=
SNIA

Advancing storage &
information technology

Storage Management Technical Specification,
Part 5 Filesystems

Version 1.6.1, Revision 6

Abstract: This SNIA Technical Position defines an interface between WBEM-capable clients and
servers for the secure, extensible, and interoperable management of networked storage.

This document has been released and approved by the SNIA. The SNIA believes that the
ideas, methodologies and technologies described in this document accurately represent
the SNIA goals and are appropriate for widespread distribution. Suggestions for revision
should be directed to http://www.snia.org/feedback/.

SNIA Technical Position

November 30, 2016

Revision History

Revision 1

Date
25 May 2012

SCRs Incorporated and other changes

File Export Manipulation Subprofile (SMIS-160-Addenda-Draft-SCR00008)
- Updated the File Export Manipulation Profile CIM Elements Tables to support SMB 2.2

File Server Manipulation Subprofile (SMIS-160-Addenda-Draft-SCR00009)
- Updated the File Server Manipulation Profile CIM Elements Tables to support SMB 2.2

Filesystem Performance Profile (SMIS-160-Addenda-Draft-SCR00007)
- Updated Filesystem Performance Profile to support additional metrics and a Session ElementType

Revision 2

Date
27 August 2013

SCRs Incorporated and other changes
Filesystems part number changed to Part 5, per ISO request change re SMI-S 1.5

Filesystem Performance Profile
- Rolled forward Updates per SMIS-150-Errata-SCR0004: Clarify Indications in the Switch Profile

Filesystem Quotas Profile
- Rolled forward Updates per SMIS-150-Errata-SCR00047: Fix Filesystem Quotas mof problems

File Server Manipulation

- Rolled forward updates per SMIS-150-Errata-SCR00046: Fix File Server Manipulation mof problems and

SMIS-150-Errata-SCR00050: NAS Network Port & File Server Manipulation fixes for iSCSI

- Updated per SMIS-160-Addenda-Draft-SCR00021: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation

profiles.
File Export Manipulation

- Rolled forward updates per SMIS-150-Errata-SCR00048: Clarified that CIM_FileShare subclasses,
Clarified that CIM_FileShare subclasses, Fixed the CreateExportedShare and ModifyExportedShare
methods to match the "fixed" mof for SNIA_FileExportService, Removed SNIA classes (SNIA_FileShare,

SNIA_HostedShare and SNIA_SharedElement).
Filesystem Manipulation

- Updated per SMIS-160-Addenda-Draft-SCR00021: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation

profiles.
Filesystem Replication Services Profile

- Added this new profile per SMIS-160-Addenda-Draft-SCR00022: Add FileSystem Replication Services

t01.6.1
FileSystems

- Updated per SMIS-160-Addenda-Draft-SCR00021.00: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation

profiles.

File Export

- Updated per SMIS-160-Addenda-Draft-SCR00021.00: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation
profiles.
NAS Network Port

- Rolled forward updates per SMIS-150-Errata-SCR00050: NAS Network Port & File Server Manipulation
fixes for iISCSI
References

- Updated per SMIS-160-Addenda-Draft-SCR00021.001: Add FileShare ACLs, Element Naming and
FileShareSettingData to File Export, File Export Manipulation, Filesystem and Filesystem Manipulation
profiles.

Comments
Editorial notes and DRAFT material are displayed.

Revision 3

Date
4 December 2013

SCRs Incorporated and other changes
File Export
- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (a): Element Naming.
- Specialized SAPAvailableForFileShare for efficient enumerations per SMIS-160-Addenda-Experimental-
SCRO00023, Replaced SAPAvailableForElement with SAP_AvailableForFileShare.

File Export Manipulation Subprofile

- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (a): Element Naming,
GetElementNameCapabilities.

- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (c): Modeling for
FileShare Access Control List, FileExportService.AssignPrivilegeToFileShare.

- Specialized SAPAvailableForFileShare for efficient enumerations per SMIS-160-Addenda-Experimental-
SCRO00023, Replaced SAPAvailableForElement with SAP_AvailableForFileShare.

Filesystem Profile
- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (a):
ElementCapabilities association, Element Naming.

Filesystem Manipulation Subprofile
- Promoted Draft material to Experimental per SMIS-160-Addenda-Draft-SCR00020 (a): Element Naming,
FileSystemCapabilities.GetElementNameCapabilities.

FileSystem Replication Services Profile
- Promoted the profile from Draft to Experimental per SMIS-160-Addenda-Draft-SCR00022.

NAS Network Port
- Specialized SAPAvailableForFileShare for efficient enumerations per SMIS-160-Addenda-Experimental-
SCRO00023, Replaced SAPAvailableForElement with SAP_AvailableForFileShare.

Comments
Editorial notes are displayed.

DRAFT material is hidden.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 3

Revision 4

Date
25 February, 2014

SCRs Incorporated and other changes
None

Comments
Editorial notes and DRAFT material are hidden.

Revision 5

Date
11 August 2014

SCRs Incorporated and other changes

Filesystem Copy Services Profile
- Removed per SMIS-150-Errata-SCR00045

Remote Filesystem Copy Services
- Removed per SMIS-150-Errata-SCR00045

Annex: SMI-S Information Model
- CIM version updated to V2.41 per TSG ballot -- Correct CIM Schema Version in SMI-S.

Comments
Editorial notes and DRAFT material are hidden.

Revision 6

Date
11 October 2016

SCRs Incorporated and other changes

Filesystem Profile

- Per Mantis 4371, two recipes were removed: 8.6.7 Get the FileShares and shared File path of this
FileSystem on all File Servers and 8.6.8 Get the FileShares and shared File path of this FileSystem
on the specified FileServer.

Comments
Editorial notes and DRAFT material are hidden.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage
Management Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/

USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no altera-
tion, and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@shnia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under the
following license:

BSD 3-Clause Software License
Copyright (c) 2014-2016, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

= Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

= Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

= Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 5

DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2016 SNIA. All rights reserved. All other trademarks or registered trademarks are the
property of their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed
Management Task Force (DMTF). The CIM classes that are documented have been developed and
reviewed by both the SNIA and DMTF Technical Working Groups. However, the schema is still in
development and review in the DMTF Working Groups and Technical Committee, and subject to change.

INTENDED AUDIENCE

This document is intended for use by individuals and companies engaged in developing, deploying, and
promoting interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA)
organization.

CHANGES TO THE SPECIFICATION

Each publication of this specification is uniquely identified by a three-level identifier, comprised of a
version number, a release number and an update number. The current identifier for this specification is
version 1.2.0. Future publications of this specification are subject to specific constraints on the scope of
change that is permissible from one publication to the next and the degree of interoperability and
backward compatibility that should be assumed between products designed to different publications of
this standard. The SNIA has defined three levels of change to a specification:

= Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x.x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

< Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of
the specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

= Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.X.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

Maturity Level

In addition to informative and normative content, this specification includes guidance about the maturity
of emerging material that has completed a rigorous design review but has limited implementation in
commercial products. This material is clearly delineated as described in the following sections. The
typographical convention is intended to provide a sense of the maturity of the affected material, without
altering its normative content. By recognizing the relative maturity of different sections of the standard, an
implementer should be able to make more informed decisions about the adoption and deployment of
different portions of the standard in a commercial product.

This specification has been structured to convey both the formal requirements and assumptions of the
SMI-S API and its emerging implementation and deployment lifecycle. Over time, the intent is that all
content in the specification will represent a mature and stable design, be verified by extensive
implementation experience, assure consistent support for backward compatibility, and rely solely on
content material that has reached a similar level of maturity. Unless explicitly labeled with one of the
subordinate maturity levels defined for this specification, content is assumed to satisfy these
requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three
subordinate levels of implementation maturity that identify important aspects of the content’s increasing
maturity and stability. Each subordinate maturity level is defined by its level of implementation
experience, its stability and its reliance on other emerging standards. Each subordinate maturity level is
identified by a unique typographical tagging convention that clearly distinguishes content at one maturity
model from content at another level.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 7

Experimental Maturity Level

No material is included in this specification unless its initial architecture has been completed and
reviewed. Some content included in this specification has complete and reviewed design, but lacks
implementation experience and the maturity gained through implementation experience. This content is
included in order to gain wider review and to gain implementation experience. This material is referred to
as “Experimental”. It is presented here as an aid to implementers who are interested in likely future
developments within the SMI specification. The contents of an Experimental profile may change as
implementation experience is gained. There is a high likelihood that the changed content will be included
in an upcoming revision of the specification. Experimental material can advance to a higher maturity level
as soon as implementations are available. Figure 1 is a sample of the typographical convention for
Experimental content.

EXPERIMENTAL
Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

Implemented Maturity Level

Profiles for which initial implementations have been completed are classified as “Implemented”. This
indicates that at least two different vendors have implemented the profile, including at least one provider
implementation. At this maturity level, the underlying architecture and modeling are stable, and changes
in future revisions will be limited to the correction of deficiencies identified through additional
implementation experience. Should the material become obsolete in the future, it must be deprecated in a
minor revision of the specification prior to its removal from subsequent releases. Figure 2 is a sample of
the typographical convention for Implemented content.

IMPLEMENTED
Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag

Stable Maturity Level

Once content at the Implemented maturity level has garnered additional implementation experience, it
can be tagged at the Stable maturity level. Material at this maturity level has been implemented by three
different vendors, including both a provider and a client. Should material that has reached this maturity
level become obsolete, it may only be deprecated as part of a minor revision to the specification. Material
at this maturity level that has been deprecated may only be removed from the specification as part of a
major revision. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. As a result, Profiles at or above the Stable
maturity level shall not rely on any content that is Experimental. Figure 3 is a sample of the typographical
convention for Implemented content

STABLE
Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag

Finalized Maturity Level

Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying
the requirements for the Stable maturity level, content at the Finalized maturity level must solely depend
upon or refine material that has also reached the Finalized level. If specification content depends upon
material that is not under the control of the SNIA, and therefore not subject to its maturity level
definitions, then the external content is evaluated by the SNIA to assure that it has achieved a
comparable level of completion, stability, and implementation experience. Should material that has
reached this maturity level become obsolete, it may only be deprecated as part of a major revision to the
specification. A profile that has reached this maturity level is guaranteed to preserve backward
compatibility from one minor specification revision to the next. Over time, it is hoped that all specification
content will attain this maturity level. Accordingly, there is no special typographical convention, as there is
with the other, subordinate maturity levels. Unless content in the specification is marked with one of the
typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material

Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections
identified as “Deprecated” contain material that is obsolete and not recommended for use in new
development efforts. Existing and new implementations may still use this material, but shall move to the
newer approach as soon as possible. The maturity level of the material being deprecated determines how
long it will continue to appear in the specification. Implemented content shall be retained at least until the
next revision of the specialization, while Stable and Finalized material shall be retained until the next
major revision of the specification. Providers shall implement the deprecated elements as long as it
appears in the specification in order to achieve backward compatibility. Clients may rely on deprecated
elements, but are encouraged to use non-deprecated alternatives when possible.

Deprecated sections are documented with a reference to the last published version to include the
deprecated section as normative material and to the section in the current specification with the
replacement. Figure 4 contains a sample of the typographical convention for deprecated content.

Content that has been deprecated appears here.

Figure 4 - Deprecated Tag

SMI-S 1.6.1 Revision 6 SNIA Technical Position 9

10

Contents

REVISION HISTOTY ...ttt ettt e okt e e s s et e e s st e e e sabb e e e s annbn e e e e s annnreee s 2
LIST OFf FIQUIES ..ottt ettt e ekt e e sttt e e e s et e e e e sb e e e e e e e e e e e annbn e e e e e annneas 15
IS o) B 1= o] = PR PPRRPRRR 17
L0110] (o U PPRSPRTR 27
S 1ol o] oL TP PP PP TP P PP PP PP PPTPTPTPR 29
2 NOMMALIVE REEIENCES it e e e st e e s et e e e e s nbee e e enereas 31
P2 A €T o T - | PP PTPPRRPPRPR 31
2.2 APPIrOVEA FEIEIEINCEScei i ettt e e e e et e et e e e e e e s e nnbbbn e eeeeeaeens 31
2.3 References under deVEIOPMENTuiiiiii ittt eeeaaae s 31
2.4 ONEr FEFEIEINCES ...ttt e e e e e e e et e e e e e e e e e e s e s annnnbebaeeeaae e s 31
3 Definitions, Symbols, Abbreviations, and CONVENLIONScoiiiiiiiiiiiiiirrr e 33
T R 1= o1 - | PP TP TP PRPTTR 33
3.2 DEINIIONS ..ttt e e e e e e e e e et e e e e e e e e e nnbraraeaaaeeaean 33
4 File EXPOIt Profilecoooiiii ettt e e e e e e e e e e e e et e 35
o R B 1T Tod 1] o] [0 [P PTUTT NP 35
4.2 Health and Fault Management CoNSIAeration.............cueeieiiiieiieiiiiieeee i 38
4.3 Cascading CONSIAEIALIONScceiiuiiiiiiiiiiiiee ettt e st e et e e e s aabb e e e s aanneeas 38
4.4 Supported Profiles, Subprofiles, and Packages.........ccccuvviiviieeei i 38
4.5 Methods Of the Profileooiiiiiii et 38
4.6 Client Considerations and RECIPESuuiiiiiiiiiiiiiiiii et 38
o N O 11V I =T 41T o (PP PTUPT R 39
5 File Export Manipulation SUBPIrofil@...........uuiiiiiiiiie e 47
o0 R B 1= Yo g o] (o o EO PP TP PP PPUPPPPTR a7
5.2 Health and Fault Management CONSIAerations............ccuueaaaiiiiiiiiiieeee e 53
5.3 Cascading CONSIAEIALIONScciiuuiiiieiiiiiiee ittt e ettt e e e st e e e s abb e e e e s abreeeeeaas 55
5.4 Supported Subprofiles and PacCKages..........coiuuiiiiiiiiiiiii e 55
5.5 Methods of the Profile ...t 56
5.6 Client Considerations and RECIPEScuieeeeeiiiiiiiiiiiieteie e e e e e e s e s s e e e e e e e e e e s sssanrenraeereeeees 69
5.7 CIM EIBMENTS ...ttt e e e e e e e e s bbbttt e et e e e e e e s s e annnbbebneeeaee e s 80
6 File Server Manipulation SUBPIOfile...........uuiiiiiiiiice e 97
0 A V] o o £ £ USRS 97
(ST B 1= ST g o] (o o EO PP TP TP PPUPPPPTP 97
6.3 Supported Profiles, Subprofiles, and Packages..........cccooaiiiiiiiiiiiieeeiiiieeee e 103
6.4 Methods Of the Profileooo i 104
6.5 Client Considerations and RECIPESuuuiiiiiiiiiiee ittt 112
6.6 Registered Name and VEISIONuuiiiiiiee i r e e e e e e s e ereaaee s 112
L A O 1V [1= 1T o | £ PSPPSR 112
T File StOrage Profile ...t e e e 129
0% T B 1= o 1 o] oo SRR 129
7.2 Health and Fault Management ConSIideration...........ccceeeeeiiiiiiiiiiieeie e e 130
7.3 Cascading CONSIAEIALIONSuuiiiiieiei e e e e e e e e e e e e aaaaaeeeaeeereseeennn 130
7.4 Supported Profiles, Subprofiles, and Packages...........ccoooiiiiiiiiiieeeeiiiieeee e 132
7.5 Methods Of the Profile ...t 132
7.6 Client Considerations and RECIPEScuueiiiiiiiiiiie ettt 133
A A 1 1Y =1 1= 01T o | £ PRSP USPTTP 133
8 Filesystem Profile ... 135
S A B 1= Tox 1 o 1[0 IR PP PP 135
8.2 Health and Fault Management ConSIderation...........ccccceeeeiiiicciiiiieieeeee e e 138

SMI-S 1.6.1 Revision 6 SNIA Technical Position

11

10

11

12

13

14

12

LS TRC T OF= 1=Tor=To [0 To I @] o <70 [T r= 11 0] o 0P PPRRTRN 139
8.4 Supported Profiles, Subprofiles, and Packages..........cccoooriiiiiiiiiiiiieeeiiiieeee e 139
8.5 Methods Of the Profilecooo e 139
8.6 Client Considerations: USE CASESccuueeeeiiiiiiiiiiiiiieeieeeeessassenieeeeeereeaeeesesssansnnreeeeeereeaees 140
S A O 1V 1= 1T o | £ PRSP SPTTP 147
Filesystem Manipulation SUDPrOfile.........cooiiiiiii e 159
1S A B 1= Tor 1 o 1o I OO PP PP 159
9.2 Health and Fault Management CoNSIderationsS............cceeeeiiiiicciiiiieie e e e 166
1S TRC TN @7 1<Tor- Yo |1 (o J @] 0 1S o [=1 = 111 1SR 167
9.4 Supported Subprofiles and Packages...........oocuuiiiiiiiiiiii e 167
9.5 Methods Of the Profile ... 168
9.6 Client Considerations and RECIPESuuuiiieiiiiiiiee ittt 186
S I O [V 1T o 4 T= T o PR 206
Filesystem Performance Profile.............cccoi 231
O T R 1 T o1 PO PP PP PP PPPPPPRPPPPPN 231
O B 1= od] o o] E PP PP PPPPPPRPPPPPN 231
02 I o 0]] [T .4 1=) = 4o) o 1SR 233
10.4 Methods Of the Profileooiiiiiiiieie e 237
F0.5 USE CaSES. . ittt e e e e e e e e e e et et ettt ettt e e r e bbb e e e e e eaeaeeas 242
10.6 CIM EIBMENTS.....ueiiiiiiiiiee ettt e ettt et e e e e e e e e e s e b et b e te e et e e aaeeeeeaannbnbbsaeeeaaasaan 246
Filesystem QUOLAS Profil@..........coii i e e 275
3 R 1 Y/ T o 1= L ST PP TP PPPPUPPPR 275
0 B = 2o o 1T o PP TP STPPPR 275
11.3 Health and Fault Management CoNSIderationsS............c.ocueeeiiiniiiieen e 279
11.4 Supported Profiles, Subprofiles, and Packages.........ccccooueiiiiiiiiiiiiiiiiiee e 279
11.5 Methods Of the Profileoooiiiiiiiiii e 279
11.6 Client Considerations and sample COUE.........cccuuimiiiiiiiie e 281
117 CIM EIBMENTSttt e e e e e e e e et e e et e e e e e e e e e s abbbbeereeeeaaaaan 288
NAS Head Profile ... 295
5 R 0 =Yoo (T o SRR 295
12.2 Health and Fault Management CONSIAerationS.............coovvvviviieeiiiiiiiirr e e e e e e e 305
12.3 Cascading CONSIAEIALIONSueeiiiiiaiaeaiii ittt e e e e e e et e e e e e e e e e aabbbbaereeaeaaaeeas 306
12.4 Supported Subprofiles and Packages..........c.uuiiiiiiiiiiiiiiec e 306
12.5 Methods Of the Profile ... e e 306
12.6 Client Considerations and RECIPESccciviiiiiiiiiiiiii e s e e e e eraaaee s 307
D A O 1V I =T g 1= o | PP PPRPRUPTPRN 307
Self-ContaiNned NAS Profileoooeiii et e e e e e e e e e e e s 323
R 300 10 =Yoo T o SRR 323
13.2 Health and Fault Management CONSIAErationsS...........cccooviiiiiiiiiiiiieeeee e e 331
RCRCIN OF= - or=To [To [@Fo] g 51 0 [T =1 {0 o 1< SRR 332
13.4 Supported Subprofiles and Packages..........cccuuuiiiiiiiiiii e 332
13.5 Methods Of the Profile ... e 332
13.6 Client Considerations and RECIPESccioiiiiiiiiiiiiiiie ettt nbaee e 333
e T A O 1V I =T 43T o | TP TPPPPRRPTPRN 333
NAS NEetWOrk POrt Profil@ccoii i eee e 345
I R 1 T o1 PP OPPPPPR PPN 345
I 0 =T o (T o SR 345
0 B 0 0]] [T .4 1=) = 4o) o 1SR 345
14.4 Health and Fault Management CoNSIderationS.............coovvviiiiieeiiiiiiii e e e e e e e 350
14.5 Cascading CONSIAEIAIONSuueeiiiiiiiaiaiii ittt e e e et e et e e e e e e s e e sabbbbeereeeaaaaeeas 351

I G |V 1= 1 o o o ST U TP PP PPPRPPPPR 351
oy A U L O 1 PSPPSRSO 352
L14.8 CIM EIBMENTS....ettiiiiiiieie ettt e e ettt e e e e e e e e s e e b et s te e et aaaeeessesaanssnbaneeeeeaasanan 352
N o (o 1S3 1 (=TS V] (T T o] 1S 367
T R 1Y g T o 1S L PP T RO PPTPPPR 367
T B 1= 2ol] o] IO PP PP OPPPPPRPPPPPRN 368
15.3 IMPIEMENTALION. ... ittt et e e et b e e e s sabbe e e e e s aabaeeenee 370
15.4 Methods Of the Profileooiiiiiiiiii e 373
15.5 Client Considerations and RECIPEScccoiiiiiiiiiiiiiiii e r e e e e e eraaae s 374
15.6 CIM EIBMENTS.....uiiiiiiiiiie ettt e e e e e e e et e e et e e e e e e e e e s bbbbreseeeeaaaaan 378
16 FileSystem Replication Services Profile ... 397
TR 3 Y T o1 1 SRR 397
L16.2 DESCHIPLION ...ttt e ettt e e e e oottt et e e e e e e e e s s bbb bbbttt et e e e e e eeas e nnbbbbereeeeeeeaan 397
16.3 IMPIEMENTALION.....ceiiiiiiii ettt e e e e e e ettt e et e e e e e e e e e s nbnbeeseeeaaaaaan 413
G |V 1= 1 o o PRSP SRRPPR 415
T U L T 0= 1 - SRR 447
G SR O Y I =T g 1= o | P UPPPRPRPTPRN 448
Annex A (informative) SMI-S Information MOEl.............cooiiiiiiiiiii e 475
Annex B (Informative) State Transitions from Storage to File Sharesccccoee i, 477

SMI-S 1.6.1 Revision 6 SNIA Technical Position

13

14

List of Figures

Figure 1 - Experimental Maturity LEVEI TAQuvivieeeiiiiiiiiiiiiieieee e e e s es sttt e e e e e e e e s e snrnrane e e e e e e e e annnes 8
Figure 2 - Implemented Maturity LEVE] TAQccouiiiiiiiiiiiiiiiieee et a e e 8
Figure 3 - Stable Maturity LEVEI TAGo ueeeiiiiiiiiie ettt e s saaeee s 9
1o [0 I B LT o] = Tox= L= 1o I I Vo [SRR 9
Figure 5 - File EXPOIt INSTANCEuviiiiiiiiiiie ettt e e er e e e e 36
Figure 6 - File Export Manipulation Subprofile INStanNCecccveeeiiiiiiic e 49
Figure 7 - Capabilities and Settings for Exported File Share Creation...........cccccceeeiiiiiiiiiiiiieeeneeeenn. 52
Figure 8 - File Server Classes and Associations (Read only VIEW).........c..eeieiiiiieeiiniiieee e 99
Figure 9 - File Server Configuration classes and association..............ccceeeeviiviiiieeceeeeie 101
Figure 10 - File StOrage INSANCEccoiiiiiii et 130
Figure 11 - Cascading File STOragecccuuiiiiiiiieeee e r e e e e e s e s s ar e e e e e e e s 131
Figure 12 - FileSYStemM INSANCEcooiiiiieiiee ettt e et e e e e e e e e e e e e aaeeaaeae e s 136
Figure 13 - LocalFileSystem Creation INStance Diagram.........ccceeeeiiiiiiiiiiiiieieeeee e s esssinveeeeeeeeee e 160
Figure 14 - Capabilities and Settings for Filesystem Creationccccuvviiieeiiieeiiiiniiiiieeeee e 165
Figure 15 - Filesystem Performance Subprofile Summary Instance Diagramcccccovcveeeennnne 233
Figure 16 - Filesystem Quotas INStance Diagram..........ccccuuiiiiiiieeeie i e e e e e 278
Figure 17 - NAS Head Profiles and SUDPIofiles...........coooiiiiiiii e 297
Figure 18 - NAS HeEad INSIANCEccci ittt e e e e s e e e e e e e s e e s s aneeeeeeee s 298
Figure 19 - NAS StOrage INSLANCE ..ottt e e e e e e e e e e aaeeeeaae e s 300
Figure 20 - NAS Head Cascading SUPPOIt INSLANCE.........ccuviiiiiiiiiiie ettt 302
Figure 21 - Self-Contained NAS Profile and SUbprofiles ..o, 325
Figure 22 - Self-Contained NAS INSTANCEuiiiiiiiiiiie e e 326
Figure 23 - NAS Storage INSLANCEccuuiiiiiiiiiiee e e e e e s s s e e e e e e e e e e s s annnraraeeeeeeeaean 328
Figure 24 - NAS Support for Front-end Network POITSooooiiiiiiiiiiiii e 346
Figure 25 - Optional NAS TCP Interface Modelingccccuviiiiiiiieee e 347
Figure 26 - Mandatory NAS Ethernet Port MOdeling............ueeiiiiiiiiiiiiiiiiieeee e 348
Figure 27 - Host Filesystem Profiles, Subprofiles and Packageccccccovviiiiiiinie e 369
Figure 28 - Host Filesystem INStance Diagramccccciuiiiiieiiieee e ee e e e e e s searerreeee e e e 370
Figure 29 - Host Filesystem support for CasCadingoocuvvveeiiiiiiieeiiiiie et 372
Figure 30 - Replication SErvice DISCOVEIYuiiiiieeiiiiiiiciiiieeeeeete e e e e s ss st e ereaaaee s e e s nsnnnresaeeeeeaaens 399
Figure 31 - | Local File System RepliCAtION.c..oaiiiiiiiiiiiei it a e 401
Figure 32 - Remote File System RepliCAtION...........oouiiiiiiiiiiiie e 402
Figure 33 - Group INStANCe DIAGIaIM..........uuuiiiiiiiiiaiee ittt e e e e e e e e e e s aieebereeeeeeae e s 403
Figure 34 - Associated Group and EIEMENtSoouiiiiiiiiiiiie e 404
Figure 35 - One-to-Many ASSOCIALIONuuuiiiiiiieeeeeiiiiiiiie e e e e e e e e s s s s e e e e ae e e s e s s s snnnnrerrreeeeeeaes 405
Figure 36 - Sample CopyState and ProgressStatus TranSitioNS.cvvveeriiiiieeeiriiiee e 408
Figure 37 - Local Replication with RepliCatioNENLityuuvviiiiiieeiiiiiiiier e 409
Figure 38 - Remote replication with ReplicatioNENLItY............ccooiiiiiiiiiiiiiiiiiee e 410
Figure 39 - MUlti-HOP REPICALION.ccciiiiiiieiiiiiie ettt e aeeeas 410
Figure 40 - SettingDefiNESIALE.........ccii i e e e e e a e e e 411
Figure 41 - SynchronizationAspect INStance DIiagramccooiiiiiieiiiiiiie e 412
Figure 42 - FileSystem Replication Service support for Cascading.........cccccvevveeeeeeriiiiiiiiinieeeeeeeenn. 414
Figure 43 - Cascading and RepliCation GrOUPSooiiuuitiiiiiiieeea et e e eee e e e 415

SMI-S 1.6.1 Revision 6 SNIA Technical Position

15

Figure B.1 State Transitions From LogicalDisk to FileShare

16

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47

List of Tables

Related Profiles for File EXPOIT.... ..o ittt e e e e e e et e e e e e snneeeeas
FileShare OPeratioNalSTAtUSeiiiiiiiiieie ettt sb e et e st s nreeesaneeeas
CIM EIements fOr File EXPOIT.........uuiiiiiiiiiiie ettt e e e s e e e e st e e e e e sante e e e sanaaaeaeeesnnes
SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)
SMI Referenced Properties/Methods for CIM_ConcreteDependencyccueeeeeeiiuiierieniiciiieeeee s

SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
DIlIIES tO FIESNAIE) ...t 41

SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)...........ccccoeeviieeenee. 41
SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (FileShare)........ 41
SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)
SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)cccccoovveiiieeenee.
SMI Referenced Properties/Methods for CIM_FileShareSettingData (FileShare)...........c.cccevvvveenee.
SMI Referenced Properties/Methods for CIM_HostedShare..........ccccveveeiviiienec i,

SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)..........cccccoecieveeennnns
SMI Referenced Properties/Methods for CIM_SAPAvailableForFileSharecccocceeviiieiieeenne,
SMI Referenced Properties/Methods for CIM_SharedElement.............cocceveiiiiiiiiiiiece e
Related Profiles for File EXport Manipulationccuviieiiiiiiiie et
Operational Status for FIlEEXPOIrt SEIVICEccuuuiiiiiiiiiii et
Operational Status for File Server COmMPULEISYSIEIMooiiiiiiiiiiii et eeieee e
FileExportManipulation METhOASc..iiiiiiieiiie et
Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings 58
Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare................cccocuee..e. 60
Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare
Parameters for Extrinsic Method FileExportServices.ReleaseExportedSharecccocvvevieeeinineen.
SMI-S File Export Supported CapabilitiesS Patterns............ccooiiiiiieieiiiiiiiee e e e e
CIM Elements for File EXport ManipuIationcooiiiiiiiiiiie et
SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)...........ccceevvveeenee.
SMI Referenced Properties/Methods for CIM_ConcreteDependencyccocvvvevvieiiieeeniiieesnneeenenes
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration) 84
SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)
SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)cccccoovveviieeeee.
SMI Referenced Properties/Methods for CIM_FileStorage (Subelement).........coccveiiieeeniiieiiieeenne
SMI Referenced Properties/Methods for CIM_HOStEASEIVICEcccouviiieeiiiiiiiee e
SMI Referenced Properties/Methods for CIM_HostedShare...........cooccueiiiiiiiiiiieeiiiee e
SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)...........coccceivieeeniiieniieeenee
SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)..........ccccceevviveenee.
SMI Referenced Properties/Methods for CIM_SAPAvailableForFileSharecccccoeiieiiiiiinee e,
SMI Referenced Properties/Methods for CIM_ServiceAffectSElementcoeoviiiiiiiiiiiiieeenns
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)................... 88
SMI Referenced Properties/Methods for CIM_SharedElement............ccccceevviiiniieeininenn.
SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)
SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES Capabilities)... 90

SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)......... 91
SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined).................. 92
SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configuration) 94

SMI Referenced Properties/Methods for SNIA_FIleEXPOItService..........cccoviiiiiiiiiiiiiiiiiiieee e 95
Operational Status for File Server COMPULEISYSIEIMciiiiiiiiiiiee i e e e 103
Supported Profiles for File Server Manipulationcooivieiiiieiiice e 103

SMI-S 1.6.1 Revision 6 SNIA Technical Position

Table 48
Table 49
Table 50
Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Table 57

Table 58

Table 59

Table 60

Table 61

Table 62
Table 63

Table 64

Table 65

Table 66

Table 67
Table 68

Table 69

Table 70
Table 71
Table 72
Table 73
Table 74
Table 75
Table 76
Table 77

Table 78
Table 79
Table 80
Table 81
Table 82
Table 83
Table 84
Table 85
Table 86

18

Array Element Mappings for TemplateGoalSettings and SupportedGoalSettingscccceeeeueeeee.
Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings...........ccccevvveernvneennne
Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer
Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer.......................
Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer........................
Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface..............cccceeen.e.
Parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface
Parameters for Extrinsic Method FileServerConfigurationService.DeletelPInterface
CIM Elements for File Server Manipulationcoouuiirioiiiiiiee e e e
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to CIFS-

SYC (] gTo| D=1 | PSSR OTPPRRTN 114
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to DNS-
SEIINGDALA) ... eeee ittt s e e e et s 115
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to IPInter-
FACESEIINGDALA) ... veeeeiie ettt e et s et e e bt e e et e et e s 115
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NFS-
SEIINGDALA) ...ttt ettt e bbbttt n et b e nne e 115
SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NIS-
SEEINGDALA)eeeiete ettt h et e b e bbbt s et nne e s 116
SMI Referenced Properties/Methods for CIM_DNSSettingDatacoccceeiiieieiiieeniiee e 116
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-

vice to FileServerCapabilitieSs)o.uuieii e 116
SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-

vice to FileServerConfigurationCapabilitieS)ccuuiiiiiiiiii e 117
SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem FileServer

10 FIlESEIVEISEIINGS) ... eiiiiiitieiie ettt ettt e e e s bbbt e e e s e ab b e e e e e s aabbb e e e e anneneeeeeean 117

SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to 1P-
o1 eTolo]1=xoTo] oTo]T o] SRR

SMI Referenced Properties/Methods for CIM_HostedDependency
SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer System to File-

ServerConfigUratiONSEIVICE)ooiuiiiiiiie ettt ettt et e et e nnnes 118
SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to

INEIWOTKVLAN.) ..ttt ettt e ekt e e sttt e e bt e e s ab et e et bt e e sbe e e sane e e e be e e nneeennnns 119
SMI Referenced Properties/Methods for CIM_NetwWOrkVLANccccoiiiiiiiiiiieniiee e 119
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSettingData)........... 120
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSettingData).......... 120

SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServerSettings)...... 120
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceSettingData)121
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSettingData) 121
SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSettingData)........... 121

SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem FileServer
10 FIlESEIVEISEIINGS) ... vete ittt ettt s e e et e e e b e e aab e e st e et e nre e e anreeenae

SMI Referenced Properties/Methods for SNIA_CIFSSettingData..........ccccoevvvierieeiiciiiiie e
SMI Referenced Properties/Methods for SNIA_FileServerCapabilities.............cccoviiiiiiiiniiiieeeenne
SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities
SMI Referenced Properties/Methods for SNIA_FileServerConfigurationServiceoccceevvveennee.
SMI Referenced Properties/Methods for SNIA_FileServerSettingscocvvvereeiiicieieeescciiieee e
SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData............ccccooevveeeeeiiiiiieeeenne
SMI Referenced Properties/Methods for SNIA_NFSSettingData...........coeoviiiiieiiiiiiiiiiiceeeeeeeeee
SMI Referenced Properties/Methods for SNIA_NISSettingDatac.ccvveiiveeeiiiieniiee e
(O T ot To [=To RS (o] = o[- PSR OPRPTN

Table 87
Table 88
Table 89
Table 90
Table 91
Table 92
Table 93

Table 94
Table 95
Table 96

Table 97

Table 98

Table 99

Table 100
Table 101
Table 102
Table 103
Table 104
Table 105
Table 106
Table 107
Table 108
Table 109
Table 110
Table 111
Table 112
Table 113
Table 114
Table 115
Table 116
Table 117
Table 118

Table 119

Table 120
Table 121
Table 122
Table 123
Table 124
Table 125
Table 126
Table 127
Table 128

Table 129

Table 130

CIM Elements fOr Fil& STOFAQgEeeii ittt e e e e e e e e e et ee e s anaeeeaeeaanees 133
SMI Referenced Properties/Methods for CIM_ReSideSONEXIENT.........c.ccveiiieeeriiiieriee e 133
Related Profiles for FIlESYSIEMoi e e et e e e e s snaaae s 135
Filesystem OperatioNalSTALUS..........ooiuuiiiiii et e et e et e e e e e s saeneeas 138
CIM Elements fOr FIl@SYSIEIM.........ueiiiieiie ettt e e e et e e e e et e e e e sneeee e e e eaneee 147
SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From) 148
SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-

Dilities t0 LOCAIFIESYSIEM) ..ottt ettt et e s 149
SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)c.ccccvveeeenn. 149
SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)......... 149
SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (LocalFileSys-

L£=100) O R PPN 150
SMI Referenced Properties/Methods for CIM_FileStOragecoovvvierieeeiineeeiiee e 150
SMI Referenced Properties/Methods for CIM_FileSystemSetting........coccoveviveeiiiiieniiee e 151
SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required)......... 152

- SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)
- SMI Referenced Properties/Methods for CIM_LocCalFileSyStemccceiiiieiriiieniee e
- SMI Referenced Properties/Methods for CIM_LogicalFile.ccooviiiiiiiiiiiiiiiee e
- SMI Referenced Properties/Methods for SNIA_LocalAccessAvailablecccccevviieiiieiiniieennne
- SMI Referenced Properties/Methods for SNIA_LocalFileSystem............coooiiiiiiniiiiieeiieieeeee
- SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting
- Related Profiles for Filesystem Manipulation

- LocalFileSystem OperatioNalStatus..........cc.ueiiuueeeiiieeiiiie et e sttt st e s sbee e st e s nes

- Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification............. 168
- Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings..........ccccooveeevverennne 170
- Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize....................... 171
- Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettings ... 174
- Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem 177
- Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem 182
- Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem.................... 185

- Filesystem Manipulation Supported Capabilities Patterns
- CIM Elements for Filesystem ManipUIAtionoocueieiiiiiiiiiee et e e

- SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From) 209
- SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

L) T PO PP PR PPPPOUPRPPPPPIN 209
- SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration
CAPADIIITIES) ...ttt h et et h et b et b e b b 210
- SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default) 210

- SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)........ 211
- SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)........ 211
- SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)....... 211
- SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabilities)........ 212

- SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting) 212
- SMI Referenced Properties/Methods for CIM_HostedFileSyStem...........cccoovveiiiiiiiiee e 212
- SMI Referenced Properties/Methods for CIM_HOStEASErVICEccoovuvveiiiiiiiiiiec e 213
- SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined FS Set-

L0) O PP P U OPPPSPPPPPPPPN 213
- SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined Local Ac-

(oIS 1] a0) PSR OPRRRN 214
- SMI Referenced Properties/Methods for SNIA_ElementCapabilities (Default)cccccoociiiieeennns 214

SMI-S 1.6.1 Revision 6 SNIA Technical Position

19

Table 131 - SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities...........c.ccccooviiieiieiiiiiieeenn. 215

Table 132 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities 215
Table 133 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService..............ccccuvvee.... 218
Table 134 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)......... 218
Table 135 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Settings)......... 220

Table 136 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable
Table 137 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem.........cccceveeeiiiieiie i,

Table 138 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities 223
Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting..................... 225
Table 140 - Related Profiles for Filesystem Performanceccooiiiiiiiiiiiiiiesie e 231
Table 141 - Summary of Element Types DY Profileooiiiiiiiiii et 235
Table 142 - Creation, Deletion and Modification Methods in the Filesystem Performance Subprofile................ 237

Table 143 - Summary of Statistics SuppOort by EIEmMENtooiiii e
Table 144 - Formulas and Calculations - Calculated Statistics for a Time Interval
Table 145 - Filesystem Performance Subprofile Supported Capabilities Patterns
Table 146 - CIM Elements for FilesyStem PerformMancCeooiiiiiiiiii e
Table 147 - SMI Referenced Properties/Methods for CIM_AssociatedFileSystemStatisticsManifestCollection

(Client defined COIBCLION)coi ittt e et e e e e et e e e e e s ebeee e e s aneee 248
Table 148 - SMI Referenced Properties/Methods for CIM_AssociatedFileSystemStatisticsManifestCollection

(Provider defined COIBCTION)uiiiiie et e e e s eibe e e e s eaeee 249
Table 149 - SMI Referenced Properties/Methods for CIM_ElementCapabilitiesSccccvvveriiiiiiiieiiieeesieees 249
Table 150 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File Share

] 1= L) TP P T PTPPPPPPPPO 250

Table 151 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port Stats) 250
Table 152 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesystem Stats) 251
Table 153 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element Type

=1 PR OTPPRRTN 251
Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData.............cccccocvveiiveeeninneenns 252
Table 155 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsCapabilitiesccceevviene 258

Table 156 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)......... 259
Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support).... 261
Table 158 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Client De-

Table 159 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Provider
(D= {1 0=) ISR

Table 160 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticSService.cccovvvveiiieeeiiineenns
Table 161 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined).............c.cccuvvee....
Table 162 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default).......................

Table 163 - SMI Referenced Properties/Methods for CIM_HostedCollection (Provider Supplied)
Table 164 - SMI Referenced Properties/Methods for CIM_HOStEASEIVICEcceevvieiiiiiiiiiiiieeiee e
Table 165 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined

(o011 [=To1 o]0) IR TSP TP PP PPPRPI 268
Table 166 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of predefined col-

[[=To1 o] o) O TP T PSP P PP TP PP PPPPP 269
Table 167 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collec-

1110) PP PP 269
Table 168 - SMI Referenced Properties/Methods for CIM_StatisticSCollection.............cccocveeieiiiiiieieeinniieeee. 270
Table 169 - Related Profiles for FileSystem QUOLAS.........cooiiiiiiiiiieeiiie et eea e 275
Table 170 - CIM Elements for FileSyStem QUOLAS.cuviiiiiiieiiieeeiii ettt e e e 288
Table 171 - SMI Referenced Properties/Methods for SNIA_FSDomainldentityccccoevviveeeeeiiiiieree e, 289
Table 172 - SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToElementccceveeiniiinenen. 289

20

Table 173
Table 174
Table 175
Table 176
Table 177
Table 178
Table 179
Table 180
Table 181
Table 182
Table 183
Table 184
Table 185
Table 186
Table 187
Table 188
Table 189
Table 190

Table 191

Table 192

Table 193
Table 194

Table 195

Table 196
Table 197

Table 198
Table 199
Table 200

Table 201
Table 202
Table 203
Table 204
Table 205
Table 206
Table 207
Table 208
Table 209
Table 210
Table 211
Table 212
Table 213

Table 214

SMI-S 1.6.1 Revision 6

- SMI Referenced Properties/Methods for SNIA_FSQuotaAppliesToPrincipal..........cccccveeiiiiieieeennnes
- SMI Referenced Properties/Methods for SNIA_FSQuUOtaApplieSTOTIEEeevvvveeriiieiieeeriiee e
- SMI Referenced Properties/Methods for SNIA_FSQuotaCapabilitieS..........ccceveeeiiiviieeeiiciiiiee s
- SMI Referenced Properties/Methods for SNIA_FSQuotaConfigENtry.........c.eeeveiiiiiiiieee e
- SMI Referenced Properties/Methods for SNIA_FSQuotalndicationcccccceeeviiiiiiieeniiiiieeeeene
- SMI Referenced Properties/Methods for SNIA_FSQuotaManagementService..........cccoovveerveeennne

- SMI Referenced Properties/Methods for SNIA_FSQuotaReportRecord
- Related Profiles for NAS Headcooocveviiiiiiiiiennnns
- InstModification Events for ComputerSystem................
- InstModification Events for LogicalDiskKcccccee...

- Bellwether Alertindication Events for ComputerSystem

- Bellwether Alertindication Events for LogicalDisk..........
- Standard Messages used by NAS Head

- CIM Elements for NAS Head...........ccooeeeviieieiiiiiinnnnn.

- SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System)
- SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

- SMI Referenced Properties/Methods for CIM_ConcreteComponent..........ccuuvveeeeeiiiieieeesiiiieeeaeens
- SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to

SEIVICE) ittt a e

- SMI Referenced Properties/Methods for CIM_FilterCollection (NAS Head Predefined FilterCol-

[ECHION) 1

- SMI Referenced Properties/Methods for CIM_HostedCollection (NAS Head to predefined Filter-

COllECHION)...ei i
- SMI Referenced Properties/Methods for CIM_HostedDependency

- SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

DIIEES) . vvvvorveeeeeeeeeeseeeeseseeeeeseeeesseeesseseesseseeoereeeeseeeeees

- SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus

Bellwether Alert)cccovveeeiieiiiee e

- SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus)..... 315
- SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bell-

L=y o A (= o PP ERRR 315
- SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus) 316
- SMI Referenced Properties/Methods for CIM_LogicalDisk (LD for FS).......cccccceeviiiiiiiieeiiiiiiiee e 317
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection

10 NAS HEA FiIEIS)eiiiiiiieeiit ettt sr et ei e nre e s 318
- SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)........... 319

- SMI Referenced Properties/Methods for CIM_SystemDevice (Logical DiSKS)cccccovveeenineennne.

- SMI Referenced Properties/Methods for CIM_SystemDevice (Storage Extents)
- Related Profiles for Self-contained NAS System...........
- InstModification Events for ComputerSystem................
- InstModification Events for LogicalDiskKcc........

- Bellwether Alertindication Events for ComputerSystem

- Bellwether Alertindication Events for LogicalDisk..........
- Standard Messages used by NAS Head
- CIM Elements for Self-contained NAS System..............

- SMI Referenced Properties/Methods for CIM_ComputerSystem (Top Level System).................... 335

- SMI Referenced Properties/Methods for CIM_ComputerSystem (Virtual File Server)

- SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to

SEIVICE) 1ottt ettt e e

- SMI Referenced Properties/Methods for CIM_FilterCollection (Self-contained NAS Predefined

FilterCollection)..........ooouueieie i

SNIA Technical Position

21

Table 215

Table 216
Table 217

Table 218

Table 219
Table 220

Table 221
Table 222
Table 223

Table 224
Table 225
Table 226
Table 227
Table 228
Table 229
Table 230
Table 231
Table 232
Table 233
Table 234
Table 235
Table 236

Table 237

Table 238

Table 239
Table 240
Table 241
Table 242
Table 243
Table 244
Table 245

Table 246
Table 247
Table 248
Table 249
Table 250
Table 251
Table 252
Table 253
Table 254
Table 255
Table 256

22

- SMI Referenced Properties/Methods for CIM_HostedCollection (Self-contained NAS to pre-

defined FilterCoOlECHION)eiiii ettt e e e et e e e e e st b e e e e e s sabneeeeeaneee 338
- SMI Referenced Properties/Methods for CIM_HostedDependencyccccveevvveerreeeinneeenneeennnes 338
- SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

o] 11 [=E TP PP OPPOTRTOPRRUROPITN 338
- SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus

BEIIWETNET ALBIL) ...ttt et et e et 339
- SMI Referenced Properties/Methods for CIM_IndicationFilter (LogicalDisk OperationalStatus)..... 340
- SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus Bell-
=3 L= A (=T 1) PSRRI 341
- SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus) 342
- SMI Referenced Properties/Methods for CIM_LogicalDisk (Disk for FS)ccccociriiieiiieeiniieennne 342

- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection

to Self-contained NAS Filters)cc.oc.....
- SMI Referenced Properties/Methods for CIM_SystemDevice (Logical Disks)
- Related Profiles for NAS Network Port......

- InstModification Events for NetworkPort

- InstModification Events for ProtocolEndpoint

- Bellwether Alertindication Events for NetWOIrKPOItouuvvuiiiiiiiiiieieeee e

- NetworkPort OperationalStatus
- ProtocolEndpoint OperationalStatus..........

- Standard Messages used by NAS Head

- CIM Elements for NAS Network Port.........

- SMI Referenced Properties/Methods for CIM_BindsTo (CIFS or NFS).......ccccevviiiiiiiieinieeenieee e
- SMI Referenced Properties/Methods for CIM_BIiNdSTO (TCP) ..cccooiiiiiiiiiiiiiiieie e
- SMI Referenced Properties/Methods for CIM_BindSTOLANENAPOINtccccovviinrieeinieeerieeee
- SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (CIFS or NFS to Net-

WOFKPOI) .o

- SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (LANEndpoint to Net-

WOTKPOI) .o

- SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to IP-

ProtocolENdpoint)ccevvveeriviennieeeiieennn

- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (CIFS or NFS).........ccccovevveenee. 356
- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (IP)..........cceooviiiieieniiiiiiieeennns 357
- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (LAN)ccccovreeeinieeiniieeennne 357
- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (TCP)ccccevvveeiiieennineennne 357
- SMI Referenced Properties/Methods for CIM_IPProtoColENAPOiNt..........ccooveeiiiieinieee e 358
- SMI Referenced Properties/Methods for CIM_LANENAPOINT..........oocuiiiieiiiiiiieae i 359
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to

NEetWOrkVLAN.) ..o

.. 360

- SMI Referenced Properties/Methods for CIM_NEetwWOrkPoOrt...........cccvorieeiiieinieeieee e
- SMI Referenced Properties/Methods for CIM_NetWOrkVLANcccoviieiiiiiiieee e

- SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (CIFS or NFS)

- SMI Referenced Properties/Methods for CIM_SystemDevice (Network POrts).........cccccoovciieieeennnes
- SMI Referenced Properties/Methods for CIM_TCPProtocolEndpointcccceeeviveennne

- SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData
- Related Profiles for Host Filesystem..........
- Discovery of the Filesystem Volumes........
- Expansion of a Filesystem............c.cccccuee...
- Replication of a Filesystem.............c..........
- Quiesce a Filesystemccccoviiiieieennins

Table 257
Table 258
Table 259
Table 260
Table 261
Table 262
Table 263

Table 264

Table 265

Table 266

Table 267
Table 268

Table 269
Table 270
Table 271

Table 272
Table 273
Table 274
Table 275
Table 276
Table 277
Table 278

Table 279
Table 280
Table 281
Table 282
Table 283
Table 284
Table 285
Table 286
Table 287
Table 288
Table 289
Table 290
Table 291
Table 292
Table 293
Table 294
Table 295
Table 296
Table 297
Table 298
Table 299

S UNQUIESCE @ FIlESYSIEIM.....eciieiei ettt ettt e ettt e e e e e st e e e e e e e e e e e e e amnteeeaeeanees 376
- FilesyStem QUIESCE tIMEOULc.eiiiiiieeiiie ettt e bt e st nare e s b et e s 377
- Retrieve File INfOrMEatioN....... ..ot 377
- CIM Elements for HOSt FIl@SYSIEIMueiiiiiiiiii et 378
- SMI Referenced Properties/Methods for CIM_ComputerSystem (Shadow)...........ccccceveeiiiiiiieeenns 380
- SMI Referenced Properties/Methods for CIM_Dependency (SYStEMS)ceeovvveiriieeiniieeeniieennne 381
- SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

L[S SRR 381

- SMI Referenced Properties/Methods for CIM_ElementCapabilities (ImplementationCapabilities to

SEIVICE) it

- SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (FilesystemConfigura-
tionService to Host Filesystem RegisteredProfile)cccvviieiiiiiiic e 382

- SMI Referenced Properties/Methods for CIM_FilterCollection (Host Filesystem Predefined Filter-

(00]11=To1 o]) F PSP PRRN 383
- SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources) 383
- SMI Referenced Properties/Methods for CIM_HostedCollection (Host Filesystem to predefined

11T (@7 o] 1 [=Tol i o]) F TP RTP 383
- SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) 384
- SMI Referenced Properties/Methods for CIM_HOStedSEerviCeccoocuvveiiiieiiiiiiiiee e 384
- SMI Referenced Properties/Methods for CIM_ImplementationCapabilities (ImplementationCapa-

o111 PSPPI 384
- SMI Referenced Properties/Methods for CIM_IndicationFilter (Extent OperationalStatus)............. 385
- SMI Referenced Properties/Methods for CIM_IndicationFilter (System OperationalStatus) 386
- SMI Referenced Properties/Methods for CIM_LogicalDisk (Shadow)cccceeveviiiiiiiieeiiiiiiieeeens 387
- SMI Referenced Properties/Methods for CIM_LogicalFile...........coooviiiiiiiiiiiiiieee e 388
- SMI Referenced Properties/Methods for CIM_Logicalldentity (LOgicalDiSK)cccueveeriiiiieieeenns 389
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)........... 389
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection

10 HOSE FIlESYSLEM FIEEIS)eeieieeieeeeiee ettt ettt e et e e e e e ettt e e e e s et e e e e enneaeeeaean 390
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)............. 390
- SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Shadow)................... 390
- SMI Referenced Properties/Methods for CIM_ResideSONEXteNt...........ccooiuiiiiiiiniiiiieeeiiiiieee e 391
- SMI Referenced Properties/Methods for CIM_SAPAvailableForElementccccoeeiiieiincineennne 391
- SMI Referenced Properties/Methods for CIM_ServiceAffectsElement...........ccocccvvvieeiiieeinieeenne 392
- SMI Referenced Properties/Methods for CIM_StorageExtent (Primordial Imported Extent)............ 392

- SMI Referenced Properties/Methods for CIM_SystemDevice (LogicalDisks)
- SMI Referenced Properties/Methods for SNIA_AllocatedResources................
- SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

- SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService............cccovveeeenns
- SMI Referenced Properties/Methods for SNIA_LocalFileSystem............cooiieiiiiniiiiiee e
- SMI Referenced Properties/Methods for SNIA_ReEMOtERESOUICESccovviiiriiiiriieeiiiee e
- Related Profiles for Filesystem Replication SErVICESceeeiiiiiiiiiiiiiiie e

- Key Componentscccccvvvvvvvvnnnnnns
- Comparing SyncTypescccceeeuenee
- CopyStatus Valuescccceeeeennnne
- Indications.........cccoveiiiiieiiieeeieee
- Extrinsic Method for Group Management
- Extrinsic Method for Replication Management

- Extrinsic Method for Getting Supported Capabilitiesoooiiiiiiiii e
- Selected CreateElementReplica optional PAramMetersoocvieiiiieiiieeeiiee e

SMI-S 1.6.1 Revision 6

SNIA Technical Position

23

Table 300
Table 301
Table 302
Table 303
Table 304
Table 305
Table 306
Table 307
Table 308
Table 309
Table 310
Table 311
Table 312
Table 313
Table 314
Table 315
Table 316
Table 317
Table 318
Table 319
Table 320
Table 321
Table 322
Table 323
Table 324
Table 325
Table 326

Table 327
Table 328

Table 329

Table 330
Table 331
Table 332
Table 333

Table 334
Table 335
Table 336
Table 337
Table 338
Table 339
Table 340
Table 341
Table 342
Table 343
Table 344
Table 345

24

- Selected CreateGroupReplica optional parameterscoo i 423
- Selected CreateListReplica optional Parameters............uvieiiiiiiiiie e 425

- Locality....ooeeeeeeeee e

- ReplicationTypes
- Features......cccocveveiieeinens

- Group Features...........coooccivivininininnns
- CONSISTENCY .eeveiiiiiieee e
- OPerationsccceeeiieeeeniie e
- Comparison of Similar Operations
- SettingsDefineState Operations
- Thin Provisioning Features.................
- COMPONENES ..o
- Default Consistency.........cccceeeeevnnnee.
- Default Group Persistency..................
- Copy Methodologies.........c.cccccevuuneeen.
- Target Element Suppliers...................
- ThinProvisioningPolicy...............c........
- Connection Featuresccccoevuveee.
- Storage Compression Features

- CIM Elements for Filesystem RepliCation SErVICESoocviiiiiieiiiiieiieee e
- SMI Referenced Properties/Methods for CIM_ElementCapabilities
- SMI Referenced Properties/Methods for CIM_FileSystemReplicationServiceCapabilities.............. 452
- SMI Referenced Properties/Methods for CIM_FileSystemSynchronizedcoccoccieiiiiieeenns 455
- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForProtocolEndpoint) 458
- SMI Referenced Properties/Methods for CIM_HostedAccessPoint (ForRemoteServiceAccess-

0101) RSP 459
- SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)................ 459

- SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and

RemoteReplicationCollection)

- SMI Referenced Properties/Methods for CIM_HostedCollection (Between ComputerSystem and

ReplicationGroup)........cccvveeeeeniineeeeenn.

- SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) 460
- SMI Referenced Properties/Methods for CIM_HOStEASErVICEccoovieeeiiiiiiiiiicieee e 461
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)........... 461
- SMI Referenced Properties/Methods for CIM_MemberOfCollection (ProtocolEndpoints to Re-

moteReplicationCollection)..................

- SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)............. 462

- SMI Referenced Properties/Methods for CIM_OrderedMemberOfCollection

- SMI Referenced Properties/Methods for CIM_ProtoColENdPOINtcccceiiieeiiiiiiiiee e

- SMI Referenced Properties/Methods for CIM_RemoteReplicationCollection

- SMI Referenced Properties/Methods for CIM_RemoteServiceAcCesSPOINtccveeveeiiiiiieeeenns
- SMI Referenced Properties/Methods for CIM_ReplicaPoOoIFOrStorage..........ccovcvverveeeinieeenneeennne
- SMI Referenced Properties/Methods for CIM_ReplicationENtityccccooveeiniiiiniee i
- SMI Referenced Properties/Methods for CIM_ReplicationGroupocovivviieeeeeiiiivereeesiciieeee e

- SMI Referenced Properties/Methods for CIM_ReplicationService.................

- SMI Referenced Properties/Methods for CIM_ReplicationSettingDatacccceerveeeiireeenneeennne
- SMI Referenced Properties/Methods for CIM_SAPAvailableForElementcccceeiiieeinineennne
- SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-

vice and RemoteReplicatioNCOIECLION)uiiiiiiiiiii e e et e e e e nneeas 470
Table 346 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-

vice and RepliCAtIONENTILY)oiiiiiiiiiiiie ettt e e e e et e e e e e e entee e e e e e e nebeeeesannneeeas 471
Table 347 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (Between ReplicationSer-

vice and RePlICAIONGIOUD)oviiirieiiiiie ittt e e et e et e et e e e e nneee s 471
Table 348 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between ReplicationGroup

and SYNCHrONIZAtIONASDECL)eieiiiiiiiiee ettt et b e e a bt e rne e s nbr e e e anbeenanes 471
Table 349 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (Between storage object and

SYNCAIONIZALIONASDECL) ...ttt e et e e st e e e bb e e et e e nnnes 472
Table 350 - SMI Referenced Properties/Methods for CIM_SharedSecret........c.cccoovvvieeeiiiiiieee e 472
Table 351 - SMI Referenced Properties/Methods for CIM_SynchronizationASPeCtcccveeeeiiiiiieieeiiniieeenn. 473
Table 352 - SMI Referenced Properties/Methods for SNIA_AIloCatedRESOUICESccooveviriireriieeiiieeesieeens 474

Table 353 - SMI Referenced Properties/Methods for SNIA_RemoteResources

SMI-S 1.6.1 Revision 6 SNIA Technical Position

26

Foreword

The Filesystems part of the Storage Management Technical Specification contains Profiles and other clauses
for management of devices and programs that support filesystems. A filesystem is a specific formatting of
storage for storing and accessing files on external storage. This part describes how filesystems are
created, modified and deleted, as well as how they can be found and reported. This part also describe
modeling for how filesystems are exported for access from remote systems. The filesystem profiles use
information from other parts of the Storage Management Technical Specifications. Specifically, they
reference profiles in the Common Profiles and the Block Devices parts of the specification. This part
describes how these profiles are used in filesystem profiles.

Parts of this Standard
This standard is subdivided in the following parts:

= Storage Management Technical Specification, Part 1 Overview, 1.6.1 Rev 6

« Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6
= Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6

-« Storage Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6

= Storage Management Technical Specification, Part 5 Filesystems, 1.6.1 Rev 6

« Storage Management Technical Specification, Part 6 Fabric, 1.6.1 Rev 6

= Storage Management Technical Specification, Part 7 Host Elements, 1.6.1 Rev 6

« Storage Management Technical Specification, Part 8 Media Libraries, 1.6.1 Rev 6

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snhia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage Networking
Industry Association, 4360 ArrowsWest Drive, Colorado Springs, Colorado 80907, U.S.A.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 27

28

1 Scope

The Filesystems part of the Storage Management Technical Specification defines management profiles for
Autonomous (top level) profiles for programs and devices whose central function is providing support and
access to file data. In addition, it provides documentation of component profiles (or subprofiles) that deal
with filesystems and management interface functions that may be used by other autonomous profiles not
included in this part of the specification.

There is an informative annex that describes how storage is mapped from block storage to file shares
exported by the filesystem and the mechanisms involved in that establishing those mappings. This annex
is recommended for getting an overview of how the filesystem models work.

This version of the Filesystems part of the Storage Management Technical Specification includes two
autonomous profiles:

e The NAS Head Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users and gets
its storage from a SAN (array devices attached to the NAS Head device).

e The Self-Contained NAS Profile

This profile defines the model and functions of a NAS device that exports file shares to remote users, but gets
its storage from disk drives that are internal to the NAS device (instead of externally attached arrays).

In addition to these autonomous profiles, this part of the specification defines a number of component
profiles, which are used by the autonomous NAS profiles and might also be used by other autonomous
profiles that feature filesystem elements and services. The component profiles (subprofiles) defined in
this version of the specification include:

« The File Export (component) Profile

This component profile defines the elements used to model the exporting of filesystems or directories for any
autonomous profile that exports file data to remote systems.

« The File Export Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
the file shares (the representation of exported filesystems or directories) for any autonomous profile that
provides manipulation of exported filesystems or directories.

