optional in any of the three profiles, then it is
defined as optional in the Shadow LogicalDisk. The only exception to this rule is the ExtentDiscriminator,
which is used by the Host Filesystem profile to distinguish the LogicalDisk from other StorageExtents.

Table 273 - SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

CreationClassName Mandatory See the CreationClassName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

SystemName Mandatory See the SystemName definition in section Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).

Name Mandatory This shall be 'SNIA:Host Filesystem:SystemOperationalStatus'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev
6 42.8.3 CIM_IndicationFilter (pre-defined).

Query Mandatory SELECT * FROM CIM_InstModification WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::OperationalStatus <>
PreviousInstance.CIM_ComputerSystem::OperationalStatus.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6 42.8.3
CIM_IndicationFilter (pre-defined).
386

 Host Filesystem Profile

351

352

353
354

355

356

357

358
359

360
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 274 describes class CIM_LogicalDisk (Shadow).

Table 274 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory Format for name.

ExtentStatus Optional

OperationalStatus Mandatory Value shall be 0|2|3|6|8|15 (Unknown or OK or Degraded or Error or
Starting or Dormant).

BlockSize Optional

NumberOfBlocks Optional The number of blocks of capacity consumed from the parent StoragePool.

ConsumableBlocks Optional The number of blocks usable by consumers.

IsBasedOnUnderlyingRed
undancy

Optional

NoSinglePointOfFailure Optional

DataRedundancy Optional

PackageRedundancy Optional

DeltaReservation Optional

Usage Optional The specialized usage intended for this element.

OtherUsageDescription Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this element.

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain 'SNIA:Shadow'.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 387

Host Filesystem Profile

361

362
363
364
365

366
367
368

369

370

371

372

373
16.6.15CIM_LogicalFile

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

Table 275 describes class CIM_LogicalFile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

Table 275 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory Class Name of the ComputerSystem that hosts the filesystem containing
this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the filesystem
containing this file.

FSCreationClassName Mandatory Class Name of the LocalFileSystem that represents the filesystem
containing this file.

FSName Mandatory The Name property of the LocalFileSystem that represents the filesystem
containing this file.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents the file.

Name Mandatory The Name property of the LogicalFile that represents the file.

ElementName Mandatory The pathname from the root of the containing LocalFileSystem to this
LogicalFile. The root of the LocalFileSystem is indicated if this is NULL or
the empty string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of directories from
the root, the separator string is specified by the
SNIA_LocalFileSystem.PathNameSeparatorString property.

FileSize Optional Size of the File in bytes.

CreationDate Optional File's creation date.

LastModified Optional Time that the File was last modified.

LastAccessed Optional Time that the File was last accessed.

Readable Optional Boolean indicating that the File can be read.

Writeable Optional Boolean indicating that the File can be written.

Executable Optional Indicates the file is executable.

CompressionMethod Optional A free form string indicating the algorithm or tool used to compress the
LogicalFile.

Table 274 - SMI Referenced Properties/Methods for CIM_LogicalDisk (Shadow)

Properties Flags Requirement Description & Notes
388

 Host Filesystem Profile

374

375

376

377

378
16.6.16CIM_LogicalIdentity (LogicalDisk)

Associates local StorageExtent to a shadow instance of an (imported) LogicalDisk.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 276 describes class CIM_LogicalIdentity (LogicalDisk).

16.6.17CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow LogicalDisk instances (in the
AllocatedResources collection).
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 277 describes class CIM_MemberOfCollection (Allocated Resources).

16.6.18CIM_MemberOfCollection (Predefined Filter Collection to Host Filesystem Filters)

Experimental. This associates the Host Filesystem predefined FilterCollection to the predefined Filters
supported by the Host Filesystem.
Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

EncryptionMethod Optional A free form string indicating the algorithm or tool used to encrypt the
LogicalFile.

InUseCount Optional The number of 'file opens' that are currently active against the File.

Table 276 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (LogicalDisk)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the shadow (imported) LogicalDisk.

SameElement Mandatory This is a reference to the Host Filesystem StorageExtent that maps to the
shadow (imported) LogicalDisk.

Table 277 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 275 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 389

Host Filesystem Profile

379

380

381

382

383

384

385
Table 278 describes class CIM_MemberOfCollection (Predefined Filter Collection to Host Filesystem
Filters).

16.6.19CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow LogicalDisk instances (in the RemoteResources
collection). Each association (and the RemoteResources collection, itself) is created through external
means.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 279 describes class CIM_MemberOfCollection (Remote Resources).

16.6.20CIM_RemoteServiceAccessPoint (Shadow)

CIM_RemoteServiceAccessPoint is an instance that provides access information for accessing the actual
Shadow (Volume Manager or Host Discovered Resources) via a management interface.
CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 280 describes class CIM_RemoteServiceAccessPoint (Shadow).

Table 278 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection
to Host Filesystem Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Host Filesystem predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the Host Filesystem.

Table 279 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 280 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the
management interface.

SystemName Mandatory The name of the Computer System hosting the management
interface.

CreationClassName Mandatory The CIM Class name of the management interface.

Name Mandatory The unique name of the management interface.
390

 Host Filesystem Profile

386

387

388

389

390

391

392

393

394

395

396
397

398
399

400

401
402

403

404

405

406
16.6.21CIM_ResidesOnExtent

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 281 describes class CIM_ResidesOnExtent.

16.6.22CIM_SAPAvailableForElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_RemoteServiceAccessPoint is modeled.

Table 282 describes class CIM_SAPAvailableForElement.

16.6.23CIM_ServiceAffectsElement

Created By: Extrinsic: CreateFileSystem
Modified By: Extrinsic: ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

Table 281 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement Description & Notes

Dependent Mandatory The LocalFileSystem that is built on top of a storage extent.

Antecedent Mandatory A StorageExtent that underlies a LocalFileSystem.

Table 282 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Shadow System.

AvailableSAP Mandatory
SMI-S 1.6.1 Revision 6 SNIA Technical Position 391

Host Filesystem Profile

407

408

409
410

411

412

413

414

415

416

417

418

419

420

421

422
Table 283 describes class CIM_ServiceAffectsElement.

16.6.24CIM_StorageExtent (Primordial Imported Extent)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 284 describes class CIM_StorageExtent (Primordial Imported Extent).

16.6.25CIM_SystemDevice (LogicalDisks)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 283 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the element. The
standard allows Other to support vendor extensions. The standard values
are 1 (Other) and 5 (Manages).

OtherElementEffectsDescr
iptions

Optional A description of other element effects that this association might be
exposing.

AffectedElement Mandatory The LocalFileSystem.

AffectingElement Mandatory The FileSystemConfigurationService.

Table 284 - SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

BlockSize Mandatory

NumberOfBlocks Mandatory

ExtentStatus Mandatory This shall contain the value '16' ('Imported').

Primordial Mandatory This shall be 'true'.

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

ExtentDiscriminator Mandatory Experimental. This is an array of values that shall contain
'SNIA:Pool Component' and 'SNIA:Imported'.
392

 Host Filesystem Profile

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439
Table 285 describes class CIM_SystemDevice (LogicalDisks).

16.6.26SNIA_AllocatedResources

An instance of a default SNIA_AllocatedResources defines the set of LogicalDisks that are allocated and
in use by the Host Filesystem Profile.
SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection.
At least one instance of the SNIA_AllocatedResources shall exist for a Host Filesystem Profile and shall
be hosted by one of its ComputerSystems (typically the top level ComputerSystem.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 286 describes class SNIA_AllocatedResources.

16.6.27SNIA_FileSystemConfigurationCapabilities

An extension of the FileSystemConfigurationCapabilities defined in the Filesystem Manipulation Profile.
For the base definition of this class, see 9.7.16 SNIA_FileSystemConfigurationCapabilities.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 285 - SMI Referenced Properties/Methods for CIM_SystemDevice (LogicalDisks)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Shadow Computer System that contains this LogicalDisk.

PartComponent Mandatory The logical disk that is managed by a computer system.

Table 286 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection (e.g., Allocated
LogicalDisks).

ElementType Mandatory The type of remote resources collected by the AllocatedResources
collection.

For this version of SMI-S, the only value supported is '7' (LogicalDisk).

CollectionDiscriminator Mandatory An array of strings indicating the purposes of the collection of elements.
This shall contain 'SNIA:Imported Volumes'.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 393

Host Filesystem Profile

440

441

442

443

444

445

446

447

448

449

450
451

452

453

454

455
Table 287 describes class SNIA_FileSystemConfigurationCapabilities.

16.6.28SNIA_FileSystemConfigurationService

An extension of the Filesystem Configuration Service that adds filesystem methods. For the base
definition of the FileSystemConfigurationService see9.7.17 SNIA_FileSystemConfigurationService.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 288 describes class SNIA_FileSystemConfigurationService.

Table 287 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

ElementName Mandatory See the ElementName property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

SupportedActualFileSyste
mTypes

Mandatory See the SupportedActualFileSystemTypes property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

SupportedSynchronousMe
thods

N Mandatory See the SupportedSynchronousMethods property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

SupportedAsynchronousM
ethods

N Mandatory See the SupportedAsynchronousMethods property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

InitialAvailability Mandatory See the InitialAvailability property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

LocalAccessibilitySupport Optional See the LocalAccessibilitySupport property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

BlockStorageCreationSup
port

Optional See the BlockStorageCreationSupport property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

DirectoryServerParameter
Supported

Optional See the DirectoryServerParameterSupported property in 9.7.16
SNIA_FileSystemConfigurationCapabilities.

SupportedFeatures Mandatory This may be 'None', 'GetFileProperties' or 'Quiesce/Unquiesce'.

Table 288 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory See the ElementName property in 9.7.17
SNIA_FileSystemConfigurationService.

SystemCreationClassNam
e

Mandatory See the SystemCreationClassName property in 9.7.17
SNIA_FileSystemConfigurationService.

SystemName Mandatory See the SystemName property in 9.7.17
SNIA_FileSystemConfigurationService.

CreationClassName Mandatory See the CreationClassName property in 9.7.17
SNIA_FileSystemConfigurationService.

Name Mandatory See the Name property in 9.7.17 SNIA_FileSystemConfigurationService.
394

 Host Filesystem Profile

456

457

458
459

460

461

462

463

464
16.6.29SNIA_LocalFileSystem

Represents an extention of the LocalFileSystem defined in the Filesystem Profile. See 8.7.10
CIM_LocalFileSystem.
Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 289 describes class SNIA_LocalFileSystem.

Quiesce() Conditional Conditional requirement: This is required if SupportedFeatures includes
\Quiesce/Unquiesce\'.'See the method description in 16.4.3.1
QuiesceFileSystem.

Unquiesce() Conditional Conditional requirement: This is required if SupportedFeatures includes
\Quiesce/Unquiesce\'.'See the method description in 16.4.3.2 Unquiesce a
Filesystem.

Table 289 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory See the CSCreationClassName property in 8.7.10 CIM_LocalFileSystem.

CSName Mandatory See the CSName property in 8.7.10 CIM_LocalFileSystem.

CreationClassName Mandatory See the CreationClassName property in 8.7.10 CIM_LocalFileSystem.

Name Mandatory See the Name property in 8.7.10 CIM_LocalFileSystem.

OperationalStatus Mandatory See the OperationalStatus property in 8.7.10 CIM_LocalFileSystem.

Root Optional See the Root property in 8.7.10 CIM_LocalFileSystem.

BlockSize Optional See the BlockSize property in 8.7.10 CIM_LocalFileSystem.

FileSystemSize Optional See the FileSystemSize property in 8.7.10 CIM_LocalFileSystem.

AvailableSpace Optional See the AvailableSpace property in 8.7.10 CIM_LocalFileSystem.

ReadOnly Optional See the ReadOnly property in 8.7.10 CIM_LocalFileSystem.

EncryptionMethod Optional See the EncryptionMethod property in 8.7.10 CIM_LocalFileSystem.

CompressionMethod Optional See the CompressionMethod property in 8.7.10 CIM_LocalFileSystem.

CaseSensitive Mandatory See the CaseSensitive property in 8.7.10 CIM_LocalFileSystem.

CasePreserved Mandatory See the CasePreserved property in 8.7.10 CIM_LocalFileSystem.

CodeSet Optional See the CodeSet property in 8.7.10 CIM_LocalFileSystem.

MaxFileNameLength Mandatory See the MaxFileNameLength property in 8.7.10 CIM_LocalFileSystem.

FileSystemType Mandatory See the FileSystemType property in 8.7.10 CIM_LocalFileSystem.

NumberOfFiles Optional See the NumberOfFiles property in 8.7.10 CIM_LocalFileSystem.

GetFileProperties() Conditional Conditional requirement: This is required if SupportedFeatures includes
\GetFileProperties\'.'See the method description in 16.4.2.1
GetFileProperties.

Table 288 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 395

Host Filesystem Profile

465

466
467

468

469

470

471

472

473

474

475

476

477

478

479
16.6.30SNIA_RemoteResources

An instance of a default SNIA_RemoteResources defines the set of shadow LogicalDisks that are
available to be used by the Host Filesystem Profile.
SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection.
One instance of the SNIA_RemoteResources would exist and shall be hosted by the top level
ComputerSystems of the Host Filesystem Profile.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 290 describes class SNIA_RemoteResources.

EXPERIMENTAL

Table 290 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection (e.g., Remote
Logical Disks).

ElementType Mandatory The type of remote resources collected by the RemoteResources
collection. This shall be '7' (LogicalDisk).

CollectionDiscriminator Mandatory An array of strings indicating the purposes of the collection of elements.
This shall contain 'SNIA:Imported Volumes'.
396

 FileSystem Replication Services Profile

1

2

3

4

5

6

7

8

9

10

11

12
13
14

15
16
17

18
19
20
21
22

23
24
25
EXPERIMENTAL

18: FileSystem Replication Services Profile

18.1 Synopsis
Profile Name: Filesystem Replication Services (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 291 describes the related profiles for Filesystem Replication Services.

Central Class: ReplicationService

Scoping Class: ComputerSystem

18.2 Description

18.2.1 Overview

The Filesystem Replication Services Profile, a component profile, specifies the attributes and methods to
create and manage replica of storage elements, for instance, file system. The target replica of storage
element may be from the same storage system or across a connection to a different storage system.

Two types of synchronization views are supported. A replica may be synchronized to the current view of
storage element or may be synchronized to a point-in-time view. Snapshots and clones always represent
a point-in-time view, and a mirror represents a current view.

Two copy operation modes are supported -- synchronous and asynchronous. In the synchronous mode,
the write operation to the source element is reflected to the target element before signaling the host that
a write operation is complete. In the asynchronous mode, the host is signaled as soon as the write
operation to the source element is complete; however, the write to the target element may take place at a
later time.

Filesystem Replication Services Profile supports local and remote replication. Local replication specifies
that both the source and the target element are contained in a single managed storage system, such as a
NAS array platform. Remote replication specifies the source and the target element are contained in

Table 291 - Related Profiles for Filesystem Replication Services

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.6.1 Mandatory

File Export SNIA 1.6.1 Optional

Multiple Computer System SNIA 1.2.0 Optional

Job Control SNIA 1.5.0 Optional

Indication SNIA 1.5.0 Optional
SMI-S 1.6.1 Revision 6 SNIA Technical Position 397

FileSystem Replication Services Profile

26
27

28
29
30

31
32

33
34
35

36

37

38

39

40

41

42

43

44

45

46

47
48
separate storage systems. For remote replication, the client may interact with both the source and target
storage systems, however, the client only invokes the replication methods to single ReplicationService.

Filesystem Replication Services Profile supports “copying” thinly provisioned elements. Unlike fully
provisioned elements, a thinly provisioned element has fewer actual allocated space than the advertised
capacity of the element.

FileSystem Replication Services Profile supports copy operation from and to ReplicationEntity which
represents an addressable entity without a known object model.

Throughout this profile, there are specific references to class, properties and methods pertaining to each
section. Refer to 18.6 for a complete list of all properties and methods, including the description.

18.2.1.1 Key Feature
The following is a brief list of key feature of the Filesystem Replication Services:

• The ability to efficiently retrieve replication relationships

• The ability to support the different Copy Methodologies, for example, mirror, snapshot and clone.

• The ability to support the different mode, for example, synchronous and asynchronous.

• The ability to handle local and remote replication seamlessly

• The ability to specify Individual or Groups of elements to manage replication

• The ability to copy from and to undiscovered resources

• The ability to support Consistency Management

• The ability to replicate Thinly Provisioned element

18.2.1.2 Key Components
Table 292 shows a list of key classes used by Filesystem Replication Services. Refer to Section 18.4:
Methods and Section 18.6: CIM Elements for addition details on methods and properties of these classes.

Table 292 - Key Components

Class Name Notes

ReplicationService The main class for Replication Services. It contains methods for
replication and group management, for example, CreateGroup,
CreateElementReplica, CreateGroupReplica,
ModifyReplicaSynchronization

FileSystemReplicationServiceCapabiliti
es

Contains a set of properties and methods that describe the capabilities
of the service, for example, SupportedReplicationTypes, GetSupport-
edFeatures.

FileSystemReplicationCapabilities Contains a set of properties and methods that describe the capabilities
of each supported SupportedReplicationType.

ReplicationGroup Represents a group of elements participating in replication activities.

ReplicationSettingData Contains options to customize replication operations, for example,
pairing of group elements, TargetElementSupplier, CopyMethodology,
ThinProvisioningPolicy.
398

 FileSystem Replication Services Profile

49

50

51
52
53

54
55
56
57

58
59
60

61

62

63
64

65
66
67
68

69
18.2.2 Filesystem Replication Services Discovery

Figure 30 - Replication Service Discovery

The ComputerSystem has a HostedService association with ReplicationService. The single instance of
the class ReplicationService and its methods provide the mechanism for the creating and managing the
replicas.

The single instance of the class FileSystemReplicationServiceCapabilities and its methods describe the
various capabilities of the service. Clients should examine the FileSystemReplicationServiceCapabilities
instance and invoke its methods to determine the specific capabilities of a replication service
implementation.

The instances of FileSystemReplicationCapabilities may be associated with ReplicationService using
ElementCapabilities. Each instance of FileSystemReplicationCapabilities should be for each supported
FileSystemReplicationServiceCapabilities.SupportedReplicationTypes.

18.2.2.1 SyncTypes
SyncTypes describe the replication policy support by the profile. The following SyncTypes are defined:

Mirror: Creates and maintains a synchronized mirror copy of the source. Write done to the source element
are reflected to the target element. The target element remains dependent on the source element.

Snapshot1: Creates a point-in-time, virtual image of the source element. The target element remains
dependent on the source element. Identical information in the source and target elements are shared via
implementation-dependent means, to achieve space savings compared to full copies. Snapshots are
commonly known as delta replicas.

Clone: Create a point-in-time, independent, copy of the source element.

ReplicationEntity Represents information about an addressable entity without a known
object model.

FileSystemGroupSynchronized Associates source and target groups

FileSystemSynchronized Associates source and target elements.

1.Industry usage of the term 'snapshot' varies widely. In this spec, it is used to mean a 'delta snapshot' as
defined in the SNIA Dictionary

Table 292 - Key Components

Class Name Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 399

FileSystem Replication Services Profile

70
71
72

73
74

75
76
77

78
79
80

81

82

83
84

85
86

87

88
89

90

91
92

93
94
95

96
97
98

99
100
 Synchronized replication indicates that updates to a source element are reflected to the target element.
The mode determines whether the target element updated immediately, in the case of synchronous mode,
or some time later, in the case of asynchronous mode.

Table 293 compares the SyncTypes and the relationships between the source and target elements. It is a
quick reference fro the clients to determine the appropriate SyncType for the intended target results.

With respect to “Relation of Target to Source”, Dependent indicates the target element must remain
associated with the source element; Independent indicates the target element can exist without the
source element.

With respect to “Target is Virtual copy of Source”, the target element is not a “physical” copy of the source
element, instead the system holds a collection of mapping information that map the target element data to
the source element data.

18.2.2.2 Mode
The mode controls when the write operations are performed. The following modes are defined:

Synchronous: The writer waits until the write operations are committed to both the source and target
elements; or to both the source element and a target related entity, such as pointer tables.

Asynchronous: The writer waits until the write operations are committed to the source elements only. In
this mode, there can be a delay before the write operations are committed to the target elements.

18.2.3 Locality of Target Elements

Locality specifies the relationship between the source and target element. Replication Services defines
the following localities:

Local: It indicates the source and target elements are contained in a single managed system.

Remote: it indicates the source and target element are contained in separate managed systems. In this
case, the service must rely on a networking protocol for the copy operations.

The networking protocols are modeled using ProtocolEndpoint, which enables a replication service to
reach a remote element. The property ProtocolEndpoint.ProtocolIFType specifies the protocol type, for
example, TCP, Fibre Channel, Other, etc.

Locality is important because it advertises the capability of replication service. For example, the property
FileSystemReplicationServiceCapabilities.SupportedReplicationType may be has values such as
“Synchronous Mirror Local” and “Synchronous Mirror Remote”.

Figure 31 illustrates the mandatory, optional and conditional classes for the modeling of local replication
instance diagram.

Table 293 - Comparing SyncTypes

SyncType
Relation of
Target to
Source

Updates to
Source

Reflected to
Target

Target is
Point-in-

Time Copy

Target is
self-

contained

Target is
Virtual copy

of Source

Target’s space
consumption

Mirror Dependent Yes No Yes after Split/
Detach

NO Same as Source

Snapshot Dependent No Yes No Yes Less than Source

Clone Independent No Yes Yes No Same as Source
400

 FileSystem Replication Services Profile

101

102
103
104
105

106
107
108
109
110
111

112
113
Figure 31 - I Local File System Replication

The source element shall be represented in the model as an instance of LocalFileSystem and have a
FileSystemSynchronized association to the target element, that is, FileSystem. The association’s
property CopyState indicates the current state of the association. Meanwhile, the ReplicationService
instance shall have a ServiceAffectElement association to target replica and/or target group.

Both source element and target replica shall have a HostedFileSystem association to a ComputerSystem.
Normally it will be the top-level ComputerSystem of the parent profile (typically one of the filesystem-
related profiles such as the NAS Head or the Self-Contained NAS Profile). However, if the Multiple
Computer System Subprofile is implemented, the HostedFileSystem may be associated to a component
ComputerSystem. See Section 18:: FileSystem Replication Services Profile in Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6.

Figure 32 illustrates the mandatory, optional and conditional classes for the modeling of remote
replication instance diagram.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 401

FileSystem Replication Services Profile

114

115
116

117
118
119
120
121

122
123
124
125

126
127

128

129
130
131
132
133
134

135

136

137

138

139

140
141

142
143
144
145
Figure 32 - Remote File System Replication

The RemoteReplicationCollection abstracts the details of network connections to a remote system to
allow clients to focus on whether a remote system is reachable or not.

Instance of RemoteReplicationCollection may statically be created by the implementation, or clients may
be required to create such instance by invoking the extrinsic method CreateRemoteReplicationCollection.
Client subsequently can manipulate instances of RemoteReplicationCollection by invoke the intrinsic
method ModifyInstance and/or the extrinsic method AddToRemoteReplicationCollection and
RemoveFromRemoteReplicationCollection.

Each instance of RemoteReplicationCollection can have one or more paths to the remote system. As long
as one of these path to the remote system is up, the property
RemoteReplicationCollection.ConnectivityStatus indicates “UP”. As long as one connection is
functioning, there are replication operations between the local and the remote system.

Remote replication may require access information such as an RemoteServieAccessPoint instance for
the remote resource. See Section 18.3.2: Cascading Considerations for addition information.

18.2.4 Group

FileSystem Replication Services utilizes group of element to manage replication activities that include
more than one source or target element in a copy operation. A major advantage of using groups is that an
operation, such as fracture may be performed on the group as a whole, instead of fracturing individual
element pairs one by one. The optional ReplicationGroup class represents a collection of ordered storage
elements. An implementation may allow the target group to have more (or fewer) elements than the
source group.

Key feature of replication groups are:

• A group can be the source and/or the target of a copy operation.

• Elements of a group may be optionally declared Consistent

• A group may optionally be declared as temporary (Persistent = false).

• A group may contain zero elements (an empty group)

FileSystem Replication Services includes the methods to create and delete a group, and the methods to
add the elements or pair of elements to an existing group(s) or to remove elements from a group.

Certain copy operations such as copy one source to many target elements (one-to-many) may result in
the service creating a temporary group to keep track of all the target elements. The service may delete
the temporary group that is no longer associated with a copy operation. Deleting a temporary group does
not affect the elements associated with the group.
402

 FileSystem Replication Services Profile

146
147
148
149
150
151
152

153
154

155

156
157
158

159

160

161

162
163

164

165
166
167

168

169
170
171
The method ReplicationService.CreateGroupReplica() is used to copy a group of elements. The property
ReplicationSettingData.Pairing determines the pairing of the source and the target elements. Possible
values are Exact Order and Optimum. Exact Order means the first element of the source group is copied
to the first element of the target group, the second element of the source group is copied to the second
element of the target group, and so on. Optimum means in order to minimize any resource and data flow
contentions, if possible, pair the source and target elements in such as way that they are on different data
paths.

See the FileSystemReplicationServiceCapabilities.GetSupportReplicationSettingData() method for
Pairing and for UnequalGroupAction Capabilities.

Figure 33 - Group Instance Diagram

The association between ReplicationGroup and its storage elements (e.g. FileSystem) is
OrderedMemberOfCollection to maintain the order of the storage elements to facilitate pairing of the
source and the target group elements.

18.2.4.1 Composite Group
A Composite Group is a group that includes storage elements from multiple storage systems.

18.2.4.2 Consistency Group
A Consistency Group is a set of elements that have an “Application Consistent view”. Application
Consistent View is a set of the elements that collectively represent some resource in a known state.

18.2.4.2.1 Sequentially consistent
A group of target element is considered to be “sequentially consistent” if each element is updated in the
same order as the application updates the corresponding source elements. Sequentially Consistency is
also known as Dependent Write Consistency.

18.2.4.3 FileSystemGroupSynchronized Association
.FileSystem Replication Services utilizes FileSystemGroupSynchronized to associate one pair of source
and target groups or a source element to a target group for a one-to-many relationship. Within a group,
the SyncType and Mode properties of all subordinate FileSystemSynchronized associations between the
SMI-S 1.6.1 Revision 6 SNIA Technical Position 403

FileSystem Replication Services Profile

172
173
174

175

176

177
resource and the target elements shall be the same. The SyncType and Mode properties of the
FileSystemGroupSynchronized association shall also be the same as the ones of subordinate
FileSystemSynchronized associations.

Figure 34 shows the associated groups with equal number of source and target elements.

Figure 34 - Associated Group and Elements

As shown in Figure 35, one source element is associated to more than one target element.
404

 FileSystem Replication Services Profile

178

179
180
181
182

183

184
185
186

187
188
189
190
191
192
193
194

195
196
197
198
199

200
201
202
203
204
Figure 35 - One-to-Many Association

If the property ConsistencyEnabled set to true, the target elements have a sequentially consistent view at
all time. Within a group, once the connection between the individual source and target element is broken,
all subsequent copy operations to the target elements stop, therefore maintaining the consistency of the
target element.

18.2.5 State Management For Associated Replicas

Both mirror and snapshot replicas maintain stateful associational with source elements. In the case of
clone replica, the replication associations to the source elements exist while the copy operation is in
progress.

The CopyState property of the replication association identifies the state, while the ProgressStatus
property of the same association indicates the “status” of the copy operation to reach the requested
CopyState, which is indicated in the property RequestedCopyState. For example, CopyState might have a
value of “UnSynchronized”, while ProgressStatus might have a value of “Synchronizing”, also known as
“sync-in-progress”. In all cases, when creating a replica element, the desired CopyState, as reflected in
the property RequestedCopyState, is Synchronized, which indicates the replica element has the same
data as the source element. The RequestedCopyState property will contain “Not Applicable” once the
requested CopyState is achieved.

The FileSystemGroupSynchronized association between the source and target groups also includes the
CopyState property. If all values of FileSystemSynchronized.CopyState of the source and target
association are the same (i.e., Synchronized), FileSystemGroupSynchronized.CopyState will also have
the same value. On the other hand, any mismatch in the FileSystemSynchronized.CopyState values, will
render the FileSystemGroupSynchronized.CopyState property to have a value of Mixed.

Synchronized state for the Mirror and Clone SyncType indicates all data has been copied from the source
element to the target element. For the Snapshot SyncType, because the target element is a virtual point-
in-time view of the source element, the Synchronized CopyState indicates all the metadata (pointer or
mapping information) for the snapshot have been created. Synchronization for the snapshot is achieved
rapidly in comparison to synchronization of Mirror and Clone.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 405

FileSystem Replication Services Profile

205
206
207

208
209
210
211

212
213
214
215
216
217
218
219
220

221
222

223
224

225
226
227

228
Unsynchronized CopyState indicates the target element is not an exact copy of the source element (or
the source’s point-in-time). The copy operation automatically continues until the synchronization between
the source element (or its point-in-time) and the target element is reached.

The Skewed CopyState is similar to the Unsynchronized CopyState except that the synchronized
relationship remains in the Skewed state until a client issues the Resync operation (the extrinsic methods
ModifyReplicaSynchronization or ModifyListSynchronization). As an example: Committing write
operations to a Snapshot target element causes the source and the target elements to become Skewed.

Unplanned states, such as Broken, Aborted or Partitioned can be entered from any other state and
generally indicate an unusual circumstance. Recovery from the Broken or Partitioned state may be
automatic once the error condition is resolved, or it may require a client to intervene with a “Resync”
operation (See Section 18.4.3.3: GetSupportedFeatures) or a “Resume” operation. Continuing from an
Aborted state requires a client to intervene with a “Resync” operation. In this situation, the
implementation may indicate a “Resync” operation is required by the setting the ProgressStatus to
“Waiting for resync”. Additionally, the copy operation may be temporarily stopped due to system or
connection bandwidth. In this case the ProgressStatus will be set to “Pending”. See Section 18.4.3.3:
GetSupportedFeatures

If after the error condition is resolved, the CopyState indicates “Suspended” State, in order to resume the
copy operation it is necessary for the client to issue a “Resume” operation.

If the CopyState indicates “Invalid”, generally, it means system is unable to determine the state of the
copy operation. In this situation, the client needs to “detach” and “reestablish” the replication relationship.

Use the method FileSystemReplicationServiceCapabilities.GetSupportedCopyState to determine the
possible CopyStates. The CopyStates have been normalized in such a way that they may apply to all
SyncTypes.

Table 294 describes the supported CopyStates.

Table 294 - CopyStatus Values

CopyState value Description

Initialized The source and target elements are associated. The copy operation has not
start - no data flow.

Unsynchronized Not all the source element data has been “copy” to the target element.

Synchronized The copy operation is complete. The target element is an “extra replica” of the
source element.

Broken Replica is not valid view of the source element. OperationalStatus of replica
may indicate an Error condition. This state generally indicates an error condi-
tion such as broken connection.

Fractured The target element was abruptly split from its source element - consistency is
not guaranteed

Split The target element was gracefully (or systematically) split from its source ele-
ment - consistency is guaranteed.

Inactive Copy operation has stopped, writes to source element will not be sent to the
target element.

Suspended Data flow between the source and target element has stopped. Writes to
source element are held until a resume operation is completed.

Failedover Reads and writes to/from the target element. Source element is not “reachable”
406

 FileSystem Replication Services Profile

229
230
231
Table 36 shows a sample of the CopyState transitions and corresponding ProgressStatus changes. In a
steady state condition, for example, the CopyState has a value of “Synchronized” and at the same time
the ProgressStatus has a value of “Completed”.

Prepared Initialization is completed, the copy operation has started, however, the data
flow has not started.

Aborted The copy operation is aborted with the Aborted operation. Use the Resync
Replica operation to restart the copy operation

Skewed The target has been modified and is no longer synchronized with the source
element or the point-in-time view. Use the Resync Replica operation to resyn-
chronized the source and target element.

Mixed Applies to the CopyStatus of FileSystemGroupSynchronized. It indicates the
FileSystemSynchronized associations of the elements in the groups have dif-
ferent CopyState values.

Partitioned The state of replication relationship can not be determined, for example, due to
a connection problem.

Invalid The array is unable to determine the state of the replication relationship, for
example, after the connection is restored; however, either source or target ele-
ment has an unknown status.

Restored It indicates the source element was restored from the target element.

Table 294 - CopyStatus Values

CopyState value Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 407

FileSystem Replication Services Profile

232
 Figure 36 - Sample CopyState and ProgressStatus Transitions
408

 FileSystem Replication Services Profile

233
234
235

236

237
238

239

240

241

242

243
244

245
246
247
248
249

250
251

252
Depending on implementation, the clone target element detaches automatically when the target element
becomes synchronized; otherwise, the client needs to explicitly request a detach operation. See the
method FileSystemReplicationServiceCapabilities.GetSupportedFeatures in 18.4.3.3.

18.2.6 Undiscovered Resource

An undiscovered resource is any addressable entity without a known object model. General, clients
identify an undiscovered resource using one or more of the following:

• WWN (World Wide Name)

• URI (Uniform Resourced Identifier)

• IP Address

• Remote ComputerSystem Objectpath

In all cases, the assumption is that the underlying implementation “knows” how to perform the copy
operation.

the FileSystem Replication Service includes the necessary methods to create and manage the instances
representing undiscovered resource. See the class ReplicationEntity (in Section 18.6: CIM Elements) and
the method AddReplicationEntity (18.4.2.15). Also, in the replication service capabilities the absence of
“Requires full discovery of target ComputerSystem” in SupportedFeatures property indicates the service
support undiscovered resources.

Figure 37 and Figure 38 show entire instance diagram with ReplicationEntity for local and remote
replication.

Figure 37 - Local Replication with ReplicationEntity
SMI-S 1.6.1 Revision 6 SNIA Technical Position 409

FileSystem Replication Services Profile

253

254
255
256

257

258

259

260

261
262

263
264
265
266
267
268
269
270

271

272
273
274
275
276
277
Figure 38 - Remote replication with ReplicationEntity

An instance of FileSystemSynchronized association identifies the source and target element of a copy
operation. Additionally, the FileSystemSynchronized.UndiscoveredElement property may indicate which
elements in the copy operation are “undiscovered”. The possible values are:

• SystemElement - the source element

• SyncedElement - the target element

• Both - both the source and target elements

18.2.7 Multiple-Hop Replication

In multi-hop replication, the target element of one copy operation can simultaneously be the source for
another copy operation. As shown in Figure 39, multi-hop replication involves at least three elements.

Figure 39 - Multi-Hop Replication
If an implementation supports multi-hop replication, the supported features capabilities will indicate
“Multi-Hop element replication”. Furthermore, the implementation may need to know that the client is
planning to add additional hops in the subsequent operations. In this case, the replication capabilities
would indicate “Multi-hop requires advance notice”. in response to this capability, the client in creating the
first replica, must set the property ReplicationSettingData.Multihop appropriately (see Section 18.6: CIM
Elements for details on Multi-hop specification). The capabilities method GetSupportedMaximum
indicates the maximum number of hops supported by the implementation.

18.2.8 SettingDefineState Association and SynchronizationAspect Instance

The SettingDefineState associates an element (e.g. a FileSystem) or a group of elements (e.g. a
ReplicationGroup) to a SynchronizationAspect. A instance of SynchronizationAspect includes properties
for the data and time of the point-in-time copy and a reference to a source element (see Figure 40). the
association is particularly useful for Clones (targets) and Snapshot (source) that do not have a
FileSystemSynchronized association to another storage element. In the case of Clone, the
FileSystemSynchronized association is removed (generally, following the provider’s restart) after the
410

 FileSystem Replication Services Profile

278
279
280
281
282
283

284
285
286

287

288
289
290

291
292

293
294
295
296
copy operation completes. As for Snapshot, it is possible to create a point-in-time snapshot copy of an
element or a group of elements, without having a target element (using the method
CreateSynchronizationAspect). In this mode, the target elements are added at a later time (sing the
method ModifySettingDefineState). Creating a SynchronizationAspect of a Snapshot is particularly useful
when a client wants to capture a point-in-time copy at a given time; however, the client wants to create a
actual target element at a later time, perhaps when is more convenient.

If an instance of a SynchronizationAspect is associated to a group of elements, the property
“WhenPointInTime” applies to all elements of the groups, indicating the point-in-time copy of all elements
is created at the same exact time.

Figure 40 - SettingDefineState

SettingDefineState may also be applied to Mirror targets; as much the property
SynchronizationAspect.WhenPointInTime would have the date and time of when the mirror relationship
was fractured (or split).

In all cases, the SettingDefineState association may not persist across the provider’s restart.
Furthermore, an instance of a SynchronizationAspect shall be removed if the SourceEelement is deleted.

Figure 41 shows an instance diagram for a clone target element and its associated
SynchronizationAspect instance. Once the clone target element becomes synchronized, the
FileSystemSynchronized association is removed and the property SynchronizationAspect.CopyState has
a value of “Operation Completed”
SMI-S 1.6.1 Revision 6 SNIA Technical Position 411

FileSystem Replication Services Profile

297

298

299
300
301

302
303
304
305
Figure 41 - SynchronizationAspect Instance Diagram

18.2.9 Indication

Depending on the implementation, the FileSystem Replication Services Profile generates a number of
different alert and lift cycle indications, as shown in Table 295. clients decide what indications they wish
to receive by subscribing to the appropriate indications.

Because on the large system with many copy operation in progress simultaneously, there is a potential to
receive many unwanted indications. Therefore, it is recommended for the client to subscribe to
indications that have a query that is constrained to a specific replication association. See Section 18.6:
CIM Elements for the indication queries.
412

 FileSystem Replication Services Profile

306
307
308

309

310

311
312
313

314

315

316

317
318
For the file system and job indications, refer to Section Section 8: Filesystem Profile, Section Section 9:
Filesystem Manipulation Subprofile and Storage Management Technical Specification, Part 3 Common Profiles,
1.6.1 Rev 6 Section Section 26: Job Control Subprofile.

18.3 Implementation

18.3.1 Health and Fault Management Consideration

The profile uses indications to report health and fault management. In general, instance modification
indications are sent when changes in OperationalStatus and HealthState values of the following instances
indicate a fault condition:

• Source and Replica elements

• ProtocolEndpoints

• RemoteReplicationCollections

In response to a fault indication, clients can follow the RelatedElemetCausingErro association between
instance reporting the error and the faulted component.

Table 295 - Indications

Indication Source Of

CIM_InstCreation • New Job Creation

• New Target Element Creation

• New FileSystemSynchronized Association Creation

• New FileSystemGroupSynchronized Association Creation

CIM_InstDeletion • Job Deletion

• Target Element Deletion (e.g. Snapshot)

• FileSystemSynchronized Association Deletion

• FileSystemGroupSynchronized Association Deletion

CIM_InstModification • Job Progress and Status Change

• Source and Target Element Status Changes

• CopyState Changes

• ProgressStatus Changes

• ProtocolEndpoint and RemoteReplicationCollection Status Changes

CIM_AlertIndication • Error conditions, such as

• FileSystemSynchronized and FileSystemGroupSynchronized State
set to Broken

• ProtocolEndpoints.OperationalStatus set to Error

• RemoteReplicationCollection.ConnectivityStatus set to “down”
SMI-S 1.6.1 Revision 6 SNIA Technical Position 413

FileSystem Replication Services Profile

319
320

321

322
323
324
325
326
327
328

329
330
331

332

333

334
335
336
337

338
The profile also generates alert indications when the CopyState of a replication association transitions to
the Broken state.

18.3.2 Cascading Considerations

For remote replication, the FileSystem Replication Services Profile requires a cascading provider to
perform the “stitching” of resources between cascading profile (FileSystem Replication Services Profile)
and a leaf profile (for example, NAS Head Profile), where the remote resource are contained. The
cascading provider ensures that the leaf resource represent real instances of ComputerSystem,
ProtocolEndpoint and storage objects such as FileSystem in cascading profile. Furthermore, the
cascading provider shall ensure that the state and status properties such as OperationalStatus and
CopyState have consistent values between the leaf and real resource.

The replication service relies on other profile to facilitate access to the leaf resource. For example, the
RemoteServiceAccessPoint instance identifies the necessary information to establish access to the leaf
system’s resources.

Figure 42 illustrates the FileSystem Replication Services support for cascading.

Figure 42 - FileSystem Replication Service support for Cascading

The dashed classes are shadow of instances provided by the remote system. The collection
SNIA_AllocatedResources collects all the components in use by the replication service. the collection
SNIA_RemoteResources collects all component (FileSystem, FileShare, etc.) accessible to the
replication service whether used or not.

Figure 43 shows cascading support utilizing replication groups.
414

 FileSystem Replication Services Profile

339

340

341
342
343
344
345
346
347

348
349
350

351

352

353

354

355
Figure 43 - Cascading and Replication Groups

18.4 Methods
The FileSystem Replication Services Profile has an umber of the extrinsic methods for group
management and replication management. Additionally, there are a number of the extrinsic methods in
the FileSystemReplicationServiceCapabilities that advertise the implemented replication service
capabilities. Also, the FileSystem Replication Services Profile is dependent on the other extrinsic
methods provided by the Filesystem Manipulation Subprofile for file system manipulations. Furthermore,
it relies on a number of intrinsic methods such as ModifyInstance, DeleteInstance for certain optional
capabilities.

All of the FileSystem Replication Service Profile extrinsic methods return one of the following status
codes. Depending on the error condition, a method may return additional error codes and/or throw an
appropriate exception to indicate the error encountered.

• 0: (Job) Completed with no error
• 1: Method not supported
• 4: Failed
• 5: Invalid Parameter
• 4096: Method Parameters Checked - Job Started
SMI-S 1.6.1 Revision 6 SNIA Technical Position 415

FileSystem Replication Services Profile

356

357

358

359
360
361
For the input/output parameter values, refer to the appropriate MOF files and the value maps.

Table 296 summarizes the extrinsic methods for group management (class ReplicationService)

Table summarizes the extrinsic methods for replication management (class ReplicationService)

Table 298 summarizes the extrinsic methods for examining the implemented capabilities (class
FileSystemReplicationServiceCapabilities). The majority of these methods accept the ReplicationType as
an input parameter. The supplied ReplicationType must be a supported replication type corresponding to

Table 296 - Extrinsic Method for Group Management

Method Described in

CreateGroup() See 18.4.1.1

DeleteGroup() See 18.4.1.2

AddMembers() See 18.4.1.3

RemoveMembers() See 18.4.1.4

Table 297 - Extrinsic Method for Replication Management

Method Described in

CreateElementReplica() See 18.4.2.1

CreateGroupReplica() See 18.4.2.2

CreateListReplica() See 18.4.2.3

CreateGroupReplicaFromElements() See 18.4.2.4

CreateSynchronizationAspect() See 18.4.2.5

ModifyReplicaSynchronization() See 18.4.2.6

ModifyListSynchronization() See 18.4.2.7

ModifySettingsDefineState() See 18.4.2.8

ModifyListSettingsDefineState() See 18.4.2.9

GetAvailableTargetElements() See 18.4.2.10

GetPeerSystems() See 18.4.2.11

GetServiceAccessPoints() See 18.4.2.12

GetReplicationRelationships() See 18.4.2.13

GetReplicationRelationshipInstances() See 18.4.2.14

AddReplicationEntity() See 18.4.2.15

AddServiceAccessPoint() See 18.4.2.16

AddShareSecret() See 18.4.2.17

CreateRemoteReplicationCollection() See 18.4.2.18

AddToRemoteReplicationCollection() See 18.4.2.19

RemoveFromRemoteReplicationCollection() See 18.4.2.20
416

 FileSystem Replication Services Profile

362
363

364

365

366

367

368

369

370

371

372

373

374

375

376
377
the property FileSystemReplicationServicesCapabilities.SupportedReplicationTypes; otherwise the
method returns “Not Supported” or throw a “Not Supported” exception.

18.4.1 Group Management Methods

18.4.1.1 CreateGroup
uint32 ReplicationService.CreateGroup(

[IN] string GroupName,

[IN] CIM_LogicalElement REF Members[],

[IN] boolean Persistent,

[IN] boolean DeleteOnEmptyElement,

[IN] boolean DeleteOnUnassociated,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[OUT] CIM_ReplicationGroup REF ReplicationGroup,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData);

This Method allows a client to create a new replication group. Any required associations (such as
HostedCollection) are created in addition to the instance of the group. The parameters are as follows:

Table 298 - Extrinsic Method for Getting Supported Capabilities

Method Described in

ConvertSyncTypeToReplicationType() See 18.4.3.1

ConvertReplicationTypeToSyncType() See 18.4.3.2

GetSupportedFeatures() See 18.4.3.3

GetSupportedGroupFeatures() See 18.4.3.4

GetSupportedCopyStates() See 18.4.3.5

GetSupportedGroupCopyStates() See 18.4.3.6

GetSupportedWaitForCopyStates() See 18.4.3.7

GetSupportedConsistency() See 18.4.3.8

GetSupoprtedOperations() See 18.4.3.9

GetSuportedGroupOperations() See 18.4.3.10

GetSupportedListOperations() See 18.4.3.11

GetSupportedSettingsDefineStateOperations() See 18.4.3.12

GetSupportedThinPrivisioningFeatures() See 18.4.3.13

GetSupportedMaximum() See 18.4.3.14

GetDefaultConsistency() See 18.4.3.15

GetDefaultGroupPersistency() See 18.4.3.16

GetSupportedReplicationSettingData() See 18.4.3.17

GetDefaultReplicationSettingData() See 18.4.3.18

GetSupportedConnectionFeatures() See 18.4.3.19

GetSupportedStorageCompressionFeatures() See 18.4.3.20
SMI-S 1.6.1 Revision 6 SNIA Technical Position 417

FileSystem Replication Services Profile

378
379

380
381

382
383

384
385
386
387
388

389
390
391
392

393
394

395

396
397

398

399
400

401

402

403

404

405

406

407

408
409

410

411
412

413
414

415
416

417

418
419
• GroupName: If nameable, an end user relevant name for the group being created. If NULL or not nameable,
then system assigns a name.

• Members[]: List of elements to add to the group -- order is maintained. If NULL, the group will be empty -- if
empty groups are supported.

• Persistent: If false, the group, not the elements associated with the group, may be deleted at the completion
of a copy operation. Use the intrinsic method ModifyInstance to change Persistencyof a group.