< The File Storage (component) Profile

This component profile defines the elements used to model the storage of filesystems on logical disks. This
profile does not have services for maintaining the mapping of filesystems to logical disks. These services are
addressed in the Filesystem Manipulation Profile.

e The Filesystem (component) Profile

This component profile defines the elements used to model filesystems and its related elements, such as
logical files, directories and information on how the filesystem is addressed when mounted to a specific
system. The services for defining and maintaining the information in the Filesystem Profile are contained in the
Filesystem Manipulation Profile.

= The Filesystem Manipulation (component) Profile

This component profile defines the elements used to model the services for creating, modifying and deleting
filesystems and their related elements.

 The Filesystem Quotas (component) Profile

SMI-S 1.6.1 Revision 6 SNIA Technical Position 29

30

This component profile defines the elements used to model the elements associated with creating, maintaining
and reporting on quotas on various filesystem elements.

2 Normative References

2.1 General

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.2 Approved references
ISO/IEC 14776-452, SCSI Primary Commands - 2 (SPC-2) [ANSI INCITS.351-2001]

2.3 References under development
Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6

Storage Management Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6
Storage Management Technical Specification, Part 4 Block Devices, 1.6.1 Rev 6
ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

2.4 Other references
DMTF DSP0214:2004 CIM Operations over HTTP

DMTF DSP1034:2012, Simple Identity Management Profile 1.1.0
http://dmtf.org/sites/default/files/standards/documents/DSP1034_1.1.0.pdf

SMI-S 1.6.1 Revision 6 SNIA Technical Position 31

32

3 Definitions, Symbols, Abbreviations, and Conventions

3.1 General

For the purposes of this document, the definitions, symbols, abbreviations, and conventions given in
Storage Management Technical Specification, Part 2 Common Architecture, 1.6.1 Rev 6 and the following apply.

3.2 Definitions

3.2.1
CIFS
Common Internet File System

3.2.2
Directory
A subtree within a filesystem

A directory may contain files or other directories.

3.2.3
File
A logical file in a filesystem

3.24
file server
a system configuration that supports the exporting of files and files systems

Note 1 to entry: A file server may be a virtual system element.

3.25
file share
sharing protocols applied to a directory. A directory is exported to remote users through a file share

3.2.6
filesystem
a filesystem in which files are named and placed logically for storage and retrieval

3.2.7
FS quota
a quota (hard or soft limit) placed on filesystem resource usage

3.2.8
logical disk
block storage on which filesystems are built

Note 1 to entry: A logical disk would be formatted for a particular filesystem.

3.2.9
NAS
Network Attached Storage

In the context of this specification this refers to devices that serve files to a network

3.2.10
NAS head

a NAS device that gets its physical storage from one or more arrays that are externally attached to the

NAS device

3.2.11
NFS
Network File System

SMI-S 1.6.1 Revision 6 SNIA Technical Position

33

3.2.12
Self-Contained NAS
a NAS device that has its own internal (to the NAS device) storage

3.2.13

quota

a hard or soft limit defined for users, user groups or resource collections on the amount of resources that
may be consumed

34

File Export Profile

STABLE

4 File Export Profile

4.1 Description

4.1.1 Synopsis

Profile Name: File Export (Component Profile)
Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 354 describes the related profiles for File Export.

Table 354 - Related Profiles for File Export

Profile Name Organization Version Requirement Description
Indication SNIA 1.5.0 Mandatory
Experimental Indication SNIA 1.5.0 Optional

Central Class: CIM_FileShare

Scoping Class: CIM_ComputerSystem

4.1.2 Overview

The File Export Profile is a subprofile for autonomous profiles that support exporting of filesystems.
Specifically, in this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles. In
some of these autonomous profiles the File Export is required. In others it may not be. See the parent
profile to see if this profile is required or not.

EXPERIMENTAL

NOTE The ExportedFileShareSetting is defined as SNIA_ classes. While this is defined to hold new properties, the CIM version of
this class will be supported for backward compatibility.

EXPERIMENTAL

4.1.3 Implementation

Figure 5: "File Export Instance" illustrates the classes mandatory for modeling the export of File Shares
for the filesystem profiles. This profile is supported by the Self-contained NAS and the NAS Head
Profiles. Figure 5 shows the ComputerSystem that hosts the LocalFileSystem (“filesystem host”) as
different from the ComputerSystem hosting the FileShare (“File server”). While they may be different
ComputerSystems, they may also be the same ComputerSystem instance.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 35

File Export Profile

ProtocolEndp oiint

ProtocollF Type = 4200 | 4201
(MFS" or "CIFS%)
(See NAS Network Port Profile)

L

_ SAPAvailableF orFile Share SAPAvailableForFileShare

File Export . a

Profile | FlleShare | ExportedFileShareS etting |

WES or CIFS FlleShareSetingData { FlleShore
. i 1] | MFS or CIFS
. -
o0.” 0.* ExportedFileShareSetting
I FileShareSetlingData
HistedSHars SharedElement Elem eniCapabilities

ConcrateDepandancy
(Deprecated, Optionaly
(For Backward Com patibdlity)

LogicalFile (Deprecated)
1 for Backward Compatibility)

C utersyst
pmputersystem (See Fllesystem Profile)
File server (Dedicated="16") FileStorage (Deprecated)]
(Sea referencing profile) {For Backward Com patibility) EnabledLogicalElement
Capabilities
ComputerSystem LocalFilesystem
HostedFile System

Filesystem Haost {See Filesytem Profile) 1

{See referencing profile)

Figure 5 - File Export Instance

The referencing profile shall model any File Shares that have been exported to the network. A File Share
shall be represented as a FileShare instance with associations to the ComputerSystem that hosts the
share (via HostedShare), to the ExportedFileShareSetting (via FileShareSettingData) and to the
ProtocolEndpoint (via OO OO OO0 OO0 tREdudghl nhidhl ERE1SHare can be accessed.

NOTE In Figure 5 the FileShare shown is intended to represent a subclass of CIM_FileShare (e.g., CIFSShare or NFSShare). It is
not intended to imply that either should be represented by CIM_FileShare (which does not indicate the type of file share).

EXPERIMENTAL

The FileShare also has a SharedElement association to the LocalFileSystem on which the share is
based.

EXPERIMENTAL

36

File Export Profile

EXPERIMENTAL

The FileShare may also have an ElementCapabilities association to an EnabledLogicalUnitCapabilities to
identify naming and requested state change capabilities.

EXPERIMENTAL

In addition, there may also be an association between the FileShare and the LogicalFile that the share
represents (via ConcreteDependency). This is provided for backward compatibility with previous releases
of the standard.

4.1.3.1 Associations to FileShare

The SAPAvailableForFileShare is a many to many association. That is, multiple FileShares may be
exported through the same ProtocolEndpoint and multiple ProtocolEndpoints may support the same
FileShare (CIFSShare or NFSShare).

The SharedElement association between the FileShare (CIFSShare or NFSShare) and a LocalFileSystem
is many to one association. Zero or more FileShares may be associated to one LocalFileSystem. But
each FileShare (CIFSShare or NFSShare) shall only reference one LocalFileSystem.

The ConcreteDependency association between the FileShare and the LogicalFile is a many to one
association. Zero or more FileShares may be associated to one LogicalFile. But each FileShare shall only
reference one LogicalFile.

The FileShareSettingData association between the FileShare (CIFSShare or NFSShare) and the
ExportedFileShareSetting is a one to one association. That is, a FileShare (CIFSShare or NFSShare)
shall have an ExportedFileShareSetting and that ExportedFileShareSetting shall be associated to exactly
one FileShare (CIFSShare or NFSShare).

EXPERIMENTAL

4.1.3.2 Element Naming

The name of a FileShare may be changed. The existence of the EnabledLogicalElementCapabilities
instance associated to the FileShare indicates that the FileShare can be named. If
ElementNameEditSupported is set to TRUE, then the ElementName of the associated FileShare may be
modified. The ElementNameMask property provides the regular expression that expresses the limits of
the name; see 4.7.x for the class definition for EnabledLogicalElementCapabilities for details for this

property.
EXPERIMENTAL

SMI-S 1.6.1 Revision 6 SNIA Technical Position 37

File Export Profile

4.2 Health and Fault Management Consideration

The File Export Profile supports state information (e.g., OperationalStatus) on the following element of
the model:

= FileShares that are exported (See section 4.2.1)

4.2.1 OperationalStatus for FileShares

Table 2 shows FileShare operationalStatus.

Table 2 - FileShare OperationalStatus

OperationalStatus Description
OK FileShare is online
Error FileShare has a failure. This could be due to a filesystem failure.
Stopped FileShare is disabled
Unknown

4.3 Cascading Considerations
None

4.4 Supported Profiles, Subprofiles, and Packages
See section 4.1.1 for this information.

4.5 Methods of the Profile

4.5.1 Extrinsic Methods of the Profile

None

4.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

= Getlnstance

< Associators

« AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

= EnumeratelnstanceNames

4.6 Client Considerations and Recipes

4.6.1 List Existing FileShares on the system

A client shall be able to find FileShares attached to a system (e.g., a file server) by doing an association
traversal from the ComputerSystem that represents the system using the HostedShare association.

38

4.7 CIM Elements

File Export Profile

Table 3 describes the CIM elements for File Export.

Table 3 - CIM Elements for File Export

Element Name

Requirement

Description

Sourcelnstance ISA CIM_FileShare AND
Sourcelnstance.CIM_FileShare::OperationalStatus <>
Previouslinstance.CIM_FileShare::OperationalStatus

4.7.1 CIM_CIFSShare (Exported File Share) Optional Represents the CIFS sharing characteristics of a
particular file element.

4.7.2 CIM_ConcreteDependency Optional Deprecated. Represents an association between a
FileShare element and the actual shared LogicalFile or
Directory on which it is based. This is provided for
backward compatibility.

4.7.3 CIM_ElementCapabilities Optional Experimental. Expressed the ability for the file share to be

(EnabledLogicalElementCapabilities to FileShare) named or have its state changed.

4.7.4 CIM_ElementSettingData (FileShare) Mandatory Deprecated. Associates a FileShare (CIFSShare or
NFSShare) and ExportedFileShareSetting elements.

4.7.5 CIM_EnabledLogicalElementCapabilities Optional Experimental. This class is used to express the naming

(FileShare) and possible requested state change possibilities for file
shares.

4.7.6 CIM_ExportedFileShareSetting (Setting) Mandatory The configuration settings for an Exported FileShare that
is a setting for a FileShare (CIFSShare or NFSShare)
available for exporting.

4.7.7 CIM_FileShare (Exported File Share) Mandatory Represents the sharing characteristics of a particular file
element.

4.7.8 CIM_FileShareSettingData (FileShare) Mandatory Experimental. Associates a FileShare (CIFSShare or
NFSShare) and ExportedFileShareSetting elements.

4.7.9 CIM_HostedShare Mandatory Represents that a shared element is hosted by a File
Server Computer System.

4.7.10 CIM_NFSShare (Exported File Share) Optional Represents the NFS sharing characteristics of a particular
file element.

4.7.11 CIM_SAPAuvailableForFileShare Mandatory Represents the association between a ProtocolEndpoint
to the file share that is being accessed through that SAP.

4.7.12 CIM_SharedElement Mandatory Associates a FileShare (CIFSShare or NFSShare) to the
LocalFileSystem on which it is based.

SELECT * FROM CIM_InstModification WHERE Mandatory Deprecated WQL -Change of Status of a FileShare.

Sourcelnstance ISA CIM_FileShare AND PreviouslInstance is optional, but may be supplied by an

Sourcelnstance.OperationalStatus <> implementation of the Profile.

Previouslinstance.OperationalStatus

SELECT * FROM CIM_InstModification WHERE Optional CQL -Change of Status of a FileShare. Previousinstance

is optional, but may be supplied by an implementation of
the Profile.

4.7.1 CIM_CIFSShare (Exported File Share)

The CIM_CIFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External

SMI-S 1.6.1 Revision 6

SNIA Technical Position

39

Deleted By: External
Requirement: Optional

File Export Profile

Table 4 describes class CIM_CIFSShare (Exported File Share).

Table 4 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.7.7 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.7.7 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.7 CIM_FileShare
(Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.7 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.7.7 CIM_FileShare (Exported
File Share).

4.7.2 CIM_ConcreteDependency

Deprecated.

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 5 describes class CIM_ConcreteDependency.

Table 5 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes
Antecedent Mandatory The LogicalFile that is being shared.
Dependent Mandatory The Share that represents the LogicalFile being shared.

4.7.3 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to FileShare)

Experimental.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

40

Table 6 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to FileShare).

File Export Profile

Table 6 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to FileShare)

Properties Flags Requirement Description & Notes
Capabilities Mandatory The capabilities object associated with the file share.
ManagedElement Mandatory The FileShare.

4.7.4 CIM_ElementSettingData (FileShare)

Deprecated.
Created By: External
Modified By: Static
Deleted By: External

Requirement: Mandatory

Table 7 describes class CIM_ElementSettingData (FileShare).

Table 7 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare)

Properties Flags Requirement Description & Notes

IsDefault N Optional Not Specified in this version of the Profile.
IsCurrent N Optional Not Specified in this version of the Profile.
IsNext N Optional Not Specified in this version of the Profile.
IsMinimum N Optional Not Specified in this version of the Profile.
IsMaximum N Optional Not Specified in this version of the Profile.
ManagedElement Mandatory The FileShare (CIFSShare or NFSShare).
SettingData Mandatory The settings define on creation of the FileShare.

4.7.5 CIM_EnabledLogicalElementCapabilities (FileShare)

Experimental.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 8 describes class CIM_EnabledLogicalElementCapabilities (FileShare).

Table 8 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (FileShare)

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory The moniker for the instance.
ElementNameEditSupport Mandatory Denotes whether a file share can be named.
ed

SMI-S 1.6.1 Revision 6

SNIA Technical Position

41

File Export Profile

Table 8 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (FileShare)

ies()

Properties Flags Requirement Description & Notes

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte Optional Expresses the states to which this file share may be changed using the

d RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

GetElementNameCapabilit Conditional Conditional requirement: Required if File Export Manipulation is

implemented.

4.7.6 CIM_ExportedFileShareSetting (Setting)

Created By: External
Modified By: External
Deleted By: External

Requirement: Mandatory

Table 9 describes class CIM_ExportedFileShareSetting (Setting).

Table 9 - SMI Referenced Properties/Methods for CIM_ExportedFileShareSetting (Setting)

Properties Flags Requirement Description & Notes

InstancelD Mandatory A unique ID for the setting.

ElementName Mandatory A user-friendly name for the Setting.

FileSharingProtocol Mandatory The file sharing protocol supported by this share. NFS (2) and CIFS (3)
are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing protocol. A share
may support multiple versions of the same protocol.

InitialEnabledState N Optional Valid values are '1]2|3|7|8|9' for (‘Other' | 'Enabled' | 'Disabled' | 'In Test' |
'‘Deferred’ | '‘Quiesce’).

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is '1".

DefaultUserldSupported N Optional Valid values are '2|3|4' for (‘No Default User Id' | 'System-Specified Default
User Id' | 'Share-Specified Default User Id").

RootAccess N Optional Valid values are '2|3' for ('No Root Access' | 'Allow Root Access').

AccessPoints N Optional Valid values are '2|3|4|5' for (‘None' | 'Service Default' | 'All' | 'Named
Points").

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

DefaultReadWrite N Optional Not Specified in this version of the Profile.

DefaultExecute N Optional Not Specified in this version of the Profile.

ExecuteSupport N Optional Not Specified in this version of the Profile.

WritePolicy N Optional Not Specified in this version of the Profile.

42

4.7.7 CIM_FileShare (Exported File Share)

File Export Profile

SMI-S treats CIM_FileShare as an abstract class. It is mandatory because an implementation shall
instantiate either (or both) CIM_CIFSShare or CIM_NFSShare.

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

Table 10 describes class CIM_FileShare (Exported File Share).

Table 10 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory A unique id for the FileShare element.

ElementName Mandatory This shall be a user friendly name for the FileShare.

Name Mandatory This shall be an opaque string that uniquely identifies the path to the
directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is useful when
importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in section 4.2.1.

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

4.7.8 CIM_FileShareSettingData (FileShare)

Experimental.
Created By: External
Modified By: Static
Deleted By: External

Requirement: Mandatory

SMI-S 1.6.1 Revision 6

SNIA Technical Position

43

File Export Profile

Table 11 describes class CIM_FileShareSettingData (FileShare).

Table 11 - SMI Referenced Properties/Methods for CIM_FileShareSettingData (FileShare)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The FileShare (CIFSShare or NFSShare).
SettingData Mandatory The settings define on creation of the FileShare.

4.7.9 CIM_HostedShare

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 12 describes class CIM_HostedShare.

Table 12 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile.

Dependent Mandatory The Share that is hosted by a Computer System.

Antecedent Mandatory The Computer System that hosts the FileShare. This can be the top level
or non-top level system, or a virtual file server. But it shall be a File Server
(Dedicated="16").

4.7.10 CIM_NFSShare (Exported File Share)

The CIM_NFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 13 describes class CIM_NFSShare (Exported File Share).

Table 13 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.7.7 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.7.7 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.7 CIM_FileShare
(Exported File Share).

44

File Export Profile

Table 13 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.7 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.7.7 CIM_FileShare (Exported

File Share).

4.7.11 CIM_SAPAvailableForFileShare

Created By: External
Modified By: Static
Deleted By: External

Requirement: Mandatory

Table 14 describes class CIM_SAPAvailableForFileShare.

Table 14 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare

Properties Flags Requirement Description & Notes

FileShare Mandatory The file share that is made available through a SAP. In the File Export
subprofile, these are FileShares configured for either export.

AvailableSAP Mandatory The Service Access Point that is available to this FileShare. This shall

have a value of '4200' (NFS) or '4201' (CIFS).

4.7.12 CIM_SharedElement

Created By: External
Modified By: Static
Deleted By: External

Requirement: Mandatory

Table 15 describes class CIM_SharedElement.

Table 15 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement Description & Notes
SystemElement Mandatory The LocalFileSystem that is exporting some contained file or directory as a
FileShare.
SameElement Mandatory The FileShare (CIFSShare or NFSShare) that exposes a contained file or
directory of the LocalFileSystem as an exported object.
STABLE
SMI-S 1.6.1 Revision 6 SNIA Technical Position 45

46

File Export Profile

EXPERIMENTAL

5 File Export Manipulation Subprofile

5.1 Description

5.1.1 Synopsis

Profile Name: File Export Manipulation (Component Profile)
Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 16 describes the related profiles for File Export Manipulation.

Table 16 - Related Profiles for File Export Manipulation

Profile Name Organization Version Requirement Description
Job Control SNIA 1.5.0 Optional

File Export SNIA 1.6.1 Mandatory

Indication SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional

Central Class: FileExportService

Scoping Class: File server ComputerSystem element (with Dedicated property containing "16")

5.1.2 Overview

The File Export Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It
makes use of elements of the filesystem subprofiles and supports creation, modification and deletion of
FileShares that are exported by the File Export Subprofile. A number of other profiles and subprofiles
also make use of elements of the filesystem subprofile and will be referred to in this specification as
“filesystem related profiles” -- these include but are not limited to the filesystem subprofile, the Filesystem
Manipulation Subprofile, the File Export Subprofile, the NAS Head Profile, the Self-Contained NAS
Profile, and so on.

In this release of SMI-S, the autonomous profiles that use the File Export Manipulation Subprofile are the
NAS Head and Self-Contained NAS Profiles.

Annex B, "(Informative) State Transitions from Storage to File Shares" describes the states that a storage
element, initially an unused LogicalDisk, goes through before it can be exported as a CIFS or NFS file
share. The Filesystem Manipulation Subprofile provides the methods to create the filesystem as a
LocalFileSystem and make it locally accessible at a file server ComputerSystem (associated to the file
server ComputerSystem via the LocalAccessAvailable association). This profile (the File Export
Manipulation Profile) provides the methods to "Export a file share” from the file server that allows the file
server to share its contents with remote operational users. Sharing the contents of a LocalFileSystem can
be from the root directory or some contained internal directory, or some contained internal file. When a

File Export Manipulation Subprofile

directory (root or otherwise) is shared, all files and sub-directories of that directory are also automatically
shared (recursively). The semantics of sharing are ultimately controlled by the Authorization profiles and
by the filesystem implementation, so sharing cannot violate the access rules specified internally to the
filesystem. In addition to specifying the object (file or directory) to be shared, the filesystem
implementation shall specify the protocol to use (CIFS, NFS, or other protocol) for sharing.

SMI-S uses a FileShare (CIFSShare or NFSShare) element to represent the externally accessible file
share. A SharedElement association will exist between the FileShare (CIFSShare or NFSShare) and the
LocalFileSystem. The FileShare.Name property indicates the shared object (it is the filesystem-specific
path to the contained file or directory that is being shared). The format of Name is specific to the
filesystem type indicated by the associated FileSystemSetting.ActualFileSystemType property; the
LocalFileSystem.PathnameSeparatorString property indicates the "separator string" that may be used to
split the PathName into the components of a hierarchical path name from the root of the associated
filesystem (indicated by the LocalFileSystem).

48

File Export Manipulation Subprofile

5.1.3 Instance Diagrams

5.1.3.1 File Export Creation classes and associations
Figure 6: "File Export Manipulation Subprofile Instance" illustrates the constructs involved with creating a

Computsr Systam
1 Ddicated]]="File Sarver™ 16
1 1
1
FilaExpanCeapabililies
FilgShanngFrotocals]) - .
¥ lostadSenice
I Probocol Vergons]] Hostadoenvics
SynchronousExportiathods]] | 1 i
AsynchronousExporihvethods | ElementCapabilites
IntialEnatledState 1 FileExpoetSanice HostedShars
Cnf‘“’[‘i"_[;"_api.:'.'gﬁ i | SNIA_CreateExportedsharel)
e matiles 1| SMIA_ModiyExportedshars()
-) ReleaseExportedShara)
. 1
i SericeAffectsElkment
ExportedeilaShareCapabuliles) |* «
FileShanngPratacal | FileShare
I ProfocolVersions]] — - - - ; 1 |
SupportedEropamies]] 1) e ﬂr:::ﬁ;:['_ﬂaft'ﬂ — EsportedrikeShareSeting LocalAccessbyalahle
CreateGoal Satings() — L FileShanngPratocol
1 I Pratecolvarsons]]
| [InitialEnatledState
HostedAccassPon Fil=ShareSettingDiata OtherEnatledState
| DefauliFeadinie
SattingsDefineCapabilties DefauliExecite
P S ExecuteSuppon
SRR e [1| DefautsendSuppanad
_' L Condratelepandsncy —CSharedElemeant—, E‘E‘_ﬂh'“.eas
ExportedEilaShareSatng {Optona) WritaPolicy
! AccessPaints
-
- 1 1 i
" ProtocalEnd™aint LogealFils LacaFiaSystem
: {or Ciractary] | 4 B :
FrotocolF Type="0ther™” L FileSiorage
Other TypeDescrption="NFS"
or "CIF3"

Figure 6 - File Export Manipulation Subprofile Instance

FileShare (CIFSShare or NFSShare) for a File Export Subprofile. This summarizes the mandatory classes
and associations for this subprofile. Specific areas are discussed in later sections.

The FileExportService provides configuration support for exporting elements (‘'files' and 'directories’) of a
LocalFileSystem as FileShare (CIFSShare or NFSShare) elements. A FileExportService is hosted by the
file server ComputerSystem that exports the directories/files (these would be the file server
ComputerSystems in the filesystem subprofile that were given local access to the filesystem). FileShares
are accessed through ServiceAccessPoint(s) hosted by the file server ComputerSystem. FileShares are
associated with the FileExportService via ServiceAffectsElement and with the ServiceAccessPoint(s) via
SAPAvailableToElement.

If a filesystem-related profile supports the File Export Manipulation Subprofile, it shall have at least one
FileExportService element. This FileExportService shall be hosted on the top level ComputerSystem of
the File Export Subprofile (which shall be a file server ComputerSystem element in the filesystem related
profiles). The methods offered are CreateFileShare, ModifyFileShare, and ReleaseFileShare.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 49

File Export Manipulation Subprofile

Associated to the FileExportService (via ElementCapabilities) shall be one FileExportCapabilities element
that describes the capabilities of the service. It identifies the methods supported, whether the methods
support Job Control or not, the protocols that the created file share can support, and whether or not the
file share shall be made available after creation.

For each file sharing protocol that is supported, there shall be one ExportedFileShareCapabilities
element that defines the range of capabilities supported for that particular file sharing protocol. The
ExportedFileShareCapabilities elements shall be associated via ElementCapabilities to the
FileExportService. One of the ExportedFileShareCapabilities may be identified as a default (by setting
the property ElementCapabilities.IsDefault). The default ExportedFileShareCapabilities element also
indicates the default file sharing protocol to be supported. These defaults apply if any of the extrinsic
methods of the FileExportService are invoked with a NULL value for the Capabilities parameter.

Each ExportedFileShareCapabilities element is defined by a set of ExportedFileShareSettings that are
associated to it by the SettingsDefineCapabilities association. These ExportedFileShareSettings may be
structured to indicate a range of supported and unsupported property values and shall have the same
value for the FileSharingProtocol property as the ExportedFileShareCapabilities element.

For the convenience of clients the File Export Manipulation Subprofile may populate a set of “pre-defined”
ExportedFileShareSettings for each of the ExportedFileShareCapabilities. These shall be associated to
the ExportedFileShareCapabilities via the SettingsDefineCapabilities association -- the association shall
have its SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and
theSettingsDefineCapabilities.ValueRole property set to "Supported".

NOTE That they are pre-defined and therefore exist at all times does not imply that these ExportedFileShareSettings must be
made persistent by the implementation.

The ExportedFileShareCapabilities instance supports the CreateGoalSettings method, described in detail
in , "Table 19 shows methods and instances for FileExportManipulation.". This method supports
establishing one client-defined ExportedFileShareSettings (as a goal).

CreateGoalSettings takes an array of embedded SettingData elements as the input TemplateGoalSettings
and SupportedGoalSettings parameters and may generates an array of embedded SettingData elements
as the output SupportedGoalSettings parameter. However, this profile only uses a single embedded
ExportedFileShareSettings element in the input parameters (both TemplateGoalSettings and
SupportedGoalSettings) and generate a single valid embedded ExportedFileShareSettings element as
output (SupportedGoalSettings). If a client supplies a NULL ExportedFileShareSettings (i.e., the empty
string) as input to this method, the returned ExportedFileShareSettings structure shall be a default setting
for the parent ExportedFileShareCapabilities. If the input (the embedded ExportedFileShareSettings) is
not NULL, the method may return a “best fit" to the requested setting. The client may iterate on the
CreateGoalSettings method until it acquires a setting that suits its needs. This embedded settings
structure may then be used when the CreateFileShare or ModifyFileShare methods are invoked. The
details of how iterative negotiation can work are discussed in 5.5.1.1,
"ExportedFileShareCapabilities.CreateGoalSettings”. Note that the file sharing protocol indicated by the
FileSharingProtocol property is invariant in all of these interactions. It is an error if the client changes the
FileSharingProtocol property for a Setting and submits it as a goal to the Capabilities element that
provided the original Setting.

NOTE It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back mechanism is
needed. This profile does not require negotiation -- an implementation may support only a set of pre-defined correlated point
settings that a client can preload and use without modification. The implementation could also support only settings whose
properties are selectable from an arithmetic progression or from a fixed enumeration, so that the client may construct a goal setting
that is guaranteed to be supported without negotiation.

NOTE That a client has obtained a goal setting supported by the implementation does not guarantee that a create or modify
request will succeed. Such a setting only specifies a supported static configuration not that the current dynamic environment has
the resources to implement a specific request.

Armed with the goal (the embedded ExportedFileShareSettings element), a reference to a
LocalFileSystem, and a path to a file or directory contained within that LocalFileSystem, the client can

50

File Export Manipulation Subprofile

now use the CreateFileShare method to create the file share for export. The CreateFileShare method
creates a FileShare element, and a new ExportedFileShareSettings instance as well as several
necessary associations. These associations are:

= HostedFileShare association between the FileShare and the file server ComputerSystem that hosts it.

< SharedElement association between the FileShare and the LocalFileSystem. In addition, the FileShare
element specifies the pathname for the shared element (file or directory) relative to the root of the
LocalFileSystem (using the Name property).

EXPERIMENTAL)
= FileShareSettingData to associate the FileShare to the ExportedFileShareSetting defined for it

EXPERIMENTAL

= For backward compatibility with previous releases of SMI-S:
= The file or directory of the LocalFileSystem that is being shared is represented as a LogicalFile
= A FileStorage association is created between the LogicalFile and the LocalFileSystem
= A ConcreteDependency association is created between the FileShare and the LogicalFile.

= In addition, optional parameters to the method can cause other classes to be created:

= DefaultUserld could create a Privilege (see 5 File Export Manipulation Subprofile of Storage Management
Technical Specification, Part 3 Common Profiles, 1.6.1 Rev 6) associated to the FileShare as
AuthorizationTarget and to a Userldentity as AuthorizationSource

= RootAccessHosts array parameter could create root access Privileges from a number of remote Host
ComputerSystems to the FileShare (also using the Security Authorization Subprofile)

= AccessPointPorts array parameter could create SAPAvailableForFileShare associations to a number of
ProtocolEndPoints representing TCP/IP ports through which access is provided to this FileShare.

EXPERIMENTAL

To determine if the implementation supports supplying the ElementName during the creation of a
FileShare and to determine the supported methods to modify the ElementName of the existing FileShare,
invoke the method ExportedFileShareCapabilities.GetElementNameCapabilities.

EXPERIMENTAL

The ReleaseFileShare method is straightforward -- it deletes the FileShare and the
ExportedFileShareSetting, and the associations to those elements (HostedFileShare, the
FileShareSettingData element, SharedElement, all the OO HOOMOOO MO BESKHdiatidhsClddd] @M
Privileges that reference this FileShare as an AuthorizationTarget). Any ComputerSystem elements
created to represent remote hosts with root access to this FileShare that have no further references may
also be removed. A LogicalFile element associated to the LocalFileSystem via FileStorage will not
necessarily be deleted (the implementation may keep track of the other users of this element and be able
to delete it). For similar reasons, a ProtocolEndPoint created as a result of being specified in the
AccessPointPorts parameter may not be deleted. In both these cases, if the element has no associations
other than the scoping one (FileStorage to LocalFileSystem for LogicalFile and HostedAccessPoint to
ComputerSystem for ProtocolEndPoint) the provider may stop surfacing it at any time.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 51

File Export Manipulation Subprofile

The ModifyFileShare method modifies an existing FileShare -- this requires a new
ExportedFileShareSetting element to be used as a goal. But not any ExportedFileShareSetting will do;
the client shall use the ExportedFileShareCapabilities.CreateGoalSettings method which would have
been used to create the file share, or an appropriate compatible ExportedFileShareCapabilities instance.
The CreateGoalSettings method is used to establish a new ExportedFileShareSetting goal (as with the
original file share creation, it may be necessary to iterate on the CreateGoalSettings method). Since only
properties controlled by Settings can be changed by ModifyFileShare, elements surfaced as a side-effect
of creating or modifying a file share (i.e., any ComputerSystems created to represent remote hosts with
root access or an ProtocolEndPoints created to represent access points for the share, or any user id
created as a default user id) cannot be deleted, though new ones can be created and/or added), the
effect of ModifyFileShare is to change some properties of the FileShare or of the associated
ExportedFileShareSetting.

5.1.3.2 Finding File Export Services, Capabilities and Pre-defined Settings

When creating a file share the first step is to determine what can be created. Figure 7 illustrates an
instance diagram showing the elements that shall exist for supporting fileshare creation.

ComputerSystém

Dadcated]="Fia Sarver” 16

HostedSamnce

ElemertCapabilities . 1] FilgExportSarvice

. C cterisiicse{ Defaultl = .
ExportodEilashara B I Charactsrishs={ Defa Id}-—r'-"f='-""~-dLui"'ll-s.)
FileShaningFrofogol '
I BrotoccdVer 150
5[] —
wettings]) BlermantCapabiities

SetingsDefinaCapabiiliss

RlsExponCapabilities

FilaShanngFretacels(]
I FrotocolViersions]
sExporihethads(]

ExportedrileShareSeting |

Fie] ExportedFileSharsSatng

Local ACCessAy al alie

FilaShanngProtocol
ServiceAflectsBlemeant
PritocolEndpdint . HaostedShars
PromcallE Type="Cther" FileThareSetingDts i
har IT: of]-'-F.-'ﬁr!:-'-." =NES" I.'C-..Il.. onal)
ar "CIFS”

FileStorage

(Conditional)
=]
LocalFileSystem

SharedElemeant

Figure 7 - Capabilities and Settings for Exported File Share Creation

At least one FileExportService shall exist if the Filesystem Profile has implemented the File Export
Manipulation Subprofile. The instance(s) of this service can be found by following the HostedService
association and filtering on the target class of FileExportService.

NOTE If no service is found from the Top Level file server ComputerSystem, the client should look for other component file server
ComputerSystems that may be hosting the service. This is not recommended, but permitted.

52

File Export Manipulation Subprofile

An instance of the FileExportCapabilities shall be associated to the FileExportService via the
ElementCapabilities association. A client should follow this association (filtering on the result value of
"CIM_FileExportCapabilities”) to inspect the configuration capabilities that are supported. The client
would choose between the file sharing protocols specified in the array property FileSharingProtocol.

For each entry in the FileSharingProtocol array, there shall be one instance of
ExportedFileShareCapabilities with the same value for the FileSharingProtocol property that shall be
associated to the FileExportService using the ElementCapabilities association (filtering on the result
value of "CIM_ExportedFileShareCapabilities"). This ExportedFileShareCapabilities element shall specify
the supported capabilities for that FileSharingProtocol using a collection of ExportedFileShareSetting
elements. These ExportedFileShareSetting shall be associated the ExportedFileShareCapabilities via
SettingsDefineCapabilities.

An implementation may support a set of pre-defined ExportedFileShareSetting that clients could use
directly if desired. The SettingsDefineCapabilities association from the ExportedFileShareCapabilities to
the pre-defined ExportedFileShareSettings shall have the PropertyPolicy property be "Correlated”, the
ValueRole property be "Supported® and the ValueRange property be "Point". Other pre-defined
combinations of property values may be specified by ExportedFileShareSetting whose
SettingsDefineCapabilities association has the PropertyPolicy be "Independent”, ValueRole property be
"Supported” and the ValueRange array property contain "Minimums", "Maximums", or "Increment”. These
settings can be used by the client to compose ExportedFileShareSetting that are more likely to be directly
usable.

EXPERIMENTAL

5.1.3.3 Modeling for FileShare Access Control Lists
An implementation shall support "Read" (5) and "Write" (6) for CIM_AssociatedPrivileges.Activities[]

To assign an ID with a privilege to a share, a client will invoke the method
AssignPrivelegeToExportedShare providing a list of Identities, the Share and the Activities.

Groups are optional and only shown as informational, but a client will need to know to check for Accounts,
UserContact or Group in the case an implementation has the support. If a client traverses
Assignedldentity from an Identity, the client could receive one of these three types of instances.

The AssociatedPrivilege class contains the following properties:

= Subject
e Target
= UseKey

= PrivilegeGranted (shall support at least true)
= Activities

The modification and deletion of AssociatedPrivelege can be done by intrinsic methods (Modifylnstance
and Deletelnstance).

EXPERIMENTAL

5.2 Health and Fault Management Considerations

The key elements of this profile are the FileExportService and the file server ComputerSystem. For the
computer system, see 25.1.5 Computer System Operational Status in Storage Management Technical
Specification, Part 3 Common Profiles, 1.6.1 Rev 6.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 53

File Export Manipulation Subprofile

5.2.1 OperationalStatus for FileExportService

Table 17 shows operational status for FileExport services.

Table 17 - Operational Status for FileExport Service

Primary OperationalStatus Description
2 “OK” The service is running with good status
3 “Degraded” The service is operating in a degraded mode. This could be due to the health

state of the underlying file server, or of the storage being degraded or in error.

4 “Stressed” The services resources are stressed
5 “Predictive Failure” The service might fail because some resource or component is predicted to fail
6 “Error” An error has occurred causing the service to become unavailable. Operator

intervention through SMI-S to restore the service may be possible.

6 “Error” An error has occurred causing the service to become unavailable. Automated
recovery may be in progress.

7 “Non-recoverable Error” The service is not functioning. Operator intervention through SMI-S will not fix
the problem.

8 “Starting” The service is in process of initialization and is not yet available operationally.

9 “Stopping” The service is in process of stopping, and is not available operationally.

10 “Stopped” The service cannot be accessed operationally because it is stopped -- if this

did not happened because of operator intervention or happened in real-time,
the OperationalStatus would have been “Lost Communication” rather than

“Stopped”.
11 “In Service” The service is offline in maintenance mode, and is not available operationally.
13 “Lost Communications” The service cannot be accessed operationally -- if this happened because of

operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The service is stopped but in a manner that may have left it in an inconsistent
state.

15 “Dormant” The service is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error” The service is in an error state, or may be OK but not accessible, because a

supporting entity is not accessible.

5.2.2 OperationalStatus for File Server ComputerSystem

Table 18 shows operational status for File Server ComputerSystem.

Table 18 - Operational Status for File Server ComputerSystem

Primary OperationalStatus Description
2 “OK” The file server is running with good status
3 “Degraded” The file server is operating in a degraded mode. This could be due to the

health state of some component of the ComputerSystem, due to load by other
applications, or due to the health state of backend or front-end network
interfaces.

4 “Stressed” The file server resources are stressed

54

File Export Manipulation Subprofile

Table 18 - Operational Status for File Server ComputerSystem

Primary OperationalStatus

Description

5 “Predictive Failure”

The file server might fail because some resource or component is predicted to
fail

6 “Error”

An error has occurred causing the ComputerSystem to become unavailable.
Operator intervention through SMI-S to restore the service may be possible.

6 “Error”

An error has occurred causing the ComputerSystem to become unavailable.
Automated recovery may be in progress.

7 “Non-recoverable Error”

The file server ComputerSystem is not functioning. Operator intervention
through SMI-S will not fix the problem.

8 “Starting” The ComputerSystem is in process of initialization and is not yet available
operationally.

9 “Stopping” The ComputerSystem is in process of stopping, and is not available
operationally.

10 “Stopped” The ComputerSystem cannot be accessed operationally because it is stopped

-- if this did not happened because of operator intervention or happened in
real-time, the OperationalStatus would have been “Lost Communication”
rather than “Stopped”.

11 “In Service”

The ComputerSystem is offline in maintenance mode, and is not available
operationally.

13 “Lost Communications”

The ComputerSystem cannot be accessed operationally -- if this happened
because of operator intervention it would have been “Stopped” rather than
“Lost Communication”.

14 “Aborted” The ComputerSystem is stopped but in a manner that may have left it in an
inconsistent state.
15 “Dormant” The ComputerSystem is offline; and the reason for not being accessible is

unknown.

16 “Supporting Entity in Error”

The ComputerSystem is in an error state, or may be OK but not accessible,
because a supporting entity is not accessible.

5.3 Cascading Considerations
Not Applicable.

5.4 Supported Subprofiles and Packages

See section 5.1.1 for this information.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

55

File Export Manipulation Subprofile

55 Methods of the Profile

5.5.1 Extrinsic Methods of the Profile

Table 19 shows methods and instances for FileExportManipulation.

Table 19 - FileExportManipulation Methods

Method Created Instances Deleted Instances Modified Instances

SNIA_CreateExportedShare FileShare (Export) N/A N/A
ExportedFileShareSetting
FileShareSettingData
HostedShare
SharedElement
SAPAvailableForFileShare
ServiceAffectsElement

LogicalFile (or Directory) (for bc
to 1.1)

ProtocolEndPoint

SNIA_ModifyExportedShare ExportedFileShareSetting
FileShare (Export)

ProtocolEndPoint

ReleaseExportedShare N/A FileShare (Export) N/A
ExportedFileShareSetting
FileShareSettingData
HostedShare
SharedElement
ServiceAffectsElement

ProtocolEndPoint

LogicalFile
AssignPrivilegeToExportedSha N/A N/A
re
CreateGoalSettings N/A N/A N/A
GetElementNameCapabilities N/A N/A N/A

5.5.1.1 ExportedFileShareCapabilities.CreateGoalSettings

This extrinsic method of the ExportedFileShareCapabilities class validates support for a caller-proposed
ExportedFileShareSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage
of this method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings
parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
ExportedFileShareSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
ExportedFileShareSetting. As such, these settings do not exist in the implementation but are the
responsibility of the client.

56

File Export Manipulation Subprofile

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

551.11 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges with respect to the filesystem, the filesystem
host, or the file server or the file share. During negotiation, the client will show the current state to the
user -- the SupportedGoalSettings received to date (either the latest or some subset), the
TemplateGoalSettings proposed (the most recent, but possibly more). But the administrator needs a
representation of what is available, possibly the range or sets of values that the different setting
properties can take. Some decisions are assumed to have been made already, such as the file-sharing
protocol to be used or the filesystem element to be shared or the resources allocated for providing local
access to the filesystem from the file server.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified using
ExportedFileShareSettings -- these points can be further qualified to indicate whether these are
supported (or not), and even whether they represent some ideal point in the space -- a "minimum", or a
"maximum", or an "optimal" point. Other settings can provide ranges for properties -- by specifying a
minimum, a maximum, and an increment an arithmetic progression of values can be specified (a
continuous range can be specified with a zero increment). Specifying a set of supported values for a
property that do not follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
ExportedFileShareSetting elements that are associated to the ExportedFileShareCapabilities via SettingDefi-
nesCapabilities association with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"
= SettingDefinesCapabilities.ValueRole = "Supported"
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the ExportedFileShareSet-
ting elements that are associated to the ExportedFileShareCapabilities via
SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"”

SMI-S 1.6.1 Revision 6 SNIA Technical Position 57

File Export Manipulation Subprofile

= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

55.1.1.2
Table

Signature and Parameters of CreateGoalSettings

20 describes the parameters

ExportedFileShareCapabilities.CreateGoalSettings.

for

Extrinsic

Method

Table 20 - Parameters for Extrinsic Method ExportedFileShareCapabilities.CreateGoalSettings

Parameter Name

Qualifier

Type

Description & Notes

TemplateGoalSettings|]

IN

string

Embeddedinstance ("SNIA_ExportedFileShareSetting")

TemplateGoalSettings is a string array containing embedded
instances of class ExportedFileShareSetting, or a derived class.
This parameter specifies the client’s requirements and is used to
locate matching settings that the implementation can support.

SupportedGoalSettings[]

INOUT

string

EmbeddedInstance ("SNIA_ExportedFileShareSetting")

SupportedGoalSettings is a string array containing embedded
instances of class ExportedFileShareSetting, or a derived class.
On input, it specifies a previously returned set of Settings that
the implementation could support. On output, it specifies a new
set of Settings that the implementation can support. If the output
set is identical to the input set, both client and implementation
may conclude that this is the best match for the
TemplateGoalSettings that is available.

If the output does not match the input and the non-NULL output
does not match the non-NULL TemplateGoalSettings, then the
method shall return "Alternative Proposed".

If the output is NULL, the method shall return an “Failed”.

Normal Return

Status

uint32

"Success",

"Failed",

"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property Value

OUT, Indication

CIM_Error

A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination of
Values

OUT, Indication

CIM_Error

An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

EXPERIMENTAL

5.5.1.2 ExportedFileShareCapabilities.GetElementNameCapabilities

This method indicates if ElementName can be specified as a part of invoking an appropriate method of
FileExportService to create a new FileShare. Additional, the returned data includes the methods that can
be used to modify the ElementName of existing FileShare.

uint32 GetElementNameCapabilities(
[OUT,

ValueMap { 1-21-’ -13-1, 1-41-’ n-_u’ "32768..65535" }’
Values { "ElementName can be supplied during creation”,

"ElementName can be modified with InvokeMethod",
"ElementName can be modified with intrinsic method",

58

File Export Manipulation Subprofile

"DMTF Reserved', "Vendor Specific" }]
uint32 SupportedFeatures[],
[OUT] string ElementNameMask,
[OUT] uintl6 MaxElementNamelLen);
The parameters are:

= SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a FileShare. For example, the value of "ElementName can be supplied during
creation" indicates the method such as CreateExportedShare() accepts the ElementName when creating a
new FileShare. An empty array indicates ElementNaming for ElementType is not supported.

= MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.

< ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

EXPERIMENTAL

5.5.1.3 FileExportServices.SNIA_CreateExportedShare

This extrinsic method creates a FileShare providing access to a contained sub-element of a
LocalFileSystem (either a LogicalFile or its sub-class Directory). A reference to the created FileShare is
returned as the output parameter TheShare. This FileShare element is hosted by the same file server
ComputerSystem that hosts the FileExportService. The LocalFileSystem whose element is exported shall
be locally accessible to the file server ComputerSystem (and need not be hosted by it), as represented by
the LocalAccessAvailable association from the file server ComputerSystem to the LocalFileSystem.

The LocalFileSystem whose sub-element is being exported is specified by the input parameter Root. The
input string parameter SharedElementPath specifies a pathname from the root directory of the Root to the
sub-element to be exported. If SharedElementPath is NULL or the empty string, it specifies the root
directory of Root. The format of SharedElementPath is implementation-specific -- the most common
format is as a sequence of directory names separated by a character or short string indicated by the
FileSystemSetting.PathNameSeparatorString property.

NOTE The root directory of Root is the base from which a path to the LogicalFile being shared is specified. In the simplest and
possibly the most common case, the LogicalFile element is the root directory of Root and the path is NULL or the empty string.

The desired settings for the FileShare are specified by the Goal parameter (a string-valued
Embeddedinstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element
shall be created that represents the settings of the created FileShare and will be associated via
FileShareSettingData to the FileShare. (This ExportedFileShareSetting may be identical to the Goal or
may be its equivalent). The created element shall be returned as the output Goal parameter.

The input Goal parameter can be NULL, in which case the ExportedFileShareSetting associated with the
default ExportedFileShareCapabilities of the FileExportService is used as the goal. In that case, the
following references to Goal are to the output value of the Goal parameter.

If Goal.DefaultUserldSupported="Share-Specified Default User Id" and the input parameter DefaultUserld
is not NULL, the FileShare will support the specified user id as the default user when the share is
accessed. This access privilege will be represented by creating instances of the Privilege class as
described in the Security Authorization Subprofile. The Security Authorization Subprofile shall be used for
fine-grained access to, or modification of, the default user.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 59

File Export Manipulation Subprofile

NOTE If the Security Authorization Subprofile is not supported, this parameter may be set at creation but cannot be accessed later.
It can only be replaced with a new DefaultUserld using the SNIA_ModifyExportedShare method.

NOTE The format of the user id is not specified by this subprofile. If a security principal subprofile or a Filesystem Quotas
Subprofile is defined, the user id format defined therein may be used.

If Goal.RootAccess="Allow Root Access" then the input parameter RootAccessHosts will be an array of
URIs of ComputerSystems from which root access will be permitted. This access privilege will be
represented by creating instances of the Privilege class as described in the Security Authorization
Subprofile. The Security Authorization Subprofile shall be used for fine-grained access to, or modification
of, the set of hosts with root access.

NOTE If the Security Authorization Subprofile is not supported, this parameter may be set at creation but cannot be accessed later.
It can only be replaced by specifying a new RootAccessHosts array using the SNIA_ModifyExportedShare method.

NOTE The computer systems may not be managed by this implementation, so they may not be represented by ComputerSystem
references.

If Goal.AccessPoints="Named Points", then the input parameter AccessPointPorts will be an array of
references to ProtocolEndpoints that provide access to this FileShare. This will be represented by
creating instances of the SAPAvailableForFileShare association between the FileShare and the specified
ProtocolEndpoint. Fine-grained access to this set of ProtocolEndpoints or modification this set can be
performed using the SNIA_ModifyExportedShare method.

NOTE This changes the type of the AccessPointPorts parameter from a string array in the previous version to an array of
references to ProtocolEndpoints (or more generally to ServiceAccessPoints).

5.,5.1.3.1 Signature and Parameters of SNIA_CreateExportedShare
Table 21 shows parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare.

Table 21 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

Parameter Name Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the FileShare being created. If
NULL, then a system-supplied default name can be used.

The value shall be stored in the 'ElementName' property for the
created element.

Comment IN string An end user relevant comment for the FileShare being created.
If NULL, then a system-supplied default comment can be used.

The value shall be stored in the ‘Description’ property for the
created element.

Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b

Root IN, REF SNIA_LocalFile A reference indicating a LocalFileSystem element whose sub-
System element is being exported. The LocalFileSystem shall be locally

available (either explicitly or implicitly) to the file server
ComputerSystem that hosts the FileExportService.

60

File Export Manipulation Subprofile

Table 21 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

Parameter Name

Qualifier

Type

Description & Notes

SharedElementPath

IN, OUT

string

An opague string representing a path to the shared element
from the root directory of the FileSystem indicated by the Root
parameter. The format of this is as a sequence of directory
names (from the \"root\") separated by the
PathNameSeparatorString property.

Multiple paths could lead to the same element but the access
rights or other privileges could be specific to the path. The client
needs to specify the path.

If SharedElementPath is NULL or is the empty string, it indicates
the \"root\" directory of the filesystem indicated by Root.

The value shall be stored in the 'Name' property for the created
element.

Goal

IN, OUT, EI

string

Embeddedinstance ("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the specified
FileShare element is to be shared or exported by the
FileExportService. This is an element of the
SNIA_ExportedFileShareSetting class, or a derived class,
encoded as a string-valued embedded object parameter. If
NULL or the empty string, the default configuration will be
specified by the FileExportService.

TheShare

OUT, REF

CIM_FileShare

If successful, this returns a reference to the created file share.

DefaultUserld

IN, OUT, REF,
NULL allowed,

CIM_identity

A reference to a concrete derived class of CIM_ldentity that
indicates the user id to use for default access to this share. A
NULL value on input indicates that no user id is requested. A
NULL value on output indicates that no user id has been
assigned, even by default. The provider is expected to surface
this access using the Authorization Subprofile.

A default user id per share is not supported by the CIFS
Protocol so this is ignored if the Goal specifies creating a
CIFSShare.

RootAccessHosts[]

IN, OUT, URI,
NULL allowed

string

An array of strings that specify the hosts that have root access
to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess property is set to
'Allow Root Access'. Each entry specifies a host by a URI. All
entries up to the first empty string are allowed root access; the
entries after the first empty string are denied root access. If this
parameter is NULL, root access will be denied to all hosts,
effectively overriding the value of the property
SNIA_ExportedFileShareSetting.RootAccess. If the first entry is
the empty string, root access will be allowed from all hosts, and
subsequent entries will be denied root access. The provider is
expected to surface this access using the Authorization
Subprofile. This property needs to be an array of URIs because
the remote host may not be known to the provider and therefore
a reference to the host may not exist.

Root Access is not supported by the CIFS Protocol so this is
ignored if the Goal specifies creating a CIFSShare.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

61

File Export Manipulation Subprofile

Table 21 - Parameters for Extrinsic Method FileExportServices.SNIA_CreateExportedShare

Parameter Name Qualifier Type Description & Notes
AccessPointPorts]] IN, OUT, REF, CIM_ServiceAcc | An array of references to the ProtocolEndpoints that can
NULL Allowed essPoints connect to this Share, if the

SNIA_ExportedFileShareSetting.AccessPoints property is set to
'Named Ports'.

If the parameter is NULL, all access points will be denied
access, effectively overriding the value of the property
ExportedFileShareSetting.AccessPoints.

If the array has multiple entries and the first entry in the array is
NULL, all access points supported by the service will be
supported, and subsequent entries will be denied access.

The provider is expected to surface these access rights
(whether granted or denied) using the Authorization Subprofile.
Any AccessPoints granted access via this parameter will also be
associated to this share with SAPAvailableForFileShare. If the
AccessPoint is not already enabled it will appear in a disabled
state.

The CIFS protocol does not support multiple ProtocolEndpoints,
so this is ignored if the Goal specifies creating a CIFSShare.

Normal Return

Status ouT uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

of Values parameter (either reference or embedded) has been requested.

5.5.1.4 FileExportServices.SNIA_ModifyExportedShare

This extrinsic method modifies a FileShare element that is exporting a contained sub-element of a
LocalFileSystem (either a LogicalFile or its sub-class Directory). The FileShare is specified by the
reference parameter TheShare. TheShare cannot be NULL and it shall be hosted by the same file server
ComputerSystem that hosts the FileExportService. The input parameters Root and SharedElementPath
shall be NULL or shall be the same as the corresponding parameters when the FileShare was created
(i.e., these cannot be changed using this method).

The precise constraint is that the sub-element shall not be changed even if the Root and
SharedElementPath are different. For instance, this would allow a different path that leads to the same
sub-element. However, this subprofile does not allow this flexibility.

The new desired settings for the FileShare are specified by the input parameter Goal (a string-valued
Embeddedinstance object of class ExportedFileShareSetting). An ExportedFileShareSetting element that
represents the settings of the created FileShare (either identical to the Goal or its equivalent) will be
associated via FileShareSettingData to the FileShare. The implementation shall modify the existing
ExportedFileShareSetting. The Setting that is actually established will be returned as the output
parameter Goal.

The Goal parameter can be NULL on input, in which case, the settings for the FileShare are not changed.
This can happen if this method is being called to provide new values for DefaultUserld, RootAccessHosts,
or AccessPointPorts without changing any settings. In that case, the following references to Goal are to
the output value or the parameter.

62

File Export Manipulation Subprofile

If Goal.DefaultUserldSupported="Share-Specified Default User Id" and the input parameter DefaultUserld
is not NULL, the FileShare will support the specified user id as the default user when the share is
accessed. Any existing DefaultUserld specified will be overridden. This access privilege will be
represented by creating instances of the Privilege class as described in the Security Subprofile. The
Security Subprofile shall also be used to access or modify this privilege. If DefaultUserld is NULL, the
existing specification will not be changed.

NOTE If the Security Subprofile is not supported, this parameter may be set but cannot be accessed later. It can only be replaced
with a new DefaultUserld using the SNIA_ModifyExportedShare method.

If Goal.RootAccess="Allow Root Access" then the non-NULL input parameter RootAccessHosts will be an
array of URIs of ComputerSystems from which root access will be permitted. This access privilege will be
represented by creating instances of the Privilege class as described in the Security Subprofile. Any
existing specification of root access by hosts will be overridden. If RootAccessHosts is NULL, the existing
specification will not be changed.

NOTE |If the Security Subprofile is not supported, this parameter may be set at creation but cannot be accessed later. It can only
be replaced by specifying a new RootAccessHosts array using the SNIA_ModifyExportedShare method.

If Goal.AccessPoints="Named Points", then the non-NULL input parameter AccessPointPorts will be an
array of references to ProtocolEndpoints that provide access to this FileShare. This will be represented
by creating instances of the SAPAvailableForFileShare association between the FileShare and the
specified ProtocolEndpoint. Any existing specification of access points to the FileShare will be
overridden. If AccessPointPorts is NULL, the existing specification will not be changed.

NOTE This changes the type of the AccessPointPorts parameter from a string array to an array of references to ProtocolEndpoints
(or more generally to ServiceAccessPoints).

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this
method if the FileShare is in use and the method requires that no operations be in progress during that
execution.

NOTE The WaitTime and InUseOptions parameters are supported if the ExportedFileShareCapabilities.SupportedProperties

includes the "RequirelnUseOptions" option. This requires a change to the MOF that may not show up in this document as
enumerations are not documented in the spec.

55.1.4.1 Signature and Parameters of SNIA_ModifyExportedShare
Table 22 shows parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare.

Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Name Qualifier Type Description & Notes

ElementName IN string A new end-user relevant name for the FileShare being modified.
If NULL or the empty string, the existing name stored in the
'ElementName' property for the created element not be
changed.

Comment IN string A new end-user relevant comment for the FileShare being
modified. If NULL or the empty string, the existing comment
stored in the 'Description’ property will not be changed.

Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b

SMI-S 1.6.1 Revision 6 SNIA Technical Position 63

64

File Export Manipulation Subprofile

Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Name

Qualifier

Type

Description & Notes

Root

IN, OUT, REF

CIM_ManagedEl
ement

A reference indicating a LocalFileSystem element whose sub-
element is being exported. In the
SNIA_ModifyExportedSharemethod, this shall not indicate a
different filesystem from the one indicated when the file share
was created (even if the reference is to a different instance of
LocalFileSystem).

If Root is NULL on input it is ignored.

As an OUT parameter, a reference to the LocalFileSystem is
returned.

SharedElementPath

IN, OUT

string

A string representing a path to the shared element from the root
directory of the LocalFileSystem indicated by Root.

The SNIA_ModifyExportedShare method cannot be used to
change the object indicated by the path, but the path itself can
be different as multiple paths could lead to the same element.
Such a change may have side-effects, for instance, the access
rights or other privileges could be specific to the path.

If SharedElementPath is NULL, it indicates no change to the
current path. If SharedElementPath consists of a single empty
string, it indicates the root directory of the FileSystem indicated
by Root.

As an OUT parameter, the current path is returned.

The value shall be stored in the 'Name' property for the created
element.

Goal

IN, OUT, EI

string

EmbeddedInstance ("SNIA_ExportedFileShareSetting")

The client-specified requirements for how the specified
FileShare element is to be shared or exported by the
FileExportService. This is an element of the
SNIA_ExportedFileShareSetting class, or a derived class,
encoded as a string-valued embedded instance parameter. If
NULL or the empty string, the current setting will be re-applied.

As an OUT parameter, the current Setting is returned.

TheShare

IN, OUT, REF

CIM_FileShare

As an IN Parameter, it specifies the share that is to be modified
or whose settings are being queried. As an OUT Parameter, this
specifies the share if the request is successful.

DefaultUserld

IN, OUT, REF,
NULL allowed,

CIM_identity

As an IN parameter, this is a reference to a concrete derived
class of CIM_Identity that indicates the user id to use for default
access to this share. A NULL value indicates no change to the
existing user id, if one has been specified. The provider is
expected to surface this access using Authorization subprofile.
As an OUT Parameter, this returns a reference to the current
DefaultUserld.

A default user per share is not supported by the CIFS Protocol
so this is ignored if the file share is a CIFSShare.

File Export Manipulation Subprofile

Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Name

Qualifier

Type

Description & Notes

RootAccessHosts[]

IN, OUT, URI,
NULL allowed

string

An array of strings that specify the hosts that have root access
to this Share, if the
SNIA_ExportedFileShareSetting.RootAccess property is set to
'Allow Root Access'. Each entry specifies a host by a URI. The
set of hosts specified is added to the existing set of hosts with
root access.

If this parameter is NULL, root access will be denied to all hosts,
including the ones currently allowed root access, effectively
overriding the value of the property
SNIA_ExportedFileShareSetting.RootAccess.

Each entry specifies a host by a URI. All entries up to the first
empty string are allowed root access; the entries after the first
empty string are denied root access.

If the first entry is the empty string, root access will continue to
be allowed from the existing hosts, and subsequent entries in
the array will be denied root access.

The provider is expected to surface this access using the
Authorization subprofile.

This property needs to be an array of URIs because the remote
host may not be known to the provider and therefore a reference
to the host may not exist.

Root Access is not supported by the CIFS Protocol so this is
ignored if the Goal specifies creating a CIFSShare.

AccessPointPorts]]

IN, OUT, REF,
NULL Allowed

CIM_ServiceAcc
essPoints

An array of references to the ProtocolEndpoints that can
connect to this Share, if the
SNIA_ExportedFileShareSettings.AccessPoints property is set
to '‘Named Ports'. The set of access points specified in the array
is added to the existing set of access points.

If the parameter is NULL, all access points will be denied
access, effectively overriding the value of the property
SNIA_ExportedFileShareSetting.AccessPoints.

If the first entry in the array is NULL, existing access points
supported by the service will be supported, and subsequent

entries in the array will be access points that are denied access.

The provider is expected to surface these access rights
(whether granted or denied) using the Authorization subprofile.
Any AccessPoints granted access via this parameter will also be
associated to this share with SAPAvailableForFileShare. If the
AccessPoint is not already enabled it will appear in a disabled
state.

The CIFS protocol does not support multiple ProtocolEndpoints,
so this is ignored if the Goal specifies creating a CIFSShare.

InUseOptions

uintl6

An enumerated integer that specifies the action that the provider
should take if the FileShare is still in use when this request is
made. The WaitTime parameter indicates the specified time
used for this function.