• DeleteOnEmptyElement: If true and empty groups are allowed, the group will be deleted when the last
element is removed from the group. If empty groups are not allowed, the group will be deleted automatically
when the group becomes empty. If this parameter is not NULL, its value will be used to set the group's
DeleteOnEmptyElement property. Use the intrinsic method ModifyInstance to change this property after the
group is created.

• DeleteOnUnassociated: If true, the group will be deleted when the group is no longer associated with another
group. This can happen if all synchronization associations to the individual elements of the group are
dissolved. If this parameter is not NULL, its value will be used to set the group's DeleteOnUnassociated
property. Use the intrinsic method ModifyInstance to change this property after the group is created.

• ServiceAccessPoint: Reference to access point information to allow the service to create a group on a remote
system. If NULL, the group is created on the local system.

• ReplicationGroup: Reference to the created group.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example, to
supply the “Description” for the created group.

This method returns the following additional values/statuses:

• If a groups are not nameable and a name is supplied, the method return 7 (“Groups are not nameable”) or
throws an appropriate exception.

18.4.1.2 DeleteGroup
uint32 ReplicationService.DeleteGroup(

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN] boolean RemoveElements,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData);

This method allows a client to delete a replication group. All associations to the deleted group are also
removed as part of the action. The parameters are as follows:

• ReplicationGroup: Reference to a replication group that the client want s to delete.

• ServiceAccessPoint: Reference to access point information to allow the service to delete the group on a
remote system. If null, the group is on the local system.

• RemoveElements: Delete the group even if it is not empty. If one or more elements in the group are in a
replication relationship, RemoveElements has no effect.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

This method returns the following addition values/statuses:

• If an element in the group is in a replication association, the method return 7 (“One or more elements in a
replication relationship”) or throws an appropriate exception.
418

 FileSystem Replication Services Profile

420

421

422

423

424

425

426

427
428

429
430
431

432

433
434

435
436

437

438

439

440

441

442

443

444

445
446
447

448
449

450
451
452

453

454
455

456
457

458

459
460
18.4.1.3 AddMembers
uint32 ReplicationService.AddMembers()

[IN] CIM_LogicalElement REF Members[],

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData);

This method allows a client to add members to an existing replication group. The parameters are as
follows:

• Members[]: An array of strings containing object references to the new elements to add to the replication
group. The new elements are added at the end of current members of the replication group. Duplicate
members are not allowed.

• ReplicationGroup: A reference to an existing replication group.

• ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

18.4.1.4 RemoveMembers
uint32 ReplicationService.RemoveMembers(

[IN] CIM_LogicalElement REF Members[],

[IN] boolean DeleteOnEmptyElement,

[IN, Required] CIM_ReplicationGroup REF ReplicationGroup,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData);

This method allows a client to remove members from an existing replication group. If empty replication
groups are not supported by the implementation, deleting all members will delete the group. The
parameters are as follows:

• Members[]: An array of strings containing object references to the elements to remove from the replication
group. Attempting to remove a member that is not in the replication group, returns an error.

• DeleteOnEmptyElement: If true and removal of the members causes the group to become empty, the group
will be deleted. Note, if empty groups are not allowed, the group will be deleted automatically when the group
becomes empty. If this parameter is not null, it overrides the group's property DeleteOnEmptyElement.

• ReplicationGroup: A reference to an existing replication group.

• ServiceAccessPoint: Reference to access point information to allow the service to access the group on a
remote system. If null, the group is on the local system.

• ReplicationSettingData: If supplied, it provides additional replication settings for the method. For example,
what should happen OnGroupOrListError.

This method returns the following additional values/statuses:

• Attempting to remove a group member that is in a replication association, returns 7 (“One or more element in
a replication relationship“) or throws an appropriate exception.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 419

FileSystem Replication Services Profile

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478
479

480
481

482

483

484

485
486

487

488
489

490
491

492
493

494
495

496
497

498
499

500
501
18.4.2 Replication Management

18.4.2.1 CreateElementReplica
uint32 ReplicationService.CreateElementReplica(

[IN] string ElementName,

[IN, Required] uint16 SyncType,

[IN] uint16 Mode,

[IN, Required] CIM_LogicalElement REF SourceElement,

[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

[IN, OUT] CIM_LogicalElement REF TargetElement,

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_Synchronized REF Synchronization,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) a new storage object which is a replica of
the specified source storage object (SourceElement). The parameters are as follows:

• ElementName: A end user relevant name for the element being created. If null, then a system supplied name
is used. The value will be stored in the 'ElementName' property for the created element.

• SyncType: Describes the type of copy that will be made. For example, Mirror, Snapshot, and Clone.

• Mode: Describes whether the target elements will be updated synchronously or asynchronously.

• SourceElement: The source storage object which may be a FileSystem or storage object.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element.

• • TargetElement:

• As an input, refers to a target element to use. If a target element is not supplied, the implementation may
locate or create a suitable target element. See Section 18.4.3.17: GetSupportedReplicationSettingData .

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element.

• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

• Synchronization: Refers to the created association between the source and the target element. If a job is
created, this parameter may be null, unless the association is actually formed.

• TargetSettingGoal: The definition for the FileSystemSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null.
420

 FileSystem Replication Services Profile

502
503
504

505
506
507
508

509

510

511
512
513
514
515

516

517
518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533
• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached. For example,
CopyState of Initialized means associations have been established, but there is no data flow. CopyState of
Synchronized indicates the replica is an exact copy of the source element. CopyState of UnSynchronized
means copy operation is in progress (see Figure 294 for the CopyStates).

Method Notes:

• Creates a storage element of the same type as the source element.

• If the TargetElement, the TargetPool, or the TargetAccessPoint are not specified, the TargetElement is
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElement will have the applicable association to the top level ComputerSystem.
For example, if the TargetElement is a FileSystem, the created TargetElement will have a HostedFileSystem
association to the top level computer system.

• Creates a FileSystemSynchronized association.

• Creates HostedFileSystem, ResidesOnExtent, and ElementSettingData associations to the newly created
target element.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 299 shows selected optional parameters that can interact.

NOTE * See capabilities (Table 317, “Target Element Suppliers”) for whether implementation locates/creates target elements.

18.4.2.2 CreateGroupReplica
uint32 ReplicationService.CreateGroupReplica(

[IN] string RelationshipName,

[IN, Required] uint16 SyncType,

[IN] uint16 Mode,

[IN] CIM_ReplicationGroup REF SourceGroup,

[IN] CIM_LogicalElement REF SourceElement,

[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

[IN, OUT] CIM_ReplicationGroup REF TargetGroup,

[IN] uint64 TargetElementCount,

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[IN] uint16 Consistency,

Table 299 - Selected CreateElementReplica optional parameters

TargetElement TargetSettingGoal TargetPool Comment

Null Null Null Implementation locates/creates target element*

Supplied Null Null

Null Supplied Null Goal is used to locate/create target element*

Null Supplied Supplied Goal is used to locate/create target element* in the
supplied Pool

Null Null Supplied Pool is used to locate/create target element* in Pool.
Implementation determines the Goal
SMI-S 1.6.1 Revision 6 SNIA Technical Position 421

FileSystem Replication Services Profile

534

535

536

537

538

539

540

541
542
543

544
545
546
547
548

549
550

551

552

553
554

555
556

557
558

559

560

561
562

563
564

565
566

567
568

569

570

571
572
573

574
[IN, EmbeddedInstance("CIM_ReplicationSettingData")]

 string ReplicationSettingData,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_Synchronized REF Synchronization,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) a new group of storage objects which are
replicas of the specified source storage or a group of source storage objects (SourceElements). The
parameters are as follows:

• RelationshipName: A user relevent name for the relationship between the source and target groups or
between a source element and a target group (i.e., one-to-many). If null, the implementation assigns a name.
If the individual target elements require an ElementName, a name would be constructed using
RelationshipName (or ReplicationSettingData.ElementName) as prefix followed by "_n" sequence number,
where n is a number beginning with 1.

If the method is expected to create the target group, and the parameter ReplicationSettingData is supplied,
the property ReplicationSettingData.ElementName may be used as the group name.

• SyncType: See CreateElementReplica’s parameters (18.4.2.1)

• Mode: See CreateElementReplica’s parameters (18.4.2.1)

• SourceGroup: A group of source storage objects. If this parameter is not supplied, SourceElement is
required. Both SourceGroup and SourceElement shall not be supplied.

• SourceElement: The source storage object. If this parameter is not supplied, SourceGroup is required. Both
SourceGroup and SourceElement shall not be supplied.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source elements/group.

• TargetGroup:

• As an input, refers to a target group to use.

• As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately. If TargetGroup is supplied, TargetElementCount shall be null.

• TargetElementCount: This parameter applies to one-source-to-many-target elements. If TargetGroup is
supplied, this parameter shall be null.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

• Consistency: This parameter overrides the default group consistency. For example, "No Consistency",
"Sequential Consistency".

• ReplicationSettingData: See CreateElementReplica’s parameters (18.4.2.1)

• Job: See CreateElementReplica’s parameters (18.4.2.1)

• Synchronization: Refers to the created association between the source element (or source replication group)
and the target replication group. If a job is created, this parameter may be null, unless the association is
actually formed.

• TargetSettingGoal: See CreateElementReplica’s parameters (18.4.2.1)
422

 FileSystem Replication Services Profile

575

576

577

578

579
580

581

582
583

584

585

586

587

588

589

590

591

592

593
• TargetPool: See CreateElementReplica’s parameters (18.4.2.1)

• WaitForCopyState: See CreateElementReplica’s parameters (18.4.2.1)

Method Notes:

• Creates storage elements of the same type as the source element(s)

• If the TargetGroup or the TargetAccessPoint are not specified, the TargetGroup is created on the system
hosting the replication service, via the HostedService association.

• Creates FileSystemSynchronized and FileSystemGroupSynchronized associations.

• Creates HostedFileSystem, ResidesOnExtent, and ElementSettingData associations to the newly created
target elements.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 300 shows selected optional parameters that can interact

NOTE * See capabilities (Table 317, “Target Element Suppliers”) for whether implementation locates/creates target elements

18.4.2.3 CreateListReplica
uint32 ReplicationService.CreateListReplica(

[IN] string ElementNames[],

[IN, Required] uint16 SyncType,

[IN] uint16 Mode,

[IN, Required] CIM_LogicalElement REF SourceElements[],

[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

Table 300 - Selected CreateGroupReplica optional parameters

TargetGroup TargetElementCount TargetSettingGoal TargetPool Comment

Null Null Null Null Implementation locates/
creates target elements*

Supplied Null Null Null

Supplied Supplied Null Null An illegal combination.

Null Supplied Null Null Implementation locates/
creates target elements*

Null Supplied Supplied Null Goal is used to locate/create
target elements

Null Supplied Supplied Supplied Goal is used to locate/create
target elements* in the
supplied Pool

Null Null Supplied Null Goal is used to locate/create
target elements

Null Null Supplied Supplied Goal is used to locate/create
target elements in the
supplied Pool

Null Null Null Supplied Pool is used to locate/create
target elements* in Pool.
Implementation determines
the Goal
SMI-S 1.6.1 Revision 6 SNIA Technical Position 423

FileSystem Replication Services Profile

594

595

596

597

598

599

600

601

602

603
604
605

606
607
608
609
610

611

612

613
614

615
616
617

618

619
620
621

622
623

624
625

626
627
628

629
630

631
632

633
634
635
[IN, OUT] CIM_LogicalElement REF TargetElements[],

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[IN, EmbeddedInstance("CIM_ReplicationSettingData")]

string ReplicationSettingData,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_Synchronized REF Synchronizations[],

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) new storage objects which are a replica of
the corresponding specified source storage object (an element of the SourceElements). The parameters
are as follows:

• ElementNames: An array of end user relevant names for the elements being created. If null, then a system
supplied name is used. The value will be stored in the 'ElementName' property for the created element. The
first element of the array ElementNames is assigned to the first replica, the second element to the second
replica and so on. If there are more SourceElements entries than ElementNames, the system supplied name
is used.

• SyncType: See CreateElementReplica’s parameters (18.4.2.1)

• Mode: See CreateElementReplica’s parameters (18.4.2.1)

• SourceElements: An array of source storage objects. All the source elements shall be of the same type -- for
example, all FileSystems.

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element. The same SourceAccessPoint applies to all SourceElements
entries.

• TargetElements:

• As an input, refers to an array of target elements to use. If specified, the elements will match one to one with
SourceElements[]. If a target elements are not supplied, the implementation may locate or create a suitable
target elements. See Section 18.4.3.17: GetSupportedReplicationSettingData.

• As an output, refers to the created target storage elements (i.e., the replicas). If a job is created, the target
elements may not be available immediately

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target element. The same TargetAccessPoint applies to all TargetElements entries.

• ReplicationSettingData: If provided, it overrides the default replication setting data for the given SyncType. If
not provided, the implementation uses the default replication setting data. The same ReplicationSettingData
applies to SourceElements entries.

• Job: If a Job is created as a side-effect of the execution of the method, then a reference to that Job is
returned through this parameter (may be null if job is completed).

• Synchronizations: Refers to an array of created associations between the source and the target elements. If a
job is created, this parameter may be null, unless the associations are actually formed.

• TargetSettingGoal: The definition for the FileSystemSetting to be maintained by the target storage object (the
replica). If a target element is supplied, this parameter shall be null. The same TargetSettingGoal applies to
all TargetElements entries.
424

 FileSystem Replication Services Profile

636
637
638

639
640
641
642
643

644

645

646
647
648
649
650

651

652
653

654

655

656

657

658

659

660

661

662

663

664

665

666

667
• TargetPool: The underlying storage for the target element (the replica) will be drawn from TargetPool if
specified, otherwise the allocation is implementation specific. If a target element is supplied, this parameter
shall be null. The same TargetPool applies to all TargetElement entries.

• WaitForCopyState: Before returning, the method shall wait until this CopyState is reached for all
Synchronizations. For example, CopyState of Initialized means associations have been established, but there
is no data flow. CopyState of Synchronized indicates the replicas are an exact copy of the corresponding
source element. CopyState of UnSynchronized means copy operation is in progress (see Section Table 294 -
: CopyStatus Values for the CopyStates).

Method Notes:

• Creates a storage elements of the same type as the source elements.

• If the TargetElements, the TargetPool, or the TargetAccessPoint are not specified, the TargetElements are
created on the system hosting the replication service, via the HostedService association. Additionally, when
required, the created TargetElements will have the applicable associations to the top level ComputerSystem.
For example, if the TargetElements are FileSystem, the created TargetElements will have HostedFileSystem
associations to the top level computer system.

• Creates the FileSystemSynchronized associations.

• Creates HostedFileSystem, ResidesOnExtent, and ElementSettingData associations to the newly created
target elements.

• May create BasedOn and ReplicaPoolForStorage associations.

Table 301 shows selected optional parameters that can interact.

NOTE * See capabilities (Table 317, “Target Element Suppliers”) for whether implementation locates/creates target elements

18.4.2.4 CreateGroupReplicaFromElements
uint32 ReplicationService.CreateGroupReplicaFromElements(

[IN] string RelationshipName,

[IN, Required] uint16 SyncType,

[IN] uint16 Mode,

[IN,OUT] CIM_ReplicationGroup REF SourceGroup,

[IN] CIM_LogicalElement REF SourceElements[],

[IN, OUT] string SourceGroupName,

[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

[IN, OUT] CIM_ReplicationGroup REF TargetGroup,

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

Table 301 - Selected CreateListReplica optional parameters

TargetElements TargetSettingGoal TargetPool Comment

Null Null Null Implementation locates/creates target elements*

Supplied Null Null

Null Supplied Null Goal is used to locate/create target elements*

Null Supplied Supplied Goal is used to locate/create target elements* in the
supplied Pool

Null Null Supplied Pool is used to locate/create target elements* in Pool.
Implementation determines the Goal
SMI-S 1.6.1 Revision 6 SNIA Technical Position 425

FileSystem Replication Services Profile

668

669

670

671

672

673

674

675

676
677
678
679

680
681

682
683

684

685

686

687

688

689

690

691

692

693

694

695

696

697
698
699
700

701
702

703
704

705

706
707

708

709

710
[IN] uint16 Consistency,

[IN, EmbeddedInstance("CIM_ReplicationSettingData")]

string ReplicationSettingData,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_Synchronized REF Synchronization,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uint16 WaitForCopyState);

This method allows a client to create (or start a job to create) a new group of storage objects which are
replicas of the specified source storage objects (SourceElements). This method combines the
functionality of CreateGroup and CreateGroupReplica in that the methods accepts a list of source
elements and creates the source group, and the target group, if not supplied.

The parameter SourceGroupName corresponds to the parameter GroupName as defined in the
CreateGroup method.

For the explanation of the parameters, see the methods CreateGroup (18.4.1.1) and CreateGroupReplica
(18.4.2.2).

18.4.2.5 CreateSynchronizationAspect
uint32 ReplicationService.CreateSynchronizationAspect(

[IN] string ElementName,

[IN, Required] uint16 SyncType,

[IN] uint16 Mode,

[IN] CIM_ReplicationGroup REF SourceGroup,

[IN] CIM_LogicalElement REF SourceElement,

[IN] CIM_ServiceAccessPoint REF SourceAccessPoint,

[IN] uint16 Consistency,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_SettingsDefineState REF SettingsState);

This method allows a client to create (or start a job to create) new instances of SynchronizationAspect
that are associated to the source element (or a group of source elements) via the SettingsDefineState
associations. This representation may be of a form of pointers or a series of checkpoints that keep track
of the source element data for the created point-in-time.

This method does not include a target element, however, a target element can be added subsequently
using the ModifySettingsDefineState method.

The method creates individual associations between the source elements and the instances of
SynchronizationAspect.

The parameters are as follows:

• ElementName: A end user relevant name. If null, then a system supplied default name can be used. The
value will be stored in the ElementName property of the created SynchronizationAspect.

• SyncType: See CreateElementReplica’s parameters (18.4.2.1).

• Mode: See CreateElementReplica’s parameters (18.4.2.1).

• SourceGroup: See CreateGroupReplica’s parameters in (18.4.2.2)
426

 FileSystem Replication Services Profile

711

712
713

714

715

716

717
718
719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734
735

736
737

738
739

740

741
742
743
744

745

746
747
748
749

750
751
• SourceElement: See CreateGroupReplica’s parameters (18.4.2.2)

• SourceAccessPoint: Reference to source access point information. If null, service does not need access
information to access the source element/group.

• Consistency: See CreateGroupReplica’s parameters (18.4.2.2)

• ReplicationSettingData: See CreateElementReplica’s parameters (18.4.2.1).

• Job: See CreateElementReplica’s parameters (18.4.2.1).

• SettingsState: Refers to the created association between the source element or group and the instance of the
SynchronizationAspect. If a job is created, this parameter may be null, unless the association is actually
formed.

Method Notes:

• May create an instance of SynchronizationAspect if an appropriate one does not exist already.

• May create ReplicaPoolForStorage associations.

18.4.2.6 ModifyReplicationSynchronization
uint32 ReplicationService.ModifyReplicaSynchronization(

[IN, Required] uint16 Operation,

[IN, Required] CIM_Synchronized REF Synchronization,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData,

[IN] CIM_Synchronized REF SyncPair[],

[OUT] CIM_ConcreteJob REF Job,

[IN] boolean Force,

[OUT] CIM_SettingsDefineState REF SettingsState,

[IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the synchronization association between
two storage objects or replication groups. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: The reference to the replication association describing the elements/groups relationship that
is to be modified.

• ReplicationSettingData: See CreateElementReplica’s parameters (18.4.2.1).

• SyncPair[]: This parameter applies to AddSyncPair/RemoveSyncPair Operations. It allows a client to form a
Synchronized association between source and target elements and then add the association to existing
source and target groups. Alternatively, a client can remove a Synchronized association from source and
target groups.

• Job: See CreateElementReplica’s parameters (18.4.2.1).

• SettingsState: Reference to the association between the source or group element and an instance of
SynchronizationAspect. This parameters applies to operations such as Dissolve, which dissolves the
Synchronized relationship, but causes the SettingsDefineState association to be created. Depending on the
implementation, Deactivate may also return a SettingsState.

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 427

FileSystem Replication Services Profile

752

753

754

755

756

757

758

759

760

761

762
763

764
765

766
767
768
769

770

771

772
773

774
775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791
792
793
794
• WaitForCopyState: See CreateElementReplica’s parameters (18.4.2.1)

18.4.2.7 ModifyListSynchronization
uint32 ReplicationService.ModifyListSynchronization(

[IN, Required] uint16 Operation,

[IN, Required] CIM_Synchronized REF Synchronization[],

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData,

[OUT] CIM_ConcreteJob REF Job,

[IN] boolean Force,

[IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) a list of synchronization associations
between two storage objects or replication groups. The parameters are as follows:

• Operation: This parameter describes the type of modification to be made to the replica and/or to the related
associations, for example, Split.

• Synchronization: An array of references to the replication association describing the elements/groups
relationship that is to be modified. All elements of the this array shall of the same concrete class, i.e.,
FileSystemSynchronized or FileSystemGroupSynchronized, and shall have the same SyncType, the same
Mode, and the Operation must be valid for the ReplicationType -- SyncType, Mode, Local/Remote.

• ReplicationSettingData: See CreateElementReplica’s parameters (18.4.2.1).

• Job: See CreateElementReplica’s parameters (18.4.2.1).

• Force: Some operations may cause an inconsistency among the target elements. If true, the client is not
warned and the operation is performed if possible.

• WaitForCopyState: See CreateElementReplica’s parameters (18.4.2.1). All the supplied synchronization
associations must reach at least the specified CopyState before the method returns.

18.4.2.8 ModifySettingsDefineState
uint32 ReplicationService.ModifySettingsDefineState(

[IN, Required] uint16 Operation,

[IN, Required] CIM_SettingsDefineState REF SettingsState,

[IN, OUT] CIM_LogicalElement REF TargetElement,

[IN, OUT] CIM_ReplicationGroup REF TargetGroup,

[IN] uint64 TargetElementCount,

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[OUT] CIM_Synchronized REF Synchronization,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData,

[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uint16 WaitForCopyState);

This method allows a client to modify (or start a job to modify) the SettingsDefineState association
between the storage objects and SynchronizationAspect. The modification could range from introducing
the target elements, which creates new FileSystemSynchronized associations, to dissolving the
SettingsDefineState associations all together.
428

 FileSystem Replication Services Profile

795
796

797

798
799
800

801
802
803

804

805

806
807

808

809
810
811

812
813

814
815

816
817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834
With the Copy To Target operation, the supplied SettingsState is deleted since an “active”
Synchronization is created to associate the source and the target elements (or groups).

The parameters are:

• Operation: This parameter describes the type of modification to be made to the related associations, for
example, Copy To Target, which initiates the copy operation from the point-in-time view to the supplied
targets.

• SettingsState: Refers to the associations between the source elements and the SynchronizationAspect
instances. If an associated source element is part of a consistency group, all members of the group shall be
paired with the appropriate target elements.

• TargetElement: If TargetElement is supplied, TargetGroup and TargetCount shall be null.

• As an input, if the point-in-time has only one source element, this parameter supplies the target element.

• As an output, refers to the created target storage element (i.e., the replica). If a job is created, the target
element may not be available immediately.

• TargetGroup: If TargetGroup is supplied, TargetElement and TargetElementCount shall be null.