This option is only relevant if the FileShare needs to be made
unavailable while the request is being executed.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

65

File Export Manipulation Subprofile

Table 22 - Parameters for Extrinsic Method FileExportServices.SNIA_ModifyExportedShare

Parameter Name Qualifier Type Description & Notes

WaitTime IN uint32 An integer that indicates the time (in seconds) that the provider
needs to wait before executing this request if it cannot be done
while the FileShare is in use. If WaitTime is not zero, the method
will create a job, if supported by the provider, and return
immediately. If the provider does not support asynchronous
jobs, there is a possibility that the client could time-out before
the job is completed.

The combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence, then
Execute Request' and will be performed asynchronously if

possible.

Normal Return

Status ouT uint32 "Job Completed with No Error",
"Failed",

"Method Parameters Checked - Job Started"

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

of Values parameter (either reference or embedded) has been requested.

5.5.1.5 FileExportServices.ReleaseExportedShare

This is an extrinsic method that will delete a FileShare specified by the parameter TheShare and delete
any associated instances and associations that are no longer needed. The deleted instances will include
the Directory (or LogicalFile) if it had been created only for the purpose of representing the shared sub-
element.

NOTE Deleting the Directory or LogicalFile deletes only the representation of the file or directory for management and does not
delete the underlying operational element

The deleted associations include HostedShare, FileShareSettingData, and any elements and
associations created to support the DefaultUserld, RootAccessHosts, and AccessPointPorts parameters.
In addition, the ExportedFileShareSetting will be deleted if appropriate.

The input parameters InUseOptions and WaitTime provide for delaying or aborting the execution of this
method if the FileShare is in use and the method requires that no operations be in progress during that
execution.

NOTE The WaitTime and InUseOptions parameters are supported if the ExportedFileShareCapabilities.SupportedProperties
includes the "RequirelnUseOptions" option.

5.5.1.5.1 Signature and Parameters of ReleaseExportedShare
Table 23 shows parameters for Extrinsic Method FileExportServices.ReleaseExportedShare.

Table 23 - Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter Name Qualifier Type Description & Notes
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b
TheShare IN, OUT, REF CIM_FileShare As an IN Parameter, it specifies the share that is to be modified
or whose settings are being queried. As an OUT Parameter, this
specifies the share if the request is successful.

66

File Export Manipulation Subprofile

Table 23 - Parameters for Extrinsic Method FileExportServices.ReleaseExportedShare

Parameter Name

Qualifier Type

Description & Notes

InUseOptions

IN uintl6

An enumerated integer that specifies the action that the provider
should take if the FileShare is still in use when this request is
made. The WaitTime parameter indicates the specified time
used for this function.

This option is only relevant if the FileShare needs to be made
unavailable while the request is being executed.

WaitTime

IN uint32

An integer that indicates the time (in seconds) that the provider
needs to wait before executing this request if it cannot be done
while the FileShare is in use. If WaitTime is not zero, the method
will create a job, if supported by the provider, and return
immediately. If the provider does not support asynchronous
jobs, there is a possibility that the client could time-out before
the job is completed.

The combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence, then
Execute Request' and will be performed asynchronously if
possible.

Normal Return

Status

ouT uint32

ValueMap{}, Values{}

"Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property
Value

OUT, Indication CIM_Error

A single named property of an instance parameter (either
reference or embedded) has an invalid value

Invalid Combination
of Values

OUT, Indication CIM_Error

An invalid combination of named properties of an instance
parameter (either reference or embedded) has been requested.

EXPERIMENTAL
5.5.1.6

FileExportService.AssignPrivilegeToFileShare

This method assigns all of the supplied activities to the specified Identities and creates the appropriate

model.

uint32 AssignPrivilegeToExportedShare(

SMI-S 1.6.1 Revision 6

[Required, Description (

"The list of Identities to assign privilege to share.™)]
CIM_Ildentity REF ldentities[],

[Required, Description (

"The Activities to assign to the share. The "

"Activities are defined

in the "

"CIM_AssociatedPrivilege_Activities property."),

vValueMap { "2, "3, '"4", "5", "', "7", "8", "9",
io0, i1, Tri2', Tfag", 'rigrt, viset, vier, ivv,
18", "'19', 20", '21', "22', 23", "'24", "25",
“26", L.t Y,

Values { "Create', "Delete™, "Detect’, "Read", "Write",

"Execute', "Deny Create', "Deny Delete",

SNIA Technical Position

67

File Export Manipulation Subprofile

"Deny Detect', "Deny Read", "Deny Write",
""Deny Execute',
"Authorize to Grant/Deny Authorization",
"Authorize to Create', '"Authorize to Delete",
"Authorize to Detect", "Authorize to Read",
"Authorize to Write'", "Authorize to Execute",
"Authorize to Deny Create",
"Authorize to Deny Delete",
"Authorize to Deny Detect",
"Authorize to Deny Read', "Authorize to Deny Write",
"Authorize to Deny Execute', "DMTF Reserved" },
ModelCorrespondence {
"CIM_AssociatedPrivilege.Activities” }]
uintl6é Activities[],
[Required, Description (
"The FileShare to assign the privileges.")]
CIM_FileShare REF FileShare)
The parameters to this method are:

= Identities[] - The identities to which privileges are being granted
= Activities[] - The privileges that are being granted to the identities
= FileShare - The reference to the FileShare to which privileges are being assigned.
The possible return codes are:

e 0 - Completed with No Error

e 1 - Not Supported

e 2 - Failed

e 3 - Activities Not Supported

e 4 - Identity Not Found

* 5 - File Share Not Found

EXPERIMENTAL

5.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

e Getlnstance
< Associators
< AssociatorNames
< References

- ReferenceNames

68

5.6

File Export Manipulation Subprofile

- Enumeratelnstances
- EnumeratelnstanceNames

Client Considerations and Recipes

EXPERIMENTAL

Conventions used in all the filesystem related profiles for recipes:

When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is used without further validation. Real code will need to be more robust.

In SMI-S, Values and Valuemap members as equivalent. In real code, client-side magic is required to convert
the integer representation into the string form given in the MOF.

Error returns using the CIM_Error mechanism are not explicitly handled; the client shall implement handlers
for these asynchronous returns.

These recipes do not show the details of negotiating a setting acceptable to both client and provider.

The recipes do not show the details of managing a Job if a method returns after setting one up.

All the recipes show very simple examples of the operations that should be supported. Some recipes
have been simplified so that they would not even be minimally useful to a real client, but only show how
more complete functionality would be implemented.

5.6.1 Creation of a FileShare for Export

// DESCRIPTION
// GOAL: Create an NFS or CIFS FileShare that makes a specified

// directory or file of a filesystem available to clients
// and supports the properties specified in the array

// parameter $propertynames[].

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. The File server ComputerSystem host of the FileExportService

// will also be the host of the FileShare that will be
// made available to NFS or CIFS clients.
//

// FUNCTION CreateFileSystemShare

// This function takes a filesystem and a file server host

// ComputerSystem and creates a file share that will

// support the specified properties.

// INPUT Parameters:

// sharetype: The file sharing protocol (NFS or CIFS) that this

// share should support.

// fs: A reference to the LocalFileSystem whose element is
// to be shared.

// server: A reference to the file server ComputerSystem that
// provides local access to the filesystem $fs.

// fspath: A path to the sub-element that is to be shared.
// name: A name for the created file share.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 69

70

File Export Manipulation Subprofile

// comment: A comment to be associated with the created file share.
// propnames: An array of property names that the capabilities
// element should support.
// propvals: An array of property values corresponding to the
// property names that specify values for those properties.
// OUTPUT Parameters:
// fssh: A reference to the newly created FileShare element
// job: A reference to a ConcreteJob that is executing a long-term job.
// RESULT:
// Success or Failure
// NOTES
// 1.
sub CreateFileSystemShare(IN String $sharetype, // CIFS, NFS, etc.
IN REF CIM_FileSystem $fs, // the fFilesystem
IN REF CIM_ComputerSystem $server // the File Server
IN String $fspath, // subpath in the filesysten,
or
IN String $name,
IN String $comment,
IN String[] $propnames, // names of desired properties
IN String[] $propvals, // values of desired
properties
OUT REF CIM_FileShare $fssh,
OUT REF CIM_Job $job)
{
//
// Get the service and capabilities
//

/777 &GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,

$efscapability);
//
// Get a FileExportService via the HostedService association to
// the file server ComputerSystem
//
$feservice = Associators($server,
“CIM_HostedService”,
“SNIA_FileExportService”,
“Antecedent”,
“Dependent”)->[0];

// Assumption: There is only one FileExportService per File Server
//

// Get an ExportedFileShareCapabilities from the FileExportService
// via the ElementCapabilities association to the ComputerSystem
// (it’s indexed by NFS/CIFS/other sharing service and possibly
// other properties)

// Note: NFS and CIFS are two capabilities of the same service

File Export Manipulation Subprofile

// with different values of the FileSharingProtocol property
// In this example, we look for the
// ExportedFileShareCapabilities.IsDefault property to get a
// default sharetype.
//
$efscapabilities = Associators($feservice,
“CIM_ElementCapabilities”
“SNIA_ExportedFileShareCapabilities”,
“ManagedElement”,
“Capabilities”);
if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {
#j = 0;
while (($efscapability = $efscapabilities->[#j]) != NULL) {
if (($sharetype == “*“) && $efscapability.lIsDefault ||
($efscapabilities->[#]j].FileSharingProtocol == $sharetype)) {
$sharetype = $efscapability.FileSharingProtocol;
// Should check here that the properties named in
// $propnames-[] are supported by this capabilities
// element. |If not, the method should fail as this profile
// does not support multiple capabilities with the same
// Tile sharing protocol that may have different.
break;

}
#j++;

// Handle the error if any

ifT (#)] == $efscapabilities-[]-length) {
<indicate error>
return false;

//

// Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N”, Goal-N) to
get

// the next goal for EFSSetting -- iterate until satisfied or give up
// (beware of infinite loops) Note: we don’t iterate here, just give
// up if we don’t get what we want.

//

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

&CreateGoal ($efscapability, NULL, $goal);

//
// Inspect Goal and modify properties as desired.
//

SMI-S 1.6.1 Revision 6 SNIA Technical Position 71

File Export Manipulation Subprofile

#i = 03

while ($propnames->[#i] != NULL) {
$goal . $propnames->[#i] = $propvals->[#i];
Hit++;

// lterate over the goal at least once
&CreateGoal ($efscapability, $goal, $settings);

#i = 0;

while ($propnames->[#i] != NULL) {
// funky syntax for propnames property of settings
if ($settings.$propnames->[#i] '= $propvals->[#i]) {

//
// give up
//
return false;
¥
Hit++;

// Verify that the filesystem is locally accessible

// Does this fileserver have local access -- if not, there is no setting!
$laassocs->[] = ReferenceNames($server,
“SNIA_LocalAccessAvailable™,
“CIM_FileSystem”

$Fs);
if ($laassocs->[] == NULL || $laassocs->[]-length 1= 1) {
{
// If the filesystem is not locally accessible from the server
// there is no setting to be found
return false;
}

$laassoc = $laassocs->[0];

//

// Get all the LocallyAccessibleFileSystemSettings

// associated with the CIM_FileSystem (via ElementSettingData)

//

$lasettings->[] = Associators($fs,
“CIM_ElementSettingData”,
“SNIA_LocallyAccessibleFileSystemSetting”,
“ManagedElement”,
“SettingData™);

if ($lasettings->[] == NULL || $lasettings->[]-length == 0) {

// This is an ERROR but for now we return with no results

File Export Manipulation Subprofile

return NULL;

#i = 0;
$lasetting = NULL;
while ($lasettings->[#i] '= NULL) {
// Get the association that points to this setting
$reference->[] = References($lasettings->[#i],
“CIM_ElementSettingData™,
“SettingData™);
// There should be exactly one association to this SettingData
ifT ($reference->[] == NULL || $reference->[]-length = 1) {
// This is an error -- should we continue?
continue;
// return NULL;

// The following test assumes that we only look at a setting
// that is marked as IsCurrent. There may be many such
// settings but they will be scoped to other file servers.
if ($reference->[0].IsCurrent == “Is Current”) {
// Is this scoped to the fileserver?
$servers = Associators($settings->[#i],
“CIM_ScopedSetting”,
“CIM_ComputerSystem™,
“Dependent”,
“Antecedent™);

if ($servers->[] '= NULL && $servers->[].length = 0 && $servers->[0]
== $Ffileserver) {

$lasetting = Getlnstance($lasettings->[#i]);
break;

}

Hi++;

// if not found return NULL
if ($lasetting == NULL) {
return false;

//

// Note, this profile uses the filesystem $fs as the Root
// parameter to CreateExportedShare and does not support
// other classes.

// The fspath iIs a string that is FileSystemType-specific
// If path is NULL or empty, it

// identifies the root directory of the File System.

//

SMI-S 1.6.1 Revision 6 SNIA Technical Position 73

File Export Manipulation Subprofile

// $feservice.CreateExportedShare($name, $comment,
// $job, $fs, $fspath, $settings, $fssh);
#result = $feservice.CreateExportedShare(
$name, // share name
$comment, // comment associated with share
$job, // OUTPUT parameter if needed
$fs, // File system of the shared element
$fspath, // relative path to shared element
$settings, // EmbeddedlInstance of Goal
$fssh, // OUTPUT parameter -- reference to File Share
NULL, // $defaultUserld -- not being set in this example
NULL, // $RootAccessHosts[] -- not being set
NULL // $AccessPointPEs[] -- not being set
)

// Should handle failure and other errors here.

return true;

}

5.6.2 Modification of an Exported FileShare

// DESCRIPTION

// GOAL: Modify the creation-time settings of a NFS or

// CIFS FileShare.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The file share already exists and has been surfaced through

// SMI-S.

// 2. The file share has been defined with an associated
// ExportedFileShareSettings element and hosted on an
// surfaced file server ComputerSystem.

// 3. There is a FileExportService element hosted by

// the same file server ComputerSystem that provides
// this method.

//

// FUNCTION ModifyFileSystemShare
// This function modifies the settings and some mutable

// properties of an existing file share hosted by the

// same ComputerSystem as the host of the service.

// This routine cannot be used to change

// the filesystem, the sharetype, or the file server.

// It can be used to change the name, the comment, and
// setting property values.

// INPUT Parameters:

// name: A new name for the file share.

// comment: A comment to be associated with the created file share.
// fssh: A reference to the newly created FileShare element

// propnames: An array of property names that the capabilities

74

File Export Manipulation Subprofile

// element should support.

// propvals: An array of property values corresponding to the

// property names that specify values for those properties.

// OUTPUT Parameters:

// job: A reference to a ConcreteJob that is executing a long-term job.
// RESULT:

// Success or Failure

// NOTES

// 1.

sub ModifyFileSystemShare(IN String $name,
IN String $comment,
IN CIM_FileShare $fssh,
IN String $propnames[],
IN String $propvals[],
OUT CIM_Job $job)

//
// Get a client-side copy of the ExportedFileShareSetting
// associated with the ExportedFileShare (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fssh,
“CIM_ElementSettingData”,
“CIM_ExportedFileShareSetting”,
“ManagedElement”,
“SettingData™)->[0];
#i = 0;
while ($settings->[#i] 1= NULL) {
if ($settings->[#i].1sCurrent) {
$setting = Getlnstance($settings->[#i].Name);
break;

//

// Get the sharetype from the FileSystemShare
// —- this cannot be changed by this method
//

$sharetype = $setting.FileSharingProtocol;

//
// Get the File Server
//
// &GetFileExportServer ($fs, $server);
//
// Get the ComputerSystem for the filesystem (via HostedFileSystem association)

SMI-S 1.6.1 Revision 6 SNIA Technical Position 75

76

//

File Export Manipulation Subprofile

// There should be exactly one.

$server = Associators($fssh,
“CIM_HostedFileShare™,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent”)->[0];

//
// Get the service and capabilities
//

&GetFileExportServiceAndCapabilities($server, $sharetype, $feservice,
$efscapability);

//
// Get a FileExportService via the HostedService association to
// the file server ComputerSystem
//
$feservice = Associators($server,
“CIM_HostedService”,
“SNIA_FileExportService”,
“Antecedent”,
“Dependent”)->[0];

// Assumption: There is only one FileExportService per File Server
//
// Get an ExportedFileShareCapabilities from the FileExportService
// via the ElementCapabilities association to the ComputerSystem
// (it’s indexed by NFS/CIFS/other sharing service and possibly
// other properties)
// Note: NFS and CIFS are two capabilities of the same service
// with different values of the FileSharingProtocol property
// The $sharetype must match the property
// ExportedFileShareCapabilities.FileSharingProtocol.
//
$efscapabilities = Associators($feservice,
“CIM_ElementCapabilities”
“SNIA_ExportedFileShareCapabilities”,
“ManagedElement™,
“Capabilities”);
if ($efscapabilities->[] == NULL || $efscapabilities-[].length == 0) {
#j = 0;
while (($efscapability = $efscapabilities->[#j]) != NULL) {
if ($efscapabilities->[#]j].FileSharingProtocol == $sharetype) {
// Should check here that the properties named in
// $propnames-[] are supported by this capabilities
// element. |If not, the method should fail as this profile
// does not support multiple capabilities with the same
// file sharing protocol that may have different.
break;

File Export Manipulation Subprofile

}
#Hj++;

// Handle the error if any

iT (#] == $efscapabilities-[].length) {
<indicate error>
return false;

//
// Modify the copied ExportedFileShareSetting to the new
// desired properties
//
#i1 = 0;
while ($propnames->[#i] '= NULL) {
// Note funky syntax for accessing a named property of
// the setting
$setting.$propnames->[#i] = $propvals->[#i];

// Call FileExportServiceCapabilities.CreateGoalSettings(Goal-N”, Goal-N) to
get

// the next goal for EFSSetting -- iterate until satisfied or give up
// (beware of infinite loops) Note: we don’t iterate here, just give
// up if we don’t get what we want.

//

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

&CreateGoal ($efscapability, $setting, S$newsetting);

// Did we get a goal back?
if ($newsetting==MULL)
#i = 0;
while ($propnames->[#i] '= NULL) {
iT ($newsetting.$propnames->[#i] 1= $propvals->[#i]) {

//
// give up
//
return NULL;
¥
Hit++;
}
//

#result = feservice._ModifyExportedShare(

SMI-S 1.6.1 Revision 6 SNIA Technical Position 77

}

File Export Manipulation Subprofile

$name, // new name (no change if NULL)

$comment, // new comment (no change if NULL)

$job, // OUTPUT parameter if needed

NULL, // $rootfilesystem - Cannot be changed
NULL, // $Subelement -- cannot be changed
$newsetting, // EmbeddedlInstance of Goal

$fssh, // reference to File Share

NULL, // $defaultUserld -- not being changed in this example
NULL, // $RootAccessHosts[] -- not being changed
NULL, // $AccessPointPEs[] -- not being changed
NULL, // $InUseOptions -- take default

NULL // $WaitTime -- take default

)

// Should handle failure and other errors here.

return TRUE;

5.6.3 Removal of an Exported FileShare

78

//
//
//
//
//
//
//
//
//
//
//
//
7/
//
//
//
//
//
//
//
//
7/
//
//
//
//
//

// OUTPUT Parameters:

DESCRIPTION

GOAL: UnExport an exported NFS or CIFS FileShare.

PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. The file share already exists and has been surfaced through

SMI-S.

2. The file share has been defined with an associated

ExportedFileShareSettings element and hosted on an

surfaced file server ComputerSystem.
3. There is a FileExportService element hosted by
the same file server ComputerSystem that provides

this method.

FUNCTION UnExportFileSystemShare
This function removes an NFS or CIFS file share that is
hosted by the same ComputerSystem as the host of the

service.
INPUT Parameters:

fssh: A reference to the newly created FileShare element
force: Whether the method should force all clients of the

file share to be disconnected.
waittime: The time in seconds to wait before implementing the
specified force option (default 300 seconds).

notification: A string used to notify clients that the file
share is going to be unavailable. This is included in
the alert indication sent to clients that subscribe for

them (but...

shouldn’t this go to operational clients?)

File Export Manipulation Subprofile

// job: A reference to a ConcreteJob that is executing a long-term job.
// RESULT:

// Success or Failure

// NOTES

// 1.

sub UnExportFileSystemShare(IN REF CIM_FileShare $fssh,
IN uintlé $force,
IN uint32 $waittime,
IN String $notification,
OUT REF CIM_Job $job);

{
//
// If waittime > 0, set force to 2 to distinguish between
// a force with no wait and a force with wait
// —- see the specification of ReleaseExportedShare.
//
if ($force > 0 && $waittime > 0) {
$force = 2;
3
//
// clients of the share may have registered for an indication
// when a share is disconnected
//
<send indication -- see indications recipes>
// Get the File Server
//
// &GetFileExportServer($fs, $server);
//

// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$server = Associators($fssh,

“CIM_HostedFileShare”,

“CIM_ComputerSystem™,

“PartComponent”,

“GroupComponent’)->[0];

//

// Get a FileExportService via the HostedService association to

// the file server ComputerSystem

//

$feservice = Associators($server,
“CIM_HostedService”,
“SNIA_FileExportService”,
“Antecedent”,

SMI-S 1.6.1 Revision 6 SNIA Technical Position 79

File Export Manipulation Subprofile

“Dependent”)->[0];

//

// Call ReleaseExportedShare() with the $force and $waittime values
// which tell the share to wait for the specified time

// if there are any clients still connected.

//

$feservice.ReleaseExportedShare($job, $fssh, $force, $waittime);

// Should handle failure and other errors here.

return TRUE;
ks
EXPERIMENTAL

5.6.4 File Export Manipulation Supported Capabilities Patterns

Table 24 lists the capabilities patterns that are formally recognized by SMI-S 1.2.0 for determining
capabilities of various implementations:

Table 24 - SMI-S File Export Supported Capabilities Patterns

FileSharingProtocols SynchronousMethods AsynchronousMethods InitialExportState

NFS, CIFS Export Creation, Export Null *
Modification, Export Deletion

NFS, CIFS Null Export Creation, Export *
Modification, Export Deletion

NFS, CIFS Null Null Null

NOTE Asterisk (*) means any state is valid.

5.7 CIM Elements
Table 25 describes the CIM elements for File Export Manipulation.

Table 25 - CIM Elements for File Export Manipulation

Element Name Requirement Description

5.7.1 CIM_CIFSShare (Exported File Share) Optional Represents the CIFS sharing characteristics of a
particular file element.

5.7.2 CIM_ConcreteDependency Optional

Represents an association between a (CIFSShare or
NFSShare) FileShare element and the actual shared
LogicalFile or Directory on which it is based. This is
provided for backward compatibility with previous
releases of SMI-S.

80

File Export Manipulation Subprofile

Table 25 - CIM Elements for File Export Manipulation

Element Name

Requirement

Description

5.7.3 CIM_ElementCapabilities (FES Configuration)

Mandatory

Associates the File Export Service to the
FileExportCapabilities element that describes the service
capabilities.

5.7.4 CIM_ElementSettingData (FileShare Setting)

Mandatory

Associates a (CIFSShare or NFSShare) FileShare and
ExportedFileShareSetting elements.

5.7.5 CIM_FileShare (Exported File Share)

Mandatory

Represents the sharing characteristics of a particular file
element.

5.7.6 CIM_FileStorage (Subelement)

Conditional

Conditional requirement: Required if parent profile is NAS
Head. or Required if parent profile is a Self-contained
NAS System.

Represents that a file or directory that is made available
for export is contained by a LocalFileSystem specified as
a dangling reference.

5.7.7 CIM_HostedService

Mandatory

Associates the File Export Service to the hosting File
Server Computer System.

5.7.8 CIM_HostedShare

Mandatory

Represents that a shared element is hosted by a
ComputerSystem.

5.7.9 CIM_LogicalFile (Subelement)

Conditional

Conditional requirement: Required if parent profile is NAS
Head. or Required if parent profile is a Self-contained
NAS System.

A LogicalFile (or Directory subclass) that is a sub-
element of a LocalFileSystem that is made available for
export via a fileshare hosted on a ComputerSystem. This
is included for backward compatibility with previous
releases of SMI-S.

5.7.10 CIM_NFSShare (Exported File Share)

Optional

Represents the NFS sharing characteristics of a particular
file element.

5.7.11 CIM_SAPAvailableForFileShare

Mandatory

Represents the association between a
ServiceAccessPoint to the shared element that is being
accessed through that SAP.

5.7.12 CIM_ServiceAffectsElement

Mandatory

Associates the File Export Service to the elements that
the service manages (such as a FileShare configured for
exporting a LogicalFile).

5.7.13 CIM_SettingsDefineCapabilities (Pre-defined)

Optional

Represents the association between a
ExportedFileShareCapabilities and a predefined
ExportedFileShareSetting element that specifies what the
Capabilities can support.

5.7.14 CIM_SharedElement

Mandatory

Associates a (CIFSShare or NFSShare) FileShare to the
LocalFileSystem on which it is based.

5.7.15 SNIA_ElementCapabilities (FES Capabilities)

Mandatory

Associates the File Export Service to at least one
ExportedFileShareCapabilities element that indicates that
support is available for managing an exported FileShare
for at least one of the file sharing protocols recognized by
this profile. These include: "NFS"/2, "CIFS"/3, "DAFS"/4,
"WebDAV"/5, "HTTP"/6, or "FTP"/7.

5.7.16 SNIA_ExportedFileShareCapabilities (FES
Capabilities)

Mandatory

This element represents the Capabilities of the File Export
Service for managing FileShares of a specific file sharing
protocol (and version). The file sharing protocol is
specified by the FileSharingProtocol and
ProtocolVersions properties.

SMI-S 1.6.1 Revision 6

SNIA Technical Position 81

File Export Manipulation Subprofile

Table 25 - CIM Elements for File Export Manipulation

Element Name

Requirement

Description

Sourcelnstance ISA CIM_FileShare AND
Sourcelnstance.CIM_FileShare::OperationalStatus <>
PreviouslInstance.CIM_FileShare::OperationalStatus

5.7.17 SNIA_ExportedFileShareSetting (FileShare Mandatory The configuration settings for an Exported FileShare; i.e.,

Setting) a setting for a FileShare available for exporting.
This setting may have been created or modified by the
extrinsic methods of this profile. Note that CIFS allows in-
band creation, modification, or deletion of FileShares;
also, some systems might define preexistent FileShares.
All of these will be surfaced.

5.7.18 SNIA_ExportedFileShareSetting (Pre-defined) Optional This element represents a predefined configuration
settings for exported FileShares that is used to define a
Capabilities element associated with the
FileExportService.

5.7.19 SNIA_FileExportCapabilities (FES Configuration) Mandatory This element represents the management capabilities of
the File Export Service.

5.7.20 SNIA_FileExportService Mandatory The File Export Service provides the methods to create
and export file elements as shares.

SELECT * FROM CIM_InstCreation WHERE Mandatory Creation of an exported file share.

Sourcelnstance ISA CIM_FileShare o)

- This indication returns the newly created FileShare.
SELECT * FROM CIM_InstDeletion WHERE Mandatory Deletion of an exported file share.
Sourcelnstance ISA CIM_FileShare
- This indication returns the model path to the deleted file

share and its unique instance id. (Question: Should this
return the pathname of the shared directory as well?)
Note that a model path is like a CIM object path but not
exactly the same.

SELECT * FROM CIM_InstModification WHERE Mandatory Deprecated WQL -Change of state of a FileShare.

Sourcelnstance ISA CIM_FileShare AND Previous]) ional. b b lied b

Sourcelnstance.OperationalStatus <> _ re\lnous nstgnceflshoptlogla,fllut may be supplied by an

Previousinstance.OperationalStatus implementation of the subprofile.

SELECT * FROM CIM_InstModification WHERE Optional CQL -Change of state of a FileShare.

Previouslinstance is optional, but may be supplied by an
implementation of the subprofile.

5.7.1 CIM_CIFSShare (Exported File Share)

The CIM_CIFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

82

File Export Manipulation Subprofile

Table 26 describes class CIM_CIFSShare (Exported File Share).

Table 26 - SMI Referenced Properties/Methods for CIM_CIFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.7.7 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.7.7 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.7 CIM_FileShare
(Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.7 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.7.7 CIM_FileShare (Exported

File Share).

5.7.2 CIM_ConcreteDependency

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Optional

Table 27 describes class CIM_ConcreteDependency.

Table 27 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes
Antecedent Mandatory The LogicalFile that is being shared.
Dependent Mandatory The (CIFSShare or NFSShare) Share that represents the LogicalFile

being shared.

5.7.3 CIM_ElementCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

SMI-S 1.6.1 Revision 6

SNIA Technical Position

83

File Export Manipulation Subprofile

Table 28 describes class CIM_ElementCapabilities (FES Configuration).

Table 28 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FES Configuration)

Properties Flags Requirement Description & Notes
Capabilities Mandatory The FileExportCapabilities.
ManagedElement Mandatory The FileExportService.

5.7.4 CIM_ElementSettingData (FileShare Setting)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 29 describes class CIM_ElementSettingData (FileShare Setting).

Table 29 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileShare Setting)

Properties Flags Requirement Description & Notes

IsCurrent N Optional Is always true in this version of the subprofile because we only support
one setting per share. However support for the other flags, specifically,
IsDefault and IsNext, could be added in future releases.

IsDefault N Optional Not Specified in this version of the Profile.

IsNext N Optional Not Specified in this version of the Profile.

IsSMinimum N Optional Not Specified in this version of the Profile.

IsMaximum N Optional Not Specified in this version of the Profile.

ManagedElement Mandatory The (CIFSShare or NFSShare) FileShare used for exporting an element.
SettingData Mandatory A Setting that specifies possible configurations of the FileShare. In this

version, we default this to isCurrent="true".

5.7.5 CIM_FileShare (Exported File Share)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 30 describes class CIM_FileShare (Exported File Share).

Table 30 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes
InstancelD Mandatory A unique id for the FileShare element.
ElementName Mandatory This shall be a user friendly name for the FileShare.

84

File Export Manipulation Subprofile

Table 30 - SMI Referenced Properties/Methods for CIM_FileShare (Exported File Share)

Properties Flags Requirement Description & Notes

Name Mandatory This shall be an opague string that uniquely identifies the path to the
directory or file.

SharingDirectory Mandatory Indicates if the shared element is a file or a directory. This is useful when
importing but less so when exporting.

OperationalStatus Mandatory The OperationalStatus of the FileShare as defined in the Health and Fault
Management Clause.

Description N Optional This a comment describing the file share.

Caption N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateChange N Optional Not Specified in this version of the Profile.

RequestStateChange() Optional Not Specified in this version of the Profile.

5.7.6 CIM_FileStorage (Subelement)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained

NAS System.

Table 31 describes class CIM_FileStorage (Subelement).

Table 31 - SMI Referenced Properties/Methods for CIM_FileStorage (Subelement)

Properties Flags Requirement Description & Notes
PartComponent Mandatory The file or directory that is made available for export.
GroupComponent Mandatory The local filesystem that contains the exported file or directory.

5.7.7 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

SMI-S 1.6.1 Revision 6

SNIA Technical Position

Table 32 describes class CIM_HostedService.

File Export Manipulation Subprofile

Table 32 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes
Antecedent Mandatory The hosting Computer System.
Dependent Mandatory The FileExportService.

5.7.8 CIM_HostedShare

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Mandatory

Table 33 describes class CIM_HostedShare.

Table 33 - SMI Referenced Properties/Methods for CIM_HostedShare

Properties Flags Requirement Description & Notes

RemoteShareWWN N Optional Not Specified in this version of the Profile.

Dependent Mandatory The CIFS or NFS share that is hosted by a Computer System.
Antecedent Mandatory The Computer System that hosts a FileShare. It may be any system, but

the system shall have Dedicated=16 (File Server).

5.7.9 CIM_LogicalFile (Subelement)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare

Requirement: Required if parent profile is NAS Head. or Required if parent profile is a Self-contained

NAS System.

Table 34 describes class CIM_LogicalFile (Subelement).

Table 34 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory CIM Class of the Computer System that hosts the filesystem of this File.

CSName Mandatory Name of the Computer System that hosts the filesystem of this File.

FSCreationClassName Mandatory CIM Class of the LocalFileSystem on the Computer System that contains
this File.

FSName Mandatory Name of the LocalFileSystem on the Computer System that contains this

File.

86

File Export Manipulation Subprofile

Table 34 - SMI Referenced Properties/Methods for CIM_LogicalFile (Subelement)

Properties Flags Requirement Description & Notes
CreationClassName Mandatory CIM Class of this instance of LogicalFile.
Name Mandatory Name of this LogicalFile.

5.7.10 CIM_NFSShare (Exported File Share)

The CIM_NFSShare is a subclass of CIM_FileShare. It is optional, since an implementation may
instantiate either (or both) of CIM_CIFSShare or CIM_NFSShare.

Created By: External

Modified By: External

Deleted By: External

Requirement: Optional

Table 35 describes class CIM_NFSShare (Exported File Share).

Table 35 - SMI Referenced Properties/Methods for CIM_NFSShare (Exported File Share)

Properties Flags Requirement Description & Notes

InstancelD Mandatory See the InstancelD definition in section 4.7.7 CIM_FileShare (Exported
File Share).

ElementName Mandatory See the ElementName definition in section 4.7.7 CIM_FileShare (Exported
File Share).

Name Mandatory See the Name definition in section 4.7.7 CIM_FileShare (Exported File
Share).

SharingDirectory Mandatory See the SharingDirectory definition in section 4.7.7 CIM_FileShare

(Exported File Share).

OperationalStatus Mandatory See the OperationalStatus definition in section 4.7.7 CIM_FileShare
(Exported File Share).

Description N Optional See the Description definition in section 4.7.7 CIM_FileShare (Exported
File Share).

5.7.11 CIM_SAPAvailableForFileShare

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

SMI-S 1.6.1 Revision 6 SNIA Technical Position 87

File Export Manipulation Subprofile

Table 36 describes class CIM_SAPAvailableForFileShare.

Table 36 - SMI Referenced Properties/Methods for CIM_SAPAvailableForFileShare

Properties Flags Requirement Description & Notes

FileShare Mandatory The element that is made available through a SAP. In the File Export
subprofile, these are (CIFSShare or NFSShare) FileShares configured for
either export.

AvailableSAP Mandatory The ProtocolEndpoint that is available to this (CIFSShare or NFSShare)
FileShare. This shall be 4200 (NFS) or 4201 (CIFS).

5.7.12 CIM_ServiceAffectsElement

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 37 describes class CIM_ServiceAffectsElement.

Table 37 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

ElementEffects Mandatory In this profile, the service provides management for the element. We allow
Other to support vendor extensions. The standard values are 1 (Other)
and 5 (Manages).

OtherElementEffectsDescr Mandatory A description of other element effects that this association might be
iptions exposing.

AffectedElement Mandatory The (CIFSShare or NFSShare) FileShare.

AffectingElement Mandatory The FileExportService.

5.7.13 CIM_SettingsDefineCapabilities (Pre-defined)

Created By: Static_or_External
Modified By: External

Deleted By: External
Requirement: Optional

Table 38 describes class CIM_SettingsDefineCapabilities (Pre-defined).

Table 38 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement Description & Notes
PropertyPolicy Mandatory
ValueRole Mandatory
ValueRange Mandatory

88

File Export Manipulation Subprofile

Table 38 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Pre-defined)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory An Exported FileShare Capabilities element that is defined by a collection
of ExportedFileShareSetting Settings.

PartComponent Mandatory A Exported FileShare Setting that provides a point or a partial definition for
a Exported FileShare Capabilities element.

5.7.14 CIM_SharedElement

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare

Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

Table 39 describes class CIM_SharedElement.

Table 39 - SMI Referenced Properties/Methods for CIM_SharedElement

Properties Flags Requirement Description & Notes

SystemElement Mandatory The LocalFileSystem that is sharing a directory or file through a FileShare
alter ego.

SameElement Mandatory The (CIFSShare or NFSShare) FileShare that is the alter ego for a
directory or file in a LocalFileSystem.

5.7.15 SNIA_ElementCapabilities (FES Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 40 describes class SNIA_ElementCapabilities (FES Capabilities).

Table 40 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (FES Capabilities)

Properties Flags Requirement Description & Notes

Characteristics Mandatory If this array enum includes the value mapped to "Default”, it indicates that
the ExportedFileShareCapabilities element identified by this association is
the default to be used for any extrinsic method of the associated
FileExportService element.

Capabilities Mandatory The FileExportCapabilities. The FileSharingProtocol in these capabilities
shall be 2 (NFS), 3 (CIFS), 4 (DAFS), 5 (WebDAV), 6 (HTTP) or 7 (FTP).

ManagedElement Mandatory The FileExportService.

5.7.16 SNIA_ExportedFileShareCapabilities (FES Capabilities)

SMI-S 1.6.1 Revision 6 SNIA Technical Position 89

File Export Manipulation Subprofile

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 41 describes class SNIA_ExportedFileShareCapabilities (FES Capabilities).

Table 41 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareCapabilities (FES Capabilities)

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for a capability of a File Export Service.
ElementName Mandatory A provider supplied user-Friendly Name for this Capabilities element.
FileSharingProtocol Mandatory This identifies the single file sharing protocol (e.g., NFS or CIFS) that this

Capabilities represents.

ProtocolVersions Optional An array listing the versions of the protocol specified by the
FileSharingProtocol property. A NULL value or entry indicates support for
all versions of this protocol.

At this point there is no standard mechanism for naming versions of CIFS
or NFS, so this is being made optional. If the property is NULL, all versions
of the protocol are supported.

SupportedProperties Mandatory This is the list of configuration properties (of ExportedFileShareSetting)
that are supported for specification at creation time by this Capabilities
element.

Properties that can appear in this array are: "DefaultReadWrite" ("2"),
"DefaultExecute” ("3"), "DefaultUserld" (“4"), "RootAccess" ("5"),
"WritePolicy" ("6"), "AccessPoints" ("7"), and "InitialEnabledState" ("8").

CASupported Optional This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel 10, this
feature is somewhat analogous to capabilities available in NFSv4.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a ExportedFileShareSetting
that is a supported variant of a ExportedFileShareSetting passed in as an
embedded IN parameter TemplateGoalSettings[0]. The method returns
the supported ExportedFileShareSetting as an embedded OUT parameter
SupportedGoalSettings[0].

5.7.17 SNIA_ExportedFileShareSetting (FileShare Setting)

Created By: Extrinsic: SNIA_CreateExportedShare
Modified By: Extrinsic: SNIA_ModifyExportedShare
Deleted By: Extrinsic: ReleaseExportedShare
Requirement: Mandatory

90

File Export Manipulation Subprofile

Table 42 describes class SNIA_ExportedFileShareSetting (FileShare Setting).

Table 42 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique ID for the Setting.

ElementName Mandatory A client-defined user-friendly name for the Setting.

FileSharingProtocol Optional The file sharing protocol supported by this share. NFS (2) and CIFS (3)

are the supported values.

ProtocolVersions Mandatory An array of the versions of the supported file sharing protocol. A share
may support multiple versions of the same protocol. A NULL value or a
NULL entry indicates support for all versions.

At this point there is no standard mechanism for naming versions of CIFS
or NFS, so this is being made optional.

InitialEnabledState N Optional This indicates the enabled/disabled states initially set for a created
FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3" ("Disabled"), "7" ("In
Test"), "8" ("Deferred") or "9" ("Quiesce")

Note: We need to rethink the usage of this property once the file share
has been created. Maybe it should apply to when the file share is re-
activated when the share or system is rebooted after a shutdown. With the
current definition, neither this nor OtherEnabledState make sense.

OtherEnabledState N Optional This should be filled in if the InitialEnabledState is "1" ("Other").

DefaultUserldSupported N Optional Indicates whether the associated FileShare will use a default user id to
control access to the share if the id of the importing client is not provided.

Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Valid values are "2" ("No Default User Id"), "3" ("System-Specified Default
User Id") or "4" ("Share-Specified Default User I1d").

RootAccess N Optional Indicates whether the associated FileShare will support default access
privileges to administrative users from specified hosts.

Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root Access").

AccessPoints N Optional An enumerated value that specifies the service access points that are
available to this FileShare element by default (to be used by clients for
connections). Any ServiceAccessPoint elements that actually connect to
this FileShare element will be associated to it by a
CIM_SAPAvailableForFileShare association.

Note: The resulting access privileges shall be surfaced using the
Authorization subprofile. The default or built-in access points can always
be overridden by the privileges explicitly defined through the Authorization
subprofile.

Valid values are "2" ("None"), "3" ("Service Default"), "4" ("All") or "5"
("Named Points").

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
DefaultReadWrite N Optional Not Specified in this version of the Profile.
DefaultExecute N Optional Not Specified in this version of the Profile.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 91

File Export Manipulation Subprofile

Table 42 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (FileShare Setting)

Properties Flags Requirement Description & Notes
ExecuteSupport N Optional Not Specified in this version of the Profile.
WritePolicy N Optional Not Specified in this version of the Profile.

5.7.18 SNIA_ExportedFileShareSetting (Pre-defined)

Created By: Static_or_External

Modified By: External
Deleted By: External
Requirement: Optional

Table 43 describes class SNIA_ExportedFileShareSetting (Pre-defined).

Table 43 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for this Setting element.

ElementName

Mandatory

A provider supplied user-friendly name for this Setting element.

FileSharingProtocol

Mandatory

The file sharing protocol to which this Setting element applies. The entries
in the ProtocolVersions property identify the specific versions of the
protocol that are supported. This profile only supports "NFS" (2) and
"CIFS" (3).

ProtocolVersions

Optional

This array identifies the versions of the file sharing protocol (specified by
FileSharingProtocol) to which this Setting element applies. If NULL, it
indicates support for all versions.

At this point there is no standard mechanism for naming versions of CIFS
or NFS, so this is being made optional.

InitialEnabledState

Optional

This indicates the enabled/disabled states initially set for a created
FileShare by this Setting element.

Valid values are "1" ("Other"), "2" ("Enabled"), "3" ("Disabled"), "7" (“In
Test"), "8" ("Deferred") or "9" ("Quiesce").

OtherEnabledState

Optional

A vendor-specific description of the initial enabled state of a created
fileshare if InitialEnabledState=1("Other").

DefaultUserldSupported

Optional

Indicates whether a FileShare created or modified by using this Setting
element will use a default user id to control access to the share if the id of
the importing client is not provided.

Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Valid values are "2" ("No Default User 1d"), "3" ("System-Specified Default
User Id") or "4" ("Share-Specified Default User 1d").

RootAccess

Optional

Indicates whether a FileShare created or modified by using this Setting
element will support default access privileges to administrative users from
specific hosts specified at creation time.

Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Valid values are "2" ("No Root Access") or "3" ("Allow Root Access").

92

File Export Manipulation Subprofile

Table 43 - SMI Referenced Properties/Methods for SNIA_ExportedFileShareSetting (Pre-defined)

Properties

Flags

Requirement

Description & Notes

AccessPoints

Optional

An enumerated value that specifies the service access points that are
available to a FileShare created or modified by using this Setting element
by default (to be used by clients for connections). These default access
points can always be overridden by the privileges explicitly defined by a
supported authorization mechanism(s). Any ServiceAccessPoints that
actually connect to this share will be associated to it by
CIM_SAPAvailableForFileShare.

Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Valid values are "2" ("None"), "3" ("Service Default"), "4" ("All"*) or "5"
("Named Points").

CASupported

Optional

This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel 10, this
feature is somewhat analogous to capabilities available in NFSv4.

Caption

Optional

Not Specified in this version of the Profile.

Description

Optional

Not Specified in this version of the Profile.

DefaultReadWrite

Optional

Indicates the default privileges that are supported for read and write
authorization when creating or modifying a FileShare using this Setting
element.

Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Not Specified in this version of the Profile.

DefaultExecute

Optional

Indicates the default privileges that are supported for execute
authorization when creating or modifying a FileShare using this Setting
element.

Note: The resulting access privileges shall be surfaced using the
Authorization subprofile.

Not Specified in this version of the Profile.

ExecuteSupport

Optional

Indicates if the sharing mechanism provides specialized support for
executing a shared element when creating or modifying a FileShare using
this Setting element (for instance, does it provide paging support for text
pages).

Not Specified in this version of the Profile.

WritePolicy

Optional

Indicates whether writes through a FileShare (created or modified by using
this Setting element) to the shared element will be handled synchronously
or asynchronously by default.

This policy may be overridden or surfaced using the Policy subprofile.

Not Specified in this version of the Profile.

5.7.19 SNIA_FileExportCapabilities (FES Configuration)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

SMI-S 1.6.1 Revision 6

SNIA Technical Position 93

File Export Manipulation Subprofile

Table 44 describes class SNIA_FileExportCapabilities (FES Configuration).

Table 44 - SMI Referenced Properties/Methods for SNIA_FileExportCapabilities (FES Configuration)

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opaque, unique id for the capabilities of a File Export Service.

ElementName

Mandatory

A provider supplied user-friendly name for this Capabilities element.

FileSharingProtocol

Mandatory

An array listing all the protocols for file sharing supported by the
FileExportService represented by this FileExportCapabilities element.
Duplicate entries are permitted because the corresponding entry in the
ProtocolVersions array property indicates the supported version of the
protocol.

Each entry must correspond to an ExportedFileShareCapabilities element
associated via ElementCapabilities to the FileExportService -- the
FileSharingProtocol and ProtocolVersion properties of that element must
match the entry.

ProtocolVersions

Optional

An array listing all the versions of the file sharing protocol specified in the
corresponding entry of the FileSharingProtocol array property. A NULL
entry indicates support for all versions of the protocol.

At this point there is no standard mechanism for naming versions of CIFS
or NFS, so this property is optional in this subprofile.

SupportedSynchronousMe
thods

Mandatory

An array listing the extrinsic methods of the FileExportService that can be
called synchronously.

Note: Every supported method shall be listed either in this property or in
the SupportedAsynchronousMethods array property.

SupportedAsynchronousM
ethods

Mandatory

An array listing the extrinsic methods of the FileExportService that can be
called synchronously.

Note: Every supported method shall be listed either in this property or in
the SupportedSynchronousMethods array property.

InitialEnabledState

Optional

This represents the state of initialization of a FileShare on initial creation.

CASupported

Optional

This property applies to CIFS/SMB shares only. If it is true, it means that
"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel 10, this
feature is somewhat analogous to capabilities available in NFSv4.

5.7.20 SNIA_FileExportService

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

94

File Export Manipulation Subprofile

Table 45 describes class SNIA_FileExportService.

Table 45 - SMI Referenced Properties/Methods for SNIA_FileExportService

Properties Flags Requirement Description & Notes
ElementName Mandatory A provider supplied user-friendly name for this Service.
SystemCreationClassName Mandatory The CIM Class name of the Computer System hosting the
Service.
SystemName Mandatory The name of the Computer System hosting the Service.
CreationClassName Mandatory The CIM Class name of the Service.
Name Mandatory The unique name of the Service.
SNIA_SNIA_CreateExportedShare() Mandatory Create a FileShare element configured for exporting a file or
directory as a share.
SNIA_ModifyExportedShare() Mandatory Modify the configuration of a FileShare element setup to export
a file or directory as a share.
ReleaseExportedShare() Mandatory Delete the FileShare element that is exporting a file or directory
as a share, thus releasing that element.
EXPERIMENTAL
SMI-S 1.6.1 Revision 6 SNIA Technical Position 95

96

File Export Manipulation Subprofile

EXPERIMENTAL

6 File Server Manipulation Subprofile

6.1 Synopsis
Profile Name: File Server Manipulation

Version: 1.5.0

Organization: SNIA

CIM schema version: 2.18

Central Class: FileServerConfigurationService
Scoping Class: ComputerSystem

6.2 Description

6.2.1 Overview

The File Server Manipulation Subprofile is a subprofile of autonomous profiles that support filesystems. It
makes use of elements of the filesystem subprofiles and supports creation and deletion of Virtual File
Servers and the modification of both virtual and non-virtual File Servers. A number of other profiles and
subprofiles also make use of elements of the filesystem subprofile and will be referred to in this
specification as “filesystem-related profiles” -- these include, but are not limited to, the filesystem
subprofile, the Filesystem Manipulation Subprofile, the File Export Subprofile, the NAS Head Profile, the
Self-Contained NAS Profile.

In this release of SMI-S, the autonomous profiles that use the File Server Manipulation Subprofile are the
NAS Head and Self-Contained NAS Profiles.

A File Server is a computer system that is attached to a network and provides resources to allow client
systems access to filesystem resources in the form of CIFS Shares and/or NFS Exports. A File Server
can be either a physical computer system or can be a virtual system that is hosted by a physical computer
system. A physical File Server can neither be created nor deleted but may have properties that can be
modified via configuration actions. A virtual File Server can be created, deleted, and modified via
configuration actions. The number of virtual File Servers that may be created is system dependent. This
profile models both physical and virtual File Servers. Extrinsic methods are provided for the creation and
deletion of virtual File Servers. Extrinsic methods are also provide for the modification of properties in
both physical and virtual File Servers.

This profile supports viewing and configuring the following property “areas” of a File Server:
* NFS Exports

* CIFS Shares

« Ethernet port properties including VLAN tagging.

* DNS Settings

* NIS Settings

A given implementation may choose to support a strict read only view of the File Server configuration or
may provide any combination of capabilities for modifying any and all of the above property areas for the
File Server.

File Server Manipulation Subprofile

Throughout this subprofile, the term File Server will be synonymous for “ComputerSystem with
Dedicated[]="FileServer”. The term virtual File Server describes a File Server that has its "USAGE”
property set to “Virtual File Server”. A non-virtual (physical) File Server cannot have its “USAGE” property
set to “Virtual File Server”.

The profile models a File Server from a “read only” perspective and a “configuration” perspective. The
read only perspective defines the objects and attributes that describe a File Server instance. The
configuration perspective defines the permitted actions on the File Server for creating, deleting, and
modifying instances. By providing these two perspectives, this profile takes the place of having two
separate profiles.

6.2.2 Instance Diagrams

6.2.2.1 File Server classes and associations (read-only view)

Figure 8: "File Server Classes and Associations (Read only view)" illustrates the constructs that are
involved in defining a File Server. This summarizes the “read only” view of the classes and associations
for this subprofile.

98

File Server Manipulation Subprofile

Figure 8 - File Server Classes and Associations (Read only view)

CIFSSettingData FileServer Manipulation
{Conditionah
Enatiled
Charset MFSSettingData
UseTCRORk (Conditional)
METBIQSMame Enabled
NP Charszet
AuthenticationDomain M airurTCP Connections MESSettingData DS EettingData
Authenticationi ode Part (Conditional) (Conditional)
| =zekarbaros f - f
-) MontFSuid Darraintarme Daorrainfame
gfnega;?gﬁ}#sgﬂ;mckmg MontFSgid ServerlP DS Serversddresses]
ClientsCannectAnamy mou sk gifgenﬁgﬁg\zﬁns
JoinDormai nAnony rmausky ¥
DarmainCantrollerllser
DarmainCantrollerP assword
CIFSDarrainCartraller
ConcreteComponent
(Conditional)
- - - — FileServerCapahilties IPInterfaceSettingData
FileSerrerCorfigurationCapabilities (Optional
FileSererSettingsSupported
SynchronouskethodsSupported]] CIFSSupported LPE};‘ddrs;Es'Sl'?fpe
Agynchronoush ethodsSupported]) NFSSupported | Subreti sk
MI3Supparted IPvEPrefixLen oth
Dk ESupported yLAMID
MHetworkddLARNSupported
FileServerSettings PP MTU
(Conditional) ElemertC apabilities ElemertSettingData
HostLookupOrdar e {Optionah
zerlogin Loakup Order ElernentCapabiliies et rksd LAR
MNFSCIFSAccountMapping {Conditional)
AccountMappingDomain VLAM
T FileSererConfigurationService TransmissionSke
ElemertSettingData

(Optional
SettingsDefineState Wl ermberOfCallection
{Conditional HostedSemice (Conditional)
o - L] L | o N L] L] - L

ComputerSy stem

— Dedicated="FileServer" Hostedt deassPaint IPProtac olEndpaint
; {Optional)
{Condtional

T & IPwAddress

Tr— ComponerntCs |PvBAddress

HostedDependency Corputersysem Subrnethl s sk

{Optionah PrefixLength

BindsTo |
ComputerSy stemn CihemetPort r(CDndltlnnal)
BmeElro TGP ProtocolEndpoint

4) FaortMumber
S\,redemDevice—‘

The File Server is modeled as a ComputerSystem whose Dedicated property is set to “FileServer” (16).
There are two types of File Servers supported: Virtual File Servers and non-Virtual File Servers (which
would be a physical File Server).

A Virtual File Server will have a HostedDependency association on another top level Computer System
such as a NAS Head or Self-Contained NAS for example. This top level ComputerSystem has a
HostedService association with FileServerConfigurationService, which provides the anchor point for the
FileServerConfigurationCapabilities and FileServerCapabilities. These capabilities identify the level of
support for File Servers by an implementation. For example, if the SynchronousMethodsSupported and

SMI-S 1.6.1 Revision 6 SNIA Technical Position 99

File Server Manipulation Subprofile

AsynchronousMethodsSupported are empty or NULL, then the implementation is a read-only
implementation of the profile.

A File Server can also be the top level ComputerSystem. In that case, the Dedicated array would contain
“FileServer” and either “NAS Head” or “Self-contained NAS”. In this case, the File Server would be
considered a non-Virtual File Server.

A Virtual File Server is hosted on a ComputerSystem. This may be a physical control unit or some other
hardware system that has the EthernetPort through which the File Server will serve files via CIFS and/or
NFS. The HostedDependency association is used to relate the Virtual File Server with the hosting
ComputerSystem.

A non-Virtual File Server shall not have a HostedDependency association with another ComputerSystem.
Instead, if the File Server ComputerSystem is not the top level system, then it shall have a ComponentCS
association with the top level ComputerSystem.

FileServerSettings captures the settings of the File Server. It has ConcreteComponent associations with
other setting data that capture the File Server’s settings for CIFS, NFS, NIS, DNS, and its IP Interface(s).
The minimal implementation only needs to support the File Server ComputerSystem because the
FileServerSettings is conditionally supported. The FileServerCapabilities contains several booleans that
tell a client the set of File Server related features that an implementation supports. The conditional
associations associated with FileServerSettings are based on the values for these booleans.

The File Server has two separate associations with FileServerSettings. SettingsDefineState is used to
represent the current state of the File Server’s setting data while ElementSettingData is used to capture
the setting data used to initially create or modify the File Server. In the read-only case, there will be no
ElementSettingData association.

NOTE There is only an ElementSettingData between the IPInterfaceSettingData and the I|PProtocolEndpoint. The
IPProtocolEndpoint has at most one IPInterfaceSettingData and it represents the settings used to initially create or modify the
IPProtocolEndpoint. Also note that multiple (CIFS or NFS) ProtocolEndpoints may be bound to a single IPProtocolEndpoint.

The NISSettingData and DNSSettingData if present are used to resolve hosts and user names when
authenticating hosts and users.

The implementation can provide either a read-only view of the File Servers or may provide extrinsics for
configuring existing and/or new File Servers.

A client can determine if a read-only implementation is provided by inspecting the two
FileServerConfigurationCapabilities arrays SynchronousMethodsSupported and
AsynchronousmethodsSupported. If they are both empty or null, then the implementation is read-only.

100

File Server Manipulation Subprofile

6.2.2.2 File Server Configuration classes and associations

‘_File Server Manipulation

File ServerConfigurationCapahbilities

MlZSettingData

SynchronoushkethodsSupported(]
Asynchronoush ethodsSupported(]
CanConfigureCIFS
CanConfigureMNFS
CanConfigureMIs CIFSSettingData
CanCaonfigureDMNS
CanCaonfigureh etwo rkyLAR

ElementCapahilities DS SettingData

FileServerCaonfigurationService

SettingsDefineCapahbilities

CreateFilesenver() YalueRole="Default”

M odifyFileServer()
DeleteFileServer()
AddIPInterface() MNFESSettingData
kM odifylPlnterface()
DieletelPinterfacel)

ElementZapahilities

- — IPInterface SettingData
FileZerverCapahbilities

CreateGoalSettings()
FileServerSettingsSuppaorted
CIFSSupported

Hosted Service

MFSZSupported
MISSupported FileServersettings
OMNSSupported
rMletworkLAMNSupported
I :
ComputerSystern ComputerSysterm
L A F—ComponentC3

Dedicated="FileServer"

Figure 9 - File Server Configuration classes and association

Figure 9: "File Server Configuration classes and association" illustrates the constructs that are involved
in configuring a File Server.

The top level ComputerSystem has a HostedService association with FileServerConfigurationService that
defines the extrinsics that can be used to manage a File Server. There are 3 methods for managing a File
Server and 3 methods for managing additional IPInterfaces for a given File Server.

FileServerConfigurationCapabilities lists the extrinsics that can be called synchronously or
asychronously. It is associated with the FileServerConfigurationService via the ElementCapabilities
association. It also has several boolean properties that inform clients if the implementation is able to
configure CIFS, NFS, NIS, DNS, and VLAN Tagging.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 101

File Server Manipulation Subprofile

In addition to the set of booleans that indicate the set of File Server features supported by the
implementation, FileServerCapabilities also provides one method CreateGoalSettings that can be used to
arrive at a set of viable SettingData instances that can be used for creating or modifying a File Server. It
also is associated with FileServerConfigurationService via ElementCapabilities. It may have associations
with SettingData instances that reflect the Default settings for the File Server. The
SettingsDefineCapabilities association (with ValueRole="Default”) is used to capture these default
SettingData instances.

Only Virtual File Servers can be created or deleted. Non-Virtual File Servers can have properties
modified, but cannot be deleted.

The extrinsic methods that create Virtual File Servers can take any combination of SettingData instances
that are used to instantiate the File Server. The implementation can remember these initial SettingData
instances via the ElementSettingData association between the File Server and FileServerSettings. After
the File Server is created, the SettingsDefineState association between the File Server and
FileServerSettings defines the actual settings of the File Server. Modifications to either a Virtual or non-
Virtual File Server will be reflected in the SettingData instances associated via the SettingsDefineState
association. A non-Virtual File Server may not have SettingData instances associated via the
ElementSettingData association.

The FileServerConfigurationCapabilities instance contains several booleans that indicate if certain
properties of the File Server can be configured or modified. For those properties that cannot be
configured/modified, attempting to instantiate or modify them via a creation/modification extrinsic shall be
an error.

If neither CIFSSettingData nor NFSSettingData are specified at creation time, and the implementation
supports either or both of them, then instances shall be created by the implementation based on the
settings in FileServerCapabilities. The “Enabled” property of the instances created will be set to “false”.

When a Virtual File Server is created or when it has additional IPInterfaces associated with it, an instance
of NetworkVLAN may be created if VLAN tagging should be associated with the IPInterface.
NetworkVLAN instances are associated with the specific IPProtocolEndpoint to capture the VLAN tag to
be used when doing I/O on that IP interface. The properties VLANid and MTU in IPInterfaceSettingData
specify the values to use when creating the NetworkVLAN instance.

6.2.3 Health and Fault Management Consideration

6.2.3.1 OperationalStatus for File Server ComputerSystem

This section describes the operational status for Virtual File Servers. Non-Virtual File Server operation
status information is covered in both the NAS Head and Self-Contained NAS Subprofiles.

A File Server’s operational status will be influenced by the operational status of the ComputerSystem that
is hosting it via HostedDependency. For example, if the hosting ComputerSystem is “Stopped”, then the
status of the File Server will be “Stopped”. Providers must take this into account when formulating the
status of the File Server.

Table 46 describes the operational status for File Server ComputerSystem.

102

File Server Manipulation Subprofile

Table 46 - Operational Status for File Server ComputerSystem

Primary OperationalStatus

Description

2“0OK” The File Server is running with good status

3 “Degraded” The File Server is operating in a degraded mode. This could be due to the
health state of some component of the ComputerSystem, due to load by other
applications, or due to the health state of backend or front-end network
interfaces.

4 “Stressed” The File Server resources are stressed

5 “Predictive Failure”

The File Server might fail because some resource or component is predicted
to fail

6 “Error” An error has occurred causing the File Server to become unavailable.
Operator intervention through SMI-S to restore the service may be possible.
6 “Error” An error has occurred causing the File Server to become unavailable.

Automated recovery may be in progress.

7 “Non-recoverable Error”

The File Server is not functioning. Operator intervention through SMI-S will not
fix the problem.

8 “Starting” The File Server is in process of initialization and is not yet available
operationally.

9 “Stopping” The File Server is in process of stopping, and is not available operationally.

10 “Stopped” The File Server cannot be accessed operationally because it is stopped -- if

this did not happened because of operator intervention or happened in real-
time, the OperationalStatus would have been “Lost Communication” rather
than “Stopped”.

11 “In Service”

The File Server is offline in maintenance mode, and is not available
operationally.

13 “Lost Communications”

The File Server cannot be accessed operationally -- if this happened because
of operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The File Server is stopped but in a manner that may have left it in an
inconsistent state.
15 “Dormant” The File Server is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error”

The File Server is in an error state, or may be OK but not accessible, because

a supporting entity is not accessible.

6.2.4 Cascading Considerations

Not Applicable.

6.3 Supported Profiles, Subprofiles, and Packages

Table 47 describes the supported profiles for File Server Manipulation.

Table 47 - Supported Profiles for File Server Manipulation

Profile Name Organization Version Requirement Description
Indication SNIA 1.5.0 Optional
Job Control SNIA 1.5.0 Optional

SMI-S 1.6.1 Revision 6

SNIA Technical Position

103

File Server Manipulation Subprofile

6.4 Methods of the Profile
This section describes each extrinsic method supported by this profile.

6.4.0.1 FileSystemCapabilities.CreateGoalSettings

This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
Settings.

The client shall pass six array elements in the TemplateGoalSettings parameter and six array elements in
the SupportedGoalSettings parameter. Each array element represents a configurable aspect of a
FileServer. A given array element in index “y” in TemplateGoalSettings will be of the same class/type as
that in array element in index “y” in SupportedGoalSettings. As each array element in both parameters
takes an EmbeddedlInstance, this implies that they do not exist in the provider’'s implementation but are
the responsibility of the client to create and manage.

Any or all of the TemplateGoalSetting array elements may be the empty string to represent a NULL entry.
This method will return a default CIM_Settings subclass object in SupportedGoalSettings corresponding
to each TemplateGoalSettings array element that is an empty string.

If any of the TemplateGoalSettings array elements specify values that cannot be supported, this method
shall return an appropriate error and should return a best match in the corresponding
SupportedGoalSettings array element.

When providing Embeddedinstances as input for any of the SupportedGoalSettings array elements, the
instance should specify a previously returned CIM_Setting that the implementation could support. On
output, this same array element specifies a new CIM_Setting that the implementation can support. If the
output array element is identical to the input array element, both client and implementation may conclude
that this is the best match for that particular SupportedGoalSettings array element. If the output array
elements do not match the corresponding TemplateGoalSettings array elements and if any of the input
SupportedGoalSettings array elements do not match the output array elements provided in
SupportedGoalSettings, then the method must return "Alternative Proposed”. If any of the output array
elements are empty strings (representing the fact that no valid CIM_Setting could be found), the method
must return an “Failed”.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. As stated above, to assist the implementation in tracking the progress of the negotiation, the
client may pass previously returned values of SupportedGoalSettings array elements as new input values
of SupportedGoalSettings. The implementation may determine that a step has not resulted in progress if
the input and output values of any SupportedGoalSettings array elements are the same. A client may
infer from the same result that the TemplateGoalSettings array element(s) must be modified.

The array elements in TemplateGoalSettings and SupportedGoalSettings shall have the index -
Embeddedinstance mappings shown in Table 48.

104

File Server Manipulation Subprofile

Table 48 - Array Element Mappings for TemplateGoalSettings and SupportedGoalSettings

Array Indice EmbeddedInstance
0 SNIA_FileServerSettings
1 SNIA_IPInterfaceSettingData
2 SNIA_CIFSSettingData
3 SNIA_NFSSettingData
4 SNIA_NISSettingData
5 CIM_DNSSettingData

Table 49 details of the method signature and return results.

Table 49 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string This contains an array of 6 elements, each of which being an
EmbeddedInstance of a CIM_Setting subclass.

Each of the array elements shall contain either an empty string to
represent a “NULL” entry, or shall contain an EmbeddedInstance.

Each array element contains a specific CIM_Setting subclass as
follows:

0: EmbeddedIinstance ("SNIA_FileServerSettings")

1: Embeddedinstance ("SNIA_IPInterfaceSettingData")
2: Embeddedinstance ("SNIA_CIFSSettingData")

3: EmbeddedIinstance ("SNIA_NFSSettingData")

4: Embeddedinstance ("SNIA_NISSettingData")

5: Embeddedinstance ("CIM_DNSSettingData")

SupportedGoalSettings|[] INOUT string This contains an array of 6 elements, each of which being an
EmbeddedIinstance of a CIM_Setting subclass.

On input, each of the array elements shall contain an either an
empty string to represent a “NULL” entry, or shall contain an
Embeddedinstance. If it contains an EmbeddedInstance, then this
instance specifies a previously returned CIM_Setting that the
implementation could support. On output, it specifies a new
CIM_Setting that the implementation can support.

Each array element contains a specific CIM_Setting subclass as
follows:

0: EmbeddedInstance ("SNIA_FileServerSettings")

1: Embeddedinstance ("SNIA_IPInterfaceSettingData")
2: Embeddedinstance ("SNIA_CIFSSettingData")

3: EmbeddedIinstance ("SNIA_NFSSettingData")

4: Embeddedinstance ("SNIA_NISSettingData")

5: Embeddedinstance ("CIM_DNSSettingData")

Normal Return

SMI-S 1.6.1 Revision 6 SNIA Technical Position 105

File Server Manipulation Subprofile

Table 49 - Parameters for Extrinsic Method FileServerCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes

Status uint32 ValueMap{}, Values{}

"Success",

“Not Supported”,
“Unknown”,

"Failed",

"Timeout",

“Invalid Parameter”,
"Alternative Proposed"

Error Returns

Invalid Property Value OUT, CIM_Error A single named property of an instance parameter (either reference
Indication or embedded) has an invalid value

Invalid Combination of Values OuUT, CIM_Error An invalid combination of named properties of an instance
Indication parameter (either reference or embedded) has been requested.

6.4.0.2 Signature and Parameters of FileServerConfigurationService.CreateFileServer

This extrinsic creates a new FileServer. The method takes several “goal’” parameters that represent
different configurable aspects of the FileServer. Each of these parameters can be NULL, an empty string,
or will contain an EmbeddedInstance.

If a given parameter is NULL or an empty string, a default instance will be selected by the provider using
the corresponding element associated to the FileServerConfigurationService by the
DefaultElementCapabilities association. This element that is used will be returned in the parameter.

When creating a new FileServer, the client can decide to what degree the new FileServer will be
configured by providing the parameters of those aspects that should be configured. For example, to
create a FileServer with a minimum configuration, the client could provide just the ElementName. The
newly created FileServer will take on the configuration defaults as specified by the elements associated
with FileServerService via the SettingsDefineCapabilities association (with ValueRole="Default"). Later,
the client may modify any of these default settings via the ModifyFileServer and ModifylPInterface
methods.

When creating a new FileServer, the client may associate a single IP Interface with the FileServer. If a
client wishes to associate more than one IP Interface with the FileServer, the AddIPInterface method
should be used. It allows the client to specify the additional IP information, Hosting ComputerSystem, and
EthernetPort for the new IP Interface.

A client may change an existing IP Interface by using the ModifylPInterface method. It allows the client to
modify the IP Interface, Hosting ComputerSystem, and/or EtheretPort.

Table 50 details the parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer.

Table 50 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes

ElementName IN string An end user relevant name for the File Server being created.
The value shall be stored in the 'ElementName' property for the
created element. This parameter shall not be NULL or the
empty string.

Job OUT, REF CIM_Concrete | Reference to the job (may be null if job completed).
Job

106

File Server Manipulation Subprofile

Table 50 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name

Qualifier

Type

Description & Notes

TheElement

OUT, REF

CIM_Compute
rSystem

The newly created FileServer.

FileServerSettings

IN, OUT, El,
NULL allowed

string

Embeddedinstance ("SNIA_FileServerSettings")
The FileServerSettings for the newly created FileServer.

If NULL or the empty string, a default FileServerSettings shall
be used and returned on output.

IPInterfaceSettingData

IN,OUT, El,
NULL allowed

string

Embeddedinstance ("CIM_IPInterfaceSettingData")

The IPInterfaceSettingData that specifies the IP Interface that
the FileServer will use for servicing all CIFS and NFS requests.

If NULL or the empty string, a default IPInterfaceSettingData
shall be used and returned on output.

CIFSSettingData

IN,OUT, El,
NULL allowed

string

Embeddedinstance ("SNIA_CIFSSettingData")

The CIFSSettingData that specifies the CIFS settings for the
FileServer being created.

If this is NULL, the FileServer shall not have CIFS enabled and
the resulting CIFSSettingData instance created shall have its
“Enabled” property set to false. The CIFSSettingData instance
will be returned on output.

NFSSettingData

IN,OUT, El,
NULL allowed

string

EmbeddedIinstance ("SNIA_NFSSettingData")

The NFSSettingData that specifies the NFS settings for the
FileServer being created.

If this is NULL, the FileServer shall not have NFS enabled and
the resulting NFSSettingData instance created shall have its
“Enabled” property set to false. The NFSSettingData instance
will be returned on output.

DNSSettingData

IN, El, NULL
allowed,

string

Embeddedinstance ("CIM_DNSSettingData")

The DNSSettingData that specifies the DNS settings for the
FileServer being created.

If this is NULL, the FileServer shall not have access to a DNS
server and a DNSSettingData instance shall not be instantiated
for the FileServer.

NISSettingData

IN, EI, NULL
allowed,

string

EmbeddedInstance ("CIM_DNSSettingData")

The NISSettingData that specifies the NIS settings for the
FileServer being created.

If this is NULL, the FileServer shall not have access to a NIS
server and a NISSettingData instance shall not be instantiated
for the FileServer.

NASComputerSystem

IN, REF

CIM_Compute
rSystem

Either the NAS Head or Self-contained NAS system that the
FileServer shall be a component system of.

HostingComputerSystem

IN, REF

CIM_Compute
rSystem

The HostingComputerSystem identifies the ComputerSystem
that will host the FileServer.

EthernetPort

IN, REF

CIM_Ethernet
Port

The EthernetPort identifies the hardware port that the File
Server will use for IP mount requests.

Normal Return

SMI-S 1.6.1 Revision 6

SNIA Technical Position 107

File Server Manipulation Subprofile

Table 50 - Parameters for Extrinsic Method FileServerConfigurationService.CreateFileServer

Parameter Name Qualifier Type Description & Notes
Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property Value OuUT, CIM_Error A single named property of an instance parameter (either
Indication reference or embedded) has an invalid value
Invalid Combination of Values OUT, CIM_Error An invalid combination of named properties of an instance
Indication parameter (either reference or embedded) has been requested.

6.4.0.3

Signature and Parameters of FileServerConfigurationService.ModifyFileServer

This extrinsic modifies the settings for an existing FileServer. All settings except IPInterfaceSettingData,
Hosting ComputerSystem, and EthernetPort may be modified. To modify the IPInterfaceSettingData,

Hosting ComputerSystem, and/or EthernetPort properties, use the ModifylPInterface extrinsic.

Table 51 details the parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer.

Table 51 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter Name Qualifier Type Description & Notes
FileServer IN,OUT,REF CIM_ComputerS | The FileServer that is to be modified.
ystem
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b
ElementName IN, NULL string An end user relevant name for the File Server being modified.
allowed
FileServerSettings IN, NULL string Embeddedinstance ("SNIA_FileServerSettings")
allowed
If non-NULL, this specifies the new FileServerSettings for the
FileServer
If NULL, then the FileServerSettings of the FileServer shall not
be modified.
CIFSSettingData IN, NULL string Embeddedinstance ("SNIA_CIFSSettingData")
allowed, . s .
IF non-NULL, this specifies the new CIFS settings for the
FileServer. If the “Enabled” property set to false, CIFS will be
disabled for the FileServer.
If NULL, then the CIFS setting of the FileServer shall not be
modified.
NFSSettingData IN, NULL string Embeddedinstance ("SNIA_NFSSettingData")
allowed, . . .
IF non-NULL, this specifies the new NFS settings for the
FileServer. If the “Enabled” property set to false, NFS will be
disabled for the FileServer.
If NULL, then the NFS setting of the FileServer shall not be
modified.

108

File Server Manipulation Subprofile

Table 51 - Parameters for Extrinsic Method FileServerConfigurationService.ModifyFileServer

Parameter Name Qualifier Type Description & Notes
DNSSettingData IN, NULL string EmbeddedInstance ("CIM_DNSSettingData")
allowed, . - .
IF non-NULL, this specifies the new DNS settings for the
FileServer.
If NULL, then the DNS setting of the FileServer shall not be
modified.
NISSettingData IN, NULL string Embeddedinstance ("CIM_DNSSettingData")
allowed, . . .
IF non-NULL, this specifies the new NIS settings for the
FileServer.
If NULL, then the NIS setting of the FileServer shall not be
modified.
Normal Return
Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value
Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance
of Values parameter (either reference or embedded) has been requested.
CannotModify OUT, Indication CIM_Error The FileServer is in a state in which it cannot be modified.
6.4.0.4 Signature and Parameters of FileServerConfigurationService.DeleteFileServer

This extrinsics deletes an existing FileServer.

Table 52 describes the parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer.

Table 52 - Parameters for Extrinsic Method FileServerConfigurationService.DeleteFileServer

Parameter Qualifier Type Description & Notes
Name
FileServer IN,REF CIM_ComputerS | The FileServer that is to be deleted.
ystem
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).

b

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
CannotDelete OUT, Indication CIM_Error The FileServer is in a state in which it cannot be deleted.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

109

6.4.

0.5

File Server Manipulation Subprofile

Signature and Parameters of FileServerConfigurationService.AddIPInterface

This extrinsic adds a new IPInterface to an existing FileServer. The FileServer will respond to requests
issued to this new IP address. The number of IP addresses that a FileServer can respond on is system

dependent and the use of CreateGoalSettings to verify a new IP address is recommended.

Table 53 describes the parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface.

6.4.

Table 53 - Parameters for Extrinsic Method FileServerConfigurationService.AddIPInterface

rt

Parameter Qualifier Type Description & Notes
Name
FileServer IN,OUT,REF CIM_ComputerS | The FileServer to which the IPInterface will be added.
ystem
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b
IPInterfaceSettingDa | IN string EmbeddedInstance ("CIM_IPInterfaceSettingData")
ta
The IPInterfaceSettingData that specifies the settings of the IP
Interface to be added to the FileServer.
HostingComputerSy IN, REF CIM_ComputerS | The ComputerSystem that will host the File Server for the new
stem ystem IP Interface
EthernetPort IN, REF CIM_EthernetPo | The EthernetPort identifies the hardware port that the File

Server will use for mount requests on the new IPAddress.

Normal Return

of Values

Status uint32 "Job Completed with No Error",
“Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value
Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

parameter (either reference or embedded) has been requested.

0.6

Signature and Parameters of FileServerConfigurationService.ModifylPInterface
This extrinsic modifies an existing IPInterface associated with a FileServer. The IPInterfaceSettingData,

the Hosting ComputerSystem, and/or the EthernetPort may be modified.

Table

54

describes

the

FileServerConfigurationService.ModifylPInterface.

parameters

for Extrinsic

Table 54 - Parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface

Parameter Name Qualifier Type Description & Notes
FileServer IN,OUT,REF CIM_ComputerS | The FileServer from which the IPInterface will be modified.
ystem
IPInterfaceSettingData IN,REF SNIA_IPInterfac | The IPInterfaceSettingData that is to be modified.

eSettingData

modify.

110

Method

This is used to identify which IPInterfaceSettingData instance to

File Server Manipulation Subprofile

Table 54 - Parameters for Extrinsic Method FileServerConfigurationService.ModifylPInterface

Parameter Name Qualifier Type Description & Notes
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).
b
NewlPInterfaceSettingDa | IN, NULL string Embeddedinstance ("CIM_IPInterfaceSettingData")
ta allowed .)
If non-NULL, the IPInterfaceSettingData that will replace an
existing IPInterfaceSettingData instance in the FileServer.
If NULL, then the IPInterfaceSettingData will not be modified.
HostingComputerSystem | IN, REF, NULL CIM_ComputerS | If non-NULL, the new ComputerSystem that will host the
allowed ystem IPInterface.
If NULL, the current ComputerSystem hosting the IPInterface
will remain unchanged.
EthernetPort IN, REF, NULL CIM_EthernetPo | If non-NULL, the EthernetPort identifies the new hardware port
allowed rt for the IPInterface.

If NULL, the current EthernetPort setting will not be changed.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"
Error Returns
Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either

reference or embedded) has an invalid value

6.4.0.7 Signature and Parameters of FileServerConfigurationService.DeletelPInterface
This extrinsic deletes an existing IPInterface associated with a FileServer.

Table 55 describes the
FileServerConfigurationService.DeletelPInterface.

parameters for Extrinsic

Table 55 - Parameters for Extrinsic Method FileServerConfigurationService.DeletelPInterface

b

Parameter Qualifier Type Description & Notes
Name
FileServer IN,OUT,REF CIM_ComputerS | The FileServer from which the IPInterface will be deleted.
ystem
IPInterfaceSettingDa | IN,REF SNIA_IPInterfac | The IPInterfaceSettingData that is to be deleted.
ta eSettingData
g This is used to identify which IPInterfaceSettingData instance to
delete from the FileServer.
Job OUT, REF CIM_ConcreteJo | Reference to the job (may be null if job completed).

Normal Return

Status

uint32

"Job Completed with No Error",
"Failed",

"Method Parameters Checked - Job Started"

SMI-S 1.6.1 Revision 6

SNIA Technical Position

Method

111

File Server Manipulation Subprofile

Table 55 - Parameters for Extrinsic Method FileServerConfigurationService.DeletelPInterface

Parameter Qualifier Type Description & Notes
Name
Error Returns
Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value

6.5

Client Considerations and Recipes

Not defined in this standard. (Under consideration for a future standard.)

6.6 Registered Name and Version

File Server Manipulation version 1.6.1 (Component Profile)

CIM Schema Version: 2.18

6.7 CIM Elements

Table 56 describes the CIM elements for File Server Manipulation.

Table 56 - CIM Elements for File Server Manipulation

Element Name

Requirement

Description

FileServer to FileServerSettings)

6.7.1 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: CIFS shares are supported by

CIFSSettingData) the provider. Represents the association between a
FileServerSettings and CIFSSettingData.

6.7.2 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: The DNSSettingData is

DNSSettingData) supported by the provider. Represents the association
between a FileServerSettings and DNSSettingData.

6.7.3 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: There is an instance of

IPInterfaceSettingData) IPInterfaceSettingData. Represents the association
between a FileServerSettings and IPInterfaceSettingData.

6.7.4 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: NFS Exports are supported by

NFSSettingData) the provider. Represents the association between a
FileServerSettings and NFSSettingData.

6.7.5 CIM_ConcreteComponent (FileServerSettings to Conditional Conditional requirement: NIS (Network Information

NISSettingData) System)is supported by the provider. Represents the
association between a FileServerSettings and
NISSettingData.

6.7.6 CIM_DNSSettingData Conditional Conditional requirement: The DNSSettingData is
supported by the provider. This element represents the
DNS setting data to be used by a file server.

6.7.7 CIM_ElementCapabilities Mandatory This associates the File Server Configuration Service to

(FileServerConfigurationService to the Capabilities element that represents the capabilities

FileServerCapabilities) supported by all File Servers.

6.7.8 CIM_ElementCapabilities Mandatory This associates the File Server Configuration Service to

(FileServerConfigurationService to the ConfigurationCapabilities element that represents the

FileServerConfigurationCapabilities) capabilities that it supports.

6.7.9 CIM_ElementSettingData (ComputerSystem Optional Associates a File Server with the FileServerSettings that

were used to initially create the File Server.

112

File Server Manipulation Subprofile

Table 56 - CIM Elements for File Server Manipulation

Element Name

Requirement

Description

6.7.10 CIM_ElementSettingData (IPInterfaceSettingData
to IPProtocolEndpoint)

Optional

The IPProtocolEndpoint associated with the
IPInterfaceSettingData.

6.7.11 CIM_HostedDependency

Optional

Associates a Virtual File Server to the Computer System
hosting it. This association will not exist for non-Virtual
File Servers.

6.7.12 CIM_HostedService (Hosting Computer System to
FileServerConfigurationService)

Mandatory

Associates the FileServerConfigurationService with the
hosting computer system.

6.7.13 CIM_MemberOfCollection (The
IPProtocolEndpoint to NetworkVLAN.)

Conditional

Conditional requirement: The NetworkVLAN is supported
by the provider. Associates an IPProtocolEndpoint to
NetworkVLAN.

6.7.14 CIM_NetworkVLAN

Conditional

Conditional requirement: The NetworkVLAN is supported
by the provider. This element represents the virtual LAN
(VLAN) tag settings for an IP interface. In the context of a
file server, it represents the VLAN information.

6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates CIFSSettingData with
FileServerCapabilities.

6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates DNSSSettingData
with FileServerCapabilities.

6.7.17 CIM_SettingsDefineCapabilities
(FileServerSettings)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates FileServerSettings
with FileServerCapabilities.

6.7.18 CIM_SettingsDefineCapabilities
(IPInterfaceSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates
IPInterfaceSettingData with FileServerCapabilities.

6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates NFSSSettingData
with FileServerCapabilities.

6.7.20 CIM_SettingsDefineCapabilities (NISSettingData)

Conditional

Conditional requirement: Synchronous creation of a
FileServer is supported or Asynchronous creation of a
FileServer is supported. Associates NISSSettingData with
FileServerCapabilities.

6.7.21 CIM_SettingsDefineState (ComputerSystem
FileServer to FileServerSettings)

Conditional

Conditional requirement: The FileServer
ComputerSystem has a FileServerSettings associated
with it. The FileServer's state represented by its
FileServerSettings.

6.7.22 SNIA_CIFSSettingData

Conditional

Conditional requirement: CIFS shares are supported by
the provider. This class contains the CIFS settings for the
File Server.

6.7.23 SNIA_FileServerCapabilities

Mandatory

The capabilities of the File Server.

6.7.24 SNIA_FileServerConfigurationCapabilities

Mandatory

This element represents the management Capabilities of
the File Server Configuration Service. If the two arrays of
extrinsic methods (SynchronousMethodsSupported and
AsynchronousMethodsSupported) are empty, then the
implementation is readonly.

SMI-S 1.6.1 Revision 6

SNIA Technical Position 113

File Server Manipulation Subprofile

Table 56 - CIM Elements for File Server Manipulation

Element Name Requirement Description

6.7.25 SNIA_FileServerConfigurationService Mandatory The File Server Configuration Service provides the
methods to manipulate File Servers.

6.7.26 SNIA_FileServerSettings Conditional Conditional requirement: The FileServer
ComputerSystem has a FileServerSettings associated
with it. This class contains the settings for the File Server.

6.7.27 SNIA_IPInterfaceSettingData Optional This class contains the settings for single IP interface.

6.7.28 SNIA_NFSSettingData Conditional Conditional requirement: NFS Exports are supported by
the provider. This class contains the NFS settings for the
File Server.

6.7.29 SNIA_NISSettingData Conditional Conditional requirement: NIS (Network Information

System)is supported by the provider. This class contains
the NIS settings for the File Server.

SELECT * FROM CIM_InstCreation WHERE Optional CQL -Creation of a File Server element.
Sourcelnstance ISA CIM_Computer_System AND ANY
Sourcelnstance.CIM_Computer_System::Dedicated[*] =
16

SELECT * FROM CIM_InstDeletion WHERE Optional CQL -Deletion of a File Server element.
Sourcelnstance ISA CIM_Computer_System AND ANY
Sourcelnstance.CIM_Computer_System::Dedicated[*] =
16

6.7.1 CIM_ConcreteComponent (FileServerSettings to CIFSSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: CIFS shares are supported by the provider.

Table 57 describes class CIM_ConcreteComponent (FileServerSettings to CIFSSettingData).

Table 57 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to CIFS-
SettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The CIFSSettingData.

6.7.2 CIM_ConcreteComponent (FileServerSettings to DNSSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: The DNSSettingData is supported by the provider.

114

File Server Manipulation Subprofile

Table 58 describes class CIM_ConcreteComponent (FileServerSettings to DNSSettingData).

Table 58 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to DNS-
SettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The DNSSettingData.

6.7.3 CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: There is an instance of IPInterfaceSettingData.

Table 59 describes class CIM_ConcreteComponent (FileServerSettings to IPInterfaceSettingData).

Table 59 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to IPInter-
faceSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The IPInterfaceSettingData.

6.7.4 CIM_ConcreteComponent (FileServerSettings to NFSSettingData)

Created By: External

Modified By: Static

Deleted By: External

Requirement: NFS Exports are supported by the provider.

Table 60 describes class CIM_ConcreteComponent (FileServerSettings to NFSSettingData).

Table 60 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NFS-
SettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The NFSSettingData.

6.7.5 CIM_ConcreteComponent (FileServerSettings to NISSettingData)

Created By: External
Modified By: Static
Deleted By: External

SMI-S 1.6.1 Revision 6 SNIA Technical Position 115

File Server Manipulation Subprofile

Requirement: NIS (Network Information System)is supported by the provider.

Table 61 describes class CIM_ConcreteComponent (FileServerSettings to NISSettingData).

Table 61 - SMI Referenced Properties/Methods for CIM_ConcreteComponent (FileServerSettings to NISSet-

tingData)
Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerSettings.
PartComponent Mandatory The NISSettingData.

6.7.6 CIM_DNSSettingData

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: The DNSSettingData is supported by the provider.

Table 62 describes class CIM_DNSSettingData.

Table 62 - SMI Referenced Properties/Methods for CIM_DNSSettingData

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the DNSSettingData.

DomainName Mandatory The DNS domain to use for looking up addresses.

DNSServerAddresses Mandatory The addresses of DNS servers to contact. The array specifies the order in
which the DNS servers will be contacted.

6.7.7 CIM_ElementCapabilities (FileServerConfigurationService to FileServerCapabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 63 describes class CIM_ElementCapabilities (FileServerConfigurationService to
FileServerCapabilities).

Table 63 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-
vice to FileServerCapabilities)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The File Server Configuration Service.
Capabilities Mandatory The File Server Capabilties element.

116

File Server Manipulation Subprofile

6.7.8 CIM_ElementCapabilities (FileServerConfigurationService to FileServerConfigurationCapa-
bilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 64 describes class CIM_ElementCapabilities (FileServerConfigurationService to
FileServerConfigurationCapabilities).

Table 64 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FileServerConfigurationSer-
vice to FileServerConfigurationCapabilities)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The File Server Configuration Service.
Capabilities Mandatory The File Server Configuration Capabilties element.

6.7.9 CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 65 describes class CIM_ElementSettingData (ComputerSystem FileServer to FileServerSettings).

Table 65 - SMI Referenced Properties/Methods for CIM_ElementSettingData (ComputerSystem FileServer
to FileServerSettings)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The File Server ComputerSystem.
SettingData Mandatory The FileServerSettings.

6.7.10 CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

SMI-S 1.6.1 Revision 6 SNIA Technical Position 117

File Server Manipulation Subprofile

Table 66 describes class CIM_ElementSettingData (IPInterfaceSettingData to IPProtocolEndpoint).

Table 66 - SMI Referenced Properties/Methods for CIM_ElementSettingData (IPInterfaceSettingData to
IPProtocolEndpoint)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The IPProtocolEndpoint.
SettingData Mandatory The IPInterfaceSettingData.

6.7.11 CIM_HostedDependency

Created By: Extrinsic: CreateFileServer
Modified By: Static

Deleted By: Extrinsic: DeleteFileServer
Requirement: Optional

Table 67 describes class CIM_HostedDependency.

Table 67 - SMI Referenced Properties/Methods for CIM_HostedDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory The Virtual File Server ComputerSystem. A Virtual File Server
ComputerSystem is a File Server and shall have Dedicated=16 (File
Server).

Antecedent Mandatory The hosting ComputerSystem. The hosting ComputerSystem may be the
top level NAS ComputerSystem or an Multiple Computer System (non-top
level) system.

6.7.12 CIM_HostedService (Hosting Computer System to FileServerConfigurationService)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 68 describes class CIM_HostedService (Hosting Computer System to
FileServerConfigurationService).

Table 68 - SMI Referenced Properties/Methods for CIM_HostedService (Hosting Computer System to File-
ServerConfigurationService)

Properties Flags Requirement Description & Notes
Dependent Mandatory The File Server Configuration Service.
Antecedent Mandatory The hosting ComputerSystem.

6.7.13 CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.)

118

File Server Manipulation Subprofile

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: The NetworkVLAN is supported by the provider.

Table 69 describes class CIM_MemberOfCollection (The IPProtocolEndpoint to NetworkVLAN.).

Table 69 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (The IPProtocolEndpoint to
NetworkVLAN.)

Properties Flags Requirement Description & Notes
Member Mandatory The IPProtocolEndpoint.
Collection Mandatory The NetworkVLAN.

6.7.14 CIM_NetworkVLAN

Created By: Extrinsic
Modified By: Extrinsic
Deleted By: Extrinsic
Requirement: The NetworkVLAN is supported by the provider.

Table 70 describes class CIM_NetworkVLAN.

Table 70 - SMI Referenced Properties/Methods for CIM_NetworkVLAN

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opague, unique id for the NetworkVLAN.

VLANId Mandatory The VLAN id that is to be associated with an IP interface. The id shall be
included in all IP packets being sent through an IP interface.

TransmissionSize Mandatory The maximum transmission unit size that is associated with an IP
Interface.

6.7.15 CIM_SettingsDefineCapabilities (CIFSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 119

File Server Manipulation Subprofile

Table 71 describes class CIM_SettingsDefineCapabilities (CIFSettingData).

Table 71 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (CIFSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The CIFSSettingData reference.

6.7.16 CIM_SettingsDefineCapabilities (DNSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 72 describes class CIM_SettingsDefineCapabilities (DNSSettingData).

Table 72 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (DNSSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The CIFSSettingData reference.

6.7.17 CIM_SettingsDefineCapabilities (FileServerSettings)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 73 describes class CIM_SettingsDefineCapabilities (FileServerSettings).

Table 73 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (FileServerSettings)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The FileServerSetting reference.

6.7.18 CIM_SettingsDefineCapabilities (IPInterfaceSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

120

File Server Manipulation Subprofile

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 74 describes class CIM_SettingsDefineCapabilities (IPInterfaceSettingData).

Table 74 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (IPInterfaceSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The IPInterfaceSettingData reference.

6.7.19 CIM_SettingsDefineCapabilities (NFSSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 75 describes class CIM_SettingsDefineCapabilities (NFSSettingData).

Table 75 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NFSSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The NFSSettingData reference.

6.7.20 CIM_SettingsDefineCapabilities (NISSettingData)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Synchronous creation of a FileServer is supported or Asynchronous creation of a
FileServer is supported.

Table 76 describes class CIM_SettingsDefineCapabilities (NISSettingData).

Table 76 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (NISSettingData)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The FileServerCapabilities reference.
PartComponent Mandatory The NISSSettingData reference.

6.7.21 CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings)

Created By: External

SMI-S 1.6.1 Revision 6 SNIA Technical Position 121

File Server Manipulation Subprofile

Modified By: Static
Deleted By: External
Requirement: The FileServer ComputerSystem has a FileServerSettings associated with it.

Table 77 describes class CIM_SettingsDefineState (ComputerSystem FileServer to FileServerSettings).

Table 77 - SMI Referenced Properties/Methods for CIM_SettingsDefineState (ComputerSystem FileServer
to FileServerSettings)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The File Server ComputerSystem.
SettingData Mandatory The FileServerSettings.

6.7.22 SNIA_CIFSSettingData

Created By: Extrinsic: CreateFileServer

Modified By: Extrinsic: ModifyCIFS

Deleted By: Extrinsic: DeleteFileServer

Requirement: CIFS shares are supported by the provider.

Table 78 describes class SNIA_CIFSSettingData.

Table 78 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the CIFSSettingData.

Enabled Mandatory This boolean indicates if CIFS is enabled on the File Server.

Charset Optional Specifies the character set to be used by the File Server when servicing

CIFS Shares. The values are 0|1|2 ('Standard-ASCII'|'IBM-437','BM-850').
If absent, then "Standard-ASCII" is assumed.

UseTCPOnly Optional This boolean if set to ‘true' allows only TCP transport connections. If
‘false’, then both TCP and Netbios transport connections are allowed. The
default value is 'false'.

NETBIOSName Optional The NetBIOS name of the FileServer.
WINSIP Optional An array of IP Addresses of Windows Internet Name Servers.
AuthenticationDomain Mandatory Name of CIFS domain to which the File Server is joined. Represents either

the NTLM domain or the ActiveDirectory domain.

AuthenticationMode Mandatory Specifies if authentication is to be performed against either NTLM or
ActiveDirectory domains. Valid values are 'NTLM' or 'ActiveDirectory'.

UseKerberos Optional Determines how ActiveDirectory authentication is performed. If ‘true’, limit
ActiveDirectory authentication to use Kerberos. Otherwise do not limit to
Kerberos only.

UseOpportunisticLocking Optional This boolean determines if opportunistic locking should be used by CIFS
FileServer. If 'true’, enable opportunistic locking.

SMBSigningOnly Optional This boolean determines if CIFS clients are allowed to connect if they use
SMB signing for security. If 'true', then require clients to use SMB signing.
Otherwise, do not require.

122

File Server Manipulation Subprofile

Table 78 - SMI Referenced Properties/Methods for SNIA_CIFSSettingData

Properties Flags Requirement Description & Notes
ClientsConnectAnonymou Optional This boolean dictates if the FileServer joins the CIFS Domain Controller
sly anonymously or if a user and password are required. If 'true’, then join

anonymously. Otherwise, use DomainControllerUser and
DomainControllerPassword to join.

JoinDomainAnonymously Optional This boolean dictates if the FileServer joins the CIFS Domain Controller
anonymously or if a user and password are required. If 'true’, then join
anonymously. Otherwise, use DomainControllerUser and
DomainControllerPassword to join.

DomainControllerUser Optional User name to use when the Fileserver joins the CIFS Domain Controller.
DomainControllerPasswor Optional Password to use when joining the CIFS Domain Controller.

d

CIFSDomainController Optional Name of the CIFS Domain Controller.

CASupported Optional This property applies to CIFS/SMB shares only. If it is true, it means that

"Continuous Availability" is supported for CIFS shares. Continuous
Availability (CA) - Client/Server mediated recovery from network and
server failure with application transparency. Like Multi-Channel 10, this
feature is somewhat analogous to capabilities available in NFSv4.

MultiChannelSupported Optional This property applies to CIFS/SMB protocol only. If it is true, it means that
"Multi-Channel" feature is supported for CIFS/SMB. Multi-Channel (MPIO)
- Provides the ability to access multiple Ethernet links as a logical pool
supporting multiple SMB sessions and providing native bandwidth
aggregation, link failover, MPIO intelligence. This feature enables the use
of multiple physical network interfaces in an SMB 2.2 client and server.
This enhancement in SMB 2.2 provides capabilities analogous to those
currently available in NFSvA4.

ProtocolVersions Optional An array of strings listing the versions of the CIFS file sharing protocol
supported by the File Server.

6.7.23 SNIA_FileServerCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 79 describes class SNIA_FileServerCapabilities.

Table 79 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the FileServerCapabilities element of a File
Server Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.
FileServerSettingsSupport Mandatory Indicates if FileServerSettings is supported for the FileServer.

ed FileServerSettings will be supported if the value is "true".

CIFSSupported Mandatory Indicates if CIFS Shares are supported by the FileServer. CIFS Shares will

be supported if the value is "true".

SMI-S 1.6.1 Revision 6 SNIA Technical Position 123

File Server Manipulation Subprofile

Table 79 - SMI Referenced Properties/Methods for SNIA_FileServerCapabilities

Properties Flags Requirement Description & Notes

NFSSupported Mandatory Indicates if NFS Exports are supported by the FileServer. NFS Exports will
be supported if the value is "true".

NISSupported Mandatory Indicates if NIS (Network Information System) is supported by the
FileServer. NIS will be supported if the value is "true".

DNSSupported Mandatory Indicates if DNS is supported by the FileServer. DNS will be supported if
the value is "true”.

NetworkVLANSupported Mandatory Indicates if network VLAN Tagging is supported by the FileServer. VLAN
tagging will be supported if the value is "true".

ScaleOutSupported Mandatory Indicates if ScaleOut is supported by the FileServer. ScaleOut will be
supported if the value is "true".

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of Settings that are a
supported variant of the Settings passed as embedded instances via IN
parameters. The method returns the supported Settings in OUT
parameters, each containing an array of embedded instances. Many of the
IN parameters are optional, and if left NULL result in NULL being returned
in the corresponding OUT parameters.

6.7.24 SNIA_FileServerConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 80 describes class SNIA_FileServerConfigurationCapabilities.

Table 80 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for this element representing the capabilities of a
File Server Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.
SynchronousMethodsSupp | N Mandatory The Service supports a number of extrinsic methods -- this property
orted identifies the ones that can be called synchronously. Note: A supported

method shall be listed in this property or in the
AsynchronousMethodsSupported property or both.

AsynchronousMethodsSup | N Mandatory The Service supports a number of extrinsic methods -- this property
ported identifies the ones that can be called asynchronously. Note: A supported
method shall be listed in this property or in the
SynchronousMethodsSupported property or both.

CanConfigureCIFS Mandatory Indicates if the CIFS Settings can be configured. The settings can be
configured if the value is "true".

CanConfigureNFS Mandatory Indicates if the NFS Settings can be configured. The settings can be
configured if the value is "true".

CanConfigureNIS Mandatory Indicates if the NIS (Network Information Service) Settings can be
configured. The settings can be configured if the value is "true".

124

File Server Manipulation Subprofile

Table 80 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationCapabilities

Properties Flags Requirement Description & Notes

CanConfigureDNS Mandatory Indicates if the DNS Settings can be configured. The settings can be
configured if the value is "true".

CanConfigureNetworkVLS Mandatory Indicates if the network VLAN Tagging Settings can be configured. The

N settings can be configured if the value is "true".

6.7.25 SNIA_FileServerConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 81 describes class SNIA_FileServerConfigurationService.

Table 81 - SMI Referenced Properties/Methods for SNIA_FileServerConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClassNam Mandatory Key.

e

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key.

CreateFileServer() Mandatory Create a new instance of File Server.

ModifyFileServer() Mandatory Modify an existing File Server. This is used to modify FileServerSettings,
CIFSSettingData, NFSSettingData, DNSSettingData, or NISSettingData.

DeleteFileServer() Mandatory Delete an existing File Server.

AddIPInterface() Optional Add a new IPInterface to an existing File Server.

ModifylPInterface() Optional Modify an IPInterface associated with an existing File Server.

DeletelPInterface() Optional Delete an IPInterface associated with an existing File Server.

6.7.26 SNIA_FileServerSettings

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: The FileServer ComputerSystem has a FileServerSettings associated with it.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 125

File Server Manipulation Subprofile

Table 82 describes class SNIA_FileServerSettings.

Table 82 - SMI Referenced Properties/Methods for SNIA_FileServerSettings

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the FileServerSettings.

HostLookupOrder Optional Specifies the services and order to use them for host lookup. An array of
elements with these values: 'DNS','NIS', 'None', or 'UploadedFile".
'UploadedFile’ refers to the uploaded file of host names.

UserLoginLookupOrder Optional Specifies the services and order to use them for user lookup. An array of
elements with these values: 'DNS','NIS', 'None', or 'UploadedFile'. file'
'UploadedFile' refers to the uploaded file of user passwords.

NFSCIFSAccountMapping Optional Controls the mapping of accounts between NFS and CIFS. Valid values
are 'None', 'All', or 'Domain’. If ‘None', then no account mapping is
performed. If 'All', then mapping is done for all CIFS domains. If 'Domain’,
then mapping is done for the users in the CIFS domain specified in
AccountMappingDomain.

AccountMappingDomain Optional If NFSCIFSAccountMapping = ‘Domain’, then this property will contain the

name of the domain to use for NFS to CIFS account mapping.

6.7.27 SNIA_IPInterfaceSettingData

Created By: Extrinsic: CreateFileServer | AddIPInterface
Modified By: Extrinsic: ModifylPInterface
Deleted By: Extrinsic: DeleteFileServer | DeletelPInterface
Requirement: Optional

Table 83 describes class SNIA_IPInterfaceSettingData.

Table 83 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData

Properties Flags Requirement Description & Notes

IPAddress Mandatory The IPAddress that will be used by the File Server. This can be either an
IPv4 or IPv6 address.

AddressType Mandatory The IPAddress format. This can be either "IPv4" or "IPv6".

SubnetMask Mandatory The subnet mask that will be used by the File Server.

IPv6PrefixLength Conditional Conditional requirement: Required if the array property
SNIA_IPInterfaceSettingData.AddressType contains the string \IPv6\".'If
AddressType specifies IPv6, then this specifies the prefix length for the
IPv6 address in IPAddress.

VLANId Optional If present contains the ID of the VLAN that this IP setting will be
associated with.

MTU Optional If present contains the maximum transmission unit to be used for this IP
setting. If not present, then the default of 1500 will be used.

RSSCapable Optional This property is used to indicate whether this IPInterface is Receive-side
Scaling (RSS) capable or not. Receive-side Scaling (RSS)- Receive-Side
Scaling resolves the single-processor bottleneck by allowing the receive
side network load from a network adapter to be shared across multiple
processors. RSS enables packet receive-processing to scale with the
number of available processors.

126

File Server Manipulation Subprofile

Table 83 - SMI Referenced Properties/Methods for SNIA_IPInterfaceSettingData

Properties Flags Requirement Description & Notes

RDMACapable Optional This property is used to indicate whether this IPInterface is Remote Direct
Memory Access (RDMA) capable or not. Remote Direct Memory Access
Protocol (RDMA) - Accelerated 1/O delivery model which works by
allowing application software to bypass most layers of software and
communicate directly with the hardware.

LinkSpeed Optional Speed of this IPInterface in bits per second.

6.7.28 SNIA_NFSSettingData

Created By: Extrinsic: CreateFileServer

Modified By: Extrinsic: ModifyNFS

Deleted By: Extrinsic: DeleteFileServer

Requirement: NFS Exports are supported by the provider.

Table 84 describes class SNIA_NFSSettingData.

Table 84 - SMI Referenced Properties/Methods for SNIA_NFSSettingData

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the NFSSettingData.

Enabled Mandatory This boolean indicates if NFS is enabled on the File Server.

Charset Optional Specifies the character set to be used by the File Server when servicing

CIFS Shares. The values are 0|1|2 ('Standard-ASCII'|'UTF8'|'ISO-8859-1").
If absent, then 'ISO-8859-1' is assumed.

MaximumTCPConnections Optional This specifies the number of concurrent TCP connections that are allowed
for the NFS protocol. If set to 0, then TCP will be disabled for NFS.

Port Optional The port the File Server listens for mount requests. If absent, default to
2049.

NonNFSuid Optional User ID to use for requests from non-NFS access. If absent, default to -1.

NonNFSgid Optional Group ID to use for requests from non-NFS access. If absent, default to -1.

UseReservedPorts Optional This boolean specifies that the File Server will only allow NFS mount

requests from client machine TCP/IP ports less than 1024. If ‘true’, only
allow mount requests from ports less than 1024. Othewise, allow mount
requests from any client port.

OnlyRootChown Optional This boolean specifies if the root user is allowed to issue chown (change
ownership) requests. If 'true’, then only let root user issue chown request.
Otherwise, allow any user to issue chown requests.

6.7.29 SNIA_NISSettingData

Created By: Extrinsic: CreateFileServer
Modified By: Extrinsic: ModifyFileServer
Deleted By: Extrinsic: DeleteFileServer
Requirement: NIS (Network Information System)is supported by the provider.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 127

Table 85 describes class SNIA_NISSettingData.

File Server Manipulation Subprofile

Table 85 - SMI Referenced Properties/Methods for SNIA_NISSettingData

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the NISSettingData.
DomainName Mandatory NIS Domain Name.

ServerlP Mandatory An array of IP Addresses IP Addresses of NIS Servers.

EXPERIMENTAL

128

File Storage Profile

STABLE

7 File Storage Profile

7.1 Description

7.1.1 Synopsis

Profile Name: File Storage (Component Profile)
Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.18

Related Profiles for File Storage: Not defined in this standard.

Central Class: N/A

Scoping Class: ComputerSystem

7.1.2 Overview

The File Storage Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in
this release of SMI-S, this includes the NAS Head and Self-Contained NAS Profiles.

7.1.3 Implementation

Figure 10: "File Storage Instance" illustrates the mandatory and optional classes for the modeling of file
storage for the profiles that support filesystems. This profile is supported by the Self-contained NAS and
the NAS Head Profiles.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 129

File Storage Profile

LecalFileSystem

HostedFileSystem

i. ComputerSystem File Storage
| | I Profile

I ResidezOnExtent
{Conditional)

-——-J

SystemDevice L

LogicalDisk |

Figure 10 - File Storage Instance

The File Storage Profile models the mapping of filesystems to LogicalDisks. For the NAS Head and Self-
contained NAS Profiles each filesystem shall be established on one LogicalDisk. The relationship
between the LocalFileSystem and the LogicalDisk is represented by the ResidesOnExtent association.
This association is listed as conditional on the parent profile being either the NAS Head or the Self-
contained NAS Profile. The LogicalDisk may be a LogicalDisk as defined in the Block Services Package
or part of the parent profile.

The FileStorage Profile is a “read-only” profile. That is, the methods for creating, modifying or deleting a
LocalFileSystem are external to the File Storage Profile. The SMI-S prescribed way of performing these
functions are covered by the Filesystem Manipulation Profile.

7.2 Health and Fault Management Consideration

None.

EXPERIMENTAL

7.3 Cascading Considerations

In some cases, the parent profile does not implement Block Services Package. In this case, the parent
profile would implement a LogicalDisk that is “imported” from another profile (e.g., a Volume Management
Profile). This section discusses those cascading considerations.

7.3.1 Cascaded Resources

A File Storage profile may get its storage from the operating system (HDR Profile), a volume manager, an
Array or Storage Virtualizer. As such, there is a cascading relationship between the File Storage Profile
and the profiles (e.g., Volume Management Profiles) that provide the storage for the File Storage Profile.
Figure 11: "Cascading File Storage" illustrates the constructs to be used to model this cascading
relationship.

130

File Storage Profile

LocalFileSystemn LocalFileSystem

ComputerSystem I

File Storage Profile
Resides0nE xtent

ResidesC0nE xdent

Wolume Composition|Subprofile

—
LogicalDisk

.

Systemn Device

—;

LogicalDisk

rame="Inemal hName"
Crtherldertifringinfo[]="05 X"

rMame="Internal Mame"

T
Bazedon
1

Com positeE stent

rEamenLBasedOj

LogicalDisk LogicalDisk

Mame="Internal M ame"
Otherldentitfingl nfo[1="0OS I*

Mam e="Intemal Name"
Otherldentifing Info[]="0S ™

! —

Logicalldentity

Dependency — —
Logicalldentity I LogicalDisk

[Artual)
I_ Mame="03 I I

P em berO - ollection

—Logicalldenti‘ty—I

MembenrD i ollection

Cascading Subprofile

SMlA_AllocatedResources

LogicalDisk 1
Ciirtual)

MemberofCollection

SMlL_RemoteResources

Caomputersystem 1
hem berdfiZallection

[wirtual) l

LogicalDisk 1

System Device

SAP AvailableF orE lem ent

Rem oteServiceicoessPoint

irtusl)
l_ Mame="0% X" |

MemberOfColledion

LogicalDisk v
Cirtual)

Figure 11 - Cascading File Storage

Figure 11: "Cascading File Storage" shows two filesystems (LocalFileSystem). Both reside on one
LogicalDisk. But the LogicalDisk on the right is a composite of lower level LogicalDisks. The storage that
is imported from the remote profile are LogicalDisks at the lowest level of the Filesystem Profile. So, in
the first (left side) case, the Logicalldentity is between the LogicalDisk on which the filesystem resides to
the imported LogicalDisk (or StorageVolume). In the second case (the right side) the Logicalldentity is
between the “lowest level” LogicalDisks in Volume Composition and the imported LogicalDisks (or
StorageVolumes).

NOTE Logicalldentity is an abstract class and would be subclassed by an implementation.

The ComputerSystem in the Filesystem Profile would be the computer system that hosts the filesystem.
The “Virtual” ComputerSystem is the top level ComputerSystem of the HDR, Volume Manager, Array or
Storage Virtualizer. There shall be a Dependency association between these computer systems.
LogicalDisks (or StorageVolumes) that are in use by the Filesystem Profile would have a
MemberOfCollection association to the SNIA_AllocatedResources collection. All the LogicalDisks (or
StorageVolumes) that the Filesystem Profile can see (including the ones that are allocated) would have a
MemberOfCollection association to the SNIA_RemoteResources instance.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 131

File Storage Profile

The RemoteServiceAccessPoint associated to the virtual computer system via SAPAvailableForFileShare
would be information on the management interface for the HDR, Volume Manager, Array or Storage
Virtualizer.

Table 86 provides the specific cascading information for cascading file storage.

Table 86 - Cascaded Storage

File Storage Leaf Profile Leaf Resource Association Notes
Resource
LogicalDisk Volume Management or |LogicalDisk Logicalldentity
HDR
LogicalDisk Array or Storage StorageVolume Logicalldentity
Virtualizer

7.3.2 Ownership Privileges

In support of the cascading File Storage, an implementation may assert ownership over the LogicalDisks
(or StorageVolumes) that they import. If the Volume Management implementation supports Ownership,
the File Storage implementation may assert ownership using the following Privileges:

« Activity - Execute

= ActivityQualifier - CreateOrModifyFromStoragePool and ReturnToStoragePool

< FormatQualifier - Method

NOTE HDR does not support Block Storage Resource Ownership, so this cannot be supported if the underlying profile is HDR.

7.3.3 Limitations on Cascading Subprofile

The File Storage Profile support for cascading places the following limitations and restrictions on the
Cascading Subprofile:

< Dependency - The Dependency may exist, even when there are no resources that are imported. This
signifies that the File Storage implementation has discovered the Volume Management or HDR Profile, but
has no access to any of their LogicalDisks.

EXPERIMENTAL

7.4 Supported Profiles, Subprofiles, and Packages
See section 7.1.1 for this information.

7.5 Methods of the Profile

7.5.1 Extrinsic Methods of the Profile

None

NOTE The methods for defining the various mappings would be handled by the Filesystem Manipulation Subprofile.

7.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

e GetInstance

132

« Associators
=« AssociatorNames
< References
< ReferenceNames

< Enumeratelnstances

e EnumeratelnstanceNames

7.6 Client Considerations and Recipes

None.

7.7 CIM Elements

File Storage Profile

Table 87 describes the CIM elements for File Storage.

Table 87 - CIM Elements for File Storage

Element Name

Requirement Description

7.7.1 CIM_ResidesOnExtent

Conditional Conditional requirement: NAS Profiles require that
LocalFileSystems reside on one LogicalDisk. or NAS
Profiles require that LocalFileSystems reside on one
LogicalDisk. Represents the association between a local
FileSystem and the underlying LogicalDisk that it is built
on.

7.7.1 CIM_ResidesOnExtent

Created By: External
Modified By: Static
Deleted By: External

Requirement: NAS Profiles require that LocalFileSystems reside on one LogicalDisk. or NAS Profiles
require that LocalFileSystems reside on one LogicalDisk.

Table 88 describes class CIM_ResidesOnExtent.

Table 88 - SMI Referenced Properties/Methods for CIM_ResidesOnExtent

Properties Flags Requirement Description & Notes

Dependent Mandatory The LocalFileSystem that is built on top of a LogicalDIsk.

Antecedent Mandatory The LogicalDlIsk that underlies a LocalFileSystem.
STABLE

SMI-S 1.6.1 Revision 6

SNIA Technical Position 133

File Storage Profile

134

Filesystem Profile

STABLE

8 Filesystem Profile

8.1 Description

8.1.1 Synopsis

Profile Name: Filesystem (Component Profile)
Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 89 describes the related profiles for Filesystem.

Table 89 - Related Profiles for Filesystem

Profile Name Organization Version Requirement Description
Indication SNIA 1.5.0 Mandatory
Experimental Indication SNIA 1.5.0 Optional

Central Class: LocalFileSystem
Scoping Class: ComputerSystem

The Filesystem Profile is a subprofile for autonomous profiles that support filesystems. Specifically, in this
release of SMI-S, this includes the NAS Head and the Self-Contained NAS Profiles. A number of other
profiles and subprofiles make use of elements of the Filesystem Profile and will be referred to in this
specification as “filesystem-related profiles” -- these include but are not limited to the Filesystem
Manipulation Subprofile, File Export Subprofile, File Export Manipulation Subprofile, NAS Head Profile,
and so on.

The state transitions involved when an appropriate storage element is transformed into a filesystem are
described in Annex B (Informative) State Transitions from Storage to File Shares.

8.1.2 Instance Diagrams

Figure 12: "Filesystem Instance" illustrates the mandatory, optional, and conditional classes for the
modeling of filesystems for the profiles that support filesystems. This profile is supported by the Self-
contained NAS and the NAS Head Profiles. The dashed box contains the elements that this profile
supports -- the elements outside the dashed box depend on other profiles or subprofiles for their
maintenance (creation, deletion, and modification).There are two ComputerSystems shown outside the
box that represent different dedicated roles that could be performed by different actual computers (or
could be performed by a single computer).

SMI-S 1.6.1 Revision 6 SNIA Technical Position 135

Filesystem Profile

HostedShare
CompuberSvetem |1 SNI_FileShare
*
C teld de
File Server | PathMame="fusersime” [mcr?ﬂz“:ﬁ::l, oy
1 * N
— — _— DependenWSNI.ﬂ_SharedElemenl .
_LocalAccessAvailable Conditional i
B o tes, WA A {Conditional) File System Profile
{Conditignaly 1 LogicalFire
. 1 FileStorage
- . SNIA_LocalFileSystem |1
ostedDependan: 1
-'Cp'lif:nalj y 1 LocalAccessDefinitionR equired | ~ElementCapabiities
' PathnameSeparatorSting="""] .
N 1 1 EnabledLogicalElement
ElementSettingData ElementSettingData Capabilties
(Cptional) (Optional)
* * 1
[SM1A_LocallyAccessibleFileSystemSetting | SNIA_FileSystemSetting
(Optienal) . " {Cptisnal)
HostedFileSystem
ResidesOnExtent
1
ComputerSystem | LogicalPisk
FileSystem Host |

Figure 12 - Filesystem Instance

A filesystem shall be represented in the model as an instance of LocalFileSystem. A LocalFileSystem
instance shall have a ResidesOnExtent association to a LogicalDisk (shown, but outside this profile). A
client would determine the size (in bytes) of a filesystem by inspecting the size of the LogicalDisk on
which the LocalFileSystem resides.

NOTE The filesystem-related profiles build LocalFileSystems on a LogicalDisk(s). In the cases supported in this release of SMI-S,
one LocalFileSystem may be established on one LogicalDisk. In a future release, more elaborate mappings may exist between
FileSystems and one or more LogicalDisks.

The LocalFileSystem shall have a HostedFileSystem association to a ComputerSystem. Normally this will
be the top level ComputerSystem of the parent profile (typically one of the filesystem-related profiles such
as the NAS Head or the Self-Contained NAS Profile). However, if the Multiple Computer System
Subprofile is implemented, the HostedFileSystem may be associated to a component ComputerSystem.
See 30 Multiple Computer System Subprofile in Storage Management Technical Specification, Part 3 Common
Profiles, 1.6.1 Rev 6.

The LocalFileSystem element may also have an ElementSettingData association to the

FileSystemSetting for that filesystem. However, the FileSystemSetting and ElementSettingData are
optional in this profile.

136

Filesystem Profile

EXPERIMENTAL

The LocalFileSystem may also have an ElementCapabilities association to an
EnabledLogicalUnitCapabilities to identify naming and requested state change capabilities.

EXPERIMENTAL

There may be zero or more FileShare elements associated to the LocalFileSystem element via the
SharedElement association. An implementation would be required to populate only those FileShare
elements representing files (or directories) that are exported using a supported file sharing protocol (such
as CIFS or NFS). The path to the file or directory from the root of the LocalFileSystem is specified by the
FileShare.PathName property.

NOTE In order to support backward compatibility with the NAS Head and Self-contained NAS Profiles in previous SMI-S releases,
the class LogicalFile (shown outside the dashed box in the figure) and two associations (ConcreteDependency outside the dashed
box and FileStorage shown inside the dashed box) must be supported. These duplicate the functionality provided by specifying
FileShare.PathName, at the cost of requiring that certain LogicalFiles, but not all, be surfaced.

EXPERIMENTAL

8.1.2.1 Local Access Requirement

In addition, if the property LocalFileSystem.LocalAccessDefinitionRequired is set to true, the filesystem
must be made exportable via a file server. In that case, there shall be a LocalAccessAvailable association
from the LocalFileSystem element to the file server ComputerSystem and, optionally, a
LocallyAccessibleFileSystemSettings element associated via an ElementSettingData association to the
LocalFileSystem. The LocallyAccessibleFileSystemSettings element is an instance of ScopedSettingData
and is associated to the file server ComputerSystem via a ScopedSetting association. The ScopedSetting
association indicates that this setting is constrained by the associated file server. The
LocalAccessAvailable association is required but conditional on LocalAccessDefinitionRequired being
true, while the LocallyAccessibleFileSystemSettings element and the ScopedSetting association are not
required (i.e., optional).

NOTE They are still conditional on LocalAccessDefinitionRequired being true, but in this version of SMI-S, that is not represented
in the XML file.

Since LocalAccessAvailable is an association, there can only be ONE instance per LocalFileSystem for
each FileServer. This is a common restriction. For each LocalAccessAvailable association, there should
only be zero (if optionally not implemented) or one (if optionally implemented) instances of
LocallyAccessibleFileSystemSettings.

8.1.2.2 Directory Service Use

A filesystem needs to be supported by a directory service that resolves user and group identifiers
(referred to as UID, GID, or SID) to specific operational users and groups. The enumerated property
LocalFileSystem.DirectoryServiceUsage indicates the kind of support a filesystem requires from a
directory service -- the options include “Not Used”, “Optional”’, and “Required”. If “Required”, the
filesystem will be associated to a computer system that provides infrastructure support for such identity
resolution.

The directory service may be hosted by any ComputerSystem, but it must be accessible in real-time to
the ComputerSystem that makes the filesystem available to operational users -- this is either a file server
ComputerSystem (one may already be required if LocalFileSystem.LocalAccessDefinitionRequired is
true, but it is optional otherwise) or the ComputerSystem hosting the filesystem. The directory service
may be “natively” hosted on that ComputerSystem (file server or filesystem host) or may be identified by
that ComputerSystem in some way.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 137

Filesystem Profile

The support relationship between a LocalFileSystem element and the ComputerSystem that identifies
and uses the directory service shall be represented by a Dependency association with the
ComputerSystem element as the Antecedent and the LocalFileSystem element as the Dependent.

In the instance diagram above, the Dependency association has been shown between the
LocalFileSystem and a file server ComputerSystem (with Dedicated[]="16"). A LocalFileSystem element
shall only identify one ComputerSystem for directory service access. In addition, the consistency of
filesystem security implementation requires that all the file server ComputerSystems that make a
filesystem locally available must use the same directory service or use mutually consistent directory
services.

EXPERIMENTAL

EXPERIMENTAL

8.1.2.3 Element Naming

The name of a FileSystem may be changed. The existence of the EnabledLogicalElementCapabilities
instance associated to the FileSystem indicates that the FileSystem can be named. If
ElementNameEditSupported is set to TRUE, then the ElementName of the associated FileSystem may be
modified. The ElementNameMask property provides the regular expression that expresses the limits of
the name; see 8.7.5 for the class definition for EnabledLogicalElementCapabilities for details for this

property.
EXPERIMENTAL

8.2 Health and Fault Management Consideration

The Filesystem Profile supports state information (e.g., OperationalStatus) on the following elements of
the model:

e Local filesystems (See Table 100 - SMI Referenced Properties/Methods for CIM_HostedFileSystem
(LocalFileSystem))

8.2.1 OperationalStatus for Filesystems

Table 90 describes each filesystem OperationalStatus.

Table 90 - Filesystem OperationalStatus

Primary OperationalStatus Description
2 “OK” The filesystem has good status
3 “Degraded” The filesystem is operating in a degraded mode. This could be due to the

health state of the underlying storage being degraded or in error.

4 “Stressed” The filesystem resources are stressed

5 “Predictive Failure” The filesystem might fail because some resource or component is predicted to
fail

6 “Error” An error has occurred causing the filesystem to become unavailable. Operator

intervention through SMI-S (managing the LocalFileSystem) to restore the
filesystem may be possible.