• As an input, refers to a target group to use. If the source has only one element, the presence of a group
creates a one-to-many association between the source and the target elements. If TargetGroup is supplied,
TargetElement and TargetCount shall be null."

• As an output, refers to the created target group (i.e., the replica group). If a job is created, the target group
may not be available immediately.

• TargetElementCount: This parameter applies to one-source-to-many-target-elements. It is possible to create
multiple copies of a source element. If TargetCount is supplied, TargetElement and TargetGroup shall be null.

• TargetAccessPoint: Reference to target access point information. If null, service does not need access
information to access the target elements/group.

• Synchronization: The reference to the replication association describing the elements/groups relationship.

• ReplicationSettingData: See CreateElementReplica’s parameters (18.4.2.1).

• Job: See CreateElementReplica’s parameters (18.4.2.1).

• TargetSettingGoal: See CreateElementReplica’s parameters (18.4.2.1).

• TargetPool: See CreateElementReplica’s parameters (18.4.2.1).

• WaitForCopyState: See CreateElementReplica’s parameters (18.4.2.1).

18.4.2.9 ModifyListSettingsDefineState
uint32 ReplicationService.ModifyListSettingsDefineState(

[IN, Required] uint16 Operation,

[IN, Required] CIM_SettingsDefineState REF SettingsStates[],

[IN, OUT] CIM_LogicalElement REF TargetElements[],

[IN, OUT] CIM_ReplicationGroup REF TargetGroups[],

[IN] uint64 TargetElementCount,

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[OUT] CIM_Synchronized REF Synchronizations[],

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData,
SMI-S 1.6.1 Revision 6 SNIA Technical Position 429

FileSystem Replication Services Profile

835

836

837

838

839
840

841

842

843

844

845

846

847

848

849

850

851

852

853

854
855
856

857

858

859

860
861

862
863

864
865

866

867
868

869

870

871

872

873

874

875
[OUT] CIM_ConcreteJob REF Job,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPool,

[IN] uint16 WaitForCopyState);

This method is similar to ReplicationService.ModifySettingsDefineState (18.4.2.8), except that it accepts
a list of SettingsDefineState associations.

18.4.2.10 GetAvailableTargetElements
uint32 ReplicationService.GetAvailableTargetElements(

[IN, Required] CIM_LogicalElement REF SourceElement,

[IN, Required] uint16 SyncType,

[IN, Required] uint16 Mode,

[IN, EmbeddedInstance ("CIM_ReplicationSettingData")]

string ReplicationSettingData,

[IN] CIM_ComputerSystem REF TargetComputerSystem,

[IN] CIM_ServiceAccessPoint REF TargetAccessPoint,

[IN] CIM_SettingData REF TargetSettingGoal,

[IN] CIM_ResourcePool REF TargetPools[],

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_LogicalElement REF Candidates[]);

This method allows a client to get (or start a job to get) all of the candidate target elements for the
supplied source element. If a job is started, once the job completes, examine the AffectedJobElement
associations for candidate targets. The parameters are:

• SourceElement: The source storage object which may be a FileSystem or storage object.

• SyncType: See CreateElementReplica’s parameters (18.4.2.1).

• Mode: See CreateElementReplica’s parameters (18.4.2.1).

• ReplicationSettingData: See CreateElementReplica’s parameters (18.4.2.1). The parameter is useful for
requesting a specific combination of thinly and fully provisioned elements.

• TargetComputerSystem: Reference to target computer system. If this parameter and TargetAccessPoint are
null, only local targets are returned.

• TargetAccessPoint: Reference to target access point information. If this parameter and
TargetComputerSystem are null, only local targets are returned.

• TargetSettingGoal: Desired target StorageSetting. If null, settings of the source elements shall be used.

• TargetPools[]: The storage pools for the target elements. If null, all storage pools (on the given systems) are
examined.

• Job: See CreateElementReplica’s parameters (18.4.2.1).

• Candidates[]: The list of the candidate target elements found.

18.4.2.11 GetPeerSystems
uint32 ReplicationService.GetPeerSystems(

[IN] uint16 Options,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_ComputerSystem REF Systems[]);
430

 FileSystem Replication Services Profile

876
877
878
879

880
881

882

883

884

885

886

887

888

889
890
891

892

893

894

895

896

897

898

899

900

901

902

903

904
905
906

907
908

909
910

911
912

913
914
915
916
This method allows a client to get (or start a job to get) all of the peer systems. A peer system is a system
that is known and visible to the FileSystem Replication Service. Peer systems are discovered through
discovery services and/or implementation specific services. If a job is started, once the job completes,
examine the AffectedJobElement associations for the peer systems. The parameters are:

• Options: This parameter specifies whether to return all known peer systems or only the systems that are
currently reachable. If null, all known systems are returned, whether they are currently reachable or not.

• Job: See CreateElementReplica’s parameters (18.4.2.1).

• Systems[]: The list of peer computer systems.

18.4.2.12 GetServiceAccessPoints
uint32 ReplicationService.GetServiceAccessPoints(

[IN] CIM_ComputerSystem REF System,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_ServiceAccessPoint REF ServiceAccessPoints[]);

This method allows a client to get (or start a job to get) ServiceAccessPoints associated with a peer
system. If a job is started, once the job completes, examine the AffectedJobElement associations for the
peer system’s ServiceAccessPoints. The parameters are as follows:

• System: A reference to the computer system.

• Job: See CreateElementReplica’s parameters (18.4.2.1).

• ServiceAccessPoints[]: An array of references to ServiceAccessPoints associated with the supplied system.

18.4.2.13 GetReplicationRelationships
uint32 ReplicationService.GetReplicationRelationships(

[IN] uint16 Type,

[IN] uint16 SyncType,

[IN] uint16 Mode,

[IN] uint16 Locality,

[IN] uint16 CopyState,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_Synchronized REF Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationships known to
the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships. The parameters are as follows:

• Type: The type of synchronization relationships, for example, FileSystemSynchronized or
FileSystemGroupSynchronized. If this parameter is not supplied, all such relationships are retrieved.

• SyncType: See CreateElementReplica’s parameters (18.4.2.1). If this parameter is not supplied, all
SyncTypes are retrieved.

• Mode: See CreateElementReplica’s parameters (18.4.2.1). If this parameter is not supplied, all Modes are
retrieved.

• Locality: Describes the desired locality. If this parameter is not supplied, all replication relationships are
retrieved, regardless of the locality of elements. Choices are: Local only -- Source and target elements are
contained in the same system; and Remote only -- Source and target elements are contained in two different
systems.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 431

FileSystem Replication Services Profile

917
918

919

920

921

922

923

924

925

926

927

928

929

930

931
932
933

934
935

936

937

938

939

940

941

942

943
944

945

946
947
948

949
950

951

952

953

954

955

956

957

958
959
• CopyState: Only retrieve synchronization relationships that currently this CopyState (see Table 294). If this
parameter is not supplied, relationships are retrieved regardless of their current CopyState.

• Job: See CreateElementReplica’s parameters (18.4.2.1).

• Synchronizations[]: An array of elements found.

18.4.2.14 GetReplicationRelationshipInstances
uint32 ReplicationService.GetReplicationRelationshipInstances(

[IN] uint16 Type,

[IN] uint16 SyncType,

[IN] uint16 Mode,

[IN] uint16 Locality,

[IN] uint16 CopyState,

[OUT] CIM_ConcreteJob REF Job,

[OUT, EmbeddedInstance("CIM_Synchronized")]

string Synchronizations[]);

This method allows a client to get (or start a job to get) all of the synchronization relationship instances
known to the processing replication service. If a job is started, once the job completes, examine the
AffectedJobElement associations for the synchronization relationships.

The output parameter Synchronizations is an array of embedded instances. For the explanation of the
remaining parameters, see the method ReplicationService.GetReplicationRelationships (18.4.2.13).

18.4.2.15 AddReplicationEntity
uint32 ReplicationService.AddReplicationEntity(

[Required, IN, EmbeddedInstance("CIM_ReplicationEntity")]

string ReplicationEntity,

[IN] boolean Persistent,

[IN] string InstanceNamespace,

[OUT] CIM_ReplicationEntity REF ReplicationEntityPath);

This method allows a client to introduce a new instance of ReplicationEntity in the specified Namespace.
The parameters are:

• ReplicationEntity: A required parameter containing the information for the ReplicationEntity.

• Persistent: If true, the instance must persist across a Management Server reboot. If null, the value will be
based on the default value of the class in the MOF. Use the intrinsic method ModifyInstance to change the
Persistency value.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

• ReplicationEntityPath: A reference to the created instance.

18.4.2.16 AddServiceAccessPoint
uint32 ReplicationService.AddServiceAccessPoint(

[Required, IN, EmbeddedInstance("CIM_ServiceAccessPoint")]

 string ServiceAccessPoint,

[IN] string InstanceNamespace,

[OUT] CIM_ServiceAccessPoint REF ServiceAccessPointPath);

This method allows a client to introduce a new instance of ServiceAccessPoint in the specified
Namespace. The parameters are:
432

 FileSystem Replication Services Profile

960
961

962
963

964

965

966

967

968

969

970

971

972
973

974

975
976

977
978

979

980

981

982

983

984

985

986

987

988

989

990
991
992

993
994

995
996

997
998

999
• ServiceAccessPoint: A required parameter containing the information for the ServiceAccessPoint, or a
subclass of the class ServiceAccessPoint, for example, a RemoteServiceAccessPoint.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

• ServiceAccessPointPath: A reference to the created instance.

18.4.2.17 AddShareSecret
uint32 ReplicationService.AddSharedSecret(

[Required, IN, EmbeddedInstance("CIM_SharedSecret")]

string SharedSecret,

[IN] CIM_ServiceAccessPoint REF ServiceAccessPoint,

[IN] string InstanceNamespace,

[OUT] CIM_SharedSecret REF SharedSecretPath);

This method allows a client to introduce a new instance of SharedSecret in the specified Namespace and
optionally associate it to an instance of a ServiceAccessPoint. The parameters are:

• SharedSecret: A required parameter containing the information for the SharedSecret.

• ServiceAccessPoint: Associate created instance to this ServiceAccessPoint. If null, no such association is
established.

• InstanceNamespace: Namespace of created instance. If null, created instance will be in the same
namespace as the service. Namespace must already exist.

• SharedSecretPath: A reference to the created instance.

18.4.2.18 CreateRemoteReplicationCollection
uint32 ReplicationService..CreateRemoteReplicationCollection(

[IN] string ElementName,

[IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

[IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

[IN] CIM_ComputerSystem REF RemoteComputerSystem,

[IN] boolean Active,

[IN] boolean DeleteOnUnassociated,

[OUT] CIM_ConcreteJob REF Job,

[OUT] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to create (or start a job to create) a new instance of RemoteReplicationCollection, and
optionally supply the remote system and the paths (i.e. ProtocolEndpoints) that are used to perform
replication operations to/from the remote system. The parameters are:

• ElementName: A end user relevant name for the element being created. If NULL, then a system supplied
default name will be used. The value will be stored in the 'ElementName' property for the created element.

• LocalAccessPoints: An array of references to local ServiceAccessPoints (for example, ProtocolEndpoints)
that allow communication to the remote system.

• RemoteAccessPoints: An array of references to remote ServiceAccessPoints (for example,
ProtocolEndpoints) that allow communication to the remote system.

• RemoteComputerSystem: A reference to the remote system.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 433

FileSystem Replication Services Profile

1000
1001
1002

1003
1004
1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015
1016

1017
1018
1019
1020
1021

1022

1023

1024

1025

1026

1027

1028
1029

1030
1031
1032
1033
1034
1035

1036

1037

1038

1039

1040

1041

1042
• Active: If true, the instance of RemoteReplicationCollection will be enabled and allows replication operations
to to the remote system. Use the intrinsic method ModifyInstance to change this property after the
RemoteReplicationCollection is created.

• DeleteOnUnAssociated: If true, the instance of RemoteReplicationCollection will be deleted when it is no
longer associated to a ServiceAccessPoint. Use the intrinsic method ModifyInstance to change this property
after the RemoteReplicationCollection is created.

• Job: Reference to the job (may be NULL if job is completed) doing the work.

• ConnectivityCollection: Reference to the created instance of RemoteReplicationCollection.

18.4.2.19 AddToRemoteReplicationCollection
uint32 ReplicationService.AddToRemoteReplicationCollection(

[IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

[IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

[IN] CIM_ComputerSystem REF RemoteComputerSystem,

[OUT] CIM_ConcreteJob REF Job,

[Required, IN] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to add (or start a job to add) additional service access points (i.e. ProtocolEndpoints) and/or
remote systems associations to an existing instance of RemoteReplicationCollection.

Generally, both AccessPoints and RemoteComputerSystem parameters are supplied to establish the
access points to a remote ComputerSystem; however, if parameter AccessPoints is NULL, then only the
RemoteComputerSystem is added for the existing AccessPoints associated to the
RemoteReplicationCollection. If RemoteComputerSystem is NULL, then only AccessPoints are added for
the existing remote ComputerSystems known to the RemoteReplicationCollection.

18.4.2.20 RemoveFromRemoteReplicationCollection
uint32 ReplicationService.RemoveFromRemoteReplicationCollection(

[IN] CIM_ServiceAccessPoint REF LocalAccessPoints[],

[IN] CIM_ServiceAccessPoint REF RemoteAccessPoints[],

[OUT] CIM_ConcreteJob REF Job,

[Required, IN] CIM_ConnectivityCollection REF ConnectivityCollection);

A method to remove (or start a job to remove) service access points (i.e. ProtocolEndpoints) and/or
remote systems associations from an existing instance of RemoteReplicationCollection.

Generally, both AccessPoints and RemoteComputerSystem parameters are supplied to remove the
access points to a remote ComputerSystem; however, if parameter AccessPoints is NULL, then only the
remote ComputerSystem is removed for the existing AccessPoints associated to the
RemoteReplicationCollection. If ComputerSystem is NULL, then only AccessPoints are removed from the
existing remote ComputerSystems known to the RemoteReplicationCollection. See the method
CreateRemoteReplicationCollection for description of the parameters.

18.4.3 Capabilities Method

18.4.3.1 ConvertSyncTypeToReplicationType
uint32 FileSystemReplicationServiceCapabilities.ConvertSyncTypeToReplicationType(

[IN] uint16 SyncType,

[IN] uint16 Mode,

[IN] uint16 LocalOrRemote,

[OUT] uint16 SupportedReplicationTypes);
434

 FileSystem Replication Services Profile

1043
1044
1045

1046
1047
1048
The majority of the methods in this class accept ReplicationType which represents a combination of
SyncType, Mode, and Local/Remote. This method accepts the supplied information and returns the
corresponding ReplicationType, which can be passed to other methods to get the additional capabilities.

Table 302, Table 303, Table 304 and Table 305 show the values for the
CovertSyncTypeToReplicationType parameters. These values also appear in the value maps in the
appropriate MOF files.

Table 302 - SyncTypes

SyncType Value

Mirror 6

Snapshot 7

Clone 8

Table 303 - Mode

Mode Value

Synchronous 2

Asynchronous 2

Table 304 - Locality

Locality Value

Local 2

Remote 3

Table 305 - ReplicationTypes

ReplicationType Value

Synchronous Mirror Local 2

Asynchronous Mirror Local 3

Synchronous Mirror Remote 4

Asynchronous Mirror Remote 5

Synchronous Snapshot Local 6

Asynchronous Snapshot Local 7

Synchronous Snapshot Remote 8

Asynchronous Snapshot Remote 9

Synchronous Clone Local 10

Asynchronous Clone Local 11

Synchronous Clone Remote 12

Asynchronous Clone Remote 13
SMI-S 1.6.1 Revision 6 SNIA Technical Position 435

FileSystem Replication Services Profile

1049

1050

1051

1052

1053

1054

1055
1056

1057

1058

1059

1060

1061
18.4.3.2 ConvertReplicationTypeToSyncType
uint32 FileSystemReplicationServiceCapabilities.ConvertReplicationTypeToSyncType(

[IN] uint16 ReplicationType,

[OUT] uint16 SyncType,

[OUT] uint16 Mode,

[OUT] uint16 LocalOrRemote);

This method does the opposite of the method ConvertSyncTypeToReplicationType. This method
translates ReplicationType to the corresponding SyncType, Mode, and Local/Remote.

18.4.3.3 GetSupportedFeatures
uint32 FileSystemReplicationServiceCapabilities.GetSupportedFeatures(

[IN] uint16 ReplicationType,

[OUT] uint16 Features[]);

For a given ReplicationType, this method returns the supported features, as listed in Table 306

Table 306 - Features

Feature Description

“Replication Groups” Elements in a replication group are supported in a replica-
tion operation.

"Multi-hop element replication" A target element can also act as the source for another
copy operation.

“Each hop must have same SyncType“ In a multi-hop replication, the new hop must have the same
SyncType as the previous hop.

“Multi-hop requires advance notice” The service needs to know when multi-hoping is intended
to allow the service to do the appropriate set up. The
parameter ReplicationSettingData specifies the number of
hops intended.

"Requires full discovery of target ComputerSystem" Provider requires the remote ComputerSystems to be dis-
covered. The absence of this capability indicates the ser-
vice supports undiscovered resources.

"Service suspends source I/O when necessary" Provider is able to suspend I/O to source elements before
splitting the target elements. Otherwise, the client needs to
quiesce the application before issuing the split command.

"Targets allocated from Any storage pool” Specialized storage pools are not required for the target
elements, as long as the pool is not reserved for special
activities.

"Targets allocated from Shared storage pool" Targets are allocated from storage pools reserved for Repli-
cation Services.

"Targets allocated from Exclusive storage pool" Targets are allocated from exclusive storage pools.

"Targets allocated from Multiple storage pools" Targets are allocated from multiple specialized, exclusive
pools.

“Targets require reserved elements” The target elements must have a specific Usage value. For
example, reserved for "Local Replica Target" (mirror),
reserved for "Delta Replica Target" (Snapshot), etc.
436

 FileSystem Replication Services Profile

1062

1063

1064

1065
18.4.3.4 GetSupportedGroupFeatures
uint32 FileSystemReplicationServiceCapabilities.GetSupportedGroupFeatures(

[IN] uint16 ReplicationType,

[OUT] uint16 GroupFeatures[]);

"Target is associated to SynchronizationAspect” The target element is associated to SynchronizationAspect
via SettingsDefineState. SynchronizationAspect contains
the point-in-time timestamp and the source element refer-
ence used to copy to the target element.

"Source is associated to SynchronizationAspect” The source element is associated to Synchronization-
Aspect via the SettingsDefineState association. Synchroni-
zationAspect contains the point-in-time information of the
source data.

"Error recovery from Broken state Automatic" For example, if the connection between the source and tar-
get elements is broken (CopyState = Broken or Parti-
tioned), once the connection is restored, the copy operation
continues automatically. If the error recovery is not auto-
matic, it requires manual intervention to restart the copy
operation. Use ModifyReplicaSynchronization, with Opera-
tion set to Resume.

“Target must remain associated to source” A dependent target element must remain associated to
source element at all times.

"Remote resource requires remote CIMOM” Client is required to interact with two providers: the provider
controlling the source element and the provider controlling
the target element.

"Synchronized clone target detaches automatically" The clone target element detaches automatically when the
target element becomes synchronized; otherwise, the client
needs to explicitly request a detach operation.

"Restore operation requires fracture" The “Restore from Replica” operation requires the synchro-
nization relationship to be fractured after restore is com-
pleted -- indicated in the property
Synchronized.ProgressStatus - “Requires fracture”.

"Resync operation requires activate" For the copy operation to continue, the synchronization
relationship must be activated -- indicated in the property
Synchronized.ProgressStatus - “Requires activate”.

"Copy operation requires offline source" Instrumentation requires the source element to be offline
(not-ready) to ensure data does not change before starting
the copy operation.

"Adjustable CopyPriority" Priority of copy operation versus the host I/O can be
adjusted.

Table 306 - Features

Feature Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 437

FileSystem Replication Services Profile

1066
1067

1068

1069

1070

1071

1072

1073
1074
For a given ReplicationType, this method returns the supported replication group features, as listed
inTable 307.

18.4.3.5 GetSupportedCopyStates
uint32 FileSystemReplicationServiceCapabilities.GetSupportedCopyStates(

[IN] uint16 ReplicationType,

[OUT] uint16 SupportedCopyStates[],

[OUT] boolean HostAccessible[]);

For a given ReplicationType, this method returns the supported CopyStates (see Table 294) and a parallel
array to indicate whether for a given CopyState the target element is host accessible or not (true or false).

Table 307 - Group Features

Group Features Description

"One-to-many replication" One source element can be copied to multiple target elements in a group.

“Many-to-many replication“ One or more elements in the source group and one or more elements in
the target group.

“Consistency enabled for all groups” By default, all groups are Consistent

“Empty replication groups allowed” It is possible to have a replication group with no members; otherwise, an
empty group gets deleted automatically

"Source group must have more than one element" One members replication groups are not supported.

"Composite Groups" A replication group can have members from different ComputerSystems.

"Multi-hop group replication" A target replication group can also act as a source for another copy
operation.

“Each hop must have same SyncType” The SyncType of each hop must be the same, e.g., mirror, snapshot,
clone.

"Group can only have one single relationship active" At any given time, only one relationship in the source group can be active.

“Source element can be removed from group” A source element can be removed even when the group is associated with
another replication group.

“Target element can be removed from group” A target element can be removed even when the group is associated with
another replication group.

"Group can persist" The replication group can persist across the Provider reboot (group is not
temporary).

"Group is nameable" A user friendly name can be given to a replication group (ElementName)

"Supports target element count" It is possible to supply one source element and request more than one
target element copies.

"Synchronized clone target detaches automatically" The clone target element detaches automatically when the target element
becomes synchronized; otherwise, the client needs to explicitly request a
detach operation

"Restore operation requires fracture" The “Restore from Replica” operation requires the synchronization
relationship to be fractured after restore is completed -- indicated in the
property Synchronized.ProgressStatus - “Requires fracture”.

"Resync operation requires activate" For the copy operation to continue, the synchronization relationship must
be activated -- indicated in the property Synchronized.ProgressStatus -
“Requires activate”.

"Copy operation requires offline source" Instrumentation requires the source element to be offline (not-ready) to
ensure data does not change before starting the copy operation.
438

 FileSystem Replication Services Profile

1075

1076

1077

1078

1079
1080

1081

1082

1083

1084

1085

1086
1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097
1098
1099
18.4.3.6 GetSupportedGroupCopyStates
uint32 FileSystemReplicationServiceCapabilities.GetSupportedGroupCopyStates(

[IN] uint16 ReplicationType,

[OUT] uint16 SupportedCopyStates[]);

For a given ReplicationType, this method returns the supported replication group CopyStates (seeTable
294).

18.4.3.7 GetSupportedWaitForCopyStates
uint32 FileSystemReplicationServiceCapabilities.GetSupportedWaitForCopyStates(

[IN] uint16 ReplicationType,

[IN] unit16 MethodName,

[OUT] uint16 SupportedCopyStates[]);

This method, for a given ReplicationType and method, returns the supported CopyStates that can be
specified in the method's WaitForCopyState parameter.

18.4.3.8 GetSupportedConsistency
uint32 FileSystemReplicationServiceCapabilities.GetSupportedConsistency(

[IN] uint16 ReplicationType,

[OUT] uint16 SupportedConsistency[]);

For a given ReplicationType, this method returns the supported Consistency, as listed in Table 308.