6 “Error” An error has occurred causing the filesystem to become unavailable.
Automated recovery may be in progress.

138

Filesystem Profile

Table 90 - Filesystem OperationalStatus

Primary OperationalStatus Description

7 “Non-recoverable Error” The filesystem is not functioning. Operator intervention through SMI-S will not
fix the problem.

8 “Starting” The filesystem is in process of initialization and is not yet available
operationally.

9 “Stopping” The filesystem is in process of stopping, and is not available operationally.

10 “Stopped” The filesystem cannot be accessed operationally because it is stopped -- if this
did not happened because of operator intervention or happened in real-time,
the OperationalStatus would have been “Lost Communication” rather than
“Stopped”.

11 “In Service” The filesystem is offline in maintenance mode, and is not available
operationally.

13 “Lost Communications” The filesystem cannot be accessed operationally -- if this happened because
of operator intervention it would have been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The filesystem is stopped but in a manner that may have left it in an
inconsistent state.

15 “Dormant” The filesystem is offline; and the reason for not being accessible is unknown.

16 “Supporting Entity in Error” The filesystem is in an error state, or may be OK but not accessible, because a
supporting entity is not accessible.

8.3 Cascading Considerations
None.

8.4 Supported Profiles, Subprofiles, and Packages

See section 8.1.1 for this information.
8.5 Methods of the Profile

8.5.1 Extrinsic Methods of the Profile

None.

8.5.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

Getlnstance

e Associators

« AssociatorNames

< References

< ReferenceNames

< Enumeratelnstances

< EnumeratelnstanceNames

SMI-S 1.6.1 Revision 6 SNIA Technical Position 139

Filesystem Profile

8.6 Client Considerations: Use Cases

The following client use cases are supported by this profile:

= List existing filesystems hosted by the referencing profile (parent filesystem-related profile).
 Get FileSystemSettings for a filesystem

= Get the ComputerSystem that hosts a filesystem

« Get all file servers and access paths that have local access to this fileSystem

= Get the access path to this filesystem on the specified file server

= Get the Local Access Settings for this FileSystem on the specified File Server

= Get the FileShares and shared file path of this filesystem on all file servers

= Get the FileShares and shared file path of this filesystem on the specified fileserver

EXPERIMENTAL
These use cases have been elaborated as prototype recipes in the following sections.

8.6.1 List Existing Filesystems hosted by the Referencing Profile (parent filesystem related pro-
file
// DESCRIPTION
// Goal: Locate all LocalFileSystems hosted on the top level
// ComputerSystem of the Filesystem Profile.
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. A reference to the top level ComputerSystem was previously
// discovered and is defined in the $System-> variable.
//
// FUNCTION ListFileSystems
// This function takes a given top level ComputerSystem and locates
// the LocalFileSystems which it hosts or are hosted by any component
// ComputerSystem.
// INPUT Parameters:
// System: A reference to the top level ComputerSystem of

// the Filesystem Profile.

// OUTPUT Parameters:

// None

// RESULT:

// Returns: An array of reference(s) to the LocalFileSystems
// hosted by the top level ComputerSystem or component
// ComputerSystems. It returns NULL if it does not find
// any hosted LocalFileSystems.

sub CIMInstance[] ListFileSystems(REF CIM_ComputerSystem $System->) {

// Step 1. Locate the LocalFileSystems hosted directly by the
// top-level ComputerSystem of the Filesystem Profile.

140

Filesystem Profile

#FSProps[] = {“CSCreationClassName”, “CSName”, “CreationClassName”,
“Name™, “OperationalStatus”, “CaseSensitive”, “CasePreserved”,
“MaxFileNameLength”, “FileSystemType”,
“MultipleDisksSupported”,

“LocalAccessDefinitionRequired™,
“PathNameSeparatorString” }
$Filesystems[] = Associators($System->,

“CIM_HostedFileSystem”,
“CIM_LocalFileSystem”,
“GroupComponent™,
“PartComponent”,

false,

false,

#FSProps[]1)

// Step 2. Locate all the component ComputerSystems of the top level
// ComputerSystem of the Filesystem Profile implementation.
// This assumes that the top level ComputerSystem of the Filesystem
// Profile is the same as the top level ComputerSystem of the
// Multiple Computer System Subprofile. This recipe does not
// check if this assumption is correct.
try {
REF CIM_ComputerSystem $ComponentSystems->[] =
AssociatorNames($System->,
“CIM_ComponentCS,
“CIM_ComputerSystem™,
“GroupComponent”,
“PartComponent’)

// Step 3. Locate the LocalFileSystems hosted by the component
// ComputerSystem and add to the list of found LocalFileSystems.
if ($ComponentSystems->[] '= null &&
$ComponentSystems->[].length > 0) {
REF CIM_FileSystem $ComponentFS[]
#fsCounter = $Ffilesystems[].-length
for (#i in $ComponentSystems->[]) {
$ComponentFS[] =
Associators($ComponentSystems->[#i],
“CIM_HostedFileSystem”,
“CIM_LocalFileSystem”,
“GroupComponent™,
“PartComponent”,
false,
false,
#FSProps[1)
iT ($ComponentFS[] != null && $ComponentFS[]-length > 0) {
for (#j in $ComponentFS->[1) {

SMI-S 1.6.1 Revision 6 SNIA Technical Position 141

//

Filesystem Profile

$filesystems[#fsCounter] = $ComponentFS[#j]
#fsCounter++

}
} catch (CIMException $Exception) {

// ComponentCS may not be included in the model implemented at all

// the Multiple Computer System Subprofile is not supported.

if ($Exception.CIMStatusCode == CIM_ERR_INVALID_PARAMETER) {
return $filesystems[]

}

<ERROR! An unexpected failure occured>

}

return $filesystems[]

MATN

$HostedFileSystems[] = ListFileSystems($TopLevelComputerSystem->)

8.6.2 Get FileSystemSettings for a FileSystem

142

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

DESCRIPTION
Goal: Get the FileSystemSettings associated with a LocalFileSystem
PRE-EXISTING CONDITIONS AND ASSUMPTIONS

1. A reference to the LocalFileSystem was previously
discovered and is defined in the $fs-> variable.
2. There is only one setting for the file system

FUNCTION GetFSSetting
This function takes a given LocalFileSystem and returns the
FileSystemSetting element that specifies its configuration.
INPUT Parameters:
fs: A reference to the LocalFileSystem .
OUTPUT Parameters:
setting: A reference to the FileSystemSetting element is returned.
RESULT:
Returns: Nothing

sub GetFSSetting(IN REF CIM_LocalFileSystem $fs,

OUT CIM_FileSystemSetting $setting)

//
// Get a reference to the FileSystemSetting associated with the
// LocalFileSystem (via ElementSettingData association)
$setting = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,

if

Filesystem Profile

“ManagedElement™,
“SettingData’™)->[0];
}

8.6.3 Get the ComputerSystem that hosts a FileSystem

// DESCRIPTION
// Goal: Get the ComputerSystem that hosts a LocalFileSystem
//
// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. A reference to the LocalFileSystem was previously
// discovered and is defined in the $fs-> variable.
//
// FUNCTION GetFileSystemHost
// This function takes a given LocalFileSystem and returns the
// ComputerSystem that hosts it.
// INPUT Parameters:
// fs: A reference to the LocalFileSystem.
// OUTPUT Parameters:
// system: A reference to the hosting ComputerSystem is returned.
// RESULT:
// Returns: Nothing
//
sub GetFileSystemHost(IN REF CIM_LocalFileSystem $fs,
OUT CIM_ComputerSystem $system)

{
$system = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent’)->[0];
}

// Retained for backward compatability with SMI-S 1.1
sub GetFSServer(IN REF CIM_FileSystem $fs,
OUT CIM_ComputerSystem $system)

GetFileSystemHost($fs, $system);
}

8.6.4 Get all File Servers and Access Paths that have Local Access to this FileSystem

// DESCRIPTION
// Goal: Get the file server ComputerSystems that access the

// LocalFileSystem and the local access points on those
// ComputerSystems
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS
// 1. A reference to the LocalFileSystem was previously
// discovered and is defined in the $fs-> variable.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 143

Filesystem Profile

//

// FUNCTION GetFileSystemServersAndPaths

// This function takes a given LocalFileSystem and returns the

// file server ComputerSystems that have local access to it

// and the local access points on those ComputerSystems.

// INPUT Parameters:

// fs: A reference to the LocalFileSystem.

// OUTPUT Parameters:

// systems: An array of references to the file server ComputerSystems.

// paths: An array of strings that are the local access points on the
// corresponding file server

// RESULT:

// Returns: Number of entries in the returned arrays.

//

sub uint32 GetFileSystemServersAndPaths(IN REF CIM_LocalFileSystem $fs,
OUT REF CIM_ComputerSystem $systems[],
OUT string #paths[])

{
REF CIM_LocalAccessAvailable $assocs->[] = References($fs,
“SNIA_LocalAccessAvailable™,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent’™);
#counter = O;
if ($assocs->[]1 !'= null && $assocs->[]-length > 0) {
#count = $assocs->[]-.length;
for (#i in $assocs->[]) {
$systems->[#counter] = $assocs->[#i].FileServer;
#paths->[#counter] = $assocs->[#i].LocalAccessPoints;
#counter++;
}
3
return #counter;
}

8.6.5 Get the Access Path to this FileSystem on the specified File Server

144

// DESCRIPTION

// Goal: Get the local access point to this LocalFileSystem on the
// specified file server ComputerSystem

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. A reference to the LocalFileSystem was previously

// discovered and is defined in the $fs-> variable.

// 2. A reference to the file server ComputerSystem was previously
// discovered and is defined in the $server-> variable.

//

// FUNCTION GetFileSystemServerPath
// This function takes a given LocalFileSystem and file server

//
//
//
//
//
//
//
//
//
//
//

Filesystem Profile

ComputerSystem that has access to the filesystem and returns

the local access point on that file server ComputerSystem.
INPUT Parameters:

fs: A reference to the LocalFileSystem.

server: A reference to the file server ComputerSystem.

OUTPUT Parameters:
None
RESULT:
Returns: A string representing the local access path to the
filesystem on the file server

sub string GetFileSystemServerPath(IN REF CIM_FileSystem $fs,

}

IN REF CIM_ComputerSystem $server)

REF CIM_LocalAccessAvailable $assocs->[] = References($fs,
“SNIA_LocalAccessAvailable™,
“CIM_ComputerSystem™,
“PartComponent”,
“GroupComponent’);

#path = “*;

if ($assocs->[] !'= null && $assocs->[]-length > 0) {

for (#1 in $assocs->[]) {

if ($server == $assocs->[#i]-FileServer) {
#path = $assocs->[#i].LocalAccessPoint;
break;

¥

}
return #path;

8.6.6 Get the Local Access Settings for this FileSystem on the specified File Server

//
//
//
//
//
//
//
//
//
//
//
//
7/
//
//
//

DESCRIPTION
Goal: Get the LocallyAccessibleFileSystemSetting for this
LocalFileSystem on the specified file server ComputerSystem
PRE-EXISTING CONDITIONS AND ASSUMPTIONS

1. A reference to the LocalFileSystem was previously
discovered and is defined in the $fs-> variable.

2. A reference to the file server ComputerSystem was previously
discovered and is defined in the $server-> variable.

FUNCTION GetFileSystemServerAccessSettings
This function takes a given LocalFileSystem and file server
ComputerSystem that has access to the filesystem and returns
the LocallyAccessibleFileSystemSetting for that filesystem
in the context of that file server ComputerSystem

INPUT Parameters:

SMI-S 1.6.1 Revision 6 SNIA Technical Position

145

146

Filesystem Profile

// fs: A reference to the LocalFileSystem.
// server: A reference to the file server ComputerSystem.
// OUTPUT Parameters:
// setting: A reference to the SNIA_LocallyAccessibleFileSystemSetting
// RESULT:
// Returns: Nothing
// (Optionally) A string containing the setting as an Embeddedlnstance
//
sub GetFileSystemServerAccessSettings(IN REF CIM_FileSystem $fs,
IN REF CIM_ComputerSystem $server,
OUT REF SNIA_LocallyAccessibleFileSystemSetting

setting)
{

REF SNIA_ LocallyAccessibleFileSystemSetting $settings->[] =
AssociatorNames($fs,
“CIM_ElementSettingData™,
“SNIA_LocallyAccessibleFileSystemSetting”,
“ManagedElement”,

“SettingData™);

$setting = NULL;

$settingEl = “;

ifT ($settings->[] !'= null && $settings->[]-length > 0) {

for (#i in $settings->[1) {
// Find the server that scopes this setting; assumes at least one is
returned
REF CIM_ComputerSystem scope = AssociatorNames($settings->[#i],
“CIM_ScopedSetting”,
“CIM_ComputerSystem™”,
“ScopedSettingData,
“ManagedElement’)->[0];
if ($server == $scope) {
$setting = $settings->[#i];
$settingEl = $setting->Getinstance();
break;
}
}
} else {
// There is no setting => it is defaulted by the server and opaque to the
client
// Is this an Error?
#ERROR(“Cannot find LocallyAccessibleFileSystemSetting for
LocalFileSystem.”);
}
return $settingEl;
}

EXPERIMENTAL

Filesystem Profile

8.7 CIM Elements

Table 91 describes the CIM elements for Filesystem.

Table 91 - CIM Elements for Filesystem

Element Name

Requirement

Description

8.7.1 CIM_Dependency (Uses Directory Services From)

Conditional

Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is either
"Required" or "Optional". Associates a ComputerSystem
that indicates a directory service that supports the
dependent LocalFileSystem.

8.7.2 CIM_ElementCapabilities
(EnabledLogicalElementCapabilities to LocalFileSystem)

Optional

Experimental. Expressed the ability for the file system to
be named or have its state changed.

8.7.3 CIM_ElementSettingData (FileSystem)

Optional

Associates a LocalFileSystem to its FileSystemSetting
element.

8.7.4 CIM_ElementSettingData (Local Access Required)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a LocalFileSystem to
LocallyAccessibleFileSystemSetting elements, one for
each file server that has local access.

8.7.5 CIM_EnabledLogicalElementCapabilities
(LocalFileSystem)

Optional

Experimental. This class is used to express the naming
and possible requested state change possibilities for file
systems.

8.7.6 CIM_FileStorage

Mandatory

Associates a LogicalFile (or Directory) to the
LocalFileSystem that contains it. This is provided for
backward compatibility with previous versions of SMI-S.

8.7.7 CIM_FileSystemSetting

Optional

This element represents the configuration settings of a
filesystem represented by a LocalFileSystem.

8.7.8 CIM_HostedDependency (Local Access Required)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a file server ComputerSystem to the
LocallyAccessibleFileSystemSetting elements that get
scoping information from that file server.

8.7.9 CIM_HostedFileSystem (LocalFileSystem)

Mandatory

Associates a LocalFileSystem to the ComputerSystem
that hosts it.

8.7.10 CIM_LocalFileSystem

Mandatory

Represents a filesystem in a Filesystem-related profile.

8.7.11 CIM_LogicalFile

Mandatory

In an earlier release of SMI-S, the Filesystem-related
profiles made a limited set of LogicalFiles (or Directory
subclass) instances visible (these were any file or
directory that was exported as a share. This element is
required by the profiles to maintain backward compatibility
for clients conforming to earlier versions of SMI-S.

8.7.12 SNIA_LocalAccessAvailable

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a LocalFileSystem to a file server
ComputerSystem that can export files or directories as
shares.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

147

Filesystem Profile

Table 91 - CIM Elements for Filesystem

Element Name Requirement Description
8.7.13 SNIA_LocalFileSystem Optional Represents a filesystem in a Filesystem-related profile.
8.7.14 SNIA_LocallyAccessibleFileSystemSetting Conditional Conditional requirement: Required if

LocalFileSystem.LocalAccessDefinitionRequired=true.
This element represents the configuration settings of a
LocalFileSystem that can be made locally accessible (i.e.,
can have a file or directory made accessible to
operational users) from a file server ComputerSystem.
This Setting provides further details on the functionality
supported and the parameters of that functionality when
locally accessible.

SELECT * FROM CIM_InstModification WHERE Mandatory Deprecated WQL -Change of Status of a filesystem.
Sourcelnstance ISA CIM_LocalFileSystem AND Previouslinstance is optional, but may be supplied by an
Sourcelnstance.OperationalStatus <> implementation of the Profile.

Previousinstance.OperationalStatus

SELECT * FROM CIM_InstModification WHERE Optional CQL -Change of Status of a filesystem. Previousinstance
Sourcelnstance ISA CIM_LocalFileSystem AND is optional, but may be supplied by an implementation of
Sourcelnstance.CIM_LocalFileSystem::OperationalStatus the Profile.

<>

Previousinstance.CIM_LocalFileSystem::OperationalStat

us

8.7.1 CIM_Dependency (Uses Directory Services From)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either "Required" or "Optional".

Table 92 describes class CIM_Dependency (Uses Directory Services From).

Table 92 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s) that support
user, group and other security principal identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other security
principal identities is supported by the antecedent ComputerSystem.

8.7.2 CIM_ElementCapabilities (EnabledLogicalElementCapabilities to LocalFileSystem)

Experimental.
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

148

Filesystem Profile

Table 93 describes class CIM_ElementCapabilities (EnabledLogicalElementCapabilities to
LocalFileSystem).

Table 93 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (EnabledLogicalElementCapa-
bilities to LocalFileSystem)

Properties Flags Requirement Description & Notes
Capabilities Mandatory The capabilities object associated with the file system.
ManagedElement Mandatory The LocalFileSystem.

8.7.3 CIM_ElementSettingData (FileSystem)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Optional

Table 94 describes class CIM_ElementSettingData (FileSystem).

Table 94 - SMI Referenced Properties/Methods for CIM_ElementSettingData (FileSystem)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem.

SettingData Mandatory The settings established on the LocalFileSystem when first created or as
modified.

8.7.4 CIM_ElementSettingData (Local Access Required)

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 95 describes class CIM_ElementSettingData (Local Access Required).

Table 95 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified when first
created or established later.

8.7.5 CIM_EnabledLogicalElementCapabilities (LocalFileSystem)

Experimental.
Created By: Static
Modified By: Static

SMI-S 1.6.1 Revision 6 SNIA Technical Position 149

Filesystem Profile

Deleted By: Static
Requirement: Optional

Table 96 describes class CIM_EnabledLogicalElementCapabilities (LocalFileSystem).

Table 96 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities (LocalFileSys-

tem)

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory The moniker for the instance.

ElementNameEditSupport Mandatory Denotes whether a file system can be named.

ed

MaxElementNameLen Mandatory Specifies the maximum length in glyphs (letters) for the name. See MOF
for details.

ElementNameMask Mandatory The regular expression that specifies the possible content and format for
the element name. See MOF for details.

RequestedStatesSupporte Optional Expresses the states to which this file system may be changed using the

d RequestStateChange method. If this property, it may be assumed that the
state may not be changed.

GetElementNameCapabilit Conditional Conditional requirement: Required if Filesystem Manipulation is

ies() implemented.

8.7.6 CIM_FileStorage

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 97 describes class CIM_FileStorage.

Table 97 - SMI Referenced Properties/Methods for CIM_FileStorage

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The LocalFileSystem that contains the LogicalFile.
PartComponent Mandatory The LogicalFile contained in the LocalFileSystem.

8.7.7 CIM_FileSystemSetting

Created By: External
Modified By: External
Deleted By: External
Requirement: Optional

150

Filesystem Profile

Table 98 describes class CIM_FileSystemSetting.

Table 98 - SMI Referenced Properties/Methods for CIM_FileSystemSetting

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A user-friendly name for this FileSystemSetting element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemSetting
represents.

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower case
characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects that this
filesystem may be used to provide and provides further details in
corresponding entries in other attributes.

NumberOfObjectsMin Mandatory This is an array that specifies the minimum number of objects of the type
specified by the corresponding entry in ObjectTypes[].

NumberOfObjectsMax Mandatory This is an array that specifies the maximum number of objects of the type
specified by the corresponding entry in ObjectTypes][].

NumberOfObjects Mandatory This is an array that specifies the expected number of objects of the type
specified by the corresponding entry in ObjectTypes[].

ObjectSize Mandatory This is an array that specifies the expected size of a typical object of the
type specified by the corresponding entry in ObjectTypes|].

ObjectSizeMin Mandatory This is an array that specifies the minimum size of an object of the type
specified by the corresponding entry in ObjectTypes][].

ObjectSizeMax Mandatory This is an array that specifies the minimum size of an object of the type
specified by the corresponding entry in ObjectTypes[].

FilenameReservedCharact Optional This string or character array specifies the characters reserved (i.e., not

erSet allowed) for use in filenames of a filesystem with this setting.

DataExtentsSharing Optional This specifies whether a filesystem with this setting supports the creation
of data blocks (or storage extents) that are shared between files.

CopyTarget Optional This specifies that, if possible, support should be provided for using a
filesystem created with this setting as a target of a Copy operation.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-8) supported
for filenames by a filesystem with this setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3 names) supported
for filenames by a filesystem with this setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported by a filesystem
with this setting.

SupportedLockingSemanti Optional This array specifies the set of file access/locking semantics supported by a

cs filesystem with this setting.

SupportedAuthorizationPro Optional This array specifies the kind of file authorization protocols supported by a

tocols filesystem with this setting.

SupportedAuthenticationPr Optional This array specifies the kind of file authentication protocols supported by a

otocols

filesystem with this setting.

8.7.8 CIM_HostedDependency (Local Access Required)

SMI-S 1.6.1 Revision 6

SNIA Technical Position 151

Filesystem Profile

Created By: External

Modified By: Static

Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 99 describes class CIM_HostedDependency (Local Access Required).

Table 99 - SMI Referenced Properties/Methods for CIM_HostedDependency (Local Access Required)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that provides the scope for the
LocallyAccessibleFileSystemSetting.

Dependent Mandatory The local access settings of the LocalFileSystem, established when first
created or as modified later, that is dependent on some information
provided by the file server that is the scoping ComputerSystem.

8.7.9 CIM_HostedFileSystem (LocalFileSystem)

Created By: External
Modified By: Static
Deleted By: External
Requirement: Mandatory

Table 100 describes class CIM_HostedFileSystem (LocalFileSystem).

Table 100 - SMI Referenced Properties/Methods for CIM_HostedFileSystem (LocalFileSystem)

Properties Flags Requirement Description & Notes
GroupComponent Mandatory The Computer System that hosts a LocalFileSystem.
PartComponent Mandatory The LocalFileSystem that represents the hosted filesystem.

8.7.10 CIM_LocalFileSystem

Created By: External
Modified By: External
Deleted By: External
Requirement: Mandatory

Table 101 describes class CIM_LocalFileSystem.

Table 101 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory The CIM class of the hosting ComputerSystem element.
CSName Mandatory The Name property of the hosting ComputerSystem element.
CreationClassName Mandatory The CIM class of this LocalFileSystem element.

152

Filesystem Profile

Table 101 - SMI Referenced Properties/Methods for CIM_LocalFileSystem

Properties Flags Requirement Description & Notes

Name Mandatory A unigue name for this LocalFileSystem element in the context of the
hosting ComputerSystem.

OperationalStatus Mandatory The current operational status of the filesystem represented by this
LocalFileSystem element.

Root Optional A path that specifies the "mount point" of the filesystem in an unitary
computer system that is both the host of the filesystem and is the file
server that makes it available.

BlockSize Optional The size of a block in bytes for certain filesystem types that require a fixed
block size when creating a filesystem.

FileSystemSize Optional The total current size of the filesystem in blocks.

AvailableSpace Optional The space available currently in the filesystem in blocks. NOTE: This
value is an approximation as it can vary continuously when the filesystem
is in use.

ReadOnly Optional Indicates that this is a read-only filesystem that does not allow
modifications to contained files and directories.

EncryptionMethod Optional Indicates if files are encrypted by the filesystem implementation and the
method of encryption.

CompressionMethod Optional Indicates if files are compressed by the filesystem implementation before
being stored, and the methods of compression.

CaseSensitive Mandatory Whether this filesystem is sensitive to the case of characters in filenames.

CasePreserved Mandatory Whether this filesystem implementation preserves the case of characters
in filenames when saving and restoring.

CodeSet Optional The codeset used in filenames by the filesystem implementation.

MaxFileNameLength Mandatory The length of the longest filename supported by the filesystem
implementation.

FileSystemType Mandatory This is a string that matches FileSystemSetting.ActualFileSystemType
property used to create the filesystem.

NumberOfFiles Optional The actual current number of files in the filesystem. NOTE: This value is
an approximation as it can vary continuously when the filesystem is in use.

8.7.11 CIM_LogicalFile

Created By: External

Modified By: External

Deleted By: External

Requirement: Mandatory

SMI-S 1.6.1 Revision 6 SNIA Technical Position 153

Table 102 describes class CIM_LogicalFile.

Filesystem Profile

Table 102 - SMI Referenced Properties/Methods for CIM_LogicalFile

Properties Flags Requirement Description & Notes

CSCreationClassName Mandatory Class Name of the ComputerSystem that hosts the filesystem containing
this file.

CSName Mandatory The Name property of the ComputerSystem that hosts the filesystem
containing this file.

FSCreationClassName Mandatory Class Name of the LocalFileSystem that represents the filesystem
containing this file.

FSName Mandatory The Name property of the LocalFileSystem that represents the filesystem
containing this file.

CreationClassName Mandatory Class Name of this instance of LogicalFile that represents the file.

Name Mandatory The Name property of the LogicalFile that represents the file.

ElementName Mandatory The pathname from the root of the containing LocalFileSystem to this

LogicalFile. The root of the LocalFileSystem is indicated if this is NULL or
the empty string. The format of the pathname is specific to the
LocalFileSystem's FileSystemType. If it is a sequence of directories from
the root, the separator string is specified by the
SNIA_LocalFileSystem.PathNameSeparatorString property.

8.7.12 SNIA_LocalAccessAvailable

Created By: External

Modified By: Static

Deleted By: External
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 103 describes class SNIA_LocalAccessAvailable.

Table 103 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties Flags Requirement Description & Notes

LocalAccessPaint Optional The name used by the file server ComputerSystem to identify the
filesystem. Sometimes referred to as a mount-point.
For many UNIX-based systems, this will be a qualified full pathname.
For Windows systems this could also be the drive letter used for the
LogicalDisk that the filesystem is resident on.

FileSystem Mandatory The LocalFileSystem that is being made available to the file server
ComputerSystem.

FileServer Mandatory The ComputerSystem that will be able to export shares from this

LocalFileSystem.

8.7.13 SNIA_LocalFileSystem

Created By: External
Modified By: External
Deleted By: External

154

Requirement: Optional

Filesystem Profile

Table 104 describes class SNIA_LocalFileSystem.

Table 104 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties

Flags

Requirement

Description & Notes

LocalAccessDefinitionReq
uired

Mandatory

This boolean property indicates whether or not this LocalFileSystem must
be made locally accessible ("mounted") from a file server
ComputerSystem before it can be shared or otherwise made available to
operational clients.

PathNameSeparatorString

Mandatory

This indicates the string of characters used to separate directory
components of a canonically formatted path to a file from the root of the
filesystem. This string is expected to be specific to the
ActualFileSystemType and so is vendor/implementation dependent.
However, by surfacing it we make it possible for a client to parse a
pathname into the hierarchical sequence of directories that compose it.

DirectoryServiceUsage

Optional

This enumeration indicates whether the filesystem supports security
principal information and therefore requires support from a file server that
uses one or more directory services. If the filesystem requires such
support, there must be a concrete subclass of Dependency between the
LocalFileSystem element and the specified file server ComputerSystem.
The values supported by this property are:

"Not Used" indicates that the filesystem will not support security principal
information and so will not require support from a directory service.

"Optional” indicates that the filesystem may support security principal
information. If it does, it will require support from a directory service and
the Dependency association described above must exist.

"Required" indicates that the filesystem supports security principal
information and will require support from a directory service. The
Dependency association described above must exist.

8.7.14 SNIA LocallyAccessibleFileSystemSetting

Created By: External
Modified By: External
Deleted By: External

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 105 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes
InstancelD Mandatory An opaque, unique id for a LocallyAccessibleFileSystemSetting.
ElementName Mandatory A user-friendly name for this LocallyAccessibleFileSystemSetting element.

SMI-S 1.6.1 Revision 6

SNIA Technical Position 155

Filesystem Profile

Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

InitialEnabledState

Optional

InitialEnabledState is an integer enumeration that indicates the enabled/
disabled states initially set for a locally accessible filesystem (LAFS). The
element functions by passing commands onto the underlying filesystem,
and so cannot indicate transitions between requested states because
those states cannot be requested. The following text briefly summarizes
the various enabled/disabled initial states:

Enabled (2) indicates that the element will execute commands, will
process any queued commands, and will queue new requests.

Disabled (3) indicates that the element will not execute commands and
will drop any new requests.

In Test (7) indicates that the element will be in a test state.

Deferred (8) indicates that the element will not process any commands
but will queue new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.
The element's behavior is similar to the Enabled state, but it only
processes a restricted set of commands. All other requests are queued.

OtherEnabledState

Optional

A string describing the element's initial enabled/disabled state when the
InitialEnabledState property is set to 1 (“"Other"). This property MUST be
set to NULL when InitialEnabledState is any value other than 1.

FailurePolicy

Optional

An enumerated value that specifies if the operation to make a filesystem
locally accessible to a scoping ComputerSystem should be attempted one
or more times in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by the
corresponding RetriesMax property of the setting.

RetriesMax

Optional

An integer specifying the maximum number of attempts that should be
made by the scoping ComputerSystem to make a LocalFileSystem locally
accessible. A value of '0' specifies an implementation-specific default.

RequestRetryPolicy

Optional

An enumerated value representing the policy that is supported by the
operational file server on a request to the operational filesystem that either
failed or left the file server hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout happens, or, to
try repeatedly. If the request can be performed in the background, the
request will be tried repeatedly until stopped.

TransmissionRetriesMax

Optional

An integer specifying the maximum number of retransmission attempts to
be made from the operational file server to the operational filesystem
when the transmission of a request fails or makes the file server hang. A
value of '0' specifies an implementation-specific default. This is only
relevant if there is a transmission channel between the file server and the
underlying filesystem.

RetransmissionTimeoutMi
n

Optional

An integer specifying the minimum number of milliseconds that the
operational file server must wait before assuming that a request to the
operational filesystem has failed. '0' indicates an implementation-specific
default. This is only relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions

Optional

An enumerated value that specifies if a local cache is supported by the
operational file server when accessing the underlying operational
filesystem.

BuffersSupport

Optional

An array or enumerated values that specifies the buffering mechanisms
supported by the operational file server for accessing the underlying
operational filesystem." If supported, other properties will establish the
level of support. If the property is NULL or the empty array, buffering is not
supported.

156

Filesystem Profile

Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

ReadBufferSizeMin

Optional

An integer specifying the minimum number of bytes that must be allocated
to each buffer used for reading. A value of '0' specifies an implementation-
specific default.

ReadBufferSizeMax

Optional

An integer specifying the maximum number of bytes that may be allocated
to each buffer used for reading. A value of '0' specifies an implementation-
specific default.

WriteBufferSizeMin

Optional

An integer specifying the minimum number of bytes that must be allocated
to each buffer used for writing. A value of '0' specifies an implementation-
specific default.

WriteBufferSizeMax

Optional

An integer specifying the maximum number of bytes that may be allocated
to each buffer used for writing. A value of '0’ specifies an implementation-
specific default.

AttributeCaching

Optional

An array of enumerated values that specify whether attribute caching is (or
is not) supported by the operational file server when accessing specific
types of objects from the underlying operational filesystem. The object
type and the support parameters are specified in the corresponding
AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

Object types contained by a filesystem that can be accessed locally are
represented by an entry in these arrays. The entry in the AttributeCaching
array can be 'On', 'Off', or 'Unknown'. Implementation of this feature
requires support from other system components, so it is quite possible that
specifying 'On' may still not result in caching behavior. ‘Unknown' indicates
that the access operation will try to work with whatever options the
operational file server and filesystem can support. In all cases,
AttributeCachingTimeMin and AttributeCachingTimeMax provide the
minimum and maximum time for which the attributes can be cached.
When this Setting is used as a Goal, the client may specify 'Unknown’, but
the Setting in the created object should contain the supported setting,
whether 'On' or 'Off".

AttributeCachingObjects

Optional

An array of enumerated values that specify the attribute caching support
provided to various object types by the operational file server when
accessing the underlying operational filesystem. These", types represent
the types of objects stored in a filesystem -- files and directories as well as
others that may be defined in the future. The corresponding properties,
AttributeCaching, AttributeCachingTimeMin, and
AttributeCachingTimeMax provide the supported features for the type of
object. 'None' and 'All' cannot both be specified; if either one is specified, it
must be the first entry in the array and the entry is interpreted as the
default setting for all objects. If neither 'None' or 'All' are specified, the
caching settings for other objects are defaulted by the implementation. If
'Rest' is specified, the entry applies to all known object types other than
the named ones. If 'Unknown' is specified it applies to object types not
known to this application (this can happen when foreign filesystems are
made locally accessible).

AttributeCachingTimeMin

Optional

An array of integers specifying, in milliseconds, the minimum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache. When
used as a Goal, a value of '0' indicates an implementation-specific default.

AttributeCachingTimeMax

Optional

An array of integers specifying, in milliseconds, the maximum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache. When
used as a Goal, a value of '0' indicates an implementation-specific default.

SMI-S 1.6.1 Revision 6

SNIA Technical Position 157

Filesystem Profile

Table 105 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy set on the
operational filesystem and supported by the operational file server when
accessing it. 'Read Only' specifies that the access to the operational
filesystem by the operational file server is set up solely for reading. '‘Read/
Write' specifies that the access to the operational filesystem by the
operational file server is set up for both reading and writing. 'Force Read/
Write' specifies that 'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is intended for use when
the associated filesystem has been made 'Read Only' by default, as might
happen if it were created to be the target of a Synchronization or Mirror
operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be enforced on
the operational filesystem by the operational file server when accessing it.
'‘Enforce None' does not enforce locks. 'Enforce Write' does not allow
writes to locked files. 'Enforce Read/Write' does not allow reads or writes
to locked files.

EnableOnSystemStart Optional An enumerated value that specifies if local access from the operational file
server to the operational filesystem should be enabled when the file server
is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that expresses the

client's expectations about access to elements contained in the
operational filesystem. The provider is expected to surface this access
using the CIM privilege model.

ExecutePref Optional An enumerated value that specifies if support should be provided on the
operational file server for executing elements contained in the operational
filesystem accessed through this local access point. This may require
setting up specialized paging or execution buffers either on the operational
file server or on the operational filesystem side (as appropriate for the
implementation). Note that this does not provide any rights to actually
execute any element but only specifies support for such execution, if
permitted.

RootAccessPref Optional An instance of a CIM_Privilege, encoded as a string, that expresses the
client's expectations about privileged access by appropriately privileged
System Administrative users on the operational file server (‘root' or
'superuser') to the operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege model.

Support for the privileged access might require setup at both the
operational file server as well as the operational filesystem, so there is no
guarantee that the request can be satisfied.

STABLE

158

EXPERIMENTAL

9 Filesystem Manipulation Subprofile

9.1 Description

9.1.1 Synopsis

Profile Name: Filesystem Manipulation (Component Profile)
Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.39

Table 106 describes the related profiles for Filesystem Manipulation.

Table 106 - Related Profiles for Filesystem Manipulation

Profile Name Organization Version Requirement Description
Job Control SNIA 1.5.0 Optional

Filesystem SNIA 1.6.1 Mandatory

Indication SNIA 1.5.0 Mandatory

Experimental Indication SNIA 1.5.0 Optional

Volume Composition SNIA 1.5.0 Optional

Central Class: FileSystemConfigurationService

Scoping Class: ComputerSystem

9.1.2 Overview

The Filesystem Manipulation Profile is a subprofile provides support for configuring and manipulating
filesystems in the context of filesystem profiles (currently consisting of the NAS Head and the Self-
Contained NAS Profiles). A number of other profiles and subprofiles make use of elements of the
filesystem profiles and will be referred to in this specification as “filesystem-related profiles” -- these
include, but are not limited to, the Filesystem Subprofile, File Export Subprofile, File Export Manipulation
Subprofile, and NAS Head Profile.

The state transitions involved when an appropriate storage element is transformed into a filesystem are
described in Annex B (Informative) State Transitions from Storage to File Shares.

9.1.3 Instance Diagrams

9.1.3.1 Filesystem Creation classes and associations

Figure 13: "LocalFileSystem Creation Instance Diagram" illustrate the constructs involved with creating a
LocalFileSystem for a Filesystem Profile. This summarizes the mandatory classes and associations for
this subprofile. Specific areas are discussed in later sections.

Filesystem Manipulation Subprofile

Computer System

Dedicaed=24|25

HostedF ileSysten ;
Filesystem Host
Filesystem Manipulation Subprofile HodedSenice
. FileSystem ConfigurationService
FileSystemCapabilities Elem entCapsabilitiss——— e i
FileSystem Capsbilities ElemertC apailities SMIA_CreaeFileSystem)
- Characteristics={"Defaut"} DelgeFieSystem ()
AotualF ileSystemT ype SIS M od fFileSystem)
SuppotedP roperties]]
SuppotedObjedT wes(I
CreateGod Setings) ElementCapakilties
GetR equiredStorageSize 0 |
Elem entC apabiltics FileZystemConfigurstionCapakilities
(opdioral))
. 1. AcuaAFileSydem TypesSuppoted(]
ettingsDefneC apshilties Synichrenoush ethods]
Asynchronousidethods[]
Iritial o kil ity
FileSystem=etting | Locallybooassbler lesyteme apabilt es
FileSystem Setting (Optional)
CredeGoal=ettingz0
See below T
Setting=DefineCapakilities
l
Lu:u::allyAD:essiblelFileSystemSeﬁing HostedD ependency]
[Optional) [optional
V== 81 (R
EletmentSettingData v
l—EIemenEeﬂingDaha—| (Conditional)
Fi|ESYEiEdeﬁI‘g LCIEE|Fi|ESYStEm Lu:-:allyAme&Sible!-'_iIeSystemSetting
(Conditional)
HostedDependency
[Conditional)
T Dependency
(Conditional’)
i i Locd Aoressdvailable
l Filesystem Subprofile (ontional) I
. 1 1 |
RezidesCnEdent .
LFileStorage— LogicsFile
. . ComputerSystem
File Starage Subprofile
— aredE lemert | os:tedé e Dedcated=18
- I ConcreteDependency File Server
NIDTﬁedF»emE}lerﬁge ool [Optiorel)
LogjcalDisk StorageP ool FileShare
Elock Services (Read-only) File Export Subprofile Referencing Profile

Figure 13 - LocalFileSystem Creation Instance Diagram

If a filesystem-related profile supports the Filesystem Manipulation Subprofile, it shall have at least one
level

instance of the FileSystemConfigurationService. This service shall

160

be hosted on the top

Filesystem Manipulation Subprofile

ComputerSystem of the filesystem-related profile. The methods offered are SNIA_CreateFileSystem,
SNIA_ModifyFileSystem, and DeleteFileSystem.

Associated to the FileSystemConfigurationService (via ElementCapabilities) shall be one instance of
FileSystemConfigurationCapabilities that describes the capabilities of the service. It identifies the
methods supported, whether the methods support Job Control or not, the types of filesystems that are
supported, and whether or not the filesystem shall be made operationally available after creation.

For each type of filesystem that can be created, there shall be one FileSystemCapabilities element that
defines the range of capabilities supported for that particular filesystem type. An ElementCapabilities
association links each FileSystemCapabilities to the FileSystemConfigurationService. One of these
FileSystemCapabilities may also be identified as a default capability (by setting “Default” as one of the
entries in the array property Characteristics of its ElementCapabilities association). This default
FileSystemCapabilities element is used when the client does not specify a goal element when requesting
the SNIA_CreateFileSystem method. The default FileSystemCapabilities element implicitly indicates the
default filesystem type to be used for creation.

For the convenience of clients a Filesystem Manipulation Profile may populate a set of “pre-defined”
FileSystemSettings for each of the FileSystemCapabilities. These shall be associated to the
FileSystemCapabilities via the SettingsDefineCapabilities association (the association must have its
SettingsDefineCapabilities.PropertyPolicy property set to "Correlated" and the
SettingsDefineCapabilities.ValueRole property must include "Supported" as an entry) and shall be for the
same filesystem type as the associated capabilities element (same value for the ActualFileSystemType
property in both classes).

NOTE That they are pre-defined and exist at all times does not imply that these FileSystemSettings must be made persistent by
the implementation -- rather it should be possible for the implementation to regenerate them if requested, though a simple re-
generating implementation may not necessarily scale.

The FileSystemCapabilities element supports three methods: CreateGoalSettings,
GetRequiredStorageSize and GetElementNameCapabilities. These methods are described in detail in
9.5.1, "Extrinsic Methods of the Profile". The basic function of the first two is to establish at least one
client-approved FileSystemSettings element (as a goal) and to determine the size of the LogicalDisk
required to support the desired filesystem.

CreateGoalSettings takes an array of embedded-instance SettingData elements as the input
TemplateGoalSettings and SupportedGoalSettings parameters and can generate an array of embedded-
instance SettingData elements as the output SupportedGoalSettings parameter. However, in this profile,
SMI-S only uses a single embedded-instance FileSystemSetting element in the input parameters (both
TemplateGoalSettings and SupportedGoalSettings) and generate a single valid embedded-instance
FileSystemSetting element as output (SupportedGoalSettings). If a client supplies a NULL (or the empty
string) FileSystemSetting as input to this method, the returned FileSystemSetting embedded-instance
shall be a default setting for the ActualFileSystemType of the FileSystemCapabilities. If the input (the
embedded-instance FileSystemSetting element) is not NULL, the method may return a “best fit” to the
requested setting. The client may iterate on this method until it acquires a setting that suits its needs.
This embedded-instance settings structure may be used when the SNIA_ CreateFileSystem or
SNIA_ModifyFileSystem methods are invoked. The details of how iterative negotiation can work are
discussed in 9.5.1.1, "FileSystemCapabilities.CreateGoalSettings". Note that the FileSystemType
remains unchanged in all of these interactions. It is an error if the client or server changes the
FileSystemType unilaterally.

NOTE It is not possible to guarantee that negotiation will terminate with an agreed upon setting and a fall-back mechanism is
needed. This profile does not require negotiation -- an implementation may support only a set of pre-defined correlated point
settings that a client can preload and use without modification. The implementation could also support only settings whose
properties are selectable from an arithmetic progression or from a fixed enumeration, so that the client may construct a goal setting
that is guaranteed to be supported without negotiation.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 161

Filesystem Manipulation Subprofile

NOTE That a client has obtained a goal setting supported by the implementation does not guarantee that a create or modify
request will succeed. Such a setting only specifies a supported static configuration not that the current dynamic environment has
the resources to implement a specific request.

After obtaining a goal FileSystemSetting, the next step is to determine the LogicalDisk size required to
support the FileSystemSetting. This is done by invoking the
FileSystemCapabilities.GetRequiredStorageSize method of this subprofile. The inputs are the embedded-
instance FileSystemSetting structure and an embedded-instance StorageSetting structure that describes
the quality of service the client wants for the storage (e.g., data redundancy, package redundancy, etc.).
The method returns three numbers corresponding to the StorageSetting: the expected size, the minimum
size, and a maximum usable size. The client would use these numbers in specifying or evaluating the
appropriate LogicalDisk(s) on which to create the FileSystem. The method also returns as output the
actual StorageSetting used as an Embeddedinstance structure (assuming that these can be substituted
for the input StorageSetting).

NOTE This profile recommends that GetRequiredStorageSize() be used only if a LocalFileSystem is to be created on a single
LogicalDisk. If the intent is to use more than one LogicalDisk for the LocalFileSystem, this profile recommends using the
SNIA_CreateFileSystem method to make the implementation create or select the LogicalDisks to use.

< Armed with the FileSystem goal (the embedded-instance FileSystemSetting structure) and one or more
LogicalDisks, the client can now use the SNIA_CreateFileSystem method to create the filesystem. The
SNIA_ CreateFileSystem method creates a LocalFileSystem instance, and a new FileSystemSetting instance
as well as several necessary associations. These associations are:

= HostedFileSystem association between the LocalFileSystem and the ComputerSystem that hosts it

< ResidesOnExtent association between the filesystem and one of the LogicalDisk(s) for the filesystem data

NOTE Even when multiple LogicalDisks are created or used for the LocalFileSystem, only one LogicalDisk will have the
ResidesOnExtent association.

< ElementSettingData to associate the filesystem to the FileSystemSetting defined for it

SNIA_CreateFileSystem allows LogicalDisks to be obtained from a number of StoragePools using an
array of embedded-instance StorageSettings. The SNIA_CreateFileSystem implementation must use the
capabilities of the StoragePools (and the associated StorageConfigurationService) to create the
necessary LogicalDisks. The LogicalDisks used for this purpose are returned as output values for the
InExtents parameter.

EXPERIMENTAL

To determine if the implementation supports supplying the ElementName during the creation of a file
system and to determine the supported methods to modify the ElementName of the existing file system,
invoke the method FileSystemCapabilities.GetElementNameCapabilities.

EXPERIMENTAL

If the property FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies that
SNIA_CreateFileSystem method provides the optional parameters for establishing local access
("mounting"”) from file server ComputerSystems, the LocalFileSystem.LocalAccessDefinitionRequired will
be set to true and the LocalFileSystem will need to be made locally accessible from the specified file
server ComputerSystems. The following elements are created:

< A LocalAccessAvailable association representing local access by a file server ComputerSystem to the
LocalFileSystem from within its namespace is created using the provided (or defaulted)
LocallyAccessibleFileSystemSetting parameter (as an Embeddedinstance parameter). This association goes
between the File Server ComputerSystem and the LocalFileSystem; its LocalAccessPoint property specifies
the local access point (or "mount-point") in the file server ComputerSystem.

162

Filesystem Manipulation Subprofile

= An instance of LocallyAccessibleFileSystemSetting is optionally created and associated to:
= The LocalFileSystem via an optional ElementSettingData association.

= The file server ComputerSystem via an optional HostedDependency (ScopedSetting) association (this
represents that a LocalFileSystem could be mounted on many file server ComputerSystems with different
"mount” parameters, so these parameters are specific to the pair of LocalFileSystem and file server
ComputerSystem).

= For backward compatibility with previous releases of SMI-S:
= The root directory of the LocalFileSystem is represented as a LogicalFile
< A FileStorage association is created between the LogicalFile and the LocalFileSystem

The DeleteFileSystem method is straightforward -- it deletes the LocalFileSystem and the
FileSystemSetting, and the associations to those instances (HostedFileSystem, both ElementSettingData
elements, ResidesOnExtent, LocalAccessAvailable, and LocallyAccessibleFileSystemSetting). Any
created LogicalFiles associated to the LocalFileSystem via FileStorage will also be deleted as a side-
effect of deleting the LocalFileSystem (so there is no separate requirement necessary for backward
compatibility). The implementation may delete the LogicalDisk(s), however, this is not required by this
profile. If the LogicalDisk(s) are not deleted, they become available for use in another
SNIA_CreateFileSystem operation.

The SNIA_ ModifyFileSystem method modifies an existing LocalFileSystem -- this requires a new
FileSystemSetting structure to be used as a goal. But not any FileSystemSetting structure will do -- the
client must use one created with the same FileSystemCapabilities.CreateGoalSettings method that would
have been used to create the filesystem, or an appropriate compatible FileSystemCapabilities instance.
The CreateGoalSettings method is used to establish a new FileSystemSetting goal (as with the original
filesystem creation, it may be necessary to iterate on the CreateGoalSettings method). Since only
properties controlled by Settings can be changed by SNIA_ModifyFileSystem (i.e., the LogicalDisk(s)
already created cannot be changed, though new ones can be created and/or added), the effect of
SNIA_ModifyFileSystem is to change some properties of the LocalFileSystem or of the associated
FileSystemSetting.

NOTE Depending on what property is being modified, it may also be necessary to invoke the GetRequiredStorageSize method to
verify that the current LogicalDisk still supports the new goals.

9.1.3.1.1 Dependency on support for Locally Accessible Filesystem Capabilities

Both SNIA_CreateFileSystem and SNIA_ModifyFileSystem need a LocallyAccessibleFileSystemSetting
element for each file server ComputerSystem. The client first obtains a
LocallyAccessibleFileSystemCapabilities element by following ElementCapabilities association from the
FileSystemConfigurationService to a LocallyAccessibleFileSystemCapabilities that is associated via
ScopedCapabilities (HostedDependency) to the File Server ComputerSystem.

NOTE It is expected that there will only be one LocallyAccessibleFileSystemCapabilities element per file server ComputerSystem.
All the variability can be found by following SettingsDefineCapabilities to LocallyAccessibleFileSystemSetting elements. It is a
requirement that the LocallyAccessibleFileSystemSettings that define the LocallyAccessibleFileSystemCapabilities be associated
via HostedDependency (ScopedSetting) to the same file server ComputerSystem as the one indicated by the HostedDependency
(ScopedCapabilities).

The client calls LocallyAccessibleFileSystemCapabilities.CreateGoalSettings() with the appropriate
parameters.to obtain an appropriate LocallyAccessibleFileSystemSetting element -- CreateGoalSettings
can be used to negotiate if necessary.

9.1.3.1.2 Dependency on support for Directory Services

A filesystem may support security principal identifiers associated with filesystem objects for access
(typically, read/write/execute) as well as for tracking usage (as would be needed for supporting user and/
or group quotas). If the filesystem supports such identifiers, it would requires support from a directory

SMI-S 1.6.1 Revision 6 SNIA Technical Position 163

Filesystem Manipulation Subprofile

service for validating these identifiers (relating them to accounts and other user-related information).
Operationally, computer systems (and not filesystems) are associated to directory services or configured
for directory services. Directory service configurations of computer systems are much more complex than
needed or appropriate for filesystems. This makes it easier to make the filesystem depend on a computer
system, usually a file server, for providing access to directory services for resolving security principal
identifiers.

A filesystem that requires support from a directory service will have the property DirectoryServicesUsage
of its LocalFileSystem element set to "Required”. In that case, there shall be a Dependency association
between the LocalFileSystem element and a file server ComputerSystem.element (with Dedicated="16").
The associated file server must be configured for access to directory services that it provides for the
filesystem.

NOTE If DirectoryServicesUsage is “Optional”, a client can look for the Dependency association to determine if the filesystem
supports security principal identifiers. This is not supported in this release of the profile.

9.1.3.1.3 Summary of this profile
This profile consists of the following classes, associations, and methods:

3) One LocallyAccessibleFileSystemCapabilities scoped to the file server ComputerSystem
4) ElementCapabilities association to the FileSystemConfigurationService

5) SettingsDefineCapabilities association to LocallyAccessibleFileSystemSetting

6) LocallyAccessibleFileSystemSetting for defining LocallyAccessibleFileSystemCapabilities

7) HostedDependency (ScopedSetting) association from the File Server ComputerSystem to Locally-
AccessibleFileSystemSetting

8) A HostedDependency association from the same file server ComputerSystem to the defined Locally-
AccessibleFileSystemCapabilities

9) LocallyAccessibleFileSystemCapabilities.CreateGoalSettings extrinsic method to create LocallyAc-
cessibleFileSystemSetting elements scoped to the file server ComputerSystem to use as Goals.
Note that this method is different from the method described as part of the FileSystemCapabilities
element.

10) A Dependency association from the LocalFileSystem element to a file server ComputerSystem.

164

Filesystem Manipulation Subprofile

9.1.3.2 Finding FileSystem Configuration Services, Capabilities and Pre-defined Settings

When creating a filesystem the first step is to determine what can be created. Figure 14 -, "Capabilities
and Settings for Filesystem Creation" illustrates an instance diagram showing the instances that shall
exist for supporting filesystem creation.

COMPLEErSyStEm

File System Manipulation Subprofile Capabilities/Settings Hosteazenace

FlSysbim C apahinties

FileSydemC apamibes ElementCapabilnies FileSystem ConfigurationService
E|emeniC apahiities :

ArtualFie Sydem Type A reser
SupgnredPropermas|] & ?ﬁﬂm%ﬁ?ﬂm”
SupporedObject Types|| _ DeleteFileyst -
CreseGoasenngsi) SNLA_ModityFieSystem)

GetR eI A Sires ()

ElemerdCapabiliies

SetngsDefineCananiines FlleSystemConfiguratonC apabiities
Ar Dl Syshem TypesSupponed] |

Syrehmnauskethods]]

AsynichronousMethonds|)

FaSystemSetting l FlleSystem Seting LOCaMA 008 S3ILIE FIE Sy S SETng Initialsvaladity
| (Conditioral] Loc alACE£ss0Iphons
ElementSatingData
Conahanal)
{ ! ScopedSeting
| ElemeniZattinglata 1 (Condtional)
RespesonBdet——) SropecCapatiiies rlp?f&'ﬁiﬁ:}fﬁ
(opborsly | | - !
LogcalDisk | LocaFilESystem | M pUTErSySEm | LocalyACCEsSInERieSystem Capandine s
(Canational)
ILI.:ul.-'-a;-'.uu'.-uurlnaurlla:{;ulm I Credeoasemngs|) |
: . :]
Localacresshvallabie |
; - (Optional) ScopedSetting SettingsDefined apabiliies
ElementietingData AllncatedFrom StoragePoal (cptional) (Cptional)

Shorage Seming ShoragtPodl

Figure 14 - Capabilities and Settings for Filesystem Creation

At least one FileSystemConfigurationService shall exist if the Filesystem Profile has implemented the
Filesystem Manipulation Subprofile. The instance(s) of this service can be found by following the
HostedService association filtering on the target class of FileSystemConfigurationService.

NOTE If no service is found from the Top Level ComputerSystem, the client should look for component computer systems that may
be hosting the service. This is not recommended, but permitted.

An instance of the FileSystemConfigurationCapabilities shall be associated to the
FileSystemConfigurationService via the ElementCapabilities association. A client should follow this
association (filtering on the result value of "FileSystemConfigurationCapabilities") to inspect the
configuration capabilities that are supported. The client would choose between the filesystem types
specified in the array property SupportedActualFileSystemTypes.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 165

Filesystem Manipulation Subprofile

For each entry in the SupportedActualFileSystemTypes array, there shall be one instance of
FileSystemCapabilities with the same value for the ActualFileSystemType property that shall be
associated to the FileSystemConfigurationService using the ElementCapabilities association (filtering on
the result value of FileSystemCapabilities). This FileSystemCapabilities element shall specify the
supported capabilities for that ActualFileSystemType using a collection of FileSystemSettings. These
FileSystemSettings shall be associated to the FileSystemCapabilities via SettingsDefineCapabilities.

An implementation may support a set of pre-defined FileSystemSettings that clients could use directly if
desired. The SettingsDefineCapabilities association from the FileSystemCapabilities to the pre-defined
FileSystemSettings shall have the PropertyPolicy property be "Correlated", the ValueRole property be
"Supported" and the ValueRange property be "Point". Other pre-defined combinations of property values
may be specified by FileSystemSettings whose SettingsDefineCapabilities association has the
PropertyPolicy be "Independent"”, ValueRole property be "Supported" and the ValueRange array property
contain "Minimums", "Maximums", or "Increment” (see 9.5.1.1.1 for further details on the interpretation of
the ValueRange property). These settings can be used by the client to compose FileSystemSettings that
are more likely to be directly usable.

9.2 Health and Fault Management Considerations

The key element of this profile is the FileSystemConfigurationService and the hosting ComputerSystem.
The operational status of the hosting ComputerSystem should possibly be part of the referring
autonomous profile (NAS Head or SC NAS), the Filesystem Subprofile or in the Multiple Computer
System Subprofile.

9.2.1 OperationalStatus for FileSystemConfigurationService

9.2.2 OperationalStatus for LocalFileSystem

Table 107 describes the Operational status for LocalFileSystem.

Table 107 - LocalFileSystem OperationalStatus

Primary OperationalStatus Secondary OperationalStatus Description
2 “OK” The filesystem has good status
2 “OK” 4 “Stressed” The filesystem resources are stressed
2 “OK” 5 “Predictive Failure” The filesystem might fail because some
resource or component is predicted to
fail
2“OK” 16 “Supporting Entity in Error” The filesystem may be OK, but is not

accessible because a supporting entity
is not accessible.

3 “Degraded” The filesystem is operating in a
degraded mode. This could be due to
the health state of the underlying storage
being degraded or in error.

6 “Error” An error has occurred causing the
filesystem to become unavailable.
Operator intervention through SMI-S
(managing the LocalFileSystem) to
restore the filesystem may be possible.

6 “Error” An error has occurred causing the
filesystem to become unavailable.
Automated recovery may be in progress.

166

Filesystem Manipulation Subprofile

Table 107 - LocalFileSystem OperationalStatus

Primary OperationalStatus

Secondary OperationalStatus

Description

6 “Error”

7 “Non-recoverable Error”

The filesystem is not functioning.
Operator intervention through SMI-S will
not fix the problem.

6 “Error”

16 “Supporting Entity in Error”

The filesystem is in an error state
because a supporting entity is not
accessible.

8 “Starting”

The filesystem is in process of
initialization and is not yet available
operationally.

9 “Stopping”

The filesystem is in process of stopping,
and is not available operationally.

10 “Stopped”

The filesystem cannot be accessed
operationally because it is stopped -- if
this did not happened because of
operator intervention or happened in
real-time, the OperationalStatus would
have been “Lost Communication” rather
than “Stopped”.

11 “In Service”

The filesystem is offline in maintenance
mode, and is not available operationally.

13 “Lost Communications”

The filesystem cannot be accessed
operationally -- if this happened because
of operator intervention it would have
been “Stopped” rather than “Lost
Communication”.

14 “Aborted” The filesystem is stopped but in a
manner that may have left it in an
inconsistent state.

15 “Dormant” The filesystem is offline; and the reason

for not being accessible is unknown.

9.3 Cascading Considerations

Not defined in this standard. (Under Consideration for a future standard.)

9.4 Supported Subprofiles and Packages

See 9.1.1 for this information.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

167

9.5

Filesystem Manipulation Subprofile

Methods of the Profile

9.5.1 Extrinsic Methods of the Profile

Table 108 details the filesystem manipulation methods that cause Instance Creation, Deletion or

Mo

dification.

Table 108 - Filesystem Manipulation Methods that cause Instance Creation, Deletion or Modification

Method

Created Instances

Deleted Instances

Modified Instances

FileSystemConfigurationService.
SNIA_CreateFileSystem

LocalFileSystem
FileSystemSetting
ElementSettingData
ResidesOnExtent
HostedFileSystem

LogicalDisk(s)
StorageSetting(s) N/A ?_féi%?ggﬁl((:))
LocalAccessAvailable(s)
LocallyAccessibleFileSy
stemSetting(s)
ElementSettingData(s)
HostedDependency
Dependency
LocalFileSystem
FileSystemSetting
ElementSettingData
ResidesOnExtent
. i . HostedFileSystem
FileSystemConfigurationS LocalAccessAvailable(s) N/A

ervice.DeleteFileSystem

LocallyAccessibleFileSy
stemSetting(s)
ElementSettingData(s)
HostedDependency
Dependency

(IF REQUESTED)

(if Local Access is

LoglcaIDls_k(s) modified) _ FileSystemSetting (if
. ' . StorageSetting(s) LocalAccessAvailable
FileSystemConfigurationS . . ! changed)
i P LocalAccessAvailable LocallyAccessibleFileSy . .
ervice.SNIA_ModifyFileSy . ! . ResidesOnExtent (if
stem LocallyAccessibleFileSy stemSetting added)
stemSetting ElementSettingData(s)
ElementSettingData(s) HostedDependency
HostedDependency
F|IeSystemCapab_|I|t|es.Cr N/A N/A N/A
eateGoalSettings
LocallyAccessibleFileSyss
temCapabilities.CreateGo N/A N/A N/A
alSettings
FileSystemCapabilities.Ge
tRequiredStorageSize N/A N/A N/A
GetEIemen:iI:lazmeCapablh N/A N/A N/A

168

Filesystem Manipulation Subprofile

9.5.1.1 FileSystemCapabilities.CreateGoalSettings

This extrinsic method of the FileSystemCapabilities class validates support for a caller-proposed
FileSystemSetting passed as the TemplateGoalSettings parameter. This profile restricts the usage of this
method to a single entry array for both TemplateGoalSettings and SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
FileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type FileSystemSetting. As
such, these settings do not exist in the implementation but are the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation can engage in a negotiation process that may require iterative calls to
this method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

951.11 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges with respect to the filesystem or the filesystem
host. During negotiation, the client will show the current state to the user -- the SupportedGoalSettings
received to date (either the latest or some subset), the TemplateGoalSettings proposed (the most recent,
but possibly more). But the administrator needs a representation of what is available, possibly the range
or sets of values that the different setting properties can take. Some decisions are assumed to have been
made already, such as the type of filesystem to be created and the number of LogicalDisks to use and
their StorageSettings. It is possible that the LogicalDisks for use by this filesystem have already been
designated by the user; if not, the StoragePool(s) from which they will be created is already designated or
will be selected by an independent process.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified using
FileSystemSettings -- these points can be further qualified to indicate whether these are supported (or
not), and even whether they represent some ideal point in the space -- a "minimum”, or a "maximum?", or
an "optimal" point. Other settings can provide ranges for properties -- by specifying a minimum, a
maximum, and an increment an arithmetic progression of values can be specified (a continuous range
can be specified with a zero increment). Specifying a set of supported values for a property that do not
follow some pattern is possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

1) Client considers only the canned settings that are specified exactly. The canned settings are specified by the
FileSystemSettings that are associated to the FileSystemCapabilities via SettingDefinesCapabilities associa-
tion with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"

SMI-S 1.6.1 Revision 6 SNIA Technical Position 169

Filesystem Manipulation Subprofile

= SettingDefinesCapabilities.ValueRole = "Supported”
= SettingDefinesCapabilities.ValueRange = "Point"

2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the FileSystemSettings
that are associated to the FileSystemCapabilities via SettingDefinesCapabilities association with the
following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"

= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

9.5.1.1.2 Signature and Parameters of FileSystemCapabilities.CreateGoalSettings
Table 109 describes the parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings.