18.4.3.9 GetSupoprtedOperations
uint32 FileSystemReplicationServiceCapabilities.GetSupportedOperations(

[IN] uint16 ReplicationType,

[OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported Operations on a FileSystemSynchronized
association that can be supplied to the ModifyReplicaSynchronization method. Table 309 shows the
possible Operations that an implementation may support.

Table 308 - Consistency

Consistency Description

“Sequentially Consistent” Provider guarantees ordered write consistency.

Table 309 - Operations

Operation Description Special Consideration

"Abort" Abort the copy operation if it is possible.

"Activate Consistency" Enable consistency.

“Activate” Activate an “Inactive” or “Prepared” File-
SystemSynchronized association.

"AddSyncPair" Add source and target elements of a File-
SystemSynchronized association to the
source and target replication groups. The
SyncType of the associations must be the
same.

"Deactivate Consistency" Disable consistency
SMI-S 1.6.1 Revision 6 SNIA Technical Position 439

FileSystem Replication Services Profile
“Deactivate” Stop the copy operation. Writes to source
element are allowed.

Snapshot: Writes to target element
after point-in-time is created are lost
(pointers removed)

"Detach" Remove the association between the
source and target elements. Detach does
not delete the target element.

“Dissolve” Dissolve the synchronization association
between two storage objects, however, the
target element continues to exist.

Snapshot: This operation also cre-
ates a SettingsDefineState associa-
tion between the source element
and an instance of Synchronization-
Aspect if the ReplicationType sup-
ports it.

"Failover" Enable the read and write operations from
the host to the target element. This opera-
tion useful for situations when the source
element is unavailable.

"Failback" Switch the read/write activities from the
host back to source element. Update
source element from target element with
writes to target during the failover period.

"Fracture" Separate the target element from the
source element.

"RemoveSyncPair” Remove the elements associated via the
FileSystemSynchronized association from
the source and the target groups.

"Resync Replica" Resynchronize a fractured target element.
Or, from a Broken or Aborted relationship.

To continue from the Broken state,
the problem should be corrected
first before resyncing the replica.
Also, to continue from the Aborted
state.

"Restore from Replica" Copy target element to the source element To ensure integrity of data, restoring
to a source element which is the
source of multiple copy operations,
the implementation may impose
additional restrictions ranging from
not supporting the restore operation
to such a source element to prevent-
ing multiple restore operations
simultaneously. Also, after the oper-
ation is completed, it may be neces-
sary to fracture the synchronization
relationship. See GetSupportedFea-
tures in capabilities.

"Resume" Continue the copy operation of a sus-
pended relationship.

Table 309 - Operations

Operation Description Special Consideration
440

 FileSystem Replication Services Profile

1100
 Table 310 compares the action of similar Operations.

"Reset To Sync" Change Mode to Synchronous.

"Reset To Async" Change Mode to Asynchronous

“Return To ResourcePool” Delete a Snapshot target.

"Reverse Roles" Switch the source and the target element roles.

"Split" Separate the source and the target ele-
ments in a consistent manner.

"Suspend" Stop the copy operation in such a way that
it can be resumed.

“Unprepare” Causes the synchronization to be reinitial-
ized and stop in Prepared state.

Table 310 - Comparison of Similar Operations

Operations Description

Activate vs. Resume Activate: Activates a ReplicationSynchronizes association that has a CopyS-
tate of “Inactive.”

Resume: Resumes a FileSystemSynchronized association that has a CopyS-
tate of “Suspended”.

Deactivate vs. Suspend Deactivate: Stops the copy operation. In the case of Snapshots, all writes to tar-
get element are deleted (pointers to changed data are removed). While inac-
tive, writes to source element will not be committed to target element once
activated.

Suspend: Stops the copy operation. All writes to target element are preserved.
Once resumed, pending writes to target element are committed.

Fracture vs. Split Fracture: Source and target elements are separated “abruptly.”

Split: Source and target elements are separated in an orderly fashion. Consis-
tency of target elements is maintained.

Detach vs. Dissolve Detach: The association between the source and target element must be first
Fractured/Split before it can be Detached.

Dissolve: The association can have a CopyState of Synchronized. Additionally,
Dissolve can create a SettingsDefineState association based on GetSupport-
edFeatures (18.4.3.3) Capabilities.

Table 309 - Operations

Operation Description Special Consideration
SMI-S 1.6.1 Revision 6 SNIA Technical Position 441

FileSystem Replication Services Profile

1101

1102

1103

1104

1105
1106
1107

1108

1109

1110

1111

1112

1113
1114
1115
1116
1117

1118

1119

1120

1121

1122

1123
1124
1125
18.4.3.10 GetSuportedGroupOperations
uint32 FileSystemReplicationServiceCapabilities.GetSupportedGroupOperations(

[IN] uint16 ReplicationType,

[OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported replication group Operations (see Table
308) on a FileSystemGroupSynchronized association that can be supplied to the
ModifyReplicaSynchronization method.

18.4.3.11 GetSupportedListOperations
uint32 FileSystemReplicationServiceCapabilities.GetSupportedListOperations(

[IN] uint16 ReplicationType,

[IN] uint16 SynchronizationType,

[OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported replication Operations (see Table 308) on
a list of associations that can be supplied to the ModifyListSynchronization method. The parameter
SynchronizationType specifies the operations as they apply to a list of FileSystemSynchronized or
FileSystemGroupSynchronized. If SynchronizationType is not specified, FileSystemSynchronized is
assumed.

18.4.3.12 GetSupportedSettingsDefineStateOperations
uint32 FileSystemReplicationServiceCapabilities.

GetSupportedSettingsDefineStateOperations(

 [IN] uint16 ReplicationType,

 [OUT] uint16 SupportedOperations[]);

For a given ReplicationType this method returns the supported operations on a SettingsDefineState
association that can be supplied to the ModifySettingsDefineState method. Table 311 shows the list of
SettingsDefineState operations that an implementation may support.

Unsynchronized vs. Skewed Unsynchronized: The source element contains data that has not been copied to
the target element. Most likely, the copy operation is in the process of updating
the target element (ProgressStatus=Synchronizing).

Skewed: The target element has been updated by a host (e.g. target of a snap-
shot). Resynchronization is not automatic and requires an explicit “Resync”
operation (i.e., ModifySynchronization)

Table 311 - SettingsDefineState Operations

SettingsDefineState
Operations

Description Special Consideration

"Activate Consistency” Enable consistency

"Deactivate Consistency" Disable consistency

"Delete" Remove the SettingsDefineState association. Instance of
SynchronizationAspect may also be deleted if it is not
shared with other elements.

Table 310 - Comparison of Similar Operations

Operations Description
442

 FileSystem Replication Services Profile

1126

1127

1128

1129

1130

1131
1132

1133
1134
1135

1136

1137

1138

1139

1140

1141
1142
1143
1144
1145

1146
18.4.3.13 GetSupportedThinPrivisioningFeatures
uint32 FileSystemReplicationServiceCapabilities.

GetSupportedThinProvisioningFeatures(

[IN] uint16 ReplicationType,

[OUT] uint16 SupportedThinProvisioningFeatures[]);

For a given ReplicationType this method returns the supported features related to thin provisioning. Table
312 shows the list of the Thin Provisioning Features an implementation may support.

A client can request a specific thin provisioning policy in the ReplicationSettingData parameter of the
appropriate method call. See the property ReplicationSettingData.ThinProvisioningPolicy for the
supported options for a copy operation.

18.4.3.14 GetSupportedMaximum
uint32 FileSystemReplicationServiceCapabilities.GetSupportedMaximum(

[IN] uint16 ReplicationType,

[IN] uint16 Component,

[OUT] uint64 MaxValue);

This method accepts a ReplicationType and a component, it then returns a static numeric value
representing the maximum number of the specified component that the service supports. A value of 0
indicates unlimited components of the given type. In all cases the maximum value is bounded by the
availability of resources on the computer system. If the information is not known, the method returns 7
which indicates "Information is not available"

Effectively, this method informs clients of the edge conditions.

"Copy To Target” Introduces the target elements and forms the necessary
associations between the source and the target elements
i.e., FileSystemSynchronized and
FileSystemGroupSynchronized.

Table 312 - Thin Provisioning Features

Feature Description

"Thin provisioning is not supported" The replication service does not distinguish between
thinly and fully provisioned elements. The service treats
all elements as fully provisioned elements.

"Zeros written in unused allocated blocks of target" Applies to copying from a thinly provisioned element to a
fully provisioned element. The implementation needs to
allocate “real” storage blocks on the target side for the
corresponding blocks of the source element that are
unused. The implementation then writes zeros in the
unused blocks of the target element.

"Unused allocated blocks of target are not initialized" Applies to copying from a thinly provisioned element to a
fully provisioned element. The implementation needs to
allocate “real” storage blocks on the target side for the
corresponding blocks of the source element that are
unused.

Table 311 - SettingsDefineState Operations

SettingsDefineState
Operations

Description Special Consideration
SMI-S 1.6.1 Revision 6 SNIA Technical Position 443

FileSystem Replication Services Profile

1147

1148

1149

1150

1151

1152
1153

1154

1155

1156

1157
1158
Table 313 shows the list of components that can be specified

18.4.3.15 GetDefaultConsistency
uint32 FileSystemReplicationServiceCapabilities.GetDefaultConsistency(

[IN] uint16 ReplicationType,

[OUT] uint16 DefaultConsistency);

This method for a given ReplicationType, returns the default consistency value for the replication groups.
Table 314 shows the list of possible Default Consistency values that an implementation may offer.

18.4.3.16 GetDefaultGroupPersistency
uint32 FileSystemReplicationServiceCapabilities.GetDefaultGroupPersistency(

[OUT] uint16 DefaultGroupPersistency);

This method returns the default persistency for a newly created group. Table 315 shows the list of
possible Group Persistency values that an implementation may offer.

Table 313 - Components

Components Description

“Number of groups” Maximum number of groups supported by the replication service.

"Number of elements per source group" Maximum number of elements in a group that can be used as a
source group.

"Number of elements per target group" Maximum number of elements in a group that can be used as a tar-
get group.

"Number of target elements per source element" Maximum number of target elements per source element.

"Number of total source elements" Maximum number of total source elements supported by the ser-
vice.

"Number of total target elements" Maximum number of total target elements supported by the source.

"Number of peer systems" Maximum number of peer systems that replication service can com-
municate with.

"Number of hops in multi-hop replication" Maximum number of hops in multi-hop replication the service can
manage.

Table 314 - Default Consistency

DefaultConsistency Description

"No default consistency" Replication groups are not declared as consistent.

"Sequentially Consistent" By default, a newly created replication group is declared to
be consistent

Table 315 - Default Group Persistency

DefaultGroupPersistency Description

"No default persistency" Replication groups are not declared as persistent across
the Provider reboots.
444

 FileSystem Replication Services Profile

1159

1160

1161

1162

1163

1164

1165
1166
1167

1168
18.4.3.17 GetSupportedReplicationSettingData
uint32 FileSystemReplicationServiceCapabilities.

GetSupportedReplicationSettingData(

[IN] uint16 ReplicationType,

[IN] uint16 PropertyName,

[OUT] uint16 SupportedValues[]);

This method, for a given ReplicationType, returns an array of supported settings that can be utilized in an
instance of the ReplicationSettingData class. See the MOF for the ReplicationSettingData class for the
value map of the properties. Explanation of some of the properties appears below.

Table 316 shows the values for the property ReplicationSettingData.CopyMethodology.

"Persistent" By default, a newly created replication group is declared to
be persistent across the Provider reboot (group is not tem-
porary).

Table 316 - Copy Methodologies

CopyMethodologies Description

"Other" A methodology not listed in this table.

"Implementation decides" Implementation determines a suitable methodology

"Full-Copy" All data is copied to the target element.

"Incremental-Copy" Only changed data is copied to the target element.

"Differential-Copy" Only the new writes are copied to the target element.

"Copy-On-Write" Affected data is copied on the first write to the source or to
the target elements.

"Copy-On-Access" Affected data is copied on the first access to the source ele-
ment.

“Delta-Update” Difference based replication where initially the source ele-
ment is copied to the target element. Then, at regular inter-
vals, only changes to the source element that have taken
place since the previous copy operation are incrementally
updated to the target element. This copy operation is also
referred to as asynchronous mirroring.

“Snap-And-Clone“ The service creates a snapshot of the source element first,
then uses the snapshot as the source of the copy operation
to the target element.

Table 315 - Default Group Persistency

DefaultGroupPersistency Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 445

FileSystem Replication Services Profile

1169

1170

1171

1172

1173

1174

1175

1176
1177
1178

1179

1180

1181

1182
Table 317 shows the values for the property ReplicationSettingData.TargetElementSuppliers.

Table 318 shows the values for the property ReplicationSettingData.ThinProvisioningPolicy.

18.4.3.18 GetDefaultReplicationSettingData
uint32 FileSystemReplicationServiceCapabilities.GetDefaultReplicationSettingData(

[IN] uint16 ReplicationType,

[OUT, EmbeddedObject]

string DefaultInstance);

This method, for a given ReplicationType, returns the default ReplicationSettingData as an instance. Use
this method to determine the implementation behavior for replication settings that do not have a distinct
capability method.

18.4.3.19 GetSupportedConnectionFeatures
uint32 FileSystemReplicationServiceCapabilities.GetSupportedConnectionFeatures(

[IN] CIM_ProtocolEndpoint REF connection,

[OUT] uint16 SupporteConnectionFeatures[]);

Table 317 - Target Element Suppliers

TargetElementSuppliers Description

“Use existing” Use existing elements only. If appropriate elements are not
available, returns an error.

“Create new” Create new target elements only.

“Use and create“ If appropriate elements are not available, create new target
elements.

“Instrumentation decides“

“Client must supply” Client must supply target elements.

Table 318 - ThinProvisioningPolicy

Feature Description

"Copy thin source to thin target" Thinly provisioned source element is copied to a thinly pro-
visioned target element.

"Copy thin source to full target" Thinly provisioned source element is copied to a fully provi-
sioned target element.

"Copy full source to thin target" Fully provisioned source element is copied to a thinly provi-
sioned target element.

"Provisioning of target same as source" Provisioning of the target element is the same as the provi-
sioning of the source element.

"Target pool decides provisioning of target element" In the call to the CreateElementReplica or CreateGrou-
pReplica method, the storage pool for the target elements
is supplied. The supplied storage pool decides the provi-
sioning of the created target elements.

"Implementation decides provisioning of target" Vendor specific.
446

 FileSystem Replication Services Profile

1183
1184

1185

1186

1187

1188

1189
1190

1191

1192

1193
1194

1195
1196
This method accepts a connection reference and returns specific features of that connection. Table 319
shows the list of possible Connection Features that an implementation may support.

18.4.3.20 GetSupportedStorageCompressionFeatures
uint32 ReplicationServiceCapabilities.GetSupportedStorageCompressionFeatures(

[IN] uint16 ReplicationType,

[OUT] uint16 SupportedStorageCompressionFeatures[]);

For a given ReplicationType this method returns the supported features related to storage compression.
Table 320 shows the list of the Storage Compression Features an implementation may support.

18.5 Use Cases
In general, creating and managing replicas involves the following steps:

• Decide on the SyncType of replica (Mirror, Snapshot, Clone) and Mode (Synchronous, Asynchronous). See
Section 18.2.2.1: SyncTypes.

• Locate the hosted instance of ReplicationService. See Section 18.2.2: Filesystem Replication Services
Discovery.

Table 319 - Connection Features

ConnectionFeatures Description

"Unidirectional to ProtocolEndpoint" Direction of data flow to this ProtocolEndpoint, from a
remote system (by default the connection is bi-directional).

"Unidirectional from ProtocolEndpoint" Direction of data flow from this ProtocolEndpoint to a
remote system (by default the connection is bi-directional).

Table 320 - Storage Compression Features

Feature Description

"Storage compression is not supported" The replication service does not support storage compres-
sion. Only uncompressed elements are accepted.

"Compressed source to compressed target" The replication service supports copying from compressed
source element to compressed target element.

"Compressed source to uncompressed target" The replication service supports copying from compressed
source element to uncompressed target element.

"Uncompressed source to compressed target" The replication service supports copying from uncom-
pressed source element to compressed target element.

"Compression of target same as source" The source element is copied to a target with the same
compression setting as the source.

Target pool decides compression of target element" In the call to the CreateElementReplica or CreateGrou-
pReplica method, the storage pool for the target elements
is supplied. The supplied storage pool decides the com-
pression of the created target elements.

"Implementation decides compression of target" Leaves implementation to decide compression setting of
the target.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 447

FileSystem Replication Services Profile

1197
1198
1199

1200
1201
1202

1203

1204
1205

1206
1207

1208
1209
1210

1211
1212

1213

1214
• Locate the instance of FileSystemReplicationServiceCapabilities. Utilize its properties and methods to
determine the applicable capabilities offered by the implementation for the desired ReplicationType (includes
SyncType and Mode). See Section 18.2.2: Filesystem Replication Services Discovery.

• Use the method ReplicationService.GetAvailableTargetElements to locate appropriate target elements.
Depending on the implementation, it is also possible to allow the service to locate target elements. See
Section 18.4.2.10: GetAvailableTargetElements.

• Verify StoragePools have sufficient free capacity for the target elements.

• If necessary, use the ReplicationService’s group manipulation methods to create and populate source and
target groups. See Section 18.4: Methods.

• Invoke the appropriate extrinsic method of the ReplicationService to create a replica. See Section 18.4:
Methods.

• Monitor the copy operation’s progress by examining the replication associations properties, or subscribe to
the appropriate indications -- including storage pool low space alert indications. Section 18.2.5: State
Management For Associated Replicas and Section 18.2.9: Indication.

• Invoke the method ReplicationService.ModifyReplicaSynchronization to modify a replica. For example, “split”
a replica from its source element. See Section 18.4: Methods.

18.6 CIM Elements
Table 321 describes the CIM elements for Filesystem Replication Services.

Table 321 - CIM Elements for Filesystem Replication Services

Element Name Requirement Description

Section 18.6.1: CIM_ElementCapabilities Mandatory Associates FileSystemReplicationCapabilities and
ReplicationService, or
FileSystemReplicationServiceCapabilities and
ReplicationService.

Section 18.6.2: CIM_FileSystemGroupSynchronized Conditional Experimental. Conditional requirement: Required if
groups are supported. Associates source and target
groups, or a source element to a target group.

Section 18.6.3:
CIM_FileSystemReplicationServiceCapabilities

Mandatory Experimental. A set of properties and methods that
describe the capabilities of a replication services provider.

Section 18.6.4: CIM_FileSystemSynchronized Mandatory Experimental. Associates replica target element to source
element.

Section 18.6.5: CIM_HostedAccessPoint
(ForProtocolEndpoint)

Conditional Conditional requirement: Required if remote replication is
supported. Associates ProtocolEndpoint to the
ComputerSystem on which it is hosted.

Section 18.6.6: CIM_HostedAccessPoint
(ForRemoteServiceAccessPoint)

Conditional Conditional requirement: Required if remote replication is
supported. Associates RemoteServiceAccessPoint to the
ComputerSystem.

Section 18.6.7: CIM_HostedCollection (Allocated
Resources)

Mandatory This would associate the AllocatedResources collection to
the top level system for the FileSystem Replication
Services Profile using Cascading.

Section 18.6.8: CIM_HostedCollection (Between
ComputerSystem and RemoteReplicationCollection)

Conditional Conditional requirement: Required if groups are
supported. Associates the RemoteReplicationCollection
(ConnectivityCollection) to the hosting System.
448

 FileSystem Replication Services Profile
Section : CIM_HostedCollection (Between
ComputerSystem and ReplicationGroup)

Conditional Conditional requirement: Required if groups are
supported. Associates the replication group to the hosting
System.

Section 18.6.9: CIM_HostedCollection (Remote
Resources)

Conditional Conditional requirement: This is required if
SNIA_RemoteResources is modeled. This would
associate the RemoteResources collection to the top level
system for the Replication Services Profile in support of
Cascading.

Section 18.6.10: CIM_HostedService Mandatory

Section 18.6.11: CIM_MemberOfCollection (Allocated
Resources)

Optional This supports collecting replication components. This is
required to support the AllocatedResources collection for
Cascading.

Section 18.6.12: CIM_MemberOfCollection
(ProtocolEndpoints to RemoteReplicationCollection)

Conditional Conditional requirement: Required if remote replication is
supported. Associates ProtocolEndpoints to
RemoteReplicationCollection (ConnectivityCollection).

Section 18.6.13: CIM_MemberOfCollection (Remote
Resources)

Optional This supports collecting all Shadow instances of
components that the Replication Service has available to
use. This is optional when used to support the
RemoteResources collection (the RemoteResources
collection is optional).

Section 18.6.14: CIM_OrderedMemberOfCollection Conditional Conditional requirement: Required if groups are
supported. Associates ReplicationGroup to storage
elements.

Section 18.6.15: CIM_ProtocolEndpoint Conditional Conditional requirement: Required if remote replication is
supported. Special purpose endpoint that represents
connections between systems.

Section 18.6.16: CIM_RemoteReplicationCollection Conditional Conditional requirement: Required if remote replication is
supported. A RemoteReplicationCollection groups
together a set of ProtocolEndpoints of the same 'type'
(i.e., class) which are able to communicate with each
other. The ProtocolEndpoints are used by Replication
Services.

Section 18.6.17: CIM_RemoteServiceAccessPoint Conditional Conditional requirement: Required if remote replication is
supported. A ServiceAccessPoint for replication service.

Section 18.6.18: CIM_ReplicaPoolForStorage Optional Associates special storage pool for Snapshots (delta
replicas) to a source element.

Section 18.6.19: CIM_ReplicationEntity Optional Represents a replication entity such as an entity known by
its World Wide Name (WWN).

Section 18.6.20: CIM_ReplicationGroup Conditional Experimental. Conditional requirement: Required if
groups are supported. Represents a group of elements
participating in a replication activity.

Section 18.6.21: CIM_ReplicationService Mandatory Experimental. Base class for FileSystem Replication
Services. Methods are described in the Extrinsic Methods
clause.

Section 18.6.22: CIM_ReplicationSettingData Optional Experimental. Contains special options for use by
methods of Replication Services.

Section 18.6.23: CIM_SAPAvailableForElement Conditional Conditional requirement: Required if remote replication is
supported. This association identifies the element that is
serviced by the ServiceAccessPoint.

Table 321 - CIM Elements for Filesystem Replication Services

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 449

FileSystem Replication Services Profile
Section 18.6.24: CIM_ServiceAffectsElement (Between
ReplicationService and RemoteReplicationCollection)

Conditional Conditional requirement: Required if remote replication is
supported. Associates Replication Service to
RemoteReplicationCollection (ConnectivityCollection).

Section 18.6.25: CIM_ServiceAffectsElement (Between
ReplicationService and ReplicationEntity)

Optional Associates Replication Service to ReplicationEntity.

Section 18.6.26: CIM_ServiceAffectsElement (Between
ReplicationService and ReplicationGroup)

Conditional Conditional requirement: Required if groups are
supported. Associates Replication Service to Replication
Group.

Section 18.6.27: CIM_SettingsDefineState (Between
ReplicationGroup and SynchronizationAspect)

Optional Associates a replication group to an instance of
SynchronizationAspect.

Section 18.6.28: CIM_SettingsDefineState (Between
storage object and SynchronizationAspect)

Optional Associates a storage object to an instance of
SynchronizationAspect.

Section 18.6.29: CIM_SharedSecret Conditional Conditional requirement: Required if remote replication is
supported.

Section 18.6.30: CIM_SynchronizationAspect Optional Experimental. Keeps track of the source of a copy
operation, even after FileSystemSynchronized is
removed. Also keeps track of point-in-time.

Section 18.6.31: SNIA_AllocatedResources Optional This is a SystemSpecificCollection for collecting
components that are being used by the FileSystem
Replication Services profile (e.g., FileSystem,
LogicalDisk, etc.) that supports Cascading.

Section 18.6.32: SNIA_RemoteResources Optional This is a SystemSpecificCollection for collecting
components that may be allocated by the Replication
Services profile (e.g., FileSystem) that supports
Cascading.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FileSystemSynchronized

Mandatory All instance creation indications for
FileSystemSynchronized.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FileSystemGroupSynchronized

Conditional Conditional requirement: Required if groups are
supported. All instance creation indications for
FileSystemGroupSynchronized.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SynchronizationAspect

Optional All instance creation indications for
SynchronizationAspect.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FileSystemSynchronized AND
OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-FileSystemSynchronized')

Conditional Conditional requirement: Required if semi-fixed indication
filters are supported. CQL -Instance deletion indications
for a specific FileSystemSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FileSystemSynchronized

Optional All instance deletion indications for
FileSystemSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FileSystemGroupSynchronized
AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-
FileSystemGroupSynchronized')

Conditional Conditional requirement: Required if groups and semi-
fixed indication filters are supported. CQL -Instance
deletion indications for a specific
FileSystemGroupSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FileSystemGroupSynchronized

Optional All instance deletion indications for
FileSystemGroupSynchronized.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SynchronizationAspect

Optional All instance deletion indications for
SynchronizationAspect.

Table 321 - CIM Elements for Filesystem Replication Services

Element Name Requirement Description
450

 FileSystem Replication Services Profile
SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileSystemSynchronized AND
SourceInstance.CIM_FileSystemSynchronized::CopyStat
e <>
PreviousInstance.CIM_FileSystemSynchronized::CopySt
ate AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-FileSystemSynchronized')

Conditional Conditional requirement: Required if semi-fixed indication
filters are supported. CQL -Synchronization state
transition for a specific replica association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileSystemSynchronized AND
SourceInstance.CIM_FileSystemSynchronized::CopyStat
e <>
PreviousInstance.CIM_FileSystemSynchronized::CopySt
ate

Optional CQL -Synchronization state transition for replica
associations.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileSystemSynchronized AND
SourceInstance.CIM_FileSystemSynchronized::Progress
Status <>
PreviousInstance.CIM_FileSystemSynchronized::Progres
sStatus AND OBJECTPATH(SourceInstanceModelpath) =
OBJECTPATH('string-key-of-FileSystemSynchronized')

Optional CQL -Progress status transition for a specific replica
association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileSystemSynchronized AND
SourceInstance.CIM_FileSystemSynchronized::Progress
Status <>
PreviousInstance.CIM_FileSystemSynchronized::Progres
sStatus

Optional CQL -Progress status transition for replica associations.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileSystemGroupSynchronized
AND
SourceInstance.CIM_FileSystemGroupSynchronized::Co
pyState <>
PreviousInstance.CIM_FileSystemGroupSynchronized::C
opyState AND OBJECTPATH(SourceInstanceModelpath)
= OBJECTPATH('string-key-of-
FileSystemGroupSynchronized')

Conditional Conditional requirement: Required if groups and semi-
fixed indication filters are supported. CQL -
Synchronization state transition for a specific replication
group association.

SELECT * FROM CIM_InstModification WHERE
SourceInstance ISA CIM_FileSystemGroupSynchronized
AND
SourceInstance.CIM_FileSystemGroupSynchronized::Co
pyState <>
PreviousInstance.CIM_FileSystemGroupSynchronized::C
opyState

Optional CQL -Synchronization state transition for replication group
associations.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM4'

Optional Be notified when CopyState is set to Broken.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM4'

Optional Be notified when CopyState is set to Broken.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM5'

Optional Remaining pool space either below warning threshold set
for the pool or there is no remaining space in the pool.

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM6'

Optional Be notified of changes in RemoteReplicationCollection
(ConnectivityCollections).

SELECT * FROM CIM_AlertIndication WHERE
OwningEntity = 'SNIA' AND MessageID='FSM7'

Optional Be notified of changes in ProtocolEndpoints.

Table 321 - CIM Elements for Filesystem Replication Services

Element Name Requirement Description
SMI-S 1.6.1 Revision 6 SNIA Technical Position 451

FileSystem Replication Services Profile

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231
18.6.1 CIM_ElementCapabilities

Associates FileSystemReplicationCapabilities and ReplicationService.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 322 describes class CIM_ElementCapabilities.

18.6.2 CIM_FileSystemGroupSynchronized

Experimental.
Requirement: Required if groups are supported.

18.6.3 CIM_FileSystemReplicationServiceCapabilities

Experimental. This class defines all of the capability properties for the replication services.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 323 describes class CIM_FileSystemReplicationServiceCapabilities.

Table 322 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 323 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.
452

 FileSystem Replication Services Profile
SupportedReplicationType
s

Mandatory Enumeration indicating the supported SyncType/Mode/Local or Remote
combinations. Values:

 2: Synchronous Mirror Local

 3: Asynchronous Mirror Local

 4: Synchronous Mirror Remote

 5: Asynchronous Mirror Remote

 6: Synchronous Snapshot Local

 7: Asynchronous Snapshot Local

 8: Synchronous Snapshot Remote

 9: Asynchronous Snapshot Remote

 10: Synchronous Clone Local

 11: Asynchronous Clone Local

 12: Synchronous Clone Remote

13: Asynchronous Clone Remote.

SupportedStorageObjects Mandatory Enumeration indicating the supported storage objects. Values:

 2: FileSystem

 3: LogicalFile.

SupportedAsynchronousA
ctions

Mandatory Identify replication methods using job control. Values:

 2: CreateElementReplica

 3: CreateGroupReplica

 4: CreateSynchronizationAspect

 5: ModifyReplicaSynchronization

 6: ModifyListSynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

 9: GetPeerSystems

 10: GetReplicationRelationships

 11: GetServiceAccessPoints

19: CreateListReplica.

Table 323 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 453

FileSystem Replication Services Profile
SupportedSynchronousAct
ions

Mandatory Identify replication methods not using job control. Values:

 2: CreateElementReplica

 3: CreateGroupReplica

 4: CreateSynchronizationAspect

 5: ModifyReplicaSynchronization

 6: ModifyListSynchronization

 7: ModifySettingsDefineState

 8: GetAvailableTargetElements

 9: GetPeerSystems

 10: GetReplicationRelationships

 11: GetServiceAccessPoints

 12: CreateGroup

 13: DeleteGroup

 14: AddMembers

 15: RemoveMembers

 16: AddReplicationEntity

 17: AddServiceAccessPoint

 18: AddSharedSecret

19: CreateListReplica.

ConvertSyncTypeToReplic
ationType()

Mandatory

ConvertReplicationTypeTo
SyncType()

Mandatory

GetSupportedCopyStates() Mandatory

GetSupportedGroupCopyS
tates()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedWaitForCop
yStates()

Optional

GetSupportedFeatures() Mandatory

GetSupportedGroupFeatur
es()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedConsistency(
)

Conditional Conditional requirement: Required if groups are supported.

GetSupportedOperations() Mandatory

GetSupportedGroupOpera
tions()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedListOperatio
ns()

Optional

GetSupportedSettingsDefi
neStateOperations()

Optional

Table 323 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
454

 FileSystem Replication Services Profile

1232

1233

1234

1235

1236

1237

1238
18.6.4 CIM_FileSystemSynchronized

Experimental. Associates replica target element to source element.
Created By: Extrinsics: CreateElementReplica, CreateGroupReplica, CreateListReplica
Modified By: Extrinsic: ModifyReplicaSynchronization
Deleted By: Extrinsic: ModifyReplicaSynchronization
Requirement: Mandatory

Table 324 describes class CIM_FileSystemSynchronized.

GetSupportedThinProvisio
ningFeatures()

Optional

GetSupportedStorageCom
pressionFeatures()

Optional

GetSupportedMaximum() Optional

GetDefaultConsistency() Conditional Conditional requirement: Required if groups are supported.

GetDefaultGroupPersisten
cy()

Conditional Conditional requirement: Required if groups are supported.

GetSupportedReplicationS
ettingData()

Optional

GetDefaultReplicationSetti
ngData()

Optional

GetSupportedConnectionF
eatures()

Optional

Table 324 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized

Properties Flags Requirement Description & Notes

WhenSynced N Optional Date and time synchronization of the elements is achieved.

WhenEstablished N Optional Specifies when the association was established.

WhenSynchronized N Optional Specifies when the CopyState has a value of Synchronized.

WhenActivated N Optional Specifies when the association was activated.

WhenSuspended N Optional Specifies when the association was suspended.

SyncMaintained Mandatory Boolean indicating whether synchronization is maintained.

SyncType Mandatory Type of association between source and target groups. Values:

 6: Mirror

 7: Snapshot

8: Clone.

Mode Mandatory Specifies when target elements are updated. Values:

 2: Synchronous

3: Asynchronous.

Table 323 - SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 455

FileSystem Replication Services Profile
RequestedCopyState Optional Indicates the last requested or desired state for the association. Values:

 4: Synchronized

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: Failedover

 11: Prepared

 12: Aborted

 15: Not Applicable

 16: Partitioned

17: Invalid.

ReplicaType Optional

CopyState Mandatory State of association between source and target groups. Values:

 2: Initialized

 3: Unsynchronized

 4: Synchronized

 5: Broken

 6: Fractured

 7: Split

 8: Inactive

 9: Suspended

 10: FailedOver

 11: Prepared

 12: Aborted

 13: Skewed

 14: Mixed

 15: Not Applicable

 16: Partitioned

17: Invalid.

Table 324 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized

Properties Flags Requirement Description & Notes
456

 FileSystem Replication Services Profile
ProgressStatus N Optional Status of association between source and target groups. Values:

 2: Completed

 3: Dormant

 4: Initializing

 5: Preparing

 6: Synchronizing

 7: Resyncing

 8: Restoring

 9: Fracturing

 10: Splitting

 11: Failing over

 12: Failing back

 13: Aborting

 14: Mixed

 15: Not Applicable

 16: Suspending

 17: Requires fracture

 18: Requires resync

 19: Requires activate

 20: Pending

 21: Detaching

22: Requires detach.

PercentSynced N Optional Specifies the percent of the work completed to reach synchronization. For
synchronized associations (e.g. SyncType Mirror), while fractured, the
percent difference between source and target elements can derived by
subtracting PercentSynched from 100.

CopyPriority MN Optional CopyPriority allows the priority of background copy engine I/O to be
managed relative to host I/O operations during a sequential background
copy operation. Values:

 0: Not Managed

 1: Low

 2: Same (as host I/O)

 3: High

4: Urgent.

UndiscoveredElement N Optional Specifies whether the source, the target, or both elements involved in a
copy operation are undiscovered. If NULL both source and target
elements are considered discovered. Values:

 2: SystemElement

 3: SyncedElement

4: Both.

Table 324 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 457

FileSystem Replication Services Profile

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251
18.6.5 CIM_HostedAccessPoint (ForProtocolEndpoint)

Associates ProtocolEndpoint to the System on which it is hosted.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 325 describes class CIM_HostedAccessPoint (ForProtocolEndpoint).

18.6.6 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)

Associates RemoteServiceAccessPoint to the ComputerSystem.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

FailedCopyStopsHostIO N Optional If true, the storage array tells host to stop sending data to source element
if copying to a remote element fails. To set this property initially, use
ReplicationSettingData parameter in create method. To modify this
property, use ModifyInstance intrinsic method.

CopyRecoveryMode N Optional Describes whether the copy operation continues after a broken link is
restored. If Manual, the CopyState is set to Suspended after the link is
restored. It is required to issue the Resume operation to continue. To set
this property initially, use ReplicationSettingData parameter in create
method. To modify this property, use ModifyInstance intrinsic method.
Values:

 2: Automatic

 3: Manual

4: Implementation decides.

ReadOnly N Optional This property specifies whether the source, the target, or both elements
are "read only" to the host. Values:

 2: SystemElement

 3: SyncedElement

4: Both.

SyncedElement Mandatory

SystemElement Mandatory

Table 325 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access points that are hosted on this System.

Table 324 - SMI Referenced Properties/Methods for CIM_FileSystemSynchronized

Properties Flags Requirement Description & Notes
458

 FileSystem Replication Services Profile

1252

1253

1254
1255
1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269
1270

1271

1272
Table 326 describes class CIM_HostedAccessPoint (ForRemoteServiceAccessPoint).

18.6.7 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the Replication Services profile, it is used to associate the
Allocated Resources to the top level Computer System of the Replication Services Profile in support of
Cascading.
CIM_HostedCollection is subclassed from CIM_HostedDependency.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 327 describes class CIM_HostedCollection (Allocated Resources).

18.6.8 CIM_HostedCollection (Between ComputerSystem and RemoteReplicationCollection)

Associates the RemoteReplicationCollection (ConnectivityCollection) to the hosting System.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if groups are supported.

Table 328 describes class CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection).

CIM_HostedCollection (Between ComputerSystem and ReplicationGroup)

Table 326 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-
Point)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access points that are hosted on this System.

Table 327 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 328 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
SMI-S 1.6.1 Revision 6 SNIA Technical Position 459

FileSystem Replication Services Profile

1273

1274

1275

1276

1277

1278

1279
1280
1281
1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293
Associates the replication group to the hosting System.
Created By: Extrinsic: CreateGroup
Modified By: Extrinsics: DeleteGroup, RemoveMembers
Deleted By: Extrinsic: DeleteGroup
Requirement: Required if groups are supported.

Table 329 describes class CIM_HostedCollection (Between ComputerSystem and ReplicationGroup).

18.6.9 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It
represents a Collection that only has meaning in the context of a System, and/or whose elements are
restricted by the definition of the System. In the FileSystem Replication Services Profile, it is used to
associate the Remote Resources to the top level Computer System of the FileSystem Replication
Services Profile that supports Cascading.
CIM_HostedCollection is subclassed from CIM_HostedDependency.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_RemoteResources is modeled.

Table 330 describes class CIM_HostedCollection (Remote Resources).

18.6.10CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 329 - SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and
ReplicationGroup)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 330 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
460

 FileSystem Replication Services Profile

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308
1309

1310

1311
1312

1313

1314

1315
Table 331 describes class CIM_HostedService.

18.6.11CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all allocated shadow component instances (in the
AllocatedResources collection).
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 332 describes class CIM_MemberOfCollection (Allocated Resources).

18.6.12CIM_MemberOfCollection (ProtocolEndpoints to RemoteReplicationCollection)

Associates ProtocolEndpoints to RemoteReplicationCollection (ConnectivityCollection).
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 333 describes class CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection).

18.6.13CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all shadow components (in the RemoteResources
collection). Each association (and the RemoteResources collection, itself) is created through external
means.
Created By: Static

Table 331 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Replication Service hosted on the System.

Table 332 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 333 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to
RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
SMI-S 1.6.1 Revision 6 SNIA Technical Position 461

FileSystem Replication Services Profile

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 334 describes class CIM_MemberOfCollection (Remote Resources).

18.6.14CIM_OrderedMemberOfCollection

Associates ReplicationGroup to storage elements.
Created By: Extrinsic: CreateGroup
Modified By: Extrinsics: AddMembers, RemoveMembers
Deleted By: Extrinsics: DeleteGroup, RemoveMembers
Requirement: Required if groups are supported.

Table 335 describes class CIM_OrderedMemberOfCollection.

18.6.15CIM_ProtocolEndpoint
Special purpose endpoint that represents connections between systems.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 336 describes class CIM_ProtocolEndpoint.

Table 334 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 335 - SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection

Properties Flags Requirement Description & Notes

AssignedSequence Mandatory

Collection Mandatory

Member Mandatory

Table 336 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
462

 FileSystem Replication Services Profile

1332

1333

1334

1335

1336

1337

1338

1339
18.6.16CIM_RemoteReplicationCollection

Collects the ProtocolEndpoints/ServiceAccessPoints used by Replication Services.
Created By: Extrinsic: CreateRemoteReplicationCollection
Modified By: Extrinsics: AddToRemoteReplicationCollection, RemoveFromRemoteReplicationCollection
Deleted By: Extrinsic: Static
Requirement: Required if remote replication is supported.

Table 337 describes class CIM_RemoteReplicationCollection.

18.6.17CIM_RemoteServiceAccessPoint

ProtocolIFType Mandatory Value always reflects protocol type. Values:

 1: Other

 6: Ethernet CSMA/CD

 7: ISO 802.3 CSMA/CD

 8: ISO 802.4 Token Bus

 15: FDDI

 56: Fibre Channel

 117: Gigabit Ethernet

 4096: IPv4

 4097: IPv6

 4098: IPv4/IPv6

4111: TCP.

OtherTypeDescription N Optional String identifying the Other connection protocol.

OperationalStatus Mandatory An array containing the operational status of protocol end point.

Table 337 - SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque.

ElementName Optional User Friendly name.

ConnectivityStatus Mandatory An enumeration describing the current or potential connectivity between
endpoints in this collection. Values:

 2: Connectivity - Up

 3: No Connectivity - Down

4: Partitioned - Partial connectivity.

Active N Optional Indicates that this collection is currently active and allows replication
activities to the remote elements.

DeleteOnUnassociated N Optional If true, this instance of RemoteReplicationCollection will be deleted when it
is no longer associated with an access point.

Table 336 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 463

FileSystem Replication Services Profile

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357
Created By: Extrinsic: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 338 describes class CIM_RemoteServiceAccessPoint.

18.6.18CIM_ReplicaPoolForStorage

Associates special storage pool for Snapshots (delta replicas) to a source element.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 339 describes class CIM_ReplicaPoolForStorage.

18.6.19CIM_ReplicationEntity

Represents a replication entity such as an entity known by its World Wide Name (WWN).
Created By: Extrinsic: AddReplicationEntity
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 338 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

ElementName Optional User Friendly name.

AccessInfo Mandatory Access or addressing information or a combination of this information for a
remote connection. This information can be a host name, network
address, or similar information.

InfoFormat Mandatory The format of the Management Address (i.e. AccessInfo). For example:
"Host Name", "IPv4 Address", "IPv6 Address", "URL". See MOF for the
complete list and values.

Table 339 - SMI Referenced Properties/Methods for CIM_ReplicaPoolForStorage

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
464

 FileSystem Replication Services Profile

1358

1359

1360

1361

1362

1363

1364

1365
Table 340 describes class CIM_ReplicationEntity.

18.6.20CIM_ReplicationGroup

Experimental. Represents a group of elements participating in a replication activity.
Created By: Extrinsic: CreateGroup
Modified By: Extrinsics: AddMembers, RemoveMembers
Deleted By: Extrinsic: DeleteGroup
Requirement: Required if groups are supported.

Table 341 describes class CIM_ReplicationGroup.

Table 340 - SMI Referenced Properties/Methods for CIM_ReplicationEntity

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

Type Mandatory Indicates how to interpret the information appearing in EntityID. Values:

 2: StoragePool

 3: StorageExtent

 4: StorageVolume

 5: LogicalDisk

 6: Filesystem

 7: WWN

 8: URI

 9: Objectpath

10: Encoded in EntityID.

EntityID Mandatory An ID representing the resource identified by this entity. For example, the
WWN or the URI of an element. The property Type is to be used to
interpret the ID.

OtherTypeDescription N Optional Populated when Type has the value of Other.

Persistent MN Optional If false, the instance of this object, not the element represented by this
entity, may be deleted at the completion of a copy operation.

Table 341 - SMI Referenced Properties/Methods for CIM_ReplicationGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Within the scope of an array, the InstanceID opaquely and uniquely
identifies an instance of this class.

Persistent MN Optional If false, the group, not the elements associated with the group, may be
deleted at the completion of a copy operation.

DeleteOnEmptyElement M Mandatory If true and empty groups are allowed, the group will be deleted when the
last element is removed from the group. If empty groups are not allowed,
the group will be deleted automatically when the group becomes empty.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 465

FileSystem Replication Services Profile

1366

1367

1368

1369

1370

1371

1372
18.6.21CIM_ReplicationService

Experimental. Base class for FileSystem Replication Services.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 342 describes class CIM_ReplicationService.

DeleteOnUnassociated M Mandatory If true, the group will be deleted when the group is no longer associated
with another group. This can happen if all synchronization associations to
the individual elements of the group are dissolved.

ConsistentPointInTime N Optional If it is true, it means the point-in-time was created at an exact time with no
I/O activities in such a way the data is consistent among all the elements
of the group. This property is only valid when the group is a target of a
copy operation.

Table 342 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement Description & Notes

SystemCreationClassNam
e

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

CreateElementReplica() Mandatory

CreateGroupReplica() Conditional Conditional requirement: Required if groups are supported.

CreateListReplica() Optional

CreateSynchronizationAsp
ect()

Optional

ModifyReplicaSynchroniza
tion()

Mandatory

ModifyListSynchronization(
)

Optional

ModifySettingsDefineState
()

Optional

CreateGroup() Conditional Conditional requirement: Required if groups are supported.

DeleteGroup() Conditional Conditional requirement: Required if groups are supported.

AddMembers() Conditional Conditional requirement: Required if groups are supported.

RemoveMembers() Conditional Conditional requirement: Required if groups are supported.

GetAvailableTargetElemen
ts()

Optional

Table 341 - SMI Referenced Properties/Methods for CIM_ReplicationGroup

Properties Flags Requirement Description & Notes
466

 FileSystem Replication Services Profile

1373

1374

1375

1376

1377

1378

1379
18.6.22CIM_ReplicationSettingData

Experimental. Contains special options for use by methods of Replication Services.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 343 describes class CIM_ReplicationSettingData.

GetPeerSystems() Optional

GetReplicationRelationshi
ps()

Optional

GetServiceAccessPoints() Optional

AddReplicationEntity() Optional

AddServiceAccessPoint() Optional

AddSharedSecret() Optional

CreateGroupReplicaFrom
Elements()

Optional

GetReplicationRelationshi
pInstance()

Optional

ModifyListSettingsDefineSt
ate()

Optional

CreateRemoteReplication
Collection()

Optional

AddToRemoteReplicationC
ollection()

Optional

RemoveFromRemoteRepli
cationCollection()

Optional

Table 343 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory User Friendly name.

Pairing MN Optional Controls how source and target elements are paired. Values:

 2: Instrumentation decides

 3: Exact order

4: Optimum (If possible source and target elements on different adapters).

Table 342 - SMI Referenced Properties/Methods for CIM_ReplicationService

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 467

FileSystem Replication Services Profile
UnequalGroupsAction MN Optional Indicates what should happen if number of elements in source and target
are unequal. Values:

 2: Return an error

 3: Allow larger source group

4: Allow larger target group.