Table 109 - Parameters for Extrinsic Method FileSystemCapabilities.CreateGoalSettings

Parameter Qualifier Type Description & Notes
Name
TemplateGoalSetting | IN string Embeddedinstance ("SNIA_FileSystemSetting")
s
0 TemplateGoalSettings is a string array containing embedded

instances of class FileSystemSetting, or a derived class. This
parameter specifies the client’s requirements and is used to
locate matching settings that the implementation can support.

SupportedGoalSettin | INOUT string Embeddedinstance("SNIA_FileSystemSetting")

gsl]

SupportedGoalSettings is a string array containing embedded
instances of class FileSystemSetting, or a derived class. On
input, it specifies a previously returned set of Settings that the
implementation could support. On output, it specifies a new set
of Settings that the implementation can support. If the output set
is identical to the input set, both client and implementation may
conclude that this is the best match for the
TemplateGoalSettings that is available.

If the output does not match the input and the non-NULL output
does not match the non-NULL TemplateGoalSettings, then the
method must return "Alternative Proposed".

If the output is NULL, the method must return an “Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",

"Failed",

"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

of Values parameter (either reference or embedded) has been requested.

9.5.1.2 GetRequiredStorageSize

This extrinsic method returns the minimum, expected, and maximum size for a LogicalDisk that would
support a filesystem specified by the input FileSystemGoal parameter. The caller may provide relevant

170

Filesystem Manipulation Subprofile

settings of the LogicalDisk via the ExtentSetting parameter. The minimum, maximum, and expected sizes
are returned as output parameters.

If the input FileSystemGoal is NULL, the implementation may return an error or use a default
FileSystemSetting associated with this FileSystemCapabilities element. The actual FileSystemSetting
used is returned as an OUT parameter.

If the input ExtentSetting parameter is NULL or is an empty array, the implementation may use a default
StorageSetting associated with the StorageConfigurationService hosted on the same ComputerSystem as
the FileSystemConfigurationService associated with this FileSystemCapabilities element. The actual
StorageSetting used is returned as an OUT parameter.

NOTE The actual FileSystemSetting and StorageSetting used are being returned as OUT parameters. This is a non-backward-
compatible change from SMI-S 1.1.

9.5.1.2.1 Signature and Parameters of GetRequiredStorageSize

Table 110 describes the parameters for Extrinsic Method
FileSystemCapabilities.GetRequiredStorageSize.

Table 110 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize

Parameter Qualifier Type Description & Notes
Name
FileSystemGoal INOUT, El string Embeddedinstance ("SNIA_FileSystemSetting")

FileSystemGoal is an Embedded Instance element of class
CIM_FileSystemSetting, or a derived class, that specifies the
settings for the FileSystem to be created.

If NULL on input, a default for this FileSystemCapabilities is
used.

On output, this returns the actual FileSystemSetting that was
used.

ExtentSetting INOUT, El string EmbeddedInstance("CIM_StorageSetting")

ExtentSetting is an Embedded Instance element of class
CIM_StorageSetting, or a derived class, that specifies the
settings for the LogicalDisk to be used for building this
FileSystem.

If NULL on input, a default StorageSetting will be obtained from
a StorageConfigurationService hosted on the same
ComputerSystem as this FileSystemConfigurationService.

On output, this returns the actual StorageSetting that was used.
If the output is NULL, the method must return an “Failed”.

ExpectedSize ouT uint64 An integer that indicates the size of the storage extent that this
FileSystem is expected to need. An entry value of 0 indicates
that there is no expected size.

MinimumsSizeAccept | OUT uint64 An integer that indicates the size of the smallest storage extent
able that would support the specified FileSystem. A value of O
indicates that there is no minimum size.

MaximumSizeUsabl ouT uint64 An integer that indicates the size of the largest storage extent
e that would be usable for the specified FileSystem. A value of 0
indicates that there is no maximum size.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",
"Failed",
"Timeout"

SMI-S 1.6.1 Revision 6 SNIA Technical Position 171

Filesystem Manipulation Subprofile

Table 110 - Parameters for Extrinsic Method FileSystemCapabilities.GetRequiredStorageSize (Continued)

Parameter Qualifier Type Description & Notes
Name

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either
Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

of Values parameter (either reference or embedded) has been requested.

EXPERIMENTAL

9.5.1.3 FileSystemCapabilities.GetElementNameCapabilities

This method indicates if ElementName can be specified as a part of invoking an appropriate method of
FileSystemConfigurationService to create a new file system. Additionally, the returned data includes the
methods that can be used to modify the ElementName of existing file systems.

uint32 GetElementNameCapabilities(
[OuT,
vValueMap { *2', 3", 4", "_..", "32768..65535" },
Values { "ElementName can be supplied during creation”,
"ElementName can be modified with InvokeMethod",
"ElementName can be modified with intrinsic method",
"DMTF Reserved', "Vendor Specific" }]
uint32 SupportedFeatures[],
[OUT] string ElementNameMask,
[OUT] uintl6 MaxElementNamelLen);

The parameters are:

= SupportedFeatures: This OUT parameter is an array indicating what methods can accept the element name
for creation or modification of a FileSystem. For example, the value of "ElementName can be supplied during
creation" indicates the method such as SNIA_CreateFileSystem() accepts the ElementName when creating
a new FileSystem. An empty array indicates ElementNaming for ElementType is not supported.

= MaxElementNameLen: This OUT parameter specifies the maximum supported ElementName length.

< ElementNameMask: This OUT parameter expresses the restrictions on ElementName. The mask is
expressed as a regular expression. See DMTF standard ABNF with the Management Profile Specification
Usage Guide, Annex C for the regular expression syntax permitted. Since the ElementNameMask can
describe the maximum length of the ElementName, any length defined in the regexp is in addition to the
restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length). If NULL, it
indicates no restrictions on the ElementName.

EXPERIMENTAL

9.5.1.4 LocallyAccessibleFileSystemCapabilities.CreateGoalSettings

This extrinsic method of the LocallyAccessibleFileSystemCapabilities class validates support for a caller-
proposed LocallyAccessibleFileSystemSetting passed as the TemplateGoalSettings parameter. This

172

Filesystem Manipulation Subprofile

profile restricts the usage of this method to a single entry array for both TemplateGoalSettings and
SupportedGoalSettings parameters.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a single default
LocallyAccessibleFileSystemSetting in the SupportedGoalSettings array. Both TemplateGoalSettings and
SupportedGoalSettings are string arrays containing embedded instances of type
LocallyAccessibleFileSystemSetting. As such, these settings do not exist in the implementation but are
the responsibility of the client.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an
appropriate error and should return a best match for a SupportedGoalSettings.

The client and the implementation engage in a negotiation process that may require iterative calls to this
method. To assist the implementation in tracking the progress of the negotiation, the client may pass
previously returned values of SupportedGoalSettings as the new input value of SupportedGoalSettings.
The implementation may determine that a step has not resulted in progress if the input and output values
of SupportedGoalSettings are the same. A client may infer from the same result that the
TemplateGoalSettings must be modified.

95141 Client Considerations

It is important to understand that the client is acting as an agent for a human user -- either a "system"
administrator, or other entity with administrative privileges to the filesystem. During negotiation, the client
will show the current state to the user -- the SupportedGoalSettings received to date (either the latest or
some subset), the TemplateGoalSettings proposed (the most recent, but possibly more). But the
administrator needs a representation of what is available, possibly the range or sets of values that the
different setting properties can take. Some decisions are assumed to have been made already, such as
whether the local access is read-only or the file server that is going to access the filesystem.

The SettingsDefineCapabilities association from the selected Capabilities element provides the
information for the client to lay out these options. "Point" settings can be identified supported points in the
space of properties -- these points can be further qualified to indicate whether these are supported or not,
or whether they represent some ideal point in the space -- a "minimum", or a "maximum", or an "optimal”
point. Other settings can provide ranges for properties -- by specifying a minimum, a maximum, and an
increment an arithmetic progression of values can be specified (a continuous range can be specified with
a zero increment). Specifying a set of supported values for a property that do not follow some pattern is
possible, if a bit tedious.

The set of settings associated via SettingsDefineCapabilities are expected to be quite stable -- real
systems do not continually vary the functionality they can support. Such variations do occur -- for
instance, if a new PCMCIA card is added to a running system -- and the best way for a client to be able to
add these to the set of choices presented to a user is to subscribe to indications on new Capabilities
elements and new instances of SettingsDefineCapabilities.

There is no guarantee that a negotiation will terminate successfully with the client and the implementation
achieving agreement. The implementation may support some simpler mechanisms, short of fully-fledged
negotiation, that would be used by a client to obtain an acceptable TemplateGoalSettings. The following
two use cases are easily covered:

1) Client only considers only the canned settings specified exactly. The canned settings are specified by the
LocallyAccessibleFileSystemSetting elements that are associated to the LocallyAccessibleFileSystemCapa-
bilities via SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.PropertyPolicy = "Correlated"
= SettingDefinesCapabilities.ValueRole = "Supported"

= SettingDefinesCapabilities.ValueRange = "Point"

SMI-S 1.6.1 Revision 6 SNIA Technical Position 173

Filesystem Manipulation Subprofile

2) Client considers canned settings that range over values specified using minimum/increment/maxi-
mum for the Setting properties. For example, these could be specified by the LocallyAccessibleFile-
SystemSetting elements that are associated to the LocallyAccessibleFileSystemCapabilities via
SettingDefinesCapabilities association with the following property values:

= SettingDefinesCapabilities.ValueRange = "Minimums" or "Maximums" or "Increments"
= The PropertyPolicy and ValueRole properties of SettingDefinesCapabilities will be appropriately specified

Comparing the two CreateGoalSettings extrinsic methods of this profile, the
FileSystemCapabilities.CreateGoalSettings() can be significantly more complex than
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings(). The client can choose to implement a
simpler negotiation protocol for one -- this specification does not mandate the extent to which the client
must use this protocol.

9.5.1.4.2 Signature and Parameters of CreateGoalSettings

Table 111 describes the parameters for Extrinsic Method
LocallyAccessibleFileSystemCapabilities.CreateGoalSettings.

Table 111 - Parameters for Extrinsic Method

Parameter Name Qualifier Type Description & Notes

TemplateGoalSettings[] IN string Embeddedinstance
("SNIA_LocallyAccessibleFileSystemSetting")

TemplateGoalSettings is a string array containing embedded
instances of class LocallyAccessibleFileSystemSetting, or a
derived class. This parameter specifies the client’s requirements
that is used to locate matching settings that the implementation
can support.

SupportedGoalSettings|[] INOUT string EmbeddedIinstance("SNIA_LocallyAccessibleFileSystemSetting
")

SupportedGoalSettings is a string array containing embedded
instances of class LocallyAccessibleFileSystemSetting, or a
derived class. On input, it specifies a previously returned set of
Settings that the implementation could support. On output, it
specifies a new set of Settings that the implementation can
support. If the output set is identical to the input set, both client
and implementation may conclude that this is the best match for
the TemplateGoalSettings that is available.

If the output does not match the input and the non-NULL output
does not match the non-NULL TemplateGoalSettings, then the
method must return \"Alternative Proposed\".

If the output is NULL, the method must return an “Failed”.

Normal Return

Status uint32 ValueMap{}, Values{}

"Success",

"Failed",

"Timeout",

"Alternative Proposed"

Error Returns

Invalid Property Value OUT, Indication CIM_Error A single named property of an instance parameter (either
reference or embedded) has an invalid value

174

Filesystem Manipulation Subprofile

Table 111 - Parameters for Extrinsic Method LocallyAccessibleFileSystemCapabilities.CreateGoalSettings

Parameter Name Qualifier Type Description & Notes
Invalid Combination of OUT, Indication CIM_Error An invalid combination of named properties of an instance
Values parameter (either reference or embedded) has been requested.

9.5.1.5 FileSystemConfigurationService.SNIA_CreateFileSystem

This extrinsic method creates a LocalFileSystem and returns it as the value of the parameter
TheElement. The desired settings for the LocalFileSystem are specified by the Goal parameter (a string-
valued Embeddedinstance object of class FileSystemSetting).

filesystem vendors differ in their models for creating a filesystem. Some vendors require that the storage
element already exist; others create the storage element at the same time as the filesystem. Some
vendors require a local access point ("mount-point") that supports defining a hame or pathname that
allows a file server to access the filesystem; others do not require any such object (though it could be
argued that they provide a default local access mechanism). This extrinsic method supports variant
mechanisms for specifying, at create time, storage element creation as well as local access by a file
server. The FileSystemConfigurationCapabilities associated with the FileSystemConfigurationServices
contains the property BlockStorageCreationSupport that specifies support for create-time storage
element creation; the property LocalAccessibilitySupport that specifies support for local access by a file
server at creation; the property DirectoryServerParameterSupported that specifies support for specifying
a file server that provides access to a Directory Service (if enabled separately).

To support backward compatibility with previous releases of SMI-S, an instance of Directory (a derived
class of LogicalFile) is created representing the root directory of the newly created filesystem. This
Directory element is associated to the LocalFileSystem via FileStorage.

A FileSystemSetting element that represents the settings of the LocalFileSystem (either identical to the
Goal or equivalent) shall be associated via ElementSettingData to the LocalFileSystem. The
implementation shall create a new FileSystemSetting for this purpose.

The output parameter TheElement shall contain a reference to the newly created LocalFileSystem. Even
if this operation does not complete but creates a job, an implementation may return a valid reference in
TheElement. If the job fails subsequently, it is possible for this reference to become invalid.

9.5.15.1 Specifying Storage Underlying the Filesystem
BlockStorageCreationSupport is an array of enumerated values that specifies if:

< An enumerated value that specifies whether the extrinsic methods may use an already existing LogicalDisk -
- this is either required, optional, or not allowed. If "Not Allowed", the Pools and ExtentSettings parameters
must be used to create LogicalDisk(s) for this LocalFileSystem and the InExtents parameter must be NULL. If
"Optional", either the Pools and ExtentSettings parameters or the InExtents parameter should be specified,
but not both. If "Required"”, on the InExtents parameter may be specified and the Pools and ExtentSettings
parameters must be NULL.

- (optional) An integer that specifies an upper limit to the number of storage elements that can be specified,
either as InExtents parameters or as Pools and ExtentSettings.

- (optional) An integer that specifies the number of distinct storage pools that the Pools parameters can specify
-- zero, if Pools is not supported or if there is no limit, and a specific number if there is a limit. In practice it is
expected that the value will be either zero or one.

- (optional) A truth value represented as '0’ for false and '1’ for true that indicates whether an entry in the
ExtentSettings array parameter can be NULL (indicating that a default setting is to be used).

SMI-S 1.6.1 Revision 6 SNIA Technical Position 175

Filesystem Manipulation Subprofile

The storage used for creating the LocalFileSystem is specified by the InExtents parameter that must be
an array of LogicalDisks. If InExtents is NULL and BlockStorageCreationSupport indicates that Pools are
optional or required, the parameter Pools must specify an array of StoragePools from which storage may
be allocated -- the requirements for the LogicalDisks allocated from this Pool is specified in the
ExtentSettings array parameter. The Pools may use an associated StorageConfigurationService. The
LocalFileSystem is associated to one of the LogicalDisk(s) via the ResidesOnExtent association. The
other LogicalDisks extend the distinguished LogicalDisk (as modeled by the Volume Composition
Subprofile).

9.5.1.5.2 Specifying Local Access to the Filesystem

LocalAccessibilitySupport is an enumeration that specifies whether the implementation requires a local
access specification, or makes it optional (thus using a vendor default), or does not require one ("local
access" does not have a meaning for the vendor).

The LocalFileSystem shall be hosted on the same ComputerSystem as the
FileSystemConfigurationService.

NOTE The requirement that the LocalFileSystem have the same host as the Service is too restrictive but this method can be
extended in the future with a FileSystemHost parameter (implicitly NULL in 1.2).

If LocalAccess is supported, whether optional or required, this method supports specifying one file server
ComputerSystem (the reference parameter FileServer) that is given local access to this filesystem. If
LocalAccess is optional, the FileServer parameter may be NULL. The local access name on the
FileServer is specified in the LocalAccessPoint string parameter -- if the implementation uses pathnames,
this will be formatted as a pathname (directory names separated by the PathNameSeparatorString). The
implementation could also use a differently formatted local access name (for instance, a simple name).
The settings to be used for this are specified in the LocalAccessSetting, an Embeddedinstance element
of class LocallyAccessibleFileSystemSetting.

NOTE If a second file server ComputerSystem is to be given local access, the SNIA_ModifyFileSystem method would be used.

Corresponding to the LocalAccessPoint parameter, a LocalAccessAvailable association instance and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

e The LocalAccessAvailable association goes between the FileServer parameter and the created
LocalFileSystem (TheElement parameter).

= The LocalAccessAvailable.LocalAccessPoints property is set to the value of the LocalAccessPoint string.

e The LocallyAccessibleFileSystemSetting element has an ElementSettingData association to the
LocalFileSystem (TheElement).

< The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

If LocalAccess is supported, the FileServer parameter should not be NULL.

NOTE If it is NULL, the implementation may leave the filesystem operationally inaccessible -- however, this can be corrected by
calling the SNIA_ModifyFileSystem method. This is not an Error.

If LocalAccess is supported and the FileServer parameter is not NULL, the LocalAccessPoint string may
be NULL or the empty string. In this case, the LocalAccessSetting parameter should indicate the
implementation-specific default format. The default value that is used is returned as the OUT value of the
LocalAccessPoint parameter. It is an Error if the LocalAccessSetting parameter does not provide an
appropriate default mechanism for constructing a local access name.

The LocalAccessSetting parameter will return an Embeddedinstance of the
LocallyAccessibleFileSystemSetting actually used on output.

176

Filesystem Manipulation Subprofile

9.5.1.5.3 Specifying access to Directory Services

DirectoryServerParameterSupported is a property that specifies whether the filesystem must have access
to a file server that provides access to directory services so that security principal information may be
supported. If the newly created filesystem must be able to resolve such information, the DirectoryServer
parameter must be specified to the SNIA_CreateFileSystem method.

The DirectoryServer parameter specifies a file server ComputerSystem that is configured to access a
directory service that resolves security principal identifies (UIDs, GIDs, or SIDs) used by the filesystem.
This profile does not specify the configuration of any directory service (if there is one), any directory
server, or the file server that is specified by the DirectoryServer parameter. For operational efficiency
reasons, this must be a file server since security principal information such as usage and detection of
threshold violations must happen in real-time.

If the DirectoryServer is required and is specified, an association, a concrete subclass of Dependency,
shall be surfaced between the newly created LocalFileSystem element (as Dependent) and the specified
file server (as Antecedent). The SNIA_CreateFileSystem method will return a reference to this file server
as the return value of the parameter. In this case, the LocalFileSystem.DirectoryServiceUsage property
shall be set to “Supported”.

Any file server that is configured with write access to a filesystem must use the same or a compatible
directory service (effectively the same) as the file server indicated by the Dependency association.

9.5.2 Signature and Parameters of SNIA_CreateFileSystem

Table 112 describes the parameters for Extrinsic Method
FileSystemConfigurationService.SNIA_CreateFileSystem.

Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
ElementName IN string An end user relevant name for the FileSystem being

created. The value shall be stored in the 'ElementName'
property for the created element. This parameter shall not
be NULL or the empty string.

Job OUT, REF CIM_ConcreteJob Reference to the job (may be null if job completed).

Goal IN, OUT, EI string EmbeddedInstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the FileSystem. If
NULL or the empty string, a default FileSystemSetting shall
be specified by the FileSystemCapabiltiies element
associated to the FileSystemConfigurationService by the
DefaultElementCapabilities association. The actual
FileSystemSetting used is returned on output.

TheElement OUT, REF CIM_LocalFileSystem The newly created FileSystem.
INnExtents[] IN, OUT, REF, CIM_LogicalDisk The LogicalDisk(s) on which the created FileSystem shall
NULL allowed, reside. If this is NULL, the Pools and ExtentSettings

parameters cannot be NULL and are used to create
LogicalDisk(s). The LogicalDisk(s) actually used will be
returned on output.

Pools]] IN, REF, NULL CIM_StoragePool An array of concrete StoragePool elements corresponding
allowed to the ExtentSettings parameter from which to create
LogicalDisks in case the InExtents parameter is NULL. If
InExtents is not NULL, this must be NULL.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 177

Filesystem Manipulation Subprofile

Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
ExtentSettings|] IN, EI, NULL string Embeddedinstance ("CIM_StorageSetting")
Allowed

An array of embedded StorageSetting structures that
specify the settings to use for creating LogicalDisks if the
InExtents parameter is NULL and Pools is specified. Each
LogicalDisk will be created from the corresponding entry in
Pools, so each StorageSetting entry must be supported by
the capabilities of the corresponding Pools entry.

Sizes|[] IN, OUT, NULL uint64 An array of numbers that specifies the size in bytes of the
Allowed LogicalDisks to be created corresponding to the Pools and
ExtentSettings parameters. The sum of Sizes should be at
least as much as (or greater than) the FileSystem size

needed.
FileServer IN, OUT, REF, ComputerSystem A reference to a ComputerSystem element that will access
NULL Allowed the created LocalFileSystem and is capable of exporting

the filesystem as a file share. The local access point with
respect to the file server is specified by the
LocalAccessPoint parameter. If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that local access points are supported but
implementation-defaulted, the corresponding entry in the
LocalAccessPoint parameter should be NULL or the empty
string as the LocalAccessPoint name is constructed as per
the vendor default algorithm. A LocalAccessAvailable
association is created between the FileServer and the
LocalFlleSystem. The parameters for local access are
specified by the LocalAccessSetting parameter.

Since this filesystem has just been created, the
LocalAccessSetting can support Write privileges. If the
LocalAccessSetting entry is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities associated to the
FileServer.

If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that a local access point is required and
FileServer is NULL, no LocalAccessAvailable associations
are created and the filesystem may not be accessible. This
shall not cause an Error.

On output, this parameter contains a reference to the actual
FileServer that has access to the created LocalFileSystem.

178

Filesystem Manipulation Subprofile

Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem

Parameter
Name

Qualifier

Type

Description & Notes

LocalAccessPoint

IN, OUT, REF,
NULL Allowed

string

A string to use as a pathname in the name space of the file
server ComputerSystem. The format of the string is vendor-
dependent and it should be considered opaque from the
client’s standpoint. It could be interpreted as a hierarchical
fully-qualified name for the local access point (say in a
Unix-based operating environment), or it could be a drive
letter (as in a Windows operating environment). A
LocalAccessAvailable association is created going between
the new LocalFileSystem and the FileServer parameter.
The LocalAccessAvailable.LocalAccessPoint property will
be set to this parameter.

The parameters for local access are specified by the
LocalAccessSetting parameter.

If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that local access points are required, then
LocalAccessPoint shall not be NULL or an empty string.

If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that local access points can be vendor-
defaulted, then LocalAccessPoint can be NULL or an
empty string and the implementation shall create a name
using a vendor-specific algorithm.

If
FileSystemConfigurationCapabilities.LocalAccessibilitySup
port specifies that local access points cannot be vendor-
defaulted, then LocalAccessPoint shall not be NULL and
the implementation shall not create a default pathname.
This is an Error.

On output, this parameter contains the actual
LocalAccessPoint used (including any name created by
vendor-default).

LocalAccessSetting

IN, EI, OUT,
NULL Allowed

string

Embeddedinstance
("CIM_LocallyAccessibleFileSystemSetting")

An embedded LocallyAccessibleFileSystemSetting element
that specifies the settings to use to establish a local access
point. This element will be used to create a
LocalAccessAvailable association and will be cloned to
create a LocallyAccessibleFileSystemSetting element that
is scoped via HostedDependency (ScopedSetting) to the
FileServer and associated via ElementSettingData to the
LocalFileSystem.

If a LocallyAccessibleFileSystemSetting entry is NULL or
the empty string, the implementation shall use the default
provided by the LocallyAccessibleFileSystemCapabilities
element of the FileSystemConfigurationService that is
associated to the FileServer via CIM_Dependency. The
LocalAccessSetting may specify a Write Privilege.

The LocalAccessSetting actually used is returned as the
OUT Embeddedinstance parameter.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

179

Filesystem Manipulation Subprofile

Table 112 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_CreateFileSystem

Parameter Qualifier Type Description & Notes
Name
DirectoryServer IN, OUT, NULL ComputerSystem A reference to a ComputerSystem element that has access
Allowed to directory services. The newly created filesystem can use

it to support security principal information associated with
filesystem objects, such as quotas for users and groups.
This is represented by providing a Dependency association
between the LocalFileSystem element and the
ComputerSystem indicated by this parameter. The
requirements for this parameter are further specified by
FileSystemConfigurationCapabilities.DirectoryServerParam
eterSupported.

If DirectoryServerParameterSupported specifies 'Not Used',
or 'Supported, Defaulted to FileServer', or 'Supported,
Defaulted to FileSystem host', it is an Error if
DirectoryServer is not NULL.

Otherwise, (i.e., if DirectoryServerParameterSupported
specifies 'Supported’), and if the DirectoryServer is not
NULL, the new filesystem will use the directory services
made available by the specified DirectoryServer. If
DirectoryServer is NULL, it will be defaulted to the
FileServer parameter. If the FileServer parameter is also
NULL, the DirectoryServer will be defaulted to the host of
the newly created filesystem.

On output, this parameter contains a reference to the actual
DirectoryServer if one was established.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either

Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

of Values parameter (either reference or embedded) has been
requested.

9.5.2.1 FileSystemConfigurationService.SNIA_ModifyFileSystem

This extrinsic method modifies a LocalFileSystem specified by the parameter TheElement. The desired
settings for the LocalFileSystem are specified by the Goal parameter (a string-valued Embeddedinstance
object of class FileSystemSetting).

As with SNIA_CreateFileSystem, the FileSystemConfigurationCapabilities associated with the
FileSystemConfigurationService specifies support for some of the optional behaviors of this method.
BlockStorageCreationSupport indicates whether this method only uses previously existing storage
elements or if it can create them at the same time as modifying or creating the filesystem. In addition this
can specify if additional LogicalDisks can be added to the existing set of LogicalDisks and whether the
implementation limits the number of LogicalDisks underlying a filesystem. LocalAccessibilitySupport
indicates whether the implementation requires support for local access points (or if they are optional or
not required at all).

180

Filesystem Manipulation Subprofile

This element shall have a FileSystemSetting use ActualFileSystemType property is supported by the
FileSystemConfigurationService (as specified by the SupportedActualFileSystemTypes property of the
associated FileSystemConfigurationCapabilities). The existing LogicalDisks used by the LocalFileSystem
cannot be released by this method, but this method may add LogicalDisks. These LogicalDisks may be
specified by the InExtents parameter (if that is either required or optional) or, if InExtents is NULL (if
Pools are optional or required), the set of LogicalDisks is not changed. New LogicalDisks may also be
added by specifying an array of StoragePools in the Pools parameter and an array of StorageSettings that
can be used to create them.

If the operation would result in a change in the size of a filesystem, the ResidesOnExtent association
shall be used to determine how to implement the change. If the existing or additional LogicalDisk(s)
specified, or any additional LogicalDisks created, cannot support the goal size, an appropriate error value
shall be returned, and no action shall be taken. If the operation succeeds, the ResidesOnExtent
association shall reference the same LogicalDisk as before (however, the LogicalDisk will be built upon a
larger number of underlying LogicalDisks, as modeled by the Volume Composition Subprofile).

If the new Goal is different from the old FileSystemSetting element associated to the LocalFileSystem
element, then the implementation must change the setting properties of the LocalFileSystem. This may
be accomplished by modifying the old FileSystemSetting element directly, or by deleting it and then re-
creating a new FileSystemSetting element with the same Instanceld. Just like the old element, the new
FileSystemSetting element shall be associated to the LocalFileSystem element via an
ElementSettingData association.

If local access is supported, whether optional or required, any change is specified by providing the
FileServer parameter (which shall be a reference to a ComputerSystem). If a FileServer is not being
added to the set or modified or removed from the set, the FileServer parameter may be NULL.

If the specified FileServer does not duplicate a ComputerSystem that has already been specified as
having local access, this method adds it to the set. The pathname is specified by the LocalAccessPoint
string array parameter. The settings to be used for these are specified in the LocalAccessSetting, an
Embeddedinstance element of class LocallyAccessibleFileSystemSetting.

If the specified FileServer duplicates a ComputerSystem that has already been specified as having local
access, this method either modifies the local access or removes it from the set. If the LocalAccessPoint
parameter is NULL or consists of an empty string, this call removes the FileServer from the set. If the
LocalAccessPoint parameter is not NULL but specifies the current path, then this call modifies the
settings of the local access -- the new settings are specified by the LocalAccessSetting parameter. If the
LocalAccessPoint parameter is not NULL but specifies a path other than the current path, then this call
modifies the pathname as well as the settings. If this filesystem is in operational use when such a request
is made, the request may have to be suspended until the filesystem can be put into an appropriate state
for making the change.

The settings to be used for adding or modifying are specified by the LocalAccessSetting parameter, an
Embeddedinstance element of class LocallyAccessibleFileSystemSetting.

To add a local access point, a LocalAccessAvailable association and a
LocallyAccessibleFileSystemSettings element are created with the following properties and associations:

A LocalAccessAvailable association goes between the FileServer parameter and the LocalFileSystem
(TheElement parameter).

< A LocalAccessAvailable.LocalAccessPoint property is set to the LocalAccessPoint string.

e A LocallyAccessibleFileSystemSetting element with a ElementSettingData association to the
LocalFileSystem (TheElement parameter).

< The LocallyAccessibleFileSystemSetting element has a HostedDependency (ScopedSetting) association to
the FileServer parameter.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 181

Filesystem Manipulation Subprofile

NOTE The WaitTime and InUseOptions parameters are supported if the FileSystemCapabilities.SupportedProperties includes the
"RequirelnUseOptions" option.

NOTE A client can identify all local access specifications for a filesystem by looking for the LocalAccessAvailable association from
the LocalFileSystem to a file server ComputerSystem and the LocallyAccessibleFileSystemSetting associated to the
LocalFileSystem via ElementSettingData and the same file server ComputerSystem via HostedDependency (ScopedSetting).

9.5.3 Signature and Parameters of SNIA_ModifyFileSystem

Table 113 describes the parameters for Extrinsic Method
FileSystemConfigurationService.SNIA_ModifyFileSystem.

Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name
ElementName IN, OUT string An end user relevant name for the filesystem being modified. If NULL, the

existing TheElement.ElementName property is not changed. If not NULL,
this parameter will supply a new name for the Element parameter. The
actual ElementName is returned as the output value.

Job OUT, REF CIM_Conc | Reference to the job (may be null if job completed).
reteJob
Goal IN, OUT, El | string Embeddedinstance ("CIM_FileSystemSetting")

The FileSystemSetting requirements for the filesystem specified by the
TheElement parameter. If NULL or the empty string, the settings for
TheElement will not be changed. If not NULL, this parameter will supply
new settings that replace or are merged with the current settings of

TheElement.
TheElement IN, REF CIM_Local [The LocalFileSystem element to modify.
FileSystem
InExtents] IN, OUT, REF, | CIM_Logic | The LogicalDisk(s) used to extend the current set of LogicalDisks used for
NULL alDisk the TheElement filesystem. If this is not NULL, the Pool and ExtentSettings
allowed, must be NULL. If both this and Pool are NULL, the current set will not be
changed. The current set of LogicalDisk(s) will be returned as the output.
Pools[] IN, REF, CIM_Stora | An array of concrete storage pools corresponding to the ExtentSettings
NULL allowed | gePool array parameter. These storage pools are used to create additional
LogicalDisks to extend the TheElement filesystem. The InExtents
parameter must be NULL and the ExtentSettings parameter must not be
NULL. Otherwise, the current set of LogicalDisks is not changed.
ExtentSettings[] | IN, El, NULL | string Embeddedinstance ("CIM_StorageSetting")
Allowed
An array of embedded StorageSetting structures that specify the settings to
use for creating additional LogicalDisks for the TheElement filesystem. The
InExtents parameter must be NULL and Pools must be specified. Each
LogicalDisk will be created from the corresponding Pool, so each
StorageSetting entry must be supported by the capabilities of the
corresponding Pool entry.
Sizes][] IN,NULL uint64 An array of numbers that specifies the size in bytes of the LogicalDisks to
Allowed be created corresponding to the ExtentSettings array parameter.

182

Filesystem Manipulation Subprofile

Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name
FileServer IN, OUT, REF, | REF A reference to a ComputerSystem element representing a file server.
NULL Allowed | Computer)]]
System If this parameter is NULL, no change is made to the local access

configuration. If it is not NULL, the change to the configuration consists of
the following cases:

1.) If the FileServer does not already support local access to the
TheElement, it will be added and made capable of exporting the filesystem
as file shares. The local access point is specified by the LocalAccessPoint
parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points are vendor-defaulted, the corresponding entry in the
LocalAccessPoints parameter should be NULL or the empty string as the
LocalAccessPoint name is constructed by a vendor-default algorithm.

A LocalAccessAvailable association is created between the FileServer and
the TheElement. The parameters for local access are specified by the
LocalAccessSetting parameter, an EmbeddedInstance element of class
LocallyAccessibleFileSystemSetting.

If the LocalAccessSetting parameter is NULL or the empty string, the
implementation uses a default associated with the
LocallyAccessibleFileSystemCapabilities of the
FileSystemConfigurationService associated to the FileServer by
HostedDependency (ScopedSetting). At most one of the
LocalAccessSettings entries for all the file server ComputerSystems that
provide local access to this filesystem shall specify an element with Write
Privileges.

2) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is NULL or a set of empty strings, this will
remove the FileServer from the configured set. If there are existing
operational users of the TheElement filesystem, they will need to be
informed and the implementation might have to wait to reach a consistent
state before the request can be completed.

3) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is the same as the current configuration, then
this is a request to change the settings but not the local access point. The
LocalAccessSetting parameter will specify the new setting. Depending on
the precise change, the filesystem may need to suspend operations. If there
are existing operational users of the filesystem, they will need to be
informed and the implementation might have to wait to reach a consistent
state before the request can be completed.

4) If FileServer already supports local access to the TheElement, and the
LocalAccessPoint parameter is different from the current configuration, then
this is equivalent to removing local access and then restoring it with different
settings. If there are existing operational users of the filesystem, they will
need to be informed and the implementation might have to wait to reach a
consistent state before the request can be completed. Note that existing
operational users will not be able to reconnect as the share name may have
changed.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

183

Filesystem Manipulation Subprofile

Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name
LocalAccessPoint | IN, OUT, REF, | string A string to use as a pathname in the name space of the file server
NULL Allowed ComputerSystem specified by the FileServer parameter. The format of the

string is vendor-dependent and it should be considered opaque to the client.
It could be interpreted as a hierarchical fully-qualified name for the local
access point (say in a Unix-based operating environment), or it could be a
drive letter (as in a Windows operating environment). A
LocalAccessAvailable association is created going between the
TheElement and the FileServer. The
LocalAccessAvailable.LocalAccessPoint property will be set to the value of
this parameter.

The parameters for local access are specified by the LocalAccessSetting
parameter.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points are required, then LocalAccessPoint shall not be
NULL or an empty string if this is a new FileServer that does not have local
access to TheElement. This is an Error.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points can be vendor-defaulted, then LocalAccessPoint
can be NULL or an empty string and the implementation shall create a
name using a vendor-specific algorithm.

If FileSystemConfigurationCapabilities.LocalAccessibilitySupport specifies
that local access points cannot be vendor-defaulted, and this is a new
FileServer that does not have local access to TheElement, then
LocalAccessPoint shall not be NULL and the implementation shall not
create a default pathname. This is an Error.

On output, this parameter contains the actual LocalAccessPoint used
(including any name created by vendor-default).

LocalAccessSettin| IN, EIl, OUT, | string Embeddedinstance ("SNIA_LocallyAccessibleFileSystemSetting")
g NULL Allowed
An embedded LocallyAccessibleFileSystemSetting element that specifies

the settings to use for establishing a local access point. Each entry will be
used to create or modify a LocalAccessAvailable association and will be
cloned to create a LocallyAccessibleFileSystemSetting element that is
scoped via ScopedSetting (or HostedDependency) to the file server
ComputerSystem specified by the FileServer parameter. The clone will be
associated via ElementSettingData to the LocalFileSystem.

If this parameter is NULL or the empty string, and a new value is needed,
the implementation shall use the default provided by the
LocallyAccessibleFileSystemCapabilities associated to the FileServer
parameter. The LocalAccessSetting actually used is returned as the OUT
parameter.

InUseOptions N uint16 An enumerated integer that specifies the action to take if the filesystem is
still in operational use when this request is made. This option is only
relevant if the FileSystem needs to be made unavailable while the request is

being executed.

WaitTime IN uint32 An integer that indicates the time in seconds to wait before performing the
request on this filesystem. The combination of InUseOptions = '4' and
WaitTime ='0' (the default) is interpreted as 'Wait (forever) until Quiescence,
then Execute Request.

184

Filesystem Manipulation Subprofile

Table 113 - Parameters for Extrinsic Method FileSystemConfigurationService.SNIA_ModifyFileSystem

Parameter Qualifier Type Description & Notes
Name

Normal Return

Status uint32 "Job Completed with No Error”,
"Failed",
"Method Parameters Checked - Job Started"

Error Returns

Invalid Property | OUT, CIM_Error | A single named property of an instance parameter (either reference or
Value Indication embedded) has an invalid value

Invalid OuT, CIM_Error | An invalid combination of named properties of an instance parameter (either
Combination of | Indication reference or embedded) has been requested.

Values

9.5.3.1 FileSystemConfigurationService.DeleteFileSystem

This is an extrinsic method that shall delete a LocalFileSystem specified by the parameter TheElement
and delete any associated elements and associations that are no longer needed. The deleted elements
include the LogicalFile/Directory and FileStorage, if they were surfaced; the LocalAccessAvailable
association, the LocallyAccessibleFileSystemSetting element and its associations, ElementSettingData,
HostedDependency (ScopedSetting); HostedFileSystem, ResidesOnExtent, and any associations that
might be orphaned by the deletion of TheElement. An implementation is not required to delete or re-
allocate the LogicalDisk(s) that TheElement used.

NOTE The WaitTime and InUseOptions parameters are supported if the FileSystemCapabilities.SupportedProperties includes the
"RequirelnUseOptions" option.

9.5.4 Signature and Parameters of DeleteFileSystem.

Table 114 describes the parameters for Extrinsic Method
FileSystemConfigurationService.DeleteFileSystem.

Table 114 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter Qualifier Type Description & Notes
Name
Job OUT, REF CIM_ConcreteJob Reference to the job (may be null if job completed).
TheElement IN, REF CIM_LocalFileSystem | The filesystem element to delete.
InUseOptions IN uint16 An enumerated integer that specifies the action to take if

TheElement is still in use when this request is made. This
option is only relevant if the filesystem needs to be made
unavailable while the request is being executed.

WaitTime IN uint32 An integer that indicates the time in seconds to wait before
performing the request on TheElement filesystem. The
combination of InUseOptions = '4' and WaitTime ='0' (the
default) is interpreted as 'Wait (forever) until Quiescence,
then Execute Request.

Normal Return

Status uint32 "Job Completed with No Error",
"Failed",
"Method Parameters Checked - Job Started"

SMI-S 1.6.1 Revision 6 SNIA Technical Position 185

9.5.

Filesystem Manipulation Subprofile

Table 114 - Parameters for Extrinsic Method FileSystemConfigurationService.DeleteFileSystem

Parameter Qualifier Type Description & Notes
Name

Error Returns

Invalid Property OUT, Indication CIM_Error A single named property of an instance parameter (either

Value reference or embedded) has an invalid value

Invalid Combination OUT, Indication CIM_Error An invalid combination of named properties of an instance

of Values parameter (either reference or embedded) has been
requested.

5 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations
supported are as follows:

9.6

Getlnstance

Associators
AssociatorNames
References
ReferenceNames
Enumeratelnstances
EnumeratelnstanceNames

Client Considerations and Recipes

EXPERIMENTAL

Conventions used in the NAS recipes:

When there is expected to be only one association of interest, the first item in the array returned by the
Associators() call is (often) used without further validation. Real code will need to be more robust.

SMI-S uses Values and Valuemap members as equivalent. In real code, client-side magic is required to
convert the integer representation into the string form given in the MOF.

Error returns using the CIM_Error mechanism are not explicitly handled -- the client must implement handlers
for these asynchronous returns.

These recipes do not show the details of negotiating a setting acceptable to both client and provider.
The recipes do not show the details of managing a Job if a method returns after setting one up.

All the recipes show very simple examples of the operations that should be supported. Some recipes have
been simplified so that they would not even be minimally useful to a real client, but only show how more
complete functionality would be implemented.

In the Filesystem Manipulation Profile recipes, the following subroutines are used (and provided here as
forward declarations):

186

sub CreateGoal(
IN REF CIM_FileSystemCapabilities $fscapability,

Filesystem Manipulation Subprofile

IN String $goalSetting,
INOUT String $supportedFileSystemSetting);

// The above subroutine uses the $fscapability.CreateGoalSettings method
// to get the single $supportedFileSystemSetting used in these recipes.

sub GetRequiredStorageSize(

IN REF CIM_FileSystemCapabilities $fscapability,
IN String $fssgoal,

IN String $ldSetting,

OUT uint64 $expectedsize,

OUT uint64 $minsize,

OUT uint64 $maxsize);

// The above subroutine uses the $fscapability.GetRequiredStorageSize
// method to get the single output size used in these recipes.

9.6.1 Creation of a FileSystem on a Storage Extent

//
//
//
//
//
//
//
/7
//
//
7/
//
//
7/
//
//
//
//
//
//
//
//
7/
//
//
//
//
//
7/
//
//
7/

DESCRIPTION

Goal: Create a LocalFilesystem on a LogicalDisk

PRE-EXISTING CONDITIONS AND ASSUMPTIONS

1. The ComputerSystem host of the FileSystemConfigurationService
will also be the host of the created LocalFileSystem.

2. The client does not negotiate to get an acceptable setting but
fails if one is not found

3. We do not use the FSCS to create a LogicalDisk from a StoragePool

4. We do not set up local access to a file server at this time

FUNCTION CreateFileSystem

This function takes a given ComputerSystem and LogicalDisk and

constructs a filesystem that satisfies the requested property values.
INPUT Parameters:

hostsystem: A reference to the ComputerSystem.

disk: A reference to the LogicalDisk on which to build the
filesystem.

desiredsize: An integer specifying the size of filesystem to
build in bytes

fsname: The string name of the Filesystem

filesystemtype: An integer enumeration of the filesystem type
to construct

otherpropertyname: An array of property names with corresponding
values in the otherpropertyvalue parameter.

otherpropertyvalue: An array of property values corresponding to the
names in the otherpropertyname parameter.

OUTPUT Parameters:

fs: A reference to the LocalFileSystem that is built by this
function.
job: A reference to a job created by the implementation if this

SMI-S 1.6.1 Revision 6 SNIA Technical Position

187

Filesystem Manipulation Subprofile

// function will take a long time to complete.

// RESULT:

// Failure return consists of fs=NULL and job=NULL

// NOTES

// 1. This recipe does not show how to use the LocalAccess functionality
// to “mount” the file system to a mount-point of a file server.

sub CreateFileSystem(IN REF CIM_System $hostsystem,
IN REF CIM_LogicalDisk $disk,
IN uint64 $desiredsize,
IN String $fsname,
IN String $filesystemtype,
IN String $otherpropertyname[], // array of property names

IN String $otherpropertyvalue[], // corresponding array of
values

OUT REF CIM_FileSystem $fs,
OUT REF CIM_Job $job)

//
// Get the FileSystemConfigurationService of the NAS server using
// a HostedService association
//
$fsconfigurators->[] = Associators($hostsystem,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent”);
if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {
// No FileSystemConfigurationService found -- error
$fs = NULL;
$job = NULL;
return;

}

$fsconfigurator = $fsconfigurators->[0];

//

// Find FSCapabilities that supports $filesystemtype

// as the ActualFileSystemType using ElementCapabilities

// association from FSConfigurationService.

//

// There is only one Capability of a particular ActualFileSystemType

$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities™,
“CIM_FileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);

ifT ($capabilities->[] == null || $capabilities->[].length == 0) {

// No Capabilities found -- error

188

}
#J

Filesystem Manipulation Subprofile

$fs = NULL;
$job = NULL;
return;

:0;

while($capability = $capabilities->[#j]) {

}

if (($capability.ActualFileSystemType == $filesystemtype) ||
(($filesystemtype == NULL) && ($capability.lIsDefault))) {

if ($otherpropertyname->[] == NULL || $otherpropertyname->[].length ==

Contains(%capability.SupportedProperties, $otherpropertyname->[]))

{

// This Contains function is left to the client to implement
// found a matching capabilities element

//

break;

} else {

// Found capabilities element failed to match
$fs = NULL;
$job = NULL;

return;

}
#Hj++;

$capability = $capabilities->[#j];

//

//

//
//
//
//
//
//
7/
//
//
//

If $Filesystemtype was NULL or empty string the default was returned
($Filesystemtype == NULL || $filesystemtype == “*)
$filesystemtype = S$capability.ActualFileSystemType;

At this point the $capability will be for $filesystemtype

Call FileSystemCapabilities.CreateGoalSettings(nullTemplate, Goal) to
get a seed goal for FileSystemSetting, or just use one of the provided
default settings associated with the FileSystemCapabilities via
SettingsDefineCapabilities.

The function used is CreateGoal instead of CreateGoalSettings
because the CreateGoalSettings method takes arrays

as parameters and we only want to pass single-entry arrays
The implementation details are left to the client.

$fssgoal = NULL;
CreateGoal ($capability, NULL, $fssgoal);

//
// Inspect Goal and modify properties as desired.
//

SMI-S 1.6.1 Revision 6 SNIA Technical Position

189

Filesystem Manipulation Subprofile

#i = 03

while ($otherpropertyname[#i]) {
// funky syntax on left-hand side -- dot-operator on an a variable
$fssgoal .$otherpropertyname[#i] = $otherpropertyvalue[#i];

Hi++;

//

// Call FSCSCapabilities.CreateGoalSettings(Goal-N”, Goal-N) to get
// the next goal for FSSetting -- iterate until satisfied or give up
// (beware of infinite loops) Note: we don’t iterate here, just give
// up if we don’t get what we want.

//

// The function used is CreateGoal instead of CreateGoalSettings

// because the CreateGoalSettings method takes arrays

// as parameters and we only want to pass single-entry arrays

// The implementation details are left to the client.

CreateGoal ($capability, $fssgoal, $fssgoal2);

#i1 = 0;
while ($otherpropertyname[#i]) {
//
// Note: this pseudocode doesn’t check to see if the property named
// in $otherpropertyname[#i] is an array. This additional level
// of horsing around is left as an exercise for the reader.

//
if ($fssgoal.$otherpropertyname[#i] '= $otherpropertyvalue[#i] {
{ return NULL; } // give up
¥
}
//

// Call FileSystemCapabilities.GetRequiredStorageSize(Goal,

// DesiredUsableCapacity) to find out how large of a

// LogicalDisk is needed.

//

// GetRequiredStorageSize returns the maximum and minimum

// sizes that might be needed to satisfy the fssgoal2 request

// 1T the LogicalDisk in use for the filesystem cannot be grown
// upon demand, then it might be worth growing to $minsize (which
// would be optimistic); if there is any reason to believe that
// the user is underestimating what they will need, then it might
// be worth growing to $maxsize (pessimistic); in the normal case,
// plan to grow to $expectedsize.

//

$ldsetting = NULL;

$requiredsize = $capability.GetRequiredStorageSize(

190

Filesystem Manipulation Subprofile

$fssgoal2,
$ldsetting, // NULL input, returns
setting

$expectedsize,
$minsize,
$maxsize);

//

// If a disk of the required size is already available

// Call CreateFileSystem(Goal, LogicalDisk)

// else

// Create LogicalDisk (see StorageExtent recipes)

// Call CreateFileSystem(Goal, LogicalDisk)

//

if ($requiredsize > $disk.BlockSize * $disk.NumberOfBlocks) {
<CreateDisk>($requiredsize, $newdisk);
$disk = $newdisk;

}

$diskArray->[0] = $disk;

$status = $fsconfigurator.CreateFileSystem(

$fsname,

$job, // Job returned if necessary
$fssgoal2, // Filesystem Setting

$fs, // Filesystem returned
$diskArray->[], // LogicalDisk to use

NULL // No storagepools

NULL, // No settings to create LDs

NULL, // No size parameters

NULL, // No File server specified for Local Access
NULL, // No local access points provided
NULL // No local access settings

)

//

// not shown:

// 1) Managing the $job if it’s not NULL,

// 2) Looking at the status result to figure out what to do

// 3) Managing any CIM_Errors that get returned asynchronously.
//

return $fs;

}

9.6.2 Increase the size of a FileSystem

//

// DESCRIPTION

// Goal: Increase the size of a FileSystem
//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

SMI-S 1.6.1 Revision 6 SNIA Technical Position

191

192

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Filesystem Manipulation Subprofile

1. The ComputerSystem host of the FileSystemConfigurationService
is also the host of the LocalFileSystem being modified.

2. The client does not negotiate to get an acceptable setting but
fails if one is not found

3. Then desiredsize is greater than the current size

FUNCTION CreateFileSystem
This function takes a given LocalFileSystem and a desired
increase in size in bytes and expands the size of the

filesystem by at least the desired size.
INPUT Parameters:

fs: A reference to the LocalFileSystem.

desiredsize: The desired size of the filesystem
OUTPUT Parameters:

job: A reference to a job created by the implementation if this

function will take a long time to complete.

RESULT:

Success or Failure
NOTES

1.

sub IncreaseFileSystemSize(IN REF CIM_FileSystem $fs,

//

IN REF uint64 $desiredsize,
OUT CIM_Job $job)

//
// Get a client-side copy of the FileSystemSetting
// associated with the CIM_FileSystem (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,
“ManagedElement”,
“SettingData’™);
if ($settings ->[] == NULL || $settings ->[]-length == 0) {
// No FileSystemSetting found -- error
$job = NULL;
return;
}
One of the settings must be marked IsCurrent -- if not, there is an
#i1 = 0;
$setting = NULL;
while ($settings->[#i] 1= NULL) {
ifT ($settings->[#i].IsCurrent) {
$setting = Getlnstance($settings->[#i]);
break;

error

Filesystem Manipulation Subprofile

}
Hi++;
¥
if ($setting == NULL) {
$job = NULL;
return;
}

$fssnewgoal = $setting;

// Note that this syntax conflicts with earlier use of funky syntax for
// accessing properties. Also “add” method applied to an array-value
// changes the array in-place

$fssnewgoal .ObjectTypes->[]-add(“Bytes™);

$fssnewgoal .ObjectSizeMin->[].add($desiredsize);

// Get the FileSystemCapabilities element from the hosting NAS Server
//

// a) Get the ActualFileSystemType from the FileSystemSetting

//

$filesystemtype = $fssnewgoal .ActualFileSystemType;

//
// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$system = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem”,
“PartComponent”,
“GroupComponent’)->[0];

//
// Get the FileSystemConfigurationService from the ComputerSystem
// via the HostedService association. There is exactly one,
// but check that one is found.
//
$fsconfigurators->[] = Associators($systenm,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent”);
if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {
// No FileSystemConfigurationService found -- error
$job = NULL;
return;

$fsconfigurator = $fsconfigurators->[0];

SMI-S 1.6.1 Revision 6 SNIA Technical Position 193

Filesystem Manipulation Subprofile

//

// Find FSCapabilities that supports $filesystemtype

// as the ActualFileSystemType using ElementCapabilities

// association from FSConfigurationService.

//

// There is only one Capability of a particular ActualFileSystemType

$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,
“CIM_FileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);

iT ($capabilities->[] == null || $capabilities->[].length == 0) {

// No Capabilities found -- error
$job = NULL;
return;

}

#j = 0;

while($capability = $capabilities->[#j]) {
if ($capability.ActualFileSystemType == $filesystemtype)

break;
#j++;
}
ifT (#] == $capabilities->[].length) {
// No Capabilities for this Ffilesystem type was found -- error
$job = NULL;
return;
} else
$capability = $capabilities->[#]];
//

// Call FileSystemCapabilities.GetRequiredStorageSize(NewGoal,
// DesiredUsableCapacity) to find out how large of a

// LogicalDisk is needed

//

// Changed from: $requiredsize =
$capabi lity.GetRequiredStorageSize($fssnewgoal,

$ldsetting = “*;
$requiredsize = GetRequiredStorageSize($capability,
$fssnewgoal,
$ldsetting, // Returns actual setting used
$disksize,
$diskminsize,
$diskmaxsize);

//

// Get Underlying LogicalDisk using ResidesOnExtent association
// There must be exactly one

194

/7/

Filesystem Manipulation Subprofile

$disk = Associators($fs,

“CIM_ResidesOnExtent”,
“CIM_LogicalDisk™,
“Dependent”,
“Antecedent”)->[0];

//

// 1T disk is not large enough, increase size of underlying SE
//

$job = NULL;

if ($disksize < $disk.BlockSize * $disk.NumberOfBlocks) {

<increase size of logical disk, returning a job in $job if
necessary -- see storage extent recipes>

¥
//
// The filesystem itself doesn’t need modification, so we’re done
//
// This is NOT correct. The ModifyFileSystem method must be called
// with the new file system setting so that the filesystem can be
// modified as needed.
// 1t isn’t clear what the call would be -- probably specify NULL for
// the InExtents parameter and the desiredsize parameter would indicate
// that the filesystem was being resized.
// Operationally, the appended storage space would need to be formatted
// as inodes and their inode numbers would need to be legitimized in
// the filesystem meta-data.
//
// The call would be
// $fsconfigurator.ModifyFileSystem(
// NULL, // Keep the old element name for the filesystem
// $job, // return Job if created
// $fssgoal, // Goal setting
// $fs, // filesystem
// NULL, // Don’t add any logicaldisks
// NULL, // No storage pools
// NULL, // No LogicalDisk settings
// $disksize, // New LD size
// NULL, // No File server for local access
// NULL, // No Local access point name
// NULL, // No Local access setting
// NULL, // Default in use option
// NULL, // Default wait time
7/):
//
¥
SMI-S 1.6.1 Revision 6 SNIA Technical Position

195

Filesystem Manipulation Subprofile

9.6.3 Modify a FileSystem’s Settings

196

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
7/
//
//
//
//
//
//
//
//
//
//
//
//
//
7/
//
//
//
7/
//

DESCRIPTION
Goal: Modify the settings and other properties of a LocalFileSystem

PRE-EXISTING CONDITIONS AND ASSUMPTIONS

1. The ComputerSystem host of the FileSystemConfigurationService
will also be the host of the LocalFileSystem to be modified.

2. The client does not negotiate to get an acceptable setting but
fails if one is not found.

3. This recipe only shows how the number of supported objects
of a particular type is modified. The model can be easily
extended to other individual properties of the LocalFileSystem.

4_ The CreateFileSystem method uses an array of property names
and values and can be useful to show how ModifyFileSystem
may change many propertynames in a single call at the same time.

FUNCTION ModifyFileSystemObjectLimits
This function takes a given LocalFileSystem and a specification
of an object type (file and/or directories) to be supported
and modifies the filesystem (increases its size) so that it
satisfies the newly requested size.
INPUT Parameters:
fs: A reference to the LocalFileSystem.
objecttype: The object type whose support is being modified
minobjects: The minimum number of objects of the specified
type to be supported.
maxobjects: The maximum number of objects of the specified
type to be supported.
expectedobjects: The client’s expectations of the number of
objects of the specified type to be supported.
OUTPUT Parameters:
objecttype: The object type whose support has being modified
minobjects: The minimum number of objects of the specified
type that will be supported by the implementation.
maxobjects: The maximum number of objects of the specified
type that will be supported by the implementation.
expectedobjects: The implementation’s expectations of the
number of objects of the specified type to be supported.
job: A reference to the job implementing the ModifyFileSystem
method, If necessary.
RESULT:
None
NOTES
1. This recipe does not show how to specify multiple object
types at the same time.
2. This recipe does not show how to change the local access

Filesystem Manipulation Subprofile

// setup (add or delete local access).

sub ModifyFileSystemObjectLimits(IN REF CIM_FileSystem $fs,
IN OUT uint64 $objecttype,
IN OUT uint64 $minobjects,
IN OUT uint64 $maxobjects,
IN OUT uint64 $expectedobjects,
OUT REF CIM_Job $job)

{
//
// Get a client-side copy of the FileSystemSetting
// associated with the CIM_FileSystem (via ElementSettingData
// association) using Getlnstance
//
$settings = Associators($fs,
“CIM_ElementSettingData”,
“CIM_FileSystemSetting”,
“ManagedElement”,
“SettingData™);
if ($settings ->[] == NULL || $settings ->[]-length == 0) {
// No FileSystemSetting found -- error
$job = NULL;
return;
}
// One of the settings must be marked IsCurrent -- if not, there is an error
#i1 = 0;

$setting = NULL;
while ($settings->[#i] '= NULL) {
if ($settings->[#i].IsCurrent) {
$setting = Getlnstance($settings->[#i]);

break;
}
Hi++;
3
if ($setting == NULL) {
$job = NULL;
return;
}

$fssnewgoal = $setting;

// Get the FileSystemCapabilities element from the hosting NAS Server
//

// a) Get the ActualFileSystemType from the FileSystemSetting

//

$filesystemtype = $setting.ActualFileSystemType;

//

SMI-S 1.6.1 Revision 6 SNIA Technical Position 197

Filesystem Manipulation Subprofile

// Get the ComputerSystem for the filesystem (via HostedFileSystem association)
// There should be exactly one.
$system = Associators($fs,

“CIM_HostedFileSystem”,

“CIM_ComputerSystem™,

“PartComponent”,

“GroupComponent’)->[0];

//
// Get the FileSystemConfigurationService from the ComputerSystem
// via the HostedService association. There is exactly one.
//
$fsconfigurators->[] = Associators($system,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent”™);
if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {
// No FileSystemConfigurationService found -- error
$job = NULL;
return;

$fsconfigurator = $fsconfigurators->[0];

//

// Find FSCapabilities that supports $filesystemtype

// as the ActualFileSystemType using ElementCapabilities

// association from FSConfigurationService.

//

// There is only one Capability of a particular ActualFileSystemType

$capabilities->[] = Associators($fsconfigurator,
“CIM_ElementCapabilities”,
“CIM_FileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);

iT ($capabilities->[] == null || $capabilities->[].length == 0) {

// No Capabilities found -- error
$job = NULL;
return;
}
#j = 0;
while($capability = $capabilities->[#]]) {
if ($capability.ActualFileSystemType == $filesystemtype)
break;
#Hj++;
¥

198

Filesystem Manipulation Subprofile

if (#)] == $capabilities->[].length) {
$job = NULL;
return;

} else
$capability = $capabilities->[#]];

//
// Find the index in the object arrays that contains
// the object type of interest
//
#i1 = 0;
while($typ = $fssnewgoal .ObjectTypes->[#i]) {
if ($typ == $objecttype)

{ break; }
Hi++;
}
//
// if the specified type isn’t there, add it
//

if ($typ = $objecttype) {
$fssnewgoal .ObjectTypes->[#i] = $objecttype;

//

// modify the other params associated with the object type
//

$fssnewgoal .NumberOfObjectsMin->[#i] = $minobjects;
$Ffssnewgoal .NumberOfObjectsMax->[#i] = $maxobjects;
$fssnewgoal .NumberOfObjects->[#i] = $expectedobjects;

//
// Call FSCSCapabilities.CreateGoalSettings(Goal-N”, Goal-N) to get the next
// goal for FSSetting -- iterate until satisfied or give up (beware
// infinite loops) Note: we don’t iterate here, just give up.
//
// The function used is CreateGoal instead of CreateGoalSettings
// because the CreateGoalSettings method takes arrays
// as parameters and we only want to pass single-entry arrays
// The implementation details are left to the client.
CreateGoal ($capability, $fssnewgoal, $fssgoal2);
if ($fssgoal2.ActualFileSystemType 1= $Ffilesystemtype) {
$job = NULL;
return;

// Since this may increase the size of the file system it is necessary to
// pass in a new extent or a new logical disk or a pool that can provide

SMI-S 1.6.1 Revision 6 SNIA Technical Position 199

9.6.4

200

}

Filesystem Manipulation Subprofile

// the storage.

//

// call ModifyFileSystem (management of $job and any CIM_Error not

// shown)
//

$fsconfigurator . .ModifyFileSystem(

NULL,
$job,
$fssgoal2,
$fs,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

);

return $fs;

//
//
//
//
//
//
//
//
//
//
//
//
//

Keep the old element name for the filesystem
return Job if created

Goal setting

filesystem

Don’t add any logicaldisks

No storage pools

No LogicalDisk settings

No LD sizes

No File server for local access
No Local access point name

No Local access setting

Default in use option

Default wait time

Delete a FileSystem and return underlying StorageExtent

//
//
//
//
//
//
//
//
//
//
//
//
7/
//
//
//
//
//
//
//
//
7/

DESCRIPTION

Goal: Delete a filesystem and return underlying LogicalDisk

PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. The ComputerSystem host of the FileSystemConfigurationService
is also the host of the created LocalFileSystem.
2. The filesystem is built on a single LogicalDisk

3. The LogicalDisk is not automatically returned to a StoragePool

but is left allocated to the NAS Server and available for use

by a filesystem client.

4. No job is needed

FUNCTION DeleteFileSystem

This function deletes a given LocalFileSystem and
returns a reference to the LogicalDisk on which it resided

INPUT Parameters:

fs: A reference to the LocalFileSystem.

OUTPUT Parameters:

disk: A reference to the LogicalDisk is returned.

RESULT:
Success or Failure

Filesystem Manipulation Subprofile

// NOTES

// 1. This recipe does not show how to clean up any local access
// or file shares that may have been set up for accessing the
// filesystem.

// 2. To “wipe” or zero out the filesystem, the client must either
// use client-level operations over a filesystem or FileShare
// prior to deleting the filesystem, or by vendor-specific

// operations on the LogicalDisk after deleting the filesystem.
//

sub DeleteFileSystem(IN REF CIM_FileSystem $fs, OUT REF CIM_LogicalDisk $disk)
{
//
// Get underlying LogicalDisk using ResidesOnExtent association
// In SMI-S 1.2. we assume that there will be exactly one
//
$disks->[] = Associators($fs,
“CIM_ResidesOnExtent”,
“CIM_LogicalDisk™,
“Dependent”,
“Antecedent™)->[0];
ifT ($disks->[]1 == null || $disks->[]-length == 0) {
// No LogicalDisk found -- error
$disk = NULL;
return;

¥
$disk = $disks->[0];

//
// Get the NAS Server of the filesystem using
// a HostedFileSystem association. There should be
// exactly one filesystem host.
$hosts->[] = Associators($fs,
“CIM_HostedFileSystem”,
“CIM_ComputerSystem™”,
“Antecedent”,
“Dependent’);
if ($hosts->[] == null || $hosts->[].length == 0) {
// No ComputerSystem found -- error
$disk = NULL;
return;

¥
$hostsystem= $hosts->[0];

//

// Get the FileSystemConfigurationService of the NAS server using
// a HostedService association

SMI-S 1.6.1 Revision 6 SNIA Technical Position 201

Filesystem Manipulation Subprofile

//
$fsconfigurators->[] = Associators($hostsystem,
“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,
“Dependent™);
if ($fsconfigurators->[] == null || $fsconfigurators->[].length == 0) {
// No FileSystemConfigurationService found -- error
$fs = NULL;
$job = NULL;
return;

}

$fsconfigurator = $fsconfigurators->[0];

//

// Call DeleteFileSystem(FS) (error checking not shown)
//

$fsconfigurator.DeleteFileSystem($job, $fs);

return;

9.6.5 Make a FileSystem Locally Accessible from a File Server ComputerSystem

202

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

DESCRIPTION
GOAL: Get a LocallyAccessibleFileSystemCapabilities from a
filesystem host that is dependent on a specific file server
and supports the properties specified in the array
parameter $propertynames[].
PRE-EXISTING CONDITIONS AND ASSUMPTIONS

1. The ComputerSystem host of the FileSystemConfigurationService
will also be the host of any LocalFileSystem that will be
made locally accessible using a capabilities element.

FUNCTION GetLocal lyAccessibleFileSystemCapabilities
This function takes a Ffilesystem host ComputerSystem and
gets a capabilities element for making a filesystem
locally accessible on a file server ComputerSystem.
INPUT Parameters:
hostsystem: A reference to the ComputerSystem that hosts
filesystems.
fileserver: A reference to the file server ComputerSystem that
provides local access to filesystems.
propertynames: An array of property names that the capabilities
element should support.
OUTPUT Parameters:

Filesystem Manipulation Subprofile

// allcapabilities: An array of references to the capabilities

// for local access on the file server.
// RESULT:

// Success or Failure

// NOTES

// 1.

sub GetLocal lyAccessibleFileSystemCapabilities(
IN REF CIM_ComputerSystem $hostsystem,
IN REF CIM_ComputerSystem $fileserver,
IN String $propertynames[],
OUT REF SNIA_LocallyAccessibleFileSystemCapabilities $allcapabilities[])

//
// Get

the FileSystemConfigurationService from the ComputerSystem

// $hostsystem via the HostedService association

//

$fsconfigurators->[] = Associators($hostsystem,

“CIM_HostedService”,
“CIM_FileSystemConfigurationService”,
“Antecedent”,

“Dependent”);

#i1 = 0;
#k = 0; // the index for $allcapabilities.
while ($fsconfigurator = $fsconfigurators->[#i]) {
#Hi++;
//
// Find LocallyAccessibleFileSystemCapabilities that supports the

//
//
//
//
7/
//
//
//
//
//

file server using ElementCapabilities association from
FSConfigurationService.

IT client does not care about the file server ($fileserver = NULL),
return all the LocallyAccessibleFileSystemCapabilities that

are associated to the FileSystemConfigurationService

There is one and only one LocallyAccessibleFileSystemCapabilities
for each server+FileSystemConfigurationService pair.

The SupportedProperties property lists the supported setting
properties.

$capabilities->[] = Associators($fsconfigurator,

//
it
#3

“CIM_ElementCapabilities”,

“SNIA_Local lyAccessibleFileSystemCapabilities”,
“ManagedElement”,
“Capabilities™);
Skip to next if empty

($capabilities->[] == NULL ||$capabilities->[].length == 0) continue;

= 0;

while($capability = $capabilities->[#j]) {

SMI-S 1.6.1 Revision 6

SNIA Technical Position

203

Filesystem Manipulation Subprofile

#Hj++;
if (propertyname == NULL || propertyname == ““ ||
Contains($capability.SupportedProperties, propertyname)) {
// If the server is null then skip the next step
if ($server 1= NULL) {
$capservers[] = Associators($capability,
“SNIA_ScopedCapability”,
“CIM_ComputerSystem™,
“Dependent”,
“Antecedent”);
ifT ($capservers == NULL || $capservers->[].length != 1 ||
$server 1= $capservers->[0])

continue;
ks
$allcapabilities->[#k] = $capability;
#Hk++;
ks
}
e
return;

9.6.6 Get the Local Access Setting for a FileSystem on a File Server ComputerSystem

204

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

DESCRIPTION
GOAL: Get a LocallyAccessibleFileSystemSetting from a
filesystem host that is dependent on a specific file server

PRE-EXISTING CONDITIONS AND ASSUMPTIONS
1. The ComputerSystem host of the FileSystemConfigurationService
will also be the host of any LocalFileSystem that will be
made locally accessible using a capabilities element.

FUNCTION GetLocal lyAccessibleFileSystemSetting
This function takes a Ffilesystem host ComputerSystem and
gets a capabilities element for making a filesystem
locally accessible on a file server ComputerSystem.
INPUT Parameters:
filesystem: A reference to the LocalFileSystem that is to
be made locally accessible from a file server.
fileserver: A reference to the file server ComputerSystem that
provides local access to filesystems.
OUTPUT Parameters:
setting: An embedded instance of a LocallyAccessibleFileSystemSetting
that supports making the filesystem locally accessible.
RESULT:
Success or Failure
NOTES

Filesystem Manipulation Subprofile

// 1.

sub GetLocal lyAccessibleFileSystemSetting(
IN REF CIM_FileSystem $filesystem,
IN REF CIM_ComputerSystem $fileserver,
OUT String(“SNIA_LocallyAccessibleFileSystemSetting”) $setting)

{
// Does this fileserver have local access to this filesystem
// -- if not, there is no setting!
$localaccess->[] = ReferenceNames($filesystem,
“SNIA_LocalAccessAvailable™,
“FileSystem™);
ifT ($localaccess->[] == NULL || $localaccess->[]-length == 0)
return;
//
// Get all the LocallyAccessibleFileSystemSettings
// associated with the CIM_FileSystem (via ElementSettingData
//
$assoc = References($filesystem,
“CIM_ElementSettingData”,
“ManagedElement™);
if ($assoc->[] == NULL || $assoc->[]-length == 0) {
// This is an ERROR but for now we return with no results
return;
¥
#i = 0;
while ($assoc->[#i] "= NULL) {
if ($assoc->[#i].IsCurrent) {
// Is this scoped to the fileserver?
$servers = Associators($assoc->[#i].SettingData,
“CIM_ScopedSetting™,
“CIM_ComputerSystem™,
“Dependent”,
“Antecedent™);
if ($servers->[] '= NULL && $servers->[].length = 0 && $servers->[0]
== $fileserver) {
$setting = Getlnstance($assoc->[#i].SettingData);
return;
}
}
#Hi++;
}
$setting = NULL;
}

SMI-S 1.6.1 Revision 6 SNIA Technical Position 205

Filesystem Manipulation Subprofile

EXPERIMENTAL

9.6.7 Filesystem Manipulation Supported Capabilities Patterns

Table 115, “Filesystem Manipulation Supported Capabilities Patterns” lists the patterns that are formally
recoghnized by this version of the specification for determining capabilities of various NAS
implementations:

Table 115 - Filesystem Manipulation Supported Capabilities Patterns

Supported Supported Supported Initial
ActualFileSystem Synchronous Asynchronous Availability
Types Methods Methods
Any none none none

SNIA_CreateFileSystem,
DeleteFileSystem,
Any SNIA_ModifyFileSystem, none Any
CreateGoalSettings,
GetRequiredStorageSizes

SNIA_CreateFileSystem,
DeleteFileSystem, Any
SNIA_ModifyFileSystem

CreateGoalSettings,

Any GetRequiredStorageSizes

9.7 CIM Elements
Table 116 describes the CIM elements for Filesystem Manipulation.

Table 116 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description

9.7.1 CIM_Dependency (Uses Directory Services From) Conditional Conditional requirement: Required if
LocalFileSystem.DirectoryServiceUsage is either
'Required' or 'Optional'. Associates a ComputerSystem
that indicates a directory service that supports the

dependent LocalFileSystem.

9.7.2 CIM_ElementCapabilities (FS Configuration Mandatory In this subprofile, associates the Filesystem Configuration

Capabilities) Service to the Capabilities element that represents the
capabilities that it supports.

9.7.3 CIM_ElementCapabilities (Local Access Conditional Conditional requirement: Required if

FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'.

Configuration Capabilities)

In this subprofile, associates the Filesystem
Configuration Service to the Capabilities instance that
represents the capabilities for Local Access that it
supports.

9.7.4 CIM_ElementCapabilities (Non-Default) Optional In this subprofile, associates the Filesystem Configuration
Service to the FileSystemCapabilities elements that
represent all the types of filesystems that are not the

default type of file system and can be configured.

206

Filesystem Manipulation Subprofile

Table 116 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.7.5 CIM_ElementSettingData (Attached to Filesystem)

Optional

Associates a FileSystemSetting element to a
LocalFileSystem. One of these association elements is
created by SNIA_CreateFileSystem when the
LocalFileSystem is first created.

The profile does not specify how other instances of this
association may be surfaced by the implementation.

9.7.6 CIM_ElementSettingData (Local Access Required)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'. Associates a
LocalFileSystem and the
LocallyAccessibleFileSystemSetting elements.

9.7.7 CIM_HostedDependency (Attached to File System)

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a Local Access configuration setting to the file
server ComputerSystem that provides the operational
scope for its functionality.

9.7.8 CIM_HostedDependency (Predefined Capabilities)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'. Associates a
Local Access Capabilities to the File Server that provides
the operational scope for its functionality. All of the
Settings associated to the referenced Capabilities
element must be scoped by the same File Server
ComputerSystem. This scoping allows the
CreateGoalSetting method of the Capabilities element to
know which File Server provides the scope for any Goal
element that it creates.

9.7.9 CIM_HostedDependency (Predefined Setting)

Optional

Associates a predefined
SNIA_LocallyAccessibleFileSystemSetting to the file
server ComputerSystem that provides the operational
scope for its functionality.

9.7.10 CIM_HostedFileSystem

Mandatory

Associates a LocalFileSystem to the ComputerSystem
that hosts it.

9.7.11 CIM_HostedService

Mandatory

In this subprofile, associates the Filesystem Configuration
Service to the hosting ComputerSystem. This is expected
to be the top-level ComputerSystem of the parent
Filesystem Profile.

9.7.12 CIM_SettingsDefineCapabilities (Predefined FS
Settings)

Optional

These Setting elements provide detailed information
about the FileSystemSettings supported by the
associated FileSystemCapabilities element.

9.7.13 CIM_SettingsDefineCapabilities (Predefined Local
Access Settings)

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted’. The Setting
elements that are associated to this Capabilities element
are scoped to the File Server ComputerSystem that
provides the operational context for local access.

9.7.14 SNIA_ElementCapabilities (Default)

Optional

This entry represents the single default
FileSystemCapabilities element for the Filesystem
Configuration Service.

SMI-S 1.6.1 Revision 6

SNIA Technical Position 207

Filesystem Manipulation Subprofile

Table 116 - CIM Elements for Filesystem Manipulation

Element Name

Requirement

Description

9.7.15 SNIA_FileSystemCapabilities

Mandatory

This element represents the Capabilities of the Filesystem
Configuration Service for managing Filesystems. The
Service can be associated with multiple
FileSystemCapabilities elements, one per
ActualFileSystemType property value. For each value that
is in the array property
FileSystenConfigurationCapabilities.SupportedActualFile
SystemTypes, there will be exactly one corresponding
FileSystemCapabilities element with the matching
ActualFileSystemType property.

9.7.16 SNIA_FileSystemConfigurationCapabilities

Mandatory

This element represents the management Capabilities of
the Filesystem Configuration Service.

9.7.17 SNIA_FileSystemConfigurationService

Mandatory

The Filesystem Configuration Service provides the
methods to manipulate file systems.

9.7.18 SNIA_FileSystemSetting (Attached to FileSystem)

Optional

This element represents the configuration settings of a
LocalFileSystem. One instance of this class is created by
the SNIA_CreateFileSystem extrinsic method when the
LocalFileSystem was created.

This profile does not specify how other instances of this
class might be created.

9.7.19 SNIA_FileSystemSetting (Predefined FS Settings)

Optional

This element represents sample configuration settings
usable for creating or modifying a LocalFileSystem. It
represents "predefined” settings supported by the
FileSystemConfigurationService and is associated with a
FileSystemCapabilities element by a
SettingsDefineCapabilities association. The
FileSystemSetting.ActualFileSystemType property must
specify the same value as the associated
FileSystemCapabilities.ActualFileSystemType property.

9.7.20 SNIA_LocalAccessAvailable

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
Associates a LocalFileSystem to a File Server Computer
System that can export files or directories as shares.

9.7.21 SNIA_LocalFileSystem

Mandatory

Represents a LocalFileSystem hosted by and made
available through a ComputerSystem (usually the top-
level ComputerSystem of a Filesystem Profile).

9.7.22 SNIA_LocallyAccessibleFileSystemCapabilities

Conditional

Conditional requirement: Required if
FileSystemConfigurationCapabilities.LocalAccessibilitySu
pport is either 'Local Access Required, Defaulted' or
'Local Access Required, Not Defaulted'. The element
represents the Local Access configuration Capabilities of
the File System Configuration Service. This class
provides a CreateGoalSettings method that will return a
SNIA_LocallyAccessibleFileSystemSetting element as an
EmbedddInstance that may be used for making a
filesystem locally accessible to a file server
ComputerSystem (by the methods
SNIA_CreateFileSystem and SNIA_ModifyFileSystem).
Since the returned EmbeddedInstance setting element is
an instance of a ScopedSetting class, it must be
associated with a ComputerSystem via
ScopedSettingData when it is instantiated.

208

Filesystem Manipulation Subprofile

Table 116 - CIM Elements for Filesystem Manipulation

Element Name Requirement Description

9.7.23 SNIA_LocallyAccessibleFileSystemSetting Conditional Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true.
This element represents the configuration settings of a
LocalFileSystem that has a contained file or directory that
has been made locally accessible from a file server
ComputerSystem. This Setting provides further details on
the functionality supported and the parameters of that
functionality when locally accessible.

SELECT * FROM CIM_lInstCreation WHERE Mandatory CQL -Creation of a LocalFileSystem element.
Sourcelnstance ISA SNIA_LocalFileSystem

SELECT * FROM CIM_InstModification WHERE Mandatory Modification of a LocalFileSystem element.
Sourcelnstance ISA SNIA_LocalFileSystem

9.7.1 CIM_Dependency (Uses Directory Services From)

Created By: Extrinsic: SNIA_CreateFileSystem

Modified By: Extrinsic: SNIA_ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Requirement: Required if LocalFileSystem.DirectoryServiceUsage is either 'Required' or 'Optional’.

Table 117 describes class CIM_Dependency (Uses Directory Services From).

Table 117 - SMI Referenced Properties/Methods for CIM_Dependency (Uses Directory Services From)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The ComputerSystem that indicates the directory service(s) that support
user, group and other security principal identities for a filesystem.

Dependent Mandatory The LocalFileSystem whose use of user, group, and other security
principal identities is supported by the antecedent ComputerSystem.

9.7.2 CIM_ElementCapabilities (FS Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 118 describes class CIM_ElementCapabilities (FS Configuration Capabilities).

Table 118 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (FS Configuration Capabili-

ties)
Properties Flags Requirement Description & Notes
ManagedElement Mandatory The Filesystem Configuration Service.
Capabilities Mandatory The Filesystem Configuration Capabilities element.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 209

Filesystem Manipulation Subprofile

9.7.3 CIM_ElementCapabilities (Local Access Configuration Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 119 describes class CIM_ElementCapabilities (Local Access Configuration Capabilities).

Table 119 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Local Access Configuration

Capabilities)
Properties Flags Requirement Description & Notes
ManagedElement Mandatory The Filesystem Configuration Service.
Capabilities Mandatory The Filesystem Configuration Capabilities element.

9.7.4 CIM_ElementCapabilities (Non-Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 120 describes class CIM_ElementCapabilities (Non-Default).

Table 120 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Non-Default)

Properties Flags Requirement Description & Notes
Capabilities Mandatory
ManagedElement Mandatory

9.7.5 CIM_ElementSettingData (Attached to Filesystem)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Optional

210

Filesystem Manipulation Subprofile

Table 121 describes class CIM_ElementSettingData (Attached to Filesystem).

Table 121 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Attached to Filesystem)

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The LocalFileSystem element representing a filesystem.
SettingData Mandatory The configuration of the LocalFileSystem.

9.7.6 CIM_ElementSettingData (Local Access Required)

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 122 describes class CIM_ElementSettingData (Local Access Required).

Table 122 - SMI Referenced Properties/Methods for CIM_ElementSettingData (Local Access Required)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The LocalFileSystem that is being made locally accessible.

SettingData Mandatory The local access settings of the LocalFileSystem, specified on creation or
modification.

9.7.7 CIM_HostedDependency (Attached to File System)

Created By: Extrinsic: SNIA_CreateFileSystem

Modified By: Extrinsic: SNIA_ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 123 describes class CIM_HostedDependency (Attached to File System).

Table 123 - SMI Referenced Properties/Methods for CIM_HostedDependency (Attached to File System)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping File Server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

9.7.8 CIM_HostedDependency (Predefined Capabilities)

Created By: Static
Modified By: Static
Deleted By: Static

SMI-S 1.6.1 Revision 6 SNIA Technical Position 211

Filesystem Manipulation Subprofile

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 124 describes class CIM_HostedDependency (Predefined Capabilities).

Table 124 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Capabilities)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The SNIA_LocallyAccessibleFileSystemCapabilities that is scoped by the
file server ComputerSystem.

9.7.9 CIM_HostedDependency (Predefined Setting)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 125 describes class CIM_HostedDependency (Predefined Setting).

Table 125 - SMI Referenced Properties/Methods for CIM_HostedDependency (Predefined Setting)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Scoping file server ComputerSystem.

Dependent Mandatory The Local Access Setting that is scoped by the file server
ComputerSystem.

9.7.10 CIM_HostedFileSystem

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem
Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

Table 126 describes class CIM_HostedFileSystem.

Table 126 - SMI Referenced Properties/Methods for CIM_HostedFileSystem

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The ComputerSystem that hosts a LocalFileSystem. The Dedicated
property must be one of 24 (NAS Head), 25 (SC NAS), 16 (File Server).

PartComponent Mandatory The hosted filesystem.

9.7.11 CIM_HostedService

212

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 127 describes class CIM_HostedService.

Filesystem Manipulation Subprofile

Table 127 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes
Dependent Mandatory The Filesystem Configuration Service.
Antecedent Mandatory The hosting ComputerSystem. This can be the top level system or a

component ComputerSystem of the Multiple Computer System profile.

9.7.12 CIM_SettingsDefineCapabilities (Predefined FS Settings)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 128 describes class CIM_SettingsDefineCapabilities (Predefined FS Settings).

Table 128 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined FS Set-

tings)

Properties

Flags

Requirement

Description & Notes

PropertyPolicy

Mandatory

PropertyPolicy defines whether or not the non-null, non-key properties of
the associated FileSystemSetting element are treated independently or as
a correlated set.

ValueRole

Mandatory

ValueRole specifies the semantics of the non-null, non-key properties of
the associated FileSystemSetting element, such as whether they are
supported or unsupported, and if supported, whether they are a default
and/or an optimal value or an average of some kind.

ValueRange

Mandatory

ValueRange specifies the semantics of the non-null, non-key properties of
the associated FileSystemSetting element, such as whether they are point
properties, or whether they represent maximum or minimum values for the
properties. If some properties already have maximums and/or minimums
specified by another FileSystemSetting instance, this could specify
increments of the property value that are supported.

GroupComponent

Mandatory

A Filesystem Capabilities element that is defined by a collection of
filesystem settings.

PartComponent

Mandatory

A filesystem setting that provides a point or a partial definition for a
Filesystem Capabilities element.

9.7.13 CIM_SettingsDefineCapabilities (Predefined Local Access Settings)

Created By: Static
Modified By: Static

SMI-S 1.6.1 Revision 6

SNIA Technical Position 213

Filesystem Manipulation Subprofile

Deleted By: Static
Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local

Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.
Table 129 describes class CIM_SettingsDefineCapabilities (Predefined Local Access Settings).

Table 129 - SMI Referenced Properties/Methods for CIM_SettingsDefineCapabilities (Predefined Local
Access Settings)

Properties Flags Requirement Description & Notes

PropertyPolicy Mandatory PropertyPolicy defines whether or not the non-null, non-key properties of
the associated SNIA_LocallyAccessibleFileSystemSetting instance are
treated independently or as a correlated set.

ValueRole Mandatory ValueRole specifies the semantics of the non-null, non-key properties of
the associated SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are supported or unsupported, and if supported, whether
they are a default and/or an optimal value or an average of some kind.

ValueRange Mandatory ValueRange specifies the semantics of the non-null, non-key properties of
the associated SNIA_LocallyAccessibleFileSystemSetting instance, such
as whether they are point properties, or whether they represent maximum
or minimum values for the properties. If some properties already have
maximums and/or minimums specified by another
SNIA_LocallyAccessibleFileSystemSetting instance, this could specify
increments of the property value that are supported.

GroupComponent Mandatory A Capabilities element of the filesystem that is defined by a collection of
SNIA_LocallyAccessibleFileSystemSetting elements, each being scoped
to the File Server ComputerSystem with which it can be used.

PartComponent Mandatory A SNIA_LocallyAccessibleFileSystemSetting that provides a point or a
partial definition for a SNIA_LocallyAccessibleFileSystemCapabilities
element.

9.7.14 SNIA_ElementCapabilities (Default)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 130 describes class SNIA_ElementCapabilities (Default).

Table 130 - SMI Referenced Properties/Methods for SNIA_ElementCapabilities (Default)

Properties Flags Requirement Description & Notes
Characteristics Optional

Capabilities Mandatory

ManagedElement Mandatory

9.7.15 SNIA_FileSystemCapabilities

214

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Filesystem Manipulation Subprofile

Table 131 describes class SNIA_FileSystemCapabilities.

Table 131 - SMI Referenced Properties/Methods for SNIA_FileSystemCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the FileSystemCapabilities element of a
Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemCapabilities
represents.

SupportedProperties Mandatory This is the list of configuration properties (of FileSystemSetting) that are
supported for specification at creation time by this FileSystemCapabilities
element.

CreateGoalSettings() Mandatory This extrinsic method supports the creation of a set of FileSystemSettings
that is a supported variant of an array of FileSystemSettings passed in as
an embedded IN parameter. The method returns the supported
FileSystemSetting in an array of embedded OUT parameters. This profile
only supports arrays with a single entry.

GetRequiredStorageSize() Optional This extrinsic method supports determining the storage space

requirements for a filesystem specified by the combination of a
FileSystemSetting and a StorageSetting. The StorageSetting specifies the
required redundancy, multiple Logical Disk usage, and other storage
mapping considerations, while the FileSystemSetting transforms client
quality-of-service specifications to storage resource requirements.

9.7.16 SNIA_FileSystemConfigurationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 132 describes class SNIA_FileSystemConfigurationCapabilities.

Table 132 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opague, unique id for this element representing the capabilities of a
Filesystem Configuration Service.

ElementName Mandatory A user-friendly name for this Capabilities element.

SupportedActualFileSyste Mandatory The Service can be associated with multiple Capabilities elements, one

mTypes

per ActualFileSystemType property value. This property lists all of the
supported ActualFileSystemTypes. Each entry in this array must have
exactly one corresponding FileSystemCapabilities element with that entry
as the value of the ActualFileSystemType property.

SMI-S 1.6.1 Revision 6

SNIA Technical Position 215

Filesystem Manipulation Subprofile

Table 132 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties Flags Requirement Description & Notes

SupportedSynchronousMe | N Mandatory The Service supports a number of extrinsic methods -- this property

thods identifies the ones that can be called synchronously. A supported method
shall be listed in this property or in the SupportedAsynchronousMethods
property or both.

SupportedAsynchronousM N Mandatory The Service supports a number of extrinsic methods -- this property

ethods identifies the ones that can be called asynchronously. A supported method
shall be listed in this property or in the SupportedSynchronousMethods
property or both.

InitialAvailability Mandatory This property represents the state of availability of a LocalFileSystem on
initial creation using the FileSystemConfigurationService associated with
this Capabilities element.

LocalAccessibilitySupport Optional This specifies whether a LocalFileSystem created or modified by this

FileSystemConfigurationService needs to be made locally accessible at a
local access point before a file server ComputerSystem can make it
available to operational clients or for export as a share. This is typical of
some NAS and filesystem implementations. If not specified, the default is
"Local Access Not Required".

216

Filesystem Manipulation Subprofile

Table 132 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationCapabilities

Properties

Flags

Requirement

Description & Notes

BlockStorageCreationSup
port

Optional

BlockStorageCreationSupport is an ordered array of enumerated values
that place a number of restrictions on the use of parameters for
SNIA_CreateFileSystem and SNIA_ModifyFileSystem.

1. The first entry is an enumerated value that specifies if an already
existing LogicalDIsk may be used -- this is either required, optional, or not
allowed. "Not Allowed" indicates that the Pools and ExtentSettings
parameters must be used to create LogicalDisk(s) for this filesystem and
the InExtents parameter must be NULL. "Optional" indicates that either the
Pools and ExtentSettings parameters or the InExtents parameter should
be specified, but not both. "Required" indicates that the InExtents
parameter may be specified and the Pools and ExtentSettings parameters
must be NULL.

2. (optional) An integer that specifies an upper limit to the number of
StorageElements that can be specified, either as InExtents parameters or
as Pools and ExtentSettings.

3. (optional) An integer that specifies the number of distinct pools that the
Pools parameters can specify -- zero, if Pools is not supported or if there is
no limit, and a specific number if there is a limit. In practice we expect that
the value will be either zero or one.

4. (optional) A boolean value, represented by '0' for false and '1' for true,
that indicates whether an entry in the ExtentSettings array parameter can
be NULL (indicating that a default setting is to be used).

DirectoryServerParameter
Supported

Optional

This enumeration indicates support for the DirectoryServer parameter to
the extrinsic method
FileSystemConfigurationService.SNIA_CreateFileSystem(). The options
are:

'‘Not Used' indicates that the filesystem does not support security principal
information associated with filesystem objects. The LocalFileSystem will
not be associated to a DirectoryServer.

'Supported' indicates that the filesystem supports security principal
information associated with filesystem objects. The LocalFileSystem will
be associated to a directory server ComputerSystem. And the
DirectoryServer parameter of SNIA_CreateFileSystem is required. If it is
not specified, it will be defaulted to the FileServer parameter in the same
call. If the FileServer parameter is also not specified, the DirectoryServer
parameter will be defaulted to the host of the
FileSystemConfigurationService.

'Supported, Defaulted to FileServer' indicates that the filesystem supports
security principal information associated with filesystem objects. The
LocalFileSystem will be associated to a directory server ComputerSystem.
The DirectoryServer parameter of SNIA_CreateFileSystem is NOT
supported, but is automatically defaulted to the FileServer parameter of
the same call. If the FileServer parameter is not specified, the
DirectoryServer parameter will be defaulted to the host of the
FileSystemConfigurationService.

'Supported, Defaulted to FileSystem host' indicates that the filesystem
supports security principal information associated with filesystem objects.
The LocalFileSystem will be associated to a directory server
ComputerSystem. The DirectoryServer parameter of
SNIA_CreateFileSystem is NOT supported, but is automatically defaulted
to the host of the FileSystem created by SNIA_CreateFileSystem().

9.7.17 SNIA_FileSystemConfigurationService

SMI-S 1.6.1 Revision 6

SNIA Technical Position 217

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Filesystem Manipulation Subprofile

Table 133 describes class SNIA_FileSystemConfigurationService.

Table 133 - SMI Referenced Properties/Methods for SNIA_FileSystemConfigurationService

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly name for this Service.

SystemCreationClassName Mandatory The CIM Class name of the ComputerSystem hosting the Service.

SystemName Mandatory The Name property of the ComputerSystem hosting the Service.

CreationClassName Mandatory The CIM Class name of the Service.

Name Mandatory The unique name of the Service.

SNIA_CreateFileSystem() Mandatory Creates a LocalFileSystem as specified by parameters and Capabilities of
the service and returns a reference to it. If appropriate and supported, a
Job may be created and a reference to the Job will be returned.

SNIA_ModifyFileSystem() Optional Modifies a LocalFileSystem indicated by a reference and as specified by
referenceparameters and Capabilities of the service. If appropriate and
supported, a Job may be created and a reference to the Job will be
returned.

DeleteFileSystem() Mandatory Deletes a LocalFileSystem indicated by reference. If appropriate and

supported, a Job may be created and a reference to the Job will be
returned.

9.7.18 SNIA_FileSystemSetting (Attached to

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem

Requirement: Optional

FileSystem)

Table 134 describes class SNIA_FileSystemSetting (Attached to FileSystem).

Table 134 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for a FileSystemSetting element.

ElementName Mandatory A client defined user-friendly name for this FileSystemSetting element.

ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemSetting
represents.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents) that are shared
between files.

CopyTarget Optional This specifies if support should be provided for using the created

filesystem as a target of a Copy operation.

218

Filesystem Manipulation Subprofile

Table 134 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Attached to FileSystem)

Properties Flags Requirement Description & Notes

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower case
characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects that this
filesystem may be used to provide and provides further details in
corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of objects of the type
specified by the corresponding entry in ObjectTypes[] that will be
supportable by the LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMax Optional This is an array that specifies the maximum number of objects of the type
specified by the corresponding entry in ObjectTypes[] that can be
supported by the LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjects Optional This is an array that specifies the expected humber of objects of the type
specified by the corresponding entry in ObjectTypes][].

ObjectSize Optional This is an array that specifies the expected size of a typical object of the
type specified by the corresponding entry in ObjectTypes]].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object of the type
specified by the corresponding entry in ObjectTypes][] that will be
supported by the LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an object of the type
specified by the corresponding entry in ObjectTypes[] that can be
supported by the LocalFileSystem configured by this FileSystemSetting
element.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-8) supported
for filenames by the LocalFileSystem configured by this FileSystemSetting
element.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3 names) supported
for filenames by the LocalFileSystem configured by this FileSystemSetting
element.

FilenameLengthMax Optional This specifies the maximum length of a filename that will be supported by
the FileSystem configured by this FileSystemSetting element.

FilenameReservedCharact Optional This string or character array specifies the characters reserved (i.e., not

erSet allowed) for use in filenames that will be required by the FileSystem
configured by this FileSystemSetting element.

SupportedLockingSemanti Optional This array specifies the set of file access/locking semantics supported by

cs the FileSystem configured by this FileSystemSetting element.

SupportedAuthorizationPro Optional This array specifies the kind of file authorization protocols supported by

tocols the FileSystem configured by this FileSystemSetting element.

SupportedAuthenticationPr Optional This array specifies the set of file authentication protocols that can be

otocols

supported by the FileSystem configured by this FileSystemSetting
element.

9.7.19 SNIA_FileSystemSetting (Predefined FS Settings)

Created By: Static
Modified By: Static

SMI-S 1.6.1 Revision 6

SNIA Technical Position 219

Filesystem Manipulation Subprofile

Deleted By: Static
Requirement: Optional

Table 135 describes class SNIA_FileSystemSetting (Predefined FS Settings).

Table 135 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Settings)

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for this FileSystemSetting element.

ElementName Mandatory A provider supplied user-friendly name for this FileSystemSetting element.
ActualFileSystemType Mandatory This identifies the type of filesystem that this FileSystemSetting

represents. It shall match the corresponding property of
FileSystemCapabilities.

DataExtentsSharing Optional This allows the creation of data blocks (or storage extents) that are shared
between files.

CopyTarget Optional This specifies if support should be provided for using the created
filesystem as a target of a Copy operation.

FilenameCaseAttributes Mandatory This specifies the support provided for using upper and lower case
characters in a filename.

ObjectTypes Mandatory This is an array that specifies the different types of objects that this
filesystem may be used to provide and provides further details in
corresponding entries in other attributes.

NumberOfObjectsMin Optional This is an array that specifies the minimum number of objects of the type
specified by the corresponding entry in ObjectTypes][] that will be
supportable by a LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjectsMax Optional This is an array that specifies the maximum number of objects of the type
specified by the corresponding entry in ObjectTypes[] that can be
supported by a LocalFileSystem configured by this FileSystemSetting
element.

NumberOfObjects Optional This is an array that specifies the expected number of objects of the type
specified by the corresponding entry in ObjectTypes][].

ObjectSize Optional This is an array that specifies the expected size of a typical object of the
type specified by the corresponding entry in ObjectTypes]].

ObjectSizeMin Optional This is an array that specifies the minimum size of an object of the type
specified by the corresponding entry in ObjectTypes[] that will be
supportable by a LocalFileSystem configured by this FileSystemSetting
element.

ObjectSizeMax Optional This is an array that specifies the maximum size of an object of the type
specified by the corresponding entry in ObjectTypes[] that can be
supported by a LocalFileSystem configured by this FileSystemSetting
element.

FilenameStreamFormats Optional This is an array that specifies the stream formats (e.g., UTF-8) supported
for filenames by a filesystem with this setting.

FilenameFormats Optional This is an array that specifies the formats (e.g. DOS 8.3 names) supported
for filenames by a filesystem with this setting.

FilenameLengthMax Optional This specifies the maximum length of a filename supported by a filesystem
with this setting.

220

Filesystem Manipulation Subprofile

Table 135 - SMI Referenced Properties/Methods for SNIA_FileSystemSetting (Predefined FS Settings)

Properties Flags Requirement Description & Notes

FilenameReservedCharact Optional This string or character array specifies the characters reserved (i.e., not

erSet allowed) for use in filenames that will be required by a filesystem with this
setting.

SupportedLockingSemanti Optional This array specifies the set of file access/locking semantics supported by a

cs filesystem with this setting.

SupportedAuthorizationPro Optional This array specifies the kind of file authorization protocols supported by a

tocols filesystem with this setting.

SupportedAuthenticationPr Optional This array specifies the kind of file authentication protocols supported by a

otocols

filesystem with this setting.

9.7.20 SNIA_LocalAccessAvailable

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 136 describes class SNIA_ LocalAccessAvailable.

Table 136 - SMI Referenced Properties/Methods for SNIA_LocalAccessAvailable

Properties

Flags

Requirement

Description & Notes

LocalAccessPoint

Conditional

Conditional requirement: Required if
LocalFileSystem.LocalAccessDefinitionRequired=true. The name used by
the file server to identify the filesystem. Sometimes referred to as a mount-
point. For many UNIX-based systems, this will be a qualified full
pathname. For Windows systems this could also be the drive letter used
for the LogicalDisk that the filesystem is resident on.

FileSystem

Mandatory

The LocalFileSystem that is being made available to the file server
ComputerSystem.

FileServer

Mandatory

The file server ComputerSystem that will be able to export shares from
this LocalFileSystem.

9.7.21 SNIA_LocalFileSystem

The following properties of LocalFileSystem are defined by the MOF, but the way we model
LocalFileSystem has changed significantly. The setting/configuration properties are not supported using
these properties, and so all of these are "Not Supported”. The run-time properties will be supported by a
statistics/performance profile and that has yet to be defined.

Created By: Extrinsic: SNIA_CreateFileSystem
Modified By: Extrinsic: SNIA_ModifyFileSystem

Deleted By: Extrinsic: DeleteFileSystem
Requirement: Mandatory

SMI-S 1.6.1 Revision 6

SNIA Technical Position 221

Filesystem Manipulation Subprofile

Table 137 describes class SNIA_LocalFileSystem.

Table 137 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes

LocalAccessDefinitionReq Mandatory This boolean property indicates whether or not a LocalFileSystem with this

uired FileSystemSetting must be made locally accessible ("mounted") from a file
server ComputerSystem before it can be shared or otherwise made
available to operational clients.

PathNameSeparatorString Mandatory This indicates the string of characters used to separate directory
components of a canonically formatted path to a file from the root of the
filesystem. This string is expected to be specific to the
ActualFileSystemType and so is vendor/implementation dependent.
However, by surfacing it we make it possible for a client to parse a
pathname into the hierarchical sequence of directories that compose it.

DirectoryServiceUsage Optional This enumeration indicates whether the filesystem supports security
principal information and therefore requires support from a file server that
uses one or more directory services. If the filesystem requires such
support, there must be a concrete subclass of Dependency between the
LocalFileSystem element and the specified file server ComputerSystem.
The values supported by this property are:

‘Not Used' indicates that the filesystem will not support security principal
information and so will not require support from a directory service.
'‘Optional’ indicates that the filesystem may support security principal
information. If it does, it will require support from a directory service and
the Dependency association described above must exist.

'Required’ indicates that the filesystem supports security principal
information and will require support from a directory service. The
Dependency association described above must exist.

CSCreationClassName Mandatory The CIM class name of the hosting ComputerSystem.

CSName Mandatory The Name property of the hosting ComputerSystem.

CreationClassName Mandatory The CIM class name of the this element.

Name Mandatory A unique name for this LocalFileSystem in the context of the hosting
ComputerSystem.

EnabledState Optional Current state of enablement of the LocalFileSystem.

OtherEnabledState Optional Vendor-specific state of the LocalFileSystem indicated by EnabledState =
1("Other").

TimeOfLastStateChange Optional A timestamp indicating when the state was last changed.

RequestedState Optional Not supported.

OperationalStatus Mandatory The current operational status of the LocalFileSystem.

Root Optional A path that specifies the "mount point" of the filesystem in an unitary
computer system that is both the host of the filesystem and is the file
server that makes it available.

BlockSize Mandatory The size of a block in bytes that the implementation used as a fixed block
size when creating this filesystem.

FileSystemSize Mandatory The total current size of the filesystem in blocks.

AvailableSpace Mandatory The space available currently in the filesystem in blocks.

ReadOnly Optional Indicates that this is a read-only filesystem that does not allow

modifications.

222

Filesystem Manipulation Subprofile

Table 137 - SMI Referenced Properties/Methods for SNIA_LocalFileSystem

Properties Flags Requirement Description & Notes
EncryptionMethod Optional Indicates if files are encrypted and the method of encryption.
CompressionMethod Optional Indicates if files are compressed before being stored, and the methods of

compression..

CaseSensitive Optional Whether this filesystem is sensitive to the case of characters in filenames.

CasePreserved Optional Whether this filesystem preserves the case of characters in filenames
when saving and restoring.

CodeSet Optional The codeset used in filenames.

MaxFileNameLength Optional The length of the longest filename supported by the implementation.
ClusterSize Optional Not supported.

FileSystemType Optional This is a string that matches FileSystemSetting.ActualFileSystemType

property used to create the filesystem.

Pragmatically, this property should be ignored.

NumberOfFiles Optional The actual current number of files in the filesystem. This value is an
approximation as it can vary continuously when the filesystem is in use.

IsFixedSize Optional Indicates that the filesystem cannot be expanded or shrunk.
Resizelncrement Optional The size by which to increase the size of the filesystem when requested.
RequestStateChange() Optional Not supported.

9.7.22 SNIA_LocallyAccessibleFileSystemCapabilities

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Required if FileSystemConfigurationCapabilities.LocalAccessibilitySupport is either 'Local
Access Required, Defaulted' or 'Local Access Required, Not Defaulted'.

Table 138 describes class SNIA_LocallyAccessibleFileSystemCapabilities.

Table 138 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory An opaque, unique id for the
SNIA_LocallyAccessibleFileSystemCapabilities associated to a
Filesystem Configuration Service.

ElementName Mandatory A user-friendly hame for this
SNIA_LocallyAccessibleFileSystemCapabilities element.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 223

Filesystem Manipulation Subprofile

Table 138 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemCapabilities

Properties

Flags

Requirement

Description & Notes

SupportedProperties

Mandatory

An array of property names of the LocallyAccessibleFileSystemSetting
that this SNIA_LocallyAccessibleFileSystemCapabilities element
supports.

2 'FailurePolicy'

3 'RetriesMax'

4 'InitialEnabledState'

5 'RequestRetryPolicy’

6 'TransmissionRetriesMax'
7 'RetransmissionTimeout'
8 'CachingOptions'

9 'ReadBufferSize'

10 'WriteBufferSize'

11 'AttributeCaching’

12 'ReadWritePolicy'

13 'LockPolicy’

14 'EnableOnSystemStart'
15 'ReadWritePref'

16 'ExecutePref'

17 'RootAccessPref'.

SupportedObjectsForAttrib
uteCaching

Optional

If AttributeCaching is supported, this specifies the array of objects that can
be set up for caching. A subset of these entries will become the entries of
the AttributeCachingObjects property in the Setting.

These classes represent types of objects stored in a filesystem
implementation -- files and directories as well as others that may be
defined in the future. The corresponding Setting properties,
AttributeCaching, AttributeCachingTimeMin, and
AttributeCachingTimeMax provide the supported features for the type of
object. 'None' and 'All' cannot both be specified; if either one is specified, it
must be the first entry in the array and the entry is interpreted as the
default setting for all objects. If neither 'None' or 'All' are specified, the
caching settings for other objects are defaulted by the implementation. If
'Rest' is specified, the entry applies to all known object types other than
the named ones. If 'Unknown' is specified it applies to object types not
known to this application (this can happen when foreign file systems are
mounted.

0 'Unknown'
1'None’
2°All

3 'Rest’

4 'File'

5 'Directory'.

9.7.23 SNIA_LocallyAccessibleFileSystemSetting

Created By: Extrinsic: SNIA_CreateFileSystem

224

Modified By: Extrinsic: SNIA_ModifyFileSystem

Filesystem Manipulation Subprofile

Deleted By: Extrinsic: DeleteFileSystem or SNIA_ModifyFileSystem
Requirement: Required if LocalFileSystem.LocalAccessDefinitionRequired=true.

Table 139 describes class SNIA_LocallyAccessibleFileSystemSetting.

Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

An opague, unique id for a LocallyAccessibleFileSystemSetting.

ElementName

Mandatory

A user-friendly name for this LocallyAccessibleFileSystemSetting element.

InitialEnabledState

Optional

InitialEnabledState is an integer enumeration that indicates the enabled/
disabled states initially set for a locally accessible filesystem (LAFS). The
element functions by passing commands onto the underlying filesystem,
and so cannot indicate transitions between requested states because
those states cannot be requested. The following text briefly summarizes
the various enabled/disabled initial states:

'Enabled’ (2) indicates that the element will execute commands, will
process any queued commands, and will queue new requests.

'Disabled’ (3) indicates that the element will not execute commands and
will drop any new requests.

'In Test' (7) indicates that the element will be in a test state.

'Deferred’ (8) indicates that the element will not process any commands
but will queue new requests.

'Quiesce’ (9) indicates that the element is enabled but in a restricted
mode. The element's behavior is similar to the Enabled state, but it only
processes a restricted set of commands. All other requests are queued.

OtherEnabledState

Optional

A string describing the element's initial enabled/disabled state when the
InitialEnabledState property is set to 1 ("Other"). This property MUST be
set to NULL when InitialEnabledState is any value other than 1.

FailurePolicy

Optional

An enumerated value that specifies if the operation to make a FileSystem
locally accessible to a scoping ComputerSystem should be attempted one
or more times in the foreground or tried repeatedly in the background until
it succeeds. The number of attempts would be limited by the
corresponding RetriesMax property of the setting.

RetriesMax

Optional

An integer specifying the maximum number of attempts that should be
made by the scoping ComputerSystem to make a filesystem locally
accessible. A value of "0" specifies an implementation-specific default.

RequestRetryPolicy

Optional

An enumerated value representing the policy that is supported by the
operational file server on a request to the operational filesystem that either
failed or left the file server hanging. If the request is being performed in the
foreground, the options are to try once and fail if a timeout happens, or, to
try repeatedly. If the request can be performed in the background, the
request will be tried repeatedly until stopped.

TransmissionRetriesMax

Optional

An integer specifying the maximum number of retransmission attempts to
be made from the operational file server to the operational filesystem
when the transmission of a request fails or makes the file server hang. A
value of "0" specifies an implementation-specific default. This is only
relevant if there is a transmission channel between the file server and the
underlying filesystem.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

225

Filesystem Manipulation Subprofile

Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

RetransmissionTimeoutMin

Optional

An integer specifying the minimum number of milliseconds that the
operational file server must wait before assuming that a request to the
operational filesystem has failed. "0" indicates an implementation-specific
default. This is only relevant if there is a transmission channel between the
operational file server and the operational filesystem.

CachingOptions

Optional

An enumerated value that specifies if a local cache is supported by the
operational file server when accessing the underlying operational
filesystem.

BuffersSupport

Optional

An array or enumerated values that specifies the buffering mechanisms
supported by the operational file server for accessing the underlying
operational filesystem." If supported, other properties will establish the
level of support. If the property is NULL or the empty array, buffering is not
supported.

ReadBufferSizeMin

Optional

An integer specifying the minimum number of bytes that must be allocated
to each buffer used for reading. A value of "0" specifies an
implementation-specific default.

ReadBufferSizeMax

Optional

An integer specifying the maximum number of bytes that may be allocated
to each buffer used for reading. A value of "0" specifies an
implementation-specific default.

WriteBufferSizeMin

Optional

An integer specifying the minimum number of bytes that must be allocated
to each buffer used for writing. A value of "0" specifies an implementation-
specific default.

WriteBufferSizeMax

Optional

An integer specifying the maximum number of bytes that may be allocated
to each buffer used for writing. A value of "0" specifies an implementation-
specific default.

AttributeCaching

Optional

An array of enumerated values that specify whether attribute caching is (or
is not) supported by the operational file server when accessing specific
types of objects from the underlying operational filesystem. The object
type and the support parameters are specified in the corresponding
AttributeCachingObjects, AttributeCachingTimeMin, and
AttributeCachingTimeMax array properties.

Filesystem object types that can be accessed locally are represented by
an entry in these arrays. The entry in the AttributeCaching array can be
"On", "Off", or "Unknown". Implementation of this feature requires support
from other system components, so it is quite possible that specifying "On"
may still not result in caching behavior. "Unknown" indicates that the
access operation will try to work with whatever options the operational file
server and filesystem can support. In all cases, AttributeCachingTimeMin
and AttributeCachingTimeMax provide the minimum and maximum time
for which the attributes can be cached. When this Setting is used as a
Goal, the client may specify "Unknown", but the Setting in the created
object should contain the supported setting, whether "On" or "Off".

226

Filesystem Manipulation Subprofile

Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties Flags Requirement Description & Notes

AttributeCachingObjects Optional An array of enumerated values that specify the attribute caching support
provided to various object types by the operational file server when
accessing the underlying operational filesystem. These", types represent
the types of objects stored in a FileSystem -- files and directories as well
as others that may be defined in the future. The corresponding properties,
AttributeCaching, AttributeCachingTimeMin, and
AttributeCachingTimeMax provide the supported features for the type of
object. "None" and "All" cannot both be specified; if either one is specified,
it must be the first entry in the array and the entry is interpreted as the
default setting for all objects. If neither "None" or "All" are specified, the
caching settings for other objects are defaulted by the implementation. If
"Rest" is specified, the entry applies to all known object types other than
the named ones. If "Unknown" is specified it applies to object types not
known to this application (this can happen when foreign file systems are
mounted.

AttributeCachingTimeMin Optional An array of integers specifying, in milliseconds, the minimum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache. When
used as a Goal, a value of "0" indicates an implementation-specific
default.

AttributeCachingTimeMax Optional An array of integers specifying, in milliseconds, the maximum time for
which an object of the type specified by the corresponding
AttributeCaching property must be retained in the attribute cache. When
used as a Goal, a value of "0" indicates an implementation-specific
default.

ReadWritePolicy Optional An enumerated value that specifies the Read-Write policy set on the
operational filesystem and supported by the operational file server when
accessing it. '‘Read Only' specifies that the access to the operational
filesystem by the operational file server is set up solely for reading. 'Read/
Write' specifies that the access to the operational filesystem by the
operational file server is set up for both reading and writing. 'Force Read/
Write' specifies that 'Read-Only' has been overridden by a client with write
access to the operational filesystem. This option is intended for use when
the associated FileSystem has been made ‘Read Only' by default, as
might happen if it were created to be the target of a Synchronization or
Mirror operation.

LockPolicy Optional An enumerated value that specifies the Locking that will be enforced on
the operational filesystem by the operational file server when accessing it.
'Enforce None' does not enforce locks. 'Enforce Write' does not allow
writes to locked files. 'Enforce Read/Write' does not allow reads or writes
to locked files.

EnableOnSystemStart Optional An enumerated value that specifies if local access from the operational file
server to the operational filesystem should be enabled when the file server
is started.

ReadWritePref Optional An instance of a CIM_Privilege, encoded as a string, that expresses the

client's expectations about access to elements contained in the
operational filesystem. The provider is expected to surface this access
using the CIM privilege model.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 227

Filesystem Manipulation Subprofile

Table 139 - SMI Referenced Properties/Methods for SNIA_LocallyAccessibleFileSystemSetting

Properties

Flags

Requirement

Description & Notes

ExecutePref

Optional

An enumerated value that specifies if support should be provided on the
operational file server for executing elements contained in the operational
filesystem accessed through this local access point. This may require
setting up specialized paging or execution buffers either on the operational
file server or on the operational filesystem side (as appropriate for the
implementation). Note that this does not provide any rights to actually
execute any element but only specifies support for such execution, if
permitted.

RootAccessPref

Optional

An instance of a CIM_Privilege, encoded as a string, that expresses the
client's expectations about privileged access by appropriately privileged
System Administrative users on the operational file server (“root" or
"superuser") to the operational filesystem and its elements. The provider is
expected to surface this access using the CIM privilege model.

Support for the privileged access might require setup at both the
operational file server as well as the operational filesystem, so there is no
guarantee that the request can be satisfied.

EXPERIMENTAL

228

Filesystem Manipulation Subprofile

SMI-S 1.6.1 Revision 6 SNIA Technical Position 229

Filesystem Manipulation Subprofile

230

EXPERIMENTAL

Clause 11: Filesystem Performance Profile

11.1 Synopsis
Profile Name: Filesystem Performance (Component Profile)

Version: 1.6.1

Organization: SNIA

CIM Schema Version: 2.38

Table 140 describes the related profiles for Filesystem Performance.

Table 140 - Related Profiles for Filesystem Performance

Profile Name Organization Version Requirement Description

Filesystem SNIA 1.6.1 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported = "102" (Local Filesystem
statistics support).

File Export SNIA 1.6.1 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported = "103" (Exported File Share
statistics support).

NAS Network Port SNIA 1.5.0 Conditional Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementT
ypesSupported = "104" (Exporting Port
statistics support).

NOTE Each of these subprofiles is mandatory if the element in question is to be metered. For example, in order to keep statistics
on exported file shares, it will be necessary for File Shares to be modeled through the use of the File Export Subprofile.

Central Class: FileSystemStatisticsService
Scoping Class: ComputerSystem

11.2 Description

11.2.1 Overview

The Filesystem Performance Subprofile defines classes and methods for managing filesystem-related
performance information. It is a subprofile for use with autonomous profiles that directly support
filesystems, which in this release of SMI-S specifically includes the NAS Head and the Self-Contained
NAS Profiles.

One of the key application disciplines for managing storage is Performance Management. In order to
manage performance, a number of processes need to be in place, including the ability to measure the
performance and saturation points of components within the storage network.

There are currently no common statistics defined that can be used to manage multiple vendor filesystem-
related entities (such as File Servers) from a performance perspective. This subprofile defines specific
measurements and methods to make common statistics available to client applications regarding
filesystem-related entities. Examples of such statistics include:

Filesystem Performance Profile

= The read, write and other I/O operation counts for a filesystem or a file share,
= The cumulative elapsed time required for the I/O operations to complete,
= The number of bytes transferred per unit of time.

Particular areas related to Performance Management that can make use of the statistics provided by the
Filesystem Performance Subprofile include:

= Filesystem utilization (e.g., "hot-spot” and trend analyses; tracking usage efficiency by monitoring response
times and IOPS/throughput rates; identifying over-utilization and contention that is leading to performance
degradation).

= Diagnostics and problem determination (e.g., identifying bottlenecks, "point(s) of pain“, etc., especially at an
upper level within the overall "I/O operation stack").

= Tuning (e.g., determining allocation/reallocation of particular filesystems and/or file placements in the efforts
to meet overall performance goals and/or other Service Level Agreements; determining the impact of the
underlying storage and applicable network provisioning upon filesystem performance and utilization).

< Workload characterization (e.g., characterizing particular filesystem usage with possible correlation to
associated applications).

= Modeling and planning (e.g., enabling the use of empirical metrics as the input/basis for various modeling and
planning exercises related to filesystem and overall storage concerns).

Performance Measurement within the context of filesystems is the key deliverable that is the focus of this
subprofile. Of particular importance, the statistics provided by the Filesystem Performance Subprofile can
help facilitate a "top-down" approach within the areas noted above (i.e., by reflecting performance
information that is directly related to and seen by/at a "top-most" component within the overall I/O
operation processing stack).

NOTE Performance analysis is broader than simply filesystems and related entities such as File Servers. Complete analysis
requires performance information from hosts, fabric and the underlying storage systems. Theses are (or will be) addressed
separately as part of the appropriate profiles (e.g., the Block Server Performance Subprofile, which includes further discussion
regarding Performance Management).

The Filesystem Performance Subprofile provides statistics, which are associated with fundamental
elements that can comprise a filesystem-related entity (such as a NAS Head or a Self-Contained NAS).
These elements include:

= Filesystems
= Exported file shares
= Network-interface ports used to export file shares

In order to monitor and manage the aforementioned elements, it is necessary to identify performance
counters for each of these elements and to externalize an interface so that client applications can retrieve
the counter values when they so desire. The function of this subprofile is to support such client
applications.

The Filesystem Performance Subprofile augments the profiles and subprofiles for those autonomous
profiles within this release of SMI-S that directly support filesystems. Instead of being an isolated
subprofile, this subprofile adds modeling constructs to existing profiles and subprofiles. Together these
enhancements make up the Filesystem Performance Subprofile (as would be registered in the Server
Profile as a RegisteredSubprofile).

232

11.3 Implementation

Filesystem Performance Profile

11.3.1 Performance Additions Overview

Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram” provides an overview of the
model. The shaded grey boxes show the new classes added by the Filesystem Performance Subprofile.

NOTE Not all properties defined for the statistics classes are shown within Figure 15: "Filesystem Performance Subprofile
Summary Instance Diagram"”. That is, there are additional properties (both mandatory and optional) that are included within the
statistical classes. These properties can be found in 11.6 "CIM Elements".

Filesy stermStatigtic sSemice

Name
CreationClassN ame
Systemi ame
SystemCreationClassName
GetStatisticaCallectiong
CreateManifestCollectiond
AddOrhodiftyh anifest
Rerriow ehd anife s 0

RedideredProfile

i SubprofileRequiresk rofile Reg steredSubprofile
ElementConformsToProfile RegisteredMarme=
'Filesy stern Performance’

Frofile Registration Profile

CarrputerSydem

HogtedCollection

hf ermberOfC ollection

Azmacistedr esrstemstatigicemanirestCaiection

ElermentCapabilties HostedSerwice StatisticsC ollection
Filesy stemStatistic sl anife stCaollection
InstancelD
ElementName InstancelD
Sarrplel nterval Elementhlame
FilesystemStatistic sCapahilties TimeLastSarrpled | sDefault=True
InstancelD
ElementName MermberOfCollection
ElemertsSupported(] . .
Synchronousht ethodsSuppor] Filesystem Frofile
AsynehronoushiethodsSupported] HostedF ileSystem FilesystemStorageStatitic alData
ClockTicK ntenval : TEEED
Hostedt.ccessPoint LocalFileSystem ElamentType=102
StatisticTime
HostedShare
l —— —— — .
File Expaort Frofile SharedElerent Element Statistical Data W ermberOfCollection

Filesy stemStorage StatidicalData

FileShare

InstancelD
ElementType=103
StatisticTime
TotallOs

File By sternStatistic sManifest :l

FileSy stermstatigtic sManifest

SAPAvailableF arElement

L —

ElermentStatigticalData

FilesystemStatisticsM anifestC ollection

Instancel D
Elementhame
|sDefault=F alse

PratocolEndpaint FilesystemStorageStatisticalData
FS o CIFS InstancelD
MFE or 'CIFE ElermentType=104 : T -
CtatisticTime Filesy g emStorageStatisticeh anife s
Total Os InstancelD
s ElermentType=102
ElernentstatisticalData— gl el

IncludeTotallOs
IncludeReadIOs
IncludeitiritelOs

Filesy stermStarage Statistic v anifest

InstancelD
ElermentType=103
IncludeStatistic Tirne
IncludeTotallOs

terrberOfCollection

Figure 15 - Filesystem Performance Subprofile Summary Instance Diagram

SMI-S 1.6.1 Revision 6

SNIA Technical Position

233

Filesystem Performance Profile

Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram” shows a single instance of
StatisticsCollection for the entire profile. The ComputerSystem (i.e., the "top level" computer system
depicted within the figure) is that of the autonomous profile (e.g., a NAS Head or a Self-Contained NAS)
which utilizes the Filesystem Performance Subprofile.