DesiredCopyMethodology MN Optional Request specific copy methodology. Values:

 1: Other

 2: Instrumentation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

 8: Delta-Update

9: Snap-And-Clone.

TargetElementSupplier MN Optional If target elements are not supplied, this property indicates where the target
elements should come from. Values:

 1: Use existing elements

 2: Create new elements

 3: Use existing or Create new elements

 4: Instrumentation decides

5: Client must supply.

ThinProvisioningPolicy MN Optional If the target element is not supplied, this property specifies the
provisioning of the target element. Values:

 2: Copy thin source to thin target

 3: Copy thin source to full target

 4: Copy full source to thin target

 5: Provisioning of target same as source

 6: Target pool decides provisioning of target element

7: Implementation decides provisioning of target.

StorageCompressionPolic
y

MN Optional If the target element is not supplied, this property specifies the
compression of the target element. Values:

 2: Copy compressed source to compressed target

 3: Copy compressed source to uncompressed target

 4: Copy uncompressed source to compressed target

 5: Compression of target same as source

 6: Target pool decides compression of target element

7: Implementation decides compression of target.

ConsistentPointInTime MN Optional If it is true, it means the point-in-time to be created at an exact time with no
I/O activities in such a way the data is consistent among all the elements
or the group.

Table 343 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes
468

 FileSystem Replication Services Profile
DeltaUpdateInterval MN Optional If non-zero, it specifies the interval between the snapshots of source
element, for example, every 23 minutes (00000000002300.000000:000). If
zero or NULL, the implementation decides.

Multihop MN Optional This property applies to multihop copy operation. It specifies the number of
hops the starting source (or group) element is expected to be copied.
Default is 1.

OnGroupOrListError MN Optional This property applies to group or list operations. It specifies what the
implementation should do if an error is encountered before all entries in
the group or list are processed. Default is to Stop.

 2: Continue

3: Stop.

CopyPriority MN Optional This property sets the StorageSynchronized.CopyPriority property.
CopyPriority allows the priority of background copy operation to be
managed relative to host I/O operations during a sequential background
copy operation.

 0: Not Managed

 1: Low

 2: Same (as host I/O)

 3: High

4: Urgent.

FailedCopyStopsHostIO MN Optional If true, the storage array tells host to stop sending data to source element
if copying to a remote element fails.

CopyRecoveryMode MN Optional Describes whether the copy operation continues after a broken link is
restored. If Manual, the CopyState is set to Suspended after the link is
restored. It is required to issue the Resume operation to continue. Values:

 2: Automatic

 3: Manual

4: Implementation decides.

UnequalListsAction MN Optional Indicates what should happen if number of elements in source and target
lists are unequal. Values:

 2: Return an error

 3: Allow source list to be larger

4: Allow target list to be larger.

DeltaUpdateBlocks MN Optional This property applies to Delta-Update copy methodology. If non-zero, it
specifies the snapshots of source element should be created after this
number of blocks have been modified. If both DeltaUpdateBlocks and
DeltaUpdateInterval are specified the snapshot is created based on which
criterion occurs first. If NULL or 0, the implementation decides the number
of blocks.

ReadOnly MN Optional This property specifies whether the source, the target, or both elements
should be read only to the host. Values:

 2: SystemElement (source)

 3: SyncedElement (target)

4: Both.

Table 343 - SMI Referenced Properties/Methods for CIM_ReplicationSettingData

Properties Flags Requirement Description & Notes
SMI-S 1.6.1 Revision 6 SNIA Technical Position 469

FileSystem Replication Services Profile

1380

1381

1382

1383

1384

1385

1386

1387
1388

1389

1390

1391

1392

1393

1394
1395

1396

1397

1398

1399

1400

1401
18.6.23CIM_SAPAvailableForElement

This association identifies the element that is serviced by the ProtocolEndpoint.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 344 describes class CIM_SAPAvailableForElement.

18.6.24CIM_ServiceAffectsElement (Between ReplicationService and RemoteReplicationCollec-
tion)

Associates Replication Service to RemoteReplicationCollection (ConnectivityCollection).
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 345 describes class CIM_ServiceAffectsElement (Between ReplicationService and
RemoteReplicationCollection).

18.6.25CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)

Associates Replication Service to ReplicationEntity.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 344 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element.

AvailableSAP Mandatory The servicing protocol end point.

Table 345 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and RemoteReplicationCollection)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Remote Replication Collection.
470

 FileSystem Replication Services Profile

1402
1403

1404

1405

1406

1407

1408

1409

1410
1411

1412

1413

1414

1415

1416

1417

1418
1419

1420

1421
Table 346 describes class CIM_ServiceAffectsElement (Between ReplicationService and
ReplicationEntity).

18.6.26CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)

Associates Replication Service to Replication Group.
Created By: Extrinsic: CreateGroup
Modified By: Extrinsics: DeleteGroup, RemoveMembers
Deleted By: Extrinsic: DeleteGroup
Requirement: Required if groups are supported.

Table 347 describes class CIM_ServiceAffectsElement (Between ReplicationService and
ReplicationGroup).

18.6.27CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)

Associates a replication group to an instance of SynchronizationAspect.
Created By: Extrinsic: CreateSynchronizationAspect
Modified By: Extrinsic
Deleted By: Extrinsics: ModifySettingsDefineState, ModifyReplicaSynchronization
Requirement: Optional

Table 348 describes class CIM_SettingsDefineState (Between ReplicationGroup and
SynchronizationAspect).

18.6.28CIM_SettingsDefineState (Between storage object and SynchronizationAspect)

Associates a storage object to an instance of SynchronizationAspect.

Table 346 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationEntity)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Replication Entity.

Table 347 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-
vice and ReplicationGroup)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Replication Service.

AffectedElement Mandatory Replication Group.

Table 348 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup
and SynchronizationAspect)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 471

FileSystem Replication Services Profile

1422

1423

1424

1425

1426
1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 349 describes class CIM_SettingsDefineState (Between storage object and
SynchronizationAspect).

18.6.29CIM_SharedSecret

Created By: Extrinsic: AddSharedSecret
Modified By: Static
Deleted By: Static
Requirement: Required if remote replication is supported.

Table 350 describes class CIM_SharedSecret.

18.6.30CIM_SynchronizationAspect

Experimental. Keeps track of source of a copy operation and point-in-time.
Created By: Extrinsics: CreateElementReplica, CreateListReplica, CreateSynchronizationAspect
Modified By: Extrinsic: ModifyReplicaSynchronization
Deleted By: Extrinsics: ModifyReplicaSynchronization, ModifySettingsDefineState
Requirement: Optional

Table 349 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and
SynchronizationAspect)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Storage Element.

SettingData Mandatory Synchronization Aspect.

Table 350 - SMI Referenced Properties/Methods for CIM_SharedSecret

Properties Flags Requirement Description & Notes

SystemCreationClassName Mandatory Key.

SystemName Mandatory Key.

ServiceCreationClassName Mandatory Key.

ServiceName Mandatory Key.

RemoteID Mandatory Key, The identity of the client as known on the remote system.

Secret Mandatory A secret.
472

 FileSystem Replication Services Profile

1440

1441

1442
1443
1444

1445

1446

1447

1448
Table 351 describes class CIM_SynchronizationAspect.

18.6.31SNIA_AllocatedResources

An instance of a default SNIA_AllocatedResources defines the set of components that are allocated and
in use by the Replication Services Profile. SNIA_AllocatedResources is subclassed from
CIM_SystemSpecificCollection. At least one instance of the SNIA_AllocatedResources shall exist for the
Replication Services Profile and shall be hosted by one of its ComputerSystems (typically the top level
ComputerSystem.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 351 - SMI Referenced Properties/Methods for CIM_SynchronizationAspect

Properties Flags Requirement Description & Notes

InstanceID Mandatory

SyncType Mandatory Type of association between source and target elements. Values:

 6: Mirror

 7: Snapshot

8: Clone.

ConsistencyEnabled Conditional Conditional requirement: Required if groups are supported. Set to true if
consistency is enabled.

ElementName Mandatory An end user relevant name. The value will be stored in the ElementName
property of the created SynchronizationAspect.

ConsistencyType Conditional Conditional requirement: Required if group consistency is enabled.
Indicates the consistency type used by the groups. Values:

2: Sequential Consistency.

CopyStatus N Optional Describes the status of copy operation. Values:

 2: Not Applicable

 3: Operation In Progress

4: Operation Completed.

CopyMethodology N Optional Indicates the copy methodology utilized for copying. Values:

 2: Implementation decides

 3: Full-Copy

 4: Incremental-Copy

 5: Differential-Copy

 6: Copy-On-Write

 7: Copy-On-Access

 8: Delta-Update

9: Snap-And-Clone.

WhenPointInTime N Optional

SourceElement Mandatory Reference to the source element or the source group of a copy operation
and/or a point-in-time.
SMI-S 1.6.1 Revision 6 SNIA Technical Position 473

FileSystem Replication Services Profile

1449

1450

1451
1452
1453
1454

1455

1456

1457

1458

1459
Table 352 describes class SNIA_AllocatedResources.

18.6.32SNIA_RemoteResources

An instance of a default SNIA_RemoteResources defines the set of shadow components that are
available to be used by the Replication Services Profile that supports Cascading.
SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection. One instance of the
SNIA_RemoteResources would exist and shall be hosted by the top level ComputerSystems of the
Replication Services Profile that supports Cascading.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 353 describes class SNIA_RemoteResources.

EXPERIMENTAL

Table 352 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection (e.g., Allocated
FileSystem).

ElementType Mandatory The type of remote resources collected by the AllocatedResources
collection.

For this version of SMI-S, the only value supported is '2' (Any Type).

CollectionDiscriminator Mandatory Experimental. This is an array of values that shall contain one or more
values from the list: 'SNIA:Target Volumes', 'SNIA:Source Volumes',
'SNIA:Target Volume Group', 'SNIA:Source Volume Group'.

Table 353 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection (e.g., Remote
FileSystem).

ElementType Mandatory The type of remote resources collected by the RemoteResources
collection. This shall be '2' (Any Type).

CollectionDiscriminator Mandatory Experimental. This is an array of values that shall contain one or more
values from the list: 'SNIA:Target Volumes', 'SNIA:Source Volumes',
'SNIA:Target Volume Group', 'SNIA:Source Volume Group', 'SNIA:Remote
Storage Pools'.
474

 Annex A (informative) SMI-S Information Model

1

2
3
4
5
6

7
8
9

Annex A (informative) SMI-S Information Model

This standard is based on DMTF’s CIM schema, version 2.41. The DMTF schema is available in the
machine-readable Managed Object Format (MOF) format. DMTF MOFs are simultaneously released both
as an "Experimental" and a "Final" version of the schema. This provides developers with early access to
experimental parts of the models. Both versions are available at
 http://dmtf.org/standards/cim/cim_schema_v2410

Most SMI-S Profiles are primarily based on the DMTF Final MOFs. Content marked as “Experimental” or
“Implemented” may be based on DMTF’s Experimental MOFs. Some SMI-S Experimental Profiles may
also use classes with a SNIA_ prefix; MOFs from these classes are available from SNIA.
 SMI-S 1.6.1 Revision 6 SNIA Technical Position 475

http://www.dmtf.org/standards/cim/cim_schema_v2290

476

 Annex B (Informative) State Transitions from Storage to File Shares

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21

22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
Annex B (Informative) State Transitions from Storage to File Shares

A filesystem is an abstract class that abstractly describes a hierarchical structuring of data into “files”
contained within a tree of “directories” with a single “root” directory. A LocalFileSystem is a concrete class
derived from FileSystem that implements it using one or more storage elements in which the storage
element(s) has been structured to contain information about multiple files organized into directories as
well as the content of these files. This internal organization of a LocalFileSystem, viz., what parts
represent the components of files, what parts constitute directories, what the names of these files and
directories are, how they are organized into a hierarchy, even the representation of the path to a file from
the root directory through a sequence of sub-directories etc., is called “metadata” and is stored
persistently inside the storage element(s). In addition to metadata, the internal organization contains
information about ownership of files and directories, rights of users or other entities to access files and
directories, and other attributes of files and directories. This information is sometimes included in
metadata, but sometimes referred to independently as “attribute” information and is also stored
persistently within the storage element(s). Finally, the contents of files are also stored persistently in the
storage element(s).

In filesystem-related profiles, the collection of storage elements used by a LocalFileSystem is called a
LogicalDisk(s). There are multiple formats (both open and proprietary) for structuring a LogicalDisk into a
LocalFileSystem—how the metadata, attributes, and content are stored and so on—that are referred to as
the “type” of the LocalFileSystem. The information about the type of the LocalFileSystem (and possibly
variant versions of the type) is also persistently stored in the LogicalDisk. The type of the
LocalFileSystem in this and related profiles is represented as the “FileSystemType”.

NOTE The Volume Composition Subprofile describes how multiple LogicalDisks can be merged into a single one. It is assumed
that if more than one storage element is used, they are composed into a single LogicalDisk using the Volume Composition Profile
(see 23 Volume Composition Profile in Storage Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6) or other profile
that similarly merges multiple storage elements into a single LogicalDisk.

A LocalFileSystem is not an autonomous entity but is a hosted component of a larger system, usually a
ComputerSystem. This is represented using the HostedFileSystem association between a
ComputerSystem and the LocalFileSystem. Since the LogicalDisk is a SystemDevice of a
ComputerSystem, it is frequently the case that the LocalFileSystem will be hosted by the same
ComputerSystem, but this is not required. It is generally the case that a LocalFileSystem will have an
independent internal name that may be used to refer to it but it is not necessary that the name be
constructed independently of the name of the LogicalDisk or the name of the hosting ComputerSystem.
Some systems require that this internal name be globally unique, but others rely on the uniqueness of the
LogicalDisk’s name or on other identifiers. In SMI-S, it is a requirement that a LocalFileSystem have a
unique Name property relative to the hosting ComputerSystem (Name being one of the key properties of
the FileSystem class).

The process by which an element of storage is finally made available as a FileShare is represented by
Figure B.1: "State Transitions From LogicalDisk to FileShare". The process begins with an unused
LogicalDisk that is owned by, or has been allocated to, the ComputerSystem for this purpose. The
operation "Create a filesystem", converts an unused LogicalDisk to a LocalFileSystem— Figure B.1:
"State Transitions From LogicalDisk to FileShare" shows the name and the ComputerSystem that has a
HostedFileSystem association to the LocalFileSystem. The other details of the LocalFileSystem are
skipped.
 SMI-S 1.6.1 Revision 6 SNIA Technical Position 477

44
45
46
47
48
49
50
51

52
53
54
55
56
Even after a LogicalDisk has been internally organized into a LocalFileSystem, it may not be usable by an
operational user. That’s because the operational user needs a durable name (for referring to the
LocalFileSystem) that is persistently supported by the implementation. There are multiple ways in which
this problem has been solved. Since the LocalFileSystem must be hosted by a ComputerSystem and the
LocalFileSystem has a unique name, a Uniform Resource Indicator (URI) can be constructed that is
relative to the hosting ComputerSystem. However, an operational user needs to use an access path
relative to the ComputerSystem that serves files to them (i.e., relative to a File Server), and this may
differ from the hosting ComputerSystem.

Traditionally (i.e., before URIs), a LocalFileSystem was assigned a name in a hierarchical name space
maintained by the File Server ComputerSystem. This assignment was called “mounting to” the name and
the name was called the “mount-point” of the filesystem. For historical and other reasons, the hierarchical
name space most commonly used for the purpose was based on the “root filesystem” of the File Server.
This allowed a naming convention using “file path names” for objects in the namespace that could be

Figure B.1 - State Transitions From LogicalDisk to FileShare

.

478

 Annex B (Informative) State Transitions from Storage to File Shares

57
58

59
60
61
62
63
64
65
66
67

68
69
70
71

72
73
74
75
76

77
78
79
80
81

82
83
84
85
86
87
88
89
90

91
92
93

94
95
96
97
98
99

100
101
102
103

104
105
106
extended uniformly to the meta-data and content of the mounted filesystem (and would be represented in
the SMI Specification as a property of a Capabilities element).

If the hosting ComputerSystem and the File Server ComputerSystem are the same, or can be referenced
using a single identifier (for instance in a clustered computer system), or only one File Server can access
a LocalFileSystem, it is possible to make the Name of the LocalFileSystem be the same as the mount-
point. In that case, the act of “mounting to” the name is accomplished by default when the
LocalFileSystem is created. But this does not work for implementations that allow a LocalFileSystem
hosted by one ComputerSystem to be assigned differently named mount-points on multiple File Server
ComputerSystems. The problem increases in complexity when a File Server can have multiple network
identities (through a multiplicity of IP addresses and multiple fully-qualified domain names that map to
each IP address).

Traditionally, Unix-based uni-processor systems have not made the Name of the LocalFileSystem the
same as the mount-point. But many specialized systems follow such a policy, so whether mounting is not
managed explicitly (because it is automatically specified by the name of the LocalFileSystem) or must be
managed explicitly is a feature of an implementation.

In addition to specifying a mount-point for a LocalFileSystem, a File Server would also assign system
resources needed for working with the LocalFileSystem. These include read and write buffers of
appropriate capacity, restrictions on reading or writing (needed for systems that allow multiple mounts of
a LocalFileSystem), and other implementation-dependent resources. The specification of these resources
are explicitly manageable by some implementations and defaulted by others.

The terms “mount” and “mount-point” are also traditionally used for assigning a remote element (such as
a shared file) a name in the local name space of a ComputerSystem. These terms by themselves
appeared to be too generic for use in this specification, so the terms used are “make locally accessible”
for “mount” and “local access point” for “mount-point”. The resources to be allocated for mounting are
specified by “local access settings”.

In SMI-S, a “locally accessible filesystem” is represented by providing an association,
LocalAccessAvailable, from the File Server to the LocalFileSystem. In addition to the key reference
properties, this association provides the LocalAccessPoint string array property that specifies the “local
access point”. Referring back to Figure B.1: "State Transitions From LogicalDisk to FileShare", the "Make
a filesystem locally accessible" operation creates the LocalAccessAvailable association between the File
Server and the LocalFileSystem. This operation is supported in the Filesystem Manipulation Subprofile by
providing appropriate parameters to the CreateFileSystem and ModifyFileSystem extrinsic methods. The
LocalFileSystem element is not modified, but a new association is created. The LocalAccessPoint
property provides the access point (shown in the standard Unix format as “/etc/mnt1”).

NOTE The intent behind implementing "Make a filesystem locally accessible" with CreateFileSystem and ModifyFileSystem
methods is that it is preferable not to distinguish between implementations that implement a separate “Make Locally Accessible”
function from those that do not.

The vendor implements this operation by providing the necessary parameters to the create and modify
methods; this has the benefit that the operation does not have to be exposed separately to the
management client. However all implementations that support multiple File Servers with independent
names to access filesystems must support LocalAccessAvailable as that is the only place where a file-
server-specific name for the LocalFileSystem is specified (by the LocalAccessPoint property). A vendor
that provides accessibility by default might have a FileSystem.Name property that also functions as a
path name from each file server (in one sample implementation), so it is likely that
LocalAccessAvailable.LocalAccessPoint would be the same as the LocalFileSystem.Name property. The
property LocalFileSystem.LocalAccessDefinitionRequired is required to indicate that this feature is used
and that the client must examine that property to understand how a vendor implements this model.

The creation of a file share and its behavior are detailed in the related File Export and File Export
Manipulation Subprofiles. Figure B.1: "State Transitions From LogicalDisk to FileShare" shows the
"Export a file share" operation that creates a FileShare and an SharedElement association. The
 SMI-S 1.6.1 Revision 6 SNIA Technical Position 479

107
108
109

110
111
112
113
114
115
116
117
118
119

120
121
122
FileShare provides a name “HOMEDIR” and is hosted by the File Server. The SharedElement association
links to the LocalFileSystem and also provides the pathname “/users/kamesh” to the specific user’s home
directory.

NOTE Once a LocalFileSystem has been made locally accessible via a File Server, the File Server can share its contents with
remote operational users. The contents of such a filesystem can be shared all the way from the root directory at the top of the
hierarchy, or the contents of sub-tree below some contained internal directory may be shared, or a specific file contained in the
filesystem may be shared. When a directory (root or otherwise) is shared, all files and sub-directories of that directory are
automatically also shared recursively. The semantics of sharing an individual file or directory are ultimately controlled by the
implementation of the filesystem, so sharing cannot violate the access rules specified internally to the filesystem. In addition to
specifying the object (file or directory) to be shared, the File Server may specify the protocol to use for sharing and a correlatable
name by which remote users can refer to the shared object—the protocol, the unique server id, and the share name can be used to
construct a URI for the shared object. The base URI can be extended to construct a reference URI for files or subdirectories within
the shared object.