The StatisticsCollection is the anchor point from which all statistics being kept by the profile can be found.
Statistics are defined as a FileSystemStatisticalData class, instances of which hold the statistics for
particular metered elements (e.g., filesystems and file shares). The particular type of metered element is
recorded in the instance of FileSystemStatisticalData within the ElementType property.

All of the statistics instances are related to the elements that they meter via the ElementStatisticalData
association (e.g., FileSystemStatisticalData for a File Share can be found from the File Share by
traversing the ElementStatisticalData association).

All of the statistics instances kept within the profile are associated to the one StatisticsCollection
instance. Access to all of the statistics for the profile is through the StatisticsCollection. The
StatisticsCollection has a HostedCollection association to the "top level" computer system of the profile.

Note that statistics may be kept for a number of elements within the profile, including elements within
subprofiles. The particular elements that are metered are:

= Local filesystem. This provides a summary of all statistics for a particular filesystem (i.e., an instance of
LocalFileSystem). For example, all file read I/O operations (ReadlOs) directed to a particular filesystem.
These statistics are kept within the FileSystemStatisticalData instances, with one for each filesystem within
the system.

= Exported file share. This provides a summary of all statistics for a particular file share that is exported (i.e.,
an instance of FileShare as described within the File Export Profile). For example, all file read I/O operations
(ReadlOs) directed to a particular file share that is exported to the network. These statistics are kept within
the FileSystemStatisticalData instances, with one for each FileShare within the system.

= Exporting port. This provides a summary of all statistics for a particular port through which a file share being
exported can be accessed (i.e., an instance of ProtocolEndpoint through which a FileShare can be accessed
as described within the File Export Profile). For example, all file read 1/0 operations (ReadlOs) directed to a
particular file share exporting port. These statistics are kept within the FileSystemStatisticalData instances,
with one for each file share exporting port within the system.

Finally, Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram” illustrates the
FileSystemStatisticsService for Bulk retrieval of all the statistics data and the creation of manifest
collections. These methods (which are provided in a manner akin to that provided by the Block Server
Performance Subprofile) will be discussed later. They are shown here for completeness. Associated with
the FileSystemStatisticsService is a FileSystemStatisticsCapabilities instance that identifies the specific
capabilities implemented by the filesystem performance statistics support. Specifically, it includes an
"ElementsSupported” property that identifies the elements for which statistics are kept; the
FileSystemStatisticsCapabilities instance also identifies the various retrieval mechanisms (e.g., Extrinsic,
Association Traversal, Indications and/or Query) that are implemented (i.e., supported) by the filesystem
statistics support.

234

Filesystem Performance Profile

11.3.2 Summary of FileSystemStatisticsData support by Profile

Table 141 defines the Element Types (for FileSystemStatisticsData instances) that may be supported by
profile.

Table 141 - Summary of Element Types by Profile

ElementType NAS Head Self-Contained NAS
Local filesystem YES YES
Exported File Share YES YES
Exporting Port YES YES

YES means that this specification defines the element type for the profile, but actual support by any given
implementation would be implementation dependent. NO means that this specification does not specify
this element type for the profile.

11.3.3 Profile Registration Profile Support for the Filesystem Performance Subprofile

At the top of Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram" there is a
dashed box that illustrates a part of the Profile Registration Profile for the autonomous profile (e.g., a
NAS Head or a Self-Contained NAS) that utilizes the Filesystem Performance Subprofile. The part
illustrated represents the particulars for the Filesystem Performance Subprofile. If performance support
has been implemented, then there shall be a RegisteredSubprofile instance for the Filesystem
Performance Subprofile.

11.3.4 Default Manifest Collection

Associated with the instances of the StatisticsCollection shall be a provider-supplied (Default)
CIM_FileSystemManifestCollection that represents the statistics properties that are kept by the profile.
The default manifest collection is indicated by the IsDefault property (=True) of the
CIM_FileSystemManifestCollection. For each metered object (element) of the profile implementation, the
default manifest collection will have exactly one manifest that will identify which properties are included
for that metered object. If an object is not metered, then there shall not be a manifest for that element
type. If an element type (e.g., Local filesystem) is metered, then there shall be a manifest for that element

type.

11.3.5 Client Defined Manifest Collection

Manifest collections are either provider-supplied (CIM_FileSystemManifestCollection.IsDefault=True) for
the profile implementation or client-defined collections
(CIM_FileSystemManifestCollection.IsDefault=False). Client-defined collections are used to indicate the
specific statistics properties that the client would like to retrieve using the GetStatisticsCollection method.
For a discussion of provider-supplied manifest collections, see 11.3.4.

Client-defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client-defined manifest collection is identified by the IsDefault property
of the collection set to False. For each element type of the filesystem statistics class (e.g., Local
filesystem, exported file share, etc.), a manifest can be defined that identifies which specific properties of
the particular statistics class element type are to be returned on a GetStatisticsCollection request. Each
of the element types of the filesystem statistics class may have no or one manifest in any given manifest
collection. This is illustrated in Figure 15: "Filesystem Performance Subprofile Summary Instance
Diagram".

In Figure 15: "Filesystem Performance Subprofile Summary Instance Diagram”, manifest classes are
defined for filesystems (LocalFileSystem) and exported file shares (FileShare). Each property of the
manifest is a Boolean that indicates whether the property is to be returned (true) or omitted (false).

SMI-S 1.6.1 Revision 6 SNIA Technical Position 235

Filesystem Performance Profile

Multiple client-defined manifest collections can be defined in the profile. Consequently, different clients or
different client applications can define different manifests for different application needs. A manifest
collection can completely omit a whole set of statistics pertaining to a particular element type; for
example, no ProtocolEndPoint statistics (i.e., filesystem performance statistics associated with the
element type of "Exporting Port", which represents a port through which a File Share can be accessed
from the network) are included within the client-defined manifest collection shown in Figure 15:
"Filesystem Performance Subprofile Summary Instance Diagram”. Since manifest collections are "client
objects”, they are named (ElementName) by the client for the client's convenience. The CIM server will
generate an instance ID to uniquely identify the manifest collection in the CIM Server.

Client-defined manifest collections are created using the CreateManifestCollection method. Manifests are
added or modified using the AddOrModifyManifest method. A manifest may be removed from the manifest
collection by using the RemoveManifests method.

NOTE Use of manifest collections is optional with the GetStatisticsCollection method. If NULL for the manifest collection is passed
on input, then all statistics instances are assumed (i.e., all available statistics will be returned).

11.3.6 Capabilities Support for Filesystem Performance Subprofile

There are two dimensions to determining what is supported with a Filesystem Performance Subprofile
implementation. First, there are the RegisteredSubprofiles supported by the autonomous profile (e.g., a
NAS Head or a Self-Contained NAS Profile) that utilizes the Filesystem Performance Subprofile. In order
to support statistics for a particular class of metered element, the corresponding object shall be modeled.
So, if a NAS Head (for example) has not implemented the File Export Subprofile, then it shall not
implement the FileSystemStatisticalData for "Exported File Share" in the Filesystem Performance
Subprofile (and implementation of the File Export Subprofile does not guarantee implementation of the
FileSystemStatisticalData for exported file shares).

Both of these dimensions are captured in the FileSystemStatisticsCapabilities class instance. This class
instance is not created nor modified by Clients; rather, it is populated by the provider and has three
properties of interest (as discussed within the following sections). The second dimension is techniques
supported for retrieving statistics and manipulating manifest collections.

For the methods-supported properties described below (namely, SynchronousMethodsSupported and
AsynchronousMethodsSupported), any or all of the respective values can be missing (e.g., the arrays can
be NULL). If all of the methods supported are NULL, then manifest collections are not supported and
neither GetStatisticsCollection nor Query are supported for the retrieval of statistics. This leaves
enumerations or association traversals as the only methods for retrieving the statistics.

11.3.6.1 ElementsSupported

This property within the FileSystemStatisticsCapabilities class defines a list of element types for which
statistical data is available. For this release of SMI-S, the values of interest are "Local Filesystem",
"Exported File Share" and “Exporting Port”.

To be a valid implementation of the Filesystem Performance Subprofile, at least one of the values listed
for ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can
be identified.

11.3.6.2 SynchronousMethodsSupported

This property within the FileSystemStatisticsCapabilities class defines the synchronous mechanisms that
are supported for retrieving statistics and for defining and modifying filters for statistics retrieval. For this
release of SMI-S, the values of interest are "Exec Query", "Indications", "Query Collection",
"GetStatisticsCollection", "Manifest Creation", "Manifest Modification", and "Manifest Removal".

11.3.6.3 AsynchronousMethodsSupported

This property within the FileSystemStatisticsCapabilities class defines the asynchronous mechanisms
that are supported for retrieving statistics. For this release of SMI-S, this should be NULL.

236

11.3.6.4 ClockTickInterval

Filesystem Performance Profile

An internal clocking interval for all timer counters kept in the system implementation, measured in
microseconds (i.e., the unit of measure in the timers, measured in microseconds). Time counters are
considered to be monotonically increasing counters that contain "ticks". Each tick represents one clock

tick interval.

For example, if ClockTickInterval contained a value of 32, then each time counter tick would represent 32

microseconds.

11.3.7 Health and Fault Management Consideration

Not defined in this version of the specification.

11.3.8 Cascading Considerations

Not applicable

11.4

Methods of the Profile

11.4.1 Extrinsic Methods of the Profile

11.4.1.1 Overview

The methods supported by this subprofile are summarized in Table 142 and detailed within the sections

that follow it.

Table 142 - Creation, Deletion and Modification Methods in the Filesystem Performance Subprofile

MemberOfCollection

Method Created Instances Deleted Instances Modified
Instances
GetStatisticsCollection None None None
CreateManifestCollection FileSystemStatisticsManifestCollection | None None
AssociatedFileSystemStatisticsManife
stCollection
AddOrModifyManifest FileSystemStatisticsManifest(subclass) | None FileSystemStatistics

Manifest(subclass)

RemoveManifest

None

FileSystemStatisticsManife
st(subclass)

MemberOfCollection

None

11.4.1.2 GetStatisticsCollection

This extrinsic method retrieves statistics in a well-defined bulk format. The set of statistics returned by
this method is determined by the list of element types passed into the method and the manifests for those
types contained in the supplied manifest collection. The statistics are returned through a well-defined
array of strings that can be parsed to retrieve the desired statistics as well as limited information about
the elements that those metrics describe.

GetStatisticsCollection(

version of SMI-S.)]

CIM_ConcreteJdob REF Job,
[IN, Description(Element types for which statistics should be returned)

ValueMap { 1", "102", 103", 104", ".

SMI-S 1.6.1 Revision 6

., "0x8000.." 3},

SNIA Technical Position

[IN (false), OUT, Description(Reference to the job(shall be null in this

237

Filesystem Performance Profile

Values { "Other™, "Local Filesystem'”, "Exported File Share™, "Exporting Port",
"DMTF Reserved', "Vendor Specific" }]

uintlé ElementTypes[],

[IN, Description ("An array of strings that specify the particular "Other™
element(s) when the ElementType property above includes
the ElementType value of 1 (i.e., "Other'™). Each
string within this array identifies a separate "Other"
element and duplicate string values are NOT allowed.
This property should be set to NULL when the
ElementType property does not include the value of
l . ll)]

string OtherElementTypeDescriptions[],

[IN, Description(The manifest collection that contains the manifests which list
the metrics that should be returned for each element
type)]

CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(''Specifies the format of the Statistics output parameter')

ValueMap { "2" } ,

Values ("CSV")]

uintl6é StatisticsFormat,

[OUT, Description(The statistics for all the elements as determined by the
Elements and ManifestCollection parameters)]

string Statistics[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported”, "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Method Parameters Checked - Job Started", "Element Not Supported"”, "Statistics
Format Not Supported”, "Method Reserved", "Vendor Specific"}

NOTE In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This method should
always return NULL for the Job parameter.

If the ElementTypes[] array is empty, then no data is returned. If the ElementTypes[] array is NULL, then
the ElementTypes|[] parameter is ignored and all data specified in the manifest collection is returned.

If the manifest collection is empty, then no data is returned. If the manifest collection parameter is NULL,
then the default manifest collection is used. (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

NOTE The ElementTypes|[] and ManifestCollection parameters may identify different sets of element types. The effect of this will
be for the implementation to return statistics for the element types that are in both lists (that is, the intersection of the two lists).
This intersection could be empty. In this case, no data will be returned.

For the current version of SMI-S, the only recognized value for StatisticsFormat is "CSV". The method
may support other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstancelDs that may be used to
correlate with the FileSystemStatisticalData instances, a simple CSV format is sufficient and the most
efficient human-readable format for transferring bulk statistics. More specifically, the following rules
constrain that format and define the content of the String[] Statistics output parameter to the Get Statistics
Collection() method:

= The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings will not exceed 64K bytes. And a single statistics record will not span Array
entries.

238

Filesystem Performance Profile

There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:
= aline-feed character

= the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

Each statistics record shall contain the InstancelD of the FileSystemStatisticalData instance, the value map
(number) of the ElementType of the metered object, and one value for each property that the relevant
FileSystemStatisticsManifest specifies as "true".

Each value in a record shall be separated from the next value by a Semi-colon (*;"). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record. A client reading a record it has received would ignore white-space
between values.

The InstancelD value is an opaque string that shall correspond to the InstancelD property from
FileSystemStatisticalData instance.

= For the convenience of client software that needs to be able to correlate InstancelDs between different
GetStatisticsCollection method invocations, the InstancelD for FileSystemStatisticalData instance shall be
unigue across all instances of the FileSystemStatisticalData class. It is not sufficient that InstancelD is unique
across subclasses of FileSystemStatisticalData.

The ElementType value shall be a decimal string representation of the Element Type number (e.g., "102" for
Local Filesystem). The StatisticTime shall be a string representation of DateTime. All other values shall be
decimal string representations of their statistical values.

Null values shall be included in records for which a statistic is returned (specified by the manifest or by a lack
of manifest for a particular element type) but there is no meaningful value available for the statistic. A NULL
statistic is represented by placing a semi-colon (;) in the record without a value at the position where the
value would have otherwise been included. A record in which the last statistic has a NULL value shall end in
a semi-colon (;).

The first three values in a record shall be the InstancelD, ElementType and StatisticTime values from the
FileSystemStatisticalData instance. The remaining values shall be returned in the order in which they are
defined by the MOF for the FileSystemStatisticsManifest class or subclass the record describes.

As an additional convention, a provider should return all the records for a particular element type in
consecutive String elements, and the order of the element types should be the same as the order in which
the element types were specified in the input parameter to GetStatisticsCollection().

Example output as it might be transmitted in CIM-XML. It shows records for 5 local filesystems and 5
exported file shares, assuming that 6 statistics were specified in the FileSystemStatisticsManifest
instance for both local filesystems and exported file shares. The sixth statistic is unavailable for local
filesystems, and the fourth statistic is unavailable for exported file shares:

<METHODRESPONSE NAME="'GetStatisticsCollection'>
<RETURNVALUE PARAMTYPE=""uint32">

<VALUE>

0

</VALUE>

</RETURNVALUE>

<PARAMVALUE NAME="'Statistics" PARAMTYPE='"'string'>
<VALUE.ARRAY>

<VALUE>

SMI-S 1.6.1 Revision 6 SNIA Technical Position 239

Filesystem Performance Profile

LOCALFILESYSTEMSTATS1;102;20060811133015.0000010-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS2;102;20060811133015.0000020-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS3;102;20060811133015.0000030-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS4;102;20060811133015.0000040-
300;11111;22222;33333;44444;55555;

LOCALFILESYSTEMSTATS5;102;20060811133015.0000050-
300;11111;22222;33333;44444;55555;

</VALUE>
<VALUE>

EXPORTFILESHARESTATS1;103;20060811133015.0000100-
300;11111;22222;33333; ;55555 ;66666

EXPORTFILESHARESTATS2;103;20060811133015.0000110-
300;11111;22222;33333; ;55555 ;66666

EXPORTFILESHARESTATS3;103;20060811133015.0000120-
300;11111;22222;33333; ;55555 ;66666

EXPORTFILESHARESTATS4;103;20060811133015.0000130-
300;11111;22222;33333; ;55555;66666

EXPORTFILESHARESTATSS5;103;20060811133015.0000140-
300;11111;22222;33333; ;55555;66666

</VALUE>
</VALUE.ARRAY>
</PARAMVALUE>
</METHODRESPONSE>

11.4.1.3 CreateManifestCollection

This extrinsic method creates a new manifest collection whose members serve as a filter for metrics
retrieved through the GetStatisticsCollection method.

CreateManifestCollection(

[IN, Description(The collection of statistics that will be filtered using the new
manifest collection)]

CIM_StatisticsCollection REF Statistics,

[IN, Description(Client-defined name for the new manifest collection)
string ElementName,

[OUT, Description(Reference to the new manifest collection)]
CIM_FileSystemManifestCollection REF ManifestCollection);

Error returns are:

{ "Ok'™, "Not Supported™, "‘Unknown™, "Timeout™, "Failed”, "Invalid Parameter”,
""Method Reserved", "Vendor Specific" }

11.4.1.4 AddOrModifyManifest

This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A
client supplies a manifest collection within which the new manifest collection will be placed or an existing
manifest will be modified, the element type of the statistics that the manifest will filter, and a list of
statistics that should be returned for that element type using the GetStatisticsCollection method.

240

Filesystem Performance Profile

AddOrModifyManifest(

[IN, Description(Manifest collection that the manifest is or should be a member
of)]

CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(The element type whose statistics the manifest will Filter)

vValueMap { "'1', ''102", ''103'", '104", *"..", "Ox8000.." },

Values { "Other"™, "Local Filesystem", "Exported File Share"™, "Exporting Port",
"DMTF Reserved", "Vendor Specific" }]
uintlé ElementType,
[IN, Description ("A string describing the type of element when the ElementType
property above is set to 1 (i.e., "Other™). This

property should be set to NULL when the ElementType
property is any value other than 1.")]

string OtherElementTypeDescription,

[IN, Description(The client-defined string that identifies the manifest created or
modified by this method)

string ElementName,

[IN, Description(The statistics that will be included by the manifest filter; that
is, the statistics that will be supplied through the
GetStatisticsCollection method)

string StatisticsList[],

[OUT, Description(The Manifest that is created or modified on the successful
execution of this method)]

CIM_FileSystemManifest REF Manifest);

Error returns are:

{ ""Success™, "Not Supported', "Unknown™, "Timeout™, "Failed", "Invalid Parameter",
""Method Reserved', "Element Not Supported”, "Metric not
supported”, "ElementType Parameter Missing", "'Method
Reserved", '"Vendor Specific" }

If the StatisticsList[] array is empty, then only InstancelD and ElementType will be returned when the
manifest is referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is
assumed (i.e., all supported properties will be included).

NOTE This would be the FileSystemStatisticsManifest from the default manifest collection.

11.4.1.5 RemoveManifests
This is an extrinsic method that removes manifests from the manifest collection.

RemoveManifests(

[IN, Description(Manifest collection from which the manifests will be removed)]
CIM_FileSystemStatisticsManifestCollection REF ManifestCollection,

[IN, Description(List of manifests to be removed from the manifest collection)
CIM_FileSystemStatisticsManifest REF Manifest[]);

Error returns are:
{ "Success'", "Not Supported”, "Unknown"™, "Timeout", "Failed", "Invalid

Parameter', '"Method Reserved", "Manifest not found",
"Method Reserved", ''Vendor Specific" }

SMI-S 1.6.1 Revision 6 SNIA Technical Position 241

Filesystem Performance Profile

11.4.2 Intrinsic Methods of this Profile

NOTE Basic Write intrinsic methods are not specified for StatisticsCollection, HostedCollection, FileSystemStatisticalData,
MemberOfCollection or ElementStatisticalData.

11.4.2.1 Deletelnstance (of a FileSystemStatisticsManifestCollection)

This will delete the FileSystemStatisticsManifestCollection where IsDefault=False, the
AssociatedFileSystemStatisticsManifestCollection association to the StatisticsCollection and all manifests
collected by the manifest collection (and the MemberOfCollection associations to the
FileSystemStatisticsManifestCollection).

11.4.2.2 Association Traversal

One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the
individual Statistics following the MemberOfCollection association. This shall be supported by all
implementations of the Filesystem Performance Subprofile and would be available to clients if the
provider does not support the EXEC QUERY or GetStatisticsCollection approaches.

11.5 Use Cases

11.5.1 Summary of Statistics Support by Element

Not all statistics properties are kept for all elements. Table 143 illustrates the statistics properties that are
kept for each of the metered elements.

Table 143 - Summary of Statistics Support by Element

Statistic Property Local Exported Exporting Other
Filesystem File Share Port
StatisticTime R R R R
TotallOs R R R R
TotalBytesTransferred R R R N
ReadlOs R R N N
WritelOs R R N N
OtherlOs R R N N
MetadataReadlOs O (e} N N
MetadataWritelOs O (e} N N
TotallOTimeCounter O O O N
TotalldleTimeCounter O (e} (e} N
ReadlOTimeCounter (e} (e} N N
BytesRead (0] (0] N N
WritelOTimeCounter (e} (e} N N
BytesWritten (0] (0] N N
MetadataBytesRead (0] (0] N N
MetadataBytesWritten (0] (0] N N
PercentDurableOpens N (0] N N
PercentResilientOpens N (0] N N
PercentPersistentOpens N O N N

242

Filesystem Performance Profile

Table 143 - Summary of Statistics Support by Element

Statistic Property Local Exported Exporting Other
Filesystem File Share Port
AverageReadResponseTime N O N N
AverageWriteResponseTime N O N N
AverageRequestResponseTime N O N N
BytesReadPerSec N O N N
TotalBytesReceived N O N N
BytesReceivedPerSec N O N N
TotalBytesSent N O N N
BytesSentPerSec N O N N
BytesTranferredPerSec N O N N
BytesWrittenPerSec N O N N
FilesOpenedPerSec N O N N
TotalOpenFileCount N O N N
CurrentPendingRequests N O N N
ReadRequestsProcessedPerSec N O N N
TotalRequestsReceived N O N N
RequestsReceivedPerSec N O N N
TotalDurableHandleReopenCount N O N N
TotalFailedDurableHandleReopenCount N O N N
TotalFailedResilientHandleReopenCount N O N N
CurrentOpenFileCount N O N N
TotalResilientHandleReopenCount N O N N
TotalPersistentHandleReopenCount N O N N
TotalFailedPersistentHandleReopenCount N O N N
TreeConnectCount N O N N
WriteRequestsProcessedPerSec N O N N
TotalMetadataRequestsReceived N O N N
MetadataRequestsReceivedPerSec N O N N
AverageTimePerDataRequest N O N N
AverageBytesPerDataRequest N O N N
AverageBytesPerReadRequest N O N N
AverageBytesPerWriteRequest N O N N
AverageReadQueuelength N O N N
AverageWriteQueueLength N O N N
AverageDataQueuelLength N O N N

SMI-S 1.6.1 Revision 6

SNIA Technical Position

243

Filesystem Performance Profile

Table 143 - Summary of Statistics Support by Element

Statistic Property Local Exported Exporting Other
Filesystem File Share Port
DataBytesPerSec N O N N
DataRequestsPerSec N (0] N N
CurrentDataQueuelLength N O N N
The legend is:
R - Required
O - Optional

N - Not specified

A complete list of definitions of the metered elements as defined by the ElementType property of

File

SystemStatisticalData is below:

ElementType = 1 (Other) - This is used by the provider to specify a filesystem-related metered element other
than one explicitly declared (e.g., "Local Filesystem" below) within the list of element types supported by the
Filesystem Performance Subprofile in this release of SMI-S. If the ElementType is "Other", then information
describing the metered element should be provided in the "OtherElementTypeDescription” string property.

ElementType = 102 (Local Filesystem) - This is a filesystem that would be a LocalFileSystem in the
Filesystem Profile. It is a target for I/O operations that would include file I/O operations for storing and
retrieving the contents of a file maintained by the filesystem, 1/0O operations directed to directories maintained
by the filesystem, and other I/O operations performed to manage the filesystem and its contents.

ElementType = 103 (Exported File Share) - This is a FileShare in the File Export Subprofile; it is a file share
that is exported to a network.

ElementType = 104 (Exporting Port) - This is a port through which a file share being exported can be
accessed. It is a ProtocolEndPoint through which a FileShare can be accessed as described within the File
Export Profile.

11.5.2 Formulas and Calculations

Table 4 identifies the set of statistics that are recommended for various elements associated with
filesystems. Once collected, these metrics can be further enhanced through the definition of formulas and
calculations that create additional "derived" statistics.

Table 144 defines a set of such derived statistics as pertain to a calculated time interval. These calculated
statistics are by no means the only possible derivations but serve as examples of commonly requested
statistics.

244

Table 144 - Formulas and Calculations - Calculated Statistics for a Time Interval

New statistic Formula
Timelnterval delta StatisticTime
I/O rate delta TotallOs / Timelnterval
1/0 average response time delta TotallOTimeCounter / delta TotallOs
Read average response time delta ReadlOTimeCounter / delta ReadlOs
Write average response time delta WritelOTimeCounter / delta WritelOs

Filesystem Performance Profile

Table 144 - Formulas and Calculations - Calculated Statistics for a Time Interval

New statistic

Formula

Average Read Size

delta BytesRead / delta ReadlOs

Average Write Size

delta BytesWritten / delta WritelOs

% Read

100 * (delta ReadlOs / delta TotallOs)

% Write

100 * (delta WritelOs / delta TotallOs)

11.5.3 Filesystem Performance Supported Capabilities Patterns

The Filesystem Performance Subprofile in this release of SMI-S formally recognizes the Capabilities
patterns summarized in Table 145.

Table 145 - Filesystem Performance Subprofile Supported Capabilities Patterns

Element Supported SynchronousMethods AsynchronousMethods Supported
Supported

Any (at least one) NULL NULL

Any (at least one) Neither GetStatisticsCollection nor Exec NULL
Query

Any (at least one) GetStatisticsCollection NULL

Any (at least one) Any NULL

Any (at least one) Exec Query NULL

Any (at least one) GetStatisticsCollection, Exec Query NULL

Any (at least one) "Manifest Creation", "Manifest NULL
Modification”, and "Manifest Removal”

Any (at least one) "Indications", "Query Collection” NULL

An implementation will support GetStatisticsCollection, Query, GetStatisticsCollection and Query or

neither. But if the implementation supports GetStatisticsCollection,

execution.

it shall support Synchronous

If manifest collections are supported, then ALL three methods shall be supported (creation, modification

and removal).

11.5.4 Client Considerations and Recipes

Not defined in this version of the specification.

SMI-S 1.6.1 Revision 6

SNIA Technical Position

245

Filesystem Performance Profile

11.6 CIM Elements

Table 146 describes the CIM elements for Filesystem Performance.

Table 146 - CIM Elements for Filesystem Performance

Element Name

Requirement

Description

11.6.1
CIM_AssociatedFileSystemStatisticsManifestCollection
(Client defined collection)

Conditional

Conditional requirement: Clients can create manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported. This is an association between the
StatisticsCollection and a client defined manifest
collection.

11.6.2
CIM_AssociatedFileSystemStatisticsManifestCollection
(Provider defined collection)

Mandatory

This is an association between the StatisticsCollection
and a provider supplied (predefined) manifest collection
that defines the filesystem statistics properties supported
by the profile implementation.

11.6.3 CIM_ElementCapabilities

Mandatory

This associates the FileSystemStatisticsCapabilities to
the FileSystemStatisticsService.

11.6.4 CIM_ElementStatisticalData (Exported File Share
Stats)

Conditional

Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTypesSupp
orted = "103" (Exported File Share statistics support).

This associates a FileSystemStatisticalData instance to
the exported File Share for which the statistics are
collected.

11.6.5 CIM_ElementStatisticalData (Exporting Port Stats)

Conditional

Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTypesSupp
orted = "104" (Exporting Port statistics support).

This associates a FileSystemStatisticalData instance to
the exporting Port for which the statistics are collected.

11.6.6 CIM_ElementStatisticalData (Local Filesystem
Stats)

Conditional

Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTypesSupp
orted = "102" (Local Filesystem statistics support).

This associates a FileSystemStatisticalData instance to
the local filesystem for which the statistics are collected.

11.6.7 CIM_ElementStatisticalData (OTHER Element
Type Stats)

Conditional

Conditional requirement: This is mandatory if
CIM_FileSystemStatisticsCapabilities.ElementTypesSupp
orted = "1" (OTHER element type statistics support).

This associates a FileSystemStatisticalData instance to a
provider-specified other element for which the statistics
are collected.

11.6.8 CIM_FileSystemStatisticalData

Mandatory

The CIM_FileSystemStatisticalData class defines the
filesystem statistics properties that may be kept for a
metered element of a system that provides filesystem
support (such as a NAS Head or a Self-Contained NAS).
Examples of such metered elements include
LocalFileSystem (Local Filesystem) and FileShare
(Exported File Share).

11.6.9 CIM_FileSystemStatisticsCapabilities

Mandatory

This defines the statistics capabilities supported by the
implementation of the profile.

246

Filesystem Performance Profile

Table 146 - CIM Elements for Filesystem Performance

Element Name

Requirement

Description

11.6.10 CIM_FileSystemStatisticsManifest (Client
Defined)

Conditional

Conditional requirement: Clients can modify manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported. An instance of this class defines the
filesystem statistics properties of interest to the client for
one element type.

11.6.11 CIM_FileSystemStatisticsManifest (Provider
Support)

Mandatory

An instance of this class defines the filesystem statistics
properties supported by the profile implementation for one
element type.

11.6.12 CIM_FileSystemStatisticsManifestCollection
(Client Defined)

Conditional

Conditional requirement: Clients can create manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported. An instance of this class defines one client
defined collection of filesystem statistics manifests (one
manifest for each element type).

11.6.13 CIM_FileSystemStatisticsManifestCollection
(Provider Defined)

Mandatory

An instance of this class defines the predefined collection
of default filesystem statistics manifests (one manifest for
each element type).

CIM_FileSystemStatisticsService

Mandatory

This is a Service that provides (optional) services of bulk
statistics retrieval and manifest set manipulation methods.

11.6.14 CIM_HostedCollection (Client Defined)

Conditional

Conditional requirement: Clients can create manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported or Clients can create manifests as identified
by
CIM_FileSystemStatisticsCapabilities.AsynchronousMeth
odsSupported. This would associate a client defined
FileSystemStatisticsManifestCollection to the top level
system for the profile (e.g., a NAS Head).

11.6.15 CIM_HostedCollection (Default)

Mandatory

This would associate a default
FileSystemStatisticsManifestCollection to the top level
system for the profile (e.g., a NAS Head).

CIM_HostedCollection (Provider Supplied)

Mandatory

This would associate the StatisticsCollection to the top
level system for the profile (e.g., NAS Head).

11.6.16 CIM_HostedService

Mandatory

This associates the FileSystemStatisticsService to the
ComputerSystem that hosts it.

11.6.17 CIM_MemberOfCollection (Member of client
defined collection)

Conditional

Conditional requirement: Clients can modify manifests as
identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported. This would associate Manifests to client-
defined manifest collections.

11.6.18 CIM_MemberOfCollection (Member of predefined
collection)

Mandatory

This would associate predefined Manifests to the default
manifest collection.

11.6.19 CIM_MemberOfCollection (Member of statistics
collection)

Mandatory

This would associate all filesystem statistics instances to
the StatisticsCollection.

11.6.20 CIM_StatisticsCollection

Mandatory

This would be a collection point for all filesystem statistics
that are kept for metered elements of a system that
provides filesystem support (such as a NAS Head or a
Self-Contained NAS).

SMI-S 1.6.1 Revision 6

SNIA Technical Position 247

Filesystem Performance Profile

Table 146 - CIM Elements for Filesystem Performance

Element Name

Requirement

Description

11.6.21 Conditional Deprecated. Conditional requirement: Clients can create

SNIA_AssociatedFileSystemStatisticsManifestCollection manifests as identified by

(Client defined collection) CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported.

11.6.22 Mandatory Deprecated.

SNIA_AssociatedFileSystemStatisticsManifestCollection

(Provider defined collection)

11.6.23 SNIA_FileSystemStatisticalData Mandatory Deprecated.

11.6.24 SNIA_FileSystemStatisticsCapabilities Mandatory Deprecated.

11.6.25 SNIA_FileSystemStatisticsManifest (Client Conditional Deprecated. Conditional requirement: Clients can modify

Defined) manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported.

11.6.26 SNIA_FileSystemStatisticsManifest (Provider Mandatory Deprecated.

Support)

11.6.27 SNIA_FileSystemStatisticsManifestCollection Conditional Deprecated. Conditional requirement: Clients can create

(Client Defined) manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMetho
dsSupported.

11.6.28 SNIA_FileSystemStatisticsManifestCollection Mandatory Deprecated.

(Provider Defined)

11.6.29 SNIA_FileSystemStatisticsService Mandatory Deprecated.

11.6.1 CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)

The CIM_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
CIM_FileSystemStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it
applies. Client defined manifest collections identify the Manifests (statistic properties) for retrieval of

filesystem statistics.

CIM_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.

There will be one instance of the CIM_AssociatedFileSystemStatisticsManifestCollection class, for each
client defined manifest collection that has been created.

Created By: Extrinsic: CreateManifestCollection

Modified By: Static
Deleted By: Static

Requirement: Clients can create manifests as identified by

CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 147 describes class CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined

collection).
Table 147 - SMI Referenced Properties/Methods for
CIM_AssociatedFileSystemStatisticsManifestCollection (Client defined collection)
Properties Flags Requirement Description & Notes
Statistics Mandatory The StatisticsCollection to which the manifest collection applies.
ManifestCollection Mandatory A client defined manifest collection.

248

Filesystem Performance Profile

11.6.2 CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

The CIM_AssociatedFileSystemStatisticsManifestCollection associates an instance of a
CIM_FileSystemsStatisticsManifestCollection to the instance of CIM_StatisticsCollection to which it
applies. The default manifest collection defines the CIM_FileSystemStatisticalData properties that are
supported by the profile implementation.

CIM_AssociatedFileSystemStatisticsManifestCollection is not subclassed from anything.

One instance of the CIM_AssociatedFileSystemStatisticsManifestCollection shall exist for the default
manifest collection if the Filesystem Performance Subprofile is implemented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 148 describes class CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined
collection).

Table 148 - SMI Referenced Properties/Methods for
CIM_AssociatedFileSystemStatisticsManifestCollection (Provider defined collection)

Properties Flags Requirement Description & Notes
Statistics Mandatory The StatisticsCollection to which the manifest collection applies.
ManifestCollection Mandatory The default manifest collection.

11.6.3 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,
CIM_FileSystemStatisticsService) and their Capabilities (e.g., CIM_FileSystemStatisticsCapabilities).
Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates
the instantiation of the CIM_ElementCapabilities association for the referenced instance of Capabilities.
ElementCapabilities describes the existence requirements and context for the referenced instance of
ManagedElement. Specifically, the ManagedElement shall exist and provides the context for the
Capabilities.

CIM_ElementCapabilities is not subclassed from anything.
Created By: Static

Modified By: Static

Deleted By: Static

Requirement: Mandatory

Table 149 describes class CIM_ElementCapabilities.

Table 149 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes
ManagedElement Mandatory The managed element (FileSystemStatisticsService).
Capabilities Mandatory The Capabilities instance associated with the FileSystemStatisticsService.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 249

Filesystem Performance Profile

11.6.4 CIM_ElementStatisticalData (Exported File Share Stats)

CIM_ElementStatisticalData is an association that relates an exported File Share to its statistics. Note
that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific File Share that is being exported.

CIM_ElementStatisticalData is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "103"
(Exported File Share statistics support).

Table 150 describes class CIM_ElementStatisticalData (Exported File Share Stats).

Table 150 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exported File Share Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to an exported FileShare for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
exported FileShare.

11.6.5 CIM_ElementStatisticalData (Exporting Port Stats)

CIM_ElementStatisticalData is an association that relates an exporting Port to its statistics. This exporting
Port is a ProtoEndPoint through which a file share that is being exported can be accessed. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the
instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific exporting Port.

CIM_ElementStatisticalData is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "104"
(Exporting Port statistics support).

Table 151 describes class CIM_ElementStatisticalData (Exporting Port Stats).

Table 151 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Exporting Port Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a ProtocolEndPoint port for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
exporting Port.

11.6.6 CIM_ElementStatisticalData (Local Filesystem Stats)

CIM_ElementStatisticalData is an association that relates a local filesystem to its statistics. Note that the
cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the

250

Filesystem Performance Profile

instantiation of the CIM_ElementStatisticalData association for the referenced instance of
FileSystemStatistics. ElementStatisticalData describes the existence requirements and context for the
FileSystemStatistics, relative to a specific local filesystem.

CIM_ElementStatisticalData is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "102"
(Local Filesystem statistics support).

Table 152 describes class CIM_ElementStatisticalData (Local Filesystem Stats).

Table 152 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Local Filesystem Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a LocalFileSystem for which the Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
local filesystem.

11.6.7 CIM_ElementStatisticalData (OTHER Element Type Stats)

CIM_ElementStatisticalData is an association that relates a provider-specified other element to its
statistics. This other element is a filesystem-related managed element whose type is not explicitly
declared within the list of ElementTypesSupported values defined within
CIM_FileSystemStatisticsCapabilities. Information describing the metered element in this case should
also be provided in the CIM_FileSystemStatisticalData.OtherElementTypeDescription property for the
referenced instance of the FileSystemStatistics. Note that the cardinality of the ManagedElement
reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of FileSystemStatistics.
ElementStatisticalData describes the existence requirements and context for the FileSystemStatistics,
relative to the specific metered element.

CIM_ElementStatisticalData is not subclassed from anything.
Created By: Static
Modified By: Static
Deleted By: Static

Requirement: This is mandatory if CIM_FileSystemStatisticsCapabilities.ElementTypesSupported = "1"
(OTHER element type statistics support).

Table 153 describes class CIM_ElementStatisticalData (OTHER Element Type Stats).

Table 153 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (OTHER Element Type

Stats)
Properties Flags Requirement Description & Notes
ManagedElement Mandatory A reference to the provider-specified managed element for which the

Statistics apply.

Stats Mandatory A reference to the FileSystemStatisticalData that hold the statistics for the
provider-specified managed element.

SMI-S 1.6.1 Revision 6 SNIA Technical Position 251

Filesystem Performance Profile

11.6.8 CIM_FileSystemStatisticalData

CIM_FileSystemStorageStatisticalData is subclassed from CIM_StatisticalData.

Instances of this class will exist for each of the metered elements if the "ElementTypesSupported"”

property of the CIM_FileSystemStatisticsCapabilities indicates that the metered element is supported. For
example, if "Local Filesystem" is identified in the "ElementTypesSupported" property, then this indicates
support for metering of the local filesystem.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

Table 154 describes class CIM_FileSystemStatisticalData.

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

InstancelD

Mandatory

The InstancelD for a FileSystemStatisticalData instance shall be unique
across all instances of the FileSystemStatisticalData class.

StatisticTime

Mandatory

The time that the most recent measurement was taken, relative to the
object (managed element) where the statistics were collected. (Time
stamp in CIM 2.2 specification format).

ElementType

Mandatory

Defines the role that the metered element (object) played for which this
statistics record was collected. This value is required AND the current
version of SMI-S specifies the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share", "Exporting
Port"}.

OtherElementTypeDescript
ion

Mandatory

A string describing the type of element when the ElementType property of
this class (or any of its subclasses) is set to 1 (i.e., "Other"). This property
should be set to NULL when the ElementType property is any value other
than 1.

TotallOs

Mandatory

The cumulative count of file I/O operations for the object, including
metadata 1/O operations.

TotalBytesTransferred

Conditional

Conditional requirement: This property is required if the ElementType is
102, 103, or 104. The cumulative count of bytes transferred for all of the
file 1/0 operations as defined in "TotallOs" above.

Note: This is not specified for the "Other" ElementType.

ReadlOs

Conditional

Conditional requirement: This property is required if the ElementType is
102 or 103. The cumulative count of file /O operations that were directed
to the object and that performed a transfer of data from the file contents.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

WritelOs

Conditional

Conditional requirement: This property is required if the ElementType is
102 or 103. The cumulative count of file I/O operations that were directed
to the object and that performed a transfer of data to the file contents.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

252

Filesystem Performance Profile

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties

Flags

Requirement

Description & Notes

OtherlOs

Conditional

Conditional requirement: This property is required if the ElementType is
102 or 103. The cumulative count of file I/O operations that were directed
to the object and that did not perform a transfer of data either to or from
the file contents. This count excludes metadata I/ O operations (both read
and write). File "open", "close", and "lock" I/O operations are examples of

an "OtherlO" I/O operation.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

MetadataReadlOs

Optional

The cumulative count of file I/O operations that were directed to the object
and that performed a read transfer of metadata. "Get Attributes" and
"Read Directory" I/0O operations are examples of a Metadata read /O
operation.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

MetadataWritelOs

Optional

The cumulative count of file I/O operations that were directed to the object
and that performed a write transfer of metadata. "Set Attributes" 1/0
operations are an example of a Metadata write 1/0 operation.

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

TotallOTimeCounter

Optional

The cumulative elapsed I/O operation time (number of ClockTickIntervals)
for all file I/O operations as defined in "TotallOs" above. The I/O operation
response time is added to this counter at the completion of each
measured I/O operation using ClockTickInterval units. The
TotallOTimeCounter value can be divided by the total number of I/O
operations (TotallOs) to obtain an 1/O operation average response time.

Note: This is not specified for the "Other" ElementType.

TotalldleTimeCounter

Optional

The cumulative elapsed idle time using ClockTickInterval units. That is, the
cumulative number of ClockTickIntervals for all idle time within the object,
with “idle time" being that time during which no 1/O operations were being
processed by the object.

Note: This is not specified for the "Other" ElementType.

ReadlOTimeCounter

Optional

The cumulative elapsed I/O operation time for all Read I/O operations (that
is, the cumulative elapsed time for all Read I/O operations as defined in
"ReadlOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

BytesRead

Optional

The cumulative count of bytes read (that is, the cumulative count of bytes
transferred by all Read I/O operations as defined in "ReadlOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

WritelOTimeCounter

Optional

The cumulative elapsed I/0 operation time for all Write I/O operations (that
is, the cumulative elapsed time for all Write 1/O operations as defined in
"WritelOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

BytesWritten

Optional

The cumulative count of bytes written (that is, the cumulative count of
bytes transferred by all Write I/O operations as defined in "WritelOs"
above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

SMI-S 1.6.1 Revision 6

SNIA Technical Position 253

Filesystem Performance Profile

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes

MetadataBytesRead Optional The cumulative count of metadata bytes read (that is, the cumulative count
of bytes transferred by all Metadata read 1/O operations as defined in
"MetadataReadlOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

MetadataBytesWritten Optional The cumulative count of metadata bytes written (that is, the cumulative
count of bytes transferred by all Metadata write I/O operations as defined
in "MetadataWritelOs" above).

Note: This is not specified for the "Exporting Port" and the "Other"
ElementTypes.

PercentDurableOpens Optional The percentage of total opens for which clients requested durability.
Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

PercentResilientOpens Optional The percentage of total opens for which clients requested resiliency.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

PercentPersistentOpens Optional The percentage of total handles for which clients requested persistency.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageReadResponseTi Optional The average number of seconds that elapse between the time at which a

me read request to this share is received and the time at which the SMB2 File
Server sends the corresponding response.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageWriteResponseTi Optional The average number of seconds that elapse between the time at which a

me write request to this share is received and the time at which the SMB2 File
Server sends the corresponding response.

Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

AverageRequestResponse Optional The average number of seconds that elapse between the time at which

Time the SMB2 File Server receives a request for this share and the time at
which the SMB2 File Server sends the corresponding response.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

BytesReadPerSec Optional The rate, in seconds, at which data is being read from this share.

Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

TotalBytesReceived Optional The number of bytes that have been received for requests related to this
share. This value includes application data as well as SMB2 protocol data
(such as packet headers).

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

BytesReceivedPerSec Optional The rate at which bytes are being received for requests related to this

share. This value includes application data as well as SMB2 protocol data
(such as packet headers).

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

254

Filesystem Performance Profile

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes

TotalBytesSent Optional The number of bytes that have been sent by the SMB2 File Server related
to this share to its clients since the server started. This value includes both
data bytes and protocol bytes.

Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

BytesSentPerSec Optional The rate, in seconds, at which bytes are being sent from the SMB2 File
Server related to this share to its clients. This value includes both data
bytes and protocol bytes.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

BytesTranferredPerSec Optional The sum of bytes transferred/sec related to this share.

Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

BytesWrittenPerSec Optional The rate, in seconds, at which data is being written to this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

FilesOpenedPerSec Optional The rate, in seconds, at which files are being opened for the SMB2 File
Server's clients on this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalOpenFileCount Optional The number of files that have been opened by the SMB2 File Server on
behalf of its clients on this share since the server started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

CurrentPendingRequests Optional The number of requests related to this share that are waiting to be
processed by the SMB2 File Server.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

ReadRequestsProcessedP Optional Read requests processed/sec related to this share.

erSec
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalRequestsReceived Optional The number of requests that have been received for this share.

Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

RequestsReceivedPerSec Optional The rate at which requests are being received for this share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalDurableHandleReope Optional The number of durable opens on this share that have been recovered after

nCount a temporary network disconnect since the SMB2 File Server started.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalFailedDurableHandle Optional The number of durable opens on this share that could not be recovered

ReopenCount

after a temporary network disconnect since the SMB2 File Server Started.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

SMI-S 1.6.1 Revision 6

SNIA Technical Position 255

Filesystem Performance Profile

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes

TotalFailedResilientHandle Optional The number of resilient opens on this share that could not be recovered

ReopenCount after a temporary network disconnect since the SMB2 File Server Started.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

CurrentOpenFileCount Optional The number of file handles that are currently open in this share.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalResilientHandleReop Optional The number of resilient opens on this share that have been recovered

enCount after a temporary network disconnect since the SMB2 File Server started.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalPersistentHandleReo Optional The number of persistent opens on this share that have been recovered

penCount after a temporary network disconnect since the SMB2 File Server started.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalFailedPersistentHandl| Optional The number of persistent opens on this share that could not be recovered

eReopenCount after a temporary network disconnect since the SMB2 File Server Started.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TreeConnectCount Optional The number of tree connects to this share.
Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

WriteRequestsProcessedP Optional Write requests processed/sec related to this share.

erSec
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

TotalMetadataRequestsRe Optional The total number of metadata requests received related to this share.

ceived
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

MetadataRequestsReceive Optional The rate, in seconds, at which metadata requests are being sent to this

dPerSec share.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageTimePerDataRequ Optional The average number of seconds that elapse between the time at which a

est read or write request to this share is received and the time at which the
SMB2 File Server processes the request.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageBytesPerDataReq Optional The average number of bytes per read or write request.

uest
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageBytesPerReadReq Optional The average number of bytes per read request.

uest

Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

256

Filesystem Performance Profile

Table 154 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticalData

Properties Flags Requirement Description & Notes

AverageBytesPerWriteReq Optional The average number of bytes per write request.

uest
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageReadQueuelengt Optional The average number of read requests that were queued for this share.

h
Note: This is not specified for the "Local File System"”, "Exporting Port" and
the "Other" ElementTypes.

AverageWriteQueuelLengt Optional The average number of write requests that were queued for this share.

h
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

AverageDataQueuelLength Optional The average number of read and write requests that were queued for this
share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

DataBytesPerSec Optional The rate, in seconds, at which data is being written to or read from this
share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

DataRequestsPerSec Optional The rate, in seconds, at which read or write requests are received for this
share.

Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

CurrentDataQueueLength Optional The current number of read or write requests outstanding on this share.
Note: This is not specified for the "Local File System", "Exporting Port" and
the "Other" ElementTypes.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

ElementName N Optional Not Specified in this version of the Profile.

Samplelnterval N Optional Not Specified in this version of the Profile.

StartStatisticTime N Optional Not Specified in this version of the Profile.

ResetSelectedStats() Optional Not Specified in this version of the Profile.

11.6.9 CIM_FileSystemStatisticsCapabilities

An instance of the CIM_FileSystemStatisticsCapabilities class defines the specific support provided with
the filesystem statistics implementation. Note: There would be zero or one instance of this class in a
profile. There would be none if the profile did not support the Filesystem Performance Subprofile. There
would be exactly one instance if the profile did support the Filesystem Performance Subprofile.

CIM_FileSystemStatisticsCapabilities class is subclassed from CIM_Capabilities.

Created By: Static
Modified By: Static
Deleted By: Static

Requirement: Mandatory

SMI-S 1.6.1 Revision 6

SNIA Technical Position 257

Filesystem Performance Profile

Table 155 describes class CIM_FileSystemStatisticsCapabilities.

Table 155 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsCapabilities

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory

ElementTypesSupported Mandatory ValueMap { "1", "102", "103", "104"},
Values {"Other", "Local Filesystem", "Exported File Share", "Exporting
Port"}.

SynchronousMethodsSupp Mandatory This property is mandatory, but the array may be empty.

orted
ValueMap { "2", "3", "4", "5", "6", "7", "8"},
Values {"Exec Query", "Indications", "QueryCollection",
"GetStatisticsCollection”, "Manifest Creation”, "Manifest Modification",
"Manifest Removal" }.

AsynchronousMethodsSup Optional Not supported in current version of SMI-S.

ported

ClockTickInterval Mandatory An internal clocking interval for all timers in the subsystem, measured in
microseconds (Unit of measure in the timers, measured in microseconds).
Time counters are monotonically increasing counters that contain "ticks".
Each tick represents one ClockTickiInterval. If ClockTickInterval contained
a value of 32 then each time counter tick would represent 32
microseconds.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

CreateGoalSettings() Optional Not Specified in this version of the Profile.

11.6.10CIM_FileSystemStatisticsManifest (Client Defined)

The CIM_FileSystemStatisticsManifest class is a Concrete class that defines the
CIM_FileSystemStorageStatisticalData properties that should be returned on a GetStatisticsCollection
request.

CIM_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.

In order for a client defined instance of the CIM_FileSystemsStatisticsManifest class to exist, all of the
manifest collection manipulation functions shall be identified in the "SynchronousMethodsSupported"”
property of the CIM_FileSystemStatisticsCapabilities
(FileSystemStatisticsCapabilities.SynchronousMethodsSupported = "6") instance, AND a client must
have created at least ONE instance of CIM_FileSystemStatisticsManifestCollection.

Created By: Extrinsic: AddOrModifyManifest
Modified By: Extrinsic: AddOrModifyManifest
Deleted By: Extrinsic: RemoveManifests

Requirement: Clients can modify manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

258

Filesystem Performance Profile

Table 156 describes class CIM_FileSystemStatisticsManifest (Client Defined).

Table 156 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Client defined string that identifies the manifest.

InstancelD Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstancelD opaquely and
uniquely identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of
SMI-S specifies the following values:
ValueMap {"1", "102", "103", "104"}
Values { "Other", "Local Filesystem", "Exported File
Share", "Exporting Port"}.

OtherElementTypeDescription Mandatory A string describing the type of element when the
ElementType property of this class (or any of its
subclasses) is set to 1 (i.e., "Other"). This property
should be set to NULL when the ElementType
property is any value other than 1.

IncludeStatisticTime Mandatory

IncludeTotallOs Mandatory

IncludeTotalBytesTransferred Mandatory

IncludeReadlOs Mandatory

IncludeWritelOs Mandatory

IncludeOtherlOs Mandatory

IncludeMetadataReadlOs Mandatory

IncludeMetadataWritelOs Mandatory

IncludeTotallOTimeCounter Mandatory

IncludeTotalldleTimeCounter Mandatory

IncludeReadlOTimeCounter Mandatory

IncludeBytesRead Mandatory

IncludeWritelOTimeCounter Mandatory

IncludeBytesWritten Mandatory

IncludeMetadataBytesRead Mandatory

IncludeMetadataBytesWritten Mandatory

IncludePercentDurableOpens Mandatory

IncludePercentResilientOpens Mandatory

IncludePercentPersistentOpens Mandatory

IncludeAverageReadResponseTime Mandatory

IncludeAverageWriteResponseTime Mandatory

IncludeAverageRequestResponseTime Mandatory

IncludeBytesReadPerSec Mandatory

SMI-S 1.6.1 Revision 6 SNIA Technical Position 259

Filesystem Performance Profile

Table 156 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes
IncludeTotalBytesReceived Mandatory
IncludeBytesReceivedPerSec Mandatory
IncludeTotalBytesSent Mandatory
IncludeBytesSentPerSec Mandatory
IncludeBytesTranferredPerSec Mandatory
IncludeBytesWrittenPerSec Mandatory
IncludeFilesOpenedPerSec Mandatory
IncludeTotalOpenFileCount Mandatory
IncludeCurrentPendingRequests Mandatory
IncludeReadRequestsProcessedPerSec Mandatory
IncludeTotalRequestsReceived Mandatory
IncludeRequestsReceivedPerSec Mandatory
IncludeTotalDurableHandleReopenCount Mandatory
IncludeTotalFailedDurableHandleReopenC Mandatory
ount

IncludeTotalFailedResilientHandleReopenC Mandatory
ount

IncludeCurrentOpenFileCount Mandatory
IncludeTotalResilientHandleReopenCount Mandatory
IncludeTotalPersistentHandleReopenCount Mandatory
IncludeTotalFailedPersistentHandleReopen Mandatory
Count

IncludeTreeConnectCount Mandatory
IncludeWriteRequestsProcessedPerSec Mandatory
IncludeTotalMetadataRequestsReceived Mandatory
IncludeMetadataRequestsReceivedPerSec Mandatory
IncludeAverageTimePerDataRequest Mandatory
IncludeAverageBytesPerDataRequest Mandatory
IncludeAverageBytesPerReadRequest Mandatory
IncludeAverageBytesPerWriteRequest Mandatory
IncludeAverageReadQueuelLength Mandatory
IncludeAverageWriteQueueLength Mandatory
IncludeAverageDataQueuelLength Mandatory
IncludeDataBytesPerSec Mandatory
IncludeDataRequestsPerSec Mandatory
IncludeCurrentDataQueuelLength Mandatory

260

Filesystem Performance Profile

Table 156 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Client Defined)

Properties Flags Requirement Description & Notes

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
IncludeStartStatisticTime N Optional Not Specified in this version of the Profile.

11.6.11CIM_FileSystemStatisticsManifest (Provider Support)

The CIM_FileSystemStatisticsManifest class is a Concrete class that defines the
CIM_FileSystemStatisticalData properties that are supported by the Provider. These Manifests are
established by the Provider for the default manifest collection.

CIM_FileSystemStatisticsManifest is subclassed from CIM_ManagedElement.

At least one Provider supplied instance of the CIM_FileSystemStatisticsManifest class shall exist, if the
Filesystem Performance Subprofile is supported.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 157 describes class CIM_FileSystemStatisticsManifest (Provider Support).

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Provider defined string that identifies the manifest in the context
of the Default Manifest Collection.

InstancelD Mandatory The instance Identification. Within the scope of the instantiating
Namespace, InstancelD opaquely and uniquely identifies an
instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S specifies
the following values:

ValueMap {"1", "102", "103", "104"}

Values { "Other", "Local Filesystem", "Exported File Share",
"Exporting Port"}.

OtherElementTypeDescription Mandatory A string describing the type of element when the ElementType
property of this class (or any of its subclasses) is setto 1 (i.e.,
"Other"). This property should be set to NULL when the
ElementType property is any value other than 1.

IncludeStatisticTime Mandatory
IncludeTotallOs Mandatory
IncludeTotalBytesTransferred Mandatory
IncludeReadlOs Mandatory
IncludeWritelOs Mandatory
IncludeOtherlOs Mandatory
IncludeMetadataReadlOs Mandatory
IncludeMetadataWritelOs Mandatory

SMI-S 1.6.1 Revision 6 SNIA Technical Position 261

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes
IncludeTotallOTimeCounter Mandatory
IncludeTotalldleTimeCounter Mandatory
IncludeReadlOTimeCounter Mandatory
IncludeBytesRead Mandatory
IncludeWritelOTimeCounter Mandatory
IncludeBytesWritten Mandatory
IncludeMetadataBytesRead Mandatory
IncludeMetadataBytesWritten Mandatory
IncludePercentDurableOpens Mandatory
IncludePercentResilientOpens Mandatory
IncludePercentPersistentOpens Mandatory
IncludeAverageReadResponseTi Mandatory
me

IncludeAverageWriteResponseTi Mandatory
me

IncludeAverageRequestRespons Mandatory
eTime

IncludeBytesReadPerSec Mandatory
IncludeTotalBytesReceived Mandatory
IncludeBytesReceivedPerSec Mandatory
IncludeTotalBytesSent Mandatory
IncludeBytesSentPerSec Mandatory
IncludeBytesTranferredPerSec Mandatory
IncludeBytesWrittenPerSec Mandatory
IncludeFilesOpenedPerSec Mandatory
IncludeTotalOpenFileCount Mandatory
IncludeCurrentPendingRequests Mandatory
IncludeReadRequestsProcessed Mandatory
PerSec

IncludeTotalRequestsReceived Mandatory
IncludeRequestsReceivedPerSec Mandatory
IncludeTotalDurableHandleReope Mandatory
nCount

IncludeTotalFailedDurableHandle Mandatory
ReopenCount

IncludeTotalFailedResilientHandle Mandatory
ReopenCount

IncludeCurrentOpenFileCount Mandatory

262

Filesystem Performance Profile

Table 157 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifest (Provider Support)

Properties Flags Requirement Description & Notes
IncludeTotalResilientHandleReop Mandatory

enCount

IncludeTotalPersistentHandleReo Mandatory

penCount

IncludeTotalFailedPersistentHand Mandatory

leReopenCount

IncludeTreeConnectCount Mandatory
IncludeWriteRequestsProcessed Mandatory

PerSec

IncludeTotalMetadataRequestsRe Mandatory

ceived

IncludeMetadataRequestsReceiv Mandatory

edPerSec

IncludeAverageTimePerDataReq Mandatory

uest

IncludeAverageBytesPerDataReq Mandatory

uest

IncludeAverageBytesPerReadRe Mandatory

quest

IncludeAverageBytesPerWriteRe Mandatory

quest

IncludeAverageReadQueuelengt Mandatory

h

IncludeAverageWriteQueuelLengt Mandatory

h

IncludeAverageDataQueuelLength Mandatory

IncludeDataBytesPerSec Mandatory
IncludeDataRequestsPerSec Mandatory
IncludeCurrentDataQueuelLength Mandatory

Caption N Optional Not Specified in this version of the Profile.
Description N Optional Not Specified in this version of the Profile.
IncludeStartStatisticTime N Optional Not Specified in this version of the Profile.

11.6.12CIM_FileSystemStatisticsManifestCollection (Client Defined)

An instance of a client defined CIM_FileSystemStatisticsManifestCollection defines the set of Manifests
to be used in the retrieval of filesystem statistics by the GetStatisticsCollection method.
CIM_FileSystemStatisticsManifestCollection is subclassed from CIM_SystemSpecificCollection.

In order for a client defined instance of the CIM_FileSystemStatisticsManifestCollection class to exist,
then all the manifest collection manipulation functions shall be identified in the
"SynchronousMethodsSupported" property of the CIM_FileSystemStatisticsCapabilities instance and a
client must have created a Manifest Collection..

Created By: Extrinsic: CreateManifestCollection

SMI-S 1.6.1 Revision 6 SNIA Technical Position 263

Modified By: Static
Deleted By: Static

Filesystem Performance Profile

Requirement: Clients can create manifests as identified by
CIM_FileSystemStatisticsCapabilities.SynchronousMethodsSupported.

Table 158 describes class CIM_FileSystemStatisticsManifestCollection (Client Defined).

Table 158 - SMI Referenced Properties/Methods for CIM_FileSystemStatisticsManifestCollection (Client

Defined)

Properties Flags Requirement Description & Notes

InstancelD Mandatory

ElementName Mandatory A client defined user-friendly name for the