In SMI-S, there is a FileShare element created to represent the externally accessible share. This element is associated via
SharedElement to the LocalFileSystem. The FileShare element will provide the PathName string property that specifies the shared
object (the contained file or directory name).
480

	Revision History
	List of Figures
	List of Tables
	Foreword
	1 Scope
	2 Normative References
	2.1 General
	2.2 Approved references
	2.3 References under development
	2.4 Other references

	3 Definitions, Symbols, Abbreviations, and Conventions
	3.1 General
	3.2 Definitions

	4 File Export Profile
	4.1 Description
	4.1.1 Synopsis
	4.1.2 Overview
	4.1.3 Implementation

	4.2 Health and Fault Management Consideration
	4.2.1 OperationalStatus for FileShares

	4.3 Cascading Considerations
	4.4 Supported Profiles, Subprofiles, and Packages
	4.5 Methods of the Profile
	4.5.1 Extrinsic Methods of the Profile
	4.5.2 Intrinsic Methods of the Profile

	4.6 Client Considerations and Recipes
	4.6.1 List Existing FileShares on the system

	4.7 CIM Elements
	4.7.1 CIM_CIFSShare (Exported File Share)
	4.7.2 CIM_ConcreteDependency
	4.7.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to FileShare)
	4.7.4 CIM_ElementSettingData (FileShare)
	4.7.5 CIM_EnabledLogicalElementCapabilities (FileShare)
	4.7.6 CIM_ExportedFileShareSetting (Setting)
	4.7.7 CIM_FileShare (Exported File Share)
	4.7.8 CIM_FileShareSettingData (FileShare)
	4.7.9 CIM_HostedShare
	4.7.10 CIM_NFSShare (Exported File Share)
	4.7.11 CIM_SAPAvailableForFileShare
	4.7.12 CIM_SharedElement

	5 File Export Manipulation Subprofile
	5.1 Description
	5.1.1 Synopsis
	5.1.2 Overview
	5.1.3 Instance Diagrams

	5.2 Health and Fault Management Considerations
	5.2.1 OperationalStatus for FileExportService
	5.2.2 OperationalStatus for File Server ComputerSystem

	5.3 Cascading Considerations
	5.4 Supported Subprofiles and Packages
	5.5 Methods of the Profile
	5.5.1 Extrinsic Methods of the Profile
	5.5.2 Intrinsic Methods of the Profile

	5.6 Client Considerations and Recipes
	5.6.1 Creation of a FileShare for Export
	5.6.2 Modification of an Exported FileShare
	5.6.3 Removal of an Exported FileShare
	5.6.4 File Export Manipulation Supported Capabilities Patterns

	5.7 CIM Elements
	5.7.1 CIM_CIFSShare (Exported File Share)
	5.7.2 CIM_ConcreteDependency
	5.7.3 CIM_ElementCapabilities (FES Configuration)
	5.7.4 CIM_ElementSettingData (FileShare Setting)
	5.7.5 CIM_FileShare (Exported File Share)
	5.7.6 CIM_FileStorage (Subelement)
	5.7.7 CIM_HostedService
	5.7.8 CIM_HostedShare
	5.7.9 CIM_LogicalFile (Subelement)
	5.7.10 CIM_NFSShare (Exported File Share)
	5.7.11 CIM_SAPAvailableForFileShare
	5.7.12 CIM_ServiceAffectsElement
	5.7.13 CIM_SettingsDefineCapabilities (Pre-defined)
	5.7.14 CIM_SharedElement
	5.7.15 SNIA_ElementCapabilities (FES Capabilities)
	5.7.16 SNIA_ExportedFileShareCapabilities (FES Capabilities)
	5.7.17 SNIA_ExportedFileShareSetting (FileShare Setting)
	5.7.18 SNIA_ExportedFileShareSetting (Pre-defined)
	5.7.19 SNIA_FileExportCapabilities (FES Configuration)
	5.7.20 SNIA_FileExportService

	6 File Server Manipulation Subprofile
	6.1 Synopsis
	6.2 Description
	6.2.1 Overview
	6.2.2 Instance Diagrams
	6.2.3 Health and Fault Management Consideration
	6.2.4 Cascading Considerations

	6.3 Supported Profiles, Subprofiles, and Packages
	6.4 Methods of the Profile
	6.5 Client Considerations and Recipes
	6.6 Registered Name and Version
	6.7 CIM Elements
	6.7.1 CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)
	6.7.2 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)
	6.7.3 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)
	6.7.4 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)
	6.7.5 CIM_ConcreteComponent (FileServerSettings to NISSettingData)
	6.7.6 CIM_DNSSettingData
	6.7.7 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)
	6.7.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapabilities)
	6.7.9 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)
	6.7.10 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
	6.7.11 CIM_HostedDependency
	6.7.12 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)
	6.7.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)
	6.7.14 CIM_NetworkVLAN
	6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData)
	6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData)
	6.7.17 CIM_SettingsDefineCapabilities (FileServerSettings)
	6.7.18 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)
	6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData)
	6.7.20 CIM_SettingsDefineCapabilities (NISSettingData)
	6.7.21 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)
	6.7.22 SNIA_CIFSSettingData
	6.7.23 SNIA_FileServerCapabilities
	6.7.24 SNIA_FileServerConfigurationCapabilities
	6.7.25 SNIA_FileServerConfigurationService
	6.7.26 SNIA_FileServerSettings
	6.7.27 SNIA_IPInterfaceSettingData
	6.7.28 SNIA_NFSSettingData
	6.7.29 SNIA_NISSettingData

	7 File Storage Profile
	7.1 Description
	7.1.1 Synopsis
	7.1.2 Overview
	7.1.3 Implementation

	7.2 Health and Fault Management Consideration
	7.3 Cascading Considerations
	7.3.1 Cascaded Resources
	7.3.2 Ownership Privileges
	7.3.3 Limitations on Cascading Subprofile

	7.4 Supported Profiles, Subprofiles, and Packages
	7.5 Methods of the Profile
	7.5.1 Extrinsic Methods of the Profile
	7.5.2 Intrinsic Methods of the Profile

	7.6 Client Considerations and Recipes
	7.7 CIM Elements
	7.7.1 CIM_ResidesOnExtent

	8 Filesystem Profile
	8.1 Description
	8.1.1 Synopsis
	8.1.2 Instance Diagrams

	8.2 Health and Fault Management Consideration
	8.2.1 OperationalStatus for Filesystems

	8.3 Cascading Considerations
	8.4 Supported Profiles, Subprofiles, and Packages
	8.5 Methods of the Profile
	8.5.1 Extrinsic Methods of the Profile
	8.5.2 Intrinsic Methods of the Profile

	8.6 Client Considerations: Use Cases
	8.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related profile
	8.6.2 Get FileSystemSettings for a FileSystem
	8.6.3 Get the ComputerSystem that hosts a FileSystem
	8.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem
	8.6.5 Get the Access Path to this FileSystem on the specified File Server
	8.6.6 Get the Local Access Settings for this FileSystem on the specified File Server

	8.7 CIM Elements
	8.7.1 CIM_Dependency (Uses Directory Services From)
	8.7.2 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to LocalFileSystem)
	8.7.3 CIM_ElementSettingData (FileSystem)
	8.7.4 CIM_ElementSettingData (Local Access Required)
	8.7.5 CIM_EnabledLogicalElementCapabilities (LocalFileSystem)
	8.7.6 CIM_FileStorage
	8.7.7 CIM_FileSystemSetting
	8.7.8 CIM_HostedDependency (Local Access Required)
	8.7.9 CIM_HostedFileSystem (LocalFileSystem)
	8.7.10 CIM_LocalFileSystem
	8.7.11 CIM_LogicalFile
	8.7.12 SNIA_LocalAccessAvailable
	8.7.13 SNIA_LocalFileSystem
	8.7.14 SNIA_LocallyAccessibleFileSystemSetting

	9 Filesystem Manipulation Subprofile
	9.1 Description
	9.1.1 Synopsis
	9.1.2 Overview
	9.1.3 Instance Diagrams

	9.2 Health and Fault Management Considerations
	9.2.1 OperationalStatus for FileSystemConfigurationService
	9.2.2 OperationalStatus for LocalFileSystem

	9.3 Cascading Considerations
	9.4 Supported Subprofiles and Packages
	9.5 Methods of the Profile
	9.5.1 Extrinsic Methods of the Profile
	9.5.2 Signature and Parameters of SNIA_CreateFileSystem
	9.5.3 Signature and Parameters of SNIA_ModifyFileSystem
	9.5.4 Signature and Parameters of DeleteFileSystem.
	9.5.5 Intrinsic Methods of the Profile

	9.6 Client Considerations and Recipes
	9.6.1 Creation of a FileSystem on a Storage Extent
	9.6.2 Increase the size of a FileSystem
	9.6.3 Modify a FileSystem’s Settings
	9.6.4 Delete a FileSystem and return underlying StorageExtent
	9.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem
	9.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem
	9.6.7 Filesystem Manipulation Supported Capabilities Patterns

	9.7 CIM Elements
	9.7.1 CIM_Dependency (Uses Directory Services From)
	9.7.2 CIM_ElementCapabilities (FS Configuration Capabilities)
	9.7.3 CIM_ElementCapabilities (Local Access Configuration Capabilities)
	9.7.4 CIM_ElementCapabilities (Non-Default)
	9.7.5 CIM_ElementSettingData (Attached to Filesystem)
	9.7.6 CIM_ElementSettingData (Local Access Required)
	9.7.7 CIM_HostedDependency (Attached to File System)
	9.7.8 CIM_HostedDependency (Predefined Capabilities)
	9.7.9 CIM_HostedDependency (Predefined Setting)
	9.7.10 CIM_HostedFileSystem
	9.7.11 CIM_HostedService
	9.7.12 CIM_SettingsDefineCapabilities (Predefined FS Settings)
	9.7.13 CIM_SettingsDefineCapabilities (Predefined Local Access Settings)
	9.7.14 SNIA_ElementCapabilities (Default)
	9.7.15 SNIA_FileSystemCapabilities
	9.7.16 SNIA_FileSystemConfigurationCapabilities
	9.7.17 SNIA_FileSystemConfigurationService
	9.7.18 SNIA_FileSystemSetting (Attached to FileSystem)
	9.7.19 SNIA_FileSystemSetting (Predefined FS Settings)
	9.7.20 SNIA_LocalAccessAvailable
	9.7.21 SNIA_LocalFileSystem
	9.7.22 SNIA_LocallyAccessibleFileSystemCapabilities
	9.7.23 SNIA_LocallyAccessibleFileSystemSetting

	Clause 11: Filesystem Performance Profile
	11.1 Synopsis
	11.2 Description
	11.2.1 Overview

	11.3 Implementation
	11.3.1 Performance Additions Overview
	11.3.2 Summary of FileSystemStatisticsData support by Profile
	11.3.3 Profile Registration Profile Support for the Filesystem Performance Subprofile
	11.3.4 Default Manifest Collection
	11.3.5 Client Defined Manifest Collection
	11.3.6 Capabilities Support for Filesystem Performance Subprofile
	11.3.7 Health and Fault Management Consideration
	11.3.8 Cascading Considerations

	11.4 Methods of the Profile
	11.4.1 Extrinsic Methods of the Profile
	11.4.2 Intrinsic Methods of this Profile

	11.5 Use Cases
	11.5.1 Summary of Statistics Support by Element
	11.5.2 Formulas and Calculations
	11.5.3 Filesystem Performance Supported Capabilities Patterns
	11.5.4 Client Considerations and Recipes

	11.6 CIM Elements
	11.6.1 CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)
	11.6.2 CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)
	11.6.3 CIM_ElementCapabilities
	11.6.4 CIM_ElementStatisticalData (Exported File Share Stats)
	11.6.5 CIM_ElementStatisticalData (Exporting Port Stats)
	11.6.6 CIM_ElementStatisticalData (Local Filesystem Stats)
	11.6.7 CIM_ElementStatisticalData (OTHER Element Type Stats)
	11.6.8 CIM_FileSystemStatisticalData
	11.6.9 CIM_FileSystemStatisticsCapabilities
	11.6.10 CIM_FileSystemStatisticsManifest (Client Defined)
	11.6.11 CIM_FileSystemStatisticsManifest (Provider Support)
	11.6.12 CIM_FileSystemStatisticsManifestCollection (Client Defined)
	11.6.13 CIM_FileSystemStatisticsManifestCollection (Provider Defined)
	11.6.14 CIM_HostedCollection (Client Defined)
	11.6.15 CIM_HostedCollection (Default)
	11.6.16 CIM_HostedService
	11.6.17 CIM_MemberOfCollection (Member of client defined collection)
	11.6.18 CIM_MemberOfCollection (Member of predefined collection)
	11.6.19 CIM_MemberOfCollection (Member of statistics collection)
	11.6.20 CIM_StatisticsCollection
	11.6.21 SNIA_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)
	11.6.22 SNIA_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)
	11.6.23 SNIA_FileSystemStatisticalData
	11.6.24 SNIA_FileSystemStatisticsCapabilities
	11.6.25 SNIA_FileSystemStatisticsManifest (Client Defined)
	11.6.26 SNIA_FileSystemStatisticsManifest (Provider Support)
	11.6.27 SNIA_FileSystemStatisticsManifestCollection (Client Defined)
	11.6.28 SNIA_FileSystemStatisticsManifestCollection (Provider Defined)
	11.6.29 SNIA_FileSystemStatisticsService

	12 Filesystem Quotas Profile
	12.1 Synopsis
	12.2 Description
	12.2.1 Tree Quotas
	12.2.2 User Quotas
	12.2.3 Group Quotas
	12.2.4 Container Boundaries
	12.2.5 Quota types
	12.2.6 Class design considerations
	12.2.7 Instance Diagram

	12.3 Health and Fault Management Considerations
	12.4 Supported Profiles, Subprofiles, and Packages
	12.5 Methods of the Profile
	12.5.1 FindQuotaEntries
	12.5.2 DeleteQuotaEntry
	12.5.3 ModifyQuotaEntry
	12.5.4 AddQuotaEntry
	12.5.5 GetQuotaReport
	12.5.6 EnableQuotas
	12.5.7 InitializeQuotas

	12.6 Client Considerations and sample code
	12.6.1 Common subroutines
	12.6.2 Initialize quotas
	12.6.3 Enable or disable quota tracking
	12.6.4 Add a quota entry
	12.6.5 Delete a quota entry
	12.6.6 Modify a quota entry
	12.6.7 Read the quota entries
	12.6.8 Get a report on quota usage

	12.7 CIM Elements
	12.7.1 SNIA_FSDomainIdentity
	12.7.2 SNIA_FSQuotaAppliesToElement
	12.7.3 SNIA_FSQuotaAppliesToPrincipal
	12.7.4 SNIA_FSQuotaAppliesToTree
	12.7.5 SNIA_FSQuotaCapabilities
	12.7.6 SNIA_FSQuotaConfigEntry
	12.7.7 SNIA_FSQuotaIndication
	12.7.8 SNIA_FSQuotaManagementService
	12.7.9 SNIA_FSQuotaReportRecord
	12.7.10 SNIA_ReportRecord

	13 NAS Head Profile
	13.1 Description
	13.1.1 Synopsis
	13.1.2 Overview
	13.1.3 Implementation

	13.2 Health and Fault Management Considerations
	13.2.1 Standard Messages used by this Profile

	13.3 Cascading Considerations
	13.3.1 Cascading Resources for the NAS Head Profile
	13.3.2 Ownership Privileges Asserted by NAS Heads
	13.3.3 NAS Head Limitations on use of the Cascading Subprofile

	13.4 Supported Subprofiles and Packages
	13.5 Methods of the Profile
	13.5.1 Extrinsic Methods of the Profile
	13.5.2 Intrinsic Methods of the Profile

	13.6 Client Considerations and Recipes
	13.7 CIM Elements
	13.7.1 CIM_ComputerSystem (Top Level System)
	13.7.2 CIM_ComputerSystem (Virtual File Server)
	13.7.3 CIM_ConcreteComponent
	13.7.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	13.7.5 CIM_FilterCollection (NAS Head Predefined FilterCollection)
	13.7.6 CIM_HostedCollection (NAS Head to predefined FilterCollection)
	13.7.7 CIM_HostedDependency
	13.7.8 CIM_ImplementationCapabilities (ImplementationCapabilities)
	13.7.9 CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)
	13.7.10 CIM_IndicationFilter (LogicalDisk OperationalStatus)
	13.7.11 CIM_IndicationFilter (System OperationalStatus Bellwether Alert)
	13.7.12 CIM_IndicationFilter (System OperationalStatus)
	13.7.13 CIM_LogicalDisk (LD for FS)
	13.7.14 CIM_StorageExtent (Primordial Imported Extent)
	13.7.15 CIM_SystemDevice (Logical Disks)
	13.7.16 CIM_SystemDevice (Storage Extents)

	14 Self-Contained NAS Profile
	14.1 Description
	14.1.1 Synopsis
	14.1.2 Overview
	14.1.3 Implementation

	14.2 Health and Fault Management Considerations
	14.2.1 Standard Messages used by this Profile

	14.3 Cascading Considerations
	14.4 Supported Subprofiles and Packages
	14.5 Methods of the Profile
	14.5.1 Extrinsic Methods of the Profile
	14.5.2 Intrinsic Methods of the Profile

	14.6 Client Considerations and Recipes
	14.7 CIM Elements
	14.7.1 CIM_ComputerSystem (Top Level System)
	14.7.2 CIM_ComputerSystem (Virtual File Server)
	14.7.3 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	14.7.4 CIM_FilterCollection (Self-contained NAS Predefined FilterCollection)
	14.7.5 CIM_HostedCollection (Self-contained NAS to predefined FilterCollection)
	14.7.6 CIM_HostedDependency
	14.7.7 CIM_ImplementationCapabilities (ImplementationCapabilities)
	14.7.8 CIM_IndicationFilter (LogicalDisk OperationalStatus Bellwether Alert)
	14.7.9 CIM_IndicationFilter (LogicalDisk OperationalStatus)
	14.7.10 CIM_IndicationFilter (System OperationalStatus Bellwether Alert)
	14.7.11 CIM_IndicationFilter (System OperationalStatus)
	14.7.12 CIM_LogicalDisk (Disk for FS)
	14.7.13 CIM_MemberOfCollection (Predefined Filter Collection to Self-contained NAS Filters)
	14.7.14 CIM_SystemDevice (Logical Disks)

	15 NAS Network Port Profile
	15.1 Synopsis
	15.2 Description
	15.3 Implementation
	15.3.1 The NAS TCP Interface
	15.3.2 The NAS Ethernet Interface
	15.3.3 Indication Events
	15.3.4 Bellwether Indications

	15.4 Health and Fault Management Considerations
	15.4.1 OperationalStatus for Network Ports
	15.4.2 OperationalStatus for ProtocolEndpoints
	15.4.3 Standard Messages used by this Profile

	15.5 Cascading Considerations
	15.6 Methods
	15.6.1 Intrinsic Methods of the Profile
	15.6.2 Extrinsic Methods of the Profile

	15.7 Use Cases
	15.8 CIM Elements
	15.8.1 CIM_BindsTo (CIFS or NFS)
	15.8.2 CIM_BindsTo (TCP)
	15.8.3 CIM_BindsToLANEndpoint
	15.8.4 CIM_DeviceSAPImplementation (CIFS or NFS to NetworkPort)
	15.8.5 CIM_DeviceSAPImplementation (LANEndpoint to NetworkPort)
	15.8.6 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)
	15.8.7 CIM_HostedAccessPoint (CIFS or NFS)
	15.8.8 CIM_HostedAccessPoint (IP)
	15.8.9 CIM_HostedAccessPoint (LAN)
	15.8.10 CIM_HostedAccessPoint (TCP)
	15.8.11 CIM_IPProtocolEndpoint
	15.8.12 CIM_LANEndpoint
	15.8.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)
	15.8.14 CIM_NetworkPort
	15.8.15 CIM_NetworkVLAN
	15.8.16 CIM_ProtocolEndpoint (CIFS or NFS)
	15.8.17 CIM_SystemDevice (Network Ports)
	15.8.18 CIM_TCPProtocolEndpoint
	15.8.19 SNIA_IPInterfaceSettingData

	16 Host Filesystem Profile
	16.1 Synopsis
	16.2 Description
	16.2.1 Overview

	16.3 Implementation
	16.3.1 Summary Instance Diagram
	16.3.2 Host Filesystem Use of Filesystem Profile (Mandatory)
	16.3.3 Host Filesystem Use of File Export Profile (Optional)
	16.3.4 Host Filesystem Support of Cascading
	16.3.5 Health and Fault Management Consideration

	16.4 Methods of the Profile
	16.4.1 Extrinsic Methods of the Profile
	16.4.2 Extrinsic Methods in the Filesystem Profile
	16.4.3 Extrinsic Methods in the Filesystem Manipulation Profile
	16.4.4 Intrinsic Methods of the Profile

	16.5 Client Considerations and Recipes
	16.5.1 Use Cases

	16.6 CIM Elements
	16.6.1 CIM_ComputerSystem (Shadow)
	16.6.2 CIM_Dependency (Systems)
	16.6.3 CIM_ElementCapabilities (FS Configuration Capabilities)
	16.6.4 CIM_ElementCapabilities (ImplementationCapabilities to Service)
	16.6.5 CIM_ElementConformsToProfile (FilesystemConfigurationService to Host Filesystem RegisteredProfile)
	16.6.6 CIM_FilterCollection (Host Filesystem Predefined FilterCollection)
	16.6.7 CIM_HostedCollection (Allocated Resources)
	16.6.8 CIM_HostedCollection (Host Filesystem to predefined FilterCollection)
	16.6.9 CIM_HostedCollection (Remote Resources)
	16.6.10 CIM_HostedService
	16.6.11 CIM_ImplementationCapabilities (ImplementationCapabilities)
	16.6.12 CIM_IndicationFilter (Extent OperationalStatus)
	16.6.13 CIM_IndicationFilter (System OperationalStatus)
	16.6.14 CIM_LogicalDisk (Shadow)
	16.6.15 CIM_LogicalFile
	16.6.16 CIM_LogicalIdentity (LogicalDisk)
	16.6.17 CIM_MemberOfCollection (Allocated Resources)
	16.6.18 CIM_MemberOfCollection (Predefined Filter Collection to Host Filesystem Filters)
	16.6.19 CIM_MemberOfCollection (Remote Resources)
	16.6.20 CIM_RemoteServiceAccessPoint (Shadow)
	16.6.21 CIM_ResidesOnExtent
	16.6.22 CIM_SAPAvailableForElement
	16.6.23 CIM_ServiceAffectsElement
	16.6.24 CIM_StorageExtent (Primordial Imported Extent)
	16.6.25 CIM_SystemDevice (LogicalDisks)
	16.6.26 SNIA_AllocatedResources
	16.6.27 SNIA_FileSystemConfigurationCapabilities
	16.6.28 SNIA_FileSystemConfigurationService
	16.6.29 SNIA_LocalFileSystem
	16.6.30 SNIA_RemoteResources

	18: FileSystem Replication Services Profile
	18.1 Synopsis
	18.2 Description
	18.2.1 Overview
	18.2.2 Filesystem Replication Services Discovery
	18.2.3 Locality of Target Elements
	18.2.4 Group
	18.2.5 State Management For Associated Replicas
	18.2.6 Undiscovered Resource
	18.2.7 Multiple-Hop Replication
	18.2.8 SettingDefineState Association and SynchronizationAspect Instance
	18.2.9 Indication

	18.3 Implementation
	18.3.1 Health and Fault Management Consideration
	18.3.2 Cascading Considerations

	18.4 Methods
	18.4.1 Group Management Methods
	18.4.2 Replication Management
	18.4.3 Capabilities Method

	18.5 Use Cases
	18.6 CIM Elements
	18.6.1 CIM_ElementCapabilities
	18.6.2 CIM_FileSystemGroupSynchronized
	18.6.3 CIM_FileSystemReplicationServiceCapabilities
	18.6.4 CIM_FileSystemSynchronized
	18.6.5 CIM_HostedAccessPoint (ForProtocolEndpoint)
	18.6.6 CIM_HostedAccessPoint (ForRemoteServiceAccessPoint)
	18.6.7 CIM_HostedCollection (Allocated Resources)
	18.6.8 CIM_HostedCollection (Between ComputerSystem and RemoteReplicationCollection)
	18.6.9 CIM_HostedCollection (Remote Resources)
	18.6.10 CIM_HostedService
	18.6.11 CIM_MemberOfCollection (Allocated Resources)
	18.6.12 CIM_MemberOfCollection (ProtocolEndpoints to RemoteReplicationCollection)
	18.6.13 CIM_MemberOfCollection (Remote Resources)
	18.6.14 CIM_OrderedMemberOfCollection
	18.6.15 CIM_ProtocolEndpoint
	18.6.16 CIM_RemoteReplicationCollection
	18.6.17 CIM_RemoteServiceAccessPoint
	18.6.18 CIM_ReplicaPoolForStorage
	18.6.19 CIM_ReplicationEntity
	18.6.20 CIM_ReplicationGroup
	18.6.21 CIM_ReplicationService
	18.6.22 CIM_ReplicationSettingData
	18.6.23 CIM_SAPAvailableForElement
	18.6.24 CIM_ServiceAffectsElement (Between ReplicationService and RemoteReplicationCollection)
	18.6.25 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationEntity)
	18.6.26 CIM_ServiceAffectsElement (Between ReplicationService and ReplicationGroup)
	18.6.27 CIM_SettingsDefineState (Between ReplicationGroup and SynchronizationAspect)
	18.6.28 CIM_SettingsDefineState (Between storage object and SynchronizationAspect)
	18.6.29 CIM_SharedSecret
	18.6.30 CIM_SynchronizationAspect
	18.6.31 SNIA_AllocatedResources
	18.6.32 SNIA_RemoteResources

	Annex A (informative) SMI-S Information Model
	Annex B (Informative) State Transitions from Storage to File Shares

